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Abstract

Cloud computing has been the groundbreaking technology of the last decade. The
ease-of-use of the managed environment in combination with nearly infinite amount
of resources and a pay-per-use price model enables fast and cost-efficient project
realization for a broad range of users. Cloud computing also changes the way software
is designed, deployed and used. This thesis focuses on database systems deployed in
the cloud environment. We identify three major interaction points of the database
engine with the environment that show changed requirements compared to traditional
on-premise data warehouse solutions.

First, software is deployed on elastic resources. Consequently, systems should
support elasticity in order to match workload requirements and be cost-effective.
We present an elastic scaling mechanism for distributed database engines, combined
with a partition manager that provides load balancing while minimizing partition
reassignments in the case of elastic scaling. Furthermore we introduce a buffer
pre-heating strategy that allows to mitigate a cold start after scaling and leads to an
immediate performance benefit using scaling.

Second, cloud based systems are accessible and available from nearly everywhere.
Consequently, data is frequently ingested from numerous endpoints, which differs
from bulk loads or ETL pipelines in a traditional data warehouse solution. Many
users do not define database constraints in order to avoid transaction aborts due to
conflicts or to speed up data ingestion. To mitigate this issue we introduce the concept
of PatchIndexes, which allow the definition of approximate constraints. PatchIndexes
maintain exceptions to constraints, make them usable in query optimization and
execution and offer efficient update support. The concept can be applied to arbitrary
constraints and we provide examples of approximate uniqueness and approximate
sorting constraints. Moreover, we show how PatchIndexes can be exploited to define
advanced constraints like an approximate multi-key partitioning, which offers robust
query performance over workloads with different partition key requirements.

Third, data-centric workloads changed over the last decade. Besides traditional
SQL workloads for business intelligence, data science workloads are of significant
importance nowadays. For these cases the database system might only act as data
delivery, while the computational effort takes place in data science or machine
learning (ML) environments. As this workflow has several drawbacks, we follow the
goal of pushing advanced analytics towards the database engine and introduce the
Grizzly framework as a DataFrame-to-SQL transpiler. Based on this we identify
user-defined functions (UDFs) and machine learning inference as important tasks
that would benefit from a deeper engine integration and investigate approaches to
push these operations towards the database engine.





Kurzfassung

Cloud Computing ist die dominante Technologie des letzten Jahrzehnts. Die Be-
nutzerfreundlichkeit der verwalteten Umgebung in Kombination mit einer nahezu
unbegrenzten Menge an Ressourcen und einem nutzungsabhängigen Preismodell
ermöglicht eine schnelle und kosteneffiziente Projektrealisierung für ein breites Nut-
zerspektrum. Cloud Computing verändert auch die Art und Weise wie Software
entwickelt, bereitgestellt und genutzt wird. Diese Arbeit konzentriert sich auf Daten-
banksysteme, die in der Cloud-Umgebung eingesetzt werden. Wir identifizieren drei
Hauptinteraktionspunkte der Datenbank-Engine mit der Umgebung, die veränderte
Anforderungen im Vergleich zu traditionellen On-Premise-Data-Warehouse-Lösungen
aufweisen.

Der erste Interaktionspunkt ist die Interaktion mit elastischen Ressourcen. Sys-
teme in der Cloud sollten Elastizität unterstützen, um den Lastanforderungen zu
entsprechen und dabei kosteneffizient zu sein. Wir stellen einen elastischen Ska-
lierungsmechanismus für verteilte Datenbank-Engines vor, kombiniert mit einem
Partitionsmanager, der einen Lastausgleich bietet und gleichzeitig die Neuzuweisung
von Partitionen im Falle einer elastischen Skalierung minimiert. Darüber hinaus
führen wir eine Strategie zum initialen Befüllen von Puffern ein, die es ermöglicht,
skalierte Ressourcen unmittelbar nach der Skalierung auszunutzen.

Cloudbasierte Systeme sind von fast überall aus zugänglich und verfügbar. Daten
werden häufig von zahlreichen Endpunkten aus eingespeist, was sich von ETL-
Pipelines in einer herkömmlichen Data-Warehouse-Lösung unterscheidet. Viele Be-
nutzer verzichten auf die Definition von strikten Schemaanforderungen, um Trans-
aktionsabbrüche aufgrund von Konflikten zu vermeiden oder um den Ladeprozess
von Daten zu beschleunigen. Wir führen das Konzept der PatchIndexe ein, die die
Definition von unscharfen Constraints ermöglichen. PatchIndexe verwalten Ausnah-
men zu diesen Constraints, machen sie für die Optimierung und Ausführung von
Anfragen nutzbar und bieten effiziente Unterstützung bei Datenaktualisierungen. Das
Konzept kann auf beliebige Constraints angewendet werden und wir geben Beispiele
für unscharfe Eindeutigkeits- und Sortierconstraints. Darüber hinaus zeigen wir, wie
PatchIndexe genutzt werden können, um fortgeschrittene Constraints wie eine un-
scharfe Multi-Key-Partitionierung zu definieren, die eine robuste Anfrageperformance
bei Workloads mit unterschiedlichen Partitionsanforderungen bietet.

Der dritte Interaktionspunkt ist die Nutzerinteraktion. Datengetriebene An-
wendungen haben sich in den letzten Jahren verändert. Neben den traditionellen
SQL-Anfragen für Business Intelligence sind heute auch datenwissenschaftliche An-
wendungen von großer Bedeutung. In diesen Fällen fungiert das Datenbanksystem oft
nur als Datenlieferant, während der Rechenaufwand in dedizierten Data-Science- oder



Machine-Learning-Umgebungen stattfindet. Wir verfolgen das Ziel, fortgeschrittene
Analysen in Richtung der Datenbank-Engine zu verlagern und stellen das Grizzly-
Framework als DataFrame-zu-SQL-Transpiler vor. Auf dieser Grundlage identifizieren
wir benutzerdefinierte Funktionen (UDFs) und maschinelles Lernen (ML) als wichtige
Aufgaben, die von einer tieferen Integration in die Datenbank-Engine profitieren
würden. Daher untersuchen und bewerten wir Ansätze für die datenbankinterne
Ausführung von Python-UDFs und datenbankinterne ML-Inferenz.
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Chapter 1
Introduction

1.1 Cloud Computing

Cloud computing gained extraordinary importance over the last decade with the
advent of enabling technologies like distributed systems, virtualization or fast network
technologies. Being at a market size value of around 480 Billion USD in 2022,
the global cloud computing market is expected to rise up to a revenue of around
1.5 Trillion USD by 2030 [34]. Reasons for the success of the technology are the
benefits cloud computing offers. Due to cloud service providers hosting large data
centers, users can easily access a nearly inexhaustible amount of resources elastically.
With this elasticity it is possible to flexibly adapt hardware requirements to the actual
workload, i.e., acquiring additional resources to handle load peaks or even shutting
down all resources during times where a service is not needed. In combination
with a pay-per-use pricing model the cloud environment can also lead to reduced
business costs. Another factor of success is the ease-of-use of cloud services. Cloud
service providers offer a managed environment where users do not need to take
care of underlying complexity of setting up hardware, software or typical tasks
like networking. Instead, users can benefit from the guaranteed service availability
cloud providers offer, and may even be protected against natural disasters when
replicating over different geographical regions. This also holds for data, which can
be automatically replicated and is therefore better protected against data loss due to
hardware failures. With all this being transparently provided, cloud computing can
also significantly lower the hurdle to start projects and therefore enable a larger group
of users to benefit. Additionally, cloud computing makes it easy to access different
hardware in order to optimize service performance or easily develop software for
heterogeneous technologies. There are several compute instances available optimized
for networking, CPU speed or main memory, or containing specialized hardware
like GPUs or FPGAs. Overall, cloud computing consequently enables to easily get
access to resources, flexibly adapt to changes in workloads or requirements with a
convenient pricing model, compared to an on-premise setup where hardware needs
to be bought, set up and maintained.

On the contrary, cloud computing also introduces new challenges. When using
cloud computing, users need to trust in the cloud providers and the technology to
keep data private and secure. Possibly confidential user data stored in the cloud
means that it is accessible from everywhere protected by a cloud provider’s encryption
and access control. This fundamentally differs from an on-premise solution where
data might be physically accessible only from a certain network or computer. Besides
that, software design needs to consider the cloud computing characteristics. While
an existing software can be deployed on hardware hosted in the cloud, this approach
misses to really benefit from the advantages described above. The major point here
is elasticity, which should be supported by the system in a native way to benefit
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from the flexible hardware environment. As hardware is able to scale dynamically
driven by the demand, software should also be able to do so, i.e., being able to add
workers in order to increase parallelism to handle more load or decrease runtime.
Additionally, software should separate storage and compute resources. With this,
compute resources can be spun up, dynamically scaled and shut down while data is
persistent in the storage, i.e., cloud file system.

1.2 Database Systems in the Cloud
In this thesis, we focus on analytical database management systems (DBMS) in
the context of the cloud environment. According to the cloud computing reference
architecture [26] by the National Institute of Standards and Technology (NIST)
there are three major service models, which can be seen as abstractions how cloud
services can be used. Infrastructure as a Service (IaaS) describes the model where
generic resources like storage, networking or compute can be provisioned by the
user, who is then able to deploy arbitrary operating systems and software on the
infrastructure. Platform as a Service (PaaS) offers pre-installed applications that
can be used for, e.g., software development tasks. These applications can include
development kits, language extensions, web servers, etc. With PaaS it is possible
to rapidly set up a working environment for different tasks. Software as a Service
(SaaS) is the highest abstraction layer according to the NIST definition and describes
a model where certain applications are deployed by the cloud provider and users
can interact with the application over the application-specific interfaces using clients
or web interfaces. A database system can be categorized as SaaS with users and
clients interacting and querying the database using SQL and standard interfaces.
In order to create a database instance in a SaaS model, a user would simply use
a web frontend to select the initial compute resources, connect his storage bucket
containing his data if available and the cloud environment would automatically
provision hardware resources, install an operating system and deploy the database
system on the hardware. Afterwards, the user can immediately start accessing the
database and run queries without the need to manage the hardware environment,
care about the storage or configure the DBMS. More recently, Function as a Service
(FaaS) evolved as a fourth service model. Here a user does not even need to select
the amount of resources, but simply runs a stateless function and pays by runtime
or the number of function calls. Consequently, this model is even more convenient
to use as the SaaS model. Database vendors like Amazon with Redshift Serverless
[13] or Google with BigQuery [107] adapt this model towards a Database as a
Service (DBaaS) model or “serverless” database. Users do not need to create DBMS
instances but can simply send queries against data, retrieve results and pay per
query or the amount of scanned data. Especially in analytics, where queries may
read large amounts of data and perform expensive operations, this does not require
users to scale the database instance to a reasonable size that is able to cope with
the data volume and query complexity, and is therefore even more convenient to use.
While database systems in a SaaS model may have stateful workers, i.e., explicit
responsibilities for parts of the data and explicit catalog information maintained by
the workers, the DBaaS model requires stateless workers. In the latter, workers do
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Figure 1.1: A database management system in the hierarchy of cloud computing
layers

not store any catalog metadata but rather query a meta store during query execution
or receive metadata attached to the task description.

Figure 1.1 shows how a DBMS interacts with different system layers in a cloud
deployment in a SaaS or FaaS/DBaaS model. We can identify four major interaction
points that lead to challenges in the design of a DBMS:

Compute Resources As desribed above, software and therefore also database
systems must be able to exploit the elastic hardware environment. Based on the
query load (either concurrent queries or very complex queries), the DBMS should
be able to elastically scale. Data is stored in cloud storage that can be accessed
by the elastic compute layer. As computing resources may also be shut down, this
automatically enforces that the database system separates the compute logic from
the storage logic.

Data Ingestion A major benefit of the cloud environment is the availability
and accessibility of the system from nearly everywhere. Compared to traditional,
on-premise data warehouse deployments where data is ingested using periodical
bulk loads and ETL pipelines, this leads to more fine-grained, more frequent data
ingestions. Cloud databases may serve as the data collection point for a huge amount

11
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of devices producing data, like Internet-of-Things (IoT) networks with numerous
sensors that produce and send data continuously. Consequently, the DBMS must be
able to handle fine-grained data ingestions from numerous endpoints.

Business Intelligence Analytical database systems are used for business critical
decision making processes. These processes typically need insights into a large data
volume and results are aggregated to answer questions precisely. Queries for business
intelligence are typically complex SQL queries written by data analysts or generated
by business intelligence tools to produce dashboards. They are sent to the DBMS
over standard interfaces and due to the need for precise answers, aggregated results
are typically small and can be sent back to the client easily. These use cases do not
differ from traditional on-premise data warehouse applications. Computing mainly
takes place inside the DBMS engine, which has been optimized over decades to
efficiently run these kinds of workloads. With more fine-grained and more frequent
data ingestion, data freshness becomes a requirement in the business intelligence
use case. Consequently, ingestion performance is an additional requirement for data
ingestion.

Data Science Besides traditional analytical workloads expressed in SQL, more
advanced workloads evolved in parallel to the evolution of cloud computing. Data
science and Machine Learning (ML) workloads aim at finding hidden insights in the
data by training models and using them for predictions on unknown data. These
operations are not natively supported by traditional database engines. Consequently,
modern analytics pipelines containing these kind of operations need to bulk download
data from the database into a separate environment.

1.3 Contribution
The discussions in Section 1.2 showed that cloud computing not only changed the
way database systems are deployed on hardware, but also changed the way how
they are used and what they are used for. Based on these observations, this thesis
provides the following core contributions:

1. Elasticity. We show how a database system can be scaled elastically during
runtime and solve the challenge of adapting the state of workers using a
partition manager that minimizes partition assignments, preserves partition
locality and provides load balancing. Furthermore, we show how cold start
problems after scaling can be mitigated using a buffer pre-heating strategy.
The explanations for this contribution are based on [88].

2. Data Ingestion. Ingesting data from numerous endpoints can lead to low
data quality, e.g., by violating constraints. In order to avoid failing inges-
tion tasks and skip expensive constraint checking in favor of data freshness,
database schemas in cloud applications typically contain sparse schema infor-
mation leading to non-optimal query performance. We focus on this problem
of sparse schema information due to data ingestion from various endpoints

12



and present the PatchIndex approach that allows database systems to define
approximate constraints, i.e., constraints that hold for almost all tuples. Con-
sequently, constraints are allowed to be violated by the numerous ingestion
tasks. PatchIndexes are generically defined and can be used to handle arbi-
trary constraints. They are easily updatable to perform data ingestions tasks
efficiently and can be integrated into query optimization and query execution
to increase query performance. We further show how PatchIndexes can be used
to realize approximate sorting and approximate uniqueness constraints or to
capture partition locality in an approximate multi-key data partitioning. The
ideas behind these contributions are based on [83, 84, 85, 86, 82].

3. Modern Workloads. While traditional business intelligence workloads can
be efficiently handled by database systems, more modern data science tasks
are typically not supported and need to be performed in separate runtime en-
vironments. As this has several drawbacks, we investigate how to push modern
workloads into the DBMS engine. First, we present the Grizzly framework that
translates Python pipelines built on the popular Pandas DataFrame API into
SQL and pushes these workloads towards the engine. Based on this, we identify
user-defined functions (UDFs) and Machine Learning model inference as popu-
lar advanced analytics tasks and present approaches how to support Python
UDFs and ML model inference natively by the DBMS engine. The elaborations
for Grizzly are based on [65, 80, 64], while investigations on Python UDFs were
published in [87] and in-database ML inference was examined in [81].

1.4 Outline
The remainder of this thesis is organized as follows. We start with a motivation of
the contributions made in this thesis as well as a presentation of the Actian Vector
Ecosystem in Chapter 2, where we provide an overview over the X100 query engine
used to implement prototypes in this thesis and an overview over products built on the
X100 engine. Chapter 3 focuses on the elasticity requirement. We describe an elastic
scaling mechanism, a partition manager for the elastic environment and a buffer
pre-heating strategy as an optimization to the scaling process. For the data ingestion
requirement we present the PatchIndex approach in Chapter 4, which enables database
systems to maintain approximate constraints. We describe the generic index design
in Section 4.2, which can be applied to arbitrary constraints, and give examples of
applying the idea to traditional database constraints in Section 4.3 or to the idea of
an approximate multi-key data partitioning in Section 4.4. Chapter 5 shows a first
approach to shift advanced workloads towards a DBMS. It introduces the Grizzly
framework, which is a DataFrame-to-SQL transpiler that allows to push DataFrame
operations towards the database system. We further utilize this framework to identify
operations that are often included in typical modern data analysis pipelines. Based
on these observations, Chapter 6 investigates approaches to natively integrate Python
UDFs and ML model inference into the database engine in order to efficiently perform
these advanced operations on data in the database. We thereby describe how Python
UDFs can benefit from on-the-fly compilation, vectorization and parallelization and
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compare approaches for in-database ML inference on different levels of abstraction,
starting from a naive solution using Python UDFs up to a deep integration of a
native model inference operator. In the final Chapter 7 we conclude our work and
discuss open research questions in an outlook.

The chapters of this work have different views on the database engine within
the cloud environment, similarly to the interaction points we identified before. We
consequently also separated discussions about related work to these chapters and
performed independent evaluations for our solution approaches to capture the use
cases that are important for the respective features.
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Chapter 2
Overview

2.1 Motivation
In the introduction in Chapter 1 we described that software can be easily deployed in
the cloud environment, but needs to be rethought in different components to exploit
the opportunities the cloud environment offers. In the following we therefore want
to motivate the need for our contributions listed in Section 1.3. Figure 2.1 highlights
the major interaction points of a database engine in the cloud environment and
therefore is the foundation for the following discussion.

2.1.1 Elasticity
The first interaction point of the database engine shown in Figure 2.1 is the inter-
action with the elastic resource environment. Elasticity is a major benefit of cloud
environments as discussed in Section 1.1. In contrast to scalability, which is a static
system property describing the system’s behaviour on a certain configuration [5],
elasticity is a dynamic system property describing how a system is able to adapt to
changing demands by automatically (de-)provisioning resources [71]. In on-premise
deployments resources must be provisioned statically based on an observed load
behaviour. As shown in Figure 2.2, scaling can be done in order to fit any expected
load peaks (overprovisioning), leading to high costs and potentially unused resources.
On the other hand scaling to match an average workload (underprovisioning) can lead
to lower costs in exchange for potentially unmatched demands. While unmatched
demands might be tolerable depending on customer service level agreements, choosing
a good amount of provisioned resources is still a challenging task. With the flexible
environment the cloud offers it is now the goal of elasticity to match the resource
demand at any point in time while minimizing unused resources and consequently
unnecessary costs.

In order to be a successful, cost-effective offer every system that is deployed in
the cloud should exploit the elastic cloud environment. For a data-intensive system
like an analytical database system supporting elasticity translates to solving the
following general challenges:

1. Support for runtime growing and shrinking: Computing resources, e.g.,
cluster nodes, need to be added or removed efficiently with minimized system
downtime.

2. Providing mechanisms to rebalance load after elastic scaling: Workload
responsibilities must be balanced between computing resources after scaling.
This might be realized in an explicit way in stateful systems by assigning
responsibilities or implicitly by making a load balancer aware of the scaled
topology in stateless systems.
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Figure 2.1: Database engine interaction points with the cloud environment

3. Hiding effects of load balancing during elastic scaling: Data-intensive
systems make use of caching to achieve good query performance. When load is
rebalanced, cached information might become invalid and performance might
suffer from a cold start. This effect should be masked in order to make scaling
transparent for the user.

While the first task is a technical issue and requires a solution tailored for the
respective system design and technology, tasks 2 and 3 are generic issues and can
therefore be solved in a conceptual way and applied to different systems.

2.1.2 Support for Approximate Constraints
The second interaction point highlighted in Figure 2.1 is data ingestion. In cloud
environments datasets are likely to be unclean as data is ingested from numerous
endpoints. Therefore it becomes challenging, if not even impossible, to define “perfect”
constraints, i.e., constraint that match for all tuples, like primary keys, uniqueness
constraints or sorting constraints. This results in database schemes with sparse
schema information. As constraints are used in query optimization, e.g., selecting the
actual join algorithm or estimating cardinalities of intermediate results, non-optimal
query plans and non-optimal query performance are a consequence of sparse schema
information. Additionally, even if constraints are defined, maintaining and enforcing
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Figure 2.2: Resource provisioning for given load

them is expensive and therefore often avoided by users when running regular inserts
or updates.

Besides potentially non-existing perfect constraints, these datasets may include
approximate constraints, which are constraints that hold for nearly all tuples except
a number of exceptions. These constraints occur for different reasons in big data
environments, e.g.:

• Data integration: Data is integrated from various sources. This may lead to
duplicates or an arbitrary order based on the order of integration.

• Missing values: Integrating different data schemas into one common schema
may lead to NULL values.

• Real world anomalies: Real world datasets may not contain perfect con-
straints, e.g., equal names of persons, shared telephone numbers or shared
addresses.

Approximate constraints contain valuable information that cannot be used for query
execution, as the constraint definition is prohibited by a small fraction of the values.
In order to prevent these information from being lost and to take advantage of them,
allowing the definition and usage of approximate constraints is worth investigating.

Common real world use cases further underline the need for handling approximate
constraints. In many business intelligence use cases, which are also listed in Figure 2.1,
users combine analytical database systems with dashboard generation tools to simplify
reporting, provide an overview over business data for management processes or utilize
the built-in interactive query generators. While definitely increasing the usability of
database management systems, these dashboard tools convert user interactions to
SQL queries that are often very large and complicated in many cases. Furthermore
these tools query characteristics of the data like distinct values to fill their APIs
with e.g., drop-down selections, checkboxes, controllers or similar. An example
query graph commonly generated by these tools is shown in Figure 2.3. Here, each
subtree is a distinct query on an arbitrary column of the database. These queries
would significantly benefit from any additional information on the processed data,
like the described approximate constraints. Furthermore, many real world datasets
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Figure 2.3: Overview over a query generated by a dashboard tool. Every branch is a
distinct query. Graph generated using Actian Vector.

are timestamp-based, as they are generated by e.g., sensor networks. Not only
being sorted on the timestamp, these datasets often show an approximate co-sorting
of other columns and the timestamp column, e.g., auto-generated values, version
numbers or increasing measurements. These nearly co-sorted columns also occur
in sales datasets, e.g increasing order numbers leading to increasing order dates, or
increasing order dates leading to increasing ship dates. For these cases, knowing
about the approximate sorting of the columns would significantly accelerate sorting
queries on these columns.

Overall data ingestion in the cloud environment shifts from traditional centralized
ETL pipelines with bulk data loads towards more fine-grained and very frequent
data ingestion from many endpoints. In combination with the lack of a database
administrator caused by the ease-of-use of cloud database systems, database schemas
in these environments often contain sparse schema information. While perfect data
constraints might not exist in the data, approximate constraints can help increasing
schema quality and accelerate query performance for different workloads.

2.1.3 DataFrame API
The cloud environment drives database systems towards being data platforms with
a rich ecosystem. They are not only used through their SQL frontend for business
intelligence anymore, but also with more advanced analytics tools with opportunities
to define data processing pipelines in different ways. Seamlessly integrating with such
tools in a convenient way is an important factor for the success of a cloud database
system. Otherwise large amounts of data need to be downloaded from the database
into separate environments to be processed. In comparison to business intelligence,
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the database system here only acts as data delivery, wasting its capabilities for
efficient query processing. Furthermore, data is not aggregated in these use cases and
volumes can be very large compared to the small result sets of business intelligence
queries. Compared to pulling data out of the database and executing the model in
a separate environment, pushing these tasks into the database system has several
advantages:

• Reduced data transfer: Instead of transferring large amounts of data to a
client, data remains in the database system and only query results need to be
transferred.

• Exploiting server hardware: Client hardware is typically weaker than
server hardware. Hence, pushing query execution to the database server avoids
expensive computations on a potentially weak client machine.

• Scalability: Database systems are designed to cope with large volumes of data
and are optimized to handle larger-than-RAM data sets. Therefore, complex
computations are placed best in this environment instead of handcrafting, e.g.,
buffering approaches in different external environments.

• Query integration: Once data is materialized to a separate processing
environment, subsequent operations must also be performed there wasting
efficient query processing capabilities of database systems.

• Accessing sensitive data: In some use cases data is not allowed to be moved
out of the database system and can only be accessed under access control.
Running model inference in Python might not even be possible in these cases.
Pushing model inference into the DBMS enables subsequent operations, e.g.,
aggregations to only return aggregated and therefore non-critical inference
results.

One of these frontends is Python, which became one of the most widely used
programming language for Data Science and Machine Learning. According to the
TIOBE index the languages popularity has steadily grown and was awarded language
of the year in 2007, 2010, 2018, 2020 and 2021 [149]. The popularity obviously comes
from its easy-to-learn syntax which allows rapid prototyping and fast time-to-insight
in data analytics.

Python’s success is also founded in the vast amount of libraries that help developers
in their tasks. Nowadays, the most popular framework for loading, processing, and
analyzing data is the Pandas library. Pandas had a huge success as it has connectors
to read data in different file formats and represents it in a unified DataFrame
abstraction. The DataFrame implementation keeps data in memory and comes with
a variety of operators to filter, transform, join the DataFrames or executing different
kinds of analytical operations on the data. However, the in-memory processing of
Pandas comes with serious limitations and drawbacks:

• Data sizes are limited to the main memory capacity of the client machine, as
there is no way of automatic disk-spilling and buffer management as found in
almost every database systems.
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• Even if the data to process resides in a database system on a powerful server,
Pandas will load all data onto the data scientist’s computer for processing.
This is not only time consuming, but one can also assume that a companies
sales table will quickly become larger than the memory of the data scientist’s
work station.

• Operations on a Pandas DataFrame often create copies of the DataFrame
instead of performing the operation in place, occupying additional precious
and limited memory.

In order to solve the memory problems, many users try to implement their own
buffer manager and data partitioning strategies to only load parts of the original
input file. However, we believe that scientists trying to find answers in the data
should not be bothered with data management and optimization tasks, but this
should rather be addressed by the storage and processing system. This motivates
the need to seamlessly integrate a DataFrame API with database engines in order to
push DataFrame operations towards the engine.

2.1.4 Python UDF and Machine Learning Support
Evolving a database engine towards a data platform can be accomplished by inte-
grating tools and environments around the actual engine in a convenient way. Many
workloads however also benefit from natively integrating them into the database
engine. Similar to having a DataFrame API as a frontend solution to a database
engine as described in Section 2.1.3, native support helps to push expensive compu-
tation towards the engine. We chose to investigate the native integration of Python
user-defined functions (UDFs) and Machine Learning model inference as predominant
operations in modern analytics pipelines.

UDFs play an important role in modern data analytics, as they offer a flexible,
modular and reusable way to get business insights tailored for the user’s needs.
Many popular data warehouse systems integrate UDFs in different flavors to extend
the functionality of the SQL frontend. Depending on the actual system, users can
define UDFs using C/C++, Java, Python, Scala or Javascript code and use them in
their SQL queries. Additionally, there are two types of UDFs, namely scalar UDFs,
that produce a single result per input tuple, and table UDFs, that produce a new
(potentially empty) table with an arbitrary number of results for a given input table.
As described in Section 2.1.3 Python has been very successful due to its ease-of-use
and wide range of available libraries. It is therefore used by a wide range of users
and makes it less important to be a SQL expert to analyse data.

Offering Python UDFs increases a database system’s usability for a wide range of
users. However, the major bottleneck of UDFs is scalability, as shown in the analysis
of [62], where UDFs take the major part of the query runtime. This especially holds
for Python UDFs when integrated in a naive way due to several reasons. First, data
needs to be converted from the internal database representation to a Python format
and vice versa for the UDF results. Second, data needs to be transferred to the
Python interpreter outside the database engine and results are sent back to the
engine. Third, the interpreted code execution in the Python interpreter is typically
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Figure 2.4: UDF vs. native performance for modulo operation on 8 million tuples

Figure 2.5: A typical Machine Learning Pipeline

slower than the execution of compiled and optimized code in the database engine. For
operations that can be expressed both as a UDF and as a native database operator
there is a large gap between the performance of a UDF and the respective native
implementation of the operation, as shown in Figure 2.4. This motivates the need
for more efficient execution opportunities for UDFs.

Besides user-defined functions, Machine Learning models play an important
role in many modern data analytics pipelines. Machine Learning is a great tool
able to discover unknown knowledge from datasets or capture correlations in high
dimensional data that a human might not be able to grasp arithmetically. Figure 2.5
shows a typical ML pipeline, starting from data collection, feature encoding, model
design and training towards evaluation and finally model deployment. Training a
model that is suitable for a given problem is an iterative and time-consuming task.
While the training process itself can be very long-running and hardware-intensive,
the process of finding a suitable model might also consist of repeating preceeding
steps to adapt the model architecture or the selected model features after evaluating
the trained model. Consequently, this step is typically performed by ML experts.

On the other hand, deploying and using a model for inference can be done by
arbitrary users. Trained models can be exported and shared with many users or
even downloaded at market places or open-source repositories like the ONNX model
zoo [118]. From a database engine perspective this makes ML model inference a good
candidate for a more native integration into query processing withing the database
engine.
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2.2 X100 and the Actian Vector Ecosystem

Throughout this thesis we implemented prototypes of solutions to the problems
presented in Section 2.1 into the X100 query engine [28] and used these prototypes to
evaluate the solutions. However we would like to emphasize that the all approaches
are generically applicable to arbitrary database systems. The X100 query engine
has been one of the first columnar and vectorized relational execution engines. It
originated from the Centrum Wiskunde & Informatica (CWI) Amsterdam and was
spun off as the start-up Vectorwise in 2008. Since Vectorwise was acquired by the
Ingres Corporation (later Actian) in 2011, X100 builds the base of an ecosystem of
analytical database systems within Actian.

X100 was first integrated into the transactional database system Ingres [75] under
the product name Vector. Vector is a single-server system that focuses on achieving
multi-core parallelism. As the number of cores per CPU and per server is limited,
multi-node systems of commodity hardware gained traction for big data analytics
with the release of Hadoop [9] and Spark [11]. Consequently, Vector was extended to
run on Hadoop clusters with the scale-out product Vector on Hadoop (VectorH in
short) [36] starting in 2014. With the increasing importance of the cloud environment,
VectorH was released as a cloud product called Avalanche starting from 2019, with
recent releases focusing on supporting the cloud environment more natively.

In this chapter we present the core concepts of the X100 engine as well as the
adaptions made to move it forward to scale out on clusters or to be deployed in the
cloud. The aim of this chapter is to provide a common understanding of the engine’s
core design ideas. We consequently do not claim completeness of discussed concepts,
but focus on areas that can help understanding the contributions of this thesis.

2.2.1 Storage Management

Columnar Data Layout X100 [28] and C-Store [146] pioneered the columnar
storage layout for online analytical processing (OLAP) workloads. The traditional
row-based layout has been the commonly used approach for online transactional
processing (OLTP) workloads over decades due to its support for fine-grained update
operations. With increasing data sizes and the need for data analytics the need for a
read-optimized data layout rose. Storing tuples of a relation in a columnar fashion
offers great opportunities for read-intensive OLAP workloads.

First, the columnar layout is read-optimized by design, as it enables to scan
only necessary columns and exploit prefetching. OLAP queries frequently contain
only a subset of columns of a table, which cannot be read separately in a row-wise
storage layout. In contrary, scanning data from a columnar storage layout enables
to utilize full bandwidth (both when accessing RAM or I/O) for relevant data, as
pages only contain data of a single column. Second, the columnar layout offers great
possibilities for data compression as shown in [167]. Columns can be compressed
separately with compression algorithms tailored towards the data type, which leads
to higher compression ratios compared to a row-wise layout and consequently further
reduces expensive I/O effort.
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As a downside, the columnar data layout requires an additional result material-
ization step to compose the initially decomposed columns of a query result, which
is performed using a positional join. More severely, update support is a weakness
of the columnar data layout. While inserting a single tuple leads to a single page
access in the row-wise data layout, it leads to a page access for every table column in
the columnar data layout. The PAX data layout [6] as a combination of a row-wise
layout across pages but a columnar layout within pages tries to mitigate this issue.

Commonly, the update support issue is handled by holding a separate write-
optimized update store. This update store is merged on-the-fly during query execution
to achieve a consistent view of the input data. Updates are periodically propagated
to the stable storage to reduce memory pressure as well as the effort for on-the-fly
merging. While this update store might be a regular row-wise table store in common
cases, X100 features positional delta trees (PDTs) [70] as a specialized update
structure. Instead of maintaining track of tuple updates over their key values, PDTs
organize differential updates by the tuple positions in a B-Tree-like data structure
and thereby exploit the columnar data layout. PDTs are integrated into the table
scan operators in X100 to efficiently and transparently merge updates on-the-fly.

Indexing Table indexing is an important database feature to identify relevant data
for a given query. Pruning irrelevant data for queries containing predicates is crucial
to reduce I/O effort and consequently improve query performance. X100 features
two types of indexes: (co-)clustered indexes and Minmax indexes. A clustered index
physically reorders data according to the specified key column. In X100 a clustered
index is a SortKey, i.e., it enforces a physical sort order of tuples. If tables are
connected over a foreign-key relationship and one table has a clustered index defined,
X100 propagates the sort order to the connected table when creating a clustered
index on the second table. Consequently, the tables are stored in a co-clustered
fashion leading to efficient merge joins in query execution. As an example, a table
clustered on a date column can determine the sort order of a foreign-key related
table. Maintaining the sort order under updates is efficiently supported by using
PDTs.

X100 does not offer tree-like index structures like B-Trees, which are typically
used as clustered or non-clustered primary and secondary indexes. Instead, the
engine uses Small Materialized Aggregates (SMA) [111], also called Minmax indexes
or Zone Maps to achieve data pruning. Minmax indexes logically separate columns
into buckets and maintain the minimum and maximum column value per bucket.
By intersecting this range with either point or range predicates of a query it can be
efficiently determined whether a bucket qualifies as input for a given query. In case
of multiple predicates intersecting the chosen buckets can further reduce the amount
of scanned data. The effectiveness of a Minmax index is dependent on the number
of buckets as well as the data distribution. Regarding the latter, creating a clustered
index on the table helps to achieve tighter ranges per bucket.

Minmax indexes are used in three different ways in X100, namely predicate
pushdown, static range propagation and dynamic range propagation. We draw an
example shown in Figure 2.6 of an accounts table with the respective Minmax index
that logically separates the table into four buckets. Predicate pushdown is the
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Figure 2.6: Example of Minmax index for a given table

obvious way of evaluating point or range predicates of a query against the respective
minimum and maximum values of the predicate columns to determine relevant data
for a query. For an example query

Q := SELECT acctno FROM Accounts WHERE balance < 200

it is clear by comparing the predicate to the minimum and maximum index that
only buckets 1 and 2 are relevant for answering the query, i.e., tuples with storage
ID SID 4 to 11. We now nest query Q into a join with an arbitrary table like

J := SELECT * FROM Transactions T, (Q) as A WHERE T.acc = A.acctno

Static range propagation is a concept of pushing ranges produced by Minmax
over equi-joins during the query optimization step. We already know from predicate
pushdown that only buckets 1 and 2 of the accounts table qualify, which can be
translated to acctno values in ranges [156, 314] and [332, 592] by again querying the
Minmax index. These value ranges can be pushed to the transactions table on the
join key to prune data that is ensured to not find a join partner. Dynamic range
propagation goes one step further to push more detailed ranges over equi-HashJoins
during query execution. If the accounts table is set to be the build side of the
HashJoin, the scan of the transactions table is not started until the hash table
build phase is finished. After building the hash table we have even more detailed
information about the actually existing join keys. In the example only tuples with
SIDs 7, 10 and 11 survive the filter and are inserted to the hash table, so only acc
values of the transactions table in (314, 533, 592) need to be scanned, probably
further reducing I/O effort.

Buffer Management Buffer management is an important task of database systems.
It aims at keeping important pages in memory in order to reduce I/O effort necessary
to execute queries. Database systems thereby do not rely on the operating system’s
paging algorithms but rather allocate the whole buffer memory on system start and
maintain it on the application level. The main reason for this paradigm is that
database systems have additional information about the page contents which allow
to apply more sophisticated eviction policies than the operating system.
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The main task of a buffer manager is to find an optimal page set for a workload,
if the workload is known, or a page set that has a high probability to be useful for a
predicted or expected future workload. The theoretical MIN replacement policy [19]
achieves a provably [95] optimal page set for a given workload by evicting pages that
have their next usage the farthest in the future. As this is not applicable for the
common use case of an unknown future workload X100 uses the predictive buffer
management (PBM) [147]. PBM predicts information about future page requests
when long-running scans occur, while falling back to a traditional least recently used
(LRU) strategy otherwise. It internally manages pages in priority queues of different
importance.

Distributed Storage support Hadoop evolved to the de-facto standard for
big data processing on commodity compute clusters in the mid 2010s. With the
introduction of VectorH [36] X100 was extended with support for the Hadoop
Distributed Filesystem (HDFS). HDFS combines storage devices of a shared-nothing
compute cluster to a logical storage layer, where data is transparently accessible
from every node either over local short-circuit reads or remote reads. This results
in a scalable storage approach which is extended with fault tolerance by the HDFS
replication policy, holding a total of three replicas per block by default distributed
over different physical storage devices. X100 exploits this block replication and
placement strategy to guarantee short-circuit reads while benefitting from the HDFS
fault tolerance. Additionally, PDTs mitigate the issue of HDFS being an append-only
storage system by design.

Cloud Filesystem Support The first version of Avalanche consisted of a VectorH
deployment in the cloud environment, which consequently relies on storage tied to
compute nodes. An important factor for the success of a cloud database system is
the separation of storage and compute, i.e., storage and compute resources exist and
can be scaled independently from each other. As a consequence, compute clusters
can be stopped to save costs in the pay-per-use pricing model without loosing data
persisted in the storage layer.

