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1. Introduction

1.1. Quantum imaging and sensing: beginnings and state

of the art

Basic principles of quantum mechanics, such as entanglement, lie at the heart of

emerging quantum technologies. The purpose of advancing these novel quantum

techniques is to find improved solutions to particular tasks, which outperform the per-

formance of state-of-the-art technology based solely on classical physics. The thought

experiment of Einstein, Podolsky and Rosen [1] discussed the essence of an entan-

gled state [2]. Particles of a system are said to be entangled when they are generated

together or interacted with one another, and their states cannot be independently

described even if the particles are later spatially separated. In other words, entan-

gled particles share quantum correlations. Importantly, such correlations are exploited

within the field of quantum optics to achieve, for example, imaging and sensing with

entangled photons, as will be discussed at length in this thesis.

Photon pairs that are entangled, e.g., in wavelength, polarization, and/or trans-

verse momentum, have been used to experimentally test fundamental theoretical pre-

dictions of quantum mechanics. The experimental pioneers of quantum technologies

and quantum information theory, Aspect [3], Clauser [4], and Zeilinger [5], received

the Nobel Prize in Physics 2022 for their extensive work using entangled photons. A

pair of entangled photons can be obtained from the process of spontaneous parametric

down-conversion (SPDC), as was first experimentally shown by Burnham et al. using

coincidence-counting measurements [6]. A few years later, Hong and Mandel put for-

ward a general theory of down-converted fields [7], which will serve as the basis for

investigating SPDC in this thesis1.

Several entanglement-based quantum effects were demonstrated using photon pairs,

including the quantum eraser, quantum teleportation, and entanglement swapping.

The quantum eraser was proposed by Scully et al. [10] and was later demonstrated

1 Processes like spontaneous Raman scattering in atomic systems [8] and spontaneous four-wave
mixing [9] can also be used to generate entangled photon pairs; however, only pairs produced by
SPDC are discussed in this thesis.



1 Introduction

by Kwiat et al. [11], Kim et al. [12] and Walborn et al. [13]. In this experiment, a

double slit is illuminated with single photons, where if it is possible to know through

which slit a photon passes, then the measured pattern does not show any interference.

In contrast, if the slit through which the photon passes is unknown, then an interfer-

ence pattern appears. Consequently, ‘erasing’ the information of the path taken by the

photon results in the photon interfering with itself. Furthermore, quantum telepor-

tation is another prominent quantum effect that was first proposed by Bennet et al.

[14] and then experimentally realized by Boschi et al. [15] and Bouwmeester et al.

[16]. Here, the information of a state can be transferred from a sender to a distant

receiver by means of an entangled state. Additionally, entanglement swapping is a

quantum effect put forward by Żukowski et al. [17] and later experimentally shown

in Refs. [18–22], where two photons from independent photon-pair sources become

entangled.

Quantum light can be used to test fundamental quantum effects, as just mentioned,

but has also become the basis of emerging applications such as quantum comput-

ing [23], quantum communication [24] and quantum metrology [25–30]. Several

quantum-enhanced imaging [31] and spectroscopy [32] protocols have been proposed

in the last few years. Some relevant related technologies will be mentioned next.

Quantum-enhanced imaging schemes with photon pairs have been demonstrated, as

is the case of differential interference contrast microscopy with a NOON state [33]
of N = 2 [34], subshot-noise wide-field microscopy [35], and scanning heralded mi-

croscopy for fast and single-mode imaging [36], quantum-secured imaging [37], and

quantum plenoptic imaging [38–40]. It is also worth mentioning that, beyond the use

of only photon pairs, there is quantum-enhanced coherent Raman microscopy [41],
quantum-enhanced noise radar [42] and Lidar [43], resolution-enhanced quantum

imaging using multiphoton interference [44, 45], single-photon emitters [46, 47],
and incoherent light [48, 49]. Additionally, the subfield of quantum lithography aims

to deliver a resolution enhancement of λ/(2N), with N being the entangled photons

that pass through the mask [50–53]. There have also been quantum-enhanced appli-

cations beyond imaging, as is the case with spectroscopy. Spectroscopy with two-color

photon pairs has been implemented in several proof-of-principle experiments, e.g.,

spectroscopy at a long wavelength like infrared or terahertz, while measuring shorter-

wavelength photons in, e.g., the visible range [54–59]. There have been reports on

absorption spectroscopy at the quantum limit using single photons [60] and quantum

advantage on absorption [61].

Numerous quantum technologies have been made possible due to the advancement

in the design and fabrication of photon-pair sources and also due to the progress of

4



1 Introduction

engineering more efficient single-photon detectors. The first experiments to test quan-

tum effects were performed using bulk nonlinear crystals as sources of photon pairs

with degenerate wavelengths. Among the most common materials used for SPDC are

KDP (potassium dihydrogen phosphate) [62–66], BBO (beta barium borate) [67–72],
KTP (potassium titanyl phosphate) [73–77], and LiNbO3 (lithium niobate) [78–81].
Quantum imaging and sensing can benefit from sources of photon pairs with highly

non-degenerate wavelengths, where the choice of a material’s transmission, linear and

nonlinear response are important when generating photon pairs with wavelengths that

are very far apart; see, e.g., Ref. [82]. Moreover, the geometry of a photon-pair source

greatly influences the properties of pair generation. In recent years, materials such as

lithium niobate have been used for the first time to fabricate thin sources [83, 84].
Integrated optical and quantum optical devices can be relevant for compact quantum

applications, for example, in the form of waveguides [81, 85] or metasurfaces [86–

88].

In this thesis, two quantum technologies that lie in the intersection of fundamen-

tal and applied physics and use entangled photons generated by SPDC will be thor-

oughly examined: quantum ghost imaging/polarimetry and quantum imaging with

undetected photons.

1.1.1. Quantum ghost imaging

In 1995, Strekalov et al. and Pittman et al., from the group led by Shih, introduced

two pioneering works: quantum ghost diffraction (QGD) [89] and quantum ghost

imaging (QGI) [90], respectively. The design of the schemes was influenced by the

work of Klyshko [91]. A QGI scheme, illustrated in Fig. 1.1, uses a source of corre-

lated photon pairs; each pair is composed of the commonly called signal and idler

photons that share both momentum and position correlations. After creation, the two

photons are separated into two different paths, and only one of them interacts with

an object, e.g., the idler photon. Then, this idler photon is measured by a detector

without spatial resolution commonly called ‘bucket’ detector, which simply collects all

incoming photons, whereas the signal photon that never interacts with the object is

measured by another detector with spatial resolution. Although none of the detectors

alone can recover the image of the object, remarkably, the image can be recovered

by correlating the two measurements using coincidence measurements [92, 93]. In

QGD, the diffraction pattern of the object can be obtained in a similar manner, with

one of the differences being that it requires a point-like detector instead of a bucket

detector.

QGI and QGD inspired researchers at the fundamental level, e.g., by using both

5
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Figure 1.1. Sketch of a quantum ghost imaging (QGI) scheme with two-color photon pairs. The
idler photons with lower energy illuminate the sample and are measured by a spatially non-resolving
detector, while the non-interacting signal photons are measured by a camera. The image of the object
can be retrieved from the coincidence measurements between signal and idler photons.

schemes to quantify the degree of entanglement between signal and idler photons [94],
but more importantly, by triggering a long discussion [95–97] on whether they worked

only due to entanglement. This discussion was closed a few years after QGI and QGD

were proposed, as it was proven that a ghost imaging scheme that uses light with clas-

sical correlations mimics most of the characteristics of entangled photons [98–104].
The main difference between the quantum and the classical scheme resides in the

signal-to-noise ratio (SNR) [105–107]. The thermal (classical) ghost image always

resides on top of a larger background, where the fluctuations in this background con-

stitute an intrinsic noise source. In contrast, there is a smaller intrinsic background

when a source of quantum light is used to generate a quantum ghost image.

However, the QGI technique offers tremendous potential for applications over its

classical counterpart, especially for biosensing, where sensitive samples prone to ra-

diation damage are probed. That is, QGI has two main practical advantages: First,

as already mentioned, very low numbers of photons can be used to illuminate the

sensitive sample and obtain a better SNR compared to imaging with classical light.

Second, QGI with two-color photon pairs can overcome limitations due to inaccessi-

ble wavelength ranges for illumination and detection [108–110]. A sensitive sample

can be illuminated with a low-energetic photon, while a resolving detector measures

the more energetic photon in a wavelength range where sensors are highly efficient,

e.g., in the visible range.

6
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The technology to transform QGI into an applicable device is still in its infancy, but is

advancing at a fast pace. Efficient single-photon detectors, namely CCD cameras [111,

112], single-photon-avalanche-diode (SPAD) arrays [113–118] and superconducting

nanowire detectors [119], and bright sources of highly entangled photons, as men-

tioned before, are currently under study and development.

Literature gap: It is of considerable practical interest to develop lensless ghost

imaging schemes, as high-quality lenses are less available in wavelength ranges where

the signal and idler can be generated [120], e.g., in the terahertz range, which is

of interest for biology, medicine, and material science [121–124]. A quantum ghost

image can be formed using lenses in the paths of the down-converted photons [90,

106, 107], as shown in Fig. 1.1. Pittman et al. also demonstrated an alternative to

achieve imaging without any lenses in the paths of the signal and idler photons, namely

by using a pump beam with a curved phase-front inside the nonlinear crystal [125].
However, the lensless configuration mentioned in [125] exploits only the shape of the

pump phase front. Then, a natural question arises: Can novel lensless QGI schemes

emerge from engineering other degrees of freedom of the scheme, e.g., the transverse

profile of the pump beam? The answer to this question has not yet been thoroughly

addressed in the literature.

1.1.2. Quantum ghost polarimetry

Optical sensing of polarization properties provides a wealth of information that is oth-

erwise hidden, with applications ranging from microscopy [126] to monitoring from

satellites [127]. Although polarization manipulation and measurement are conve-

niently performed using bulk optical elements [128], nanostructured metasurfaces al-

low more flexible parallel polarization transformations for single-shot measurements

[129], real-time imaging with a camera [130], quantum light manipulation, and char-

acterization [87, 131–134]. Fundamental and applied interest in polarization de-

tection at low-light illumination and across broad spectral regions, for example, for

biosensing, motivated the development of ghost polarimetry, which was first proposed

from a classical perspective [135]. However, there remains a fundamental limitation

of the proposed classical ghost polarimetry approaches due to the need for multiple

reconfigurable elements such as rotating waveplates [136–143].

Literature gap: A comprehensive treatment of quantum ghost polarimetry (QGP)

is lacking from the literature. The polarization entanglement between signal and idler

photons is used in QGP, which is a simpler form of a scheme compared to QGI, as two

polarization modes are used instead of a continuum of position/momentum modes.

QGP draws on the underlying principle originally developed for QGI, where the pho-
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tons passing through an object are registered with a simple non-resolving detector [90,

144], while their quantum pairs can be conveniently measured at a different wave-

length selected for efficient high-resolution detection [108–110]. Then a polarization-

sensitive object can be characterized by multiple coincidence measurements [145].
Moreover, the unique capabilities of polarization control with metasurfaces towards

potential single-shot quantum ghost configurations have remained largely untapped;

some metasurfaces have been used in this context only for hologram generation [146].
Therefore, an extensive treatment of QGP that benefits from metasurfaces is of great

interest to the community.

1.1.3. Quantum imaging with undetected photons

The first experimental demonstration of quantum imaging with undetected photons

(QIUP) was performed by Lemos et al. in 2014 [147, 148]. A sketch of the scheme is

shown in Fig. 1.2. QIUP relies on the quantum effect of induced coherence without

induced emission [149, 150], which was demonstrated using a setup composed of

two nonlinear crystals in the low-gain regime, here named A and B, producing down-

converted photon pairs, which are superimposed. Importantly, only the idler photons

of source A interact with the object, and then the path of these idler photons is aligned

with the path of the idler photons of source B. At the same time, the signal photons do

not interact with the object but interfere at a beamsplitter. One of the outputs of this

beamsplitter is measured by a single-photon detector. The major result of the scheme

is that the sole measurement of the non-interacting signal photons carries informa-

tion of the transmission of the object, namely, the image of the object probed by idler

photons can be obtained measuring only signal photons. Importantly, this utmost un-

intuitive effect relies on the alignment of the idler photons. The sole overlap of idler

modes, without the necessity of the idlers of source A inducing photon emission on

source B, introduces interference to the state of the system, since it is no longer pos-

sible to distinguish which source generated the idler photon coming out of crystal B.

Additionally, since the signal photons are measured after the beamsplitter, the source

of a signal photon cannot be distinguished.

The most prominent advantage of QIUP over QGI is the fact that coincidence mea-

surements are not required to retrieve an image. Thus, if two-color photon pairs are

used (one less energetic photon to probe the object and its pair in the visible range

that is measured), then only one single-photon detector with high efficiency in the

visible range is needed. Since the image of the object is directly obtained in the signal

photons, the less energetic probing idler photons can remain undetected. This poses

a major practical advantage, which has motivated several works, e.g., Refs. [151–

8
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Object

Camera

Pump A

Pump B

Figure 1.2. Sketch of quantum imaging with undetected photons (QIUP) with two-color photon pairs.
The scheme consists of two sources of photon pairs; the idlers of source A interact with the object and
are later superimposed with the idlers of source B. Signal photons also interfere and are measured by a
camera. QIUP allows us to retrieve the image of the object, illuminated by idler photons, by measuring
only signal photons.

155], since there is no need for a highly efficient single-photon detector for long wave-

lengths, as is the case of QGI.

Literature gap: It is well known that the fundamental resolution of a diffraction-

limited classical imaging scheme depends on the wavelength λ of the particle that

interacts with the object [156–158]. Assuming that the optical elements have a numer-

ical aperture NA= 1, the resolution is ≈ λ/2. For that reason, electron microscopy de-

livers higher resolution than a conventional light microscope using visible light [159].
As mentioned before, quantum imaging protocols can be implemented with signal

and idler photons of different wavelengths, so it is natural to ask oneself: Which

wavelength defines the fundamental resolution of QIUP and QGI? Although several

works have discussed the resolution of quantum imaging [108, 151, 160–165], they

have treated this question only within the paraxial regime. This fits very well with

most experiments that rely on commercially available nonlinear crystals, whose typ-

ical thickness is much larger than the wavelengths of the down-converted photons.

9
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These thick crystals generate signal and idler photons only within a small range of

transverse momenta. However, the recent advent of thinner nonlinear materials as

photon-pair sources [83, 84, 86] opens up the possibility of having photons in a mo-

mentum range beyond the paraxial regime. These ultra-thin crystals can have a thick-

ness smaller than the wavelengths of signal and idler. The fundamental resolution

limit of QIUP and QGI based on two-color photon pairs generated beyond the paraxial

regime remains an open problem.

1.2. Aim and structure of this thesis

1.2.1. Aim

The general aim of this thesis is to advance the state-of-the-art knowledge of quantum

imaging and polarimetry with two-color photon pairs by bridging three gaps in the

literature. These have already been mentioned above and will be addressed in the

following order. First, since the beginning of QGI and QIUP, a formal proof of their

fundamental transverse resolution limit is lacking from the theory (see sections 1.1.1

and 1.1.3). Second, the influence of the pump beam profile used in QGI has not yet

been exhaustively studied in the literature (see section 1.1.1). Third, even though

QGI was initiated almost 30 years ago, a thorough theoretical development of QGP is

missing (see section 1.1.2).

1.2.2. Structure

The quantum state of the photon pairs lies at the heart of the quantum imaging and

polarimetry schemes presented in this thesis. Therefore, we start this thesis by pre-

senting a mathematical derivation of the two-photon quantum state in chapter 2. In

that chapter, the electric field operator is derived and then used to describe pair gener-

ation by the SPDC process. At the end of the chapter, the two-photon quantum state is

simplified for schemes presented in subsequent chapters, namely, a photon-pair source

with transverse-momentum entanglement and a source with exclusively polarization

entanglement.

The fundamental resolution of QIUP and QGI with two-color photon pairs is pre-

sented in chapter 3 using the two-photon state with transverse-momentum entangle-

ment derived in the previous chapter. In chapter 3, the dependence of the transverse

resolution on the wavelengths of the signal and idler photons is discussed by deriving

a more general description of the resolution suitable in the non-paraxial regime. The

10
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chapter begins with the QIUP scheme based on position correlations; then its funda-

mental resolution limit is derived. Moreover, a similar analysis of the resolution is

carried out for QGI based on position correlations.

Chapter 4 discusses a novel lensless imaging scheme that we named ‘pinhole quan-

tum ghost imaging’. Chapter 4 begins with the QGD scheme, which was already briefly

mentioned in this chapter, and then we explain how it can be modified to produce

ghost images avoiding the need of lenses in the down-converted arms. At the end

of the chapter, the resolution within the paraxial regime of the proposed scheme is

derived.

Lastly, chapter 5 contains our proposal of a QGP scheme, which uses a two-photon

source with polarization entanglement. The discussion in this chapter concentrates on

the discrimination of polarization-sensitive objects. In addition, we use this scheme

to discuss the role of entanglement at the end of the chapter.

1.3. Collaborations

The following work was developed by me, Andres Ricardo Vega Perez, under the di-

rect supervision of Dr. Frank Setzpfandt in the Nano & Quantum optics group of

Prof. Thomas Pertsch (Institute of Applied Physics, Abbe Center of Photonics, Friedrich

Schiller University Jena). However, it is important to mention that the experiments

regarding QIUP of Marta Gilaberte Basset and Jorge Fuenzalida from the group of

Prof. Markus Gräfe (Fraunhofer IOF - TU Darmstadt) sparked our work to derive

the fundamental resolution limit of this scheme discussed in chapter 3. Furthermore,

the non-paraxial derivation of the two-photon state, presented within chapter 2, was

done by my colleague Elkin A. Santos and it is presented in this thesis since our joint

contribution led to the resolution analysis in chapter 3. Last but not least, the initia-

tive to use metasurfaces within the QGP scheme, shown in chapter 5, was from Prof.

Andrey Sukhorukov (Nonlinear and quantum photonics group, Australian National

University).
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2. Basics of the two-photon quantum

state

The backbone of the imaging and polarimetry schemes investigated in this thesis are

photon pairs produced from the process of spontaneous parametric down-conversion

(SPDC). Photon pairs obtained from SPDC using birefringent crystals with high second-

order nonlinearity have been widely used to test quantum experiments, as mentioned

in chapter 1. In the SPDC process, pump photons impinge onto a nonlinear crystal, and

only a few of these photons are spontaneously down-converted into pairs of photons of

lower energy, called signal and idler; see Fig. 2.1. The nature of the down-conversion

process is probabilistic and most of the photons of the pump do not produce photon

pairs and are simply transmitted through the crystal. The (unnormalized) output state

of the process is [7, 166, 167]

|ψ〉SPDC = |0,0〉+ |ψ〉 , (2.1)

where |0,0〉 is the vacuum state and |ψ〉, with a much lower probability, is the two-

photon state that contains information on the produced signal and idler. Most signifi-

cantly, the produced down-converted photons show entanglement because of conser-

vation of energy and momentum.

It is important to mention that an increased probability of producing states with a

Idler

Signal

Pump

Nonlinear crystal

Figure 2.1. Schematic of the spontaneous parametric down-conversion process, where a pump beam
impinges a nonlinear crystal producing a pair of photons with lower energy called signal and idler.
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2 Basics of the two-photon quantum state

large number of photons per mode can be achieved by strongly pumping a nonlinear

crystal [168, 169]. Such high-gain parametric down-conversion results in multiphoton

states; however, in this thesis we only consider the low-gain regime where states with

only two photons per mode are produced.

In this chapter, a theoretical framework for the description of SPDC is presented,

which is needed to model the photon-pair sources used in quantum imaging and po-

larimetry.

2.1. Electric field operator

We begin by considering the electric field operator to later model the signal and idler

photons within SPDC. The positive-frequency part of the electric field operator is given

by [170]

Ê(+)(r, t) =
i

(2π)3/2
∑

l

ˆ
dk

�

ħhω
2ϵ0

�1/2

â(k, l)e(k, l)exp [i(k · r−ωt)] , (2.2)

where k is the wave-vector and its integral is
´

dk=
´ +∞
−∞ dkz

´ +∞
−∞ dky

´ +∞
−∞ dkx . Addi-

tionally, l ∈ {1, 2} models the two possible polarizations perpendicular to each wave-

vector k, e is the unit-vector of the polarization l of the wave-vector k, ω = c|k| =
c
q

k2
x + k2

y + k2
z is the angular frequency, ε0 is the vacuum permittivity, c is the speed

of light in vacuum, ħh is the reduced Planck’s constant, and â is the annihilation oper-

ator. The commutation relations of the annihilation and creation operators are

[â(k, l), â†(k′, l ′)] = δ(k− k′)δl l ′ . (2.3)

The process of pair generation relies on conservation of energy, therefore, it is useful to

make frequency dependencies explicit in our description. To this end, the z-component

of the wave-vector kz is written in terms ofω, since the energy of a photon equals ħhω,

leading to kz = +
q

(ω/c)2 − k2
x − k2

y . Notice that we consider only the positive kz

which is relevant for the schemes of the next chapters, as photons propagate only in

the forward direction. Moreover, its corresponding integral is then limited to
´ +∞

0 dkz.

Consequently, dkz can be written as

dkz = d
�

�ω

c

�2
− k2

x − k2
y

�1/2

=
ω

c2kz
dω , (2.4)
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and the integral then has the following form

ˆ
dk −→

ˆ +∞
0

dω
ˆ +ω/c
−ω/c

dkx

ˆ +rω2

c2 −k2
x

−
r

ω2

c2 −k2
x

dky
ω

c2kz
. (2.5)

Importantly, the integrals kx , ky are restricted to the region

k2
x + k2

y ≤
ω2

c2
, (2.6)

since we deal only with propagating waves. This means that the near-field effects

produced by evanescent waves are not taken into account. Moreover, the change of

variable affects also the commutation relations,

[â(k, l), â†(k′, l ′)] = δ(kx − k′
x)δ(ky − k′

y)δ(kz − k′
z)δl l ′

= δ(kx − k′
x)δ(ky − k′

y)δ(ω−ω′)δl l ′
c2kz

ω
.

(2.7)

The annihilation operator can be newly defined as

â(kx , ky ,ω, l) =
�

ω

c2kz

�1/2

â(kx , ky , kz, l), (2.8)

which results in the commutation relations

[â(kx , ky ,ω, l), â†(k′
x , k′

y ,ω′, l ′)] = δ(kx − k′
x)δ(ky − k′

y)δ(ω−ω′)δl l ′ . (2.9)

For simplicity, without compromising the underlying physics of SPDC, we simplify

the model to only one transverse dimension kx . In this simplification, we take into

account only photons with ky ≈ 0, therefore, the range of kx will be given by k2
x ≤

ω2/c2, as defined by the range of propagating waves of Eq. (2.6). The variable kx

will be denoted as q from now on and x will be its corresponding transverse position

dimension. Following the treatment of Ref. [170], to do this reduction in dimension

formally, we use the substitution
´

dky → 2π/L y , where L y is a normalization length

scale in the y-direction. Therefore, the annihilation operator is redefined as

â(kx , ky ,ω, l)→ â(q,ω, l)

√

√ L y

2π
, (2.10)

which satisfies the commutation relations

[â(q,ω, l), â†(q′,ω′, l ′)] = δ(q − q′)δ(ω−ω′)δl l ′ . (2.11)

14



2 Basics of the two-photon quantum state

Finally, the simplified form of the electric field operator is then

Ê(+)(r, t) =
ˆ +∞

0
dω Ê(+)(r,ω)exp(−iωt), (2.12)

where

Ê(+)(x , z,ω) =i

�

�

ħh
16c2π3ϵ0

�

�

2π
L y

��1/2

×
∑

l

ˆ +ω/c
−ω/c

dq

�

ω

k1/2
z

â(q,ω, l)e(q,ω, l)exp (iqx + ikzz)

�

.

(2.13)

It is important to note that the term k−1/2
z in Eq. (2.13) tends to infinity as the

transverse momentum |q| increases towardsω/c and consequently kz tends to 0. This

diverging term becomes irrelevant if the treatment is reduced to the paraxial regime

where all transverse momenta are small, i.e., q2 ≪ω2/c2, because k−1/2
z can be taken

to be approximately independent of q [170]. The paraxial regime will suffice in the

study of pinhole quantum ghost imaging in chapter 4 and quantum ghost polarimetry

in chapter 5, while the full non-paraxial treatment will be needed to fully investigate

the limit in resolution in chapter 3. The treatment of the diverging term k−1/2
z will be

explained later in this chapter.

2.2. Spontaneous parametric down-conversion

Once the electric field operator has been derived, we proceed to calculate the quantum

state produced by SPDC. As mentioned before in Eq. (2.1), the SPDC state contains

the vacuum state |0, 0〉 and the two-photon state |ψ〉, where the latter contains the

photon-pair information. The two-photon state has the form [7, 167]

|ψ〉= Cψ

ˆ
dt
ˆ

dr
∑

α,β ,γ

�

χ
(2)
αβγ
(r)EP,γ(r, t)Ê(−)

α
(r, t)Ê(−)

β
(r, t) |0,0〉

�

, (2.14)

where Cψ is a constant, χ (2) is the second-order nonlinear susceptibility of the crys-

tal, the time integral
´

dt considers the interaction time and the spatial integral
´

dr

covers the volume of the nonlinear crystal where the interaction occurs. The coeffi-

cients γ,α,β refer to the polarization direction of the pump, signal, and idler fields,

respectively. Additionally, we take the positive frequency part of the pump (P) in the
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2 Basics of the two-photon quantum state

undepleted pump approximation, treating it as a classical field defined as

EP(r, t) =
ˆ +∞

0
dωPEP(r,ωP)exp(−iωP t), (2.15)

where its transverse spatial components can be expanded into plane waves,

EP(x , z) =
ˆ +∞
−∞

dqP EP(qP; z = 0)exp(iqP x + ikzPz). (2.16)

Here, we similarly consider only modes that propagate in the positive z-direction and

in the x-z plane. Therefore, the introduction of the pump field and the electric field

operator of Eq. (2.13) for the down-converted signal (S) and idler photons (I) into the

two-photon state results in

|ψ〉= C ′
ψ

×
ˆ +∞
−∞

dt
ˆ +∞
−∞

dx
ˆ +L/2

−L/2
dz

∑

α,β ,γ

χ
(2)
αβγ
(x , z)

×
ˆ +∞

0
dωP

ˆ +∞
−∞

dqPEP,γ(qP,ωP)exp [−i(ωP t − qP x − kzPz)]

×
ˆ +∞

0
dωS

∑

lS

ˆ +ωS/c

−ωS/c
dqS

ωS

k1/2
zS

â†(qS,ωS, lS)eα(qS,ωS, lS)exp [i(ωSt − qSx − kzSz)]

×
ˆ +∞

0
dωI

∑

lI

ˆ +ωI/c

−ωI/c
dqI

ωI

k1/2
zI

â†(qI,ωI, lI)eβ(qI,ωI, lI)exp [i(ωI t − qI x − kzIz)] |0,0〉 .

(2.17)

Solving the spatial and time integrals results in

ˆ +∞
−∞

dt exp [−i(ωP +ωS+ωI)t] = 2πδ(ωP −ωS −ωI) (2.18a)
ˆ +L/2

−L/2
dz exp [i (kzP − kzS − kzI) z] = L sinc

�

∆kz L
2

�

, (2.18b)
ˆ +∞
−∞

dx exp [i (qP − qS − qI) x] = 2πδ(qP − qS − qI), (2.18c)

where the interaction time is taken to be infinite since we consider the pump beam

to be a continuous-wave laser with frequency ωP throughout this thesis. This results

in energy conservation ħhωP = ħhωS + ħhωI. Additionally, we take a nonlinear crys-

tal that has a finite thickness L in the z-direction, with ∆kz = kzP − kzS − kzI, and

kz = [(2π/λ)2 − q2]1/2, where the pump, signal, and idler wavelengths are λP,λS,λI,

respectively. In contrast, it is assumed that the crystal is much larger than the extent
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2 Basics of the two-photon quantum state

of the pump beam in the transverse direction x , leading to the conservation of trans-

verse momentum ħhqP = ħhqS + ħhqI. Moreover, we have considered the crystal to have

a homogeneous susceptibility χ (2).

In an experimental setting, narrowband spectral filters with central frequencyω are

usually used before the signal and idler detectors to measure only specific photon fre-

quencies. Consequently, according to energy conservation, the idler photon frequency

is ωI = ωP −ωS for a given signal frequency ωS. These assumptions allow us to re-

move the
´ +∞

0 dω integrals over the pump, signal, and idler frequencies in Eq. (2.17).

Thus, resulting in the two-photon state

|ψ〉= C ′′
ψ

∑

α,β ,γ

χ
(2)
αβγ

∑

lS,lI

ˆ +ωS/c

−ωS/c
dqS

ˆ +ωI/c

−ωI/c
dqI

§

EP,γ(qS+ qI,ωS+ωI)

× sinc
�

∆kz L
2

�

[kzS(qS)kzI(qI)]
−1/2 â†(qS,ωS, lS)eα(qS,ωS, lS)

× â†(qI,ωI, lI)eβ(qI,ωI, lI)
ª

|0, 0〉 .

(2.19)

The state of Eq. (2.19) is the basis to describe the two-photon sources for the different

schemes presented in this thesis. Each of these schemes uses a specific source that

is based on different simplifications of the two-photon state of Eq. (2.19), as will be

explained next.

2.2.1. Photon pairs entangled in momentum/angle

The schemes of quantum ghost imaging and quantum imaging with undetected pho-

tons reported in chapters 3 and 4, rely on the momentum and spatial correlations

between the signal and idler photons. The information about the polarization is not

used in our investigation of these schemes; therefore, to simplify the two-photon state

of Eq. (2.19), we assume a crystal with a dominant nonlinear component χ (2)y y y . The

reason behind this decision is that we can fix one of the two polarization directions

for any transverse wave-vector q of our model where we look at photons with ky ≈ 0.

In detail, we can choose, e.g., l = 1 to be always along the y-direction and l = 2 to be

orthogonal to it. Therefore, the choice to use the nonlinear component χy y y indicates

that the generated signal and idler photons and the pump beam can be taken to be

y-polarized. Consequently, a scalar formulation of the quantum state can be used,

dropping the sums over lS and lI.

Using this simplification, the two-photon state is reduced to

|ψ〉= C ′′′
ψ

¨ +∞

−∞
dqSdqI φ(qS,ωS; qI,ωI)â

†(qS,ωS)â
†(qI,ωI) |0, 0〉 , (2.20)
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with the joint transverse momentum amplitude

φ(qS, qI) = EP(qS+ qI) sinc
�

∆kz
L
2

�

[kzS(qS)kzI(qI)]
−1/2

× rect
�

|qS| ≤
ωS

c

�

rect
�

|qI| ≤
ωI

c

�

.
(2.21)

To aid in understanding the upcoming analysis, the limits of the integral over the

transverse momenta q have been rewritten in an alternative form. That is, the limits of

the integral now denote the range ±∞ and now rectangular functions rect(·), added

to the argument of the integral, model the limited range of propagating waves. The

rectangular function is equal to one wherever its argument is true, and zero otherwise.

These functions explicitly show that the transverse momenta of both signal and idler

are restricted by their corresponding wavelengths |q| ≤ ω/c. This means that modes

with larger values of |q| do not propagate since those correspond to evanescent modes,

which are not considered throughout this thesis. The use of evanescent waves within

the context of SPDC has been treated in other works [171, 172].

As mentioned before in Eq. (2.13) of the electric field operator, the term (kz)−1/2 in

the joint transverse momentum amplitude in Eq. (2.21) diverges with qS approaching

ωS/c or qI approaching ωI/c in the non-paraxial region. Therefore, this term intro-

duces difficulties in the physical comprehension of the photon emission in terms of

the transverse momenta. In the following, we analyze this peculiarity and prove that

the singularity does not lead to an unphysical result. The strategy to accomplish this

is to change the reference frame, namely to angular coordinates instead of spatial fre-

quencies q. As we will show, the singularity is removed in the angular representation,

leading to physical sound results that can be comfortably treated numerically. Hence,

the angular representation can be used to find the probability of emitting a photon

pair at a particular angle for signal and idler. The insight to treat the two-photon state

from the angular representation was given by my colleague Elkin A. Santos.

The change of coordinates is based on the angle θ formed by the k vector and the z

axis. The change of variables is performed first on the electric field operator, and then

the two-photon state is found once again. The integrals are changed to the angular

representation by defining kz = k cosθ and q = k sinθ , which gives dq = dθ k cosθ .

Moreover, the corresponding redefinition of the annihilation operator is â(q,ω, l) =
(k cosθ )−1/2 â(θ ,ω, l), which satisfies the commutation relations

[â(θ ,ω, l), â†(θ ′,ω′, l ′)] = δ(θ − θ ′)δ(ω−ω′)δl l ′ . (2.22)
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2 Basics of the two-photon quantum state

Therefore, the electric field operator of Eq. (2.13) in the angular representation is

Ê(+)(x , z,ω) = Cθ
∑

l

ˆ π/2

−π/2
dθ ω â(θ ,ω, l)e(θ ,ω, l)exp (iqx + ikzz) , (2.23)

with Cθ absorbing all the constant terms. It is noteworthy that the diverging term is

absent, and the description already includes only the modes that are non-evanescent.

Hence, the non-paraxial limit is described by higher values of θ with angle emissions

θ →±π/2 and not by large values of |q| approaching ω/c.

Next, in the same fashion as before, we introduce the angular electric field operator

of Eq. (2.23) in the two-photon state of Eq. (2.14). As a result, using the same as-

sumptions for the polarization, we obtain the two-photon state in the angular domain

|ψ〉= C ′′′′
ψ

¨ π/2

−π/2
dθSdθI ϕ(θS,ωS;θI,ωI) â†(θS,ωS)â

†(θI,ωI) |0,0〉 , (2.24)

where the joint angular amplitude is

ϕ(θS,ωS;θI,ωI) = EP

�ωS

c
sin(θS) +

ωI

c
sin(θI),ωS+ωI

�

sinc
�

∆kz L
2

�

. (2.25)

Consequently, Eqs. (2.24) and (2.25) describe the two-photon state by assuming a

nonlinear crystal of thickness L that generates photon pairs in the angular modes

|θS,θI〉.

The joint angular amplitude ϕ(θS,θI) can be plotted to illustrate the angular entan-

glement between signal and idler photons. It is important to mention that throughout

this thesis, we take the refractive index of free space n= 1 to describe the interaction

of all the waves in the nonlinear crystal. This means that ω/c = 2π/λ for pump, sig-

nal and idler. The reason behind this decision is to have the largest range of generated

transverse wave-vectors that can be produced by an ideal nonlinear crystal, since our

aim is to study the fundamentals of the schemes and not be constrained to a specific

case. Depending on the specific refractive indices of a nonlinear crystal, total internal

reflection and multiple reflections that occur at the end facets between the crystal and

the outside free space can hinder the transmission of some photons generated within

the crystal to the outside medium [173–176]. Therefore, carrying out our analysis

under this condition of refractive index n = 1 does not affect the main physics of our

problem and we focus on all propagating waves that have a transverse wave-vector

smaller than the wave-vector in free space.

We show examples of ϕ(θS,θI) in Fig. 2.2 with a pump beam that has a transverse
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Gaussian profile of width 10µm and a wavelength of λP = 500nm. In these numerical

examples, we portray ϕ for the case of a thick crystal (L = 20µm) in Figs. 2.2(a,b) and

for an ultra-thin source (L = 3nm) in Figs. 2.2(c, d), each for two cases: First, signal

and idler with degenerate wavelengths [Figs. 2.2(a,c)], here λS/λI = 1 with λS = λI =
1µm. Second, signal and idler with non-degenerate wavelengths [Figs. 2.2(b,d)] with

λS/λI = 0.8, where λS = 900nm and λI = 1.125µm. Lastly, the inset of Fig. 2.2(a)

shows a sketch of the angle θ that the k-vector makes with the z axis in the x − z

plane.

We observe in Figs. 2.2(a, b) that the generation for both signal and idler photons

can be found only within a small range of angles for the case of a thicker crystal

(L = 20µm) in the degenerate and non-degenerate scenarios. The reason for the

generation in a small angular range is caused by the longitudinal phase-matching

effect embedded in the sinc function of Eq. (2.25). Moreover, the shape of the joint

angular amplitude changes slightly with non-degenerate wavelengths displaying a tilt

(c) (d)

(a) (b)
Idler

Signal

+-

Figure 2.2. Joint angular amplitude ϕ(θS,θI) within |θS,I| ≤ 90◦ for signal/idler wavelengths of
(a, c) λS/λI = 1 and (b, d) λS/λI = 0.8. The pump beam has a width of 10µm. The crystal thick-
ness L is in (a, b) larger than the pump, signal and idler wavelengths (L = 20µm), while in (c, d) L is
much smaller than any of the three wavelengths (L = 3nm). The inset shows a sketch of the angle θ
that the k-vector makes with the z axis in the x − z plane.
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of the higher-amplitude region. Such an effect is more noticeable for the ultra-thin

crystal shown in Figs. 2.2(c, d). For an ultra-thin source, namely L → 0, the sinc-

function in Eq. (2.25) approaches one for all angles, therefore the term that defines

the joint angular amplitude is the pump term

EP [qP = (ωS/c) sin(θS) + (ωI/c) sin(θI)] . (2.26)

Consequently, in the thin-source limit, there is no limitation on the range of the gener-

ated signal and idler angles, as long as they can satisfy the transverse phase-matching

condition. Figure 2.2(c) shows ϕ(θS,θI) for the degenerate case with λS = λI, where

it is clear that both photons can be generated in the whole range of |θS,I| ≤ 90◦. In

the non-degenerate case with λS/λI < 1, see Fig. 2.2(d), we observe that the idler

photons with a longer wavelength are generated in the whole range of |θI| ≤ 90◦,

while the signal photons can only be generated within a restricted range. This limited

range is given by the transverse phase-matching condition as follows: Consider the

simple case where the pump is almost a plane wave with qP = 0 impinging normally

on the nonlinear crystal. Then, the resulting transverse phase-matching condition is

(ωS/c) sin(θS) + (ωI/c) sin(θI) = 0 for the signal and idler photons, or written other-

wise sin(θS) = −(λS/λI) sin(θI). It is clear from this expression that, for degeneracy

factors λS/λI < 1, the possible angular generation range of signal photons with shorter

wavelength will be confined to

θmax
S = | sin−1[(λS/λI) sin(θI = 90◦)]|= | sin−1(λS/λI)|. (2.27)

Intuitively, this is due to the fact that the magnitude of the wave vector for the longer-

wavelength idler photons is smaller than that of the shorter-wavelength signal, and

cannot satisfy the transverse phase-matching condition qS = −qI with the signal pho-

ton after θmax
S , therefore, no signal photons will be generated after that angle. Impor-

tantly, this physical effect will play a key role in setting the fundamental resolution

limit of quantum imaging as discussed in chapter 3.

2.2.2. Photon pairs entangled in polarization

Quantum ghost polarimetry, presented in chapter 5, relies on a source with signal and

idler photons entangled exclusively in polarization. To theoretically describe such

photon-pair source, the spatial distribution of the down-converted photons can be

approximated to just one plane wave propagating in a certain direction. Consequently,
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the integrals over q of the two-photon state of Eq. (2.19) can be dropped,

|ψ〉= C ′′′′′
φ

∑

α,β ,γ

χ
(2)
αβγ

∑

lS,lI

â†(lS)eα(lS)â
†(lI)eβ(lI) |0,0〉 . (2.28)

From this state, an entangled state in polarization can be obtained by an appropriate

choice of the nonlinear coefficient χ (2) so that the two-photon state includes both

polarizations l1 and l2 and results in one of the following four forms

|ψ〉± =
�

C1â†(l1,S)â
†(l1,I)± C2â†(l2,S)â

†(l2,I)
�

|0,0〉 , (2.29a)
�

�ψ′
�

± =
�

C ′
1â†(l1,S)â

†(l2,I)± C ′
2â†(l2,S)â

†(l1,I)
�

|0,0〉 . (2.29b)

The constants C1,2 and C ′
1,2 of Eq. (2.29) contain the nonlinear coefficient χ (2) and are

in general complex numbers, since a phase difference between the two terms of |ψ〉
can exist due to dispersion and/or path-length difference. To achieve in practice one

of such states of Eq. (2.29), experiments are built with, e.g., a single crystal with type-

II phase matching [67], or two cascaded down-conversion crystals with type-I phase

matching [68], or one crystal in a Sagnac loop [177, 178]. It is worth mentioning that

the two-level states of Eq. (2.29) correspond to the Bell states [179].
In this thesis, we will assume the simple case where the two-photon state is |ψ〉 =

|ψ〉+ and C1 = C2 = C , which is sufficient to discuss the quantum ghost polarimetry

scheme in chapter 5 without losing generality. Additionally, we take therein that l1
corresponds to the horizontal (H) polarization and l2 to the vertical (V) polarization,

leading to the final form of the two-photon state entangled in polarization that will be

used in chapter 5,

|ψ〉= C
�

â†(HS) â
†(HI) + â†(VS) â

†(VI)
�

|0,0〉 . (2.30)

2.3. Abstract and publication

A theoretical formalism of photon-pair generation was presented and constitutes the

basis for the schemes featured in the next chapters. Quantum ghost imaging and quan-

tum imaging with undetected photons (chapters 3 and 4) use transverse-momentum

entanglement, whereas quantum ghost polarimetry (chapter 5) is based on the source

with signal and idler photons entangled in polarization. In particular, the two-photon

quantum state with momentum entanglement beyond the paraxial regime was pub-

lished as a section of the publication [180], in which the fundamental resolution of

quantum imaging is derived.
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3. Fundamental resolution limit of

two-color quantum imaging

Quantum imaging with undetected photons (QIUP) and quantum ghost imaging (QGI)

are the schemes with two-color photon pairs studied in this thesis. As described in

chapter 1, QIUP allows us to obtain images based on the effect of induced coher-

ence without induced emission, and, unlike QGI, coincidence measurements are not

needed. This means that although the idler photons that interact with the object are

never measured, the measurement of only signal photons suffices to obtain the image

of the object. QIUP and QGI can work with non-degenerate photon pairs to ease lim-

itations in detection and measurement, which is advantageous in biosensing. In this

chapter, the dependence of the resolution of QIUP and QGI on the wavelengths of the

photon pair beyond the paraxial regime is presented.

We begin by theoretically describing a scheme of QIUP that is enabled by the posi-

tion correlations of signal and idler photons using the formalism of chapter 2. Further-

more, we study the fundamental resolution of QIUP by using two slits of infinitesimal

width and find the minimum resolvable distance between them. Additionally, in a

similar fashion, we derive the fundamental resolution limit of QGI based on position

correlations. Lastly, based on our analysis and results, we discuss about the resolution

of other QIUP and QGI configurations.

3.1. Quantum imaging with undetected photons

The first realization of an imaging scheme based on induced coherence without in-

duced emission was published in 2014 by Lemos et al. [147] together with a detailed

theoretical description of the scheme within the paraxial regime given in Ref. [148].
The scheme is designed so that imaging is achieved by using the momentum correla-

tions of the signal and idler photons. However, the QIUP configuration that will be

discussed here, see Fig. 3.1, relies on the position correlations of the down-converted

photons. The scheme consists of two photon-pair sources A and B that form a non-

linear interferometer [181]. Each crystal produces a two-photon state with entangle-
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Nonlinear
crystal

Dichroic mirrorSignal AIdler A

Signal A or B
Idler A or B

50:50
Beamsplitter

MirrorObject

B

Lens

Camera

Pump B

A

Pump A

Figure 3.1. Sketch of quantum imaging with undetected photons (QIUP) based on position correla-
tions. In the idler arm, the central plane of crystal A is imaged onto the object by an optical system
with magnification one (represented by the arrow). The object is then imaged on the central plane
of crystal B. In the signal arm, the central planes of both crystals are imaged onto the camera. Inset:
model of the object composed of a beamsplitter at each xI position.

ment in transverse momentum, as was presented in section 2.2.1. Additionally, since

the signal and idler photons of a pair are created at the same position, they are also

spatially correlated [167]. In the idler arm, the central plane of source A is imaged

on the object using an imaging system with magnification equal to one, represented

by a black arrow. In the same manner, the object plane is imaged on the central plane

of source B. In the signal arm, the central planes of both sources are imaged onto the

camera. The signal photons of both sources that never interact with the object inter-

fere at the beamsplitter and are measured by the camera revealing the object, while

the idler photons remain undetected.

In this section, we derive the expression of the photon-counting rate at the camera

in a similar fashion as Ref. [182]. The difference lies in the fact that our analysis

is not restricted to photon pairs propagating only in the paraxial regime. Since the

range of angular propagation of the photons defines the transverse resolution, as will

be shown, this proposed model of QIUP beyond the paraxial regime can be used to

evaluate the fundamental resolution of QIUP. As we will demonstrate, the fundamental

resolution can be achieved by using thin sources and in a strongly non-paraxial regime

of operation. It should be mentioned that the derivation of the expression of the image

will be performed in the transverse-momentum representation because of the simple

form of the expressions. However, we convert to the angular domain for numerical

evaluations and interpretation of the physics since these expressions are singularity-

free, as shown in section 2.2.1.
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3 Fundamental resolution limit of two-color quantum imaging

The quantum state of the system |ψ〉SPDC,AB, composed of sources A and B, can be

written as the superposition of their respective SPDC states [see Eq. (2.1)], therefore,

|ψ〉SPDC,AB = |ψ〉SPDC,A + |ψ〉SPDC,B

= |0,0〉A + |0,0〉B + |ψ〉AB

(3.1)

with the two-photon state of the system of two sources |ψ〉AB = |ψ〉A + |ψ〉B, where

|ψ〉A(B) is the two-photon quantum state of source A (B) derived in chapter 2, namely,

shown in Eqs. (2.20) and (2.21). Consequently,

|ψ〉AB = |ψ〉A + |ψ〉B

= C ′′′
ψ,A

¨
dqS,AdqI,AφA(qS,A; qI,A)â

†
A(qS,A)â

†
A(qI,A) |0, 0〉A

+ C ′′′
ψ,B

¨
dqS,BdqI,BφB(qS,B; qI,B)â

†
B(qS,B)â

†
B(qI,B) |0, 0〉B .

(3.2)

The low-gain regime of photon-pair generation is considered throughout this work,

and hence at most one pair at a time is present in the QIUP system [183].

As a next step, the presence of the object in the idler arm of source A can be included

in the state of the system as a lossless element to preserve the probability 〈ψ|AB |ψ〉AB.

Namely, as portrayed in the inset of Fig. 3.1, each transverse position xI of the object

is modeled by a beamsplitter with transmission T (xI) and reflection R(xI). Since the

beamsplitter is a lossless element [184], then T (x) T ∗(x) + R(x)R∗(x) = 1. Here, the

electric field at one of the inputs of the beamsplitter is Ê(+)I,A (xI) and the other is the

vacuum Ê(+)0 (xI). The collinear output with Ê(+)I,A (xI) that is directed towards source B

can be written in terms of the inputs as

Ê(+)I,B (xI) = T (xI)Ê
(+)
I,A (xI) + R(xI)Ê

(+)
0 (xI). (3.3)

Given that the idler arms of the two crystals are aligned to introduce indistinguishabil-

ity by the imaging conditions described above, each position output mode of the beam-

splitter coincides with the position modes of the idler of source B [149, 182]. Next,

we use the electric field operator presented in chapter 2 in Eq. (2.13) and simplify it

using the assumption that the field has a fixed polarization along the y-direction as a

result of assuming a crystal with a dominant nonlinear component χ (2)y y y . Therefore,

Eq. (2.13) becomes

Ê(+)I, j (xI) = C
ˆ

dqI exp(iqI xI)(kzI)
−1/2 rect

�

|qI| ≤
2π
λI

�

â j(qI) (3.4)
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with j ∈ {A,B, 0} and C is a constant. For ease of reading, the limits of any integral

are ±∞ unless otherwise noted. By putting Eq. (3.4) into Eq. (3.3) and using the

inverse Fourier transform of the transmission and reflection

T (xI) =
1

2π

ˆ
dxI

eT (qI)exp(iqI xI), (3.5a)

R(xI) =
1

2π

ˆ
dxI

eR(qI)exp(iqI xI), (3.5b)

we can find the relation between the idler annihilation operators of source B in the

q-domain with respect to the object’s eT and eR. That is,

âB(qI) (kzI)
−1/2 rect

�

|qI| ≤
2π
λI

�

=
1

2π

ˆ
dq′

I

�

eT (qI − q′
I)âA(q

′
I) + eR(qI − q′

I)â0(q
′
I)
�

(k′
zI)

−1/2rect
�

|q′
I| ≤

2π
λI

�

,
(3.6)

where on the right-hand side we combined the integrals T (xI)Ê
(+)
I,A (xI) and R(xI)Ê

(+)
0 (xI)

in the following manner,

T (xI)Ê
(+)
I,A (xI) =

1
2π

C

×
¨

deqIdq′
I
eT (eqI)âA(q

′
I)(k

′
zI)

−1/2rect
�

|q′
I| ≤

2π
λI

�

exp
�

i(eqI + q′
I)xI

�

(3.7)

along with qI = eqI + q′
I and dqI = deqI. The integrals of the term R(xI)Ê

(+)
0 (xI) were

similarly combined.