Cloud vendors offer persistent cloud storage like Amazon S3, Microsoft ABS
or Google GCS. These storage systems are cheap and nearly infinite from a user
perspective but differ from traditional file systems in their characteristics. They offer
a PUT/GET API instead of POSIX file handling, weak eventual consistency but
also high durability (> 99.9999% for S3) and disaster recovery across multiple global
regions. From a performance perspective cloud filesystems have a high access latency
and low single-threaded throughput, but can be used in a highly parallel fashion to
achieve high throughput. X100 supports cloud filesystems for stable table storage.
With aggressive prefetching and parallelism across nodes, partitions and columns
it is thereby optimized to achieve very high scan throughput of tens of GB/s from
cloud storage.
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2.2.2 Query Processing
Execution model X100 follows the Volcano iterator model [56] for query execution,
which is one of the predominant execution models besides compiled execution engines
like Hyper [79]. Volcano describes an extensible schema to implement operators as
iterators following a common interface. The interface consists of an open(), next()
and close() operation that can generally encapsulate any operator logic. While open()
initializes the operator state and may allocate required data structures, close() is
called for query finalization in order to free allocated memory or export metadata
like profiling information. The next() operation contains the actual operator logic.
Queries are represented as trees with leafs typically being any scan or data input
operators and inner nodes being algebra operators. Calling next() on an operator
leads to next() calls on the operator’s children and applying the operator-specific logic
to the data chunks returned from the children, before returning the intermediate
result to the parent operator. This leads to a pull-based execution model, i.e.,
iteratively calling next() on the root operator triggers query execution and produces
the query result in a step-wise fashion. Operators in X100 are either unary (e.g.,
filters, projections, aggregations) or binary (e.g., joins), but Volcano also allows for
more children (e.g., for multi-way joins).

Parallel Query Processing For parallel query execution X100 also follows the
Volcano iterator model by achieving intra-operator parallelism using horizontal data
partitioning. Consequently, multiple instances of each operator can be executed
in parallel in order to exploit multi-core CPUs. Volcano additionally describes an
exchange operator that allows to control parallelism. With this exchange operator
X100 controls both the degree of parallelism as well as the data partitioning criteria,
which makes exchange operators synchronization points between subqueries. For
example, a query may scan a partitioned table in parallel, apply some filters and
projections before reaching an exchange operator that repartitions the data on a
given grouping key and at the same time reduces parallelism to finally execute an
aggregation and return the result. Due to Volcano being an iterator model the query
can be executed in a pipelined fashion, i.e., the aggregation might already start
executing before the table scan is finished. Certain operators, we call them pipeline
breakers, however require the full input dataset to produce any result, e.g., sorts,
aggregation or hash table builds.

Vectorization The traditional Volcano iterator model is described to work in a
tuple-at-a-time fashion, i.e., a next() call returns a single tuple to be passed to the next
operator. Tuple-at-a-time processing leads to low instructions per cycle (IPC) due to
call interpretation overhead and makes it impossible to use vector extensions for Single
Instruction Multiple Data (SIMD) processing. On the other hand, column-at-a-time
processing like MonetDB leads to high materialization overhead. As a compromise
X100 uses vector-at-a-time processing [28], returning a vector of tuples per next() call,
while still preserving the columnar layout. This way data independent operations like
filters can be processed in parallel using vector extensions. In combination with the
ability to exploit pipelining of modern CPUs this can lead to a typical IPC larger than
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1. Data vectors are passed between operators as pointers which enables the results
to be CPU cache resident when moving up in the operator tree and avoids fetching
intermediate results from main memory. The vector size is chosen to match cache
line granularity and typically set to 1024, which was experimentally determined as
the sweet spot between column-at-a-time processing and tuple-at-a-time processing
in [28].

Distributed Query Processing For VectorH and Avalanche the Volcano exchange
operator is extended to a distributed exchange operator as described in [35]. Each
node runs a X100 worker which receives an optimized query plan after the query
optimization phase was finished on the leader node. Distributed exchange operators
are the synchronization points for subqueries in these plans. Similar to regular
exchange operators there are different types of distributed exchange operators like
union or merge for reducing parallelism, broadcast for sharing intermediate results
or hash splits for changing the partitioning on-the-fly.

For synchronization and data exchange among cluster nodes X100 uses the
Message Passing Interface (MPI) [109]. MPI offers point-to-point communication as
well as collective communication and is based on the concept of groups. Nodes within
a group are identified using a rank starting at 0 and they are able to communicate with
each other using a so called intra-communicator related to this group. In addition to
that, so called inter-communicators allow communication among groups.
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Chapter 3
Elastic Scaling

In this chapter we present solutions to challenges described in Section 2.1.1 and
show how they are applied to the X100 query engine. The main contributions of this
chapter are as follows:

• We show how X100 as a MPI-based system can be scaled elastically.

• X100 relies in data partitioning for distributed query execution. We present a
partition assignment strategy suitable for the elastic environment. In particular,
our partition assignment provides load balancing while minimizing partition
reassignments.

• We descibe the buffer matching and filling approach which mitigates the problem
of invalid data buffers and a cold start after elastic scaling by identifying
important data and pre-heating buffers during scaling.

The remainder of this chapter is organized as follows. We discuss related work
in Section 3.1 before presenting the design of the elastic cluster resize feature in
Section 3.2. We investigate approaches for partition management and present our
approach of a partition manager for the elastic environment in Section 3.3. Section 3.4
describes the cold start problem after scaling and the buffer matching and filling
mechanism as a solution to the problem. Last, we evaluate the solution and show
benefits of elastic scaling in Section 3.5.

3.1 Related Work
In the field of commercial systems, Snowflake [41, 155] was build from scratch for
the cloud environment. It uses so called micro-partitions of several MB size to
automatically partition and cluster data. Based on that, work distribution among
nodes is realized using consistent hashing. In combination with work stealing, this
approach automatically handles node failures as well as elastic scaling, while also
minimizing the reassignment of micro-partitions as a property of the consistent
hashing algorithm. For elasticity, Snowflake uses a multi-cluster architecture. It
maintains a set of clusters of different pre-defined sizes to be able to instantly switch
to a different cluster size. When buffered data is relocated, Snowflake does not
immediately read the data from cloud storage, but does this in a lazy way. While
the multi-cluster architecture provides good performance isolation, it leads to bad
resource utilization and becomes cost-ineffective with the upcome of per-second
billing. Therefore, Snowflake recently moved forward to resource sharing, which
introduces new challenges like isolation and buffer sharing.

As a second example, Amazon Redshift [60, 13] divides compute nodes into the
abstract concept of slices and assigns data to these slices. For scaling, the system offers
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two possibilities. While the “classic resize” deploys a new cluster in the background
and sets the system in a read-only mode for several hours, the “elastic resize” reduces
the downtime by saving a snapshot to the cloud file system, adding/removing nodes
and reassigning work by reshuffling the abstract slices between nodes. This way, the
downtime for the scaling process is reduced to several minutes. Nevertheless, user
queries are on hold during the scaling. The moved partitions are read asyncronously
in the background into the buffers of the nodes. For more concurrency, Redshift
is also able to attach more independent compute clusters to a single endpoint and
balance concurrent queries between these clusters. Recently, Amazon also introduced
a serverless option of Redshift. In this case, instances are automatically maintained,
so users to not need to take care about instance sizes and configuration, but can
start querying data immediately.

Google BigQuery [107] also follows the serverless approach. The compute layer
Borg maintains virtual scheduling units. After query planning, these workers get a
ready-to-execute query execution plan. This might be a partial plan and intermediate
results are written to a persistent shuffle layer, where following query plans can
read from again. Similarly, Microsoft Azure Synapse [15] also follows a serverless
architecture and offers autoscaling.

The field of elastic DBMS design for the cloud is a fast-paced research area.
While the main contributions of this chapter were introduced in 2019, the serverless
architecture came up in the very recent years. In our approach presented in the
following, we rely on the limitation that X100 has stateful workers managing catalog
information and metadata about their assigned data partitions. Consequently, a
serverless approach is not realizable without removing this limitation. We therefore
focus on scaling an cluster of stateful workers on disaggregated storage, show how to
minimize the partition reassignments and present an approach to pre-heat buffers
after scaling.

3.2 Elastic Cluster Resize

In this section we describe the design of the elastic cluster resize feature for the
X100 query engine. A solution to this problem is very system-specific and needs
to be tailored to the system design and used technologies. X100 uses the Message
Passing Interface (MPI) described in Section 2.2.2 for distributed communication,
synchronization and processing. The engine was originally designed to be deployed
on on-premise clusters based on a static cluster configuration. In order to scale the
system, the cluster configuration has to be changed and the system has to perform
a restart. This “inelastic” scaling approach has two major drawbacks. During the
start process the system replays the write-ahead log, which might be a long-running
operation depending on the log size. In addition to that, allocated memory is freed
during the system shutdown. As a result, cached data in buffers is lost after a
restart and data needs to be read again from storage. This cold start impacts the
performance of the first queries. Therefore, we need a solution to scale a running
MPI application without performing a full restart. We added an add nodes and a
remove nodes system call encapsulating the scaling process.
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Figure 3.1: Schematic overview of cluster resize

The cluster resize feature exploits the opportunities of the MPI group and
communicator management. The basic approach of adding nodes using MPI routines
is illustrated in Figure 3.1. Starting from an existing group of current nodes with
an intra-communicator (A), a new group of processes is spawned by starting the
application on the newly provisioned cluster nodes using the MPI COMM SPAWN
routine. All nodes of the new process group are able to communicate with each other
using their own intra-communicator (B) and with the old group of nodes using the
inter-communicator (C) returned by the MPI routine. In order to abstract from
these different types of communication in a second step, both groups form a new
intra-communicator (D) using the MPI INTERCOMM MERGE routine and replace
group communicators (A), (B) and (C).

X100 workers are stateful, i.e., they maintain metadata about partitions they
are responsible for. After new nodes are added in the add nodes call, the leader
node has to broadcast the current partition mappings as described in Section 3.3
in order to provide the new nodes with the correct initial partition assignments.
Afterwards the current nodes have to assist the new nodes’ startup, as there are
various synchronization points within the startup procedure. To simulate a collective
start of all servers, the current servers have to perform all of these synchronizations
to make the added servers finish their initialization. The cluster resize feature has
to be compatible with the following optimization made in X100. In order to reduce
memory consumption, the creation of storage objects and metadata is skipped for
partitions a node is not responsible for. After adding nodes, this responsibility
assignment changes as some partitions of the current nodes get assigned to the newly
added ones. As a result, current nodes hold structures for partitions they are not
responsible for anymore. Each node checks for these kind of unused structures by
iterating over all tables in their catalogs, dropping information and freeing memory
whenever possible. This could also be done in a lazy way by checking for unused
information within a partition responsibility check during query execution. But as
these checks are very frequent operations and are called multiple times within each
query, the decision was made to cleanup the unused structures directly as part of
the add nodes operation.

Removing nodes reverses the presented mechanism. In the first step the nodes are
divided into two distinct groups S and R with corresponding intra-communicators
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using a MPI COMM SPLIT routine. While nodes of group S perform a collective
shutdown as a second step, the nodes of group R form the new cluster. Passing a list
of hostnames to the function call, each node checks whether it is included in S and
should terminate or not. It is currently not allowed to terminate the leader node,
so remove nodes returns an error in this case. The remaining nodes (group R) now
update their partition mappings as described in Section 3.3. Removing nodes assigns
more partitions to the remaining nodes, and, as the nodes were not responsible for
these partitions before, the creation of storage structures and metadata was skipped.
In order to reconstruct the missing information, an adapted replay of the write ahead
log is performed. Within this replay, all log actions are skipped except those related
to storage and metadata for tables the node is now responsible for and was not
responsible for before. This information is provided by the partition manager.

With the design of the elastic cluster resize feature we achieved the possibility to
scale the X100 cluster without restarting the existing nodes. We therefore ensured
that the scaled system state is similar to the state before the scaling in terms of
communication, metadata and catalog state. Furthermore, we automatically achieve
support for in-memory updates that are resident in in-memory PDT structures men-
tioned in 2.2.1, as the log replay that is included in both add nodes and remove nodes
also covers update log actions. As a result, the process reconstructs the update
information needed to ensure data consistency.

Our implementation relies on the following assumption. For the add nodes
functionality binaries, configuration files and user data are accessible from the
new nodes in the same way (especially using the same directory paths) as for the
already running nodes. Triggering the operation over a front-end, e.g., a web-based
management tool, would invoke starting the new nodes (dependent on the cloud
service provider) and synchronizing necessary data before the add nodes operation is
started. A functionality for synchronizing the X100 installation directory already
exists and is used for cluster deployment, so this assumption is no restriction.

Besides assumptions the presented implementation comes with some limitations.
First, the resize functionality must be issued in a separate session with no concurrent
sessions. The system is able to block/hold incoming session requests when a scaling
request is made. As a consequence, the system can not be actively used during
scaling. However, the elasitic cluster resize operation is expected to run much faster
than a full restart with all consequences discussed above. Second, the hosts to be
removed are restricted to be the ones with the highest ranks. As all nodes except the
leader node are treated equally and the user does not call this function directly but
through a frontend only providing the cluster size he wants to reach, the frontend
can choose the nodes to remove as the ones that where added most recently. This
ensures that only the highest ranks are selected. In case this is considered as too
restrictive, one could extend the algorithm such that it first rearranges the nodes
before the resize operation and assigns ranks in a way that fulfills the restriction.
Third, it is currently not allowed to remove the leader node as worker nodes are not
able to replace a missing leader node (which also holds for leader node failure).
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3.3 Partition Management
In this section, we present a partition management approach that is suitable for
the elastic cloud environment, which corresponds to the second goal stated in
Section 2.1.1. Scaling can be invoked by the user to achieve one of the following
goals. Either performance should be increased while keeping the data size fixed, or
the system should be enabled to handle larger data sizes (while keeping performance
constant). While the first goal refers to Amdahl’s law, the second one is the use
case for Gustafson’s law (both in [63]). For X100 work distribution among cluster
nodes is realized using partitioning and the workload assignment is static, i.e., each
X100 worker has a fixed set of partition responsibilities. Consequently, the number
of available partitions is important for the ability of the cluster to scale elastically.
During scaling, we do not want to perform an expensive data repartitioning, but
redistribute work by reassigning responsibilities.

The optimal number of partitions per table is approximately the total number of
parallel threads the cluster offers. Assuming a homogeneous cluster, this is equal to
the number of nodes multiplied with the number of physical cores per node. In order
to support scaling while avoiding an expensive repartitioning we use the concept of
overpartitioning, initially splitting tables into more partitions than necessary for the
initial cluster configuration. The chosen number of partitions is crucial in terms of
performance and the ability to scale the cluster size. Figure 3.2 shows the runtime
of the TPC-H [27] query set on scale factor 1000 GB as a function of the number
of partitions. The experiments were made on a cluster of 4 to 6 nodes with 24
cores each described in Section 3.5, providing a parallelism of 96 to 144 threads.
First, the results show that increasing the cluster size while keeping the data size
constant can lead to a performance benefit. Second, one can observe that increasing
the number of partitions above the optimal partitioning of one partition per thread
comes with an increasing performance penalty, which is caused by the introduction
of an Union operator on top of table scans. Furthermore, increasing the number
of partitions heavily impacts update performance, as update operations have to
be performed on more fine-grained partitions. As a consequence, the number of
partitions should not be chosen too large. Third, one can observe that X100 is able to
handle underpartitioning to a certain degree by performing node-local splits during
table scans, achieving the assignment of one partition per thread. However, this
resplitting harms node-local join processing and is therefore not a desired behaviour.

3.3.1 Partition Assignment Approaches
We start by comparing basic approaches for partition assignment. The comparison
is based on the following requirements, prioritized from most important to least
important:

1. Load balancing: Assigning an equal number of partitions to each node is
crucial to achieve an optimal query performance. As partitions are already
built using the partitioning method, the assignment strategy can only affect
the number of partitions per node, not the size of each partition.
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Figure 3.2: Dependency of Partitioning on TPC-H SF1000 runtime

2. Lookup time: The mapping partition→ node is evaluated numerous times
within each query and should therefore be an efficient operation.

3. Update time: As resizing the cluster changes partition assignments, the
structures of the partition assignment should be updatable in an efficient way.

Besides these main objectives, the partition assignment strategies must fulfill the
following side conditions for performance reasons:

• Keep co-locality of foreign-key related tables

• Minimize the number of reassigned partitions on cluster resize

Keeping the co-locality of related tables is a key for achieving optimal query per-
formance by exploiting node-local joins and is therefore an important demand.
Reassigning partitions has several effects and should therefore be minimized. First,
it leads to storage access for reading the partition, as the data is not present in
the node’s buffer. Second, nodes have to update their catalog information when
becoming responsible or loosing the responsibility for a new partition, as described
in Section 3.2.

We can state a lower bound for the minimum number of partitions that have to be
reassigned on cluster resize. Let d be the total number of partitions for an arbitrary
table and we assume that partition assignment is balanced before a resize operation.
When adding n nodes to an existing cluster of nold nodes with nnew = nold + n, it
is clear that every node has to be responsible for d

nnew
partitions after resizing to

achieve load balancing. We assume that nnew is a divider of d and if not, every node
gets one additional partition until the remaining partitions are assigned. As every
new node gets d

nnew
partitions, the minimum total number of reassigned partitions is

d
nnew
· n. For removing n nodes from an existing cluster of nold nodes it can be easily
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seen that d
nold
· n partitions have to be reassigned, as every node was responsible for

d
nold

partitions before resizing. Overall we can state the lower bound of

reassigned partitions ≥ d

nmax

· n

with nmax = max{nnew, nold} for adding/removing n nodes.

Round-robin assignment Round-robin assignment is the currently used assign-
ment strategy in X100. It is clear that this strategy provides load balancing and as
it can be evaluated using an arithmetic operation, has a very fast lookup time while
not needing additional data structures. Nevertheless, with respect to the additional
cluster resize functionality, round-robin is one of the worst choices as it reassigns
nearly all partitions when not resizing the cluster with a factor that is a power of
two, as shown in Figure 3.3. Doubling the number of nodes leads to a reassignment
of half of the partitions, which is basically the minimum for achieving load balancing.
But increasing the number of nodes by a factor being an arbitrary number and not
being a power of two leads to a reassignment of nearly all partitions. Therefore, this
strategy is not applicable for the elastic environment.

Consistent hashing The requirement of minimizing the number of reassignments
on cluster resize directly leads to the method of consistent hashing, which places
elements and buckets on a logical ring representing the set of hash values produced
by the hash function. In order to improve load balancing, buckets can be replicated
on the logical ring. It is shown that removing/adding one hash bucket leads to
a reassignment of k

n
keys, with k being the total number of keys and n being the

number of hash buckets [96]. With keys being partitions and hash buckets being
nodes, this is the lower bound of reassigned partitions we stated before. If a node is
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Consistent hashing Partition manager
Load balancing Good, not guaranteed Best possible
Partition reassignment Minimized Minimized
Lookup time O(log(nodes · replication)) O(1)
Update Re-sort array Adapt every mapping

O(equi classes · partitions)
Memory consumption O(nodes · replication) O(equi classes · partitions)

Table 3.1: Comparison of partition assignment strategies

removed, only the partitions assigned to the removed node have to be reassigned
and adding a node leads to a reassignment of all partitions between the added node
and its last predecessor on the logical ring. Consistent hashing can be implemented
by holding a sorted array or list of nodes, so a lookup operation to find a node
responsible for a partition takes time O(log(n · r)) with r being the replication factor
and using binary search on that list. Updating the number of nodes leads to resorting
the list with a complexity of O(n · log(n)), for example using insertion sort for adding
a few nodes or merge sort for adding a sorted list of nodes. Holding the list consumes
memory in the size of O(n · r), which is independent from the number of partitions.

Explicitly storing and maintaining the assignment mapping This approach
tries to provide a minimal lookup time and a best possible load balancing by explicitly
maintaining and storing the mapping [d]→ [n] from the set of partitions to the set
of nodes for each possible partitioning using a partition manager structure. The
mapping can be stored as an array with the size d, providing lookup time O(1).
Tables with equal number of partitions di build an equivalence class i ∈ Eq, so as a
side effect, this guarantees co-location of foreign-key related tables when assuming
them to have equal partition numbers (otherwise partition-local joins would not
be possible anyway). Maintaining the mapping explicitly ensures that the best
possible load balancing is achieved. As a drawback, this approach has a quite high
memory consumption of O(∑

i∈Eq di), which is especially not independent from the
number of partitions and increases with the number of distinct numbers of partitions.
Nevertheless, the number of different partitionings and therefore the number of
equivalent classes is typically small in user scenarios.

Comparison Table 3.1 compares the approaches of consistent hashing and partition
manager. The partition manager approach outperforms consistent hashing in the
most important categories load balancing and lookup time, while also minimizing
partition reassignment. Assuming that the number of different partitionings is quite
small and hence the number of equivalence classes is small, the time for updating
the structure and the memory consumption is justifiable. As an example, a database
consisting of 1000 tables sharing the same partitioning schema of 1000 partitions
would lead to a memory consumption of around 5KB for 1000 4-byte-integer values
and 1000 boolean values regarding the partition manager design shown in Section
3.3.2. Even for 1000 different partitioning schemas with a maximum of 2000 partitions
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each we would get a few MB of memory consumption. Therefore, the decision has
been made towards the partition manager approach.

3.3.2 Partition Manager Design
The partition manager structure, illustrated in Figure 3.4, realizes the approach
of explicitly maintaining partition assignment mappings and maintains partition
mapping objects for each equivalent class of table partitions, which consist of the
number of partitions, a mapping array and an is moved array, both of the size of the
specific number of partitions. Each position i in mapping holds the node ID of the
node responsible for partition i. The mappings are adapted during each cluster resize
operation to maintain load balancing. In addition to that, the boolean is moved
value at position i indicates, whether the partition was moved during the last cluster
resize operation, which is important to determine partitions to replay from the log
when removing nodes or to delete the storage objects from when adding nodes. On
top of the partition mapping objects, the partition manager maintains a hash table
of partition mapping pointers to efficiently find the mapping for a given number of
partitions.

For implementing a partition assignment, two assumptions are stated. First, it
is assumed that co-local partitions have the same partition ID. This assumption is
fulfilled by the hash partitioning method, as tuples with same keys (either primary
or foreign keys) are mapped to the same hash value, which is used as partition ID.
Second, it is assumed that tables with a foreign key relationship have the same
number of partitions specified. Having an unequal number of partitions while using
the currently implemented hash partitioning violates the requirement of co-locality.
Especially, it is not ensured by the current hash function that having a table T with
k times the number of partitions than it’s join partner S results in a partitioning
that maps one partition of S to exactly k partitions of table T .

Initialization: During server startup, the partition manager structure is ini-
tialized to a global variable by creating an empty hash table. When the partition
manager gets queried for a partition mapping that is not present in its hash table, a
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partition mapping object for the queried number of partitions is created and inserted
into the hash table using the number of partitions d as key. The mapping is initialized
using a round-robin strategy, so for partition ID i we get mapping[i] = i mod d. The
choice of this initial strategy is arbitrary and could be replaced by any other strategy
that provides a balanced assignment for n nodes. The is moved array is initialized
with FALSE at every position. The described process has time complexity O(d) to
initialize a single partition mapping.

Lookup: Knowing the structure of the partition manager, the lookup implemen-
tation is straight forward by a single hash table access and a single array access. Due
to the design, the lookup operation has complexity O(1).

Update: Whenever adding or removing nodes, all partition mappings have to
be adapted. Therefore, we iterate over all entries in the partition manager’s hash
table and adapt every mapping using an algorithm divided into the following steps:

1. Compute the optimal load balancing for the new cluster state by computing
partitions per node and a remainder if the number of nodes is not a divider of
the number of partitions.

2. Compute a diffs array, with diffs[i] indicating whether node i has to get
additional partitions (positive entry) or get partitions removed (negative entry)
to achieve the computed load balancing. The sum over all entries in the diffs
array is 0, as the total number of partitions does not change.

3. Adapt the actual partition mapping by iterating over the mapping array. If
we find a partition whose responsible node has a negative diffs entry, we move
the partition to a node with a positive diffs entry and adjust the respective
diffs entries.

With step three being the dominant step in terms of runtime, the algorithm runs in
O(d). As we adapt the mapping of every equivalence class, the update operation has
a total runtime of O(∑

i∈Eq di).
Exchange: After new nodes are added to the system, they check during startup

whether they are added to an existing cluster and if so, they prepare to receive the
current partition assignments. The current nodes trigger this exchange functionality
within the execution of the add nodes query. The exchange operation is implemented
using MPI BCAST (broadcast), so it has to be performed collectively. After broad-
casting the number of mappings, the number of partitions and the mapping array
are broadcasted for each partition mapping. This way it is ensured that all nodes
call the broadcast the same number of times.

As a result, the chosen approach minimizes the reassignment of partitions in
the case of scaling while providing load balancing and efficient lookup and update
functions.

3.4 Buffer Matching and Filling
We now motivate the problem of decreased performance after a cluster resize operation
and present the design and the implementation of the buffer matching and filling
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mechanism, solving the performance problem and therefore being a solution to the
third goal stated in Section 2.1.1.

For a brief intermediate evaluation of the cluster resize functionality and the
partition manager described in Sections 3.2 and 3.3, the TPC-H benchmark [27]
was run on scale factor 300 using 8 of the 16 cluster nodes described in Section 3.5.
Afterwards, the remaining 8 nodes were added and the benchmark was run again.
Overall, it was observed that queries are slower after adding nodes than before. As
an example, we pick query 1 of the benchmark, which is a selection and aggregation
query on the lineitem table. The runtimes are shown in Figure 3.5. The query
was run on 8 nodes with filled buffers (run 1) before adding 8 additional nodes and
running the query several times again (runs 2, 3, and 4). Doubling the number of
resources, we would expect a speedup up to factor 2, but the results clearly show
an increase in runtime for the first run after the resize operation. However, the
performance increases as expected with more consecutive query runs.

From a user perspective, this behavior is not satisfactory, as he pays for extra
resources without getting any immediate benefit. The observed performance is a
direct consequence of the buffer management. Figure 3.6 shows the qualitative
performance (runtime and output cardinality) of the scan operation of TPC-H query
1 for all threads on all nodes. The right half of the plot, which covers the 8 nodes
added by the cluster resize, shows a runtime that is up to 5 times slower with respect
to the left half of the plot, which covers the 8 nodes that were already running
before the cluster resize. This is caused by filled buffers of the old nodes, while
the added nodes start with empty buffers. In order to smoothen this runtime, we
present the buffer matching mechanism to fill the buffers of added nodes during the
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cluster resize step. Doing so, we move the overhead of filling the buffer from user
queries to the cluster resize operation, which is more justifiable to the user, as the
elapsed time between the user toggling a cluster resize until finishing the resize also
involves demanding new cluster nodes from the cloud service provider, which is also
a potentially long-running operation and dependent on the actual provider. General
approaches for buffer pre-filling must answer the following questions:

• Which data should be chosen to fill into the buffers?

• How is data brought to the buffers?

Especially the second question is important for the cloud setup. As cloud storage
systems offer higher latencies than node-local storages, sending buffered data between
nodes is also worth considering next to reading data from storage.

The chosen solution for this problem is our buffer matching mechanism. In order
to discuss the mechanism from an abstract point of view, we identify a sender side
and a receiver side, dividing the set of nodes into two distinct sets. Nodes of the
sender side are characterized by losing the responsibility of partitions and having
blocks in their buffer they are not responsible for anymore, while nodes of the receiver
side become responsible for new partitions and do not have any buffered data for
them. Note that because of our partition manager design in Section 3.3, a node is
either a sender or a receiver. During data exchange, each node of the sender side
can possibly have a connection to each node of the receiver side.

Block selection The first step of buffer matching is to identify for each node the
set of blocks that needs to be sent to other nodes, as well as each block’s specific
destination. First we get a list of all blocks currently resident in the buffer memory
sorted by importance. The importance of a block is determined by the actually used
buffer replacement policy (PBM in the case of X100 as described in Section 2.2.1). In
addition to that, we identify the destination of the blocks by querying the partition
manager described in Section 3.3 to get the responsible node. Blocks that belong to a
partition for which the node remains responsible are not sent and therefore dropped
from the list. All other blocks are appended to a list of blocks per receiver, so as the
result of the block selection step, each sender node holds a (potentially empty) list
of blocks for each receiver node. One special case needs to be handled. Due to data
distribution or due to buffering blocks of only a few partitions caused by selection
predicates, it might occur that receiver nodes are intended to receive more blocks
than they can actually fit into their buffers. The calculated cardinality difference
is balanced between all senders to this receiver node and each sender is informed
about the number of blocks to send before starting to send data. As the block lists
are sorted by importance, the sender just drops the end of the list in this case.

Data exchange We now want to answer the question how buffer data is brought
to nodes. As reading data from cloud storage might be slow compared to usual local
disks or network transfer, the decision was made towards explicitly sending data to
nodes over the network. The implemented data exchange mechanism follows three
basic steps:
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1. Exchange the number of blocks to transfer between each sender and receiver
node.

2. Exchange block metadata.

3. Exchange buffer content.

The first step is important to establish synchronization between senders and
receivers. Each node of the receiver side has to know about the number of blocks to
receive from each node of the sender side. After the block selection step, each sender
node holds a list of blocks per receiver. The length of these lists is shared with the
respective receivers using MPI GATHER routines, called within a loop over all added
nodes. A receiver node with rank i becomes the receiver of the MPI GATHER call
in exactly one loop iteration. In this round, all other nodes send the length of their
list i, indicating the number of blocks to send to node rank i. As a result, node i has
the complete information about the number of blocks to receive after success of loop
iteration i. In the second step, we transfer the blocks metadata (e.g., used bytes,
columnID or the ID of the commit creating the block) to the receiver nodes. It is
important to note that metadata and actual data of a block cannot be transferred
all-in-one using a single MPI call by default, as metadata and actual data are not
placed in consecutive memory areas due to the VectorH buffer management, which
preallocates the whole buffer memory during startup. Constructing an additional
structure holding both metadata and buffer data would lead to copying major parts of
the buffer, which is not desirable. Sending the metadata is important for two reasons.
First, the respective block can be searched in the receiver’s catalog. X100 uses a
replicated catalog, so a each block is already created on the receiver side. Second, the
metadata contain information about the buffer content, like the actual data size or a
flag to indicate whether data has been changed. This information is created during
data load, so it needs to be sent as we do not load data from storage. Sending the
metadata arrays is realized using non-blocking MPI point-to-point communication.
This eliminates the need for explicit synchronization in this step. After receiving
the metadata, each receiver performs catalog lookups to get pointers to the block
structures and demands memory in the buffer memory for each block, before the
blocks are inserted into the buffer replacement policy. In the third step, we transfer
the actual buffer data. As the data for blocks is not placed in consecutive memory
areas, they have to be sent one-by-one. Using non-blocking MPI communication
like in the second step would therefore lead to k communication calls per sender
and receiver with k being the number of blocks to transfer between sender and
receiver, making it difficult to handle for the MPI environment when scaling the
problem up. Therefore, we use synchronous, blocking communication for this step.
To avoid deadlocks and reduce waiting time, we handle the communication in a multi-
threaded way. For each point-to-point connection between a sender and a receiver
node, having a non-zero number of blocks to transfer, both sender and receiver
node open a separate thread running their side of the communication, resulting in
a communication network. Each thread blocks until the respective counterpart of
the communication is called. Upon receiving buffer data for one block, the data is
copied to the buffer memory of the receiver node.
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Fault tolerance The buffer matching mechanism is an addition to the cluster
resize functionality. The success of the buffer matching step is not indispensable for
the success of the whole cluster resize operation, but should not lead to an undefined
state on the occurrence of errors. Therefore, the mechanism is designed to be fault
tolerant. We distinguish between different times of error occurrence. If an error
is detected before the block metadata in the catalog of a receiver is changed, we
can simply perform a collective abort, as no durable changes were done yet. This
is realized using a synchronization point between the second and the third step.
If an error occurs during data exchange within third step, we have to ensure that
the system handles the block’s buffer content in the right way. After receiving a
single block’s data and copying it to the buffer memory, we verify the correctness of
the data using an already existing magic number in the block’s data. This magic
number is a fixed constant which is used to discover transmission failures. This
mechanism could be further improved using a checksum. If the verification succeeds,
the block is flagged to be in memory. If the verification fails or an error occurs during
communication, the current block is flagged as “LOAD”, leading the system to not
use the buffer content before an IO-thread loads the data from storage (and adjusts
the metadata again). Furthermore, all pending blocks that have not been transferred
yet are also flagged as “LOAD”. All other communication threads are not affected
and may succeed.

Integration The described mechanism is integrated into the add nodes and the
remove nodes call. For adding nodes, the sender side is formed by the current nodes,
as they lose responsibilities for partitions and may have buffered data for them, while
all newly added nodes form the receiver side. During the system startup of the
added nodes, buffer matching is integrated after the partition mapping exchange
and the log replay, but before the server is able to handle user connections. This
way the server already has the full catalog information. The current nodes perform
buffer matching after following the server startup communication of the new nodes.
For scaling the cluster size down, the removed nodes form the sender side of the
buffer matching mechanism, while the remaining nodes form the receiver side. In
order to enable removed nodes to determine the target of their buffered blocks,
they update their partition mappings according to Section 3.3. Afterwards, they
perform buffer matching while the remaining nodes perform it during execution
of the remove nodes call. In order to isolate the buffer matching communication
from all other communication, a separate MPI communicator is build, being only
valid during the buffer matching step. Finishing the buffer matching step, this
communicator is destroyed. To provide the user the possibility to toggle the buffer
matching mechanism on/off, an additional parameter is introduced into the X100
configuration API.

Optimizations After describing the basic ideas behind the buffer matching mecha-
nism, we want to introduce two additional optimizations to the concept: the deletion
of unused blocks at the sender side and the use of an alternative data exchange
implementation. The strategies of the buffer policies are designed to keep the most
important elements in the buffer by using priority queues. After performing buffer
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matching, blocks a sender node is not responsible for anymore may remain in its
buffer queues. Due to the behavior of the strategies, these blocks are displaced
at some time in the future. Nevertheless, a block may remain a long time in the
queues once it is categorized as very important, depending on the actual displacement
strategy. As a consequence, this buffer page is useless for a long time, blocking
possibly important blocks from finding their way into the buffer. Therefore, we
explicitly drop sent blocks from the buffer replacement policy on the sender side.

The third step of the buffer matching mechanism uses blocking MPI calls to
send the block’s data one-by-one, as the buffered data of multiple blocks are not
placed in consecutive memory areas (in this case, one call pointing to the start
of the memory area would suffice). The MPI environment can be configured to
use several communication protocols and uses the Transmission Control Protocol
(TCP) in the X100 integration. Therefore, each call to send/receive a data block
invokes communication setup, as well as the common TCP slow start phase, which is
unnecessary overhead. As an optimization, we introduce a second, socket-based data
exchange implementation. Similar to the described mechanism in the third step of
the data exchange step, each sender-receiver pair with non-zero number of blocks to
be transferred opens a thread on each side. Instead of starting MPI communication,
the nodes establish a TCP stream socket connection. The receiver node creates
a socket, sends the socket address information to the sender node using MPI and
listens for an incoming connection. The sender node connects to the socket and sends
data over the socket. As this single connection keeps alive until all data is sent, the
overhead of communication establishment and slow start phase is reduced compared
to the MPI implementation. In order to provide the same level of fault tolerance,
each side of the socket checks the socket status using select before sending/receiving
data. Furthermore, data blocks can be send in chunks, and only after a full block
is received, the receiver verifies the block. Similarly to the fault tolerant behavior,
blocks are flagged on connection or communication errors.

3.5 Evaluation

During the evaluation, we want to prove the superiority of the implemented cluster
resize feature over the inelastic way of scaling. Furthermore, we want to show that
the usage of the buffer matching and filling mechanism improves query performance
after a cluster resize operation and is, therefore, a useful extension. The initial
evaluation was done on a private cluster of 16 commodity nodes, each consisting of
an AMD Opteron Processor 3380 @2600MHz with 4 modules of 2 cores each, 32 GB
DDR3 RAM, 3.5 TB disk space, distributed among 4 HDDs and running CentOS-7
64 Bit. The nodes are connected over a 1GBit/s ethernet connection and Hadoop
2.7.1 is installed on the cluster. In addition, the TPC-H benchmark [27] on scale
factor 1000 GB provided test data and test queries. This benchmark covers a well-
understood synthetical workload in order to evaluate and compare data warehouse
solutions with a dataset inspired by real world applications. The large tables of the
benchmark are partitioned into 192 partitions, which is an overpartitioning for the
cluster of 16 nodes with 8 cores each.

43



CHAPTER 3. ELASTIC SCALING

2 4 6 8 10 12
0

20

40

60

Number of added/removed nodes

R
un

tim
e

in
se

co
nd

s

Add nodesAdd nodes
Remove nodes

Buffer matching

Figure 3.7: Scaling performance for adding and removing nodes

Scaling performance: The first experiment evaluates the performance of the
implemented cluster resize feature. For the investigation of the upscaling process
we start with a cluster of 4 nodes with filled buffers and vary the number of added
nodes, while we start with 16 nodes and vary the number of removed nodes for the
downscaling process. For these experiments, we keep the size of the bufferpool at
10 GB and the block size at 1 MB. Figure 3.7 illustrates the results of the experiment.
One can observe that the runtime for adding nodes without using buffer matching
increases in a linear way with the number of added nodes. The main reason for this
behavior is the collective startup of the nodes. Starting more nodes at the same time
increases the impact of the various synchronization points within the startup process.
The buffer matching mechanism adds a nearly constant overhead to the measured
add nodes runtime. In a more detailed consideration one can observe that the buffer
matching mechanism shows its minimum runtime when adding 8 nodes. Adding
more nodes also increases the buffer matching data exchange parallelism (the number
of receiver nodes per sender node), so the minimum runtime is expected to be at the
number of physical cores, which is 8 in the used hardware setup. The downscaling
runtime shows a slight increase when removing more nodes, which is caused by the
adapted log replay the remaining nodes have to perform. Within this step, removing
more nodes leads to more log entries that have to be replayed in the remaining nodes.
The buffer matching mechanism was not applied for the downscaling process, as
buffers where totally filled before scaling, so there was no buffer space left in the
remaining nodes to receive blocks from removed nodes. Overall we can state that
downscaling takes significantly less time than upscaling, because the synchronization
effort for downscaling is lower. Once the nodes are split into two groups within the
remove nodes process, the group of removed nodes can simply perform a shutdown.

44



6

8

10

Q
ue

ry
Ru

nt
im

e
Buffer matching on
Buffer matching off

1 2 3 4 5 6 7 8
4
6
8

10
12

Query run

N
od

es

Number of nodes

(a) Add nodes

6

8

10

12

Q
ue

ry
Ru

nt
im

e

Buffer matching on
Buffer matching off

1 2 3 4 5 6 7 8
4
6
8

10
12

Query run

N
od

es

Number of nodes

(b) Remove nodes

Figure 3.8: Scaled query performance (buffer matching impact highlighted)

Scaled query performance: This experiment investigates the impact of the
cluster resize operations on query performance. For this we repeatedly run a query
while changing the cluster size between runs. As the main impact is expected to
be within the scan operators, we use a query scanning two columns of the lineitem
table. In order to fit the data into the buffer of the smallest cluster configuration, we
limit the number of tuples to 500 million using a selection predicate, while setting
the buffer memory to 20 GB per node. This way we avoid I/O access that would
create an unintended bias in the measurements. Moreover we minimize the network
traffic by applying an aggregation on each column, which is executed locally on each
partition and results in a single tuple that needs to be send to the leader node.