It is important to note that the rectangular function ensures that only propagating

modes of the idler are taken into account. Inserting Eq. (3.6) into the quantum state

of the system and taking into account that signal photons of both sources interfere in

a common path, i.e., qS,A = qS,B = qS, then

|ψ〉AB = C ′′′
ψ,A

¨
dqSdqIφA(qS; qI)â

†
A(qS)â

†
A(qI) |0, 0〉

+
1

2π
C ′′′
ψ,B

¨
dqSdqI

�

φB(qS; qI) (kzI)
1/2

×
�
ˆ

dq′
I
eT ∗(qI − q′

I) (k
′
zI)

−1/2rect
�

|q′
I| ≤

2π
λI

�

â†
A(q

′
I)
�

â†
B(qS) |0, 0〉

�

+
1

2π
C ′′′
ψ,B

¨
dqSdqI

�

φB(qS; qI) (kzI)
1/2

×
�
ˆ

dq′
I
eR∗(qI − q′

I) (k
′
zI)

−1/2rect
�

|q′
I| ≤

2π
λI

�

â†
0(q

′
I)
�

â†
B(qS) |0,0〉

�

.

(3.8)
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3 Fundamental resolution limit of two-color quantum imaging

By reorganizing the integrals of qI and q′
I in the second and third terms, we have

|ψ〉AB = C ′′′
ψ,A

¨
dqSdqIφA(qS; qI)â

†
A(qS)â

†
A(qI) |0,0〉

+
1

2π
C ′′′
ψ,B

¨
dqSdq′

I

�

(k′
zI)

−1/2
�
ˆ

dqI (kzI)
1/2φB(qS; qI) eT

∗(qI − q′
I)
�

× rect
�

|q′
I| ≤

2π
λI

�

â†
A(q

′
I)â

†
B(qS) |0,0〉

�

+
1

2π
C ′′′
ψ,B

¨
dqSdq′

I

�

(k′
zI)

−1/2
�
ˆ

dqI (kzI)
1/2φB(qS; qI)eR

∗(qI − q′
I)
�

× rect
�

|q′
I| ≤

2π
λI

�

â†
0(q

′
I)â

†
B(qS) |0,0〉

�

.

(3.9)

The terms within the square brackets can be written as convolutions along q′
I to sim-

plify the notation, which will be indicated by ⊛, and bearing in mind that Þ(T ∗)(q′
I) =

eT ∗(−q′
I),

ˆ
dqI (kzI)

1/2φB(qS; qI) eT
∗(qI − q′

I) =
�

(k′
zI)

1/2φB(qS, q′
I)
�

⊛Þ(T ∗)(q′
I), (3.10a)

ˆ
dqI (kzI)

1/2φB(qS; qI)eR
∗(qI − q′

I) =
�

(k′
zI)

1/2φB(qS, q′
I)
�

⊛Þ(R∗)(q′
I). (3.10b)

To harness the position correlations to achieve imaging, signal photons interfere in

a 50 : 50 beamsplitter and are then measured by a camera located in the image plane

of both sources. The electric field operator that describes the measurement performed

by the camera is

Ê(+)cam = C
ˆ

dqS exp (iqSxS) k−1/2
zS rect

�

|qS| ≤
2π
λS

�

[âA(qS) + i exp(iη)âB(qS)] , (3.11)

where η is the accumulated phase difference between the two signal arms.

Ultimately, the photon counting rate at the camera is found by [185]

R(xS)∝ 〈ψ|SPDC,AB Ê(−)cam Ê(+)cam |ψ〉SPDC,AB , (3.12)

using the SPDC state of the system |ψ〉SPDC,AB of Eq. (3.1) and the electric field operator

at the camera Ê(+)cam of Eq. (3.11). Furthermore, it is relevant for the derivation of R(xS)
to consider the orthogonality relations

〈0,0| âp(q
′
I)â

†
l (qI) |0,0〉=







δ(q′ − q) = 1
2π

´
dxI exp [−i(q′ − q)xI] , if p = l

0, if p ̸= l
(3.13)
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3 Fundamental resolution limit of two-color quantum imaging

with p, l ∈ {A,0}. To findR, it is also important to consider that the mentioned relation

of the transmission and reflection of a lossless beamsplitter T (x) T ∗(x)+R(x)R∗(x) =
1 expressed in q-domain is eT (q)eT ∗(q′) + eR(q) eR∗(q′) = (2π)2δ(q)δ(q′). Finally, after a

long but straightforward calculation, the photon counting rate at the camera is found

to be

R(xS) =
ˆ

dxI

�

CA|ΦA|2 + CB|ΦB|2 + CABRe
�

Φ∗
AΦBeT

��

, (3.14)

with C absorbing all the respective constants and

ΦA(xS, xI) =
¨

dqIdqS exp(iqSxS+ iqI xI)(kzS)
−1/2φA(qS, qI), (3.15a)

ΦB(xS, xI) =
¨

dqIdqS exp(iqSxS+ iqI xI)(kzS)
−1/2φB(qS, qI), (3.15b)

ΦBeT (xS, xI) =
¨

dqIdqS

�

exp(iqSxS+ iqI xI)(kzSkzI)
−1/2 (3.15c)

× conv(qS, qI) rect
�

|qI| ≤
2π
λI

��

.

Here, conv(qS, qI) denotes the following convolution ⊛ along qI

conv(qS, qI) =
�

(kzI)
1/2φB(qS, qI)

�

⊛Þ(T ∗)(qI)

=
ˆ

dq′
I (k

′
zI)

1/2φB(qS, q′
I) eT

∗(q′
I − qI).

(3.16)

For convenience, the phase difference between the signals in the third term of R is

taken η = −π/2 to have constructive interference in the arm of the camera, i.e.,

CAB > 0 , while the second output of the 50 : 50 beamsplitter would then lead to

destructive interference.

On the one hand, we observe that
´

dxI

�

CA|ΦA|2 + CB|ΦB|2
�

of the photon counting

rate at the camera of Eq. (3.14), are proportional to the photon counting rate of the

signal photons of each source as if the other source were absent. Importantly, these

two terms do not carry information about the object and therefore constitute the back-

ground counts. On the other hand, the interference term contains the transmission

of the object within conv(qS, qI), we will refer to this interference term as the image

term,

IQIUP(xS) = CAB

ˆ
dxI Re

�

Φ∗
AΦBeT

�

. (3.17)

This image term corresponds to the joint response of the sources and contains infor-
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3 Fundamental resolution limit of two-color quantum imaging

mation of the object due to the phenomenon of induced coherence without induced

emission, as occurs similarly in QIUP that uses momentum correlations [148]. There-

fore, this image term is relevant to study the resolution of QIUP. Additionally, the

background contribution can be removed to reveal the image IQIUP by exploiting the

phase difference of both output ports of the beamsplitter and subtracting one image

from the other [147]. From here on, we will take into account only the image term

that contains the transmission of the object to discuss the resolution limit.

3.1.1. Fundamental transverse resolution limit

The resolution of a conventional imaging system depends on the illumination wave-

length and also on the numerical aperture of the optical elements [158]. In this sec-

tion, we focus on evaluating the resolution of QIUP at its fundamental limit; conse-

quently, we assume that the optical elements in Fig. 3.1 have a numerical aperture

equal to one and we concentrate on the dependence of the transverse resolution on

the signal and idler wavelengths λS,I. In particular, we evaluate the fundamental reso-

lution of QIUP, based on the non-paraxial expressions found in the previous section 3.1

using a double slit as the object. First, we simplify the found analytical expression of

the image to investigate the resolution. Later, we investigate numerically the differ-

ence in resolution between a QIUP system with thick and ultra-thin SPDC sources in

a highly non-degenerate scenario. Lastly, we find the QIUP resolution as a function

of the thickness of the SPDC sources, demonstrating that the fundamental resolution

is reached for sources approximately thinner than max(λS,λI), with the fundamental

resolution being approximately max(λS,λI)/2.

Image of a double slit

We simplify here the derived analytical expressions to find the image with the purpose

of obtaining the resolution. To this end, we use Rayleigh’s criterion [158] and assume

that the object consists of two infinitely thin slits that are separated by a distance d,

namely with a transmission

T (xI) = δ
�

xI −
d
2

�

+δ
�

xI +
d
2

�

, (3.18)

and we find their image using Eq. (3.17). The resolution will be given by the mini-

mum resolvable distance dmin between the two slits. We model the transverse profile

of the pump beam with a Gaussian profile of width σP to analyze realistic experimen-

tal scenarios where the degree of entanglement in momentum of signal and idler is
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3 Fundamental resolution limit of two-color quantum imaging

degraded [186], that is, EP(qP) = exp
�

−σ2
Pq2

P/2
�

. Incorporating these considerations

into the joint transverse momentum amplitude of the quantum state [see Eq. (2.21)],
then the convolution term of Eq. (3.16), which carries the information of the trans-

mission of the object in the image term IQIUP, becomes

conv(qS, qI) = (kzS)
−1/2 rect

�

|qS| ≤
2π
λS

�

Re

�

exp
�

i
d
2

qI

�
ˆ

dq′
I exp

�

−i
d
2

q′
I

�

× sinc

�

∆kz(qS, q′
I)LB

2

�

exp

�

−
σ2

P

2
(qS+ q′

I)
2

�

rect
�

|q′
I| ≤

2π
λI

�

�

.

(3.19)

It is worth analyzing the limit where signal and idler have the strongest possible cor-

relation to find the fundamental limitation of the resolution, i.e., using a plane wave

pump where σP → ∞. In this extreme case of perfect correlation, the convolution

term simplifies to

conv(qS, qI) =(kzS)
−1/2 cos

�

d
2
(qS+ qI)

�

× sinc
§

LB

2

�

2π
λP

− kzS − κ
�ª

rect
�

|qS| ≤ 2πmin
�

1
λS

,
1
λI

�� (3.20)

with κ :=
�

(2π/λI)2 − q2
S

�1/2
and most importantly

rect
�

|qS| ≤
2π
λS

�

rect
�

|qS| ≤
2π
λI

�

= rect
�

|qS| ≤ 2πmin
�

1
λS

,
1
λI

��

. (3.21)

The cosine term of Eq. (3.20) carries the information on the distance between the slits

d; the closer the slits, the larger the period of the cosine in the q-domain. If the cosine

were the only term defining the term conv(qS, qI), infinitely close slits can be resolved

in the image, since the cosine spreads infinitely over all possible transverse-momentum

modes that carry the information of any distance d between the slits. However, as was

shown in the chapter 2, a photon pair source can only generate modes with a restricted

range of transverse momentum, where the limit is set by the thickness of the source

and fundamentally by the diffraction limit set by the wavelengths of the signal and

idler photons. Consequently, the resolution will be restricted by this limited range of

transverse wave-vectors. This limit of the transverse momenta is modeled by the sinc

and rectangular functions appearing in Eq. (3.20). In this equation, the hard limit for

the range of available transverse wave-vectors for the measured signal photons is

2πmin
�

1
λS

,
1
λI

�

, (3.22)
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3 Fundamental resolution limit of two-color quantum imaging

which means that the limit is set by the larger of the signal and idler wavelengths.

Therefore, resolving the slit distance carried in the cosine term of Eq. (3.20) will be

restricted by the diffraction-limit of the larger wavelength between signal and idler,

which is given by the limit of the propagating waves. This fact is the main physical

finding of this chapter. We proceed to verify this result with numerical calculations of

the image of the two slits.

For our numerical calculations, we resort to the angular representation, since the

singularity terms that appear in the q-domain are then avoided. The functions ΦA and

ΦBeT can be expressed in angular coordinates, as discussed in section 2.2.1. To this

end, we take q = (2π/λ) sin(θ ), kz = (2π/λ) cos(θ ) and dq = kzdθ , leading to

ΦA(xS, xI) =
¨ +π/2

−π/2
dθI dθS ϕA(θS,θI)exp

�

i
2π
λS

sin(θS)xS+ i
2π
λI

sin(θI)xI

�

,

(3.23a)

ΦBeT (xS, xI) =
¨ +π/2

−π/2
dθI dθS ϕBeT (θS,θI)exp

�

i
2π
λS

sin(θS)xS+ i
2π
λI

sin(θI)xI

�

,

(3.23b)

where

ϕA(θS,θI) =
�

2π
λI

cos (θI)
�1/2

EP(θS,θI)Π(θS,θI, LA), (3.24a)

ϕBeT (θS,θI) =
�

2π
λI

cos (θI)
�1/2

convθ (θS,θI) , (3.24b)

with

EP(θS,θI) = exp

�

−
σ2

P

2

�

2π
λS

sin (θS) +
2π
λI

sin (θI)
�2
�

, (3.25a)

Π(θS,θI, L) = sinc
§

L
2

�

kzP(θS,θI)−
2π
λS

cos (θS)−
2π
λI

cos (θI)
�ª

, (3.25b)

kzP(θS,θI) =

�

�

2π
λP

�2

−
�

2π
λS

sin(θS) +
2π
λI

sin(θI)
�2
�1/2

, (3.25c)

convθ (θS,θI) = Re

�

exp
�

i
d
2

�

2π
λI

sin(θI)
��

(3.25d)

×
ˆ +π/2
−π/2

dθ ′
I

�

2π
λI

cos
�

θ ′
I

�

exp
�

−i
d
2

�

2π
λI

sin
�

θ ′
I

�

��

× EP(θS,θ ′
I )Π(θS,θ ′

I , LB)
�

�

.
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3 Fundamental resolution limit of two-color quantum imaging

To reduce the computational effort of numerically solving five integrals to find the

image, an alternative expression of the image term is derived by inserting ΦA and ΦBeT

of Eq. (3.23) into the image expression of Eq. (3.17). Thus,

ˆ
dxIΦ

∗
AΦBeT =2π

¨ +π/2

−π/2
dθSdθI

¨ +π/2

−π/2
dθ ′

Sdθ ′
Iϕ

∗
A(θ

′
S,θ ′

I )ϕBeT (θS,θI)

× exp
�

i
�

2π
λS

sin(θS)−
2π
λS

sin
�

θ ′
S

�

�

xS

�

×δ
�

2π
λI

sin(θI)−
2π
λI

sin
�

θ ′
I

�

�

,

(3.26)

where we used
ˆ

dxI exp
�

i
�

2π
λI

sin(θI)−
2π
λI

sin
�

θ ′
I

�

�

xI

�

= 2πδ
�

2π
λI

sin(θI)−
2π
λI

sin
�

θ ′
I

�

�

. (3.27)

The Dirac delta can be used to analytically solve the integral
´ +π/2
−π/2 dθ ′

I by noting that

δ

�

2π
λI

sin(θI)−
2π
λI

sin
�

θ ′
I

�

�

=

�

�

�

�

2π
λI

cos (θI)

�

�

�

�

−1

δ(θ ′
I − θI). (3.28)

Consequently, a compact expression for the image is found, where only three integrals

need to be solved numerically,

IQIUP(xS) = C ′
AB

¨ +π/2

−π/2
dθSdθI Re

��

�

�

�

2π
λI

cos (θI)

�

�

�

�

−1

ϕBeT (θS,θI)exp
�

i
2π
λS

sin(θS)xS

�

×
ˆ +π/2
−π/2

dθ ′
Sϕ

∗
A(θ

′
S,θI)exp

�

−i
2π
λS

sin
�

θ ′
S

�

xS

�

�

.

(3.29)

Ultimately, the expressions in the angular domain do not contain any diverging sin-

gularities [notice that the term |(2π/λI) cos(θI)|−1 in Eq. (3.29) cancels out with the

two [(2π/λI) cos(θI)]1/2 terms in ϕA and ϕBeT of Eq. (3.24)]. The aforementioned ex-

pressions are the main analytical findings and will be used in a subsequent section to

numerically determine the fundamental resolution of QIUP. Additionally, we study the

role of the pump width on the resolution which is essential for experimental imple-

mentations.
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3 Fundamental resolution limit of two-color quantum imaging

QIUP with thick and ultra-thin crystals

We present here a numerical example, which is portrayed in Fig. 3.2, to demonstrate

the influence of the crystal thickness on the resolution, here both crystals have iden-

tical thicknesses LA = LB = L. The object under study has two slits separated by a

distance of d = 4.5µm. In this example, the object is illuminated with idler photons

of wavelength λI = 10µm and its image is detected by measuring signal photons of

shorter wavelength λS = 530nm. Therefore, based on energy conservation, the pump

has a wavelength of λP ≈ 503nm.

In Fig. 3.2, we showcase two situations: a thick source with L = 100µm, which

is longer than both signal and idler wavelengths, and an ultra-thin source with L =
100nm, much shorter than the wavelengths. Not only the resulting image IQIUP(xS)
is displayed, but also the correlation functions ϕBeT (θS,θI), ΦBeT (xS, xI), ΦA(xS, xI) that

lead to it. Figure 3.2(a) depicts the obtained angular correlation ϕBeT (θS,θI) carrying

the transmission of the object for sources with thick crystals. We observe that the signal

photons cover the range |θS| ⪅ 1.5◦ and the idler photons |θI| ⪅ 45◦. Additionally,

their correlation is concentrated in a single lobe. In contrast, Fig. 3.2(b) shows that

as a result of the use of an ultra-thin crystal, the signal photons are generated within

|θS|⪅ 3◦ and the idler photons |θI|⪅ 90◦. Here, the correlations are found in a central

lobe and also in two side lobes.

As mentioned in the previous section, the observed range of signal photons in ϕBeT

is restricted by two factors: The longitudinal phase matching due to the thickness

of the crystal and the maximum range of propagating waves, as presented in sec-

tion 2.2.1. In particular, we observe that the angular extent of the signal in Fig. 3.2(a)

is mainly restricted by the effect of the thick crystal. In contrast, Fig. 3.2(b) shows

that as a result of the use of an ultra-thin crystal, where there is a lack of restriction

from the longitudinal phase matching, the angular range of signal photons is set by

the limit of propagating waves, resulting in |qS| ≤ 2πmin(1/λS, 1/λI)→ | sin(θS)| ≤
min(1,λS/λI) = 530nm/10µm, which gives the displayed θmax

S ≈ 3◦. Importantly,

thanks to the increased signal angular range with the ultra-thin crystal, side lobes ap-

pear in the corners of the correlation function in Fig. 3.2(b), which carry information

about the distance of the two slits from the probing idler photons to the measured

signal photons.

Moreover, Figs. 3.2(c, d) illustrate the corresponding spatial correlation ΦBeT (xS, xI),
where the fact that the object is composed of two slits becomes evident only by using

an ultra-thin crystal in Fig. 3.2(d), as two notorious spots appear only in this plot. Fur-

thermore, ΦA(xS, xI) is shown in Figs. 3.2(e, f), which corresponds to the joint spatial

correlation of source A, as it is needed for the calculation of the image. It should be
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3 Fundamental resolution limit of two-color quantum imaging

(a)

(c)

(g)

(b)

(d)

(h)

(e) (f)

Figure 3.2. (a, b) Angular correlation |ϕBeT |
2, (c-f) spatial correlations |ΦBeT |

2, |ΦA|2 and (g, h) image
IQIUP, using λI = 10µm, λS = 530nm, plane wave pump, and slits distance d = 4.5µm. Crystal
thicknesses: (a,c,e,g) L = 100µm and (b,d,f,h) L = 100nm.

mentioned that the plane-wave pump has been approximated with a Gaussian func-

tion of 1m width, which allows its numerical implementation.

Finally, the image is found according to Eq. (3.17) by overlapping the position modes

Re
�

Φ∗
AΦBeT

�

and then integrating over xI. Figures 3.2(g, h) portray the ensuing image

IQIUP(xS). As shown in Fig. 3.2(h), QIUP with ultra-thin SPDC sources is able to resolve

such a small distance between the slits, whereas the image of Fig. 3.2(g) produced

using thick crystals does not due to the restriction imposed by the longitudinal phase

matching.
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3 Fundamental resolution limit of two-color quantum imaging

Fundamental resolution limit of QIUP

The result of the presented numerical example motivates us to find a more precise

dependence of the achievable resolution of QIUP on the thickness of the sources of

photon pairs. Hence, we follow Rayleigh’s criterion and consider that two slits are

resolved if their image shows a dip that is at least 20% of the maxima [158]. As a

matter of fact, the example presented in Fig. 3.2(h) of two slits separated by d =
4.5µm is exactly at this resolution limit. Therefore, the minimum resolvable distance

of the slits with photon-pair wavelengths of λI = 10µm and λS = 530nm is dmin =
4.5µm.

In the following analysis, we resort to the derived expression of Eq. (3.29) of the

image. As mentioned in the previous section, the use of this expression is computa-

tionally less expensive than finding the image using the steps in the numerical example

shown before, which were nonetheless useful to illustrate the involved angular and

spatial correlations of signal and idler that lead to the image being detected measur-

ing only signal photons. In Fig. 3.3, we depict the minimum resolvable distance dmin

that was found numerically for various crystal thicknesses L = LA = LB, where we

consider identical SPDC sources. To find dmin numerically, the distance d between the

slits was changed until the image IQIUP displayed a 20% dip between the maxima.

The blue stars correspond to the case of the example of Fig. 3.2, where the object is

illuminated with the longer wavelength of λI = 10µm and the camera measures signal

photons of shorter wavelength λS = 530nm. The red squares show the situation with

ParaxialDiffraction-limited

Figure 3.3. Minimum resolvable distance dmin with respect to the crystal thickness L = LA = LB.
The diffraction-limited model, which contemplates all the possible propagating modes, is represented
with blue stars and red squares; for the former, the idler wavelength is λI = 10µm and the signal is
λS = 530nm, for the latter, the wavelengths are reversed. The paraxial estimate of dmin according
to Eq. (3.33) is displayed with the yellow dashed line. The green lines are used for comparison; the
vertical one marks max(λS,λI) and the horizontal one max(λS,λI)/2= 5µm.
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3 Fundamental resolution limit of two-color quantum imaging

the wavelengths interchanged, λI = 530nm for object illumination and λS = 10µm

for detection. Vertical and horizontal green lines are also included as references of

the dimensions, one line is at the crystal length of max(λS,λI) and the other is at a

minimum resolvable distance of max(λS,λI)/2 = 5µm, respectively. Importantly, we

can see that the minimum resolvable distance dmin becomes independent of the crys-

tal thickness for L ≲ max(λS,λI). The reason for this is that the longitudinal phase

matching, given by the term Π(θS,θI, L) in Eq. (3.25), becomes relaxed by choosing a

thinner crystal, i.e., the sinc function within Π tends to a constant. We find here that

the only limitation to the resolution is given by the limit of propagating waves when L

is smaller than the longer wavelength of the signal and idler photons. Consequently,

it is not necessary to use an extremely thin crystal to achieve the fundamental reso-

lution, which has the disadvantage of low generation efficiency, but rather a thicker

crystal that has an overall higher efficiency of the SPDC process and still allows us to

obtain an image with diffraction-limited resolution.