Figure 3.8 show the measured query runtimes. Regarding the case of upscaling
in Figure 3.8a, we can observe that adding nodes accelerates the query runtime as
expected. However, the behavior varies between different buffer matching config-
urations. With activated buffer matching, query runtime drops and stays on the
same level for the respective query runs after cluster resize, because the buffers
already contain the needed data. On the contrary, not using buffer matching leads
to significantly slower queries, especially for the first run after a cluster resize. The
reason for this behavior is that added nodes have to read data from storage. In
the following runs the query performance improves as buffers of added nodes fill.
For the case of downscaling, we have to distinguish between two use cases. On the
one hand, the reason a user triggers a downscale operation can be that the system
is in an overprovisioning state, so the system underutilizes the provided hardware.
In this case, removing server capacity should not have an impact on the systems
performance. For X100 we neglect this case as we assumed an overpartitioning at
every point in time. If this condition is violated, a repartition operation is triggered
by the system. On the other hand, the user could invoke the downscaling to save costs
while accepting slower system performance, e.g., when the expected load becomes
less during specific times of a day. This case is expressed by Figure 3.8b. When
scaling down the cluster, we can observe a performance degradation, again varying
between buffer matching configurations. Similar to the upscaling case, the runtime
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Figure 3.9: Buffer matching performance with constant buffer size of 10GB when
upscaling from 8 to 16 nodes

of the first query run after cluster resize is significantly slower when not using buffer
matching, as remaining nodes become responsible for data of removed nodes and
have to read it from storage. With activated buffer matching, data is sent to the
remaining nodes, leading to an immediately fast runtime after resize. Overall, this
experiment proves that using the buffer matching mechanism during cluster resize
perceptibly increases query performance after resizing.

Buffer matching performance: In this experiment, we want to evaluate the
buffer matching performance for both implemented data exchange mechanisms, using
MPI and using data streams over sockets. The two main parameters that have an
impact on the buffer matching performance are buffer size and block size. While the
buffer size affects the amount of data that is shipped during the buffer matching
data exchange, the block size affects the granularity of shipped blocks and as a result
also the communication overhead. Trying to touch as much data as possible, we
use query 9 of the TPC-H benchmark for this experiment, as it touches five of the
8 tables in the benchmark and scans about seven billion tuples for the used scale
factor of 1000 GB.

The plot in Figure 3.9 shows the runtime of the buffer matching mechanism
as a function of the buffer size per node or the block size for both data exchange
implementations. For these measurements, we used the upscaling step from 8 to 16
nodes. Figure 3.9a show that the data exchange takes the major part (about 98%)
of the whole buffer matching step. Furthermore, the plot illustrates the expected
runtime increase when increasing the buffer size and shows that they correlate in a
linear way. Comparing both data exchange implementations, we can observe that the
socket implementation is faster in terms of runtime and also shows a smaller grow in
runtime when increasing the buffer size. As discussed in Section 3.4, this behavior
is presumably caused by the fact that the MPI implementation has to re-initiate
the communication for each block, as the blocks may be randomly placed within
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the buffer memory space. The socket implementation on the other hand initiates
the communication once before sending a data stream and therefore reduces the
communication overhead.

In a further experiment we evaluate the impact of varying block sizes on the
buffer matching mechanism. For this we keep the buffer size constant at 10 GB and
we only consider the pure data exchange runtime, as we have seen in Figure 3.9a that
preprocessing only takes a minor part of the overall runtime. Increasing the block size
implies an increase of the necessary memory to allocate blocks. Therefore, we had to
switch to scale factor 300 GB for this experiment as the overall available memory
did not suffice for the largest tested block size of 8 MB and scale factor 1000 GB.
Figure 3.9b shows the results of this experiment. For both implementations we can
observe a slight increase in runtime when increasing the block size. This is caused
by increased data volume that has to be exchanged, as larger block sizes come along
with larger unused space or padding. Besides that, the socket implementation is not
heavily impacted by varying block sizes, as data is simply written to stream sockets
not considering any block boundaries. On the contrary, the MPI implementation
profits from larger block sizes, as the communication overhead shrinks with the
decreasing number of blocks to be sent. As a result, the difference in runtime
between both implementations also shrinks with larger block sizes. Nevertheless,
the choice of the block size also impacts other parts of the system, so this choice is
usually fixed around a value of 1MB and can not be changed after database creation.
For these block sizes, the socket implementation is surely the better choice compared
to the MPI implementation.

Cluster resize usability: In the last experiment, we compare the implemented
cluster resize functionality with the “inelastic” scaling, which involves the following
steps:

1. Shutdown of the system

2. Adjustment of a list that holds the X100 node names

3. Restart of the system

4. Run a query

These steps are encapsulated in a script to reliably measure the runtime. We
define the start state of the experiment as a running X100 system with filled buffers.
Furthermore, we define the end state as the moment we get a query result from a
scaled X100 instance. The runtime between start and end state is measured for the
cluster resize feature with and without activated buffer matching, as well as for the
inelastic scaling process. As query workload we choose query 1 and query 9 of the
TPC-H benchmark. The buffer size is set to 10 GB per node and we investigate the
cases of scaling from 8 to 16 nodes and vice versa.

Table 3.2 shows the measured runtime results of the experiment. For all cases, the
implemented cluster resize feature outperforms the inelastic scaling up to a factor 4.
In addition to that, activated buffer matching shows a benefit in runtime for the
cases of scaling the system up, caused by the buffer pre-filling. The amount of benefit
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add nodes remove nodes
Q1 Q9 Q1 Q9

BM on 57.74 s 77.55 s 32.02 s 51.06 s
BM off 58.70 s 87.95 s 32.56 s 52.04 s
Inelastic 167.68 s 223.30 s 123.20 s 147.94 s

Table 3.2: Runtime for scaling the system using the inelastic scaling process or the
cluster resize feature with and without buffer matching (BM)

is dependent on the actual query for this experiment, so query 9 shows a better
speedup than query 1 using buffer matching. For the case of removing nodes, buffer
matching has a negligible impact, as buffers of the remaining nodes are already filled.
Therefore, a buffer merging strategy could be a possible optimization in the future.
Moreover, we can state that adding nodes to the system is slower than removing
nodes, both for inelastic scaling and the cluster resize feature. The reason for this
is that started servers perform a collective startup with several synchronization
points and do a full log replay. Increasing the number of servers, this startup time
also increases, leading also the inelastic scale-up to be slower than the scale-down.
In the contrary, removed nodes can shutdown independently after the remaining
servers form a new communicator (see Section 3.2), not influencing the further query
processing.

The evaluation is highly dependent on the cluster configuration (e.g., network
speed) as well as the size of the write-ahead log that has to be replayed. Therefore,
this experiment is intended to show a qualitative difference between the scaling
methods. The scaled query performance experiment was done again before the elastic
cluster resize feature got released in the product. The TPC-H benchmark on scale
factor 1000 was run on a cluster of eight virtual machines in the Google Kubernetes
Engine (GKE), consisting of 16 CPU cores and 256 GB RAM each. We take query
1 as an example. Starting from a hot cluster of two nodes a node was repetitively
added with the query being run two times in between to capture performance directly
after scaling. Figure 3.10 shows the results of the experiment. Similar to the results
presented before, we can observe that buffer matching has a huge impact on query
performance after scaling. As nodes are substantially faster in this experiment, I/O
overhead of reading data from storage has an even higher relative impact when buffer
matching is disabled. With enabled buffer matching, query performance improves
smoothly with added nodes which was the goal of the feature. We can also observe
that scaling itself is significantly faster than in the initial experiments on the private
cluster of commodity hardware. As a result the buffer matching runtime is now
a significant part of the overall scaling runtime, compared to Figure 3.7. Scaling
runtime decreases with increasing cluster size due to the increasing parallelism in
buffer matching. Consequently, the decision towards buffer matching is not as clear as
before. The mechanism still hides the cold start problem after scaling in the scaling
runtime, which might be better justifiable towards a user instead of slow performance
after scaling. However, in this experiment on more modern hardware it introduces
more runtime to the scaling operation than it reduces runtime for subsequent queries.
The reason for this is the improved I/O bandwidth of this hardware, so reading from
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Figure 3.10: Updated scaling experiment in cloud environment. TPC-H SF1000
query 1. Buffer matching effect after scaling highlighted.

storage is not significantly slower than performing buffer matching anymore. In the
release version of the feature, the third step of the buffer matching mechanism (data
exchange) was adapted towards an asynchronous block prefetching mechanism from
storage.

Overall, the evaluation proves that the implemented cluster resize feature signifi-
cantly outperforms the “inelastic” scaling method using a restart while also enabling
further optimizations like an incremental log replay or buffer pre-heating in order to
achieve optimal query performance after scaling.

3.6 Conclusion

Adapting a system to exploit the elasticity of cloud hardware is a major factor for
the success of the system as a cloud product. As the first goal, we implemented
an elastic cluster resize feature for the X100 query engine, enabling adding and
removing nodes during system uptime and therefore avoiding the drawbacks of a full
system restart, e.g., full log replay and empty buffers. For the implementation of the
feature we utilized group and communicator management offered by the Message
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Passing Interface (MPI), which is used for node-to-node communication within X100.
Second, we designed a partition manager that is suitable for the cloud environment.
By using overpartitioning and explicitly managing partition-to-node mappings for
equivalence classes of partitionings, the implemented solution minimizes partition
reassignments, keeps partition co-locations, balances load on partition level and
provides efficient lookup and update functions. The partition manager replaces
the round-robin partition assignment in X100, which showed to be not suitable
for the elastic cloud environment. While evaluating the cluster resize feature in
combination with the implemented partition manager, queries did not show the
expected speedup immediately after the resize, which was caused by empty buffers.
As an optimization, we introduced the buffer matching and filling mechanism into
the cluster resize feature. After changing partition mappings, nodes scan their buffers
and send buffered data to other nodes in order to pre-fill their buffers, leading to
immediate speedup after cluster resize. For the buffer matching data exchange, we
implemented two different approaches using MPI communication and using data
streams over sockets and evaluated them against each other.

The experiments showed that the elastic cluster resize feature significantly out-
performs the inelastic scaling process using a system restart. Activating the buffer
matching mechanism further increases the performance after the cluster resize by
hiding the effort for buffer pre-heating in the scaling runtime. This enables users
to immediately profit from additional resources. A repeated experiment on recent
hardware however showed that the buffer matching mechanism adds more runtime to
the scaling process than it reduces runtime in query execution. The relative impact
on scaling is significantly higher compared to the first experiments, caused by the
scaling process itself taking much less time in modern cloud environments.
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Chapter 4
Database Support for Approximate
Constraints

In order to exploit approximate constraints in analytical databases we propose to
handle tuples violating constraints separately to accelerate query execution. In
this chapter, we therefore introduce the generic PatchIndex structure supporting
arbitrary approximate constraints. PatchIndexes allow to materialize information
about tuples violating given constraints and query them separately during query
execution. Constraints can be maintained under regular inserts or updates, which is
a common case for data applications running in the cloud. Even perfect constraints
are allowed to become approximate over time. The main contributions of this chapter
are as follows:

• We describe the design of the generic PatchIndex structure and consider design
decisions regarding memory footprint, update support and efficient query
integration using the PatchIndex scan. The PatchIndex approach can be
applied to arbitrary constraints by implementing a defined interface.

• We apply the PatchIndex approach to sorting and uniqueness as traditional
database constraints, explain how these constraints can be discovered and
describe possibilities to benefit from the approximate constraints in query
optimization and query execution.

• We show that not only traditional database constraints can benefit from
PatchIndexes by applying the approach to the problem of multi-key data
partitioning. We therefore relax the problem to a patched multi-key partitioning
problem and provide a possible solution for the problem based on PatchIndexes.

The remainder of this chapter is organized as follows: We discuss related work in
Section 4.1. Section 4.2 describes the basic design of the index structure and discusses
design choices regarding the underlying data layout. It presents the PatchIndex scan
and the interface to apply PatchIndexes to arbitrary constraints. In Section 4.3 we
introduce the definition of “Nearly unique columns” and “Nearly sorted columns” as
examples for approximate versions of traditional database constraints. We provide
approaches to discover the constraints and incorporate them in query optimization to
benefit from the approximate constraint information. Section 4.4 defines the problem
of a patched multi-key partitioning and describes how the problem can be mapped
to traditional graph partitioning algorithms and a solution can be achieved by using
PatchIndexes.
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4.1 Related Work
Materialization The materialization of information is a widely investigated topic
in the database research field, particularly in the context of materialized views. While
significantly impacting query performance [23], the major drawback of materialized
views is their update support. For the subset of select-project-join (SPJ) views there
are efficient ways to support table updates and keeping views consistent [21, 22, 61,
150]. They typically try to avoid base table access by determining update sets and
performing differential update operations. Besides that, materialized information
should be chosen based on the expected benefit, so intermediate results of frequent
queries are a good candidate for materialization. A benefit-based approach for
choosing intermediate results is given in [113], while [66] also includes the probability
of a materialized result to be usable in future queries to the cost model. Nevertheless,
these approaches do not take updatability into account.

Patch Processing PatchIndexes are a generic approach to materialize arbitrary
constraints. The approach is based on the concept of patch processing, which is
commonly used in compression. The PFOR, PFOR-DELTA and PDICT compression
schemes [167] show robustness against outliers by handling exceptions to certain
distributions separately. Furthermore, white-box compression [52] learns distributions
and properties of data in order to choose appropriate compressing schemes. Here,
tuples that do not follow a certain behaviour can be compressed using another
compression scheme than remaining tuples, significantly improving compression rates
as a result. These approaches modify the way data is physically stored to handle
exceptions, which significantly differs from our approach. By not changing the
physical order of data, our concept of PatchIndexes allows multiple approximate
constraint definitions per table, so for example the definition of multiple approximate
sort orders.

Traditional Database Constraints After presenting the PatchIndex design in
the following, we show how PatchIndexes can be applied to traditional database
constraints like uniqueness and sorting. Besides materialized views, there are several
specialized materialization approaches like SortKeys described in Section 2.2.1,
materializing a certain tuple order, or JoinIndexes [151] and Bitwise Dimensional
Co-Clustering (BDCC) [17] for join materialization. While JoinIndexes materialize
foreign key joins by maintaining an index to the join partner as an additional table
column, BDCC physically co-locates join partners of different tables in distributed
databases. Our approach materializes aggregate, join and sort results directly at the
table level, which makes it usable for a wide range of queries while still providing
efficient update support. Particularly updating uniqueness constraints, which are
the results of aggregations, differs from the general approaches for SPJ views.

Research on approximate constraints evolved from the field of constraint discovery.
For the uniqueness constraint, approaches for unique column combinations (UCCs)
[2] and respective discovery algorithms [68, 119] are introduced to handle perfect
constraints. In order to also handle approximate uniqueness constraints, the concepts
of “possible” and “certain” keys are presented in [90] to enforce constraints by
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replacing violating tuples. Besides that, embedded uniqueness constraints (eUC)
[158] separate uniqueness from completeness to enforce the uniqueness constraint only
on a subset of tuples. Recent publications [123, 103] also cover discovery approaches
for approximate denial constraints, a more general class of data-specific constraints.
As these approaches mainly focus on the discovery of approximate constraints, we
integrate approximate constraints into query execution in an updatable way with
our work. We therefore combine the concept of approximate constraints with the
concept of materialization.

Physical database design for OLAP As a second example for applying PatchIn-
dexes we relax the partition locality constraint in data partitioning and introduce the
patched multi-key partitioning constraint. Data placement has been an investigated
problem for decades, as co-locating data is crucial for query performance [164].
Besides approaches for transactional workloads [39, 122], physical database design for
analytical workloads is typical workload driven, either transparent for the database
system [51] or integrated into a DBMS’s optimizer [114]. DBDesigner [152] recom-
mends sort keys and column encodings besides partition keys and also takes storage
footprint and fault tolerance into account. [72] presents a learned partition key
advisor that learns and adapts while observing the workload and [164] presents a
workload-agnostic approach besides a workload-driven one, making decisions based
on the database schema and the full data. Amazon published a distribution key
recommender [120] based on mapping the join history of tables to a linear program,
showing that solving the problem is NP-complete. The described approaches advise
optimal partition keys or partition strategies for a given workload, but are limited to
single-key partitionings due to limitations of the underlying DBMS. Multi-dimensional
partitioning can be achieved by holding multiple partition schemes in parallel using
replication [101] or using hierarchical partitioning [145]. Orthogonally to partitioning,
multi-dimensional clustering [20] or Bitwise Dimensional Co-Clustering (BDCC) [17]
can be used to place similar tuples close to each other to reduce I/O effort of queries
or efficiently support joins and aggregations by exploiting the closeness of similar
tuples. In our work we envision to mitigate the limitation of DBMS’s to a single
partition key per table. We show that hierarchical partitioning is not suitable and
achieve multi-dimensional partitioning without data replication. This opens the
possibility for partition advisors to consider multiple partition keys , so queries on
different partition keys can be performed without data repartitioning.

Graph partitioning We show that we can map the problem of finding a solution
for the patched multi-key partitioning constraint to existing graph partitioning al-
gorithms. Finding a balanced graph partitioning is known to be NP-hard [7] and
typically based on graph cuts, i.e., edge-cut or vertex-cut algorithms. Conceptually,
edge-cut algorithms assign vertices to partitions and remove edges from the graph
that connects vertices of different partitions. Vertex-cut approaches on the other
hand assign edges to partitions and remove vertices with adjacent edges of different
partitions. The problem is defined and surveyed in [29, 4], discussing the challenges
of distributed graph algorithms and the state-of-the-art approaches like Metis [78],
JA-BE-JA [132, 131] or DFEP [59]. With Distributed Neighbour Exchange (Dis-
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tributedNE) [67], a distributed graph partitioning algorithm was presented recently
that achieves a proven upper bound in partition quality and outperforms the state-of-
the-art approaches, scaling to trillion edge graphs and offering approaches for both
edge-cut and vertex-cut. Recently, [45] showed how to incrementalize existing graph
partitioning algorithms, e.g., DistributedNE, adding update support to existing graph
partitionings. In our example, we do not focus on capabilities of graph partitioning
approaches, but show how to map the problem of multi-dimensional relational data
partitioning to graph partitioning to make use of the existing approaches.

Robust Query Performance Multi-key data partitioning can be used to achieve
robust query performance, which is a challenge in modern database optimizer design.
A topic outline and a discussion of challenges are given in [57, 160]. In general,
robust query performance describes the behaviour of a system to deliver good query
performance for many different workloads, but trying to avoid bad performance as
much as possible. Consequently, query optimizers should not try to strive for an
optimal query plan, but find a reasonable good plan that tolerates wrong decisions,
like cardinality or selectivity estimation errors. Many directions exist to achieve
robust performance, like runtime collection of profiling information to allow adaptive
query performance (e.g., in [1, 77]), using constraint information, handling estimation
errors [16, 162] or providing only a small set of physical operators to reduce the chance
for bad decisions [160]. In our example we aim at achieving robust performance on
the physical data layout level by using our patched multi-key partitioning constraint
to reduce repartitioning as much as possible. For all chosen partition keys we
only repartition a small amount of tuples in order to achieve reasonable good
performance, but never bad performance caused by a full table repartitioning. Our
query optimization techniques are based on existing operators, not increasing the
search space of physical operator plans as a result.

4.2 PatchIndex Design

4.2.1 Definitions and Overview
We design the PatchIndex as an index structure that can be defined on a certain
subset of table columns for an arbitrary constraint. For each indexed column it
maintains the exceptions for the given constraint. Exceptions are identified over a
unique identifier, which is the row identifier RID in our case. Please note that a row
identifier might change under updates. In compliance to related work on patched
processing, we call the set of exceptions “set of patches” and define it as follows:
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Definition 4.2.1. Naming conventions

R Relation
t ∈ R Tuple of relation R
dom(c) Set of possible values of a column c
id Column of row identifier RID
id(t) ∈ N Row identifier of t
c(t) ∈ dom(c) Value of column c of tuple t

Additionally, we define a projection function
PROJ(R, c) : relation × column → relation
as a projection of relation R on column c, which similarly to the SQL operator
performs no duplicate elimination and therefore differs from the relational algebra
operator π.

Definition 4.2.2. Set of patches
For a column c we define a set of patches Pc ⊆ {id(t) | t ∈ R}. Based on this, we
define RP = {t ∈ R | id(t) ∈ Pc} as the set of tuples of R whose row identifiers are
in Pc and R\P = {t ∈ R | id(t) /∈ Pc} as the set of tuples of R whose row identifiers
are not in Pc.

The PatchIndex data structure is intended to maintain the set of patches Pc

for the column c it is defined on. It identifies exceptions over their row identifier,
which enables an efficient join of the PatchIndex information with the actual data by
position in the PatchIndex scan, but leads to some overhead to maintain positions
under updates. Identifying tuples over a unique identifier like a tuple identifier or a
primary key would lead to an additional value-based join to merge the PatchIndex
information with the data. For the realization of PatchIndexes we implemented two
basic approaches, which are the identifier-based approach and the bitmap-based
approach. For the identifier-based approach, we store the 64 Bit tuple identifiers of
all tuples in Pc in an array, which is similar to a sparse approach. As a result, the
memory consumption of this approach is proportional to the cardinality of Pc. On
the contrary, the bitmap-based approach is similar to a dense way of storing data.
With n being the number of tuples in c (or the respective relation R), the PatchIndex
holds a bitmap of size n for the column c, which is in particular independent of the
cardinality of Pc. The element at position i within this bitmap indicates whether
tuple i belongs to Pc or not.

Similar to the decision between a sparse and a dense way of storing, deciding
between the identifier-based and the bitmap-based approach is based on the car-
dinality of Pc. As we require 1 Bit per element for the bitmap-based approach
and 64 Bit per element for the identifier-based approach, we can expect that the
identifier-based approach has a lower memory consumption for all cases where
|Pc|/|R| ≤ 1/64 = 1.56%.

4.2.2 Update-conscious Data Layout
In our initial experiments we found that approximate constraints are beneficial for
far larger sets of patches than 1.56% of the tuples, leading to the choice for a dense,
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bitmap-based approach for storing the sets of patches. An important fact for an
index structure to be usable in real world use cases is update support. Especially
with the upcome of cloud based data analytics, data freshness and real-time reporting
gained a lot of importance. Therefore optimizing a data structure for update support
while maintaining read performance is an important factor for its usability.

In database systems, there are three types of table updates, namely insert, modify
and delete operations. With the bitmap-based approach inserts and modifies can be
handled efficiently. For inserts, reallocating/resizing the bitmap and setting single
bits is sufficient, while for modifies single bits need to be changed. Delete operations
however are the main challenge for the bitmap structure, as it needs to be ensured
that read access to specific bits remains efficient after update operations. As described
in Section 4.2.1, we build the PatchIndex on row identifiers to ensure efficient read
performance, and deleting a tuple descreases row identifiers of all subsequent tuples.
Although it can be realized by shifting the bitmap towards the deleted position, this
potentially shifts large amounts of memory and therefore results in poor update
performance. On the opposite simply marking bits as inactive leads to bad read
performance, as a tuple with row identifier i is not represented by the bit at position
i, but by the bit at position i minus the number of deleted tuples in the range [0, i]
of row identifiers.

To mitigate the issue of poor update or read performance, we present our approach
of a sharded bitmap that efficiently supports RID-preserving delete operations while
keeping additional memory consumption low. We base our design approach on
existing update-conscious bitmap approaches and extend them with parallel and
vectorized delete and bulk delete support.

Sharded bitmap design

Update Conscious Bitmap Indices [32] faced the problem of degrading read per-
formance under updates [14]. HICAMP [156] and UpBit [14] proposed different
solutions to this problem for multi-dimensional bitmap indexes. While HICAMP
divides bitmaps into slices and maintains access to them over a directed, acyclic
graph, UpBit uses delta-structures for update maintenance and “fence pointers” for
fast access to arbitrary bit positions. Both approaches share the concept of slicing,
either explicitly or implicitly over pointers, to keep updates local and allow parallel
operations on the bitmap.

Similar to UpBit, in our sharded bitmap design we implicitly divide bitmaps into
virtual shards in order to keep delete operations local and to enable parallelism in
update operations. The upper part of Figure 4.1 shows the design concept of the
data structure. The bitmap is realized using an array of addressable elements. While
these elements are 64 bit types in our implementation, we reduced the size to 8 bits
in Figure 4.1 for clarification. A virtual shard then consists of multiple addressable
elements and a single additional integer value indicating the index of the first bit in a
shard, similar to UpBit’s fence pointers. Besides keeping delete operations local, this
approach also facilitates fine-grained locking and logging for efficient concurrency
control as described in Section 4.2.5.
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Figure 4.1: Sharded bitmap design before (A) and after (B) deleting the bit at
position 5.

Sharded bitmap operations

Bit access In an ordinary bitmap, single bit access methods set(), get() and unset()
are performed in two steps. First, the position of the bit is calculated by getting the
addressable element using a division of the position by the size of an addressable
element (realized using a bit shift) and getting the position within an element using
a bitwise AND operation with a bitmask. In a second step, the bit is changed or
returned using another bitwise operation.

In order to access a single bit in the sharded bitmap structure, we first compute
the shard containing the bit. This can be efficiently realized using a bit shift and
additional comparisons with the start values of the upcoming shards. The additional
checks are necessary as a bit may be contained in a subsequent shard due to previous
delete operations. Then the bit can be accessed using the position relative to the start
value of the shard in a similar way than the ordinary bitmap. This way, accessing a
single bit in the sharded bitmap is only slightly slower than in ordinary bitmaps.

Delete Deleting a single bit in the sharded bitmap is divided into three steps:

(a) Determine the position of the bit like described in the bit access operation.

(b) Shift all subsequent bits within the shard by one position towards the deleted
bit.

(c) Decrement the start values of all subsequent shards.

As an example, the result of deleting the bit at position 5 is shown in the lower
part of Figure 4.1 with the changed elements highlighted in red color. Note that
after deleting a bit, the values of subsequent elements change, which is the desired
semantic of the delete operation. In the example, the bit at position 25 after the
delete operation is the bit at position 26 before the delete. Compared to ordinary
bitmaps, steps (b) and (c) are tradeoffs, as we limit the impact of a delete operation
to a single shard in step (b), but need additional effort afterwards in step (c) to adjust
metadata. Therefore, the choice of the shard size is crucial for the data structure.

Step (b) is the main challenge of this approach as it involves cross-element bit
shifts, which can be realized by a sequence of bit masking and shifting operations. In
order to further accelerate this step, we designed a vectorized cross-element shifting
algorithm that uses Advanced Vector Extensions Version 2 (AVX2) intrinsics and
is based on shifting, masking and permutation intrinsics to enable data exchange
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Figure 4.2: Parallel & vectorized bulk delete operation

1 // Load data to avx vec to r
2 m256i x = mm256 loadu si256 ( ( m256i *) data ) ;
3 // Get l a s t b i t o f each element
4 m256i y = mm256 and si256 (x , bit mask ) ;
5 // F i r s t b i t w i l l be l a s t b i t o f prev . element
6 y = mm256 s l lv ep i64 (x , sh i f t mask63 ) ;
7 // Save element at pos 0 f o r next i t e r a t i o n
8 b i t s = mm256 blend epi32 ( b i t s , y , 0x03 ) ;
9 // Rotation Mask : (3 , 3 , 2 , 1) i s 1111001

10 m256i ro ta ted= mm256 permute4x64 epi64 (y , 0xF9) ;
11 // Copy element from l a s t i t e r a t i o n to pos 3
12 ro ta ted = mm256 blend epi32 ( rotated , b i t s , 0xC0) ;
13 // Saved element to pos 3 f o r next i t e r a t i o n
14 b i t s = mm256 permute4x64 epi64 ( b i t s , 0x24 ) ;
15 // S h i f t data
16 x = mm256 sr lv epi64 (x , sh i f t mask1 ) ;
17 // I n s e r t b i t from next element
18 x = mm256 or s i256 (x , ro ta ted ) ;
19 // Store back to data
20 mm256 storeu s i256 ( ( m256i *) data , x ) ;

Listing 4.1: Cross-element bit shift using AVX2

between AVX lanes. The algorithm that is used inside the loop over the data of a
shard is shown in Listing 4.1 (assuming pre-defined constant bit masks for shifting
and masking).

Bulk delete In order to reduce the effort of changing the start value array and to
exploit the opportinities of the sharding approach for parallelism, we introduce a
bulk delete operation to the sharded bitmap structure. The basic concept of the bulk
delete operation is shown in Figure 4.2. After a preprocessing step to determine the
shards that belong to the elements, step (b) of shifting within the single shards can
be performed in parallel using threads, as bitshifts remain local to the shards due
to the design of the data structure. A thread is hereby created for each shard that
contains indexes to be deleted, so the total number of threads depends on the number
of shards and the location of deleted positions. The actual bitshift is again realized
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using the vectorized algorithm shown in Listing 4.1. At the end of the operation, all
start values are adapted in a single array traversal by holding a running sum over
deleted bits of all preceeding groups. This way, the vectorized and parallelized bulk
delete operation minimizes the additional effort of step (c) while further accelerating
step (b).

The bulk delete operation is order sensitive, as deleting a bit within a shard shifts
subsequent bits, changing their position. Consequently, positions of bits that are
intended to be deleted are not correct if bits at smaller positions were deleted before.
To overcome this, delete operations are performed in descending order, starting from
the largest position. In our implementation, the PatchIndex structure buffers the
rowIDs of tuples that should be deleted and performs a bulk delete operation at the
end of the query. It thereby ensures the order of the rowIDs to enable an efficient
bulk delete.

Condense With each single delete operation, a bit at the end of a shard gets lost,
as the subsequent bit from the following shard is not shifted to this position. This
is the main drawback of the sharded bitmap design and follows from limiting the
impact of a delete operation to a single shard. In order to overcome this drawback,
we introduce a condense operation to the sharded bitmap design, which shifts the
elements of the bitmap between shards and resets the utilization of the structure as
a result. The condense operation is realized using a single traversal over the bitmap.
For each shard, data of subsequent shards is shifted to the bits that were lost due to
delete operations and the start values are adapted accordingly. Condensing can be
triggered manually or automatically by monitoring the utilization of the bitmap and
triggering once a certain threshold is reached.

Sharded Bitmap Microbenchmarks

Choosing the shard size is crucial for the performance and the memory overhead
of the sharded bitmap data structure. A small shard size leads to a large memory
overhead due to the additional start values and deletion performance overhead for
their adaption. On the contrary, a large shard size leads to a negligible memory
overhead, but results in shifting large amounts of memory, which was the problem we
intended to avoid with the design of the sharded bitmap. We ran microbenchmarks
in order to determine a reasonable shard size on a machine consisting of two Intel(R)
Xeon(R) CPU E5-2680 v3 with 2.50 GHz, offering 12 physical cores each, 256 GB
DDR4 RAM and 12 TB SSD. The runtime of bulk deleting 1M elements (randomly
chosen but fixed) from a sharded bitmap of size 100M is shown in Figure 4.3 for the
parallel and parallel & vectorized bulk delete implementation. First, we can locate a
clear minimum runtime at a shard size of 214 bits. Below this minimum, the overhead
of preprocessing and thread starting is not worth the benefit of multithreading and
above this minimum the shifting effort starts to dominate the runtime again. Second,
we can observe that vectorization impacts performance only in a minor way at these
relatively small shard sizes, but gets more impactful the larger the shard size is
chosen. Regarding memory consumption, a 64 Bit start value is stored for each
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Figure 4.3: Sharded bitmap bulk delete runtime for 1M elements and memory
overhead of sharding depending on shard size

Bitmap Sharded bitmap
Sequential Set 8.1 ns 16 ns
Sequential Get 5.1 ns 10.1 ns
Seq. Delete 3.1 · 106 ns 3400 ns
Seq. Bulk Delete − 180 ns

Table 4.1: Bitmap operator runtimes per element for bitmap with 100M elements
and shard size 214 bits

shard, resulting in a memory overhead of 64
shard size

· 100%. Choosing the shard size
of 214 bits therefore leads to a memory overhead of 0.39% for sharding.

Table 4.1 shows the latency per element of the bitmap operators that are relevant
for the PatchIndex. Comparing an ordinary bitmap with the sharded bitmap
approach, the virtual sharding leads to a small overhead for bit access operations,
which is caused by determining the group an element belongs to. In terms of delete
operations, the sharded bitmap performs three orders of magnitude faster than the
ordinary bitmap, which improves to another order of magnitude when using the bulk
delete operation to delete 1M elements. For the ordinary bitmap structure the delete
runtime is size dependent and linearly increases/decreases when changing the bitmap
size. Consequently, the sharded bitmap data structure significantly outperforms
the ordinary bitmap in terms of deletion support, which particularly holds for large
bitmap sizes, and justifies the small bit access overhead and small memory overhead
for use cases where update support is important.

4.2.3 PatchIndex Scan
In order to benefit from PatchIndexes in query execution, we first have to efficiently
apply the patch information to the dataflow of a query execution tree (QET).
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Therefore, we introduce the PatchedScan. Scan operators typically support the
definition of scan ranges to prune data and reduce I/O effort. These scan ranges are
determined by evaluating selection predicates and using small materialized aggregates
[111] that are guaranteed to be filtered out during query optimization. As tuples that
harm constraints and are therefore classified as patches might be scattered across the
data, translating PatchIndex information into scan ranges would result in numerous
fine-grained ranges and non-negligible overhead.

Therefore we decided to realize the PatchedScan by combining an ordinary table
scan with a specialized PatchSelect operator placed directly on top of the scan. In
order to apply the information of the PatchIndex, we introduce selection modes
use patches and exclude patches for these PatchSelect operators. As the PatchIndex
works on row identifiers, we ensure that row identifiers are equal to the tuple positions
in a datastream by placing the selection operators directly on top of scan operators,
as intermediate operators could harm this assumption by filtering tuples. As a result,
the output dataflow of the scan operator is logically splitted by the PatchSelect
operators resulting in a dataflow containing the tuples of the set of patches Pc and a
dataflow containing all tuples except the patches. An advantage of this approach is
that the physical way tuples of a table are stored is not needed to be changed when
creating a PatchIndex on that table. As a consequence, it becomes possible to create
multiple PatchIndexes on a single table, which significantly differs from the typical
limitation of one sort key per table.

Once during the query build phase, selection operators with modes use patches
and exclude patches query the PatchIndex in order to receive a pointer to the patch
array or to the bitmap holding the patch information. The pointer as well as other
metadata like processed tuples are stored in a state variable of the operator. During
query execution, both modes pass the incoming dataflow to the next operator while
applying the patch information on-the-fly using a bitmap iterator. Using an iterator
on the bitmap mitigates the overhead of a generic lookup operation per tuple and is
possible as tuples are scanned in the order of their row identifier. For exclude patches,
applying patch information means skipping a matching tuple and mode use patches
only passes elements that match elements of the patch array.

Partition support PatchIndexes also support several common techniques of
analytical database systems. First, they support partitioning by creating a PatchIndex
for each partition separately. This way, partitioning is transparent to the actual
index implementation. During query execution, subqueries are executed on partitions
as far as possible and we do not harm this ability by placing the specific selection
operators directly on top of the scan operators.

Scan range support Second, scan ranges used for I/O pruning (e.g., by small
materialized aggregates [111]) are supported by the PatchedScan. While building
the QET, exclude patches and use patches selection operators fetch the scan ranges
from the scan operators below. During query execution, they merge the scan ranges
on-the-fly with the patches by rebasing the bitmap iterator in order to skip patches
outside the ranges. Applying scan ranges to scan operators decreases the number
of scanned tuples. As we computed the set of patches Pc on the full set of values
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for the indexed column c, we probably loose the minimality of the set of patches.
As an example values might be unique also for tuples after applying the use patches
selection because duplicates were pruned by scan ranges. However, this does not
harm the correctness but might introduce some unnecessary work in the worst case
for not applying constraint-specific optimizations on these tuples. Mitigating this
issue would lead to recomputing the sets of patches for each query with its respective
scan ranges and is therefore not an option.

4.2.4 Durability

The PatchIndex is currently designed as an in-memory data structure. The index
creation is logged to a write-ahead log (WAL), so the index can be reconstructed
when performing the log replay in case of a system restart or failure. The determined
patches are not written to the WAL in order to keep it slim, so the index is
reconstructed from the data using the same mechanisms as for index creation. There
are several alternatives to the in-memory approach that should be evaluated in the
future. First, the index data could be materialized to disk, which has the advantages
of durability, easy recovery and reducing the main memory consumption, as not all
PatchIndexes have to be held in-memory at the same time. On the contrary, reading
the relevant PatchIndex data from disk during query execution might decrease query
performance, harming the desired benefit from the PatchIndex usage. Second, the
PatchIndex information could be materialized as a bitmap column to the table. This
way, reading the information could be done using ordinary table scan operators.

4.2.5 Concurrency

In terms of concurrency control, PatchIndexes seamlessly integrate into a system’s
snapshot isolation mechanism [31]. Although snapshot isolation is a very coarse-
grained way to achieve serializability of transactions, it is often sufficient for read-
optimized DBMS. Nevertheless, PatchIndexes offer opportunities for a more fine-
grained concurrency control due to the underlying sharded bitmap data structure.
As shards are independent from each other, fine-grained locking can be used to avoid
concurrent access without locking the whole data structure. Adapting the start
values of a sharded bitmap produces no conflicts, as the only operation that adapts
the start values is the delete operation which uses decrement operations. Concurrent
decrements are no conflicts, as different orders of executing a series of decrements
produce the same result.

4.2.6 Extensibility

The PatchIndex data structure itself is independent from the actual approximate
constraint it should maintain, i.e., it just holds the sets of patches for the indexed
columns in a generic way. The structure defines an interface that needs to be
implemented in order to use apply the approach to a given constraint. In an abstract
view, the interface consists of the following functions:
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• Initial filling: This function describes how to determine an initial set of
patches. It is invoked either on the first time data is loaded into an empty table
with a defined PatchIndex or on the creation of a PatchIndex on an existing
table and creates the initial sharded bitmaps for the indexed columns.

• Insert support: Describes how inserted tuples impact the existing set of
patches. While there might be additional exceptions within the inserted tuples,
the added tuples might also lead to new exceptions from the existing tuples.
Sharded bitmaps are resized in this step.

• Update support: Similar to insert support, this describes how updating
existing values of indexed columns impact the sets of patches. New exceptions
might be added or existing exceptions might be dropped. The sharded bitmaps
remain at the same size.