An ideal plane-wave pump beam cannot be implemented experimentally; hence, we

now turn our analysis of the resolution to a more realistic scenario where the pump has

a finite width that gives an imperfect signal and idler correlation. We show in Fig. 3.4

the dependence of the minimum resolvable distance dmin on the pump width σP while

having an ultra-thin crystal of L = 100nm. Remarkably, the resolution remains con-

stant with respect to the pump width. The cause of this outcome is that even though a

decrease in the pump width usually entails a decrease of spatial correlation between

signal and idler, the use of an ultra-thin crystal guarantees that the degree of spatial

correlations remains high even for a pump width equal to the largest wavelength of

the photon pair. Therefore, this shows that the diffraction-limited resolution can also

be achieved in common experimental situations.

Figure 3.4. Minimum resolvable distance dmin with respect to the pump widthσP for a crystal thickness
of L = 100 nm.
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3 Fundamental resolution limit of two-color quantum imaging

In both Fig. 3.3 and Fig. 3.4 there is a small difference in the minimum resolvable

distance dmin for the two non-degenerate cases in this ultra-thin-crystal regime. To

explain this, we calculate dmin for various signal (measured) and idler (undetected)

wavelengths, maintaining a crystal thickness of L = 100nm and a pump width of

σP = 100µm, and illustrate the ratio dmin/max(λS,λI) in Fig. 3.5(a). The plot shows

the ratio of the minimum resolvable distance and the maximum of the two wave-

lengths for non-degenerate and degenerate wavelengths. Values have been assigned

a color to facilitate visualization. Confirming the previous discussion, we observe in

Fig. 3.5(a) that the fundamental minimum resolvable distance dmin is certainly approx-

imately proportional to the larger wavelength, that is, max(λS,λI)/2. A more accurate

dependence of the resolution on the wavelengths can be derived from Fig. 3.5(a), i.e.,

Figure 3.5. (a) Ratio of the minimum resolvable distance dmin and the largest wavelength of the photon
pair. Here, the pump width is σP = 100 µm and the crystal thickness is L = 100 nm. The minimum
of dmin/max(λS,λI) occurs in the degenerate case where λS = λI. (b) Point-spread-function (PSF) of
QIUP with an ultra-thin crystal of L = 100 nm for three different wavelength combinations.
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3 Fundamental resolution limit of two-color quantum imaging

there are three relevant regimes of the resolution dmin

dmin

max(λS,λI)
≈











0.45 if λI ≫ λS

0.40 if λI ≪ λS

0.37 if λI = λS

. (3.30)

From this expression, dmin has a minimum in the degenerate case λS = λI, where

there is a slight enhanced resolution compared to the resolution in the non-degenerate

cases. The reason for this difference in resolution can be understood by analyzing

the respective point-spread-functions (PSF), which is slightly different depending on

the choice of wavelengths. The PSF is found by taking a centered single slit with

infinitesimal width as the object. Figure 3.5(b) displays the PSF for the three regimes

showing that there is a slight difference in the width of the central lobes. In the case

of λI ≫ λS, the main lobe is broader and the side lobes are small, for λI ≪ λS the

central lobe becomes narrower with higher side lobes, and for the degenerate case

λI = λS, the main lobe is the narrowest but the side lobes are the most distinct of the

three cases. Considering that the Rayleigh criterion is based only on the main lobe

of the image to find the minimum resolvable distance between two point-like objects,

the degenerate case does result in a smaller dmin. However, a narrower central lobe

in the image IQIUP(xS) comes at the expense of having undesirable taller side lobes.

This effect of enhanced resolution by shaping a diffraction-limited PSF has also been

studied in classical optics [187, 188], namely, called optical superoscillation. In this

classical technique, the central and side lobes of the PSF are carefully designed to

achieve resolution beyond the diffraction limit of λ/2. QIUP with ultra-thin crystal, as

has been shown here, is characterized by a wavelength-dependent PSF that presents

mild changes to the width and intensity of its central and side lobes; therefore, it

shows a subtle improvement over the diffraction limit of max(λS,λI)/2.

In summary, there are two main findings regarding the resolution of QIUP. First,

the image of the QIUP scheme with ultra-thin crystals is limited in the q-space by the

diffraction of the longer wavelength, namely |qS| ≤ 2πmin (1/λS, 1/λI) as was shown

in Eq. (3.21). Second, this fundamental limit in the q-space leads to a resolution of

dmin ≈ max(λS,λI)/2, where a more precise value depends on the combination of

specific wavelengths, as shown in Eq. (3.30).

Resolution in the paraxial regime

The fundamental resolution dmin was found numerically, since analytical expressions

for the position correlations ΦBeT , ΦA, or the image IQIUP cannot be readily calculated
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3 Fundamental resolution limit of two-color quantum imaging

using the complete non-paraxial model. Nonetheless, a closed-form expression for

the resolution can be obtained for the regime where all the transverse momenta are

small, i.e., in the so-called paraxial regime. As already discussed, thick crystals pro-

duce signal and idler photons with such small transverse momenta. Therefore, the

state’s correlation function of Eq. (2.21) and Eq. (3.20) can be considerably simplified

to find an analytical expression for the minimum resolvable distance. The simplifi-

cations are the following: First, we make use of the paraxial approximation where

kz =
p

k2 − q2 ≈ k − q2/(2k). Second, the main lobe of the sinc-function is approxi-

mated to a Gaussian [167, 189] sinc
�

x2
�

≈ exp
�

−4γx2
�

, where γ= 0.2 ensures that

the main lobe of the sinc and the Gaussian coincide at 0.1 in amplitude. Third, in the

paraxial approximation, the terms κ−1/2 and k−1/2
z become independent of the trans-

verse momentum q [170], and the rectangular functions take an infinite width. Using

all these simplifications, the convolution term in ΦBeT becomes

�

(kzI)
1/2φB(qS, qI)

�

⊛Þ(T ∗)(qI)

= C⊛ cos
�

d
2
(qS+ qI)

�

exp

�

−γLB(λS+λI)
q2

S

2π

�

,
(3.31)

Consequently, the position correlations of Eq. (3.15) are then approximated to

ΦBeT = CBeT exp



−π

�

xS+
d
2

�2

2γLB(λS+λI)



δ

�

xI +
d
2

�

(3.32a)

+ CBeT exp



−π

�

xS −
d
2

�2

2γLB(λS+λI)



δ

�

xI −
d
2

�

,

ΦA = CA exp

�

−π
(xS − xI)2

2γLA(λS+λI)

�

, (3.32b)

where C is a constant. Following the same treatment as in the non-paraxial case, the

image IQIUP is found according to Eq. (3.17) and the minimum resolvable distance

can then be analytically calculated considering that at d(paraxial)
min , the image at xS = 0 is

IQIUP = 0.8, i.e., a 20% dip between the maxima. Thus,

d(paraxial)
min ≈ 0.7 (λS+λI)

1/2
�

1
LA
+

1
LB

�−1/2

. (3.33)

This expression of the resolution in the paraxial regime depends on the crystals thick-

ness and both signal and idler wavelengths. Therefore, this closed form of d(paraxial)
min

gives a physical intuition for the resolution. Specifically, for the case of identical
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3 Fundamental resolution limit of two-color quantum imaging

sources with L = LA = LB, as found in Refs. [164, 165], dmin ∝ [L(λS+λI)]
1/2,

showing not only that thinner crystals can improve the resolution, but also that the

resolution is independent of whether the illuminating idler wavelength λI is larger

than the detected signal wavelength λS, or vice versa, as described with the sum of

the two wavelengths. It is important to emphasize that d(paraxial)
min incorrectly describes

the transverse resolution with ultra-thin crystals. To illustrate this, the paraxial pre-

diction of resolution is displayed with a yellow dashed line in Fig. 3.3. Essentially,

the naive use of the paraxial expression for the regime with ultra-thin crystals leads

to the erroneous conclusion of having ‘super-resolution’ beyond the diffraction limit.

Thus, the paraxial expression gives insight only in the regime with thick crystals where

L ≳max(λS,λI).

As a final remark, Eq. (3.33) shows that distinguishable sources have an impact on

the resolution d(paraxial)
min . That is, when the crystals have different thicknesses LA ̸= LB

the resolution is reduced. The reason for this reduction can be understood with an

example. Consider that LA has a fixed value LA = L and LB > L, therefore, the term

(1/LA + 1/LB)
−1/2 results in (1/L + 1/LB)

−1/2, which is larger than (2/L)−1/2 obtained

when the crystals are identical LA = LB = L. The reduction of resolution can be

attributed to the imperfect overlap of the position modes due to the distinguishability

of the sources.

3.1.2. Discussion

The discussed fundamental resolution limit is, in essence, the consequence of free-

space propagation, which limits the range of transverse momenta of the signal and

idler photons. We showed that the largest range of transverse momenta of the image

is set by the longer wavelength from the photon pair because of transverse momen-

tum conservation. This was described by the term rect [|qS| ≤ 2πmin (1/λS, 1/λI)]
in Eq. (3.20). Moreover, we showed that the thickness of the crystals plays a promi-

nent role in the resolution, since a thickness comparable or smaller than either of

the signal and idler wavelengths allows one to reach the diffraction-limited resolution

shown in Eq. (3.30). This is possible due to the lack of restriction from the phase-

matching condition in a thin source, therefore, allowing one to generate the largest

possible range of transverse wave-vectors, which consequently enables the resolution

to reach the diffraction limit. Photon-pair generation in such ultra-thin sources has

been demonstrated recently in ultra-thin nonlinear films [83, 84] and also in thin

metasurfaces [86]. Recent work in our group has shown that a form of QIUP can

be used to achieve resolution beyond the mentioned diffraction limit if the imaging

process involves evanescent waves; see Refs. [172, 190]. In such a case, near-field
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3 Fundamental resolution limit of two-color quantum imaging

interactions of an absorptive particle at the idler wavelength are used to influence

the field of its paired signal wavelength, which allows us to obtain a sub-diffraction

image with undetected photons. Nevertheless, QIUP involving only far-field interac-

tions is limited by the diffraction limit of the longer wavelength of the photon pair, as

discussed in this chapter.

Although the presented analysis focuses on QIUP based on position correlations, we

infer that it is likely that a similar fundamental resolution limit applies to the QIUP

scheme based on momentum correlations, since the change of the optical elements

cannot affect the limited range of transverse momenta of propagating photons. To

this day, the minimum resolvable distance of the QIUP scheme based on momentum

correlations has been treated only within the paraxial regime in other works [151,

163], this being d(paraxial)
min ∝ λI/σP, with σP as the transverse width of the pump.

Therefore, the larger the pump, the better the resolution. The limit of the validity of

this paraxial description can be found by analyzing the extreme case where the pump

is a plane wave σP →∞, where signal and idler photons have a perfect correlation in

momentum. In such a case, the paraxial expression of the resolution is d(paraxial)
min → 0.

Such a perfect resolution is physically impossible, as has been shown in this chapter,

due to the diffraction limit of the longer wavelength of the photon pair, which would

then define a lower bound to the minimum resolvable distance. The paraxial approx-

imation of the resolution of QIUP based on momentum correlations, which does not

consider the diffraction limit, breaks down for pump widths that are much larger than

the wavelengths.

Beyond QIUP, it was presented in chapter 2 that QGI relies also on the angular- and

position correlations of signal and idler photons. These correlations should be similar

to the ones depicted in Fig. 3.2, therefore, the fundamental resolution of QGI should

be also similarly defined by the larger wavelength of the photon pair, as found for

QIUP. This hypothesis is analyzed in the following section.

3.2. Quantum ghost imaging

Similar to the resolution investigation of the QIUP scheme, here we derive the funda-

mental transverse resolution of QGI. The scheme is illustrated in Fig. 3.6 and consists

of a single nonlinear crystal. A pump beam impinges the crystal to produce signal and

idler photons that are then spatially separated, e.g., with a dichroic mirror. The idler

photons interact with the object and are then measured by a detector that collects all

photons and lacks from spatial resolution, this is commonly called ‘bucket’ detector.

The signal photons do not interact with the object and are measured by a spatially
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Nonlinear
crystal
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Figure 3.6. Sketch of quantum ghost imaging (QGI) based on position correlations. In the idler arm, the
central plane of the crystal is imaged to the object plane by a system with magnification one (represented
by the black arrow), then the object plane is imaged with the same system onto the plane of the bucket
detector. In the signal arm, the central plane of the crystal is also imaged of the crystal to the plane of
the camera. Inset: model of the object composed of a beamsplitter in each xI position.

resolving detector, i.e., a camera. Unlike the QIUP scheme, the information on the

transverse profile of the object is found in the coincidence counts of the two detec-

tors, while the detection of each detector alone does not reveal the transverse profile

of the object. In this analysis, we exploit the position correlations of signal and idler

photons. Consequently, in the idler arm, the central plane of the crystal is imaged

onto the object with an optical system with magnification equal to one, denoted with

the black double-sided arrow. Then the object plane is imaged onto the plane of the

bucket detector by an equal optical system of magnification one. Finally, in the signal

arm, the central plane of the crystal is imaged onto the camera in the same manner.

To derive the resolution, we start by modeling the QGI scheme. The two-photon

state produced by the source, as discussed in chapter 2, is given by

|ψ〉= Cψ

¨
dqSdqIφ(qS; qI)â

†(qS)â
†(qI) |0,0〉 . (3.34)

As in the QIUP scheme, the object is modeled by a beamsplitter with transmission

T (xI) and reflection R(xI) at each position xI. In the inset of Fig. 3.6 it is shown that

one of the inputs of the beamsplitter is Ê(+)I (xI), the transmitted output is Ê(+)I,T (xI),
and the reflected output is Ê(+)I,R (xI). The input can be formulated in terms of the two

outputs by [184]

Ê(+)I (xI) = T ∗(xI)Ê
(+)
I,T (xI) + R∗(xI)Ê

(+)
I,R (xI). (3.35)
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Introducing the electric field of Eq. (3.4) and the Fourier transform of the transmission

and reflection into Eq. (3.35), we find the relation between the idler modes to be

âI(qI) (kzI)
−1/2 rect

�

|qI| ≤
2π
λI

�

= −
1

2π

ˆ
dq′

I

�

eT ∗(−qI + q′
I)âI,T (q

′
I) + eR∗(−qI + q′

I)âI,R(q
′
I)
�

(k′
zI)

−1/2rect
�

|q′
I| ≤

2π
λI

�

.

(3.36)

Introducing Eq. (3.36) into the two-photon quantum state, we obtain

|ψ〉= C ′
ψ

¨
dqSdqI

�

φ(qS; qI) (kzI)
1/2

×
�
ˆ

dq′
I
eT (−qI + q′

I) (k
′
zI)

−1/2rect
�

|q′
I| ≤

2π
λI

�

â†
I,T (q

′
I)
�

â†
S(qS) |0,0〉

�

+ C ′
ψ

¨
dqSdqI

�

φ(qS; qI) (kzI)
1/2

×
�
ˆ

dq′
I
eR(−qI + q′

I) (k
′
zI)

−1/2rect
�

|q′
I| ≤

2π
λI

�

â†
I,R(q

′
I)
�

â†
S(qS) |0,0〉

�

.

(3.37)

Then, rearranging the integrals of qI and q′
I the state becomes

|ψ〉= C ′′
ψ

¨
dqSdq′

I

�

(k′
zI)

−1/2
�
ˆ

dqI (kzI)
1/2φ(qS; qI) eT (−qI + q′

I)
�

× rect
�

|q′
I| ≤

2π
λI

�

â†
I,T (q

′
I)â

†
S(qS) |0, 0〉

�

+ C ′′
ψ

¨
dqSdq′

I

�

(k′
zI)

−1/2
�
ˆ

dqI (kzI)
1/2φ(qS; qI)eR(−qI + q′

I)
�

× rect
�

|q′
I| ≤

2π
λI

�

â†
I,R(q

′
I)â

†
S(qS) |0, 0〉

�

,

(3.38)

where the terms within the square brackets are convolutions along q′
I. The term with

the transmission is then

�

(k′
zI)

1/2φ(qS, q′
I)
�

⊛ eT (q′
I) =
ˆ

dqI (kzI)
1/2φ(qS; qI) eT (−qI + q′

I), (3.39)

and similarly for the term with the reflection.

Before finding the ghost image, we first assume that both detectors are spatially

resolving and calculate the coincidence counting rate [185], which we will call here

43



3 Fundamental resolution limit of two-color quantum imaging

the joint spatial probability (JSP), given by

JSP(xS, xI)∝ 〈ψ|SPDC Ê(−)I,det Ê
(−)
S,det Ê

(+)
S,det Ê

(+)
I,det |ψ〉SPDC , (3.40)

where the SPDC state is |ψ〉SPDC = |0,0〉+|ψ〉, as shown in Eq. (2.1), which includes the

two-photon state |ψ〉 of Eq. (3.38). Here, the electric field operators at the detectors

are

Ê(+)S,det(xS) = C
ˆ

dqS exp (iqSxS) (kzS)
−1/2rect

�

|qS| ≤
2π
λS

�

âS(qS), (3.41a)

Ê(+)I,det(xI) = C
ˆ

dq′
I exp

�

iq′
I xI

�

(k′
zI)

−1/2rect
�

|q′
I| ≤

2π
λI

�

âI,T (q
′
I). (3.41b)

Thus, the JSP results in

JSP(xS, xI) = CJSP

�

�

�

�

¨
dqIdqS exp(iqSxS+ iqI xI)(kzS)

−1/2 (kzI)
−1

× conv(qS, qI) rect
�

|qI| ≤
2π
λI

�

rect
�

|qS| ≤
2π
λS

�

�

�

�

�

2

,

(3.42)

with the convolution term that includes the transmission, namely,

conv(qS, qI) =
�

(kzI)
1/2φ(qS, qI)

�

⊛ eT (qI). (3.43)

Afterwards, the quantum ghost image IQGI is found taking into account that the bucket

detector collects all incoming photons without spatial resolution, which is achieved by

integrating the JSP over a large transverse range of xI

IQGI(xS) = CJSP

ˆ
dxI JSP(xS, x I). (3.44)

3.2.1. Fundamental resolution of QGI

To illustrate that the object’s transmission appears in the ghost image IQGI and later

find its fundamental resolution limit, we show an example with two infinitely thin slits

separated by a distance d, similar to the analysis for the QIUP scheme.

This double slit object has a transmission given by Eq. (3.18), which results in the

convolution term conv(qS, qI) inside the JSP being identical to the one derived in the

context of QIUP, see Eqs. (3.19) and (3.20). Therefore, this important result confirms

our hypothesis that the ghost image IQGI(xS) also exhibits a hard limit of the available

transverse momenta set by the larger wavelength between signal and idler, which is

given by rect [|qS| ≤ 2πmin (1/λS, 1/λI)].
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Finally, we proceed to find the minimum resolvable distance dmin of QGI. To this

end, the JSP of Eq. (3.42) needs to be written in the angular domain to avoid the

terms (kzS)−1/2 (kzI)−1 diverging when q → 2π/λ. Using q = (2π/λ) sin(θ ), kz =
(2π/λ) cos(θ ) and dq = kzdθ , the JSP becomes

JSP(xS, xI) = CJSP

�

�

�

�

¨ +π/2

−π/2
dθI dθS ϕ(θS,θI)exp

�

i
2π
λS

sin(θS)xS+ i
2π
λI

sin(θI)xI

�

�

�

�

�

2

,

(3.45)

with ϕ(θS,θI) = convθ (θS,θI), where the convθ term was presented in Eq. (3.25d)

in the analysis of QIUP. To further draw parallels between QGI and QIUP, a numeri-

cal example for QGI is illustrated in Fig. 3.7 under similar conditions as the numer-

ical example of QIUP in Fig. 3.2. We use an ultra-thin photon-pair source of thick-

ness L = 100nm, idler photons with a wavelength of λI = 10µm signal photons of

shorter wavelength λS = 530nm, pump width of 100µm, and the object slits sepa-

rated by a distance of d = 4.12µm. Figure 3.7(a) portrays the angular correlation

given by ϕ(θS,θI) using Eq. (3.25d). Subsequently, the JSP(xS, xI) is found using

ϕ in Eq. (3.45), see Fig. 3.7(b). Lastly, assuming that the bucket detector collects

all idler photons, the ghost image IQGI is derived from the JSP using Eq. (3.44), see

Fig. 3.7(c). The angular correlation ϕ of Fig. 3.7(a) shows that the angular range of

idler photons is |θI| ≤ 90◦ while the signal photons are restricted by the found relation

| sin(θS)| ≤ min(1,λS/λI) = 530nm/10µm, which results in θmax
S ≈ ±3◦. Additionally,

we observe here a central lobe and partial side lobes of high correlation probability,

which contain information to find the distance between the two slits. This is confirmed

in the JSP of Fig. 3.7(b) as two distinctive spots can be observed which correspond to

the presence of two slits. Finally, the ghost image IQGI in Fig. 3.7(c) shows that the

transverse profile of the object’s transmission can be obtained. Moreover, IQGI illus-

trates that the slits are at the resolution limit since there is a 20% dip from the maxima

following the Rayleigh criterion.

Further numerical tests with other combinations of wavelengths for signal and idler,

just as the ones carried out for QIUP, show that the minimum resolvable distance can

be put in three cases given that the point spread functions vary with the combination

of wavelengths, leading to

dmin

max(λS,λI)
≈











0.41 if λI ≫ λS

0.39 if λI ≪ λS

0.37 if λI = λS

. (3.46)
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Figure 3.7. (a) Angular correlation |ϕ|2, (b) joint spatial probability JSP and (c) image IQGI, assuming
a crystal thickness L = 100nm,λI = 10µm, λS = 530nm, pump width σP = 100µm, and slits distance
d = 4.12µm.

The minimum resolvable distance dmin of QGI is slightly smaller than the dmin found

for QIUP; this difference can be understood from the angular correlations involved.

For QIUP, the angular correlation ϕBeT shows a damping of idler modes for large angles

as given by the term [(2π/λI) cosθI]1/2 in Eq. (3.24) and seen in Fig. 3.2(b). However,

for QGI, the mentioned term does not appear in the angular correlationϕ, therefore, ϕ

extends with high probability over the whole idler range, as can be seen in Fig. 3.7(a).

Since modes with large angles are responsible for higher resolution, QGI shows slightly

better dmin than QIUP.

3.2.2. Discussion

The main difference between QGI and QIUP is that QGI consists of only one source

of photon pairs and the image is obtained in coincidences, whereas QIUP relies only

on single-photon measurements. Here, we have shown that these quantum imaging

schemes share the same fundamental transverse resolution limit, which is defined by

the larger wavelength of the photon pair. This result disagrees with Ref. [191], which

claims that QGI can have a resolution much smaller than the illuminating wavelength

owed only to a very large non-degeneracy of photons. Lastly, since analogue classical

schemes of ghost imaging [95, 97, 144, 192–194] and imaging with undetected light

[195] are also restricted by free-space propagation, it can be concluded that their

diffraction-limited resolution will also be limited by the longer wavelength.

3.3. Abstract and publication

A theoretical framework for QIUP and QGI based on position correlations was pre-

sented in this chapter. In particular, the schemes were modeled using a formalism
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3 Fundamental resolution limit of two-color quantum imaging

developed for treating the non-paraxial regime of operation. This non-paraxial ap-

proach was used to find the minimum resolvable distance dmin of two infinitesimal

slits in QIUP and QGI. The diffraction-limited resolution was found to be defined by

the longer wavelength of the photon pair d(limit)
min ≈ max(λS,λI)/2. This resolution can

be achieved using crystals with thicknesses smaller than the longest wavelength.

The study and results of this chapter were presented at a conference [196] and also

have been published in Physical Review Research [180] along with the non-paraxial

quantum state of photon pairs, see chapter 2, that was derived by Elkin A. Santos.
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4. Lensless quantum ghost imaging

Imaging becomes a cumbersome task to achieve at wavelength ranges where lenses are

less available, for example, in the infrared and terahertz ranges, which are important

in fields such as biology and material science [121]. In this case, alternative imaging

schemes that do not rely on lenses need to be considered. Lensless classical imaging

can be achieved, for example, using the principle of pinhole imaging [197, 198]. In

a pinhole camera, the object is located on one side of an opaque screen with a small

pinhole, whereas the detector is on the other side. The scheme does not need any

lenses to capture the shadow of the object1, which can be optimized by adapting the

pinhole size [197]. The pinhole camera does not offer high resolution, but this type of

lensless imaging has several advantages over imaging with lenses, i.e., a larger depth

of field, a wide angular field of view [198], and its applicability in wavelength ranges

for which high-quality lenses are less available [199, 200].