• Delete support: Similar to insert and update support, but deleting tuples is
likely to not add any new exceptions for most constraints. Deleting might lead
to remaining tuples not being exceptions anymore, e.g., in the case of deleting
a duplicate for a uniqueness constraint. However updating the set of patches
could be skipped here, which might lose the minimality of the set of patches in
exchange for delete performance. Sharded bitmaps are shifted as described in
Section 4.2.2.

• Query optimization rule: An optimization rule needs to be added to
actually benefit from the PatchIndex information in query execution. Typically,
a dataflow is splitted using the PatchedScan described in Section 4.2.3 and
optimized separately, e.g., by dropping expensive operations for tuples that
already match a given constraint.

We discuss different approximate constraints in the following sections, which
translates to finding approaches to implement the described interface.

4.3 Traditional Database Constraints
We described that database constraints contain valuable information for query
optimization, but can be expensive to maintain and enforce in update cases. Update
operations might be rejected when constraints are not met, and this might happen
more often in cloud warehouse applications where data is ingested from a large
number of data sources. Consequently, users may skip constraint definition in order
to favour data freshness over data integrity.

With the concept of PatchIndexes we now have the tool to solve this dilemma. We
can maintain constraint information without the need to enforce the constraints, i.e.
it allows constraints to become approximate over time. In this section we choose the
uniqueness constraint and the sorting constraint as important traditional database
constraints. We define the concepts of “Nearly Unique Columns” (NUC) and “Nearly
Sorted Columns” (NSC), describe the discovery of these constraints and how query
processing can benefit from them. In the evaluation we compare PatchIndex against
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different materialization approaches for these constraints in terms of query and
update performance.

4.3.1 Definitions
Based on definitions 4.2.1 and 4.2.1 we introduce the definitions of “Nearly Unique
Columns” (NUC) and “Nearly Sorted Columns” (NSC). Values of these columns
fulfill the uniqueness constraint or the sorting constraint, respectively, except a set
of tuples. We collect the row identifiers of tuples that violate the constraint in a
set of patches Pc for a column c, so that the respective constraint is fulfilled by all
remaining column values of c. An example is shown in Figure 4.4. The shown integer
values of c are unique if we exclude, e.g., tuples with row identifiers in {1, 2, 3, 7},
while they are sorted if we exclude tuples with row identifiers in {4, 7}.

Figure 4.4: Example for NUC and NSC for a given dataset

Definition 4.3.1. Threshold variables
We define threshold variables nuc threshold and nsc threshold, both in [0, 1] ⊂ R.

Definition 4.3.2. Nearly unique column (NUC)
A column c is a nearly unique column (NUC), when there is a set of patches Pc such
that all of the following conditions are fulfilled:

(NUC1) PROJ(R\P , c) is unique

(NUC2) PROJ(R\P , c) ∩ PROJ(RP , c) = ∅

(NUC3) |Pc|/|R| ≤ nuc threshold

As an intuition, we want values of c (described using the projection operator
PROJ on c) to be unique after we excluded all tuples with row identifiers in Pc.
The second condition (NUC2) is important to ensure the correctness of the query
result, as we later want to utilize the PatchIndex in query execution by querying
RP and R\P separately from each other. In column c of Figure 4.4, values 3 and
6 are duplicates, so they have to be excluded to make the column unique. As we
have to exclude all occurrences of the duplicate values according to (NUC2), Pc

consists of four identifiers. Therefore, the column c would be classified as a NUC if
nuc threshold ≥ 0.5. The choice of a minimal set is obviously unambiguous.
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Definition 4.3.3. Nearly sorted column (NSC)
Given a column c, let ◁ be an arbitrary order relation on dom(c). Column c is a
nearly sorted column (NSC), when there is a set of patches Pc such that both of the
following conditions are fulfilled:

(NSC1) ∀ti, tj ∈ R\P : id(ti) < id(tj)⇒ c(ti) ◁ c(tj)

(NSC1) |Pc|/|R| ≤ nsc threshold

As an intuition, we want values of c to be sorted according to the given order
relation ◁ based on the order of their row identifiers after we excluded tuples with row
identifiers in Pc. In order to fulfill the sorting constraint for column c of Figure 4.4,
we can exclude the two identifiers shown by Pc to get a sorted sequence, so column
c could be classified as a NSC if nsc threshold ≥ 0.25. Nevertheless, this choice
is ambiguous, as we can find another set of patches Pc = {3, 7} with the same
cardinality of two. In the discovery mechanism of NSC presented in Section 4.3.2,
we are interested in a smallest set Pc.

4.3.2 Constraint Discovery
Based on the definitions in Section 4.3.1, the problem of deciding whether a given
column c is a NUC or NSC translates to finding a set of patches Pc such that the
respective constraints are fulfilled. We give general approaches for both problems
that can be also integrated into arbitrary automatic database administration tools
to automatically discover the constraints.

In order to discover a NUC, we need to find all column values that are not
unique, which can be realized using a hash table. Instead of realizing this, we can
reuse existing operators of database systems, as the described approach is equal to a
distinct aggregation. Therefore, we can simply realize the NUC discovery on SQL
level. It is not sufficient to simply compute a distinct query or query all values that
occur more than once, as we need all occurences of a non-unique column value in
order to meet condition (NUC2). Therefore, we join the result of an aggregation
query with the actual table on the examined column c to get the row identifiers of
all tuples with non-unique values for c, which is equal to the set of patches Pc we
want to compute. We need to pay special attention to NULL values, as they are not
joined with each other but should be assigned to the set of patches. Therefore, the
join operation is realized using an outer join with a subsequent selection, resulting
in the following query:

select tab.tid from tab
left outer join

(select c from tab group by c
having count(*) > 1) as temp

on tab.c = temp.c
where temp.c is not null or tab.c is null

By checking for non-null values in temp we ensure that we only select values with
matching join partners. Based on the result of the query, the classification of a column
c as a NUC can be made based on the third condition |Pc|/|R| ≤ nuc threshold.
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In order to discover a NSC, we utilize the longest sorted subsequence algorithm [50],
for which we need the full data of a given column c as a prerequisite. The algorithm
then maintains arrays to keep the length and the predecessor of the last element
in the longest sorted subsequence of data [1, . . . , k] at position k. For each of the
n elements in the array, the algorithm performs a binary search on the already
computed results, resulting in an overall worst case runtime of O(n · log(n)). In
order to compute Pc, the resulting list of indexes that are included in the longest
sorted subsequence is inverted (with respect to the examined relation R). This
way we ensure that R \ Pc is sorted on column c and as we computed the longest
sorted subsequence, we also ensure that the cardinality of Pc is minimal. NULL
values are also assigned to Pc in order to ensure correctness of sorting queries. The
classification of a column c as a NSC can then be based on the second condition
|Pc|/|R| ≤ nsc threshold.

4.3.3 Query Processing

Analytical Queries

The main idea to integrate PatchIndexes into query execution is the PatchedScan
described in Section 4.2.3, merging the PatchIndex information on-the-fly with the
dataflow and splitting it into a flow of tuples satisfying the constraint and a flow of
exceptions, and work on both dataflows separately. The PatchedScan is realized using
an additional selection operator on top of a scan operator, merging the PatchIndex
information on-the-fly to the dataflow according to selection modes exclude patches
and use patches. The key for query optimization using PatchIndexes is cloning query
subtrees for data and patches and optimizing both subtrees separately. Typically,
we can exploit the PatchIndex information in the dataflow that excluded the patches
and achieve a speedup in this subtree, as a constraint is fulfilled here. Finally,
both subtrees are combined again to ensure transparency for the remaining query
execution tree.

With NUCs and NSCs, PatchIndexes can be integrated into the optimization of
distinct, join and sort queries. For distinct queries, we can exploit the information
that tuples are unique in a NUC after excluding the patches, so the most expensive
aggregation operator to compute the distinct values can be dropped from this subtree
as shown on the left side of Figure 4.5. Here “X” is an arbitrary subtree that does
not contain any joins or aggregations. In case of a query that contains a grouping,
this approach can also be applied by decoupling the aggregation for grouping from
the distinct aggregation.

Knowing about the sorting of NSC in join queries, we can replace the generic
HashJoin operator with the faster MergeJoin operator in the subtree that excluded
patches, like shown in the right part of Figure 4.5. This optimization requires the
subtree “X” to be sorted on the join key, which is a frequent case in joins between
fact tables and dimension tables in data warehouse applications. While subtree “Y”
must preserve the tuple order and is therefore not allowed to contain aggregations,
both “X” and “Y” may contain join operators that are order preserving, so e.g., being
the probe side of a HashJoin. Under these requirements the PatchIndex information
can be propagated through a query tree. In order to further optimize this approach,
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Figure 4.5: Query plans for distinct (left) and join (right) queries before and after
PatchIndex optimization with the newly inserted operators highlighted.

the result of subtree “X” is buffered instead of computed twice. Additionally, join
sides can be swapped to further accelerate the HashJoin. As the number of patches
is known during optimization time, we can choose the build side of the HashJoin
as the one with the lowest cardinality to improve the time and space for hash table
building. Building the hash table on the patches is often the best decision as the
number of patches is typically small. The join sides of the MergeJoin are chosen
similarly to ensure the combinability of both subtrees. As the MergeJoin operator is
not sensitive to join sides, this has no impact on performance.

Besides the join operator, the information about a NSC can also be used to
accelerate sort queries, as we already know that a major part of the data is already
sorted. Here we follow an approach similar to distinct queries, so the query plan is
equal to the left plan of Figure 4.5 exchanging the aggregation with the sort operator.
If there is a PatchIndex defined on the sort column using the same ordering as
the sort operator, the sort operator becomes obsolete in the subtree that excludes
patches, as these tuples are already known to be sorted. The sort operation only
needs to be performed on the patches, which is intended to be the minor part of the
data. In order to preserve the sort order, the results of both subtrees are combined
using a Merge operator instead of a Union operator.

Cost Model

The use cases for query optimization presented in the preceeding subsections can be
easily integrated into the cost models of arbitrary query optimizers, as cardinalities
and operator output estimates are known during optimization time and we use
ordinary query operators for the optimization, except the newly introduced selection
modes for the PatchedScan. The costs for query trees (build and execution costs)
produced by the PatchIndex optimizations can therefore be estimated by query
optimizers and if the estimated costs are smaller than the costs of the subtree before
the optimization, the PatchIndex should be used for the query. The selection operators
with modes exclude patches and use patches merge the PatchIndex information on-
the-fly to the output dataflow of the scan operator. This is particularly independent
from the data types of the input data, as the decision of passing or dropping a tuple
is based on a tuple’s row identifier. As a consequence, the operator’s overhead is
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Nearly unique column Nearly sorted column
Insert Scan inserted tuples, join them

with the table, merge the results
with the existing patches.

Determine a new sorted subse-
quence extending the already ex-
isting one.

Delete Drop tracking information about
deleted tuples.

Drop tracking information about
deleted tuples.

Modify Scan modified tuples, join them
with the table, merge the results
with the existing patches.

Merge all modified tuples with the
existing patches.

Table 4.2: Design principles for update operations

fixed for every tuple. In our experiments, the selection operators for both selection
modes took a minor part of query runtimes (typically below 1%).

Update Queries

Handling table update operations like inserts, deletes or modifies is the most signifi-
cant problem of any materialization and therefore also important for the approximate
constraint materialization using PatchIndexes. As table updates were not present at
the time a general materialization was computed, it reaches an inconsistent state
whenever an update occurs. The common way to handle this inconsistency is re-
freshing, often leading to an expensive recomputation. For some use cases, minor
inconsistencies might be acceptable and refresh cycles can be chosen quite loose,
while other applications rely on consistent and up-to-date data and therefore demand
for very tight or just-in-time refresh cycles.

On the contrary, PatchIndexes are designed to efficiently support table update
operations. We avoid getting inconsistent states by handling updates immediately
after they occur. In order to perform these updates efficiently, the design of the
update handling mechanisms is driven by the goal of avoiding an index recomputation
and avoiding a full table scan while preserving the invariant of holding all exceptions
to a given constraint. The basic ideas for handling inserts, deletes and modifies for
the specific constraints are summarized in Table 4.2.

Besides the concepts of delta structures, small materialized aggregates and range
propagation described in Section 2.2.1 we utilized the concept of intermediate result
caching for the design of the update handling mechanisms.C aching can be used
within queries to avoid expensive recomputations. In our further considerations,
we use the Reuse operator to encapsulate this behaviour. Intermediate results are
materialized in main memory by the ReuseCache operator and read again from the
ReuseLoad operator.

Insert Handling insert operations in the PatchIndex translates to answering the
question which tuples have to be added to the existing patches. For the uniqueness
constraint, this is a difficult question, as this constraint relies on a global view of the
table. Inserting a single tuple might produce a collision with another tuple that was
already in the table and had a unique value in the indexed column before. As we need
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Figure 4.6: Insert handling query on table T with dynamic range propagation (DRP)
and intermediate result caching

to keep track of all occurences of non-unique values to ensure correctness, we perform
a join query after the insert operation, joining the inserted tuples with the actual
table (including inserted values, as duplicates might also occur in the inserts) like
shown in Figure 4.6. Afterwards we project row identifiers of both join sides using
intermediate result caching. The row identifiers are then merged into the existing
patches. This way, we preserve the capability of holding the minimum set of patches
to make the table unique when excluding them, while also avoiding a recomputation
of the full index. In order to avoid the full table scan we utilize dynamic range
propagation. After the build phase of the join operator is finished, scanning the
full table is reduced to only the blocks that contain potential join partners. This
significantly reduces I/O overhead and is therefore a major improvement of the insert
handling mechanism.

For the sorting constraint, we focus on a local view on the inserted tuples instead of
a global view on the whole table by extending the already existing sorted subsequence
with inserted values instead of recomputing a globally longest sorted subsequence.
The PatchIndex keeps track of the last value of the subsequence (i.e., the largest
value of an ascending sort order or the smallest value of a descending sort order).
During execution of the insert query, the PatchIndex temporaryly stores inserted
values and starts computing a longest sorted subsequence with all values being
larger/smaller than the last value of the existing sorted sequence. We hereby utilize
the same longest sorted subsequence algorithm [50] as used in the discovery of a
NSC in Section 4.3.2. The row identifiers of tuples that are not included in this
extending sorted subsequence are added to the set of patches. With this mechanism,
we probably lose the optimality of the index, namely to keep track of the longest
sorted subsequence. The reason for that is the fact that combining two sorted
sequences that have a maximum length for two parts of the data might not form a
longest sorted sequence for the combination of the two parts. An example for this
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can be easily constructed, e.g., the table holding values (1, 2, 10) and inserted values
(3, 4). Nevertheless this does not lead to wrong query results when applying the
PatchIndex optimization for the sorting constraint and should be negligible for the
typical use cases. However, monitoring the exception rate and triggering a global
recomputation once a certain threshold is reached is a possible solution for that.
From an implementation point of view, scanning the inserted values is realized by
scanning the PDTs of the current query. Furthermore, merging the determined
results with the existing patches translates to reallocating the bitmap and setting
the respective bits for the new patches in the bitmap-based approach.

Modify For the uniqueness constraint, handling modify operations is done similarly
to insert handling described above. For the sorting constraint, all modified tuples
have to be added to the set of patches, as modifying values might destroy the sorting
of the computed subsequence. The only difference in the actual realization is that
reallocating the bitmap becomes obsolete as the table cardinality does not change
during modify operations.

Delete Deletions are handled by the PatchIndex by dropping the information
about deleted tuples from the patch information without taking a global picture
of the table into account. For both uniqueness and sorting constraint, dropping
values from the table does not violate the constraint. For the uniqueness constraint,
we might lose the optimality this way, as a value that was not unique before the
delete operation might become unique afterwards if the other occurrences of the
value was deleted. Nevertheless, it would remain in the patches to keep the delete
handling mechanism simple and would obviously not lead to wrong query results
when applying the PatchIndex to queries. The same holds for the sorting constraint,
probably losing optimality when deleting values from the existing longest subsequence.
Again monitoring and recomputing the index is a possible solution if this becomes a
problem. From an implementation point of view, deleting values raises the problem
that rowIDs of subsequent tuples decrease for each deleted tuple. This is considered
by the bulk delete operation of the sharded bitmap data structure as described in
Section 4.2.

4.3.4 Evaluation
In this section, we evaluate our solution in different experiments to prove the perfor-
mance impact of PatchIndexes and its updatability. We therefore show experiments
on different integration levels. First, we present a set of PatchIndex microbench-
marks for a fine-grained evaluation of aspects like performance impact, creation
time or update operations. Afterwards we show the impact of PatchIndexes on
query performance using a query subset of the well-known TPC-H benchmark. For
the evaluation, we integrated PatchIndexes into the Actian Vector 6.2 built on the
X100 [28] engine. The system runs on a machine consisting of two Intel(R) Xeon(R)
CPU E5-2680 v3 with 2.50 GHz, offering 12 physical cores each, 256 GB DDR4 RAM
and 12 TB SSD. For all measured results, we used queries on hot data, which means
that data resides in the in-memory buffers of the system. This way, we reduce the
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I/O impact and focus on the pure query execution time. Additionally, we did not
trigger any sharded bitmap condense operations but started every single experiment
with a freshly build index structure for comparability reasons.

In the evaluation, we compare the generic PatchIndex approach against different
specialized materialization approaches, namely materialized views, SortKeys and
JoinIndexes described in Section 4.1. For distinct queries, we use materialized views
as a comparison, which is a widely used technique in database systems to pre-compute
partial queries like the distinct query in our example. While leading to a significant
performance benefit if matched by a user query, the major drawback of materialized
views is their ability to handle updates. Typically, they need to be re-computed when
updates occur to keep them consistent with the actual database. Alternatively, these
expensive recomputations can be delayed and run regularly, if minor inconsistencies
are acceptable for the user application. As materialized views are not offered by
Actian Vector, we simulate this approach by storing the materialized information
in a separate table and manually rewrtiting queries. For sort queries, we compare
PatchIndexes against SortKeys, which is not implemented as a B+-Tree in Vector,
but physically sorts data on the given SortKey column. This way, sort queries can be
translated to simple scan queries. As a drawback, physically reordering data is a very
costly operation and maintaining this order in case of updates requires additional
effort. Last, we evaluate join queries by comparing the PatchIndex approach against
JoinIndexes, which materialize foreign key joins as an additional table column. If a
SortKey is defined on the table holding the primary key of the join, the foreign key
related table is ordered similarly, so that a MergeJoin becomes possible to join both
tables.

Microbenchmarks

For our microbenchmarks, we designed a data generator1 that varies the exception
rates to given constraints. The data consists of 1B tuples with two columns, a unique
key column and a value column that shows the desired data distribution. With
the tuple width of 128 Bytes this results in a dataset size of 128 GB. In order to
exploit parallel data processing, we partition the datasets on the key column into 24
partitions. As the key column is unique, this results in partitions of nearly equal size.
For the uniqueness constraint, exceptions of the value column are equally distributed
into 100K values, while the remaining values are unique and differ from the values of
the exceptions. For the sorting constraint, exceptions are randomly chosen and all
remaining values form a sorted sequence in ascending order. For both constraints,
exceptions are randomly placed in the datasets. As the datasets are generated once,
the randomness does not impact the comparability of the evaluation results. For the
evaluation of update operations, we chose the dataset with exception rate e = 0.5.
This choice has no impact on update query performance, as bits of updated patches
have to be accessed independently from being patches before the update.

The materialization is realized in different ways for the constraints in the mi-
crobenchmarks. For the uniqueness constraint, we materialized a table containing all
unique values of the value column using a distinct query. As a result, a distinct query

1Available under https://github.com/Sklaebe/Approximate-Constraint-Data-Generator
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Figure 4.7: Runtimes of a distinct query on a NUC or a sort query on a NSC with
varying exception rate
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Figure 4.8: Runtime for materialization/index creation for varying exception rate

on the value column is replaced by a scan query on the materialized view without
the need for an expensive aggregation. For the sorting constraint, we materialized
the order information using a SortKey on the value column. This way, the data of
the real table is physically re-ordered according to the value column. Queries that
include a sort operator therefore just scan the table. As the table is partitioned, an
additional merge step of the tuples from each partition is necessary to preserve the
global order of the query results.

Performance impact First we want to prove the query performance improvement
for different exception rates when using PatchIndexes. We run a distinct query and
a sort query respectively while varying the exception rates for the uniqueness and
sorting constraint in the dataset. Figure 4.7 shows the results of this experiment.
For the uniqueness constraint, reference runtimes without any constraint definition
increase with increasing exception rates, before decreasing starting from an exception
rate of 0.3. With increasing exception rates, the number of distinct tuples and
therefore the number of aggregation groups decrease. The runtime behaviour is then
caused by the inference of a reduced hash table size and the increased communication
costs, as the system uses a shared hash table build plan for the aggregation. The
use of a materialized view shows a nearly constant runtime as the query only scans
the materialized result. Using a PatchIndex shows a significant performance benefit
compared to the reference runtimes with performance comparable to the materialized
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Figure 4.9: Update performance for inserting/updating/deleting 1000 tuples and
varying update granularities

view. Performance slightly increases with increasing exception rates caused by more
tuples being processed in the aggregation. As a result, the actual performance gain
compared to the reference runtime shrinks with increasing exception rates, but using
a PatchIndex does not impact runtimes in a negative way for the evaluated cases.

For the sorting constraint, reference runtimes increase with increasing exception
rates, which is caused by the pivoting strategy of the internal QuickSort implementa-
tion, behaving better the more sorted the input sequence already is. Using a SortKey
as materialization shows a constant runtime, although slightly slower than the scan
query for the uniqueness constraint, as merging the sorted partitions is necessary.
Additionally, the query still performs a sort operator to ensure the sorting, resulting
in a slightly worse performance than using a PatchIndex for small exception rates.
Using the PatchIndex shows a significant performance gain compared to the reference
runtimes. Runtimes increase as expected with increasing exception rates as more
tuples have to be processed by the sort operator, so the relative performance gain
shrinks with increasing exception rate. Again, using a PatchIndex does not impact
runtimes in a negative way for the evaluated cases.

Memory consumption The memory consumption of a PatchIndex is independent
from the materialized constraint and shown in Table 4.3. The bitmap-based approach
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PI bitmap PI identifier Mat. view (NUC)
General t/8 · 1.0039 B e · t · 8 B (105 + (1− e) · t) · 8 B
e = 0.01 125.48 MB 80 MB 7.9 GB
e = 0.2 125.48 MB 1.6 GB 6.4 GB

Table 4.3: Memory consumption for example dataset of 128 GB / t = 109 tuples

has a constant total memory consumption (1 bit per tuple + sharded bitmap
overhead). For completeness, we also show the memory consumption of an identifier-
based sparse approach of materializing exceptions here, which grows linearly with the
number of exceptions. The bitmap-based approach has a lower memory consumption
for cases with exception rate e > 0.0158. The performance experiments prove
that PatchIndexes impact query performance for far larger sets of patches, so a
sparse storage approach is not suitable here as initially stated in Section 4.2.1. In
contrast, the materialized view for the uniqueness constraint materializes every
unique value (100K unique values + exceptions), leading to a significantly higher
memory consumption than the PatchIndex for most cases. A SortKey does not lead
to any storage overhead and is therefore not included in Table 4.3. It physically
reorders the existing tuples and is not realized over an additional index structure
like a B+-Tree.

Creation time Another important fact for the usability of data structures is their
creation effort. Both PatchIndex and materialization are intended to be used multiple
times after being created. Otherwise the creation effort would not be worth compared
to the achieved query speedups. Figure 4.8 shows the comparison of the runtimes
for creating the PatchIndex and the materialization for both constraints. For the
uniqueness constraint, the runtimes follow the reference runtimes of Figure 4.7, as the
distinct query is pre-computed and materialized. The effort to create a PatchIndex
is slightly higher than the materialization, as the information about exceptions have
to be filled into the index structure. For the sorting constraint, creating the SortKey
takes a huge amount of time, as this physically reorders the table data. In comparison,
creating a PatchIndex is more efficient. The increasing exception rate leads to an
increasing number of comparisons in the longest sorted subsequence algorithm, while
decreasing the length of the sorted sequence and therefore decreasing the effort to
reconstruct it. The inference of both parts leads to the observed runtimes. Next to
the worse creation performance of a SortKey, it’s definition is also limited to one per
table, as it physically reorders the data. In comparison, PatchIndexes can be defined
multiple times per table on different columns, as it does not change the way data is
physically stored.

Insert Based on the dataset with an exception rate e = 0.5, we inserted 1000 tuples
per run into the database and varied the granularity of the insert operations between
5 tuples per operation (200 queries in total) and 1000 tuples per operation (1 query
in total) to capture the impact of trickle and bulk inserts. The first row of Figure 4.9
shows the total runtimes to insert the 1000 tuples. First, we can observe that
recomputing or maintaining the materialization for each insert operation produces
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Figure 4.10: TPC-H query performance

a tremendous overhead to the reference runtime without any constraint definition,
making it especially not usable for trickle updates. In contrast, PatchIndexes
support insert handling in a more efficient way. For the uniqueness constraint, every
insert operation invokes the insert handling query shown in Figure 4.6, resulting in
an overhead for fine-grained inserts. Similarly, the sorting constraint invokes the
execution of the longest sorted subsequence algorithm on the inserted tuples for every
insert query. Nevertheless, the added overhead is smaller compared to the uniqueness
constraint. For insert granularities of 50 tuples per operation or higher, the overhead
is negligible for both constraints and defining a PatchIndex on a column does not
impact insert runtimes in a remarkable way. Comparing the plots for PatchIndex and
materialization, this result also leads to another consequence. Keeping the runtime
nearly equal by fixing a value on the y-axis, update cycles can be chosen 50 times
more frequently for the uniqueness constraint and 100 times more frequently for the
sorting constraint when using a PatchIndex instead a materialization. This increases
the ability of the system to keep the materialized information consistent with the
actual dataset.

Modify Similar to the insert experiment, we here updated 1000 tuples of the
dataset with exception rate e = 0.5 for different granularities. For the uniqueness
constraint, we can observe a similar behaviour than for the insert support, as both
perform the same query to handle the updates and keep the PatchIndex accurate. For
the sorting constraint, updates must be included to the exceptions in the PatchIndex,
as they may destroy the sorted subsequence . This can be done efficiently without
the need for an additional query, leading to nearly no overhead compared to the
reference runtime.

Delete The last row of Figure 4.9 shows the total runtime for deleting 1000 tuples
from the dataset with exception rate e = 0.5 with varying granularities. As the
PatchIndex just drops information about deleted tuples and the shareded bitmap
offers an efficient delete operation, handling deletes is a very efficient operation and
adds nearly no overhead to the operation runtime.
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TPC-H

The TPC-H benchmark [27] is a well-known and well-understood benchmark used
for performance evaluation of analytical DBMS for many years. Besides analytical
queries, the benchmark also contains update sets for table inserts and table deletes
that can be used to evaluate update support. In our experiments, we used the
benchmark at scale factor SF 1000.

We decided to focus on the largest join in the benchmark, which is the join
between the lineitem and orders table. Although the benchmark only contains clean
data with perfect constraints, we manually manipulated the data order of the lineitem
table in order to introduce exceptions to the sorting constraint, resulting in three
datasets with 0%, 5% and 10% exceptions. While we stored the orders table in a
sorted way, we evaluated the impact of a PatchIndex and a JoinIndex defined on
the lineitem table for query performance and chose a subset of three queries that
includes this join. Besides different exception rates, we evaluated two options for
the dataset without exceptions. The first option uses the PatchIndex optimizations
described in Section 4.3.3 and is therefore the general case that is comparable against
the reference runtime in a fair way. Nevertheless, these queries contain unnecessary
overhead as the constraints in the benchmark do not contain any exceptions. In the
second option we therefore enable zero-branch-pruning (ZBP), which is a technique
of removing subtrees of a query plan that are ensured to not produce any results.
During query optimization query plans are annotated with cardinality estimations.
If these estimates are ensured to be zero, e.g., by evaluating integrity constraints or
indexes, the query rewriter can drop the respective subtrees from the query plan.
This way, the subtree that would process the patches is pruned from the query plan,
resulting in better performance as it drops all overhead introduced by cloning the
query subtrees. Although not being the general use case, this option can therefore
be used to compare results against the JoinIndex runtimes.

Figure 4.10 shows the results of the experiment for queries as well as for update
sets. In general, the exception rate has no impact on reference runtimes without
constraint, JoinIndex runtimes or update runtimes with PatchIndexes. We can
observe that the PatchIndex benefit on join queries depends on the size of the join
and the exception rate. For Q3, which contains the largest join, query runtime
decreases with decreasing exception rate and impacts query performance in a positive
way even for an exception rate of 10%. The same holds for Q7, which however shows
worse performance compared to the reference runtime for 10% exceptions. As the
PatchIndex impact grows with lower exception rates, PatchIndex runtimes nearly
reach the JoinIndex runtimes for an exception rate of 0%. Additionally activating
zero-branch-pruning reduces the overhead introduced by the Patchindex optimization,
leading the queries to run 43% and 40% faster compared to the reference runtime.
With zero-branch-puning, runtimes are also slightly faster than using the JoinIndex,
which is a full materialization of the join. This is caused by a small additional scan
effort in the JoinIndex query, as here the index is materialized in an additional table
column. Query Q12 shows a different behaviour, as this already short-running query
is impacted in a negative way when using a PatchIndex. In opposite to queries Q3
and Q7, the join in this query is very small due to prior selections. Therefore, the
added overhead of cloning subtrees is larger than the gained benefit of exchanging the
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Figure 4.11: Qualitative comparison of PatchIndex against evaluated approaches in
terms of Creation effort (C), Memory/Storage overhead (M), Performance impact (P)
and Updatability (U). (Higher score means “better”)

HashJoin with a MergeJoin in the PatchIndex optimization. Nevertheless, enabling
zero-branch-pruning leads to a performance benefit of 28%, which is slightly faster
than the JoinIndex query again. In terms of update support, zero-branch-pruning
does not have any impact on performance. For the insert set (inserting 0.5M tuples)
and the delete set (deleting 6M tuples) we can observe a slight performance overhead
for both materialization approaches. Here the JoinIndex performs slightly better than
the PatchIndex, as updates are handled in-memory by the Positional Delta-Tree [70]
structure. The creation effort for both approaches is excluded from Figure 4.10 for
scaling purpose. Here, creating a PatchIndex takes 100 seconds, which is significantly
faster than creating a JoinIndex, which takes around 600 seconds.

In contrary to distinct and sort queries, this experiments shows that using
PatchIndexes in join queries is a trade-off, as the overhead of cloned subtrees
might negate the benefit of using a MergeJoin for most tuples. As described in
Section 4.3.3, these plans would not be chosen by the optimizer. Although the
benchmark (theoretically) only contains perfect constraints, it is an example for
another advantage of the PatchIndex approach. Even if a dataset is clean at a point
in time, it may become unclean in the future by update operations. While these
updates would be aborted with the definition of usual constraints, PatchIndexes
would allow the updates and the respective transition from a perfect constraint to
an approximate constraint.

Resume

We compared the generic PatchIndex approach against materialized views, SortKeys
and JoinIndexes as specialized materialization approaches for different queries. Fig-
ure 4.11 shows a qualitative comparison of the discussed approaches, proving that
the PatchIndex structure is an impactful compromise between not defining any
constraints and the materialization of constraints. The effort to create a PatchIn-
dex is in the order of materialized views, while SortKeys and JoinIndexes require
significantly more time to create. As PatchIndexes only add a single bit per tuple,
they show a moderate memory overhead, which is only surpassed by the SortKey,
which reorders data and avoids storing additional metadata. For distinct, and sort
queries, the PatchIndex reaches a performance impact comparable to the specialized

77



CHAPTER 4. DATABASE SUPPORT FOR APPROXIMATE CONSTRAINTS

0.0 0.2 0.4 0.6 0.8 1.0
Runtime (normalized)

Non-Matching

Matching

Our goal
P
ar
tit
io
n 
ke

y

Figure 4.12: Groupby performance depending on matching partition key

materialization approaches, which even holds for quite high exception rates. While
update support is a drawback of materialized views and SortKeys, the PatchIndex
approach offers lightweight support for update operations.

4.4 Patched Multi-key Partitioning for Robust
Query Performance

The key for efficient query processing in a distributed environment is data partitioning,
i.e. distributing chunks of data over cluster nodes in order to perform subqueries
on them in parallel. A partitioning of a relational table is defined as a disjunct
split of tuples in the table and is realized using different partitioning strategies.
While random partitioning or round-robin partitioning assign tuples to partitions
randomly or based on their position in the table, value-based partitioning like hash
partitioning or range partitioning distribute data based on the values of a chosen
partition key column. The design of these partitioning strategies also aims at fulfilling
the requirements of load balancing and exploiting partitioning information in query
processing. While random and round-robin partitioning result in nearly perfectly
balanced partition sizes, their information cannot be exploited in query optimization.
On the other hand, range partitioning can be used for partition pruning in queries
containing filters and hash partitioning can be exploited for partition-local execution
of joins and aggregations when the partition key column matches the join or grouping
key. However, load balancing hardly depends on the value distribution, leading to
possibly imbalanced partitions for skewed data.

Value based partitioning strategies face a severe issue: The quality of partitioning
heavily depends on the choice of the partition key to find a balanced partitioning,
but also to allow partition-local execution of queries in as many cases as possible.
When a user does not know which partition key to choose and the partition key
consequently does not match the join or grouping column in a query, data needs to
be repartitioned during query execution in order to allow parallel query execution.
This repartitioning involves expensive network transfer between workers and can
lead to bad query performance when choosing a wrong partitioning key, as shown
for a simple aggregation query in Figure 4.12. Defining multiple partition keys (i.e.
having a multi-key partitioning) is not possible here without replicating the data to
store it in different ways.

Use cases for multi-key partitioning occur frequently in real world. Modern
data warehouse applications contain a large number of fact and dimension tables
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Figure 4.13: Minimized use case example: On which column to partition the fact
table on?

combined in a complex schema. A minimal example for a fact table referencing
two dimension tables is given in Figure 4.13. In addition to the foreign keys, there
might be also columns in the fact table that are frequently used for aggregations,
e.g. market segments or business units. So which column should be used as the
partitioning key? Partitioning on one of the foreign keys results in a fast join with
the respective dimension, but slower joins on other dimensions and slow aggregations
on any other grouping column. Ideally, we would therefore like to partition the table
on all dimension keys and expected grouping keys at the same time.

Robust query performance is an increasingly important design goal for data ware-
houses. It aims at achieving reasonably good (but maybe non-optimal) performance
for many different workloads. Trying to find optimal query plans and chasing the last
percentages of performance can lead to hitting worst-case query plans in unknown
workloads due to complicated query optimizations. Robust query performance waives
the aim to find optimal query plans and focuses on avoiding bad performance. For
the example in Figure 4.12 robust performance could be slightly worse than optimal
performance, but consistent for all different grouping keys. A workload-agnostic
approach aims at reaching reasonable performance for an unknown workload. We do
not want to optimize for a known workload that favors a certain set of e.g. grouping
keys.

As partitioning has a major impact on query performance, we introduce a
partitioning strategy that allows the definition of multiple partition keys without
replicating the data in this section. We define the patched multi-key partitioning
constraint, which captures the idea that a table is partitioned on multiple partition
keys when excluding a set of exceptions for each of the columns. We discuss why
current partitioning schemes are not sufficient for multi-key partitioning and show
that we can find a patched partitioning of a table by mapping the table to a graph
and applying existing graph partitioning algorithms. Furthermore, we present how a
patched multi-key partitioning can be integrated into query optimization. In our
experiments we show the opportunities of our approach to achieve robust query
performance for multiple partition keys.

4.4.1 Multi-key Partitioning

In the following we propose definitions for a multi-key partitioning function and a
balanced partitioning and discuss drawbacks of naive ways of achieving multi-key
partitioning using hash partitioning. We focus on multi-key partitionings for two
keys. However, all statements can be extended to more partition keys in an obvious
way.
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Definitions

Definition 4.4.1. Multi-key partitioning function (2 keys)
Let relation R be a set of tuples t, cols(R) be the set of columns of R, columns
A,B ∈ cols(R) be the partition keys and n be the number of partitions. Further we
denote t(X) as the value of column X of tuple t. We define a multi-key partitioning
function for two partition keys as a function p : t ∈ R, n ∈ N 7→ i ∈ {1, · · · , n} with
properties:

(MK1) ∀t1, t2 ∈ R : t1(A) = t2(A)⇒ p(t1, n) = p(t2, n)

(MK2) ∀t1, t2 ∈ R : t1(B) = t2(B)⇒ p(t1, n) = p(t2, n)

We call (MK1) Partition locality for A and (MK2) Partition locality for B,
which intuitively means that all tuples sharing the same attribute value in one of the
partition keys are assigned to the same partition. The partition locality is required
for partition-local execution of joins and aggregations. Only if tuples holding the
same column value for a column X are assigned to the same partition, we can
ensure that all matching join partners in joins or all group members in aggregations
can be found in the same partition when joining or grouping on that column X.
Consequently, expensive data repartitioning is not needed in this case. Combining
(MK1) and (MK2) means that we aim at enabling this partition-local execution
for all subkeys of a combined partition key, i.e., we want partition-local execution on
both columns A and B separately if the table was partitioned on (A, B), independent
on the column values of the respective other key. Please note that as a result of
providing partition locality for each single-column subkey of the partition key, the
multi-key partition function automatically provides partition locality for all multi-key
(sub)keys of the partition key, including the whole partition key itself. This can be
easily seen by the conjunction of (MK1) and (MK2) and also holds for all subkeys
of multi-key partition keys on more than two columns. Besides the requirement
to enable partition-local query execution, we also require a partition function to
produce a balanced partitioning to avoid load imbalance.

Definition 4.4.2. Balanced partitioning
We call a partitioning of table into partitions Pi with i ∈ {1, · · · , n} balanced with
an imbalance factor α = maxi∈{1,··· ,n}{|Pi|}

mink∈{1,··· ,n}{|Pk|} .
Obviously, we want to have an imbalance factor α near 1 indicating a nearly balanced
partitioning.