In quantum ghost imaging (QGI), lenses are usually placed in the path of the signal

and/or idler [90, 106, 107] to form a ghost image or in the pump-beam path before

the beam impinges onto the crystal [125]. The lenses introduce a parabolic phase

front in either beam path, which results in the formation of a ghost image in the co-

incidences measurement. However, it has been shown that QGI can also be realized

without lenses, which is advantageous for down-converted photons in the terahertz

range [201], by adding a parabolic phase front by engineering the nonlinearity profile

of the nonlinear crystal, for example, using a nonlinear photonic crystal [202]. Addi-

tionally, since ghost imaging can be also realized with classical light [95, 97, 144, 192–

194], which has the inherent property of acting as a phase-conjugated mirror [193],
a ghost imaging scheme can also be used for lensless imaging [203, 204]. Moreover,

a pinhole-based scheme for ghost imaging with thermal light has already been pro-

posed [205], where the optimal lensless imaging condition depends on the size of the

thermal source. However, in this chapter, we extend this approach of lensless imaging

to the quantum regime with entangled photons. In our approach, a nonlinear crystal

generating photon pairs is illuminated by a collimated pump beam and, contrary to

ghost imaging with thermal light, we use a bucket detector that collects all the probing

1 We will refer to this shadow as an image although strictly no imaging is taking place.
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4 Lensless quantum ghost imaging

idler photons instead of a point detector behind the object, which just collects a small

amount of idler photons.

We begin by presenting the original quantum ghost diffraction scheme; then, this

will serve as a starting point to investigate the novel lensless QGI scheme that we

name ‘pinhole QGI’. We perform numerical examples, and later we derive a simplified

analytical model that generalizes the numerical observations and allows us to find a

connection to a classical pinhole camera. We show that pinhole QGI can be realized

for specific pump beam diameters in an optimum regime of operation, and we analyze

its properties.

4.1. Quantum ghost diffraction

Based on the analysis presented in chapter 3, we model here a quantum ghost diffrac-

tion (QGD) scheme, which is used to obtain the diffraction pattern of an object in-

stead of its image as shown previously. The QGD scheme is illustrated in Fig. 4.1. A

collimated pump impinges on a nonlinear crystal producing photon pairs that are sep-

arated using a dichroic mirror. After a distance zS, a spatially resolving detector, i.e.,

a camera, is used to measure signal photons. In the idler arm, an object is placed at

a distance zo from the crystal and then the idler photons propagate a distance zI − zo

until reaching a non-resolving detector of small transverse size. This scheme allows

us to obtain the diffraction pattern of the object in the coincidence counts without the

Small non-resolving 
detector

Signal

Idler

Object

Nonlinear
crystal

Dichroic mirror
Camera

Coincidence
circuit

Collimated
pump

Figure 4.1. Sketch of a quantum ghost diffraction (QGD) scheme. The difference with QGI, presented
in the previous chapters, is that there are no lenses in the down-converted arms and the non-resolving
detector behind the object has a very small transverse size.
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4 Lensless quantum ghost imaging

need of any lenses in the signal and idler arms, as just described.

We start by modeling the QGD scheme with the two-photon quantum state pre-

sented in the previous chapter in Eq. (3.34). Afterwards, the quantum state at dif-

ferent planes in the scheme can be found using classical propagation in the Fourier

domain for both signal and idler photons [206]. In detail, the phase term exp(ikzIzo)
models the propagation of the idler photons from the crystal to the plane of the object

and exp(ikzSzS) represents the propagation of the signal photons from the crystal to

the camera, leading to a state

|ψ〉= Cψ

¨
dqSdqIφ(qS; qI)exp(ikzIzo)exp(ikzSzS)â

†(qS)â
†(qI) |0, 0〉 , (4.1)

where Cψ denotes a constant. The object is modeled as a beamsplitter with a trans-

mission T (xI) and a reflection R(xI) that connects the idler operator of the output with

the inputs by Eqs. (3.35) and (3.36), resulting in the state

|ψ〉= C ′
ψ

¨
dqSdqI

�

φ(qS; qI) exp(ikzIzo)exp(ikzSzS) (kzI)
1/2

×
�
ˆ

dq′
I
eT (−qI + q′

I) (k
′
zI)

−1/2rect
�

|q′
I| ≤

2π
λI

�

â†
I,T (q

′
I)
�

â†
S(qS) |0,0〉

�

+ C ′
ψ

¨
dqSdqI

�

φ(qS; qI) exp(ikzIzo)exp(ikzSzS) (kzI)
1/2

×
�
ˆ

dq′
I
eR(−qI + q′

I) (k
′
zI)

−1/2rect
�

|q′
I| ≤

2π
λI

�

â†
I,R(q

′
I)
�

â†
S(qS) |0,0〉

�

.

(4.2)

Next, the propagation of the idler photons from the plane of the object to the plane of

the non-resolving detector is taken into account with the phase term exp
�

ik′
zI(zI − zo)

�

into the state and the integrals of qI and q′
I are reordered, leading to

|ψ〉=

C ′
ψ

¨
dqSdq′

I

�

exp(ikzSzS)(k
′
zI)

−1/2
�
ˆ

dqI (kzI)
1/2φ(qS; qI) exp(ikzIzo) eT (−qI + q′

I)
�

× rect
�

|q′
I| ≤

2π
λI

�

exp
�

ik′
zI(zI − zo)

�

â†
I,T (q

′
I)â

†
S(qS) |0, 0〉

�

+ C ′
ψ

¨
dqSdq′

I

�

exp(ikzSzS)(k
′
zI)

−1/2
�
ˆ

dqI (kzI)
1/2φ(qS; qI) exp(ikzIzo)eR(−qI + q′

I)
�

× rect
�

|q′
I| ≤

2π
λI

�

â†
I,R(q

′
I)â

†
S(qS) |0,0〉

�

.

(4.3)
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The terms within the square brackets are convolutions along q′
I, for the convolution

including the transmission, then

�

(k′
zI)

1/2φ(qS, q′
I)exp(ikzIzo)

�

⊛eT (q′
I) =
ˆ

dqI (kzI)
1/2φ(qS; qI) exp(ikzIzo) eT (−qI+q′

I).

(4.4)

Assuming that both idler and signal detectors are spatially resolving, the joint spatial

probability (JSP) can be found from the general expression of Eq. (3.40) using the

electric field operators at the detectors of Eq. (3.41). The JSP results in

JSP(xS, xI) = CJSP

�

�

�

�

¨
dqIdqS exp(iqSxS+ iqI xI)(kzS)

−1/2 (kzI)
−1

× conv(qS, qI) rect
�

|qI| ≤
2π
λI

�

rect
�

|qS| ≤
2π
λS

�

× exp(ikzSzS)exp [ikzI(zI − zo)]

�

�

�

�

2

,

(4.5)

with the convolution term

conv(qS, qI) =
�

(kzI)
1/2φ(qS, qI)exp(ikzIzo)

�

⊛ eT (qI). (4.6)

Lastly, the quantum ghost diffraction pattern G(xS) is found by integrating the JSP

over the transverse size σI,det of the non-resolving idler detector

G(xS) = CJSP

ˆ +σI,det/2

−σI,det/2
dxI JSP(xS, x I). (4.7)

In this chapter, we focus on the scheme that uses a crystal with a thickness larger

than the largest wavelength of the photon pair, which can be implemented with com-

mon off-the-shelf nonlinear crystals. Such a thick crystal produces photon pairs within

small angular ranges along the propagation axis; see chapter 2, and consequently the

analysis can be reduced to the paraxial regime. In this regime, the terms (kzS)−1/2 and

(kzI)−1 become independent of the transverse momentum q [170], and the rectangu-

lar functions take an infinite width. Consequently, the convolution term conv(qS, qI),
including the joint transverse momentum amplitude φ(qS, qI) of Eq. (2.21), reduces

to

conv(qS, qI)≈ C [EP(qS+ qI) sinc (∆kz L/2)exp(ikzIzo)]⊛ eT (qI), (4.8)

where the constant C includes all the terms independent of q,∆kz = kzP−kzS−kzI, L is
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the thickness of the crystal, and EP is the transverse profile of the pump in momentum

space. As a result of this approximation, the JSP can be written as

JSP(xS, xI)≈ C

�

�

�

�

¨
dqIdqS

¦

exp(iqSxS+ iqI xI)

× conv(qS, qI) exp(ikzSzS)exp [ikzI(zI − zo)]
©

�

�

�

�

2

≈ C ′

�

�

�

�

F−1
¦

conv(qS, qI) exp(ikzSzS)exp [ikzI(zI − zo)]
©

�

�

�

�

2

,

(4.9)

where F−1 is a two-dimensional inverse Fourier transform that can be easily imple-

mented numerically using an FFT algorithm.

As a next step, it will be shown numerically in Fig. 4.2 that the diffraction pattern

of a double slit can be obtained using the JSP of Eq. (4.9) and the ghost diffraction

pattern G of Eq. (4.7). Afterwards, its features are discussed and finally the analysis

of QGD is used as a starting point of the next section on pinhole QGI.

For this numerical example, we consider a pump beam with Gaussian transverse

spatial spectrum and its waist is located at the center of the nonlinear crystal at the

plane z = 0, that is, EP = exp
�

−σ2
P(qS+ qI)2/2

�

, which features a flat wave front and

a width σP in position space. In this example, σP = 800µm. The pump beam has a

wavelength of λP = 350nm and signal and idler photons have degenerate wavelengths

λS = λI = 700nm. The nonlinear crystal thickness L is taken much larger than any

of the wavelengths with L = 3mm and the object is chosen to be a double slit with

d = 940µm slit separation with unity transmission in each slit of 50µm width and

zero transmission elsewhere, located at zo = 30cm. To portray the influence of the

object in the JSP, we fix the position of the detector in the signal arm at zS = 1.5m

and the idler detector at various positions zI from the crystal, as seen in Fig. 4.2(a-

d). In Fig. 4.2(a), the idler detector is located very close to the object at a distance

zI = 1.1zo = 33cm where the JSP clearly shows the presence of the two slits along xI in

the form of two distinctive thin lobes. As the idler detector is farther from the object,

each of these lobes diffracts along xI, which results in an increase in their widths. This

leads to an overlap of the lobes that start to form interference fringes in the JSP, see

Fig. 4.2(b). If the detector gets farther, as observed in Fig. 4.2(c,d), the detector plane

approaches the far-field region with respect to the object plane. This results in a JSP

pattern that changes only in size but not in overall shape upon moving farther away

from the detectors. In Fig. 4.2(d), the distance between the object and the detector is
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(a) (b) (c) (d)

(e)

JSP

Point detector Bucket detector

Figure 4.2. (a-d) JSP(xS, xI) of a double slit for various distances zI. The slit separation is 940µm and
slit width is 50µm, located at zo = 30cm, and a pump width of 800µm. (e) Quantum ghost diffraction
pattern G(xS) obtained from the JSP with zI = 4zo for different sizes of the non-resolving detector, from
point detector to bucket detector.

zI − zo = 90cm, which is close to the far-field region, which occurs when [158]

zI − zo ≫
d2

λI
=
(940µm)2

700nm
= 1.26m. (4.10)

Furthermore, the ‘diagonal-like’ shape of the obtained JSP shows that there is spatial

correlation between signal and idler. One can visually notice that the correlation can

be exploited to reveal the well-known diffraction pattern of the double slit in coin-

cidences, even though the detector in the idler arm is spatially insensitive. This is

illustrated in the ghost diffraction patterns G(xS) in Fig. 4.2(e), obtained from the JSP

of Fig. 4.2(d) using Eq. (4.7). Importantly, G with a high visibility is seen by using a

point-like idler detector with transverse size ofσI,det = 16µm. However, if the spatially

non-resolving idler detector increases in size, the visibility of the diffraction pattern
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reduces, until completely disappearing if the detector becomes a ‘bucket’ that collects

all the incoming idler photons. In this particular example, a bucket detector is realized

when σI,det ⪆ 32mm.

We observe in Fig. 4.2(e), first, that an interference pattern of the double slit can

be obtained in coincidences G by using a point-like detector behind the object, as was

shown in Ref. [89]. Second, the contrast of the interference pattern depends on the

transverse size of the idler detector, as seen in Fig. 4.2(e): the smaller the detector,

the higher the contrast. On the one extreme, the contrast is maximum when using

a point detector, which leads to G(xS) ∝ JSP(xS, 0). On the other extreme, where

the idler detector is a large bucket detector that simply collects all idler photons and

has no spatial resolution, then G(xS)∝
´ +∞
−∞ dxI JSP(xS, xI). In this case, the use of

a bucket detector washes out the interference pattern, and the information that the

object is a double slit is lost.

Beyond QGD, Pittman et al. showed that the image of the object, instead of its

diffraction pattern, can be obtained in coincidences, as was shown in chapter 3. To

realize a ghost image, lenses are adequately introduced in the path of one down-

converted photon, and the idler point detector is exchanged to a bucket detector.

However, later on, the same author also demonstrated that if the phase front of the

pump was curved inside the crystal, then the QGD scheme can produce images without

the use of lenses in the arms of the signal and idler photons [125]. However, as will

be shown below, a pump with a flat phase front can also be used for lensless imaging

by using a pump width of the right size.

4.2. Pinhole quantum ghost imaging

In this section, we demonstrate how a QGD scheme can be turned into a ghost imaging

scheme that does not use any lenses in the signal and idler paths and uses a pump with

a flat phase front. The proposed scheme is illustrated in Fig. 4.3. We showed in the

previous section that the QGD pattern disappears when the idler detector is a bucket,

i.e., it simply collects all incoming idler photons and lacks spatial resolution. However,

here we keep the bucket detector to demonstrate the influence of the pump width, as

highlighted in the inset of Fig. 4.3. We fix the pump beam to have a flat phase front

in the middle of the nonlinear crystal.

Figure 4.4(a-d) shows joint spatial probabilities JSPs for the pump widths σP of

58µm, 102µm, 167µm, and 800µm, respectively, together with the corresponding

ghost patterns G in Fig. 4.4(e). The last value of σP was used in the previous section

to find the QGD pattern. It is evident that the shape of the JSP changes drastically
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Figure 4.3. Sketch of the pinhole quantum ghost imaging scheme. The inset highlights that the pump
width has to be optimized to achieve imaging, as explained in the main text.

with the reduction of the pump width. According to Fig. 4.4(c), the double-slit object

seems to produce two spots whose centers are separated along xS approximately five

times more than the actual slit separation. Depending on the width of the pump beam,

these spots in the JSP change their widths and, in general, overlap and interfere. The

interference reaches a minimum in Fig. 4.4(c) with pump width σP = 167µm. In

Fig. 4.4(e), we show the corresponding ghost patterns G, where the cases of (a-d) are

labeled. Remarkably, in this numerical investigation we see that for a specific range

of pump widths two separate maxima are visible in G, which seems to correspond to

an image of the double slit.

To better understand the characteristics of the obtained pattern, we find an analyt-

ical expression that describes it in the next section.

4.2.1. Derivation of the ghost image in the paraxial regime

The obtained ghost patterns G point out that it is indeed possible to produce an image

with a pump of the appropriate size. We derive an analytical model to understand the

image properties and find the optimal conditions to obtain it. To find an expression of

the ghost pattern G, the JSP has to be found first. The JSP is described in Eq. (4.9),

and can be written as JSP (xS, xI)∝ |Ψ|2 , where

Ψ =
¨

dqSdqIΦ (qS, qI)exp (iqSxS+ iqI xI) (4.11)
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Figure 4.4. (a-d) JSP(xS, xI) and corresponding (e) quantum ghost pattern G(xS) of a double slit,
940µm slit separation and 50µm slit width, located at zo = 30cm produced by a pump width σP of (a)
58µm, (b) 102µm, (c) 167µm, and (d) 800µm.

with

Φ=
¦

[EP(qS+ qI) sinc (∆kz L/2)exp(ikzIzo)]⊛ eT (qI)
©

exp(ikzSzS)exp [ikzI(zI − zo)] ,

(4.12)

where the term in curly brackets comes from the convolution conv(·) of Eq. (4.8).

Next, we consider only one of the slits of the object and consider that it has an in-

finitesimal width and is located at xI = d/2, which means that the transmission can

be written as

T (xI) = δ
�

xI −
d
2

�

(4.13)

and

eT (qI) = exp
�

−i
�

d
2

�

qI

�

. (4.14)

Further assumptions must be made to find an analytic solution of Φ written in

Eq. (4.12) to later find the JSP. First, we make use of the paraxial approximation where

qS and qI are small, therefore kz can be approximated to kz =
p

k2 − q2 ≈ k−q2/(2k).
Second, since we are working in the paraxial regime, the main lobe of the sinc-

function appearing in Φ can be approximated with a Gaussian function [167, 189]
sinc

�

x2
�

≈ exp
�

−4γx2
�

where γ = 0.2 ensures that the sinc and the Gaussian coin-
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cide at 0.1. These two approximations were also used in Eq. (3.31) to find the paraxial

resolution of quantum imaging with undetected photons. Consequently, under such

two approximations, the term Φ becomes

Φ= C exp

�

−
�

i
zI − zo

2kI

�

q2
I − i

�

d
2

�

qI +

�

�

1
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2

2
− i

zS

2kS

�

q2
S
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×
ˆ

deqI exp

��

�

1
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1
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2

2
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d
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eqI
2 +
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2qS

�

�

1
kP

�
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d
2

�

eqI

�

,

(4.15)

where C is a constant. This expression contains a one-dimensional Gaussian integral

of the form [207],

ˆ
deqI exp

�

−
1
2

A eqI
2 + BeqI

�

=
�

2π
A

�1/2

exp
�

B2

2A

�

, (4.16)

where

A= −2

�

�

1
kP

−
1
kI

�

γL −
σP

2

2
− i

d
2kI

�

, (4.17a)

B = 2qS

�

�

1
kP

�

γL −
σP

2

2

�

+ i
d
2

. (4.17b)

This turns Φ into a simpler expression and we proceed and find Ψ using the inverse

Fourier transform of Eq. (4.11). This has the form of a Gaussian integral in two di-

mensions of the form [207]

Ψ = C
¨

dqSdqI exp
�

−
1
2

C1q2
S −

1
2
α1q2

I + D1qS+ D2qI

�

= C ′ exp
�

1
2 C1α1

�

α1D2
1 + C1D2

2

�

�

,
(4.18)

with

C1 = i
zI − zo

kI
, (4.19a)

D1 = i
�

xI −
d
2

�

, (4.19b)

D2 = i
�

xS −α2
d
2

�

, (4.19c)
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and
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Since the joint spatial probability is JSP (xS, xI)∝ |Ψ|2, then the ghost pattern, con-

sidering a bucket detector that collects all the idler photons, becomes

G(xS) = CJSP

ˆ
dxIJSP (xS, xI) = C ′

JSP exp

�

−
(xS − x0)2

2σ2
G

�

. (4.21)

Here, the width σG and the maximum located at x0 are given by

σG =
�

2Re
�

1
α1

��−1/2

, (4.22a)

x0 =
d
2

Re
�

α2

α1

��

Re
�

1
α1

��−1

, (4.22b)

where the variables α1 and α2 can be written more compactly using k = 2π/λ,

α1 = σ
2
P +
γ L
π
(λS −λP) + i

λSzS

2π
−
�

σ2
P −
γ LλP

π

�

α2, (4.23a)

α2 =
�

σ2
P −
γ LλP

π

��

σ2
P +
γ L
π
(λI −λP) + i

zoλI

2π

�−1

. (4.23b)

Due to the presence of the bucket detector that collects all idler photons behind the

object, the equations do not depend on zI, the distance of the object to the bucket

detector; however, the model does depend on the location of the resolving detector

zS. Figure 4.5(a) shows the width of the ghost pattern σG with respect to the width of

the pumpσP and the distance from the object to the crystal zo. Additionally, Fig. 4.5(b)

depicts the normalized position x0/(d/2) also as a function of σP and zo. The distance

to the signal detector remains zS = 1.5m throughout this chapter. We observe in

Fig. 4.5(a) that, for each object position zo, the width of the ghost pattern σG has a

minimum at a certain pump widthσP. This confirms the observations of the numerical

example in Fig. 4.4 using zo = 30cm, where the optimal case for imaging, marked with

a dot in Fig. 4.4(c), leads to the narrowest ghost pattern for each of the slits. In the

rest of the cases, the pattern of each slit is too wide, resulting in considerable overlap
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Figure 4.5. (a) Width of the ghost patternσG and (b) position magnification x0/(d/2) of a infinitesimal
slit at xI = a with respect to the pump width σP at various distances zo from the slit to the crystal. The
circle marks the parameters of the numerical example in Fig. 4.4(c).

and interference between the contribution of the double-slit object and hence the loss

of visibility of the ghost pattern. If a second infinitesimal slit would be at xI = −d/2,

the distance between the two maxima in the ghost patterns would be 2x0, therefore,

x0/(d/2) represents the magnification. Figure 4.5(b) verifies that for the numerical

example in Fig. 4.4, the magnification is approximately equal to five. It also shows

that the magnification is negative, meaning that the ghost image G is inverted.

It is noteworthy that the lensless quantum imaging scheme found can be understood

from a more familiar imaging configuration, namely the classical pinhole camera, as

will be presented next.

4.2.2. Analogy to the classical pinhole camera

Here, a connection between the lensless QGI described and the well-known classical

pinhole camera will be presented. This analogy is useful to have a more intuitive grasp

of the underlying imaging mechanism and aids in the design of the proposed imaging

scheme.

To start with the analogy, we notice that in our proposed lensless QGI scheme, the

minimum width of the ghost pattern σG illustrated in Fig. 4.5(a) becomes smaller as

the object is placed farther from the crystal. However, this value does not reach zero,

instead the behavior of the curve of σG converges to the orange curve in the limit

where the object is very distant from the crystal, zo → ∞, therefore, σG becomes

independent of zo for large zo. In this limit, the expression of σG in Eq. (4.22a) can
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be reduced to

σ2
G = σ

2
0 +

1
σ2

0

�

zSλS

4π

�2

. (4.24)

The width of the ghost pattern of an infinitesimal slit object with the spatially resolving

detector placed right after the crystal, σ0 = σG(zS = 0), is

σ0 =
�

1
2
σ2

P + γ
�

λS

λI

��

λP L
2π

��1/2

. (4.25)

This expression depends only on the parameters of the two-photon source. It is easy

to see that the ghost pattern width σG has a minimum value, for a fixed value of zSλS,

namely σmin
G =

p
2σ0, when

σ2
0 =

zSλS

4π
. (4.26)

Remarkably, this result showing the optimal conditions to create a lensless ghost image

is equivalent to the optimal pinhole size σpinhole in a classical pinhole camera that

creates the smallest point image of a slit upon spatially incoherent illumination [197],
i.e.,

σ2
pinhole ≈ zλ, (4.27)

where z is the distance from the detector to the pinhole. Consequently, in this analogy,

σ0 can be considered the ‘pinhole size’ of QGI and it depends not only on the width

of the pump but also on the thickness of the crystal and the two-photon wavelengths.

However, notice that for a pump with negligible diffraction inside the crystal σ2
P ≫

λP L/(2π), the deviation of the equivalent pinhole size σ0 from the pump width σP is

small. Moreover, we now analyze the magnification to draw more parallels between

the proposed QGI scheme and the classical pinhole camera.

The magnification of the classical pinhole camera is given by geometric optics as

−z/zo, where z is the distance detector-pinhole and zo is the distance object-pinhole. A

similar relation can be found from the analytical model of the proposed ghost imaging

scheme using Eq. (4.22b), under two conditions: First,

σ2
P ≫

γ L
π
[max(λS,λI)−λP] (4.28)

that ensures that the signal, idler, and pump waves have negligible diffraction inside

the nonlinear crystal. In this case, σP defines the size of the generated signal and idler
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beams inside the crystal, and hence their Rayleigh lengths are also much larger than

the crystal thickness L, meaning that their phase fronts are approximately flat inside

the crystal. Second,

§

zoλI

2π
,

zSλS

2π

ª

≫ σ2
P, (4.29)

stating that both the object and the resolving detector are in the far-field of the two-

photon source. Under these two conditions, we find the magnification from Eq. (4.22b)

to be

x0

(d/2)
≈ −

�

zS

zo

��

λS

λI

�

. (4.30)

This is similar to the magnification of the classical pinhole camera, but includes the

two-photon wavelengths. From this expression, the magnification of the numerical

example in Fig. 4.4 withλS/λI = 1 can be quickly found to be−(1.5m/30cm)(1) = −5.

Hence, the ghost image of the double slit with slit separation of 940µm should show

two peaks separated by a distance of 4.7mm.

To portray the effect of the wavelengths in the magnification and confirm the derived

expression of Eq. (4.30), we plot three numerical cases of the ghost pattern G along

with its corresponding JSP, see Fig. 4.6, as was done at the beginning of the chapter in

Fig. 4.4. The signal wavelength λS = 700nm is fixed, and the separation between the

slits is kept at 940µm. We begin by again plotting the JSP and G corresponding to the

degenerate case with λS/λI = 1 in Fig. 4.6(b), which is the same as Fig. 4.4(c). Here,

G displays the image of the two slits separated by 4.7mm. Additionally, we illustrate

the non-degenerate cases with λS/λI = 1/2 in Fig. 4.6(a) and λS/λI = 2 in Fig. 4.6(c).

The slit separation in G is 2.35mm and 9.4mm, respectively. Thus, the numerical result

shows that the magnifications are −2.5 for λS/λI = 1/2, −5 for λS/λI = 1, and −10

for λS/λI = 2. Therefore, the derived magnification expression of Eq. (4.30) correctly

predicts all three cases with degenerate and non-degenerate wavelengths.

The analogy between lensless QGI and the classical pinhole camera aids to build

a more familiar understanding of the proposed QI scheme, which becomes relevant

when designing such scheme with correlated photons. In this analogy, the important

found parameters are the ‘pinhole size’ of QGI given byσ0 of Eq. (4.25) and the magni-

fication given by Eq. (4.30). It should be noted that our imaging scheme is not limited

to the far-field domain. We only take the approximations which simplify the found

expressions in order to make the analogy with the classical pinhole camera.
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Figure 4.6. Magnification of the ghost image for photon pairs with degenerate and non-degenerate
wavelengths. Top: JSP with λS = 700nm, (a) λS/λI = 1/2, (b) λS/λI = 1 [same as Fig. 4.4(c)],
(c) λS/λI = 2. Bottom: Ghost images corresponding to their respective JSPs.

4.2.3. Transverse resolution and number of spatial modes within the

paraxial regime

We further exploit the analytical model of the ghost pattern G of one slit given by

Eqs. (4.21) and (4.22) to derive the transverse resolution and number of spatial modes

of pinhole QGI within the paraxial regime considered.

In the following derivation, we use Rayleigh’s resolution criterion, which is defined

as the minimum distance between two point-like objects enabling one to distinguish

them from one another [158]. To optimally resolve two objects, not only the ghost

pattern width σG has to be taken into account, but also the magnification. Namely,

a small width σG and also a large magnification |x0/(d/2)| are needed. To test this,

we use the Gaussian ghost pattern derived from an infinitesimal slit A at xI = d/2 of

Eq. (4.21). For simplicity, we normalize its maximum to one, resulting in the ghost

pattern GA = exp
�

−(xS − x0)2/(2σ2
G)
�

, where σG is given by Eq. (4.22a) and x0 by

Eq. (4.22b). If a second similar slit B is included, but at xI = −d/2, the resulting ghost

pattern is symmetric with respect to xS = 0 and is given approximately by G ≈ GA+GB,

assuming negligible interference. It can be said, that the two slits can be distinguished

from one another in G when the intensity at xS = 0 between the two maxima is smaller

than a certain threshold, here heuristically chosen to be 40% of the maximal intensity
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at xS = ±x0. Therefore, the approximate threshold condition2 defines that

G(xS = 0)th ≈ GA(0) + GB(0) = 2GA(0) = 0.4. (4.31)

Using the expression for GA within G(0)th, including σG from Eq. (4.22a), and x0 from

Eq. (4.22b), we have

G(0)th =2 exp

�

−
x2

0

2σ2
G

�

=2 exp

�

−
�

dmin

2

�2 �

Re
�

α2

α1

��2 �

Re
�

1
α1

��−2
�

�

�

�

Re
�

1
α1

�

�

�

�

�

�

,

(4.32)

where dmin is the minimum resolvable distance d between two identical infinitesimal

slits, i.e., the transverse spatial resolution, which results in

dmin = 2

�

− ln
�

1
2

G(0)th

�

�

�

�

�

Re
�

1
α1

�

�

�

�

�

�1/2 �
�

�

�

Re
�

α2

α1

�

�

�

�

�

−1

. (4.33)

Figure 4.7(a) displays the dependence of dmin on the pump widthσP at different object

distances zo. The thick green line connects the minima of several curves over a wider

range of zo to depict the trend. We showed before in Fig. 4.5(a) that the minimum

width of the ghost pattern σG becomes smaller as the object is farther from the crystal.

Hence, one could naively expect from σG that the resolution dmin could improve as the

object is farther; however, the tendency of Fig. 4.7(a) tells the opposite. The reason

for this is that dmin is enhanced by the large magnification that occurs at small object

distances zo, as showcased in Fig. 4.5(b). This is confirmed numerically by revisiting

the case depicted in Fig. 4.4(b), which uses a pump width of 102µm and zo = 30cm

where the ghost pattern had low visibility; however, now we change the position of

the object to zo = 10cm. The resulting JSP and the ghost pattern G are shown in

Fig. 4.7(b). Compared to Fig. 4.4(b), the visibility of the image of the double slit

increases due to the larger magnification. This originates from the fact that, for a

fixed object distance zo, the minimum ghost pattern width σG does not coincide with

the largest magnification x0/(d/2), see Fig. 4.5. Therefore, the optimal pump width

σP that results in the best resolution is not necessarily when σG is minimized, except

for larger values of zo where the magnification x0/(d/2) is almost independent of σP,

as can be seen in Fig. 4.5(b).

It should be noted that the green tendency line in Fig. 4.7(a) shows that the closer

2 The decision to take the resolution criterion to be 40% does not rely on any profound physical
reason, it is only practical. Other works take less restrictive values around 80%, and we did too in
chapter 3.
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Figure 4.7. (a) Resolution dmin with respect to the pump width σP. The green line connects the
minima of curves of a wider range of object distances zo. (b) Numerically, JSP (top) and G (bottom) of
a double slit. The purple circle in (a) marks the parameters of (b).

the object is to the crystal and the smaller the pump width, the better the minimum

resolvable distance dmin. However, a smaller pump width has a broader spatial spec-

trum, which is a scenario where the paraxial approximation used does not hold. We

observe in Fig. 4.7(a), that the resolution within the paraxial regime dmin of pinhole

QGI is much larger than the idler and signal wavelengths. As thoroughly analyzed in

chapter 3, we can infer that the fundamental resolution limit of pinhole QGI is also

dictated by the largest wavelength of the photon pair if an ultra-thin crystal was used.

This is because the general expression of the JSP in pinhole QGI, before any paraxial

approximation, given in Eq. (4.5) has the same form as the JSP of the QGI in Eq. (3.42),

except from some phase terms corresponding to photon propagation. Furthermore,

notice that the resolution dmin in the paraxial regime of Fig. 4.7(a) tends to depend

linearly on the object position zo for large values of zo. This is because in such case,

as was mentioned earlier, the ghost pattern width σG is nearly independent of zo, see

Fig. 4.5(a), and the magnification is |x0/(d/2)| ∝ 1/zo, as described in Eq. (4.30).

In addition to the resolution, it is also of great interest to describe the transverse

extent of the idler illumination onto the object, which limits the object size that can be

imaged. To find the illumination size on the object, we assume that the idler detector

is located at the object position zI = zo and the camera for the signal is at zS. Then,

the function Φ that contains the two-photon propagation becomes a simpler form of

Eq. (4.12),

Φ= C exp
�

−i
zS

2kS
q2

S − i
zo

2kI
q2

I −
1
2
σP

2 (qS+ qI)
2
�

× exp
�

−
γL
kS

q2
S −
γL
kI

q2
I +
γL
kP
(qS+ qI)

2
�

.
(4.34)
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This function, as shown previously, is used to calculate the joint spatial probability

JSP = Φ∗Φ leading to

JSP (xS, xI) = CJSP exp
�

−Re
�

A22

det(A)

�

xI
2 −Re

�

A11

det(A)

�

xS
2 +Re

�

A12 + A21

det(A)

�

xSxI

�

,

(4.35)

with the 2x2 matrix A composed of

A11 = 2
�

1
kI

−
1
kP

�

γL +σP
2 + i

zo

kI
, (4.36a)

A22 = 2
�

1
kS

−
1
kP

�

γL +σP
2 + i

zS

kS
, (4.36b)

A12 + A21 = 2
�

−
γL
2kP
+σP

2
�

. (4.36c)

The illumination on the object is then the projection of the JSP on the idler axis xI that

results in a Gaussian transverse profile with width σillum. For an object and camera

located in the far field, the illumination size is simplified to

σillum ≈
zoλI

2π



































2



(λS −λP)
γL

π
+σP

2





4



(λI −λP)
γL

π
+σP

2







(λS −λP)
γL

π
+σP

2



−



−λP

γL

π
+σP

2





2



































1
2

(4.37)

This illumination size σillum increases linearly with the longitudinal position of the

object zo. Importantly, the ratio between the illumination size and the minimum re-

solvable distance dmin tells the maximum number of identical infinitesimal slits that

can be resolved inside the illuminated region of the object;

N ≡
σillum

dmin
, (4.38)

i.e., describes the number of independent spatial modes in the object illumination

[151]. The dependence of N on the crystal thickness L is displayed in Fig. 4.8 for

various zo, each at a pump width σP that minimizes the resolution as described by the

green line in Fig. 4.7(a). This shows that to increase the number of spatial modes N ,

a thinner crystal can be used, as it allows a larger range of transverse wave-vectors,
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Figure 4.8. Number of spatial modes N with respect to the crystal thickness L at various zo. The purple
circle marks the parameters of Fig. 4.7(b).

this was shown in section 2.2.1. Also, N can increase if the object is placed farther

away from the crystal; however, this has a limit due to the linear dependence of both

σillum and dmin on zo for very distant objects.

Lastly, we investigate the resolution and number of modes for the case where the

photon pairs have non-degenerate wavelengths. The corresponding plots are shown in

Fig. 4.9. Here, the idler wavelength is kept fixed at λI = 700nm and the signal wave-

length is changed. Figures 4.9(a,c) depict the case for λS/λI = 1/4, and Figs. 4.9(b,d)

for λS/λI = 4. In Figs. 4.9(a,b), we observe that the minimum dmin for a given object

position zo varies more noticeably with the non-degenerate wavelengths only for large

zo. In such a specific scenario, the resolution slightly improves with larger λS/λI using

a larger pump width. Finally, Figs. 4.9(c,d) show that the number of modes N also has

a greater variation with the non-degenerate photons at larger zo. The larger λS/λI is

used, then the larger N is obtained. This is a consequence of the improved resolution

under the same particular conditions, as just mentioned before.

4.3. Abstract and publication

Quantum ghost diffraction and imaging have been comprehensively presented in this

chapter. Using the basis of QGD, we put forward the concept of a QGI scheme that

is analogous to the classical pinhole camera. The scheme relies on choosing a pump

beam with a flat wave front and the right width dependent on the rest of the param-

eters of the scheme. Pinhole QGI is ideal for applications that use wavelengths where

lenses are less available and a high transverse resolution is not needed. This work

was presented at two conferences [208, 209] and was published in Applied Physics

Letters [210].

66



4 Lensless quantum ghost imaging

(a) (b)

(c) (d)

Figure 4.9. (a,b) Resolution dmin with respect to the pump width σP and (c,d) number of modes N
with respect to crystal thickness L for object distances d = 3cm, 5cm,10cm, 30cm using photon pairs
with non-degenerate wavelengths with λI = 700nm: (a,c) λS/λI = 1/4, (b,d) λS/λI = 4.
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5. Metasurface-assisted quantum ghost

polarimetry

We have shown in the previous chapters that entangled signal and idler photons, pro-

duced by spontaneous parametric down-conversion, can be used for imaging the trans-

verse profile of an object by using a camera that measures photons that never inter-

acted with the object. This is the case for quantum ghost imaging (QGI) and quantum

imaging with undetected photons (QIUP). In this chapter, we present the theoretical

treatment of quantum ghost polarimetry (QGP), which is a scheme similar to QGI

with the difference that it uses exclusively the polarization degree of freedom of pho-

ton pairs. Importantly, just like QGI, QGP has additionally the advantage that signal

and idler photons can be used at different wavelengths, which is relevant for appli-

cations in biosensing. Therefore, QGP allows us to find the polarization response of

samples by probing them with low-light and a long wavelength, while the resolving

measurement can be done in the visible range with a shorter wavelength, where most

cameras are highly efficient. Moreover, a novel concept of metasurface-assisted QGP

is presented in this chapter to discriminate polarization-sensitive objects.

This chapter is organized as follows. First, we discuss the basics of QGP. Second, we

propose a protocol to discriminate polarization-sensitive objects using QGP. Third, we

show that by placing specially designed metasurfaces before the polarization-insensitive

photon detectors, one can perform real-time discrimination between fully or partially

transparent polarization-sensitive objects within a defined set by using only a few par-

allel coincidence measurements. Lastly, we analyze the difference between using a

source of photons with entanglement and a source with classical correlations.

5.1. Quantum ghost polarimetry

5.1.1. Two-photon state including the object

In contrast to QGI, which was presented in the previous chapters, QGP constitutes a

much simpler scheme as it can be fully described with a two-mode polarization basis
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for signal and idler photons. A simplified QGP scheme is illustrated in Fig. 5.1. It

consists of a source of polarization-entangled photons, then the idler photons interact

with and object, defined by the Jones matrix TI, and the idler photons are then mea-

sured by a polarization-insensitive detector. Signal photons do not interact with TI but

do interact with the object TS and are also measured later by a polarization-insensitive

detector. The goal of QGP is to obtain the polarization information of the object TI,

by performing a measurement that resolves polarization in the signal arm. That is,

the object TS is designed so that it allows to resolve the polarization state of the signal

photons. In contrast in QGI, a camera was used in the signal arm to resolve position.

The two-photon state of signal and idler photons that are entangled in polarization,

as described in section 2.2.2, can be written as

|ψ〉= C
�

â†(HI) â
†(HS) + â†(VI) â

†(VS)
�

|0, 0〉 (5.1)

where C is a constant, â† is the creation operator and |0,0〉 is the vacuum state. Here,

it is considered that the orthogonal basis of the polarization consists of horizontal (H)

and vertical (V) polarizations.

Idler

Po
lar
iza
tio
n

Photon-pair
source

Signal

Coincidence
circuit

Figure 5.1. Sketch of a simplified quantum ghost polarimetry (QGP) scheme. Signal and idler photons
are entangled in polarization, where the object, defined by the Jones matrix TI, interacts with idler
photons. The idler photons are then measured by a polarization-insensitive detector, while the signal
photons, which do not interact with TI, go through the object TS that is designed to resolve polarization.
The inset shows the model of the object as a beamsplitter.
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As sketched in Fig. 5.1, an object in the idler arm of the scheme would act on the

polarization state of the idler photons. As in the previous chapter, the object is modeled

using a lossless beamsplitter with transmission TI and reflection RI, each of them is a

2x2 Jones matrix of the form

TI =

�

THH THV

TVH TVV

�

, (5.2a)

RI =

�

RHH RHV

RVH RVV

�

. (5.2b)

Here, we assume that the unit vectors corresponding to the horizontal and vertical

polarizations are given by e(H) = [1 0]⊺ and e(V) = [0 1]⊺, respectively. Additionally,

since the beamsplitter is lossless,

TI T ∗
I + RI R∗

I = 1, (5.3)

one of the inputs of the beamsplitter is Ê(+)I and the other is the vacuum Ê(+)0 . The

input field operator Ê(+)I , which is collinear with the output Ê(+)I,T , can be expressed in

terms of the output operators Ê(+)I,T and Ê(+)I,R by [184]

Ê(+)I = T †
I Ê(+)I,T + R†

I Ê
(+)
I,R , (5.4)

where the electric field operator is obtained by simplifying Eq. (2.13), leaving the

polarization degree of freedom by assuming that the spatial distribution can be ap-

proximated to just one plane wave as mentioned in section 2.2.2. This leads to an

electric field operator

Ê(+) = C ′ [â(HI)e(HI) + â(VI)e(VI)] . (5.5)

Therefore, by introducing Eqs. (5.2) and (5.5) in Eq. (5.4), we obtain the relation of

the input annihilation operators in terms of the output annihilation operators,

â(HI) = T ∗
HHâT (HI) + T ∗

VHâT (VI) + R∗
HHâR(HI) + R∗

VHâR(VI), (5.6a)

â(VI) = T ∗
HV âT (HI) + T ∗

VV âT (VI) + R∗
HV âR(HI) + R∗

VV âR(VI). (5.6b)

To simplify the notation from this point onward, we use

|H〉= â†(H) |0〉 , (5.7a)

|V〉= â†(V) |0〉 , (5.7b)
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therefore, Eq. (5.6) becomes

|HI〉= T ∗
HH

�

�HI,T

�

+ T ∗
VH

�

�VI,T

�

+ R∗
HH

�

�HI,R

�

+ R∗
VH

�

�VI,R

�

, (5.8a)

|VI〉= T ∗
HV

�

�HI,T

�

+ T ∗
VV

�

�VI,T

�

+ R∗
HV

�

�HI,R

�

+ R∗
VV

�

�VI,R

�

. (5.8b)

Plugging Eq. (5.8) into the two-photon state of Eq. (5.1), we find

|ψ〉=C
�

THH

�

�HI,T HS

�

+ TVH

�

�VI,T HS

�

+ THV

�

�HI,T VS

�

+ TVV

�

�VI,T VS

��

+C
�

RHH

�

�HI,RHS

�

+ RVH

�

�VI,RHS

�

+ RHV

�

�HI,RVS

�

+ RVV

�

�VI,RVS

��

.
(5.9)

which is the general state of the system that includes an object TI in the idler arm.

5.1.2. Reduced density matrix of the signal photon

Here, we build upon the previous section and resort to a more general approach to

study the central characteristics of the QGP scheme, namely, by using the density ma-

trix representation of the quantum state. The purpose of using the density matrix is

twofold: First, the reduced density matrix of the signal photon after the idler photon

is measured leads to a much more intuitive description and design of the QGP scheme.

Second, the role of entanglement can be easily investigated.

If the idler photons are measured by a polarization-insensitive detector, then the

state of the system is reduced to describing the state of only the signal photons. Im-

portantly, due to the entanglement between signal and idler, the reduced state of the

signal photons will also contain information about the idler arm. This is known as

remote state preparation [211, 212]. The reduced state of the signal photon after the

idler photon is measured becomes the central pillar for the forthcoming analysis of

the QGP scheme. We begin by writing the input state of the photon pairs of SPDC

|ψ〉SPDC = |0, 0〉+ |ψ〉 of Eq. (2.1) in terms of the density matrix, namely,

ρSPDC = |ψ〉SPDC 〈ψ|SPDC

= |0,0〉 〈0,0|+ρ + |0, 0〉 〈ψ|+ |ψ〉 〈0, 0| ,
(5.10)

where the density matrix of the two-photon state ρ, considering Eq. (5.1), is

ρ = |ψ〉 〈ψ|

=|C |2
�

|HIHS〉 〈HIHS|+ |VIVS〉 〈VIVS|+ κ
�

|HIHS〉 〈VIVS|+ |VIVS〉 〈HIHS|
��

.
(5.11)

At this point, it is appropriate to introduce the degree of entanglement, represented

by κ, which lies between the range 0 ≤ κ ≤ 1. The degree of entanglement weights
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the role of the coherent term in the density matrix ρ. Therefore, κ allows us to model

from the classical correlation κ = 0 to the maximal entanglement κ = 1. It should be

noted that κ is equal to the entanglement measure called concurrence [213], which

in turn is related to the Bell parameter [3] by S =
p

2(1+ κ). The introduction of κ

will allow us to dwell on the analysis of the role of entanglement in the QGP scheme,

which is presented later in section 5.4.

After measuring the idler photon with a polarization-insensitive detector, the re-

duced state of the signal photon is determined according to the principle of remote

state preparation [211] by

ρ′
S = trI (ρSPDC) =




HI,T

�

�ρSPDC

�

�HI,T

�

+



VI,T

�

�ρSPDC

�

�VI,T

�

(5.12)

where trI(·) is the partial trace over the idler photon with ρSPDC containing the Jones

matrices TI and RI of the object, following the treatment of the previous section. The

projection is done on both horizontal and vertical polarizations to model a polarization-

insensitive detector in the idler arm. This is achieved by the terms
�

�HI,T

�

and
�

�VI,T

�

that

model the measurement only on the idler arm and leave the signal arm untouched.

Consequently, the reduced state of the signal photon is

ρ′
S =|C |2

��

|THH|2 + |TVH|2
�

|HS〉 〈HS|+
�

|THV|2 + |TVV|2
�

|VS〉 〈VS|
�

+ κ|C |2
��

THHT ∗
HV + TVHT ∗

VV

�

|HS〉 〈VS|+
�

THVT ∗
HH + TVVT ∗

VH

�

|VS〉 〈HS|
�

.
(5.13)

The normalized reduced state of the signal photon is then ρS = ρ′
S/tr(ρ

′
S).

The expression derived from the reduced state of the signal photon derived in

Eq. (5.13) contains information of the transmission Jones matrix of the object TI.

However, the form of ρ′
S is involved when one tries to understand the actual char-

acteristics of the object in the idler arm. Thus, we resort to a well-known geometrical

representation of the two-level quantum state to gain more insight.

In general terms, the state ρ0 of any two-level system can be represented in the

Bloch sphere by

ρ0 =
1
2

�

1+ ax X + ay Y + az Z
�

(5.14)

where ax ,y,z are the components of the Bloch vector and X , Y, Z are the Pauli matrices.

The Bloch vector is simply found by a = [tr(ρ0X ), tr(ρ0Y ), tr(ρ0Z)] = [ax , ay , az]. In

the scheme under study, the modes represent polarization and, therefore, the Bloch
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sphere is replaced by the Poincaré sphere [214] with Poincaré vector

p= [tr(ρ0Z), tr(ρ0X ),−tr(ρ0Y )] = [pH, pD, pC]. (5.15)

In detail, pH quantifies the degree of horizontal (0 < pH ≤ 1) or vertical polarization

(−1 ≤ pH < 0), pD represents the degree of diagonal [(|H〉+ |V〉)/
p

2 with 0< pD ≤ 1]
or antidiagonal (−1 ≤ pD < 0) linear polarization at ±45◦, and pC represents the

degree of the right [(|H〉 − i |V〉)/
p

2 with 0 < pC ≤ 1] or left (−1 ≤ pC < 0) circular

polarization. The terms pH, pD, pC correspond to the well-known Stokes parameters

commonly denoted with s1, s2, s3 [158], respectively.