Multi-key Hash Partitioning

Hash partitioning is the most commonly used partitioning strategy, as it is easy
to compute and provides partition locality in case of a single partition key. There
are multiple strategies for applying hash-partitioning on multiple keys without data
replication. As a first option, the partition keys can be combined to a surrogate key
that is used as the input for hashing. Consequently, partitioning on columns (A, B) a
tuple t with t(A) = a and t(B) = b is assigned to partition Pi with i = p(a◦b, n), with
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Figure 4.14: Hierarchical partitioning for two keys

p being a hash-based partitioning function mapping into the value range {1, · · · , n}
and ◦ being a function to combine key values to a surrogate key, e.g., concatenating,
interleaving or arithmetic functions. This strategy has two drawbacks: In case of
A and B not sharing the same data type, we need a mapping or conversion of the
column values to a unified type the partitioning function can be applied on. More
severely, we can only ensure that the hash-based partitioning function p assigns
tuples to the same partition if the arguments of p are equal for both tuples. To the
best of our knowledge, there is no function ◦ that produces the same result combining
a constant a and different values for b and combining a constant b with different
values for a at the same time. An exception here is the constant function producing
an arbitrary constant c, which would assign all tuples to a single partition and is
therefore no option. As a result, this strategy does not match the desired partition
locality requirement.

As a second strategy for applying hash partitioning on multiple keys, the hash
function can be applied to the keys separately and the hashed values are combined
afterwards. When partitioning on columns (A, B) a tuple t with t(A) = a and
t(B) = b is assigned to partition Pi with i = (p(a, m) ◦ p(b, m)) mod n, again with p
being a hash-based partitioning function mapping into the value range {1, · · · , m}
and ◦ being a function to combine the hash values. Similarly to the first strategy,
this strategy does not match the partition locality requirement as there is no such
function ◦ that ensures partition locality in both arguments at the same time.

A third option for achieving multi-key partitioning without data replication is
hierarchical partitioning, as shown for two partition keys in Figure 4.14. Data is
partitioned on a single key first, and each resulting partition is further partitioned
using the remaining keys. For two partition keys, a partition Pik contains all tuples
that are assigned to partition i according to the first key and to partition k according
to the second key. When requiring a partitioning on the first key in a query, a
partition Pi consists of the union of all subpartitions Pik, k ∈ {1, · · · , m}, while a
partitioning on the second key is constructed by the union of Pki, k ∈ {1, · · · , n} for
a partition Pi. This hierarchical approach has several drawbacks:

1. Hierarchical partitioning is prone to skew. If there is a correlation between
partitioning keys, it might occur that only a subset of values occur in sub-
partitions after partitioning on the first key. This might lead to skewed partition
sizes and can be shown using an example on the CommonGovernment table of
the PublicBI benchmark [154] that we use in our evaluation in Section 4.4.6.
Using hierarchical partitioning with n = m = 4 on Vend vendorname first and
on Co name second leads to a partitioning where the largest partition is 3x larger
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than smallest partition. Using Bureau name as the first partition key before
Co name however leads to a factor 15 between the smallest and the largest
partition size. The reason for this is the column correlation. Bureau name is
highly correlated to Co name (see Figure 4.20), so 99% of the distinct Co name
values can be found in only one of the four partitions after the first partition
step. Vend vendorname however does not have a strong correlation to Co name,
so around 80% of the unique Co name values can be found in all partitions after
the first partitioning step, which is more similar to a random distribution and
consequently leads to more balanced partitions after the second partitioning
step.

2. Partition responsibilities change during query execution. An executor is respon-
sible for partitions Pi when requiring a partitioning on the first key, while being
responsible for P i when requiring a partitioning on the second key. Nearly all
partition responsibilities are moved between queries, making e.g., buffered data
useless.

3. The number of partitions increases rapidly with the number of columns and
cores. The total number of partitions is ∏num cols

i=1 ni, with ni being the number
of partitions for key column i. In order to avoid unused cores during query
execution, we require ni ≥ num cores; 1 ≤ i ≤ num keys. For an example
machine of 128 cores and three partitioning keys we would need at least 221

partitions. This leads to an non-negligible overhead in query execution due to
additional metadata and partition assignments.

4. The order of partition columns impacts load balance.

5. Due to changing node responsibilities for partitions, a shared-disk approach is
a requirement for hierarchical partitioning.

Changing data responsibilities impacting buffering is a major drawback of hierar-
chical partitioning. (3) and (4) could be mitigated by applying a physical allocation
strategy of the partitions to physical partitions, e.g., in [145]. (5) is a minor drawback
here, as data access for all nodes on all data is typically ensured by either a cloud file
system or a shared file system in an on-premise cluster setup. The access however
might be non-uniform, having local and remote reads like in HDFS.

4.4.2 Patched Multi-key Partitioning

In order to mitigate the drawbacks discussed in Section 4.4.1, we relax the multi-key
partitioning definition and introduce patched multi-key partitioning, i.e., allowing
exceptions to the partitioning constraint. We show how to find patched multi-key
partitionings using graph partitioning algorithms or iterative algorithms.2

2Available under https://github.com/dbis-ilm/Patched_Multi-key_Partitioning.
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Algorithm 1: Iterative graph partition assignment
Input : Relation R = {ti|0 ≤ i ≤ n},

Partition keys K ⊆ cols(R)
Output : Set of partitions P = {Pi|Pi ⊆ R, i ∈ N,⋃

Pi = R, ∀i, k ∈ N : Pi ∩ Pk = ∅}
1 P ← {}
2 while R \ ⋃

P ̸= ∅ do
3 ∆R← R \ ⋃

P
4 X ← {}
5 X ′ ← {t} for some t ∈ ∆R
6 while X ̸= X ′ do
7 X ← X ′

8 for k ∈ K do
9 // No duplicates due to set semantics, so no need to adapt ∆R

10 X ′ ← X ′ ∪ {t ∈ ∆R|∃t′ ∈ X ′ : t(k) = t′(k)}

11 P ← P ∪ {X} ;
12 return P

Motivation

Based on Definition 4.4.1 there is a straight-forward and inevitable approach to find
a multi-key partitioning on a given dataset. This approach is sketched in Algorithm 1
and serves as a starting point for further discussions. The main idea is to iteratively
build data partitions by starting at a single tuple and adding tuples in order to
match (MK1) and (MK2), which means that in one step we add all tuples with
matching values in one of the partition keys, and repeat until we do not find any
tuples to add. If there are still unassigned tuples we repeat this behaviour starting
with an unassigned tuple. The resulting partitions can then be used directly as
table partitions or assigned to physical partitions using a physical allocation strategy
as e.g., in [145]. An example sequence of this algorithm is shown in Figure 4.15.
Starting with tuple t1 in the first partition P1, we add t2 in the first step as t2 also
contains the column value t2(A) = 1. The loop will now terminate after checking
that no more tuples share values for columns A or B with tuples in partition P1. As
not all tuples are assigned yet, we start a second partition P2 initially containing
t3. t5 is added next due to a matching value in column A and t4 is added due to
matching value in column B. The final partitioning consequently consists of two
partitions.

We implemented the algorithm using a recursion of SQL semi-joins and unions
for initial experiments. These experiments revealed the major drawbacks of the naive
approach, as it produces a single large partition for most datasets and partition
keys. Even if it discovers multiple partitions in the data, the number of physical
partitions and their size is determined by this “natural” number of partitions in
the given dataset. We can allocate partitions to physical partitions to reduce the
number of partitions, but we can not fill more partitions than “naturally” discovered.
However, if we would agree that the value A = 2 is an exception and tuples holding
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Figure 4.15: Sequence of the naive multi-key partitioning

the value A = 2 are not necessarily assigned to the same partition, tuple t5 would
not be assigned to P2 and would consequently form a separate partition P3. A query
containing a grouping on column B could be executed partition-locally without the
need for data repartitioning. Grouping on A also does not require to repartition
all tuples, but only the tuples holding the exception value A = 2. This example
motivates the definition of a patched multi-key partitioning.

Definition

We want to allow marking tuples as exceptions to the multi-key partitioning as defined
in Definition 4.4.1 in order to find more balanced partitions and to be independent
from the “natural” partitions of a given dataset. Keeping in mind that PatchIndexes
allow the definition of approximate constraints by maintaining sets of patches, we
therefore relax the definition of a multi-key partitioning as follows:

Definition 4.4.3. Patched multi-key partitioning (2 keys)
Let relation R be a set of tuples t, cols(R) be the set of columns of R, columns
A, B ∈ cols(R) be the partition keys and n be the number of partitions. Further
we denote t(X) as the value of column X of tuple t and assume the existence of a
set of patches Pc for every partition key column c ∈ {A, B}. We define a patched
multi-key partition function for two partition keys as a function
p : t ∈ R, n 7→ i ∈ {1, · · · , n} with the following properties:

(PMK1) ∀t1, t2 ∈ R\PA
: t1(A) = t2(A)⇒ p(t1, n) = p(t2, n)

(PMK2) ∀t1, t2 ∈ R\PB
: t1(B) = t2(B)⇒ p(t1, n) = p(t2, n)

Intuitively, (PMK1) and (PMK2) relax the Partition locality to tuples that are
not included in the set of patches for the respective column. The definition also does
not make any claims about the size of the set of patches, i.e., a trivial solution would
be to assign all tuples to the sets of patches. The main goal is now to construct both
a partition function and small sets of patches for the partition key columns, such
that the defined constraints are met.
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Figure 4.16: Graph constructions for example table with 3 partition keys

4.4.3 Graph Partitioning
The naive algorithm presented in Section 4.4.2 showed that the problem of finding a
(patched) multi-key partitioning intuitively can be transferred to graph algorithms.
The constraints that once a tuple is assigned to a partition, every other tuple sharing
the same value in at least one of the partition key columns must be assigned to the
same partition, are similar to following paths in a graph to discover its connected
components. The “natural” partitions that Algorithm 1 discovers are thereby the
connected components of a graph constructed from the tuples of the given dataset.
We formally define a mapping of relations to graphs and exploit existing graph
partitioning algorithms as a first approach for meeting the goal of finding sets of
patches and a partitioning function such that Definition 4.4.3 is met. The main
concept of using graph partitioning algorithms can be depicted as follows:

1. Map the input table to a graph based on the partition keys.

2. Apply a graph partition algorithm on the graph. This results in an assignment
of vertices/edges to a graph partition.

3. Map the graph partitions back to table partitions.

4. Define set of patches based on overlapping vertices or edges.

By defining the mapping between graphs and tables, this approach can be generalized
to arbitrary graph partitioning algorithms. In the following, we describe generally
applicable mappings. Only the actual storage layout of the graph is dependent on
the expected input layout of a given graph partitioning algorithm.

Table to Graph Mapping

Mapping a table to a graph is based on the chosen set of partitioning keys and can
be done in two general ways: Modeling tuples of the table as vertices or as edges,
resulting in dual representations depicted for an example table in Figure 4.16 and
defined as follows:

Definition 4.4.4. Graph Construction, Tuples as Vertices
Assume a Relation R and a set of partition keys P ⊆ cols(R). We define a multigraph
Gt as v(R) = (V, E) that represents the relation R with V = {t|t ∈ R(P )} and
E = {(u, v)k|u, v ∈ R, u ̸= v, k ∈ P : u(k) = v(k)}.
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Figure 4.17: Graph partitioning example workflow

Definition 4.4.5. Graph Construction, Tuples as Edges
Assume a Relation R and a set of partition keys P ⊆ cols(R). We define a multigraph
Gt as e(R) = (V ′, E ′) that represents the relation R with V ′ = {v|∃k ∈ P : v ∈ R(k)}
and E ′ = {(u, v)t|t ∈ R, k1, k2 ∈ P, k1 ̸= k2 : t(k1) = u ∧ t(k2) = v}.

Intuitively, the graph Gt as v(R) contains a vertex for each distinct combination of
partition key values of R and an edge between two vertices for each shared partition
key value. On the other hand, Gt as e(R) is a multipartite graph and contains a vertex
for each distinct partition key value and an edge between two vertices for each tuple
in R which contains the respective partition key values. As columns might share
column values leading to conflicts in vertex identifiers, we use a unique mapping
between partition key values and vertex identifiers in the implementation. We defined
both graph constructions as multigraphs, which could be replaced by constructing
a weighted graph with weights indicating the number of tuples holding the pair
of values in the case of Gt as e or the number of equal partition key values in the
case of Gt as v. Both approaches work similarly and the choice between them is only
impacted by the expected input of the graph partitioning algorithm. Conceptually,
an edge with a large weight indicates the same graph connectivity as multiple edges
between vertices. In Figure 4.16, we used the multigraph construction, so there are
two edges between the vertices (2, 4, 2) and (2, 3, 4) in Gt as v or two edges between
A = 2 and C = 2 in Gt as e respectively. The resulting temporary graphs can be larger
than the original table. With n being the number of tuples in the base table, di being
the number of distinct values in column i and k being the number of partition key
columns, graph Gt as v = (V, E) has size |V | = n and 0 ≤ |E| ≤ k ·∑n−1

i=1 i (depending
on the common partition key values of e tuples; minimum: all unique, maximum:
all tuples equal) and graph Gt as e = (V ′, E ′) has dimensions |V ′| = ∑k

i=1 di and
|E ′| = n ·∑k−1

i=1 i, particularly larger than n as tuples can be represented by multiple
edges for more than two partition key columns.
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In our implementation we realized both constructions over SQL queries to create
the graph representation from a given database table. The required graph represen-
tation is determined by the expected input of the used graph partitioning algorithm.
In our case, we produce a flat file containing a list of edges. Figure 4.17 shows an
example end-to-end workflow for the graph partitioning approach. For Gt as v we use
tuple identifiers as vertex identifiers and calculate edges by performing a self join of
the table for every partition key separately and combining the results using a union.
For Gt as e we use the column values of the partition keys as vertex identifiers and
apply a unique column mapping (in the example: adding the running sum of max
values of other partition keys). We project all two-element subsets of the partition
key, apply the unique column value mapping and union the results of every subset.

Running the Graph Partitioning

In the next step, we apply a graph partitioning algorithm on the constructed graph.
As discussed in Section 4.1, there is the choice between vertex-cut and edge-cut
algorithms, and both alternatives can be applied to both possible graph constructions.
While vertex-cut algorithms assign edges to partitions and cut vertices from the
graph, edge-cut algorithms assign vertices to partitions and cut edges from the graph.
Cutting the equivalent of tuples in the graph, i.e., edge-cut in Gt as e and vertex-cut
in Gt as v, cuts whole tuples and consequently leads to a single set of patches for the
whole table. Using the respective other variant leads to a single set of patches for
each of the partition key columns. This offers more flexibility, so we expect smaller
sets of patches when later querying columns of the partition key separately.

The remaining two options, i.e., performing an edge-cut on Gt as v or a vertex-cut
on Gt as v also show some challenges. In Gt as v, edges represent a common column
value between two tuples. Removing an edge from the graph however only has a
local impact and does not impact other edges representing the same column value.
As we described in Section 4.4.2 and will describe formally when describing query
execution using PatchIndexes in Section 4.4.5, we need to repartition all tuples
sharing a column value that was marked as an exception. Consequently, we would
need to remove all edges with a common column value when removing one of them,
e.g., removing all edges representing A = 2 in Figure 4.16. Conceptually, this issue
is caused by the fact that a single column value is represented by multiple graph
objects, i.e., multiple edges in this case. On the other hand, Gt as e shares a similar
challenge. Here, tuples are represented by multiple edges. Performing a vertex-cut
on Gt as e assigns edges to partitions and could therefore possibly assign a tuple to
different partitions, which leads to conflicts when mapping the graph back to the
table.

The property of finding a balanced partitioning and minimizing the number
of cutted graph objects (and minimizing the sets of patches later) relies on the
properties of the graph partitioning algorithm. As we focus on embedding any
given graph partitioning algorithm into relational table partitioning in this approach,
discussions about the quality of the partitioning produced by a choosen algorithm is
out of scope of this work. As an example, we chose to use the vertex-cut algorithm
Distributed Neighbor Extension [67] on both the Gt as v and the Gt as e construction,
comparing the effects described above. DistributedNE starts with a random edge

87



CHAPTER 4. DATABASE SUPPORT FOR APPROXIMATE CONSTRAINTS

per partition, iteratively grows partitions in parallel using neighbor expansion and
performs synchronisation between the expansion rounds. The algorithm finds a local
optimum, but due to the random starting point selection it does not guarantee a
global optimum.

Graph to Table Mapping

Mapping the partitioned graph back to the relational table is the last step and
includes solving the two main goals stated in Section 4.4.2, namely to find a par-
tition function and sets of patches for partition key columns in order to meet the
constraints of a patched multi-key partitioning. After applying the graph parti-
tioning algorithm that assigned graph elements to partitions we reverse the graph
construction by adding the assigned partition to the respective tuple as an additional
table column. This way, we materialize the partitioning function as a mapping
directly in the table. Afterwards we repartition the table on the graph partition
column using regular hash partitioning. DistributedNE performs a vertex-cut, so
it assigns edges to partitions. In order to reverse the table to graph mapping we
create a table of schema (vertex1, vertex2, partition id) from the partitioning result
file like shown in Figure 4.17 in order to perform the mapping again over SQL. For
Gt as v we produce a mapping of partition identifiers to tuple identifiers by projecting
(vertex1, partition id) and (vertex2, partition id) and union them, before grouping
on the vertex column and computing the minimum and maximum partition id. If
minimum and maximum match, the tuple was not cut from the graph by the vertex
cut and we can apply the partition id. Otherwise we apply a negative partition id
and the tuple gets assigned to the sets of patches later. For Gt as e we split the
table to reconstruct the two-element partition key subset based on filter predicates
(using the unique value mapping). Afterwards we join these parts to reconstruct a
mapping table of schema (partition key columns, partition id). Again, we group
on the partition key columns and calculate the minimum and maximum partition id
to discover and mark conflicts like in the Gt as v case. For both cases we need to
ensure that the partition ids calculated by the graph partitioning are also assigned
to different physical table partitions, which is not necessarily ensured, i.e., it is not
ensured that partition ids between 1 and n are indeed assigned to n different physical
partitions. We therefore update the partition ids with values that are ensured to be
assigned to different partitions. These can be easily calculated if the hash function
used for hash partitioning is exposed over the SQL frontend of the database system.
The reverted mapping tables are finally joined back with the fact table on the
tuple identifier for Gt as v or on the partition keys for Gt as e in order to update the
materialized partition id column.

In the last step, we need to identify the sets of patches. Graph elements that
have adjacent graph elements with different partitions are exceptions, which are
removed from the graph in the graph partitioning. Similarly, we query the table for
each partition key to identify partition key values holding more than one distinct
partition id or a negative partition id indicating a conflict from the graph to table
mapping as described in Section 4.4.5. These tuples are declared as exceptions and
assigned to the set of patches for the respective partition key column. In the upper
case of the example in Figure 4.17, all tuples with A = 2 would be included in the
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set of patches PA for column A, tuples with B = 2 in PB and tuples with C = 1
in PC respectively, because tuples holding these values have either more than one
distinct partition id or a negative partition id.

Discussion

The approach of mapping a relational table to a graph, using existing graph parti-
tioning algorithms to partition the constructed graph and infer the table partitioning
from the graph partitioning is an elegant way of combining both worlds to apply the
well-known and well-proven characteristics of graph algorithms to relational tables.
However, it also has some drawbacks. First, the dataset must be completely loaded
before graph partitioning can be invoked. This is fundamentally different from a
typical data ingestion pipeline, where tuples are iteratively loaded (in parallel), and
decisions on partition assignment are made locally to a tuple instead of considering
the whole table. Consequently, we need to repartition the table after it was already
loaded to apply the graph partitioning. Second, data layouts in analytical database
systems fundamentally differ from data layouts in graph databases, so expensive
data reorganisation or data transport would be needed. In our case, we export the
constructed graph from the database in order to use it as an input for Distribut-
edNE. Although iterative extensions [45] exist that would enable iterative partition
assignments during loading, they would either require reconstructing the graph when
data should be appended to an existing table or the constructed graph needs to be
maintained as a separate copy of the data during the table lifetime. For both reasons,
the approach described above might be hardly applicable in practice, but motivates
the design of a iterative patched multi-key partitioning approach.

4.4.4 Iterative Patched Partitioning
Using graph partitioning algorithms require the full dataset to be present and are
difficult to integrate due to the different data layouts of relational databases and
graph systems. However, algorithms like DistributedNE ensure minimal sets of cuts
(which translates to minimal sets of patches) under given balancing constraints. In
order to make the approach more usable in practice, we design an iterative patched
partitioning strategy as an alternative approach in this section which is able to decide
on partition assignments upon coming across a single tuple at the price of loosing
the optimality of the resulting partitioning. The main idea of the approach is to
iteratively build and “color” a graph. Similar to hash partitioning, we thereby make
a partition assignment decision just in the moment the tuple is loaded into the table.
Our example algorithm shown in Algorithm 2 is based on the Gt as e construction
and intuitively holds an assignment of values to partitions for each column of the
partition key. For each tuple, we need to distinguish between three cases. If there is
no partition assignment for any of the partition key values yet, we apply a partition
function f on it. If there are some key values that already have an assignment
(because they already occured before) and all of these partition ids match, the tuple
is assigned to this partition, matching the intuition that tuples sharing a partition
key value are assigned to the same partition. If however there are key values already
assigned to a partition and these assignments do not match, we have a conflict. This
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Algorithm 2: Iterative graph partition assignment
Input : ∗part key values, num keys
Output : partition id

1 lookups← part assignment lookup(part key values);
2 if allNULLOrExceptions(lookups) then
3 part← f(part key values) ; // Case 1
4 else if allNULLOrExceptionOrEqual(lookups) then
5 part← firstAssignment(lookups) ; // Case 2
6 else
7 global rotating idx ; // Case 3: Conflict
8 while lookups[rotating idx] == NULL OR

lookups[rotating idx] == EXCEPTION do
9 rotating idx← (rotating idx + 1) % num keys ;

10 part← lookups[rotating idx];
11 rotating idx← (rotating idx + 1) % num keys ;
12 global partition mappings ;
13 for i = 0; i < num keys; i = i + 1 do
14 if lookups[i] == NULL then
15 partition mapping[i].insert(part key values[i], part)
16 else if lookups[i] ̸= part then
17 partition mapping[i].update( part key values[i], EXCEPTION)
18 return part ; // Partition id for given tuple

tuple would conceptually connect two connectivity components in the iteratively built
graph. We can’t revert previous decisions to join these connectivity components and
decide for one partition key to be the decisive key, so the tuple will be an exception
for every other column when later discovering the sets of patches. The choice for
the decisive key follows a rotating schema in order to distribute exceptions over
all partition key columns. In all cases, we insert the assigned partition id into the
assignment for every column that did not have an assignment before or update to
the exception marker when hitting case 3, i.e., there is a partition id for a value
which was not chosen. The exception markers are handled similarly to NULLs in
case 1 and case 2, because they are not decisive.

The described algorithm obviously has some drawbacks. Due to the “local”
decision in the conflict case, it is not able to find a globally optimal partitioning with
a minimum set of patches. Second, it does not have any guarantees about partition
balancing. The first case thereby has the most impact on balancing. We track the
current sizes of each partition (not shown in Algorithm 2) and the function f assigns
a tuple to the smallest partition in the in order to fill partitions as equally as possible.
Third, the algorithm is sensitive to the order of tuple insertion. As a simple example
depicted in Figure 4.18, inserting tuples that represent a path through a graph would
assign all tuples to a single partition, so we rely on the assumption that we hit the first
case regularly during tuple insertion to assign tuples to different partitions. Inserting
the tuple with partition keys (2, 2) in the upper case of Figure 4.18 and hitting case
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Figure 4.18: Order-sensitivity of iterative patched partitioning

3, the tuple (i.e., the edge) is assigned to the second partition according to key A
(indicated by not connecting the edge), so all tuples with B = 2 will later belong
to the set of patches PB as they belong to different partitions. Due to the rotating
index for choosing the decisive column, column B would be chosen as the decisive
column when hitting case 3 for the next time in order to balance patches over all
partition keys. However, having a decision making process “local” to a tuple enables
on-the-fly partition assignments during data loading, avoiding expensive conversions
and repartitionings of the graph partitioning approach presented in Section 4.4.3. The
algorithm is designed as a single-threaded approach. In order to be integrated into
parallel loading, access to the metadata structure must be secured using locks during
Algorithm 2 between reading the partition assignments and updating them. As this
is the major part of the algorithm, an optimistic approach would be favourable here,
i.e., performing the partition assignment lookup again before updating to ensure that
no updates were performed in the meantime. In order to make it openly available,
our implementation contains a standalone version of the algorithm not integrated into
data loading operators inside a database kernel. The standalone version processes
input files and produces an output file with an additional column for the computed
partition id.

4.4.5 Query Processing
As described in Section 4.2.6, PatchIndexes are generic data structures that can
be extended to arbitrary constraints by implementing an interface for PatchIndex
creation, maintenance under updates and adding an optimizer rule to exploit PatchIn-
dex information in query optimization. In the following we describe the respective
adaptions for integrating the patched multi-key partitioning constraint.

PatchIndex Creation

After running one of the graph partitioning algorithms described in Section 4.4.2 we
create PatchIndexes on the partition key columns in order to maintain the exceptions
to the partitioning. We follow the approach of having sets of patches per column, so
we create separate index instances on them. The sets of patches maintain the tuple
identifiers of all exceptions to the partitioning, i.e., all tuples that have a partition
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Figure 4.19: Patched query plans after applying the PatchIndex optimization rule
(added operators highlighted)

key value that is present in more than one partition or have a negative partition id
indicating a conflict when mapping the graph back to the table. We discover the
partition key values violating the partition constraint by (1) running an aggregation
query counting the distinct partition ids of column values and selecting the ones
having more than one distinct partition id and (2) running a filter query to find all
values with negative partition ids. The union of (1) and (2) is joined back with the
table on the respective key column to find all tuple identifiers to be inserted into the
PatchIndex. In the upper case of Figure 4.18 all tuples with B = 2 are exceptions, so
tuple identifiers of tuples (1, 2) (assigned to the first partition) and (2, 2) (assigned
to the second partition) are inserted into the PatchIndex holding the set of patches
PB. Partitioning is transparent for the PatchIndex, so an index instance is created
per partition.

Analytical Queries

Materializing approximate constraints with PatchIndexes generally follows the idea to
split query execution using the PatchIndex scan between tuples that match a certain
constraint and exceptions to the constraints. The patched multi-key partitioning
constraint defined in Definition 4.4.3 allows us to avoid expensive repartition/shuffle
operations as we know that tuples not included in PX for a given column X match
the Partition locality criteria. Consequently, these tuples do not need to be reshuffled.

Partition locality plays an important role for aggregations and joins. For executing
a partitioned aggregation, two basic approaches exist if the grouping column does
not match the partition key of the table. First, data can be reshuffled on the
grouping key and the subsequent aggregation can be executed partition-locally. This
approach introduces large network overhead for repartitioning. Second, one could
perform a pre-aggregation on the existing partitions, then reshuffle data and perform
a post-aggregation afterwards, which is necessary as not all elements of a group
are initially placed in the same partition. Here one needs to carefully consider the
aggregation function, that is required to be decomposable, e.g., an average can’t
be executed in a stepwise fashion without breaking it into a sum and a count. The
2-phase aggregation is favorable when data contains few distinct values according
to statistics, so the additional aggregation effort is amortized by the less effort to
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shuffle data. Both variants can be enhanced by the patched partitioning constraint.
As shown in Figure 4.19, we can skip the repartitioning (for the 1-phase aggregation)
or the pre-aggregation and repartitioning (for the 2-phase aggregation) for all tuples
that are not included in the set of patches when aggregating on a patched partition
key. This is possible because either all tuples or no tuples sharing the same partition
key value are handled as exceptions. Consequently we reduce the number of tuples
that need to be either reshuffled or pre-aggregated and reshuffled. Splitting the
datastream however also introduces overhead. As the 2-phase aggregation is typically
chosen when the grouping column only has a small amount of unique values, we
expect that the benefit of the PatchIndex optimization might be too small to amortize
the overhead of added operators. As the number of exceptions are known during
query optimization, the costs of both plans with and without the optimization can
be estimated and the optimizer can decide between them. Except adding linear costs
for the filter operators with modes use patches and exclude patches, no changes are
needed in the cost model of an arbitrary optimizer.

Join operators can also be performed in a partitioned way if tables are partitioned
on the join key, otherwise an expensive repartitioning is needed again. In typical data
warehouse applications, many joins are performed between fact tables and dimension
tables. While the latter ones are typically partitioned on their primary keys, choosing
the partition key of fact tables consisting of many foreign keys is typically difficult.
When we included the foreign key in the patched multi-key partitioning and have a
PatchIndex on the join column, we can again avoid the repartitioning for all tuples
not included in the set of patches. This case however requires the second table to be
co-partitioned, which is automatically ensured by using the same partitioning function
in e.g., hash-partitioning, but is not guaranteed in our graph partitioning approach.
We therefore derive the partitioning of the primary key side of the join from the fact
table when the foreign key was included in the multi-key partitioning computation.
Consequently, dimension key values that do not belong to the respective set of
patches in the fact table derive the same partition id, while exceptions are assigned
using common hash partition to be co-partitioned with the fact table exceptions after
repartitioning. Deriving the partitioning is a problem for shared dimensions, as only
one fact table can be decisive for the dimension table partitioning. However, it is
conceptually better to repartition a smaller dimension table than a large fact table.

In contrast to hash partitioning where data is not required to be reshuffled only
if the partition key matches the grouping/join key, the described optimizations work
with every key that was part of the patched multi-key partitioning. So instead
of a fast query when hitting the right key and slow queries for all other keys in
case of hash partitioning, we aim at reaching robust performance for aggregate/join
queries on all keys of the multi-key partition key. The performance will depend on
the amount of tuples that are categorized as exceptions and assigned to the sets
of patches. Additionally, partition responsibilities of nodes do not change when
querying different partition keys, so patched multi-key partitioning also works for
shared-nothing architectures. Node-local buffers are not invalid for different queries,
which is the major drawback of hierarchical partitioning approach described in
Section 4.4.1.
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The queries shown in Figure 4.19 are also allowed to have additional operators
below the groupby/join operator, e.g., additional filters or projections. These
additional operators would be replicated to both datastreams including/excluding
patches, so they are applied to both datastreams separately. As a current limitation,
these operators are not allowed to be aggregations or joins, so the PatchIndex
optimization rule is currently only applied on the lowest aggregation/join in the
query tree.

Update Queries

Updatability is an important factor to make a concept applicable in practice. There-
fore, we need to maintain the patched partitioning constraint also under update
operations, i.e., inserts, modifies and deletes. The PatchIndex data structure itself
is designed in a generic way. The underlying sharded bitmap structure supports
update operations and we simply need to implement an interface to define how
the set of patches is maintained under updates. Inserts are handled similar to the
initial loading, so tuples get a partition id assigned by the partition assignment
algorithms described in Section 4.4.2. However, it might happen that an inserted
tuple connects two connectivity components of the graph representation, meaning
that partition key column values become exceptions. This can similarly happen for
modifies on partition key values. We discover these new exceptions using a join
of the inserted/modified tuples with the table itself, performing the same distinct
aggregation than during initial partitioning to find values with more than one unique
partition id assigned. We keep the join small by only scanning the inserted/modified
tuples on the one side and performing data pruning on the full table based on the
observed join keys and small materialized aggregates [111] on the table, to avoid a
full table scan. Delete operations do not connect graph components but might split
components, which does not harm the partitioning constraint. In general update
operations might degenerate the graph and can lead to loosing the optimality of the
graph partitioning. By monitoring exception rates this might lead to a recomputation
of the partitioning after some time.

4.4.6 Evaluation
With our experiments we show that patched multi-key partitionings can be found
in real-world datasets while comparing the presented partitioning approaches and
highlight properties of data and algorithms that impact partition quality. Additionally
we show opportunities for query performance. We integrated the support for patched
multi-key partitionings using PatchIndexes into the Actian VectorH 6.2 system. The
system runs on a four node cluster, each node consisting of a Intel(R) Xeon(R) CPU
E5-2680 v3 @ 2.50GHz, 256 GB RAM and a 10 GBit/s network interface. We use
the PublicBI benchmark dataset [154] representing real user Tableau workbooks and
picked the CommonGovernment workbook as an example. The workbook consists
of 110 GB raw data and 43 queries including 13 different group-by columns. For
performance evaluation we focus on these analytical queries, as the update mechanism
is similar to and extensively evaluated in Section 4.3.4.
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Table 4.4: Runtime(in s), imbalance factor and exception rates(in %) of Common-
Government table for different partitionings

1M Tuples 5M Tuples
Partition keys Graph Iterative Graph Iterative

Column1 Column2 Column3 Parts Time Imbal. Exc. Time Imbal. Exc. Time Imbal. Exc. Time Imbal. Exc.
Ag name Bureau name - 4 46 4.9 (2,0) 39 2.3 (3,0) 100 2.2 (1,0) 175 2.5 (3,0)
Ag name Co name - 4 43 3.2 (10,1) 39 2.1 (10,1) 102 3.1 (43,1) 174 2.9 (23,1)
Bureau name Co name - 4 43 3.4 (1,0) 39 2.9 (3,0) 94 3.8 (21,1) 174 3.5 (3,0)
Vend dunsnumber Vend vendorname - 4 241 2.9 (0,1) 39 1.1 (16,23) 1050 3.1 (1,1) 179 1.01 (17,24)
Ag name Bureau name Co name 4 49 2.6 (63,27,13) 40 2.3 (8,1,1) 121 4.2 (76,51,40) 178 2.5 (7,1,1)
Ag name Bureau name Co state 4 47 2.4 (98,93,99) 40 1.2 (90,49,96) 110 2.7 (99,97,99) 176 1.4 (90,43,96)
Ag name Bureau name - 96 102 10K (37,0) 60 15K (2,0) 215 2.6K (14,0) 198 22K (3,0)
Ag name Co name - 96 109 13K (82,1) 66 477 (12,1) 214 388K (85,1) 199 680 (11,1)
Bureau name Co name - 96 118 13K (33,1) 62 450 (3,0) 211 601K (65,1) 198 557 (3,1)
Vend dunsnumber Vend vendorname - 96 207 21 (1,1) 63 6.1 (21,34) 560 28 (1,3) 206 8.5 (23,35)
Ag name Bureau name Co name 96 117 111 (98,95,82) 60 128K (8,1,1) 214 1.2 (100,100,100) 229 11K (20,2,1)
Ag name Bureau name Co state 96 114 905 (99,95,99) 63 5.5 (92,81,96) 215 1.3 (100,100,100) 223 5.6 (92,82,97)

We measure execution times for partitioning using the following workflows. For
graph partitioning we require the presence of the full dataset. Therefore we start
with a pre-loaded table, perform the table to graph mapping, the graph partitioning
and the graph to table mapping, before repartitioning the table on the determined
partition id. For the iterative partitioning approach we do not require the full table.
We read a fixed flat file line by line and decide the partition assignment per tuple, so
the order-sensitivity of the iterative approach does not have an impact on different
runs in the experiments. We write the data with the added partition id back to a
flat file and load the resulting table in a single bulk load.

Experiment 1: Partition quality

In the first experiment we show the existence of patched multi-key partitionings.
We ran the partitioning on all pairs and triples based on the 13 grouping columns.
Table 4.4 shows a subset of the candidates, chosen in order to present properties of
our approach, with their respective statistics, i.e., partitioning runtime, imbalance
factor and exception rates eCol = (|PCol|/|R|)·100% for both partition algorithms. All
results show the median of three runs, which is particularly of interest for the graph
partitioning algorithm starting at a random initial partitioning. We only use the graph
partitioning with the Gt as e mapping, as we observed that the selfjoin in Gt as v leads
to a very huge table when joining on columns with only a few unique values and out-
of-memory situations. Table 4.4 shows different cases: The “ABC” columns Ag name,
Bureau name and Co name only have few hundred distinct values. Consequently,
the resulting graph consists of few vertices with dense connectivity. In contrast, the
“vendor” columns Vend dunsnumber and Vend vendorname have over 100K distinct
values, leading to a graph of many vertices with sparse connectivity. In all cases, the
number of edges is equal to the number of tuples by the definition of Gt as e.

We want to find a good partitioning indicated by both an imbalance factor near
1 and low exception rates for all columns. From the results we can outline properties
that impact partition quality:

• Column correlation: If columns correlate, they tend to have value combina-
tions that are more likely than others. This leads to graphs with parts that
are more densely connected than others and results in less exceptions when
cutting edges from the graph. If columns are not correlated, the resulting
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Figure 4.20: Column correlations in CommonGovernment

graph has a more random distribution of edges, leading to a high number of
exceptions. Figure 4.20 shows correlations of the nominal “ABC” and “vendor”
columns based on the symmetric Cramér’s V[37]. We can observe that corre-
lating columns can lead to good partitionings in Table 4.4. Co state does not
correlate with Ag name or Bureau name columns and consequently leads to
a bad partitioning when included.

• Number of distinct values: As the number of edges is fixed by the number
of tuples, the number distinct partition key values determine the number of
vertices and consequently the degree of connectivity of the graph. We can
can find a more balanced partitioning with less exceptions if there are many
distinct partition key values in the data, which is the case for the “vendor”
columns compared to the “ABC” columns.

• Number of partitions: Similar to the number of distinct values, the number
of desired partitions has an impact on partition quality. While we can find a rea-
sonable good partitioning for the “ABC” columns with 4 partitions, running the
algorithms for 96 partitions leads to very bad partitionings indicated by either
a high imbalance factor or high exception rates. Imbalance factor and exception
rates are a trade-off here, as shown for, e.g., (Ag name, Bureau name) at 96
partitions and 5M tuples. The graph partitioning leads to higher exception
rates but lower imbalance factor compared to the iterative approach. However,
all partitionings with such imbalance factors are not usable. As the “vendor”
columns contain more unique values and consequently more vertices in the
graph, they are suitable to find a partitioning with more partitions. As a side
note, the graph partitioning algorithm runs slower on the “vendor” columns for
4 partitions than for 96 partitions, as communication overhead for 4 partitions
dominate the benefit of parallelism here.

• Apriori property: From the results we can also suggest that the choice
of partition key columns follow an apriori property. A partition key of k
columns can only lead to a good partitioning if all k−1 subkeys provide a good
partitioning. This is shown by the “ABC” columns in the iterative approach.
While we get a good partitioning on (Ag name, Bureau name, Co name),
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exchanging Co name with Co state results in a bad partitioning, as none of
the subkeys containing Co state is a good partitioning. Graph partitioning
on three columns leads to high exception rates for the “ABC” columns due
to the conflict resolution when mapping Gt as e back to the table. Due to the
apriori property the example given in Table 4.4 is limited to three partition key
columns, as there are no more columns that correlate with the “ABC” columns
in the dataset. Please note that this is a property of the dataset, not of our
approach.

From a runtime perspective, the graph partitioning runtime is mainly dependent on
the complexity of the graph, i.e., the number of vertices, as it propagates partition
assignments over paths in the graph. Consequently, runtime on the “ABC” columns
is significantly lower than on the “vendor” columns. The runtime thereby splits into
several parts: The mapping from table to graph takes around 5-12s depending on the
table size, running DistributedNE takes between 2-950s depending on the graph size,
mapping the graph back to the table takes 4-9s and repartitioning the table takes
40-70s, so for small graph sizes repartitioning is the dominating part. On the other
hand, iterative partitioning runtime is mainly impacted by the number of tuples as
it iteratively processes the tuples. It is therefore constant for the same table size
independent of the chosen partition keys. Runtime splits into iterating over the
flat file and loading the resulting flat file into the database, which took around 20s
for 1M tuples or 100s for 5M tuples. The iterative approach is favorable over the
graph partitioning in the currently presented version, both in terms of runtime and
partitioning quality.

This experiment also reveals a weakness of the current approach. Starting from a
good partitionining (Ag name, Bureau name), adding Co state destroys the whole
partitioning instead of just excluding the values from the uncorrelated Co state
column. This is caused by the fact that the underlying partitioning algorithm is
not aware that the graph is multipartite, i.e., it has subsets of vertices (one subset
per column) and all edges are between subsets, but never within a subset. For our
application, it would be better to simply cut a whole subset instead of destroying
the whole partitioning. In the example, it would be better to have 100% exceptions
in Co state while keeping the good partitioning in (Ag name, Bureau name). With
this, queries that require a partitioning on the column cutted by the algorithm would
run similar than before using repartitioning, but queries on the remaining columns
would be accelerated.

Experiment 2: Query performance

Out of all queries of the CommonGovernment workbook we chose two groups. Queries
9, 29 and 41 contain aggregations on Vend dunsnumber and Vend vendorname,
while queries 1, 11 and 12 contain aggregations on Ag name, Bureau name and
Co name. We loaded the full dataset with hash partitionings on each of these
columns as baselines and compared them against patched multi-key partitionings
using the iterative partitioner on (Vend dunsnumber, Vend vendorname) named as
patched vendor and (ag name, bureau name, co name) named as patched ag, which
were the column combinations with useful partitionings from the first experiment.
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Figure 4.21: Query runtimes on different table partitionings

All tables have 96 partitions. The results are shown in Figure 4.21. We can first
observe that the baselines show different runtimes, although they are expected to
perform similarly. Partitionings on the vendor columns are faster than partitionings
on Ag name, Bureau name or Co name, caused by the small amount of unique
values of the latter columns leading to imbalanced partitionings.

Overall the partitioning that matches the grouping column of the respective
query shows the fastest runtime as expected. For the first set of queries (9, 29,
41), the patched vendor partitioning shows performance slightly worse than the best
partitioning, but better than the respective other vendor partition key. This is
exactly the behaviour we want to achieve. We achieve a consistent performance with
a patched multi-key partitioning for this set of queries.

For the second set of queries (1, 11, 12) we can observe a different behaviour. Here,
the patched multi-key partitioning is not able to achieve reasonable good performance
cuased by the small number of unique values of the partitioning columns. The
aggregations are performed as a two-phase aggregation and the overhead of adding a
PatchIndex scan is too large to amortize it’s benefits. Additionally, partitions are
even more imbalanced than in the respective baselines and the exception rates are
very high as shown in the first experiment. Consequently, using a patched multi-key
partitioning on partition keys with small number of distinct values (leading to bad
imbalance factors and high exception rates) does not show the robust performance
we are aiming at and should not be used.

Besides that, robustness also means reasonable performance in cases where
partition keys do not match grouping keys. We can observe that the patched vendor
partitioning behaves similar than the other vendor partitionings in the second
set of queries (1, 11, 12), while the patched ag partitioning performs similarly
than the partitionings on the “ABC” columns on the first set of queries (9, 29,
41). In conclusion we can state that patched multi-key partitioning shows robust
performance for columns with a quite large amount of unique values. It avoids bad
query performance caused by full table repartitionings when matching the grouping
keys while performing similar to the baselines when not matching the grouping key.
Please note that the case of replication is also covered in the experiment, i.e., one
could achieve best performance in all queries when holding replicas for all partition
keys leading to 5x storage and update cost.
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Table 4.5: TPC-DS partition key column combinations and exception rates
Table Partition Key Columns Exception Rates
Item (i item sk, i item desc, i formulation, i product name) (0%, 0.2%, 0%, 0.01%)
Item (i item sk, i item desc, i formulation, i product name, i manufact id, i manufact) (4.7%, 5.1%, 5.1%, 0%, 83%, 67%)
Store returns (sr customer sk, sr cdemo sk, sr ticket number) (3.8%, 0.07%, 3.7%)
Catalog returns (cr refunded customer sk, cr refunded cdemo sk, cr returning cdemo sk, cr order number) (3.7%, 1.7%, 2.1%, 0.6%)
Catalog returns (cr refunded addr sk, cr returning cdemo sk, cr order number) (5.2%, 2.4%, 1.1%)
Web returns (wr item sk, wr refunded cdemo sk, wr returning cdemo sk) (5.1%, 0.8%, 0.7%)
Web returns (wr refunded customer sk, wr refunded cdemo sk, wr returning customer sk, wr returning cdemo sk) (0.4%, 0.4%, 0.5%, 0.4%)
Web returns (wr refunded cdemo sk, wr refunded hdemo sk, wr returning cdemo sk, wr returning hdemo sk) (1.1%, 6.2%, 1.1%, 6.2%)
Web returns (wr refunded cdemo sk, wr refunded addr sk, wr returning cdemo sk, wr returning addr sk) (0.7%, 1.0%, 0.7%, 1.0%)
Web sales (ws bill customer sk, ws bill cdemo sk, ws bill addr sk, ws ship customer sk, ws ship cdemo sk, , ws order number) (13.7%, 0.7%, 22.8%, 13.2%, 0.8%, 0%)
Web sales (ws bill customer sk, ws bill cdemo sk, ws ship customer sk, ws ship cdemo sk, ws order number) (7.3%, 0.4%, 7.3%, 0.4%, 0%)
Catalog sales (cs bill customer sk, cs bill cdemo sk, cs ship customer sk, cs ship cdemo sk, cs order number) (8.1%, 1.7%, 8.1%, 1.6%, 0.1%)
Catalog sales (cs bill cdemo sk, cs bill addr sk, cs ship cdemo sk, cs ship addr sk, cs order number) (1.8%, 17.3%, 17.3%, 17.3%, 0.1%)
Store sales (ss customer sk, ss cdemo sk, ss ticket number) (10.2%, 3.8%, 0.5%)
Store sales (ss cdemo sk, ss addr sk, ss ticket number) (3.4%, 18.8%, 1.2%)

Experiment 3: TPC-DS

In order to show the robustness of our approach over different datasets, we investi-
gated the well-known TPC-DS[126] benchmark dataset. Although being synthetic
and therefore rarely contatining “natural” clusters we found different useful partition
key combinations in the dataset on scale factor 1. We used the column correlation
requirement and the apriori property to find the combinations: In the fact tables
we calculated the column correlations of all interesting columns (i.e., foreign keys
or nominal values) and searched for combinations of columns that are all pairwise
correlated with a correlation of over 0.9 and fulfill the apriori property. The resulting
column combinations are candidates and were partitioned using the iterative parti-
tioning algorithm into 4 partitions. Table 4.5 shows several partitionings with their
respective exception rates, all showing a partition balance factor below 1.1.

4.5 Conclusion

Datasets in the cloud typically contain sparse schema information, caused by data
ingestion from numerous endpoints leading to conflicts or users not defining con-
straints. The latter follows the goal to speed up ingestion or to avoid aborts due to
conflicts on constraints. In order to overcome this issue we introduce the concept
of PatchIndex, a generic index structure that allows the definition of approximate
constraints. By simply implementing an interface the PatchIndex can be applied to
arbitrary constraints. PatchIndexes maintain exceptions to constraints and make
them usable in query optimization and execution to avoid expensive operations
on tuples matching a constraint. The index is based on a sharded bitmap data
structure, which allows efficient updates on the materialized information. With this
updatability the concept also allows columns that are expected to fulfill a certain
constraint to become approximate over time.

We showed how PatchIndexes can be applied to sorting and uniqueness constraints
as examples of traditional database constraints. In this cases we can avoid distinct
aggregations for the uniqueness constraint and avoid sorts or replace HashJoins with
MergeJoins in the case of the sorting constraint. The evaluation showed that distinct
aggregations and sorts can significantly benefit from using PatchIndexes even for
high exception rates, while exchanging HashJoins with MergeJoins is only beneficial
for small exception rates. Compared to traditional materializations like materialized
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views, SortKeys or JoinIndexes, PatchIndexes deliver similar query performance
while also offering more efficient updates.

In a second example we showed how PatchIndexes can be used to achieve a
multi-key data partitioning. Here we want to obtain partition locality for multiple
partition keys, i.e., all equal values of all keys can be found in the same partition.
With PatchIndexes it is possible to maintain exceptions to the partition locality.
We show how the problem of finding such a partitioning can be mapped to a graph
partitioning problem and provide an example workflow. The evaluation showed that
patched multi-key partitioning can lead to robust query performance by avoiding
full table repartitionings in queries with different partitioning requirements.
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Chapter 5
Grizzly
- A DataFrame-to-SQL Transpiler

In this chapter we present the Grizzly framework, which provides a DataFrame API
similar to Python Pandas, but instead of shipping the data to the program, the
program is shipped to where the data resides in order to exploit the capabilities of
the database engine for efficient query processing. We argue that for many scenarios
data is already stored in a (relational) database and used for different applications.
Therefore, analysts familiar with Python or the DataFrame API should neither
be bothered with learning SQL to access this data nor with implementing buffer
management strategies to be able to process this data with Pandas in Python.

By transpiling DataFrame operations to SQL we push the execution of modern
analytics towards the database engine, which was one of our major goals described
in Chapter 1. The Grizzly framework is a frontend solution to achieve this goal, i.e.,
it acts as a connector to the database system and uses the well defined SQL API
without requiring changes in the database engine. Due to this portability, it can be
easily deployed in a managed cloud environment with any SQL-compliant database
system. However, we also extend the Grizzly framework with API extensions for
more advanced analytics. While these extenstions are similarly transpiled to SQL,
they are also used to discuss opportunities for native support of modern analytics
that we show in Chapter 6. The main contributions of this chapter are as follows:

• We present a framework that provides a DataFrame API similar to Pandas
and transpiles the operations into SQL queries, moving program complexity to
the optimized environment of a DBMS.

• We extend the API with the feature of processing external files directly in the
database by automatically generating code to use DBMS specific external data
source providers. This especially enables the user to join files with the existing
data in the database directly in the DBMS.

• As a different extension, user-defined functions (UDFs) are also shipped to the
DBMS by exploiting the support of the Python language for stored procedures
of different database systems.

• Adding on the Python UDF support, Grizzly can automatically generate UDF
code to apply pre-trained ML models (the ModelJoin) to the data inside the
database. This way, use cases like classification or text analysis on the data
inside the database can be pushed towards the engine and executed in a scalable
way.

The remainder of the chapter is organized as follows: We discuss related work
and compare existing systems with a Pandas-like DataFrame API in Section 5.1.
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Modin Koalas IBIS AFrame Grizzly

Approach Python
optimization

Transpiling Transpiling Transpiling Transpiling

Backends Ray, Dask Spark Arbitrary
DBMS with
SQL-API

AsterixDB Arbitrary
DBMS with
SQL-API

Query
Evaluation

Eager Lazy Lazy Lazy Lazy

UDF
Support

On local
Pandas
DataFrames

Over
Pandas UDFs

In-DBMS
execution for
Impala and
BigQuery

In-DBMS
execution for
AsterixDB

In-DBMS
execution for
Postgres and
Vector

Ext. File
Support

Read to
DataFrame

Read to
DataFrame

Read to
DataFrame

Read to
DataFrame

In-DBMS
support using
ext. tables/
foreign data
wrappers

ML Model
Support

Handcrafted
UDFs

Handcrafted
UDFs

Handcrafted
UDFs

API for
Scikit models

API for
ONNX,
Tensorflow,
PyTorch

Table 5.1: Comparison of available systems with Pandas-like API.

In Section 5.2 we present the architecture of our Grizzly framework as well as the
transpilation of DataFrame operations to SQL code. Afterwards the important
features of Grizzly are explained in detail, namely the external data source support
in Section 5.3.1, the UDF support in Section 5.3.2 and the ModelJoin feature in
Section 5.3.3. We evaluate the performance impact and scalability of Grizzly in
Section 5.4 before concluding and motivating opportunities for native support of
modern analytics in Section 5.5.

5.1 Related Work
There have been several systems proposed to translate user programs into SQL. The
RIOT project [165] proposed the RIOT-DB to execute R programs I/O efficiently
using a relational database. RIOT can be loaded into an R program as a package and
provides new data types to be used, such as vectors, matrices, and arrays. Internally
objects of these types are represented as views in the underlying relational database
system. This way, operations on such objects are operations on views which the
database system eventually optimizes and executes. Another project to perform
Python operations as in-database analytics is AIDA [40], but focuses mainly on
linear algebra with NumPy as an extension besides relational algebra. The AIDA
client API connects to the AIDA server process running in the embedded Python
interpreter inside the DBMS (MonetDB) to send the program and retrieve the results.
AIDA uses its TabularData abstraction for data representation which also serves to
encapsulate the Remote Method Invocation of the client-server communication.
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Several projects have been proposed to overcome the scalability and perfor-
mance issues in the Pandas framework. These projects can be categorized by their
basic approaches of optimizing the Python execution or transpiling the Pandas
programs into other languages. Modin [125] is the state-of-the-art system for the
Python optimization approach. By offering the same API as Pandas, it can be
used as a drop-in-replacement. In order to accelerate the Python execution, it
transparently partitions the DataFrames and compiles queries to be executed on
Ray [112] or Dask [42], two execution engines for parallel and distributed execution of
Python programs. Additionally, Modin supports memory-spillover, so (intermediate)
DataFrames may exceed main memory limits and are spilled to persistent memory.
This solves the memory limitation problem of Pandas. However, Modin also uses
eager execution like Pandas and still requires the client machine to consist of powerful
hardware, since data from within a database system is fetched onto the client, too.

In the field of systems that use the transpiling approach, Koalas [89] brings
the Pandas API to the distributed spark environment using PySpark. It uses lazy
evaluation and relies on Pandas UDFs for transpiling. Koalas is in maintenance
mode only nowadays as Databricks moved over to use PySpark as a DataFrame API.
The creators of the Pandas framework also tackle the problem of the eager client
side execution in [74]. IBIS collects operations and converts them into a (sequence
of) SQL queries. Additionally, IBIS can connect to several (remote) sources and is
able to run UDFs for Impala or Google BigQuery as a backend. Though, tables from
two different sources, such as different databases, cannot be joined within an IBIS
program. With a slightly modified API, AFrame [141] transpiles Pandas code into
SQL++ queries to be executed in AsterixDB. Independent from the DataFrame API,
[48] shows how to compile arbitrary Python code to SQL. In contrast, in Grizzly we
produce standard SQL which can be executed by any SQL engine and use templates
provided in a configuration file to account for vendor-specific dialects.

An approach to integrate Machine Learning into columnar database systems was
proposed in [130]. The approach uses handcrafted Python UDFs to train the model
inside the database, store the model as a DBMS-specific internal serialized object
and apply the model by deserializing it again. In comparison, Grizzly supports
pre-trained, portable model formats, automatically generates code to apply the
models and also introduces a caching approach to cache the model, which reduces
the loading (or deserialization) overhead and is therefore of major importance for
deep and complex neural networks.

The main features of the presented systems are compared to Grizzly in Table 5.1.
Grizzly also uses the approach of transpiling Python code to SQL, making it indepen-
dent from the actual backend system and therefore being more generic than Koalas
or AFrame. Similar to the proposed systems, Grizzly provides an API similar to the
Pandas DataFrame API with the goal to abstract from the underlying execution
engine. However, Grizzly extends this API with two main features that clearly
separates it from the other systems. First, it provides in-DBMS support for external
files. This enables server-side joins of different data sources, e.g., database tables and
flat files. As a consequence, performance increases significantly for these use cases
compared to the client-side join of the sources that would be necessary in the other
systems. Additionally, the result of the server-side join remains in the database,
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enabling subsequent operations to be also executed in the DBMS instead of the client
machine. Second, Grizzly offers an easy-to-use API for applying Machine Learning
models directly in the DBMS. Compared to the other systems where this feature
could be simulated by handcrafting UDF code to apply the model on the client side,
Grizzly exploits the UDF feature of DBMS and automatically generates code to
cache the loaded model in memory and apply the pre-trained models directly on the
server side. Furthermore, applying the model requires several (Python) functions,
which can only be realized non-optimally using handcrafted UDFs. Again, as results
remain in the DBMS, subsequent operations can be executed efficiently by the DBMS
before returning the result to the client. Besides the performance aspect, this feature
makes it significantly easier to apply Machine Learning models to the data compared
to handcrafted UDFs.

5.2 Architecture
There are two major paradigms of data processing: data shipping and query ship-
ping [91]. While in the data shipping paradigm, as found in Pandas, the possibly
large amount of data is transferred from the storage node to the processing node,
in query shipping the query/program is transferred to where the data resides. The
latter is found in DBMSs, but also in Big Data frameworks such as Apache Spark and
Hadoop. In this section we discuss the architecture of our Grizzly framework which
is designed to maintain the ease-of-use of the data shipping paradigm in combination
with the scalability of the query shipping approach. In its core, Grizzly consists of
a DataFrame implementation and a Python-to-SQL transpiler. It is intended to
solve the scalability issues of Pandas by transforming a sequence of operations on
DataFrames into a SQL query that is executed by a DBMS. However, we would
like to emphasize that the code generation and execution is realized using a plug-in
design so that code generator for other languages than SQL or execution engines
other than relational DBMSs (e.g., Spark or NoSQL systems) can be implemented
and used. In the following, we show how SQL code generation is realized using a
mapping between DataFrames and relational algebra.

Figure 5.1 shows the general (internal) workflow of Grizzly. As in Pandas, the core
data structure is a DataFrame that encapsulates operations to compute result data.
However, in Grizzly a DataFrame is only a hull and it does not contain the actual data.
Rather, the operations on a DataFrame only create specific instances of DataFrames,
such as ProjectionDataFrame or FilterDataFrame, to track the operations. A
DataFrame instance stores all necessary information required for its operation as well
as the reference to the DataFrame instance(s) from which it was created. This lineage
graph basically represents the operator tree as found in relational algebra. The leaves
of this operator tree are the DataFrames that represent a table (or view) or some
external file. Inner nodes represent transformation operations, such as projections,
filters, groupings, or joins, and hence, their results are DataFrames again. The actual
computation of the query result is triggered via actions, whose results are directly
needed in the client program, e.g., aggregation functions which are not called in the
context of group by clause. Special actions such as print or show are available to
manually trigger the computation.
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Figure 5.1: Overview of Grizzly’s architecture.

Python Pandas SQL

Projection df[’A’]
df[[’A’,’B’]]

SELECT a FROM ...
SELECT a,b FROM ...

Selection df[df[’A’] == x] SELECT * FROM ...WHERE a = x
Join pandas.merge(df1, df2,

left on=’x’, right on=’y’,
how=’inner|outer|right|left’)

SELECT * FROM df1
inner|outer|right|left join df
ON df1.x = df2.y

Grouping df.groupby([’A’,’B’]) SELECT * FROM ...GROUP BY a,b
Sorting df.sort values(by=[’A’,’B’]) SELECT * FROM ...ORDER BY a,b
Union df1.append(df2) SELECT * FROM df1

UNION ALL SELECT * FROM df2
Aggregation df[’A’].min()

max()|mean()|count()|sum()
SELECT min(a) FROM ...

max(a)|avg(a)|count(a)|sum(a)
df[’A’].value counts() SELECT a, count(a) FROM ...

GROUP BY a
Add column df[’new’] = df[’a’] + df[’b’] SELECT a + b AS new FROM ...

Table 5.2: Basic Pandas DataFrame operations and their corresponding SQL state-
ments.

Building the lineage graph of DataFrame modifications, i.e., the operator tree,
follows the design goal of lazy evaluation behavior as it is also found in the RDDs in
Apache Spark [163]. When an action is encountered in a program, the operator tree
is traversed, starting from the DataFrame on which the action was called. While
traversing the tree, for every encountered operation its corresponding SQL expression
is constructed as a string and filled in a SQL template. For this, we apply a mapping
of Pandas operations to SQL statements. This mapping is shown in Table 5.2. Based
on the operator tree, the SQL query can be constructed in two ways:

1. generate nested sub-queries for every operation on a DataFrame, or

2. incrementally extend a single query for every operation found in the Python
program.
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# load table (t0)
df = grizzly.read_table("tab")
# projection to a,b,c (t1)
df = df[['a','b','c']]
# selection (t2)
df = df[df.a == 3]
# group by b,c (t3)
df = df.groupby(['b','c'])

(a) Source Python code.

tab
t0

π
a,b,c

𝜎
a = 3

𝛾
b,c

t1

t2

t3

(b) Operator tree.

SELECT t3.b, t3.c FROM (
SELECT * FROM (

SELECT t1.a, t1.b, t1.c FROM (
SELECT * FROM tab t0

) t1
) t2 WHERE t2.a = 3

) t3 GROUP BY t3.b, t3.c

(c) Produced SQL query.

Figure 5.2: Steps for transpiling Python code to a SQL query: The operations on
DataFrames (a) are collected in an intermediate operator tree (b) which is traversed
to produce a nested SQL query (c).

In Grizzly we implement variant (1), because variant (2) has the drawback to
decide whether the SQL expression of an operation can be merged into the current
query or a sub-query has to be created. Though, the SQL parser and optimizer in
the DBMSs have been implemented and optimized to recognize such cases. As an
example, Figure 5.2 shows how a Python script is transformed into a SQL query.
Although the nested query imposes some overhead to the optimizer for unnesting in
the DBMS and bears the risk that it fails to produce an optimal query, we believe they
are very powerful and mostly well tested, so that it is not worth it to re-implement
such behavior in Grizzly. The generated query is sent to a DBMS using a user-defined
connection object, as it is typically used in Python and specified by PEP 249[124].
Grizzly produces standard SQL with vendor-specific statements to create functions
or access external data as we will discuss below. The vendor-specific statements are
taken from templates defined in a configuration file. By providing templates for the
respective functions one can easily add support for arbitrary DBMSs. We currently
support Actian Vector and PostgreSQL.

Besides the plain SQL queries, Grizzly needs to produce additional statements
in order to set up user-defined functions and connectors to external data sources.
If the Python code uses, e.g., UDFs, this function must be created in the database
system before it can be used in the query. Thus, Grizzly produces a list of so-
called pre-queries. A pre-query to create a UDF is the CREATE FUNCTION statement
including the corresponding function name, input and output parameters as well
as the function body of course. For an external data source, the pre-query creates
the necessary DBMS-specific connection to the data source, as described in the next
section.

One design goal of the Grizzly framework is to serve as a drop-in replacement
for Pandas. In order to achieve this goal, Grizzly offers a transparent fallback
mode to Pandas. By hooking into the getattr method of Grizzly’s DataFrame
class we can automatically detect if a given operation is not supported yet. In this
case code generation is triggered, the generated query is sent to the DBMS and
the result is transformed into a Pandas DataFrame. Consequently, the operation
can be transparently called on the resulting DataFrame. However, once execution
was triggered and the result was materialized there is currently no way of pushing
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execution again to the DBMS afterwards. In the worst case (i.e., the first operation
after scan is already not supported) a Grizzly pipeline therefore behaves exactly
similar to a Pandas pipeline. Besides that, the fallback mode enables stepwise
extensibility of the framework, i.e., support for operations can be added over time.
Due to the behaviour of getattr of only checking the existence but not the
list of supported parameters of a function, an added operation requires to be fully
API-compatible with the respective Pandas version before being released.

5.3 API-Extensions for Modern Analytics

Every operation that is not supported in Grizzly triggers the materialization of the
intermediate result and leads to further processing in the Python environment of the
client machine. With the goal of pushing as much computational effort as possible to
the DBMS, we investigated typical use cases in modern analytical pipelines and added
pushdown support for them in Grizzly. In this section, we discuss how we integrated
support for external file joins, user-defined functions and ML model inference.

5.3.1 Support for External Data Sources
In typical data analytics tasks data may be read from various formats. On the
one hand, (relational) database systems are used to store and archive large data
sets like company inventory data or sensor data in IoT applications. On the other
hand, data may be created by hand, exported from operational systems or shared
as text files like CSV or JSON. For these files it is not always necessary, intended
or beneficial to import them into a database system first, as they might be only for
temporary usage or need to be analyzed before loading them into the database. As
a consequence, there is a gap between tables stored in a database system and plain
files in the filesystem, and both sources need to be combined. In Pandas, one would
need to read the data from the database as well as the text files and combine them
in main memory. Since it is our goal to shift the complete processing into the DBMS,
the files need to be transferred and imported into the DBMS transparently. In our
framework, we achieve this by using the ability of many modern DBMS to define a
table over an external file as defined in the SQL/MED standard from 2003 [108].

As an example, PostgreSQL offers foreign data wrappers (FDW) to access external
sources such as files, but also other database systems. A PostgreSQL distribution
includes FDWs for, e.g., CSV files, files in HDFS as well as other relational and
non-relational DBMSs. Own FDWs for other sources can easily be installed as
extensions. Internally, the planner uses the access costs to decide for the best access
path, if such information is provided by the FDW.

Besides PostgreSQL, all Actian products built on X100 offer the external table
feature, which is realized using the Spark-Vector-Connector[143]. Here X100 handles
external tables as meta data in the catalog with a reference to a file path in the local
filesystem or HDFS. Whenever a query accesses an external table, Vector exploits
the capabilities of Apache Spark to read data efficiently in parallel, leading to fast
scans of external tables.
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In Grizzly, we offer easy-to-use operations to access external data sources. These
operations return a DataFrame object and are the leaves of the operator lineage
graph described in Section 5.2, similar to ordinary database tables. Here a user
has to specify the data types of the data in the text files as well as the file path.
During SQL code generation, a pre-query is automatically generated that creates the
external table/foreign data wrapper for each of these leaves. As the syntax of these
queries might be vendor-specific, we maintain templates to create an external data
source in the configuration file. The pre-queries are then appended to the pre-query
list described in Section 5.2, so they are ensured to be executed before the actual
analytical query is run. In the actual query, these tables are then referenced using
their temporary names.

An important point to highlight here is that the database server must be able to
access the referenced file. We argue that with network file systems mounts, NAS
devices or cloud file systems this is often the case. Even actively copying the file to
the server is not a problem since such data files are rather small, compared to the
amount of data stored in the database.

5.3.2 Support for Python UDFs

Another important part of data analytics is data manipulation using user-defined func-
tions. In Pandas, users can create custom functions and apply them to DataFrames
using the map function. Such functions typically perform more or less complex
computations to transform values or combine values of different columns. These
UDFs are a challenge when transpiling Pandas code to SQL, as their definitions
must be read and transferred to the DBMS. This requires that the Python program
containing the Pandas operations can somehow access the function’s source code
definition. In Python, this can be done via reflection tools like the inspect module.
Most DBMS support stored procedures and some of them, e.g., PostgreSQL and
X100, also allow to define them using Python (language PL/Python). This way,
functions defined in Python are processed by Grizzly, transferred to the DBMS and
dynamically created as a (temporary) function. Note that most systems only offer
scalar UDFs at the moment, which produce a single output tuple from a single input
tuple. Consequently, Grizzly only supports this class of functions and does not offer
any support for table UDFs, which produce an output tuple for an arbitrary number
of inputs.

The actual realization of the UDF support is hereby different for different DBMS
and shows some limitations that needs to be considered. First, Python UDFs are only
available as a beta version in PostgreSQL and X100. The main reason for this is that
there are severe security concerns about using the feature, as especially sandboxing a
Python process is difficult. As a consequence, users must have superuser access rights
for the database or demand access to the feature from the administrator in order to
use the Python UDF feature. While this might be a problem in production systems,
we argue that this should not be an issue in the scientific use cases where Python
Pandas is usually used for data analytics. Second, the actual architecture of running
Python code in the database differs in the systems. While some systems start Python
processes per-query, other systems keep processes alive over the system uptime. The
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per-query approach has the advantage that it offers isolation in the Python code
between queries, which is important for ACID-compliance. As a drawback, the
isolation makes it impossible to cache user-specific data structures in order to use
it in several queries, which needs to be considered when designing the ModelJoin
feature in Section 5.3.3. On the contrary, keeping the Python processes alive allows
to cache such a user context and use it in several queries. However, this approach
violates isolation, so UDF code has to be written carefully to avoid side effects that
might impact other queries.

Although the DBMS supports Python as a language for user defined code, SQL
is a strictly typed language whereas Python is not. In order to get type information
from the user’s Python function, we make use of type hints, introduced in Python
3.5. A Python function using type hints looks like this:

def repeat(n: int, s: str) -> str:
r = n*s # repeat s n times
return r

Such UDFs can be used, e.g., to transform, or in this example case combine, columns
using the map method of a DataFrame:

# apply repeat on every tuple using columns name, num as input
df['repeated'] = df[['num','name']].map(repeat)

Using the type hints and a mapping between Python and SQL types, Grizzly’s
code generator can produce a pre-query to create the function on the server. For
PostgreSQL, the generated code is the following:

CREATE OR REPLACE FUNCTION repeat(n int, s varchar(1024))
RETURNS varchar(1024)
LANGUAGE plpython3u
AS 'r = n*s # repeat s n times
return r'

Currently, we statically map variable-sized Python types to reasonable big SQL
types, which is a real limitation and should be improved in the future. The command
to create the function in the system is vendor-specific and therefore taken from the
config file for the selected DBMS. We then extract the name, input parameters,
source code and return type using Python’s inspect module and use the values
to fill the template. The function body is also copied into the template. Similar
to external data sources in Section 5.3.1, the generated code is appended to the
pre-query list and executed before the actual query. The map operation is translated
into a SQL projection creating a computed column in the actual query:

SELECT t0.*, repeat(t0.num, t0.name) as repeated
FROM ... t0

As explained above, the previous operation from which df was derived will appear
in the FROM clause of this query.
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5.3.3 Machine Learning ModelJoin
In Grizzly, we expand the API of Python Pandas with the functionality to apply
different types of Machine Learning models to the data. In the following, we name
this operation of applying a model to the data a “ModelJoin”. Instead of realizing
this over a map-function in Pandas, which leads to a client-side execution of the
ModelJoin and therefore faces the same scalability issues as Pandas, we exploit the
recent upcome of user-defined functions in popular database management systems
and realize the ModelJoin functionality using Python UDFs. As a consequence, we
achieve a server-side execution of the ModelJoin directly in the database system,
allowing automatic parallel and distributed computation.

Note that we talk about the usage of pre-trained models in this section, as
database systems are not optimized for model training. However, applying the model
directly in the database has the advantage that users can make use of the database
functionality to efficiently perform further operations on the model outputs, e.g.,
grouping or filters. Additionally, users may use publicly available, pre-trained models
for various use cases. For our discussions, we assume that necessary Python modules
are installed (which should not be an issue in a managed cloud environment) and
the model files are accessible from the server running the database system. In the
following, we describe the main ideas behind the ModelJoin concept as well as details
for the supported model types, their characteristics and their respective runtime
environments, namely PyTorch, Tensorflow, and ONNX.

ModelJoin Concept

Performing a ModelJoin on an DataFrame triggers the generation of a pre-query
as described in Section 5.2, which performs the creation of the respective database
UDF. As the syntax for this operation is vendor-specific, the template is also taken
from the configuration file. The generated code hereby has four major tasks:

1. Load the provided model.

2. Convert incoming tuples to the model input format.

3. Run the model.

4. Convert the model output back to an expected output format.

While steps 2-4 have to be performed for every incoming tuple, the key for an
efficient ModelJoin realization is caching the loaded model in order to perform the
expensive loading only if necessary. (Re-)Loading the model is necessary if it is not
cached yet or if the model changed. These cases can be detected by maintaining the
name and the timestamp of the model file. However, such a caching mechanism must
be designed carefully under consideration of the different, vendor-specific Python
UDF realizations discussed in Section 5.3.2.

We realize the caching mechanism by attaching the loaded model, the model file
name and the model time stamp to a globally available object, e.g., an imported
module in the UDF. The model is loaded only if the global object has no model
attribute for the provided model file yet or the model has changed, which is detected
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def input_to_model(a: str):
...

def model_to_output(a) -> str:
...

df = grizzly.read_table('tab') # load table
# apply model to every value in column 'col'
# using provided input and output conversion functions
# store model output in computed column 'classification'
df['classification'] = df['col'].apply_model("/path/to/model", input_to_model,

model_to_output)↪→

# group by e.g., predicted classes
df = df.groupby(['classification']).count()
df.show()

Listing 1: Python code of ModelJoin example

by comparing the cached timestamp with the filesystem timestamp. In order to avoid
that accessing the filesystem to get the file modification timestamp is performed for
each call of the UDF (and therefore for every tuple), we introduce a magic number
into the UDF. The magic number is randomly generated for each query by Grizzly
and cached in the same way as the model metadata. In the UDF code, the cached
magic number is compared to the magic number passed and only if they differ, the
modification timestamps are compared and the cached magic number is overwritten
by the passed one. As a result, the timestamps are only compared once during a
query, reducing the number of file system accesses to one instead of once-per-tuple.
With this mechanism, we automatically support both Python UDF realizations
discussed in Section 5.3.2, although the magic number and timestamp comparisons
are not necessary in the per-query approach, as it is impossible here that the model
is cached for the first tuple. We exploit the isolation violation of the second approach
that keeps the Python process alive and carefully design the ModelJoin code to only
produce the caching of the model and respective metadata as intended side effects.

Model types

Grizzly offers support for PyTorch, Tensorflow and ONNX models. All three model
formats have in common, that the user additionally needs to specify model-specific
conversion functions for their usage in order to specify how the expected model
input is produced and the model output should be interpreted. These functions
are typically provided together with the model by creators. With A, B, C, D being
lists of data types, the conversion functions have signatures in conv : A→ B and
out conv : C → D, if the model converts inputs of type B into outputs of type C.
With A and D being set as type hints, the overall UDF signature can be infered as
A→ D as described in Section 5.3.2. With this, applying a model to data stored in
a database can be done easily and might look like the example in Listing 1.

As the conversion functions are typically provided along with the model, users
only need to write a few lines of code. It is thereby mandatory to specify the
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CREATE OR REPLACE FUNCTION apply_model_123(col varchar(1024))
RETURNS varchar(1024)
LANGUAGE plpython3u AS 'def input_to_model(a: str):

...

def model_to_output(a) -> str:
...

#apply model here
' parallel safe;

SELECT t2.classification, count(*) FROM (
SELECT *, apply_model_123(t1.col) as classification FROM (

SELECT * FROM tab t0
) t1

) t2 GROUP BY t2.classification

Listing 2: Generated SQL code of ModelJoin example

input parameter types of the input to model function as well as the output type
of the model to output function. In this example, the resulting UDF would have
signature str -> str. Running this example, Grizzly automatically generates the
UDF code and triggers its creation in the DBMS before executing the actual query.
The produced query along with the pre-query to setup the UDFs in PostgreSQL
is shown in Listing 2. The actual code for model application is generated from
templates and varies for the different model types described in the following.

PyTorch The PyTorch library is based on the Torch library, originally written
in Lua. PyTorch was presented by Facebook in 2016 and has gained popularity as
it enabled programs to utilize GPUs and integrate other famous Python libraries.
In its core, PyTorch consists of various libraries for Machine Learning that have
different functionality.

A trained model can be saved for later reuse. For saving, two options exist. The
first option is to serialize the complete model to disk. This has the disadvantage
that the model class definition must be available for the runtime when the model is
loaded. In Grizzly, this would mean that users who want to use a pretrained model
in their program also need the source code of the model class. The second option
for storing a trained model is to store only the learned parameters. Although this
option is more efficient during deserialization, the user code must explicitly create
an instance of the model class. Thus, the source code of the model class must be
available for the end user. Additionally, in order to instantiate the model class, users
need to provide initial parameters values to the model’s constructor which may be
unknown and hard to set for inexperienced users. Besides the challenges for using
PyTorch with foreign models, Grizzly allows to load PyTorch models where only the
learned parameters have been stored (option 2 from above).
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Tensorflow Tensorflow is a another famous framework for building, training and
running Machine Learning models. Tensorflow models are directed, acyclic graphs
(DAGs) that are statically defined. With placeholder variables attached to nodes
of the model graph, inputs and outputs can be mapped to the graph nodes. A
tensorflow.Session object is used as the main entrance point and allows to run
the model after configuring.

During the training phase, arbitrary states of the model graph can be exported as
a checkpoint, which is a serialized format of the graph and its properties. Grizzly
supports these checkpoints as an model type and generates code to restore the
model graph as well as the tensorflow.Session object. However, users have to
know the names of placeholders defined in the model in order to map inputs and
outputs to the respective model nodes. Additionally, users can specify a vocabulary
file to translate inputs to an expected model input format if necessary. As these
restrictions require in-depth knowledge about the model, Grizzly offers additional
possibilities to automatically generate the conversion functions. Nevertheless, this
harms the ease-of-use slightly. Starting with version 2, Tensorflow offers different
possibilities to exchange trained models with the introduction of the Tensorflow Hub
library or support for the Keras framework. In the future, we aim at integrating
support for these formats in Grizzly.

ONNX ONNX is a portable and self-contained format for model exchange, that is
able to be executed with different runtime backends like Tensorflow, PyTorch or the
onnxruntime. The self-containment and the portability of models makes the ONNX
format easy to use, which meets the design goals of Grizzly. In the generated model
code, we rely on the onnxruntime as execution backend in order to be independent
from Tensorflow or PyTorch. A broad collection of pre-trained models along with
their conversion functions is available in the Model Zoo[118].

5.4 Evaluation

In this Section, we compare our proposed Grizzly framework against Pandas and
Modin, the current state-of-the-art framework for distributed processing of Pandas
scripts, as the other related systems presented in Section 5.1 do not offer all evaluated
features. We present different experiments for data access as well as applying a
machine learning model in a ModelJoin. Our experiments were run on a server con-
sisting of a Intel(R) Xeon(R) CPU E5-2630 with 24 threads at 2.30 GHz and 128 GB
RAM. This server runs Actian Vector 6.0 in a docker container, Python 3.6 and
Pandas 1.1.1. Additionally we used Modin version 0.8 and experimentally configured
it to the best of our knowledge, resulting in using Ray as the backend, 12 cores
and out-of-core execution. For fairness, we ran the Pandas/Modin experiments on
the same machine. As this reduces the transfer costs when reading tables from the
database server, this assumption is always in favor of Pandas and Modin.