Based on this geometric representation of the state in the Poincaré sphere, each re-

duced state of the signal photon ρS can be described by the vector p = [pH, pD, pC].
In particular, we found that if the object TI is treated with the matrices of its singu-

lar value decomposition, then each component of the vector p can be expressed in a

compact expression. In general terms, the singular value decomposition of a matrix T

consists of three matrices T = UΣV †, where the columns of U (V ) are the left (right)

singular vectors and Σ is a diagonal matrix that contains the singular values. Taking

into account that TI is a 2x2 Jones matrix and that the matrices U and V are unitary,

i.e., U†U = 1 and V †V = 1, then the matrices can be expressed in a general form as

follows,

U =

�

cos(α1)exp(iα2) sin(α1)exp(iα3)
− sin(α1)exp(−iα3) cos(α1)exp(−iα2)

�

(5.16a)

Σ=

�

σ1I 0

0 σ2I

�

(5.16b)

V =

�

cos(β1)exp(iβ2) sin(β1)exp(iβ3)
− sin(β1)exp(−iβ3) cos(β1)exp(−iβ2)

�

(5.16c)

whereα1,2,3 and β1,2,3 are real numbers. Additionally,σ1I andσ2I stand for the singular

values, which are non-negative numbers. Using TI = UΣV †, then the components of

the reduced state of the signal photon represented in the Poincaré sphere p are

pH =tr(ρSZ) = cos(2β1)

�

σ2
1I −σ

2
2I

σ2
1I +σ

2
2I

�

, (5.17a)

pD =tr(ρSX ) = −κ sin(2β1) cos(β2 + β3)

�

σ2
1I −σ

2
2I

σ2
1I +σ

2
2I

�

, (5.17b)

pC =− tr(ρSY ) = κ sin(2β1) sin(β2 + β3)

�

σ2
1I −σ

2
2I

σ2
1I +σ

2
2I

�

. (5.17c)
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Finally, the presence of the trigonometric terms of Eqs. (5.17a - 5.17c) suggests that

there is a closed-form expression that relates the components of the Poincaré vector,

namely we found that

p2
H +

p2
D + p2

C

κ2
= η2 =

�

σ2
1I −σ

2
2I

σ2
1I +σ

2
2I

�2

. (5.18)

This compact relation describes an ellipsoid of revolution of long axis η and short axis

κη, where 0 ≤ η ≤ 1 and κ is the degree of entanglement. In other words, Eq. (5.18)

indicates that the reduced state of the signal photon ρS obtained from the family of

matrices TI that have the same η, will lie on the same ellipsoid of revolution inside or

on the Poincaré sphere. Notice that this ellipsoid reduces to a point, pH = pD = pC = 0,

when σ1I = σ2I. Additionally, the ellipsoid is largest for a fixed κ that lies within

0 ≤ κ≤ 1, when one of the singular values is zero, resulting in η= 1. Equation (5.18)

will play a major role in the understanding and design of QGP, as will be discussed later.

5.1.3. Coincidence counting rate

As already mentioned, the measurement protocol of QGP requires one to measure the

coincidence counting rate of the signal and idler photons to reveal the information

of the object. In the previous section, the reduced state of the signal was found after

idler photons were measured. In this section, we analyze the details of the remaining

measurement of the signal photons to extract the characteristics of the polarization-

sensitive object.

It has been shown that four projective measurements are sufficient to fully deter-

mine the polarization state of a photon [87]; however, depending on the example,

one could perform fewer projective measurements; therefore, an appropriate design

of the projective measurements can alleviate the experimental workload. As an exam-

ple, consider a photon that is linearly polarized, then by using a common polarizing

beamsplitter one could measure the degree of horizontal and vertical polarization of

such incoming photon and find the orientation of its linear polarization. However,

if the polarization is elliptical, then the mentioned projective basis of the polarizing

beamsplitter would not allow us to reconstruct the complete incoming polarization be-

cause information about the relative phase is missing. The needed phase can indeed

be obtained by adding more components into the measurement, these then realize a

more adequate projective basis than a common polarizing beamsplitter. In the next

analysis in this section, we focus on describing a model of the scheme with general

projective bases. Later, in a dedicated section, an actual implementation of such found
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bases using dielectric metasurfaces is discussed.

In the previous section, we only mentioned the singular values of the transmission

TI acting on the quantum state as these values appeared naturally in the derivation;

however, the singular vectors of TI become also relevant for the rest of the analysis. If

an object defined by the Jones matrix T acts on a quantum state described by a density

matrix ρ0, then the expectation value of the measurement I can be found by [184]

I = tr
�

Tρ0T †
�

= tr
�

(ΣV †)ρ0(VΣ)
�

, (5.19)

where we have used the cyclic property of the trace tr(ABC) = tr(BCA) and the fact

that U is unitary, U†U = 1. This shows that the expectation value I does not depend

on the left singular vectors of T and can be written as

I =
σ2

1

2
(1+ a ·A1) +

σ2
2

2
(1+ a ·A2)

=
1
2

�

σ2
1 +σ

2
2

�

+
1
2
(a ·A1)

�

σ2
1 −σ

2
2

�

,
(5.20)

where A = [Ax , Ay , Az] is the representation of a right singular vector in the Bloch

sphere and a is the Bloch vector mentioned previously. The vector A1 is given by

Ax1 = tr

���

1 0

0 0

�

V †

�

X

�

V

�

1 0

0 0

���

, (5.21a)

Ay1 = tr

���

1 0

0 0

�

V †

�

Y

�

V

�

1 0

0 0

���

, (5.21b)

Az1 = tr

���

1 0

0 0

�

V †

�

Z

�

V

�

1 0

0 0

���

. (5.21c)

To arrive to the final expression of Eq. (5.20), we used the fact that the singular vectors

form an orthonormal basis, i.e., A2 = −A1. Furthermore, as mentioned earlier, since

QGP works with the state of light polarization, we translate the representation of the

Bloch sphere to the Poincaré sphere with p = [az, ax ,−ay] and therefore the right

singular vector represented in the Poincaré sphere is m= [Az, Ax ,−Ay].

Now, consider the Jones matrix TS in the signal arm of the QGP scheme, as shown in

Fig. 5.1. Then, the expectation value of the reduced state ρS after interacting with TS

corresponds to the expectation value of the coincidence counting rate between signal

an idler, denoted here by Γ . The reason for this correspondence is that the reduced

state ρS, represented in the Poincaré sphere with p, includes the fact that the idler was
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already measured. Therefore, the coincidence counting rate in QGP is

Γ =
1
2

�

σ2
1S+σ

2
2S

�

+
1
2
(p ·m1S)

�

σ2
1S −σ

2
2S

�

, (5.22)

where σS stands for a singular value of the Jones matrix TS, and mS is its right singular

vector represented in the Poincaré sphere.

The basic building blocks of QGP are essentially the reduced density matrix of the

signal represented in the Poincaré sphere of Eq. (5.18) and the coincidence rate of

Eq. (5.22). The way we expressed these equations constitutes a more amiable form

to understand and design the QGP scheme in a graphical geometrical way, as will be

clear in the next section, where we discuss the discrimination of polarization-sensitive

objects in a QGP scheme.

5.2. Discrimination of polarization-sensitive objects

The task of discriminating objects from a given known set, based on their respective

polarization response, is relevant in many applications, for example in the fields of

biology and medical diagnostics. The available information on the Jones matrix of

each object TI in the set allows us to design a QGP scheme with a minimal number of

measurements, as will be shown in this section, by choosing objects with optimal Jones

matrices in the idler and/or signal arm, in addition to TI. Therefore, the coincidence

counting rate, obtained when a specific object from the set is probed, is unique for

such an object so it unequivocally identifies it from the rest.

The basis of the proposed discrimination method uses Eq. (5.18), which gives a strict

mathematical, yet intuitive geometric understanding of the discrimination problem

using the reduced state ρS represented in the Poincaré sphere, as will be shown. To

realize the discrimination task, we require that each object produce a different reduced

state, each ρS must occupy a unique position on or inside the Poincaré sphere, which

can then later be identified in the coincidence measurements. The method will now

be showcased with an example in which the aim is to discriminate three polarization-

sensitive objects and also the rotation angle θ of each of these objects around the

longitudinal axis. Importantly, we concentrate for the moment on a scheme with a

source of photon pairs that have maximal entanglement κ= 1, where the ellipsoid of

Eq. (5.18) is a sphere with radius η. As a last step, we design the Jones matrices in

the signal arm so that coincidence rates [Eq. (5.22)] given by each object in the set

and angle are unique.
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The chosen set of objects is composed by the following Jones matrices

Ωa =

�

1 0

0 exp(iπ/2)

�

, (5.23a)

Ωb =

�

1 0

0 exp[i(π/2+ 0.7i)]

�

, (5.23b)

Ωc =

�

1 0

0 0

�

, (5.23c)

which respectively correspond to a transparent object Ωa (quarter-wave plate) with

singular values σ1Ω = σ2Ω = 1, a partially transparent object Ωb with σ1Ω = 1 and

σ2Ω = 0.5, and a fully polarizing object Ωc (horizontal polarizer) with σ1Ω = 1 and

σ2Ω = 0. These definitions correspond to an object rotation angle θ = 0, with respect

to the horizontal polarization. Since rotation is a unitary transformation, the singular

values of each object remain the same and the associated reduced states of the signal

photons lie on a sphere with a radius defined by Eq. (5.18) for all object angles. Since

the goal includes the identification of the rotation angle, it is expected that we obtain

a continuous collection of reduced states ρS in the interval 0 ≤ θ < π given that the

objects considered have a rotation symmetry of π.

In the top row of Fig. 5.2, we illustrate the reduced state of the signal photon in the

Poincaré sphere for the three objects, each in a different column, and their rotations.

The first row represents the scenario, where there is only free space between the object

and the detector in the idler arm; therefore, TI = Ω. In this case, a fully transparent

wave-plate Ωa produces reduced states that lie on a single point in the origin for all

angles, in agreement with Eq. (5.18), given that σ1 = σ2 which is a characteristic

of phase objects. Therefore, discrimination between transparent phase objects and

their rotations cannot be achieved, unless one introduces an additional element in

the idler arm with the purpose of acting on the polarization of the idler photon. On

the other hand, the other objects in the given set, Ωb and Ωc, do produce distinctive

reduced states for each rotation angle which result in circles with different radii in the

Poincaré sphere, allowing us to discriminate these two objects.

A solution to the problem of distinguishing all three objects in the set and their

rotations is to engineer the Jones matrix of an object, named here MI, and include

it after the object and before the polarization-insensitive detector of the idler arm,

leading to TI = MIΩ. A versatile platform to implement the appropriate MI will be

discussed in the next section. In the left column of Fig. 5.2, we show in the Poincaré

sphere the two orthonormal right singular vectors of MI, denoted by m jI with j ∈
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Figure 5.2. Jones matrix MI enabling object discrimination. Left column: The singular eigenvectors
of MI, scaled by the corresponding singular values, represented in the Poincaré sphere for the cases of
(upper row) without MI, (middle row) fully polarizing object, (lower row) optimal partially polarizing
case. The axes of the Poincaré sphere correspond to horizontal (H), diagonal (D) and right circular (C)
polarizations. (a-c) Reduced states of the signal photon after measuring the idler photon ρS produced
by a set of three objects Ωa,b,c , for different MI in each row. The curves are formed from the points
corresponding to different object rotation angles in the range 0 ≤ θ < π.

{1,2}, as explained in the previous section, whose magnitude has been scaled with

their corresponding singular value σ jI. In the case explained before where MI was

absent, the free space between the object and the detector corresponds to MI = 1 with

σ1 = σ2 = 1.

In Fig. 5.2 (second row), we illustrate a case of a fully polarizing object MI with

σ2P = 0, such that only one polarization is transmitted by a quantum projection mea-

surement for the state m1P. Note that if an object Ω and/or MI has one singular value

equal to zero, then its product, TI = MIΩ, also has one zero singular value. This causes,

according to Eq. (5.18), the reduced state of the signal photon to lie on the surface

of the Poincaré sphere. Consequently, not all objects and rotation angles can be dis-

tinguished since the closed loops formed by the objects’ reduced states would cross.

Thus, to enable the desired discrimination of the three objects in this given set, the ra-
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tio of the smaller to larger singular values of MI has to be in the range 0< σ2/σ1 < 1,

i.e., MI should realize a partially polarizing Jones matrix. Additionally, its largest sin-

gular value, according to convention σ1, should be close to one so that high photon

counts are obtained, as shown by Eq. (5.20). The reduced states for a numerically

optimized polarization basis1 of MI are shown in Fig. 5.2 (third row) which results in

an object with partial polarization. The reduced states do not cross and, therefore, are

distinguishable, confirming the above analysis of the needed ratio of singular values of

MI. The displayed elliptical polarization basis of MI is formed by its two orthonormal

right singular vectors, represented by arrows in the plot in the lower left corner.

Once the optimal MI in the idler arm is found, then also an object with Jones matrix

TS = MS in the signal arm should be properly engineered to extract the polarization

state of any reduced state of the signal photon. In the next section, we will discuss in

more detail the optimal MS taking into account the constraints of the platform where

the Jones matrix will be realized.

5.3. Metasurface as a versatile platform

The QGP scheme, as discussed in the previous sections, consists of a detector in the

idler arm that simply collects idler photons that interacted with the object and conse-

quently does not allow us to recover the full polarization state of the idler photon. The

information of the object can be retrieved in the coincidence counting rate between

a polarization-resolving measurement in the non-interacting signal arm and the idler

detector. Here, we will discuss a platform for realizing such resolving measurement.

What elements are necessary to resolve polarization? The well-known polarizing

beamsplitter can be thought of as a fully polarizing optical element that has two out-

puts. It essentially projects the incoming polarization state into the horizontal and

vertical polarizations, and delivers the two projections spatially separated. In case

projections in more complex bases are needed, several bulk elements including beam-

splitters and wave-plates need to be used. State-of-the-art technology has proven that

photons can be easily manipulated with metasurfaces [134]. In particular, an all-

dielectric metasurface is an integrated optical element that can produce several out-

puts realized by its diffraction orders; therefore, a metasurface is an alternative to

aligning a collection of bulk elements. Importantly, each output of the metasurface

can be designed so that it corresponds to a desired photon projective basis, in general,

partial polarizers in arbitrary elliptical bases can be realized with a single metasur-

1 The optimal object MI was found by minimizing a cost function defined by the chosen set of objects in
the example, that ensures that geometrically all the reduced states are apart in the Poincaré sphere.
The minimization was performed using a simplex algorithm.
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face [87]. Therefore, the implementation using this platform has the advantage that

many projections can be performed in parallel.

As already mentioned, a complete tomographic reconstruction of a polarization

state can be achieved with four projections [215]. Therefore, one can design a single

metasurface that realizes four diffraction orders of the full tomographic basis, which

leads to having four measurements to reconstruct the quantum state. However, in this

particular case of study that requires to discriminate objects of a known set, less than

four measurements could be optimized to identify an object, as we will demonstrate.

The use of fewer outputs of the metasurface has the advantage of not only simplifying

the experimental measurements but also improving signal-to-noise ratio since photon

counts are concentrated in fewer outputs.

5.3.1. Modeling an all-dielectric metasurface

A metasurface is a flat optical element composed of a periodically repeated array

of nano-resonators called meta-gratings, see Fig. 5.3, where, an input beam gets

diffracted into several output diffraction orders based on the meta-grating design.

Optimization is carried out on the phase retardances and orientations associated with

each nano-resonator to realize the required Jones matrix that acts on the state of the

input. Each dielectric nano-resonator located at position x of a metasurface can be

represented as a rotated phase-retarder, within the Jones formalism, as

T (θ ,φ1,φ2; x) =

�

cosθ − sinθ

sinθ cosθ

��

exp(iφ1) 0

0 exp(iφ2)

��

cosθ sinθ

− sinθ cosθ

�

, (5.24)

Meta-grating

Input beam

Output diffraction orders

Figure 5.3. Schematic of an all-dielectric metasurface composed of periodically repeated meta-
gratings. Output diffraction orders are produced upon the incidence of an input beam.
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that results in a symmetric matrix, i.e., T12 = T21. The collective behavior of the nano-

resonators form diffraction orders in the far field, just like a conventional dielectric

grating. The diffraction orders are found by taking the Fourier series F of the ensemble

T (x) along x . The periodicity of the meta-gratings is automatically considered by

calculating the Fourier series. Thus, each resulting diffraction order at position x ′ in

the far field is defined by the symmetric transfer matrix

M(x ′) =

�

F(T11) F(T12)
F(T21) F(T22)

�

. (5.25)

Thus, the Jones matrix realized in each diffraction order depends on all the nano-

resonators in the meta-grating, each defined by its own parameters θ ,φ1,φ2. To op-

timize the design of the metasurface, a numerical optimization algorithm finds the

most adequate parameters for each nano-resonator so that each diffraction order M

realizes a required polarization basis. Specifically, in the proposed QGP scheme, the

metasurface for the idler arm is designed such that its zeroth diffraction order realizes

MI. In the same way, the metasurface in the signal arm MS is optimized with the dif-

ference that MS is polarization-resolving using several outputs corresponding to many

diffraction orders, allowing us to have parallel projections that would otherwise be

difficult to implement with bulk elements.

5.3.2. Engineering the metasurfaces for object discrimination

The complete QGP scheme for discrimination is illustrated in Fig. 5.4, which includes

the photon-pair source, the object Ω and rotation angle θ , metasurfaces MI and MS,

and polarization-insensitive detectors to measure coincidences. Several diffraction

orders of MS are measured, while just one diffraction order of MI is measured.

We will show in the following that metasurfaces can be optimized to realize Jones

matrices MI in the idler arm and MS in the signal arm so that every reduced state ρS

produces a distinctive pattern formed by a collection of coincidence measurements,

thereby allowing discrimination between the objects.

We begin by considering that the expectation values of the coincidence counts be-

tween the signal and idler detectors, which are located after the metasurfaces, is

Γn = tr
�

(MS,n)ρS(MS,n)
†
�

, (5.26)

where n simply denotes the output of the signal metasurface. For the sake of easing

the visualization later on, the output pattern in coincidences will be geometrically

represented in a space D such that each coincidence expectation value Γn corresponds
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Figure 5.4. Complete metasurface-assisted QGP scheme for discrimination of polarization objects Ω
and their orientation angles θ through coincidence measurements.

to a coordinate along the n-th dimension and each pattern in coincidences is mapped

as a point in D.

To achieve practically relevant solutions for the design of the metasurface in the sig-

nal arm, we impose two additional conditions: object identification must be achieved

using a small number of outputs, and the total number of photon counts in all outputs

should be larger than zero for any object. One approach to fulfill the requirement of

non-zero photon counts consists of having equal singular values for all outputs of the

metasurface MS is that σ1S,n = σ1S and σ2S,n = σ2S, and also that the sum of their

right singular vectors to be equal to zero,
∑

n m1S,n = 0. Thus, using Eq. (5.22)

∑

n

Γn =
1
2

∑

n

�

σ2
1S,n +σ

2
2S,n

�

=
n
2

�

σ2
1S+σ

2
2S

�

, (5.27)

that is a constant different from zero, meaning that the photon counts will be non-zero.

If we consider MS with three outputs, the condition
∑

n m1S,n = 0 would indicate that

each pair of right singular vectors in the Poincaré sphere m encloses an angle of 120◦

and they would all lie in one plane in the Poincaré sphere. Then this plane has to be

found numerically so that each object Ω has a unique pattern in the coincidences. To

demonstrate this, we return to our example with objects Ωa,b,c from section 5.2.

The reduced states ρS from the objects Ω (θ ) after including the optimal MI dis-

cussed in Fig. 5.2 are depicted together in the Poincaré sphere of Fig. 5.5(a). A plane

that contains the three vectors m and allows for the separation of the projected re-
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Figure 5.5. (a, b) Reduced state of the signal-photon ρS produced by a set of three objects Ωa,b,c and
an optimal metasurface MI corresponding to Fig. 5.2(bottom row) from two different perspectives. The
vector N is normal to the blue plane where the optimal projection bases of the diffraction orders of the
metasurface MS are located; see (c). (d) Optimal meta-gratings in the idler MI and signal MS arms.
(e) Coincidences at three diffraction orders Γ−1, Γ0, Γ+1, showing that the objects can be discerned from
one another and their own rotation angle θ unambiguously identified (θ = 0 is marked with ticks, the
object rotation symmetry is π). The inset shows one of the coincidence patterns.

duced states is illustrated in blue along with its normal vector N. The projections of

all the reduced states ρS into this plane are shown in Fig. 5.5(b), which is the same as

Fig. 5.5(a) but from the perspective of N pointing to the reader, where it is clear that

the projections are well separated. The reduced states can then be mapped into the

space D of the coincidences at the outputs using the three projection vectors of MS de-

picted in Fig. 5.5(c). These three vectors m sum up to zero to have high photon counts

as described before. The direction of the optimal vector N, and therefore the plane in

which the vectors m1S,n lie, has been found numerically using a simplex algorithm. As

a next step, the optimal form of the meta-grating MS based on the found vectors m of

the scheme is calculated numerically and displayed in Fig. 5.5(d), together with the

meta-grating realizing the optimal MI. The parameters found of the nano-resonators
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Figure 5.5(d)
MI MS

Nano-resonator θ[◦] φ1 φ2 θ[◦] φ1 φ2

1 104.22 1.73 0.06 -15.66 0.42 -1.91
2 100.75 1.71 -0.06 53.68 3.56 1.67
3 0.45 -1.18 1.66 22.60 3.45 -0.10
4 28.39 0.33 2.48 -7.55 3.95 1.35
5 24.42 -0.28 2.23 24.24 0.21 0.53
6 5.05 -0.62 1.91 -31.76 -0.27 0.09
7 62.79 1.07 2.69 3.33 0.29 -0.68

Table 5.1. Numerically found parameters of the nano-resonators: the orientation angle θ and the
phase delays for polarizations along the two axes φ1,2.

of the two metasurfaces are displayed in Table 5.1. Here, seven nano-resonators were

used during the optimization process, which facilitate the optimization process to re-

alize the three optimal projections in the three central diffraction orders of MS and the

optimal projection in the central diffraction order of MI.

Finally, for the set of objects investigated here, the result of the numerical optimiza-

tion shows that at least three outputs are needed to successfully achieve discrimina-

tion. The coincidence patterns are presented in the space D in Fig. 5.5(e), where

a unique pattern corresponds to a specific object and rotation. The inset shows the

complete coincidence pattern for the case of object Ωc at rotation θ = 0.

Lastly, we note that the polarization Jones matrices in principle can also be realized

with a collection of bulk optical elements; however, at the expense of complex designs

sensitive to alignment. Nanostructured dielectric metasurfaces can effectively act as

partial polarizers in arbitrary elliptical bases with any required extinction ratio [87,

215]. However, if the optimal polarization basis to achieve discrimination is found to

be the basis of a simple polarizing beamsplitter or a common linear polarizer, then it

is unquestionably more convenient to use such simpler element in an experiment.

5.4. Entanglement versus classical correlations

5.4.1. Role of the degree of entanglement

After demonstrating that objects and their rotation angles can be discriminated using

entangled states of light, next we show that the degree of entanglement between sig-

nal and idler photons of the source is relevant when distinguishing specific classes of

objects. To this end, we explore the effect of reducing the entanglement until reaching

only classical correlations of the type of Eq. (5.11) with κ= 0. We consider a different
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set of polarization-sensitive objects that contains only generalized retarders

Ω=

�

1 0

0 exp(iφ)

�

, (5.28)

each with its own phase differenceφ between the horizontal and vertical polarization.

Here, we do not seek to identify the rotation of each of them, but just discern them

based on their phase φ. We choose this set of objects since it is a more challenging

case for discrimination compared to the set of three objects discussed in the previous

section.

Following the treatment presented before, we find that the optimal MI necessary

to discern these phase objects for any value of κ is a diagonal polarizer. Notice here

that this element can be implemented simply using a conventional polarizer instead

of a metasurface. The corresponding reduced states ρS of this set of phase objects

are shown in Fig. 5.6(a) for different levels of entanglement κ. As can be seen, this

chosen set of phase objects is quite peculiar because their reduced states have the

same pH Poincaré vector component [see Eq. (5.17a)], as pH does not depend on the

phase φ. Furthermore, Eqs. (5.17b) and (5.17c) show, that the lower the degree

of entanglement, the smaller pD and pC become, as illustrated in Fig. 5.6(a) with a

shrinking ellipsoid according to Eq. (5.18). In the case of only classical correlation

between photons with κ= 0, we have pD = pC = 0, such that all reduced states are in

the same position and the different objects cannot be discriminated.

It is noteworthy that if these phase objects given by Eq. (5.28) are rotated by an

angle θ and an optimal MI in the idler arm is chosen, then the pH component of

the product TI = MIΩ can depend on the phase φ [this can be easily derived from

Eqs. (5.17a-5.17c)]. Therefore, such phase objects can be told apart if a source with

photon pairs that are classically correlated, κ = 0, is used. Figure 5.6(b) illustrates

an example with phase objects that are rotated 45◦ along with a horizontal polarizer

as MI. In this case, a horizontal polarizer is the optimal design of MI following the

first stage of the design described in section 5.2. In contrast to Fig. 5.6(b), Fig. 5.6(a)

illustrates that if the phase objects given by Eq. (5.28) are not rotated, then they can-

not be identified when using a source with only classical correlations with κ = 0.