During our experiments, we discovered a bug in the parallel read sql design
of Modin, which produces wrong results for partitioned databases. The developers
confirmed the issue. However, we used the parallel read sql in order to not penalize
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(a) Execution time (b) Main memory consumption

Figure 5.3: CPU and RAM consumption for Pandas, Modin and our proposed Grizzly
framework.

Modin in the experiments, not considering the wrong results. This assumption is
therefore also in favor of the Modin results.

Data Access Scalability In this first experiment, we want to prove our initial
consideration of Pandas’ bad scalability with a minimal example use case. We used
Actian Vector as the underlying database system and ran a query that scans data
with varying size from a table or a csv file and performs a min operation on a column
to reduce the result size. This way, we can compare the basic read sql and read csv
operations of Pandas and Modin against Grizzly.

Figure 5.3 shows the execution time as well as the memory consumption of
the evaluated query. For sql table access, Pandas shows an enormous runtime,
linearly growing to 800 s for a data set size of 5 GB. Modin is significantly faster
than Pandas and scales better. However, Grizzly is able to answer this query in a
constant, sub-second runtime, as only the result has to be transfered to the client
instead of the full dataset. Additionally, this query can be answered by querying
small materialized aggregates [111], which are used by default as an additional index
structure in X100. In comparison to Pandas/Modin, this shows that with Grizzly
queries can also benefit from index structures and other techniques to accelerate
query processing used in database systems. For csv access, we can observe a similar
behavior of Modin being faster and scaling better than Pandas due to its parallel
read csv implementation. Grizzly again shows a nearly constant runtime slightly
higher than the sql table access but faster than Modin and Pandas. The main
reason for this is that Grizzly uses the external table feature of Actian Vector, which
is based on Apache Spark. As a consequence, the runtime is composed of the fixed
Spark delays like startup or cleanup [157] and a variable runtime for reading the
file in parallel. As data sized are small here, the fixed Spark delays dominate the
runtime.

Regarding memory consumption, Pandas again scales very poorly and memory
consumption increases very fast, with the read sql table consuming more memory
than the read csv operation for the same data size. As a result, the memory
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consumption might exceed the available RAM of a client machine even for a small
dataset size. In comparison, Modin consumes even more memory than Pandas
for read sql and read csv respectively, potentially caused by the multiple worker
threads. The memory consumption of Grizzly is mainly impacted by the result size,
which is very small due to the choice of the query. However, this is only half of the
truth, as Grizzly shifts the actual work to the DBMS which also consumes memory.
Nevertheless, modern DBMS are designed for high scalability and are able to handle
out-of-memory cases with buffer eviction strategies in the bufferpool or disk-spilling
operators for database operators with a high memory consumption. Therefore, this
is the ideal environment to run complex queries, as it is not limited to the available
memory of the machine. Note that Modin also supports out-of-memory situations by
disk-spilling. Another advantage of Grizzly is that the DBMS can run on a remote
machine while the actual Grizzly script is executed from a client machine, which is
then allowed to have an arbitrary hardware configuration while still being able to
run complex analytics.

Combining Data Sources An important task of data analysis is combining data
from different data sources. We investigated a typical use case, namely joining flat
files with existing database tables. We base our example on the popular TPC-H
benchmark dataset [27] on scale factor SF100, which is a typical sales database and
is able to generate inventory data as well as update sets. We draw the following
use case: The daily orders (generated TPC-H update set) are extracted from the
productive system and provided as a flat file. Before loading them into the database
system, a user might want to analyze the data directly by combining it with the
inventory data inside the database. As an example query, we join the daily orders as
a flat file with the customer table (1.5M tuples) from the database and determine
the number of orders per customer market segment using an aggregation. The
evaluated Python scripts are similar except the data access methods. While Pandas
and Modin use (parallel) read sql and read csv for table and flat file access, Grizzly
uses a read table and a read external table call. This way, an external table is
generated in Actian Vector, encapsulating the flat file access. Afterwards, the join as
well as the aggregation are processed in the DBMS, and only the result is returned
to the client.

For the experiment, we varied the number of tuples in the flat files. The runtime
results in Figure 5.4 show that Grizzly achieves a significantly better runtime than
Pandas and Modin. Additionally, it shows that Pandas and Modin suffer from a
bad read sql performance, as the runtime is already quite slow for small number of
external tuples. Regarding scalability we can observe that runtime in Pandas grows
faster with increasing number of external tuples than in Grizzly, caused by the fast
processing of external tables in Actian Vector. Overall we can conclude that Grizzly
significantly outperforms Python Pandas and Modin by two orders of magnitude in
this experiment and offers the possibility to process significantly larger datasets.

ModelJoin Performance There are various applications and use cases where
machine learning models can be applied. As an example use case, we applied a
sentiment analysis to a string column. We therefore used the IMDB dataset [104],
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Figure 5.4: Query runtime with
database tables and external sources

Figure 5.5: ModelJoin runtime.

which contains movie reviews, and applied the state-of-the-art RoBERTa model [102]
with ONNX. The investigated query applies the model to the review column and
groups on the output sentiment afterwards, counting positive and negative review
sentiments. In Grizzly, we therefore use ModelJoin feature described in Section 5.3.3,
while we handcrafted the function to apply the model for Modin and Pandas and
invoked the function over the map function on the DataFrames after reading from
the database.

Figure 5.5 shows the resulting runtimes for different number of review tuples.
First, we can observe that Grizzly significantly outperforms Modin and Pandas in
terms of runtime and scalability. For increasing data size Modin is also significantly
faster and scales better than Pandas, while showing some overhead over Pandas for
the very small data sets, as parallelism here introduces more overhead than benefit.
While Modin achieves a speedup by splitting the DataFrames into partitions and
applying the machine learning model in parallel, Grizzly achieves the performance
improvement by applying the model directly in the database system. In Actian
Vector, we used a parallel UDF feature (discussed in Section 6.2.4 and configured it
for 12 parallel UDF workers, showing the best results for our setup in this experiment.
Additionally, with the Python implementation of Actian Vector, which keeps the
Python interpreters alive between queries, it is possible to reuse a cached model from
a former query, leading to an additional performance gain of around 5 seconds.

Resume In our evaluation, we proved the superiority of our proposed Grizzly frame-
work over Pandas and Modin, the existing state-of-the-art distributed DataFrame
framework. In different experiments for data access, the combination of different data
sources and the application of pre-trained machine learning models to a dataset we
showed that Grizzly has significantly better query performance as well as scalability,
as most operations are executed directly in the database system. This is reinforced
by the fact that query performance benefits from index structures of the DBMS,
while these indexes do not have any impact when only reading data in a Pandas
script and performing operations on the client. Furthermore, Grizzly enables complex
data analysis tasks even on client machines without powerful hardware by pushing
operations towards database servers. Consequently, queries are not limited to client
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memory, but are executed inside database systems that are designed to handle
out-of-memory situations.

5.5 Conclusion
With the goal of pushing advanced analytics towards the database system, we
presented Grizzly, a scalable and high-performant data analytics framework that
offers a similar DataFrame API like the popular Pandas framework and can be used as
an frontend alternative to SQL. As Pandas faces some severe scalability problems in
terms of memory consumption and performance, Grizzly transpiles the easy-to-write
Pandas code into SQL in order to push complexity to arbitrary database systems.
This way, query execution is done in a scalable and highly optimized environment
that is able to handle large datasets and complex queries. Additionally, by pushing
queries towards remote database systems, complex analytics can be performed on
client machines without extensive hardware requirements.

We extended the Pandas DataFrame API with several features in order to perform
typical data analytics challenges in an efficient and easy-to-use way. First, Grizzly
provides support for external data sources by exploiting the respective feature of
several database systems and automatically generating code to create necessary
tables or wrappers. This way, different sources like database tables or flat files can
be combined and processed directly inside the DBMS instead of loading them into
the client, improving performance and scalability. Second, Grizzly makes use of the
recent upcome of Python user-defined functions in database systems in order to
transparently push the execution of such functions on DataFrames into the DBMS.
Third, applying pre-trained Machine Learning models to data is supported by Grizzly
by automatically generating UDF code for Tensorflow, PyTorch or ONNX models.
Pushing these operations to the database system not only increases performance
and scalability, but also enables efficient processing of further operations on the
model outputs, as they still remain in the database system. This allows a seamless
integration of Machine Learning functionalities towards the vision of ML systems
[133]. In our evaluation, we compared our proposed Grizzly framework to Pandas and
Modin, the current state-of-the-art framework for distributed execution of Pandas-like
DataFrames. In our experiments on data access scalability, combining different data
sources, and applying Machine Learning models we proved that Grizzly significantly
outperforms both systems while offering higher scalability and an easy-to-use API.

Grizzly can be seen as a frontend solution to push advanced analytics towards the
database engine. While transpiling DataFrame operations to SQL is very portable,
our mapping of user-defined functions or the ModelJoin to Python UDFs also limits
performance. In the use cases from Section 5.4 the Python UDF operator took the
major part of the runtime, often far beyond 90% of the total query runtime. As
user-defined functions are an important feature for flexible analytics pipelines and
ML inference is also an important part of many modern use cases, these two features
are candidates for a more native integration into the database engine. We therefore
focus on accelerating these workloads using native database engine support in the
next chapter.
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Chapter 6
Native Support for
Modern Analytics beyond SQL

User-defined functions and ML model inference are important tasks in modern data
analytics. As discussed in Section 5.5 these features would benefit from a deeper
engine integration. In this chapter we discuss approaches for a native integration of
Python UDFs and ML model inference. The remainder of this chapter is organzied
as follows: We start with discussing related work in Section 6.1. Section 6.2 describes
different integration levels of Python UDFs. We discuss compilation in Section 6.2.2,
vectorization in Section 6.2.3 and parallelisation in Section 6.2.4 as orthogonal
directions to optimize native UDF execution, before evaluating the approaches in
Section 6.2.5. The second part in Section 6.3 covers an investigation on approaches
for in-database ML model inference. We discuss neural network layer types and
their applicability to typical relational data in Section 6.3.2. Section 6.3.3 presents a
pure SQL-based solution to realize ML model inference, while we present a native
operator in Section 6.3.4. We compare our approaches against existing approaches
using pure Python, Python UDFs or an operator based on Tensorflow’s C-API in
the evaluation in Section 6.3.5. Finally, the chapter is concluded in Section 6.4

6.1 Related Work
Python and UDF compilation: Python transpilers like Cython [18] and Nu-
itka[115] work with arbitrary Python language constructs and especially also with
external modules, but show slower performance compared to native code as they still
rely on Python’s C-API. Python compilers like Numba [93] translate Python code to
native C code, which leads to efficient code execution but limits the usage to the
supported language constructs. Numba supports a set of basic Python language con-
structs as well as Numpy code and offers an “object mode” as a fallback for working
with, e.g., Strings, which also invokes the Python environment. However, importing
external libraries is not allowed in Numba. Tuplex [144] focuses on compiling data
analytics pipelines written in Python to a native binary. All these frameworks focus
on compiling Python code to a binary and running it as a standalone process. In
our work, we investigate how these frameworks can be integrated into an interpreted
query engine during runtime, enabling the ad-hoc creation and usage of compiled
Python UDFs. Besides these frameworks, GraalVM[55] supports compiling code into
native images. However, it mainly focuses on Java code and only supports Python
as a “guest language” embedded into Java code for compilation. The feature is in
an experimental state and only supports a few Python modules. [48] shows how to
compile Python code to SQL statements. Several approaches also compile UDFs that
are not written in Python. [44] focuses on compiling interpreted PL/SQL UDFs into
recursive SQL functions to avoid PL/SQL - SQL context switches, while [138] aims
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at just-in-time compiling SQL lambda functions. The vectorized, column-oriented
database system MonetDB also supports Python UDFs [129]. It uses the interpre-
tation of Python code as the standard case, but optimizes for Numpy UDFs as
Numpy and column-stores share a similar storage layout. As a result, the execution
of Numpy UDFs reaches nearly native code speed. [129] also highlights the issue
that compiling Python UDFs would require to compile and link the database engine
against the compiled UDF, which is not possible during database runtime. In our
approach we focus on arbitrary Python constructs and exploit dynamic loading to
make compiled UDFs available to the query engine during runtime.

Python global interpreter lock: In Python there is the global interpreter lock
(GIL), which was chosen in the design of Python in order to simplify low-level details
like synchronisation or memory management of concurrent threads. While this leads
to high single threaded performance, it limits the parallel or multithreaded execution
of Python code [105]. Several solutions on the GIL issue in dynamic languages have
been proposed like hardware transactional memory [116], software transactional
memory [105] or the use of virtual machines [106]. In our approach, we achieve
parallelism similary to virtual machines by spawning separate UDF engine processes
in a parallel query engine. Working on independent data partitions, we do not need
any type of synchronisation, which simplifies the GIL issue and makes separate
Python processes a reasonable solution.

AI4DB vs. DB4AI: Data Science and Machine Learning have always been of
interest in database research and different solutions have been proposed to support the
required operations inside DBMSs. Especially technologies that are generally referred
to as AI are more and more used in the database context, leading to two different
fields: AI4DB and DB4AI. AI4DB understands projects and approaches that leverage
AI technologies to improve database components like cardinality estimators [161],
learned indexes [92] or natural language support [148]. Contrary to AI4DB, DB4AI
comprises projects that use database systems to improve the application of AI
technologies on existing data sets. Hence, this work falls into the DB4AI category,
although we only consider one class of AI: machine learning with neural networks.
DB4AI and AI4DB approaches have been surveyed in [97, 98].

ML on SQL: The MADlib [69] library implements different analytical operations
in SQL, including data mining, machine learning, and deep learning algorithms.
The library is limited to PostgreSQL-based systems only, heavily using PostgreSQL
syntax. Besides being not portable, MADlib also does not support recurrent models
that we identified as useful in the database context in Section 6.3.2. The PMML
standard [58] defines an XML schema that defines model pipelines to be exchanged
between applications and systems. With Bismarck [47], a unified architecture for
analysis operators (e.g., Linear Regression and Support Vector Machines) in DBMSs
was proposed with the goal to simplify the integration of new operators and to
study performance optimization possibilities. While MASQ [30] translates selected
scikit learn classifiers and regressors to plain SQL, [136] shows how to build SQL
statements for decision trees. In [117] Olteanu shows how to map the ML training
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problem to a relational database problem and in [139], Schüle et al. describe how
ML training pipelines can be expressed over SQL and how in-DBMS training can be
accelerated using GPU implementations.

ML on UDFs or external engines: Many database vendors released support
for model inference like BigQuery ML [53], Redshift ML [8], Vertica-ML [46] or
SQLServer Machine Learning Services [110]. They mainly focus on providing an
SQL frontend and performing computations either using UDFs or integrated ML
frameworks like Tensorflow [54]. Raven [76, 121] follows this idea by integrating
the ONNX runtime into SQLServer. Inference tasks consist of a SQL query and a
Python program (the model pipeline). The optimizer shares information, like used
attributes and result sizes, between the SQL operators and the Python code for
cross optimizations like early pruning. Raven also automatically translates simple
models like decision trees into SQL. Another example for integrating ML models into
database systems by using Python UDFs is presented in [130]. Additionally, [166]
presents different approaches to integrate ML inference with a DBMS using UDFs,
direct file access or Spark, which differs from our approach of integrating it directly
into the database engine. In our work, we compare both ML on SQL approaches as
well as native integrations. We provide the ML-To-SQL framework that generates
SQL statements for neural network inference and a native ModelJoin operator that is
not based on any external runtime, and compare them against existing approaches.

Language support for ML: With MLearn [140] another declarative language to
define machine learning pipelines was proposed that can be transpiled to Python
or SQL (over UDFs). However, only HyPer and PostgreSQL are supported. When
dealing with large data sets, an alternative to centralized solutions is Apache Spark.
The Spark MLlib[142] includes numerous machine learning algorithms that are
implemented using Spark’s operations. Similarly, Apache Mahout[10] provides a
list of machine learning operations, but also a Scala-based DSL to express new
operations. On the other hand, SystemML [25] (later renamed to SystemDS[12])
provides a declarative language to express the ML pipeline which is then optimized
and compiled for platforms like Spark or Hadoop MapReduce.

Linear algebra extensions: Especially for ANNs implementations make heavy
use of linear algebra operations. MLog [99] or LevelHeaded [3] extends the relational
algebra with linear algebra to support machine learning algorithms.

Conclusion: We presented approaches to compile Python code or solve the Python
global interpreter lock (GIL) issue. In our approach we integrate the compilation
approaches into a interpreted query engine during runtime. Furthermore we introduce
UDF engines that run separate Python interpreter instances to achieve parallelism
and mitigate the GIL issue. The approaches on Machine Learning present either
languages to express ML tasks or integrate these tasks into DBMSs using (Python)
UDFs, SQL translations for simple classifiers or decision trees, or using ML runtime
C-APIs. We extend this list of approaches with our approaches in which we express
ANNs and the model inference step with basic relational primitives only (relations and
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plain SQL queries) and a native operator without the usage of any external runtime.
In [43] Du showed the applicability of this idea for Graph Convolutional Networks
with each layer of an ANN expressed as its own table. During inference many tables
that only store intermediate results are created, leading to many expensive update
operations. While this paper shows that layers and activation functions can be
expressed using relational features, our approaches follow a generic approach to
import existing models into a single pre-defined relation and to execute the inference
step using (nested) SQL queries that can be optimized by a database system’s query
optimizer. We thereby follow the goals of not including external runtime engines into
the database engine and avoiding UDFs for performance reasons and compare our
approaches against the baselines of using an external ML environment or integrating
an ML runtime using UDFs or the respective C-API.

6.2 Accelerated Python UDFs

6.2.1 Introduction
Due to the broad functionality, Python UDFs can be used to offer support for
advanced analytics as shown by the Grizzly framework in Chapter 5. In this context,
typical UDFs may be complex and might include external modules. In order to
accelerate these kind of analytics, the main goal of this section is to investigate the
performance gap shown in Figure 2.4, aiming to reach native performance as much as
possible. Figure 6.1 shows different levels of executing Python code from a database
engine. While using the Python interpreter (1) is the most general approach, it also
offers the worst performance and is therefore our upper baseline. On the other side,
using plain C code (4) provides the best performance while restricting the support
for Python modules and is therefore the lower baseline. Using the Python C-API (2)
enables pre-compiling Python code in order to limit interpretation overhead while
still providing full support of Python functionality. Using Numpy (3) is a special
case here. While being fomulated as Python code, [129] shows that Numpy code can
reach nearly native code speed as a consequence of a memory layout similar to C.
However, UDFs are then limited to Numpy operations and fall back to (2) on the
occurence of non-Numpy constructs.

We elaborate possibilities to move down the execution stack shown in Figure 6.1
for scalar Python UDFs, while also evaluating the following orthogonal features for
performance improvement:

• Compilation: We evaluate compilation frameworks to transparently convert
Python code into lower-level code. We show how to dynamically use compiled
code during database runtime, which is a challenging task in interpreted query
engines, and provide an open-source prototype engine for evaluation.

• Vectorization: We elaborate on the impact of Python code vectorization to
reduce call overhead.

• Parallelisation: We investigate how to parallelise Python code in a parallel
query engine, which requires mitigating the global interpreter lock (GIL) issue.
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Figure 6.1: Levels of executing Python code

6.2.2 Compilation

As shown in Section 6.1, several frameworks target at increasing Python code
performance by compiling Python code just-in-time or ahead-of-time. Similar to this
approach of interpreted vs. compiled Python code, the dominant database design
approaches of the last decades are also interpreted (vectorized) query engines vs.
compiled query engines. While interpreted query engines like x100 built a query
execution plan from a set of pre-defined operators and follow an iterator model like
the Volcano iterator model [56], compiled query engines produce code for each specific
query and compile it to an executable. In comparison to interpreted engines, there is
a trade-off between the additional effort to produce and compile code for each query
and the faster execution of optimized and compiled code. While using just-in-time
compiled UDF code in queries of a compiled query engine involves linking of the
query binary and is therefore straight forward, using compiled code in an interpreted
query engine during runtime is more challenging. In this section, we investigate
Python code compilation and integration by presenting a prototype engine that
offers compiled UDF operators, which realize compilation, dynamic loading and UDF
execution. The design of these operators considers the following challenges:

C1 Transparency: From a user perspective, there is no additional effort necessary
to exploit compiled UDFs.

C2 External code: Importing external libraries in the UDFs must be possible to
benefit from the wide range of Python frameworks.

C3 Typing: The operator needs to fill the gap between the strictly-typed database
system and the weakly-typed Python code.

C4 Safety: The system must be secured from unauthorized access over Python
UDFs.
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Engine design

Our prototype engine1 follows the common properties of modern analytical database
systems and is written in C. It is designed as an in-memory engine that organizes
data in a columnar layout. Column values are tightly packed as arrays in memory
resulting in efficient access when iterating over this data. Variable-sized types like
strings are stored as pointers to the memory region containing the data. Additionally,
the engine follows the Volcano iterator model in a vectorized fashion as described
in Section 2.2.2. As the intention of the prototype is to explore the design space of
UDFs, it only contains a basic file scan operator, multiple different UDF operators,
logic to “consume” the query result at the end of a query and a fine-grained profiling
mechanism.

We integrated the most popular compilation/transpilation frameworks Numba,
Nuitka and Cython into our prototype engine and created a separate operator
encapsulating each of the frameworks. During the open() call, the UDF code is
compiled using the respective framework, dynamically loaded into the running engine
and initialised. As a baseline, we also designed a native Python UDF operator, which
is based on the Python C-API. In order to achieve the transparency goal C1, the
native Python operator can be used as a fallback in case of compilation or loading
errors.

UDF compilation

The UDF compilation step is similar for each of the used compilation frameworks
and only differs in minor, framework-specific details. However, all frameworks also
share the same challenge related to the way Python handles imported modules. All
frameworks are originally designed to produce a compiled module that is used in the
Python interpreter again. When facing an import statement, the Python interpreter
calls the module’s initialisation method which initialises the module and provides an
entry point to the module’s functions. A subsequent function call is then resolved
using this entry point. Consequently, a module’s functions are not visible to code
outside the module, especially not for our query engine which does not run in a
Python context.

In order to make the UDF code visible, one could manually rewrite the generated
code. However, this is fundamentally different for different frameworks and makes
the compilation process highly dependent on the compilation framework version,
as each change in the code generation would require changes in the manual code
rewriting. The design of the compilation step follows the goal of abstracting as
much as possible from the used framework. Therefore, we solve this issue using a
rather technical trick. For the compilation, we configure the compilation frameworks
to keep intermediate states of the compiled code. This way, we get access to the
object files in the Executable and Linkable Format (ELF) before they are linked
together to a shared library. ELF is a standard format for shared libraries, objects
or executables and has a fixed structure in its header and data segments, being a
flexible representation for code and data. As part of the ELF format, symbol tables
are used to maintain symbolic references, e.g., functions, to the respective part in the

1https://github.com/dbis-ilm/Compiled_UDF_engine
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code segment. Function symbols are visible outside of a library or executable when
they belong to the dynamic symbol table, having global visibility and default binding
properties. Using ELF manipulation tools like LIEF[100] we manipulate the visibility
and binding of the function symbol that belongs to the UDF accordingly and repeat
the last compilation step to produce the shared library. Consequently, we chose to
accept duplicate work in favor of abstraction from the compilation framework, so
we do not change a framework’s compilation behaviour to manipulate the generated
files in between, but simply repeat the last linking step.

In the compilation step, we also make the first step to solve challenge C3. When
the UDF is created, the user needs to specify input and output data types of the
function. This is not a restriction, as this metadata is also available in a later
integration into a full-fledged database system, where a user needs to specify the
types in a CREATE FUNCTION query. Using this metadata we annotate the UDF code
when necessary, like in the case of Numba. Additionally, supporting external modules
as described in challenge C2 is a property of the compilation framework and therefore
automatically provided, except for the Numba framework which only supports the
Numpy library as an import. In order to achieve safety as stated in challenge C4,
we maintain a banlist of modules and scan the UDF code before the compilation
for the items of the banlist. This way, we avoid that users can execute statements
potentially dangerous for the system or the underlying environment, e.g., by using
the os or the sys module.

The compilation process is performed using a Python script consisting of calling
the framework, modifying symbol visibility and re-running the last compilation step.
As this script is not changed during database runtime and consists of Python code,
it can be compiled using the compilation script itself to produce a shared library
containing the compilation logic and dynamically linked with the database engine.
As a result, calling library functions is faster than invoking a Python script out of
the database engine.

Dynamic loading and initialisation

After compilation, the library containing the UDF must be stored at a well-defined
place that is accessible for the system. While this can be easily achieved in single-
server database systems, we argue that even for distributed database systems this is
not a limitation due to the presence of cloud storage in the cloud environment or
shared storage like HDFS in the case of on-premise cluster solutions. In the next
step, the library is now dynamically loaded into the running database application
using dlopen/dlsym. The loading step is thereby driven by the goal to avoid as
much effort as possible in the later execution, especially expensive branching.

Cython, Nuitka and Numba’s object mode are based on Python’s PyObjects,
which are the type abstraction of Python’s C-API and can contain arbitrary types.
For these frameworks, we initialise input and output conversion functions based on
the UDF signature and store them as function pointers to avoid branching during
execution. The actual UDF’s signature may however consist of arbitrary parameter
type combinations. As this is not known during the compilation of the database
engine, we define a placeholder function type and generate a wrapper function and a
function definition for every possible UDF signature. In practical cases, the number

125



CHAPTER 6. NATIVE SUPPORT FOR MODERN ANALYTICS BEYOND SQL

1 typede f void (* f p l a c e h o l d e r ) ( void ) ;
2 typede f void (* WrapperFunc ) ( f p l a c eho ld e r , char ** , char **) ;
3 // For every parameter combination
4 typede f double (* dld ) ( long , double ) ;
5 void func 38 ( f p l a c e h o l d e r f , char **params , char ** out ) {
6 long * p0 = ( long *) &params [ 0 ] ;
7 double * p1 = ( double *) &params [ 1 ] ;
8 *( ( double *) out ) = ( ( dld ) f ) (*p0 , *p1 ) ;}

Listing 6.1: Example of the wrapping code
of possible UDF parameters must be reasonably limited. The wrapper is correctly
set according to the UDF signature during the loading step and therefore introduces
branching only once. As shown in an example function for a UDF that takes a long
and a double parameter and returns a double in Listing 6.1, this wrapper casts the
generic input parameters as well as the actual UDF and calls the UDF. The result
is then stored at the given buffer location, which is a part of the result vector. By
storing the wrapper code as a function pointer, we avoid branching during the UDF
execution while also solving the typing challenge C3.

Besides the UDF, we also load the symbol for the library’s initialisation function
if required by the compilation framework. Again for Cython, Nuitka and Numba’s
object mode, we initialise the module in the Python enviroment afterwards poten-
tially using Python’s multi-phase initialisation. Note that this might happen after
the Python interpreter was initialised during the engine startup, depending on a
system’s behaviour to use the Python interpreter, i.e., long-running vs. starting a
(sub-)interpreter per query. This initialisation enables access to the module’s inter-
nal data structures and helper functions, being the equivalent of Python’s import
statement.

UDF execution

As described in Section 6.2.2, our prototype engine follows the Volcano iterator
model in a vector-at-a-time fashion and has a columnar storage layout. Consequently,
each UDF operator receives a set of vectors (one for each column) from the child
operator in the query tree. Keeping these vectors unchanged, the operator adds a
result vector for the UDF output to the intermediate result. If required by the used
compilation framework, the UDF input values are converted to Py Object elements
using the respective input conversion functions. The compiled UDF is called using
the wrapper function and the results are converted back using the output conversion
functions if necessary. These three steps are performed in a vectorized fashion. Note
that there is no branching in this step, as function pointers were correctly set during
the dynamic loading and initialisation as described in Section 6.2.2.

Another important aspect of an execution engine is NULL handling. In our
approach, we basically have two options where to perform NULL handling: in the
database engine or in the UDF code. The engine-internal handling would require to
only execute the UDF on non-NULL values. In the vectorized variant, one would
therefore need to track the offsets inside the vectors to be able to put results into
the right position again after UDF execution. Performing the NULL handling in the
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UDF on the other hand simply requires the input conversions to produce Py None
as Python’s NULL indicator. In our engine prototype, we decided for the second
option to perform NULL handling in the UDF, as this offers more flexibility to the
user to handle NULLs. One could imagine use cases where UDFs explicitly need
to handle cases where some parameters are NULL, which would not be possible to
support when UDF calls are skipped by the engine-internal NULL handling.

6.2.3 Vectorization
The performance of the UDF execution is highly dependent on the way the UDF
code is written. In commercial systems, user-written UDF code is likely to get
wrapped into a code template. This way, customised error checking mechanisms,
type conversion and interpretation for complex types and vector iteration mechanisms
can be achieved. One can think about a user function that is called from a main
function in different ways. If the user code is written in a tuple-at-a-time fashion,
the user function is called for each element of the vector, introducing significant
call overhead. If the user code is written in a vector-at-a-time fashion, the user
function is only called once, significantly increasing speed. During our design we
found the call overhead inside the Python code as one of the most limiting factor for
performance. Using a vectorized UDF that pre-allocates the result vector and uses
list comprehension (potentially zipping multiple input vectors before) showed the
best performance.

In the current project state UDF vectorization is enabled manually by the user by
(1) rewriting the UDF code to the vectorized version and (2) indicating vectorization
using a prefix in the UDF naming. In order to further extend usability and reach
the transparency goal C1, we aim at an automatic UDF rewriting mechanism in the
future that embeds the UDF code into a vectorization template.

6.2.4 Parallelisation
Using UDF compilation as described in the Section 6.2.2 is intended to increase
single-core performance of the UDF execution in a vectorized, interpreted query
engine. However, today’s analytical database systems are typically massively parallel
processing (MPP) systems to benefit from the increasing number of cores per socket
and the possibility to scale systems in cluster environments. Therefore we want to
describe possibilities to also scale the UDF execution, which is orthogonal to the
compilation approach.

We assume a MPP system that runs multiple workers to execute query plans or
subplans in parallel on independent data partitions. When integrating our compiled
UDF approach in such a system, the frameworks that still use the Python environment
(Cython, Nuitka, Numba object mode) would share the Python interpreter. As
described in Section 6.1, this case would lead to high contention due to the GIL
issue. Consequently, enabling parallelisation in Python leads to mitigating the GIL
issue. Instead of using special transactional memory, we designed UDF engines
that run as processes separately from the actual database workers as sketched in
Figure 6.2 (Note: workers might be either processes or threads, but UDF engines
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Figure 6.2: Overview over the UDF engine pool

are separate processes). These UDF engines start their own Python environments,
which are therefore isolated by the process semantics. Database workers and UDF
engines can be scaled independently and are connected over point-to-point socket
connections. On the database engine side, these connections are maintained in a
connection pool and requests (i.e., UDF execution requests) are dispatched over
a scheduling strategy. For now, we use a simple round robin assignment strategy
to assign requests to UDF engines. As vector sizes are fixed, this simple strategy
already provides a balanced utilization of the UDF engines. Even when data is
skewed, the unbalanced load in the database workers would be balanced among
the UDF engines. After execution, results are sent back to the database workers
over the socket connection. This “remote UDF” approach is again a tradeoff, as it
introduces inter-process communication and data transfer while enabling parallel
execution in the Python environment. As a side effect, moving the Python execution
to separate processes offers possibilities to improve the security of running Python,
e.g., by running the UDF engines in containers.

6.2.5 Evaluation
In the evaluation, we compare the code generated by the integrated frameworks as
well as the impact of compilation, vectorization and parallelisation. The evaluation
was performed on a machine consisting of a Intel(R) Core(TM) i7-8565U CPU @
1.80GHz and 24 GB RAM. We designed a set of experiments to represent different
use cases:

• Mod: A simple modulo UDF, representing a mathematical operation.

• Avg word len: Splitting a string and computing the average word length,
representing a string analytics function that consumes the whole string.

• Roberta: Using the Roberta ONNX model [102] to analyse text sentiments.
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Figure 6.3: Compilation framework comparison in prototype engine

The experiments were performed on the TPC-H [27] partsupp table at SF10 and the
IMDB movie review dataset [104]. In the first experiment we compare the behaviour
of the integrated compilation frameworks using the prototype query engine. In this
experiment, we manually write wrapped UDF code as explained in Section 6.2.3
in order to simulate the behaviour after database system integration. Figure 6.3
shows the results for the described experiments with the runtime being normalized
against the native Python operator runtime, which acts as the reference. Build
runtime including compilation is in a similar order of magnitude for each experiment,
however taking a different part of the overall runtime depending on the execution
runtime. For the modulo experiment we can observe a performance benefit for all
compilation frameworks, with Numba being the best one as it produces native C
code in this example equivalent to the lower baseline. It reaches stack level (4) in
Figure 6.1 and runs around 20 times faster than the reference. For string analytics in
the avg word len example, we can again see a performance benefit for all frameworks.
However, Numba is slower than Nuitka and Cython here as it falls back to the Python
object mode to handle strings. In the Roberta example, Numba is not applicable
as the UDF uses an imported module. As the compilation frameworks obviously
cannot influence the module code and the ONNX runtime environment, which is
responsible for the major part of the runtime in this example, compilation does not
lead to a significant benefit here. As we aim at a solution that is transparently
applicable for all use cases, Numba is not an option. Nuitka and Cython both reach
stack level (2) of Figure 6.1 and showed similar performance in all cases leading to a
speedup of around 2 in mathematical operations and string analytics, while Cython
has significantly lower compilation effort.

Based on the first experiment, we integrated the UDF approach using Cython
as the compilation framework into the Actian Vector database system at version
6.1. In the second experiment we therefore operate on stack level (2) of Figure 6.1
and evaluate end-to-end query performance using combinations of compilation,
vectorization and parallelisation. The queries thereby consist of a scan, the UDF
and the aggregation of the result to reduce the result size. The runtime results
are shown in Figure 6.4, again normalized against the reference runtime, which is
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Figure 6.4: Actian Vector results

the interpreted, non-vectorized and non-parallelised version. We can observe that
compilation has a significant benefit compared to the respective interpreted variants,
with compilation expectedly being only slightly better than interpretation in the
Roberta example, as major part of the runtime takes place in the ONNX runtime
environment. Vectorization also leads to performance gains in nearly every case
except the compiled variants, as the Cython framework seems to have problems
to produce efficient code for list comprehension. Cython provides an advanced
Python dialect, offering more efficient compilation for specially annotated code
constructs. This could be exploited in the future by automatically rewriting the user
defined python code into the Cython dialect in order to produce faster compiled
code. However, Roberta especially benefits from vectorization, as the ONNX model
needs to be loaded only once per vector instead once per tuple. Parallelisation using
a parallelisation degree of 4 remote UDF engine processes additionally increases
performance in our experiments except the Roberta example, as this experiment
relies on the scalability of the ONNX runtime. Overall we can derive the following
key findings from our evaluation:

• Only stack level (2) of Figure 6.1 is reachable when transparently supporting
arbitrary python code.

• Compilation together with parallelisation leads to the best performance in
most experiments with speedups between 2 and 3 compared to the Python
execution.

• Compilation does not have an impact on functions that rely on external
modules.

• Parallelisation using external UDF processes introduces overhead of inter-
process data exchange, but leads to a speedup during execution by mitigating
the GIL issue.

• Vectorization leads to performance gains by reducing Python call overhead.
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Consequently, these features are a good choice for a broad range of use cases like
user-specific calculations, scoring functions, analytics or ML pre- or post-processing
steps. ML runtimes however do not benefit from the presented approaches. We
therefore investigate approaches for a deeper integration into the database engine in
the following.

6.3 Approaches for In-Database ML Inference

6.3.1 Introduction
In this section, we investigate the topic of in-DBMS batch inference from a per-
formance perspective and evaluate several approaches to integrate model inference
deeper into database systems by using different levels of abstraction. Performing ML
inference on a table (i.e., joining the model with the table), we envision a high-level
concept like

SELECT * from table MODEL JOIN m

which offers opportunities for representing the model m as a table, a tuple or a
runtime object. We focus on neural networks as a subclass of ML models that can
be useful for relational workloads. In general, we identify four classes of approaches
for in-DBMS ML inference:

1. Python UDFs: A naive approach of pushing model inference into the database
system is to exploit the recent upcome of Python user-defined functions (UDFs)
in modern database systems, as shown in the case of the Grizzly ModelJoin in
Section 5.3.3. However, this approach still moves data outside of the DBMS
and performs expensive computations in the Python interpreter and therefore
misses to make use of the powerful database engine.

2. Native APIs of ML runtimes: A basic approach of integrating ML runtimes
over native APIs is given by Raven [76, 121], which requires the integration of
external dependencies and conversions between the columnar data layout of an
analytical database engine and the data layout of the runtime.

3. SQL: Model inference can be translated to SQL leading to a highly portable
solution to any SQL compliant database. This also requires a relational model
representation.

4. Native Operator: Model inference can be implemented directly as an operator
inside the database engine without the need for external dependencies. The
solution can be tailored to the engine’s data layout.

The authors of [166] claim that “It is far too tedious for DBMS developers to
reimplement DL algorithms. So, one must preserve the usability of DL tools such as
TensorFlow for specifying complex DL workloads.” While this might be true from a
generalizability perspective, we scrutinize this claim from a performance perspective.
Besides the existing approaches (1) and (2), we present additional approaches for
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classes (3) and (4) that either reuse existing database capabilities or integrate ML
inference natively into the engine. Our first approach translates trained models into
a SQL representation using standard relational concepts. On a different abstraction
level, we design a native ModelJoin operator, which relies on the relational model
representation and performs the inference of neural networks directly on the data.
Overall, this section provides the following core contributions:

• We classify existing neural network layer types and discuss their applicability
to typical database workloads.

• We propose a generic relational representation of neural networks that is able
to handle dense layers as well as recurrent layers.

• Based on the relational representation, we propose the ML-To-SQL Python
framework, which generates standard SQL code for ML models. ML-To-SQL is
a highly portable, extensible and easy-to-use way to perform model inference
without any database engine changes, but still leverages the DBMS’s capabilities
for efficient query processing.

• As an alternative, we propose a native ModelJoin database operator, which
is also based on the relational model representation and therefore performs
the model inference independently from any ML runtime environment. The
ModelJoin is implemented as a CPU and a GPU variant.

• We compare candidates for the presented classes of approaches, including the
ML-To-SQL framework and the ModelJoin operator, against the baseline of
moving data out of the database and using Python for inference in terms of
performance, memory footprint, portability and generalizability.