However, notice that although the introduced rotation allows for discrimination when

κ = 0, the reduced states are much closer to each other than when using entangled

photons κ= 1. Thus, in the scenario with only classical correlations, it is more compli-

cated to achieve discrimination than when using entanglement since the smaller the

separation between the reduced states, the harder it becomes to identify each from

the rest. Furthermore, from the implementation perspective, notice that the compo-
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Figure 5.6. Reduced state of the signal photon after measuring the idler photon ρS at different levels
of entanglement. Here, the idler photon interacts with a set of different fully transmissive phase objects
(phase φ shown in the color scale), one at a time. (a) Not rotated θ = 0 with optimal MI that acts
as a diagonal polarizer. (b) Rotated θ = 45◦ with the corresponding optimal MI which is a horizontal
polarizer.

nents pD = pC = 0 when κ = 0; thus, the simplest element that can be used as MS

in the signal arm to discriminate the phase objects of the example in Fig. 5.6(b) is a

conventional polarizing beamsplitter, which has two outputs, horizontal and vertical

polarization.

In summary, objects in the idler arm TI that lead to reduced states with the same

pH component can only be discriminated if the photon-pair source has a high level

of entanglement. Our conclusion on the advantage of the entangled source over the

considered classical source with κ= 0 generally agrees with the results of Ref. [133],
where images of polarization-dependent patterns imprinted with a metasurface had

higher visibility across different orientation angles for larger Bell parameter values.

Continuing with the discrimination procedure, a metasurface with four diffraction

outputs has been demonstrated to facilitate the full characterization of a single-photon

polarization state [87], thus allowing object discrimination based on the different sig-

nal photon states ρS. However, discrimination between particular sets of objects may

be performed with a smaller set of outputs. For the set of three objects in Fig. 5.5,

three outputs were necessary. On the other hand, we show now that two outputs of

MS can also be used to identify objects, and we demonstrate it by using the example

of phase objects of Fig. 5.6(a). Figure 5.7 illustrates the resulting diffraction patterns

in coincidences by using two different metasurfaces MS which produce three and two

diffraction orders, respectively. The right singular vectors of these metasurfaces are
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Figure 5.7. Polarization bases of a metasurface MS with (a) three and (b) two outputs along with the
resulting diffraction patterns in coincidences. The set consists of phase objects and a diagonal polarizer
MI used in Fig. 5.6(a).

shown in the left column of Fig. 5.7. Each metasurface is optimized separately using

the criteria explained in the second stage of the design in section 5.3 and the param-

eters of their nano-resonators are summarized in Table 5.2.

Although in both cases of Fig. 5.7 a unique diffraction pattern corresponds to each

object of the set, constraints of the photon measurements can define the minimum

number of outputs required. For example, in Fig. 5.7(b), where the values of the

coincidence counts are closer than in Fig. 5.7(a), the presence of noise in the mea-

surements could impede discrimination, indicating that more outputs are needed.

5.4.2. Thermal source

We demonstrated in the last section that using a full entangled source ρ(κ= 1) shows

advantages in the identification of objects compared to the same scheme using a source

with classical correlations of the type ρ(κ = 0). At first, this seems to point out that

there is a quantum advantage; however, there is another type of classical source that

87



5 Metasurface-assisted quantum ghost polarimetry

Figure 5.7(a) Figure 5.7(b)
MS MS

Nano-resonator θ[◦] φ1 φ2 θ[◦] φ1 φ2

1 87.36 1.59 3.84 7.37 2.96 2.21
2 -76.03 0.95 4.50 -31.41 3.49 1.69
3 136.21 0.07 -0.60 138.29 -1.94 0.90
4 -16.02 0.17 -1.24 -148.62 -0.34 -1.32
5 7.30 1.09 -1.39 -10.53 0.02 5.14
6 25.92 1.65 -2.56 -126.71 -1.95 -5.46
7 237.32 0.13 3.43 36.09 3.44 1.78

Table 5.2. Numerically found parameters of the nano-resonators for the metasurfaces MS described in
Fig. 5.7: the orientation angle θ and the phase delays for polarizations along the two axes φ1,2.

can lead to almost equal results obtained by the entangled source, namely a thermal

source. In this section, we demonstrate this by obtaining closed-form expressions

of, first, the coincidence counts of a QGP using entangled photons and second, the

intensity correlations of a ghost polarimetry scheme with a thermal source.

We start by considering a maximally entangled two-photon state, similar to the one

showcased in Eq. (5.11) for κ = 1; however, we do not restrict ourselves to the hori-

zontal and vertical polarizations as before. In this manner, we present a more general

expression of the coincidence rate, which will be compared later with the intensity

correlations of the scheme with a thermal source. We represent this more general

normalized two-photon state as |ψ〉 = (1/
p

2) (|v1Iv1I〉+ |v2Iv2I〉) , where v is a right

singular vector of a Jones matrix V of size 2× 2. Note that v1I and v2I are orthogonal

unitary vectors. Then, the two-photon coincidence counts can be found to be

Γ (two−photon)
n =

1
2

2
∑

qI ,qS=1

|vqII · vqSS,n|2σ2
qII
σ2

qSS,n, (5.29)

whereσ are the singular values of the Jones matrices characterizing the objects located

between the source to the detectors in the idler and signal arms, and we choose an

order σ1 ≥ σ2. Additionally, we note the following properties of unit vectors

|v1I · v2S,n|2 + |v2I · v2S,n|2 = 1, (5.30a)

|v1I · v1S,n|2 + |v2I · v1S,n|2 = 1, (5.30b)

|v1I · v1S,n|2 + |v1I · v2S,n|2 = 1. (5.30c)
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Therefore, we obtain the coincidence counting rate for QGP using entangled photons

Γ (two−photon)
n =

1
4
(σ2

1I +σ
2
2I)(σ

2
1S,n +σ

2
2S,n)

+
1
2
(σ2

1I −σ
2
2I)(σ

2
1S,n −σ

2
2S,n)

�

|v1I · v1S,n|2 −
1
2

�

.
(5.31)

For comparison, we now consider a thermal source which has a classical polarization

state, denoted by |Ψth〉, that randomly changes in time. The same source’s polarization

state can be found in both the idler and in the signal arm at any fixed time, for example,

after interacting with a 50:50 beamsplitter. Then, the total intensity after interaction

with an object in the idler arm described by a Jones matrix V is

I = σ2
1|v1 ·Ψth|2 +σ2

2|v2 ·Ψth|2. (5.32)

Additionally, due to the orthogonality v1 · v2 = 0 and |v2 ·Ψth|2+ |v1 ·Ψth|2 = 1, hence

I = (σ2
1 −σ

2
2)|v1 ·Ψth|2 +σ2

2. (5.33)

Considering that the input state, assuming that its norm is unity, can be represented

as Ψth = cos
�

θ
2

�

v1I+sin
�

θ
2

�

eiϕv2I, and using the property |v1I ·v1S,n|2+ |v2I ·v1S,n|2 = 1,

we can write the intensities of the idler and signal arms as

II =
�

σ2
1I −σ

2
2I

�

cos2(θ/2) +σ2
2I, (5.34a)

IS,n =
�

σ2
1S,n −σ

2
2S,n

��

|v1S,n · v1I|2 cos(θ ) + sin2(θ/2) (5.34b)

+ sin (θ ) Re[e−iϕ(v1S · v1I)(v1S · v2I)
∗]
�

+σ2
2S,n.

Moreover, since the stateΨth can be represented with the density matrixρth = |Ψth〉 〈Ψth|
whose Bloch vector is a = [sinθ cosφ, sinθ sinφ, cosθ], where 0 ≤ θ ≤ π and

0 ≤ φ < 2π just like in a spherical coordinate system, the intensity correlation af-

ter averaging over these ranges of angles is

〈II IS,n〉=
1

2π

ˆ 2π

0
dϕ

1
π

ˆ π

0
dθ II IS,n

=
1
4

�

σ2
1I +σ

2
2I

�

�

σ2
1S,n +σ

2
2S,n

�

+
1
4

�

σ2
1I −σ

2
2I

�

�

σ2
1S,n −σ

2
2S,n

�

�

|v1I · v1S,n|2 −
1
2

�

.

(5.35)

Importantly, the first term constitutes the background contribution that is given by

the product of the independent intensity fluctuations of each arm, 〈II〉= (σ2
1I+σ

2
2I)/2
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and 〈IS,n〉 = (σ2
1S,n +σ

2
2S,n)/2, while the second term shows the intensity correlation

between the two arms.

The results obtained show that the correlations for a two-photon entangled source in

Eq. (5.31) and a thermal source in Eq. (5.35) have the same form except for a factor of

two difference in their corresponding second terms that represent correlations, which

are above a background given by the first term. This means that the thermal source

can be used to obtain the polarization information from the object in a manner similar

to that of an entangled source. However, from the difference of the coefficients of the

correlation terms, we conclude that the entangled case will show better contrast than

the thermal source. That is, the ratio between the correlation term and the background

term has a prefactor equal to two for the two-photon entangled source, whereas this

ratio prefactor is equal to one for the thermal source. This feature is also seen in

the imaging version of QGP, as mentioned in chapter 1. Furthermore, a two-photon

source can allow precise measurements with much smaller photon fluxes, which is an

important capability for various applications [216].

5.5. Abstract and publication

In this chapter, we put forward the working principles of a QGP scheme to detect

polarization-sensitive objects. The scheme was presented using reduced density ma-

trices which aid in the understanding and design of the scheme. Additionally, we

demonstrated that QGP can be implemented with dielectric metasurfaces that realize

complex polarization bases and enable parallel measurements instead of using mul-

tiple time-consuming reconfigurations of bulk elements to determine all components

of a general Jones matrix [141]. Therefore, metasurfaces are ideal components to

achieve speed and compactness in this scheme. Furthermore, we presented exam-

ples showcasing that QGP discrimination of fully or partially transparent polarization

elements and their arbitrary orientation angles can be achieved by performing less

than four coincidence measurements. Consequently, object discrimination does not

require full quantum state tomography. In contrast, other works have performed dis-

crimination of only non-birefringent objects at fixed orientations [217]. Moreover, we

proved that entanglement is not a requirement to achieve ghost polarimetry, since a

classical thermal source can be used to obtain similar results. Nevertheless, the quan-

tum scheme with entangled photons has an unparalleled advantage over the classical

scheme when illumination with single photons is needed to probe sensitive samples.

The analysis and results of this chapter were first presented at the CLEO conference

2020 [218] and ultimately published in Physical Review Applied [219].
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6. Summary and outlook

In this thesis, three gaps in the literature on quantum imaging and polarimetry with

two-color photon pairs were addressed: 1. the fundamental resolution of quantum

imaging with undetected photons (QIUP) and quantum ghost imaging (QGI) was de-

rived, 2. an original lensless imaging setup was proposed in the form of pinhole QGI,

and 3. a solid theoretical foundation was presented to describe quantum ghost po-

larimetry (QGP). Here, a summary of the results and outlook is presented.

Summary

Two-photon quantum state

A theoretical formalism of photon-pair generation beyond the paraxial regime was

presented in chapter 2. This set the basis for the discussion of the imaging and po-

larimetry schemes in subsequent chapters. The presented formalism started with the

definition of the electric field operator in section 2.1, which takes into account the pho-

ton polarization and traverse-momentum modes. This definition was used to model

the two-photon state from spontaneous parametric down-conversion, see section 2.2.

The obtained state of down-converted photon pairs was then simplified into two cases:

First, a state that represents a source of photon pairs entangled in transverse momen-

tum was derived, which was later used for quantum imaging in chapters 3 and 4.

Second, a state of photon pairs that are only entangled in polarization was presented,

which models the source of the QGP scheme discussed in chapter 5. Importantly, we

thoroughly examined the non-paraxial case, where the formalism of the two-photon

state needs to be treated in the angular domain to avoid the transverse-momentum

singularities that hinder the mathematical treatment of the two-photon generation.

Additionally, we showed that thick crystals lead to small ranges of angular generation

of the down-converted photons, whereas ultra-thin crystals can be used to access the

whole angular range since the longitudinal phase-matching is relaxed.
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Fundamental resolution limit of two-color quantum imaging

As described in section 1.1.3, the effect of induced coherence without induced emis-

sion is at the heart of QIUP. The QIUP scheme consists of two nonlinear crystals that

form a nonlinear interferometer, the idler photons are aligned to introduce indistin-

guishability of the sources, and the signal photons interfere at a beamsplitter. An ob-

ject is located only in the path of the idler photons that remain undetected, whereas

the signal photons are measured by a camera, revealing the transverse profile of the

object’s transmission. In section 3.1, the mathematical expression of the image was

derived step by step for a QIUP scheme based on position correlations. The highlight

of this derivation is that it is not restricted to the paraxial regime, as seen in other

works, allowing us to derive a more general framework from which the fundamental

transverse resolution of QIUP can be obtained.

In section 3.1.1, we used the Rayleigh criterion to investigate the minimum resolv-

able distance of QIUP. We proved analytically that in the paraxial regime, the resolution

is given by d(paraxial)
min ∝ (λS+λI)1/2(1/LA+1/LB)−1/2, which is valid for a QIUP scheme

with crystals’ thicknesses L larger than approximately max(λS,λI). This shows that

the resolution can be improved by using thinner crystals. However, we also showed

that crystals thinner than ≈ max(λS,λI) allow one to achieve diffraction-limited reso-

lution, which was numerically found to be d(limit)
min ≈ max(λS,λI)/2, independent of L.

Consequently, the longer wavelength of the photon pair defines the maximum achiev-

able resolution. Moreover, we showed that the pump width does not have a noticeable

effect on the resolution in a QIUP scheme with an ultra-thin crystal for common pump

widths in experimental scenarios that are larger than the wavelengths of the down-

converted photons. This feature is advantageous in achieving fundamental resolution

under common experimental conditions where the pump has a limited transverse pro-

file.

Lastly, we discussed the QGI scheme, which uses only one source of photon pairs,

the idler photons that interact with the object are measured by a non-resolving bucket

detector, and the signal photons that do not interact with the object are measured by a

camera. In contrast to QIUP, the image of the object is found in the coincidence counts

of signal and idler. In section 3.2, we used a similar analysis, as carried out for the QIUP

scheme, to show that the fundamental limit of QGI based on position correlations is

also limited by the longer wavelength of the photon pair. Furthermore, based on our

analysis and results, we inferred that the fundamental resolution of other schemes,

e.g., QIUP & QGI based on momentum correlations and their classical analogs, should

be similarly limited by the longer wavelength.
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Lensless quantum ghost imaging

As a preamble to discuss pinhole QGI, the basics of quantum ghost diffraction (QGD)

are introduced in section 4.1. To obtain a ghost diffraction pattern of an object, we

showed that a spatially resolving detector in the signal arm and a point detector in the

interacting idler arm are needed. Lenses are not necessary to obtain the diffraction

pattern in coincidences. Then in section 4.2, it was numerically proven that a QGI

scheme without lenses in the signal and idler arms was possible by slightly modifying

the QGD scheme, that is, taking a collimated pump with an optimal transverse size

and changing the idler point detector into a large bucket detector. Thereafter, an

analytical model was derived that indicated that such a QGI model was analogous to

a classical pinhole camera. In this analogy, the ‘size of the pinhole’ is given by the

photon-pair source; this means that it is defined by not only the pump width but also

by the photon wavelengths, and the thickness of the nonlinear crystal. Additionally,

like a classical pinhole camera, there is a relation between the pinhole size σ0 and the

other parameters that ensure the smallest point image of a slit, namely σ2
0 ∝ zSλS,

where zS is the distance from the crystal to the signal detector and λS is the signal

wavelength. Unlike the classical pinhole camera, we found that the magnification of

the pinhole QGI also depends on the wavelengths of signal and idler, −(zS/zo)(λS/λI)
where zo is the distance from the crystal to the object and λI is the idler wavelength.

Finally, a description of the minimum resolvable distance and the number of spatial

modes was presented. Since throughout this chapter we focused only on the use of a

thick crystal much larger than the signal and idler wavelengths, a paraxial description

was sufficient. We showed that the resolution is improved by using a smaller pump

width and also by locating the object closer to the crystal. Furthermore, the transverse

resolution was found to be much larger than the signal and idler wavelengths and,

therefore, far from the diffraction limit. Lastly, the number of spatial modes was shown

to increase with the reduction of the crystal thickness; this is due to the increase in

the range of transverse-momentum modes, as was discussed in section 2.2.

The pinhole QGI scheme is best suited for applications where lenses for the wave-

lengths of the down-converted photons are less available, for example, in the terahertz

range, and a high transverse resolution is not required. For example, sensitive samples

can be imaged by using terahertz idler photons, which are then simply measured by

a single-photon bucket detector, while signal photons are measured by a camera with

high efficiency in the visible range.
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Metasurface-assisted quantum ghost polarimetry

In chapter 5, a comprehensive analysis of quantum ghost polarimetry (QGP) was pre-

sented. The chapter starts with the theoretical foundations of QGP in section 5.1.

QGP uses a source of polarization-entangled photons, the idler photon interacts with

a polarization-sensitive object, and then it is measured by a non-resolving detector,

while the signal photon never interacts with the object, and it is measured through

a polarization-resolving detection scheme. The analysis of the scheme was proposed

using a two-stage approach. First, we discussed the reduced state of the signal photon

after measuring the idler photon based on the principle of remote state preparation.

Second, using this reduced state, we found the coincidence counting rate where the

ghost polarization information of the object is found.

The geometrical representation of the reduced state in the Poincaré sphere became

useful in portraying the state to later focus on the discrimination of polarization-

sensitive objects; see section 5.2. The discrimination task focused on identifying three

objects and their rotation angle. For the set of objects, we found that a complex par-

tially polarizing transformation was needed to be realized and included in the idler

arm. Given that in practice it is cumbersome to use a collection of bulk elements to re-

alize such a transformation, we proposed using a metasurface to realize it. Section 5.3

starts by discussing the basic principles behind an all-dielectric metasurface, showcas-

ing its versatility to realize tailored parallel photon-state transformations, which can

be partially polarizing in an arbitrary elliptical basis. Moreover, each diffraction order

of the metasurface can realize a different polarization basis; therefore, the polariza-

tion resolution in the signal arm can be implemented by just one metasurface. Next,

we designed the appropriate meta-gratings for the metasurfaces that can be included

in the signal and idler arm to achieve the discrimination of the mentioned three ob-

jects. Importantly, the optimal design of the metasurfaces will always depend on the

chosen set of objects. For the discrimination problem, we showed that fewer than four

coincidence measurements can be sufficient, since a full tomographic reconstruction

of the state is unnecessary.

At the end of the chapter in section 5.4, we discussed the role of entanglement

in QGP. The outcome of this analysis is that there are classical sources of correlated

light that can be used to acquire almost the same results as when using an entangled

source of photon pairs, as was proved with a thermal source. This has also been

observed in the context of ghost imaging [97, 98, 144, 220]. The difference we found

is that entangled photons allow one to have a smaller background in the coincidence

measurements than when using classical light.
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Outlook

In this thesis, we have considered only coherent pump beams to create the down-

converted photons. It is of interest to study the effect of the level of transverse spatial

coherence of the pump on the imaging formation in QIUP & QGI and also the effect

on the resolution. This is motivated by the results of Refs. [221, 222] showing that,

depending on the type of partially coherent pump beam, the level of entanglement of

the down-converted photons can be reduced but also boosted with a highly spatially

incoherent pump.

With regard to QGP, the results presented can certainly stimulate the development

of efficient and integrated optical schemes for the characterization of polarization-

sensitive objects over a broad spectral range. Specifically, QGP can benefit applications

that demand accurate object discrimination, including biological samples with distinct

birefringent and chiral features [223–225]. Furthermore, it has been shown that opti-

mized metasurfaces can enable discrimination of multiple objects within a set. Thus,

our approach paves the way for further research that focuses not only on the ultimate

limit of the number of objects that can be discriminated but also on the possibility of

facilitating the characterization of objects with spatially dependent polarization, e.g.,

by exploiting the momentum correlation and/or orbital angular momentum of a pho-

ton pair [226]. Furthermore, there is the potential to dynamically adapt the ghost

polarimetry scheme for different target objects using tunable metasurfaces [227].
The strategy to devise a novel lenless quantum imaging scheme in chapter 4, that is,

by optimizing a parameter of the scheme, could be extrapolated to discover new quan-

tum imaging protocols beyond QIUP & QGI. A potential way to achieve this follows

the lines of the work of Krenn et al. [228] that uses machine learning for quantum

technologies. A quantum imaging scheme can be seen as a combination of defined ba-

sic building blocks, e.g., photon-pair sources, lenses, mirrors, free-space propagation,

etc., each characterized by a finite number of parameters. Consequently, a machine

learning algorithm that uses reinforcement learning can be given the task of search-

ing for novel quantum imaging schemes by optimizing the large number of parameters

that arise from the combination of these basic elements.

Finally, the results presented in this thesis have not yet been experimentally realized.

However, all of these theoretical findings can be experimentally implemented with

current state-of-the-art technology. While this thesis is written, the effect of the pump

width on the resolution of QIUP based on position correlations is being experimentally

tested [229] and a source with entangled photons in polarization and non-degenerate

wavelengths for QGP is being built in our laboratory.
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E. Zusammenfassung

Verschränkte Photonenpaare, gemeinhin als Signal- und Idler-Photonen bezeichnet,
wurden als Grundlage für Quantum imaging with undetected photons (QIUP) und
Quantum ghost imaging (QGI) verwendet. Mit QIUP können wir ein Objekt abbil-
den, indem wir nur die Signal-Photonen messen, die nie mit dem Objekt wechselwir-
ken, während die Idler-Photonen, die das Objekt beleuchten, undetektiert bleiben. Bei
QGI werden die beleuchtenden Idler-Photonen von einem räumlich nicht auflösenden
Detektor gemessen, während die nicht wechselwirkenden Signal-Photonen von einer
Kamera gemessen werden und das Bild dann nur aus den Koinzidenzen von Signal
und Idler rekonstruiert wird. Nennenswert ist hier die Verwendung von zweifarbi-
gen Photonenpaaren, welche es uns ermöglichen, Komplikationen bei der Bildgebung
in Wellenlängenbereichen zu überwinden, in denen Kameras nur eine geringe Effi-
zienz aufweisen. Daraus ergibt sich ein enormes Potenzial für die Biosensorik, bei
der empfindliche Proben, die für Strahlungsschäden anfällig sind, mit herkömmlichen
Einzelphotonen-Kameras abgebildet werden können, wie zum Beispiel im sichtbaren
Spektralbereich, während die Probe von Photonen mit viel geringerer Energie beleuch-
tet wird.

In dieser Arbeit wurden drei Lücken in der Literatur zur Quantenbildgebung und
Polarimetrie geschlossen:

1. Die transversale Auflösungsgrenze von QIUP und QGI, die zweifarbige Pho-
tonenpaare verwenden, wurde diskutiert. Wir haben eine nicht-paraxiale Be-
schreibung der Erzeugung von Photonenpaaren hergeleitet, die als Grundla-
ge für die Feststellung diente, dass die fundamentale Auflösung, basierend auf
dem Rayleigh-Kriterium, durch die größere Wellenlänge des Photonenpaares be-
grenzt ist.

2. Ein linsenloses QGI-Verfahren wurde vorgestellt, das sich speziell für die Abbil-
dung in Wellenlängenbereichen eignet, für die weniger Linsen zur Verfügung
stehen, wie zum Beispiel im Terahertz-Bereich. Wir haben es Pinhole QGI ge-
nannt, da wir gezeigt haben, dass es analog zur klassischen Lochkamera ist.

3. Ein Quantum ghost polarimetry (QGP) Schema wurde vorgeschlagen, bei dem
dielektrische Metaoberflächen verwendet werden können, um den Einsatz re-
konfigurierbarer optischer Elemente zu vermeiden. QGP kann verwendet wer-
den, um empfindliche Proben mit ausgeprägten doppelbrechenden und chiralen
Eigenschaften zu messen. Wir haben das Potenzial von QGP anhand eines Bei-
spiels für die Unterscheidung polarisationsempfindlicher Objekte aufgezeigt.
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