6.3.2 ML Layer Classification
Various ML models have been developed to solve different kinds of problems. Artificial
neural networks (ANNs), and especially deep neural networks have been proven to
solve complex tasks, such as language translation, word or sentence completion and
prediction, or image classification. There are various architectures for artificial neural
networks (ANNs) that can be used to solve different tasks. In this following we discuss
the most common architectures currently used and their typical application scenarios
within database system. We thereby focus on relational data, as non-relational data
is typically not stored directly in a database. Consequently, we only discuss the
applicability of the model architectures for this kind of structured data, leaving out
use cases of the models on unstructured or semi-structured data.

Perceptron and Feed Forward Networks The most basic form of an artificial
neuron is the perceptron. It consists of a single activation function which is applied
on the sum of the inputs. Single perceptrons are used to solve classification problems
with two classes. In this most basic form, the single perceptron can easily be used
within database systems: once the perceptron has been trained, the learned weights
are multiplied with the corresponding input value and their sum in fed into the
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Figure 6.5: An example of a multi-layer perceptron showing the internal building
blocks of an artificial neuron.

activation function. The result of the activation function is the classification result.
Therefore, the concept of a perceptron can be easily expressed in SQL (for x and y
being attributes/columns in INPUT TABLE and b an optional bias):

SELECT w1*x + w2*y + b > 0 FROM INPUT_TABLE

The result of the perceptron is either 1 or 0 (or TRUE/FALSE), denoting the
classification result of an object in a two dimensional input space. The concept of a
perceptron can of course be applied to problems in higher dimensional spaces. To
solve the limitations of the single perceptron (e.g., the XOR problem), the multi-layer
perceptron (MLP) [135] additionally uses a hidden layer of neurons. The output of a
neuron in the input layer are used as input for the neurons in the hidden layer and
the outputs of the neurons in the hidden layer are used as inputs for the neurons
in the output layer. Since neurons in one layer are connected only to neurons in
the next layer and information is passed through the network only in one direction,
this network architecture is called feed forward networks. As each neuron in one
layer is connected to all neurons in the next layer, such layers are called dense
layers. Artificial neurons use activation functions to filter irrelevant information.
The activation function f takes the sum of the weighted inputs as an argument and
produce an output. State of the art activation functions are, for example, ReLU,
sigmoid, or tanh. Their characteristics and choice in application scenarios, however,
are beyond the scope of this work as we mainly focus on performance independently
of the model semantics.

Figure 6.5 shows an example MLP with the internal building blocks for one of
the hidden neurons. Within a layer, all neurons use the same activation function,
but different layers typically use different functions. Since single perceptrons and
MLPs are mainly used for classification tasks, they mark an important candidate for
pushing the inference step into the DBMS. Most recent success in machine learning
comes from new advances in Deep Learning technologies, i.e., network architectures
that use more than one hidden layer.

Recurrent Networks While in classic feed forward networks a neuron gets its
input only from the previous layer, in recurrent neural networks (RNNs) [159] the
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Figure 6.6: The internal gates of a LSTM module.

output of a neuron is also used as input in the next or any later iteration. This delay
allows to include, e.g., in text processing, the context of a word by “remembering”
previously encountered words, or “remembering” previous time steps in time series
processing and forecasting. While neurons in classic RNNs are composed of a single
activation function, advanced versions such as Gated Recurrent Units (GRUs) [33] and
Long/Short Term Memory (LSTM) [73] networks make use of a more sophisticated
structure to better include historical information in the learning process. The
recurrent part in a LSTM includes a cell state and consists of actually four layers.
Information is added or removed from the cell state by gates, that use the sigmoid
function.

The recurrence in RNNs, GRUs, and LSTMs can be depicted by a chain of the
LSTM module, as shown in Fig. 6.6. How often the module appears in the chain
is determined by the number of time steps a network is supposed to look into the
past. Besides transformer models [153], such recurrent networks and especially the
LSTMs are used for time series analysis or various speech and text processing tasks,
e.g., translation programs or text prediction algorithms. Since databases often store
textual information, e.g., product reviews or user comments and gather time series
data, e.g., from IoT applications, many use case scenarios would benefit from an
in-DBMS execution of RNNs and LSTMs.

Convolutional Networks The classes of Convolutional Neural Networks
(CNNs) [94] or Deep Convolutional Networks (DCNs) consist of another type of
layers: kernels and pooling layers. The convolution kernels process the input data
whereas in the pooling layers the output of the kernels is simplified. In contrast
to the dense layers of MLPs, where output from one neuron is propagated to all
neurons in the next layer, in CNNs a neuron only considers information within its
receptive field. The receptive fields of all neurons finally cover the complete input
space. Convolutional networks resemble the work of the visual cortex in our brain
and are therefore also mainly used for image and audio processing. In databases,
images and audio data are typically stored in BLOB fields. While we believe it would
be possible to also represent CNNs in a relational DBMS, we argue that in most
cases users do not store the actual image/audio files inside their database, but rather
only the paths to the files. Consequently, we do not consider CNNs any further in
this context and leave it for future work.
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Conclusion From the above discussion we conclude that RNNs and especially the
more modern LSTMs as well as classical feed forward networks with dense layers are
used to solve problems based on data stored in databases. Therefore, in the following
discussion of integrating model inference, we focus on these two ANN architectures.

6.3.3 ML-To-SQL Design
As the first approach to achieve our goal of pushing model inference into the database
system we use SQL as the standard interface of a database system. We thereby
achieve a highly-portable approach which might show non-optimal performance due
to using generic query operators instead of a specialized ML environment. In this
section we describe the design of the ML-To-SQL Python framework2. Using a pre-
trained neural network model and a database connection, our ML-To-SQL framework
offers a simple API to automatically generate model tables and SQL queries to
perform model inference. We first present the generic relational model representation
that handles dense layers as well as LSTM layers, which were shown in Section 6.3.2
to be the most important layer types for database workloads. Based on definitions
for different function types, we then present the layer-specific implementations, which
can be used as building blocks to construct SQL code for ML models. Note that
based on stored parameters in the relational table representation and the approach
of having extensible building blocks for SQL code generation, ML-To-SQL is also
applicable for the existing approaches for decision trees or classifiers presented in
Section 6.1. However, we focus on neural networks in this section.

We waive the topic of data encoding, as basic approaches like Min-Max-Encoding
or One-Hot-Encoding can be implemented in SQL in an straight-forward way and
are already covered by, e.g., MADlib [69]. Similarly, we assume that when having an
LSTM model, the number of input columns is equal to the number of time steps the
LSTM layer considers. Starting from a simple time series, this can be achieved by
self-joining the table n− 1 times for an LSTM layer considering n time steps, with a
join predicate that lets tuples match with their predecessor in the series (e.g., by
using a unique identifier or a timestamp).

Relational Model Representation

Conceptually, neural networks can be seen as directed graphs, as shown in the
example model in Figure 6.7. Nodes perform a layer type specific computation that
aggregate the weighted sum of its inputs as well as an activation function to produce
the output. For two nodes i and j, an edge (i, j) is annotated with weight wij and
all weights of a layer are collected in the kernel matrix. Additionally, a constant
bias is connected to each node, with the weights forming a bias vector. Inputs are
connected to the first layer and the output of the last layer is the model output. The
example model would get two inputs and produce a single output. As described in
Section 6.3.2, recurrent layers have a kernel as well as a recurrent kernel for each of
the blocks in the block diagram. Recurrent kernels are used to combine the output
of the last time step with the current output.

2Available as open source under https://github.com/dbis-ilm/ML-To-SQL.git

135

https://github.com/dbis-ilm/ML-To-SQL.git


CHAPTER 6. NATIVE SUPPORT FOR MODERN ANALYTICS BEYOND SQL

Figure 6.7: Example model graph

Table 6.1: ML-To-SQL function type definitions

Function type Function signature

Input function R(ID, A1, · · · , An) × Model → R′(ID, Layer, Node, Output activated)
Layer forward function R(ID, Layer, Node, Output activated) × Model → R′(ID, Layer, Node, Output)
Activation function R(ID, Layer, Node, Output) → R′(ID, Layer, Node, Output activated)
Output function R(ID, Layer, Node, Output activated) × S(ID, C1, · · · , Ci) → S ′(ID, C1, · · · , Cm, P rediction)

Based on this, we define a relational representation of a model by holding informa-
tion about edges as well as its weights. A node in the graph is identified by the unique
pair (Layer, Node) and an edge by the tuple (Layer in, Node in, Layer, Node), all
being integer values. For each edge we hold kernel weights Wi, Wf , Wc and Wo,
recurrent kernel weights Ui, Uf , Uc and Uo as well as bias weights bi, bf , bc and
bo, all being 4-Byte floating point values and representing the computation in the
LSTM cell gates in Figure 6.6. Hence, the model table is defined to have 16 columns.
Depending on the layer type, weights might be empty which is efficiently handled by
X100’s columnar storage layout, offering effective compression and the possibility to
scan only necessary columns.

Our ML-To-SQL framework generates SQL code to automatically load a Python
model object into the relational table representation by iterating over the model
graph and producing layer type specific insert statements. The framework currently
supports Keras models, but can be similarly extended to other ML frameworks in
the future. As we represent models as tables holding a single tuple per edge in the
neural network and not a single tuple per model, we denote the model inference as a
specialized join operator in further discussions, combining a model table and a fact
table.

Definitions

We denote a relation as R(ID, A1, · · · , Ai), where R is the relation identifier and
A1, · · · , Ai is a list of attributes. We specify a column ID as a unique row identifier
and assume its existence, may it be a primary key or a builtin row identifier column.
We use the term Relation in the following to describe either tables or intermediate
results, with the latter residing in memory and potentially not being materialized. A
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1 ModelJoin :=
2 Output (
3 Activate ( Layer_forward (
4 ...
5 Activate ( Layer_forward (
6 Input(R(ID ,A_1 ,... , A_n), model),
7 model)),
8 ...
9 model)),

10 R(ID ,C_1 ,... , C_m))

Listing 6.2: ModelJoin as nested ML-To-SQL function types

model is a special relation with the column definitions described in the relational
model representation.

Additionally, we define a set of function types as shown in Table 6.1. Intuitively,
we aim at keeping track of the model state for each tuple of a fact table on its way
through the neural network graph in parallel. This is realized by combining the ID
with the (Layer, Node) identifier for each node in the graph. An input function takes
a fact table and a model table and performs the initial join. For simplicity we assume
that all columns A1, · · · , An are input columns for the model, which means that the
model input layer is of size n. With the input layer being a special model layer, each
node i gets a single input value Ai and linearly propagates it to the output. On
the contrary, an output function takes an intermediate model state (which is the
result of the last model layer in most cases) and the fact table and joins the model
inference result with the respective input tuple based on the unique tuple ID.

The initial assumption that all columns A1, · · · , An are input columns for the
model is not a restriction, as all “payload” columns are joined to the model result
after the inference. In relational query execution this is similar to the commonly
used optimization rule of “late projection”, which avoids pulling a potentially large
payload that is not used by query operators through a query tree, but joins it with
the result just before returning it to the user.

The layer forward function is the main building block to traverse the model graph.
It joins the current intermediate result with the model by joining the intermediate
result’s (Layer, Node) pair with the models (Layer in, Node in) pair and this way
moving forward to the next layer in the graph. Afterwards it performs the layer type
specific calculation and aggregates the results to produce the node output. Again,
this is done per node and per tuple, keeping track of the model state for every tuple
in parallel. An activation function takes the intermediate result of each node state
per tuple and computes the activated output.

Finally, we can now define the ModelJoin as a nested construct of the above
described function types. As shown in Listing 6.2 the ModelJoin between a relation
R and a model can be described as a nesting of an input function into a series
of layer and activate functions and a final output function. With these four basic
building blocks defined in a generic way, ML-To-SQL can be easily extended with
different functions for, e.g., different layer types or different activation functions.
Basic approaches for realizing this building blocks are recursive queries or nested
queries. We decided for the latter as we expect similar performance but better
debugability and observability of the generated query.
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Figure 6.8: Internal representation of the example model graph

1 SELECT id , layer , node ,
2 value_1 as C1 , ... value_n as CN
3 FROM INPUT_TABLE as data , MODEL_TABLE as model
4 WHERE model. layer_in = -1

Listing 6.3: LSTM input function template
Implementations

Internally, the ML-To-SQL framework transforms the model graph into a different
representation, shown in Figure 6.8. Similar to the relational model representation
a vector of weights is attached to each edge instead of a single weight. This
vector holds 12 elements, being the concatenation of 3 parts: the kernel weights
W = (Wi, Wf , Wc, Wo), the recurrent kernel weights U = (Ui, Uf , Uc, Uo) and the bias
weights b = (bi, bf , bc, bo). In Figure 6.8 we use a variable sized vector of zeros 0 when
its length is clear from the context. The bias nodes are dropped from the model graph
and bias weights are placed into the weight vector. Although this replicates the same
bias weight to every incoming edge of a node, it later avoids the need for an additional
join. Furthermore, we introduce an artificial input layer consisting of a single node.
In the following, we describe the layer-specific implementations of representing a
layer in the relational model table and performing the layer-forward-function.

Input Layer The input layer is responsible for joining the fact table with the
model table, realizing the input function from Table 6.1. The layer consists of a
single node which is connected to each node of the first layer. Each of these edges has
a weight Wi = 1 and subsequent zeros in the weight vector. The way the input join
is performed depends on the type of the first layer. For LSTM layers, we assume that
a tuple consists of n columns for n timesteps in the time series. All input columns
are passed to the LSTM layer, leading to a simple SQL template cross-joining the
inputs and generically renaming columns like shown in Listing 6.3. The activated
output is here a list of columns instead of a single column.

For dense layers, performing the inference for an input tuple conceptually requires
transposing the tuple and attaching the i-th input column to node i of the first layer.
As transposition is difficult in SQL, the fact table is cross-joined with the input layer
instead and input columns are generically renamed. As now all input columns are
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1 SELECT id , layer , node , CASE
2 WHEN node =0 then C0
3 ...
4 WHEN node=N then CN
5 END as output_activated FROM
6 ( SELECT data.id as id , COL0 as C0 , ..., COLN as CN ,
7 layer , node
8 FROM INPUT_TABLE as data , MODEL_TABLE as model
9 WHERE model. node_in = -1) as t

Listing 6.4: Dense input function template
1 SELECT id , node , layer , s + bias as output FROM
2 ( SELECT id , model.node as node ,
3 model.layer as layer ,
4 SUM(input. output_activated * model.W_i) as s,
5 model.b_i as bias
6 FROM ( QUERY) as input , MODEL_TABLE as model
7 WHERE input.node = model. node_in
8 and input.layer = model. layer_in
9 GROUP BY id , model.node , model.layer , model.b_i) t

Listing 6.5: Dense layer forward template
attached to each node of the first layer, a switch statement selects the i-th column
as an input for the i-th node, shown in Listing 6.4. Due to the weight Wi = 1, the
input is equal to the output of the artificial input layer.

Dense Layer Transforming a dense layer into the relational representation inserts
a tuple for each incoming edge into the model table. Dense layers only have a
single weight and bias for their layer forward calculation, so we set the weight at
the position of Wi and the bias at the position of bi in the weight vector, with the
remaining positions being zeros. Thus, for the last layer of the example model in
Figure 6.8, we insert two tuples into the model table, and each weight vector only
contains two non-zero values.

In order to realize the layer forward function from Table 6.1 for dense layers, we
need to join the intermediate result with the model, multiply the inputs with their
weights, add their biases and aggregate the results for each node and each tuple, as
we keep track of the model state for each input tuple. This can be performed by the
SQL template shown in Listing 6.5. we traverse the model and follow the edges by
joining on (Layer, Node)/(Layer in, Node in) pairs and nest the query for layer i
into the generated query for layer i + 1.

LSTM Layer In order to transform an LSTM layer to the relational model
representation, we need to consider the different shapes of the kernel matrix and
the recurrent kernel matrix. With n being the dimension of the LSTM layer and m
being the dimension of the preceding layer, the kernel matrix is of size m× n, while
the recurrent kernel is of size n× n. To represent this behaviour in the relational
representation, we split the LSTM layer into two separate types of sublayers. The
computation of the layer forward function is also separated into two building blocks
and based on the Keras implementation. The “kernel” sublayers take the (initial
empty) inner cell state and the series of inputs. If there is an input in the series left, it
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performs the kernel multiplication and bias addition on the first input value and drops
it from the series. Then, it passes the result back to the previous “recurrent kernel”
sublayer, which is the equivalent of the recurrence in the LSTM computation. If no
input is left, the output is passed to the next layer. The “recurrent kernel” sublayer
takes the the output from the “kernel” sublayer and performs the recurrent kernel
multiplication. In the example in Figure 6.8, the backward edge would not exist if
the LSTM layer only considered two timesteps, as each element of the input series is
consumed by a “kernel” sublayer. Additionally, only the last “kernel” sublayer has
an activation function. Each “kernel” sublayer produces the output type of the layer
forward function in Table 6.1, potentially with an additional cell state that does not
exist in the result of the last sublayer.

In the relational model representation, we also consider both, kernel and recurrent
kernel sublayers with their respective edges. However, we store each of them only once,
because weight matrices are equal for every time step. In the example in Figure 6.8,
we would drop the second “kernel” sublayer with its outgoing (backward) edges.
When initially passing a model object to ML-To-SQL, the number of time steps the
LSTM layer considers is determined. This allows us to automatically generate the
backward edges in the layer forward function by joining the (Layer − 2, Node) key
with (Layer in, Node in) and this way stepping two layers back.

Output layer In the relational model representation we do not hold an explicit
output layer. When the last layer is reached during query generation, we apply the
output function as described in Table 6.1. For each ouput layer node, the original
fact table is joined with the inference result on the unique identifier column in order
to add the prediction result to the respective tuples. This way we perform the “late
projection” as described in the function definitions. If there is a single output node,
meaning that we have only one result per ID value ((Layer, Node) pairs are equal
for all results), a single join and column renaming is sufficient. Otherwise we perform
multiple joins, each with a filter on the Node column of the inference result.

Activation Functions As implied by the function signatures in Table 6.1, an
activation function can be applied after every layer forward function. The activation
function thereby only consists of a projection on the ID, Layer and Node column
and a function call applied on the output column, with the result being renamed
to output activated. ML-To-SQL currently supports the basic activation functions
linear, ReLU, sigmoid and tanh.

Optimizations

Advancing from the basic ML-To-SQL workflow described so far, we made a set of
optimizations in order to improve performance of the generated ModelJoin queries.

First, we replace the (Layer, Node) pair that uniquely identifies a node in the
model graph with a unique node identifier. This node ID is an incrementing integer
value that is assigned by traversing the model graph, i.e., first layer of dimension n1
has IDs 0 to n1 − 1, second layer of dimension n2 gets IDs from n1 to n1 + n2 − 1,
and so on. The artificial input node gets a node ID of -1. As a result, the storage size
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of the model table decreases and the join predicate in the layer forward functions
reduce from two columns to one column and a offset calculation, i.e.:

WHERE intermediate.node = model.node - offset

and the offset being a running sum over the layer dimensions. As layer dimensions are
maintained by ML-To-SQL, the offset can be determined during query generation.

Second, we introduce filter predicates on the Layer column of the model table for
each join in the layer forward function. Here, we want to traverse the model graph
from the current layer to the next layer. Thus, we only need to join with tuples of
that subsequent layer. Applying the filter before joining reduces the hash table size
of the hash join while also enabling block pruning of the model table and therefore
reducing I/O effort. The latter is achieved in X100 by the use of Small Materialized
Aggregates as described in Section 2.2.1 but can also be realized by the use of any
index structure in other database systems. With the optimization of a unique node
ID, the filter predicate on the Layer column is replaced by a range predicate on the
Node column.

X100 exploits partitioning for parallelism. Model inference is a task that is
independent between tuples, as it results in a prediction for each tuple. To achieve
parallelism for inference, we can partition the fact table on the unique identifier,
resulting the parallel execution of the ModelJoin. The model table is shared between
the execution threads. Similarly, in a distributed environment this could be achieved
by replicating the model table between nodes. A unique partition key will lead to a
balanced partitioning, and as the grouping key (ID, Node) for summing up inputs of
a node per tuple can be derived from a partitioning based on ID, no repartitioning
is necessary.

Besides partitioning and parallelism, another key to achieve scalability is exploiting
vectorized execution and pipelining, meaning that it is not necessary to collect a
whole intermediate result at some point during query execution. The main problem
with pipelining are the aggregations. However, defining a sort order on both the
model table and the fact table will lead to a fully pipelined execution. The cross
join as well as the join with a sorted model table is order-preserving, leading to
an aggregation input flow that is sorted on the grouping keys. Thus, a hash-based
aggregation can be replaced by an order-based aggregation, generating an output
tuple whenever a value in the grouping key changes since it is ensured by the order
that no additional tuples will occur for the group. Consequently, the aggregation
does not need the full dataset, leading to a low memory footprint and pipelined
execution. Additionally, the output of an order-based aggregation is still ordered, so
the criterion remains valid for subsequent operations. This also holds when having a
partitioned fact table, as we stated above that no sort order destroying repartitioning
is necessary.

6.3.4 Native ModelJoin Operator
The ML-To-SQL framework presented in Section 6.3.3 offers portability by generating
plain SQL queries to realize the ModelJoin. However, mapping calculations to generic
relational operations leads to runtime overhead, e.g., by the need to realize a sum
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by a hash aggregation. In this section we describe the design of a native ModelJoin
database engine operator3. Compared to ML-To-SQL, this requires changes in the
database engine, offering better performance due to the direct execution of operations
needed for model inference. The operator is independent from framework-specific
libraries like Tensorflow and the need for a respective C-API, but rather works
on the generic model representation. Similar to ML-To-SQL this decision limits
generizability to only the implemented functionalities. However, we assume to achieve
better performance by keeping data in their columnar layout in CPU caches instead
of converting them to the input format of an ML runtime integrated over its C-API.

The ModelJoin operator is integrated into X100. Being based on relational
algebra, it does not offer support for linear algebra operations and consequently the
ModelJoin can not be composed of these. The major challenge to consider in the
operator design is the fact that model inference follows a row-wise access pattern.
For a column store this means that conceptually each column needs to be touched
once for every tuple inference, which contradicts to the cache-friendly vectorized
execution model. In our operator design we carefully consider this fact by providing
a vectorized model inference that works on vector of column values and performs
the inference once for a set of column vectors.

Operator Design

The ModelJoin operator is based on the relational model representation described
in Section 6.3.3. Conceptually, it follows a typical two-phase-join pattern shown in
Figure 6.9, which is similar to, e.g., a hash join. The build phase is necessary here as
we do not want to hold each model in memory but rather read it from storage (if
not cached). Additionally, it is based on the Volcano iterator model as described
in Section 2.2.2. While open() and close() are responsible for allocating and freeing
memory, especially for weight and bias matrices of the model, next() triggers the
execution and returns a set of vectors of input columns and additional vectors for
the inference results. On the first next() call, the ModelJoin starts the build phase
by repeatedly calling next on the model side until it is exhausted and performing
the parallel model build. After finishing the build phase, we call next() on the input
flow side and perform the model inference for every next() call on the ModelJoin
operator. As the ModelJoin is designed as a regular operator, it can be used in
arbitrary queries also further processing the inference result.

The operations required in the inference phase are based on the Basic Linear
Algebra Subprograms (BLAS) library[24], offering the necessary matrix representa-
tions and operations. We utilize the Intel Math Kernel Library (MKL) to realize
the BLAS interface. Naturally database operators are executed on the CPU. Some
modern (server-) CPUs comprise more than 100 logical threads allowing massive
intra- and inter-operator execution. As especially the linear algebra operations for
the inference can be parallelized, the ModelJoin operator will benefit from the many
cores and threads.

Although the degree of parallelization achievable with these modern CPUs is
enormous, GPUs provide even more parallel units. Thus, besides the CPU variant of

3Available standalone under https://github.com/dbis-ilm/ModelJoin_Operator.git
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Figure 6.9: Conceptual view of the ModelJoin operator

the ModelJoin operator, the operator can also be implemented for GPUs. In order
to perform the linear algebra operations on the GPU, the cuBLAS[38] library can be
used. Although a GPU implementation requires to move data from the host RAM
to the GPU’s device memory, we expect the GPU variant to be superior to the CPU
variant for large models where many matrix multiplications are required.

Parallel Model Building

Achieving parallelism in x100 is based on data partitioning, which can be done
explicitly during table creation or implicitly during runtime by the scan operator
that splits tables on-the-fly. Thus, we can assume that our model table is arbitrarily
partitioned. Additionally, each execution thread gets a private query-plan, which
leads to separate and independent physical operator instances. With our parallel
model building phase we follow the aim of avoiding independent model instances
for each thread, which would lead to a huge memory overhead depending on the
model size. Instead, all threads build a shared model in parallel. As the actual
model inference only needs read access to the model, synchronization only needs to
be performed in the building phase.

Conceptually, the model building phase is equal for the CPU and GPU variant, as
described below: First, memory allocation for layer weight matrices and bias vectors
is performed single-threaded to a shared memory location known by all execution
threads. Depending on the implementation variant, this memory is either allocated
on the host memory (RAM) or device memory (GPU). Afterwards, each thread
parses the relational model representation and fills the weight matrices indicated by
the Layer column at the position indicated by the (Node in, Node) pair, as shown
in Figure 6.10. In the GPU variant, this invokes data transport to the device. As
partitioning is arbitrary but distinct, it is guaranteed that there is no concurrent
access to memory during this phase, making synchronization obsolete and providing
true parallelism. Depending on the layer type, we have a different set of weight
matrices. While we hold a single weight matrix and a bias vector for dense layers,
we maintain a set of kernel weight matrices, recurrent kernel matrices and biases
for each block of the LSTM layer as shown in Figure 6.6. Before the build phase
can be finished and the inference phase is started, we need to introduce a single
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Figure 6.10: Parallel ModelJoin build phase

synchronization point to ensure that the whole model table is consumed. This is
realized by a barrier before leaving the build phase.

We experienced that fine-grained data movement to GPU memory introduces a
large overhead. As an optimization, we therefore always perform the parallel model
build phase on the host memory and move the model to GPU memory once building
is finished.

Input and Output Data Conversion

When calling next() on the input flow join side, we get a set of vectors with column
values of the intermediate result as the input for model inference. In contrary to ML-
To-SQL, we can use a subset of the input columns as prediction columns if necessary
and avoid the “late projection” of payload columns. This is possible because we
can leave columns untouched in a native operator introducing no overhead, while in
ML-To-SQL columns need to be processed through multiple joins and aggregations.
Similar to joins, prediction columns are listed in the ModelJoin call.

Before performing the model inference, we need to convert the input into a layout
that fits the model. While we have a set of vectors each of length vectorsize, the
model accepts an input vector of the length n, which is the number of input columns.
This is caused by the fact that the weight matrix of the first layer in the model is of
size n×m and dimensions must match to perform multiplication. In order to avoid
iterating over the vectors and forming vectors of size n by copying a single value
from each column vector, we allocate a matrix of size vectorsize× n (either on host
or device memory) and copy the input column vectors into the matrix as shown in
the first step of Figure 6.11, touching them only once. If input vectors would be
placed in consecutive memory regions, one could only cast the pointer and avoid
copying for the CPU variant. We do not consider this optimization as we can not
guarantee this requirement.

After the model inference finished, the result matrix is broken up into vectors
again and moved to the result column vectors. For p prediction columns, this matrix

144



Figure 6.11: ModelJoin inference phase for dense layer network

would be of size p× vectorsize, holding the p prediction results for each of the input
tuples.

Vectorized Model Inference

Converting the columnar input data into an input matrix as described in the previous
Section enables vectorized model inference, performing a single inference for a vector
of inputs. For the inference, we now iterate over the model layers and perform the
model specific layer forward function using the BLAS interface.

The dense layer forward function consists of a single matrix multiplication and
bias addition. The LSTM layer forward function is again based on the Keras
implementation, translated to a BLAS implementation and shown in Listing 6.6.
Note that as we rely on the BLAS interface, we can find implementations of each
function either in Intel MKL for the CPU variant or in cuBLAS for the GPU variant,
making Listing 6.6 generically applicable for both when assuming the existence
of respective memory manipulation functions. The LSTM layer forward function
additionally reuses the generic activation functions that are also used for the activation
of layer outputs.

One part of each layer forward function is the addition of the bias vector. Having
a weight matrix of size n×m, the bias vector has length m. As shown in Figure 6.11,
an input matrix of size vectorsize × n would result in a intermediate result of
size vectorsize×m, so we would need to add the bias vector once for each of the
vectorsize input tuples on the intermediate result (with a respective offset). In
order to avoid these fine-grained additions, we invest additional memory in the
ModelJoin build phase after building finished to reallocate each bias vector once to
the size vectorsize×m and replicate the vector in the matrix. With this one time
effort, bias addition now incorporates a single, large addition that can be efficiently
parallelized by MKL/cuBLAS. As an implementation specific detail, the BLAS
matrix multiplication sgemm calculates y := Ax + y, which has two consequences.
First, we can copy the bias matrix containing the repeated bias vectors once to the
result matrix and get the bias addition automatically. Second, we can not perform
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1 Input : v e c t o r s i z e , layer dim , num recurrence , data ,
2 weight matr i ce s o f l a y e r (W x, U x , b x )
3 Output : Layer output
4 f l o a t *h = NULL, *c = NULL; // LSTM c e l l s t a t e s
5 i n t mat s i z e = v e c t o r s i z e * layer d im * s i z e o f ( f l o a t ) ;
6 f l o a t * z x = ALLOCATE( mat s i z e ) ;
7

8 f o r ( i n t round = 0 ; round < num recurrrence , round++) {
9 COPY( z x , b i a s x ) ;

10 z x = sge r (W x, data , z x ) ; // Dot product + z x
11 i f (h ) {
12 z x = sgemm(U x , h , z x ) ; // Matrix m u l t i p l i c a t i o n + z x
13 }
14 SIGMOID( z i ) ;
15 SIGMOID( z f ) ;
16 TANH( z c ) ;
17 z c = vsMul ( z i , z c ) ; // Elementwise m u l t i p l i c a t i o n
18

19 i f ( c ) {
20 c = vsMul ( z f , c ) ; // Elementwise m u l t i p l i c a t i o n
21 c = vsAdd ( z c , c ) ; // Elementwise add i t i on
22 } e l s e {
23 c = ALLOCATE( mat s i z e ) ;
24 COPY( c , z c ) ;
25 }
26 SIGMOID( z c ) ;
27

28 i f ( ! h ) h = ALLOCATE( mat s i z e ) ;
29 COPY(h , c ) ;
30 TANH(h) ;
31 h = vsMul ( z o , h) ; // Elementwise product
32 }
33 FREE( z x ) ;
34 i f ( c ) FREE( c ) ;
35

36 re turn h ;
Listing 6.6: LSTM layer forward BLAS implementation. Lines containing an ”x” are
replicated for x in {i,f,c,o}
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xA = y, but need to perform AT xT = yT . We therefore fill the weight matrices
already in a transposed way in the build phase and transpose the input matrix once
before the first layer forward function. All intermediate results are then automatically
transposed and we also consider this when converting the model inference result
back to the column vectors. After performing a layer forward function, the layer
activation function is applied on the intermediate result matrix. This can be done
in parallel by, e.g., using handcrafted CUDA kernel implementations for different
types of activation functions. Our implementation features a set of commonly used
activation functions as CPU and GPU implementations.

Model inference is an independent operation for every input tuple. Consequently,
we can again exploit partitioning to perform the inference phase of the ModelJoin
in a parallel way on partitions of the input flow. Furthermore, the inference phase
supports pipelined execution, which means that we return an inference result for
each set of input column vectors without the need to touch the whole dataset. Thus,
the ModelJoin operator is not a pipeline breaker like sorts or aggregations, leading
to a low memory footprint, besides the fact that the model needs to fit into memory.
Especially in the GPU variant, where we offload the execution to a different device,
this maintains the cache efficiency of a vectorized execution engine. In summary,
pipelining in combination with partition support leads to a highly scalable operator.

Using semantics in the table creation

Currently, calling the ModelJoin requires passing meta information about the model,
i.e., the layer dimensions, the layer types and the layer activation functions. In the
future, one could think about introducing semantics in the model table definition
similar to dimension tables in Oracle. This way, one could fix the model table schema
and maintain a model’s meta information in the database catalog. Making the DBMS
aware that a table is a model additionally enables custom query optimizations, sanity
checks and also potential model lifetime cycle management.

6.3.5 Evaluation
We compare the approaches of the ML-To-SQL framework as a portable frontend
ModelJoin solution and a native ModelJoin database operator against the baselines
of using Tensorflow in the Python environment, using a Python UDF or integrating a
ML runtime over native APIs. We follow the goal to show scalability for different data
sizes as well as model sizes in terms of runtime and memory consumption. Please
note that we forego a comparison to MADlib, as this would lead to a comparsion
between DBMS performance. We investigate the performance of different general
concepts while keeping the underlying database system fixed.

Setup

The experiments were run on a server consisting of an AMD EPYC 7272 2,9 GHz
CPU, 512 GB RAM and a NVIDIA A100 GPU with 40 GB device memory connected
over PCIe. The server runs Actian Vector 6.2, in which we integrated our ModelJoin
operator implementation described in Section 6.3.4 and a Raven-like operator that
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relies on the Tensorflow C-API. We evaluate the approaches on a low abstraction level,
i.e., we evaluate performance for different shapes of models instead of focussing on use
cases. Consequently, we evaluate the building blocks to build different applications
like classifications, regressions and similar.

We designed separate experiments for dense layer networks and LSTM networks.
The dense layer experiment is based on the Iris dataset [49] that is replicated to
mimic varying fact table sizes. The dataset consists of four feature columns that
are used to predict a class attribute and is a commonly used real-world example for
machine learning. In order to evaluate the scalability for different ML model sizes,
we use dense layer networks with all combinations of model widths ∈ {32, 128, 512}
and model depths ∈ {2, 4, 8}, i.e., a model of width 128 and depth 4 has 4 dense
layers of width 32 and an output layer of size 1. For the LSTM layer experiment
we generated a time series based on a sinus function and used 3 time steps for each
forecast. In our evaluation we focus on prediction runtime, which is independent
from the actual mathematical function the neural network represents. Consequently,
a generated sinus function leads to the same runtime results as real-world examples,
but is easier understandable and reproducible. As typically a single LSTM layer is
used, we do not use different model depths in this experiment, but varied the LSTM
layer width, followed by a single neuron output layer. For all experiments the batch
size is equal to the database engine’s vector size of 1024. Tables are partitioned into
12 partitions and the engine runs with a parallelism level of 12.

Based on these setups we measured the runtime to apply the respective model on
a varying number of tuples. We thereby compare our approach of a native ModelJoin
operator, both as a CPU and GPU variant, and the ML-To-SQL framework against
Tensorflow running either in Python, integrated over the C-API both on CPU and
GPU or by using a Python UDF. For Tensorflow in Python, data is moved from the
database to the Python environment using ODBC and classified using Tensorflow.
Here measurements include data movement and classification runtime. Using the
C-API, data does not need to be moved, but converted to the expected input format
of the Tensorflow API. This requires moving data from a columnar format into a
row-major matrix, and results back to columnar layout. In the Python UDF, we load
the saved model, apply it to the data using Tensorflow on the CPU and return the
predictions. Additionally, we optimize the UDF by using Actian Vector’s parallel and
vectorized UDFs as described in Section 6.2, i.e., calling the UDF once per vector
instead of once per tuple. In order to provide a fair comparison, we assume the
model to be already loaded, which is automatically done for ML-To-SQL and the
ModelJoin operator by storing the model as a table. For Tensorflow, we start timing
the inference runtime after the model was loaded from disk and for UDF we use a
cached model realized by storing a loaded model into a global state. Note that in
the experiments we do not examine typical ML metrics like model precision, but
purely focus on prediction runtime. We use the same model for each implementation
variant and ensure consistent results.

Results

Model inference runtimes The model inference runtimes for the dense experi-
ment are shown in Figure 6.12. As expected, the ML-To-SQL variant scales worse
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Figure 6.12: Runtime results for dense layer networks

than the other approaches as it uses generic constructs query operators for very
specific computations. Using the native C-API of Tensorflow is the best alternative
in terms of runtime and scalability for all evaluated cases, being either on-par with
the native ModelJoin operator in the GPU variant or even better in the CPU variant.
Consequently having a native integration of the ModelJoin operator does not bring
any benefits compared to integrating Tensorflow over the C-API. Both approaches
are about an order of magnitude faster than the Tensorflow variant in Python and
the UDF variant. Comparing the latter two, it shows that the native Python variant
using Tensorflow is slightly better than the UDF variant, which is caused by context
switches between the database engine and the Python environment as well as data
conversions and data transport between the engine and the Python environment.
However, this is also an effect of the used queries, as only performing the ModelJoin
is in favor of the Tensorflow variant. In more complex analytic pipelines, the infer-
ence results are typically further processed by, e.g., aggregations. As using UDFs
data remains inside the database kernel, these further operations are significantly
faster inside the DBMS compared to Python. Tensorflow in Python mainly suffers
from the overhead of data transport over ODBC. As Tensorflow inference takes
place on the same machine that runs the database instance, the setup is still in
favor of Tensorflow by minimizing data transport costs. Moving large datasets from
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Figure 6.13: Runtime results for LSTM layer networks

a database server to a separate machine for running the inference would further
decrease the performance of the Tensorflow variant. For large models we can observe
that GPU variants perform at least equal (for Tensorflow in Python) or even better
(for ModelJoin and Tensorflow using the C-API) than their respective CPU imple-
mentations. Comparing different model sizes, inference runtime slightly increases
in both directions of model width and model depth. However, the dominating part
of the execution time for the small models is data transport, so inference runtime
does not double when doubling the model size. The number of model parameters
does not scale linearly but quadratically, i.e., the model with width 512 and depth 8
having 4 · 512 + 7 · 5122 + 512 ≈ 1, 8 · 106 parameters, while a model of same depth
but 128 neurons per layer only has around 115.000 parameters. Consequently, the
size of intermediate results in the ML-To-SQL variant also increases quadratically,
leading to bad scalability.

The inference runtimes for the LSTM experiment are shown in Figure 6.13.
Compared to the dense experiment, increasing the width of the LSTM layer has a
higher impact on runtime for all ModelJoin alternatives, as the computation of a
LSTM layer is more complex than a dense layer. Using the ML-To-SQL framework
for performing the ModelJoin performs significantly better in this case compared
to the dense experiment due to only a single layer being processed, which leads to
significantly smaller intermediate results. However, the ML-To-SQL variant scales
worse than the other alternatives with increasing model size, caused by the quadratic
increase in intermediate result size. Again, the native ModelJoin operator and using
Tensorflow over the C-API show the best runtimes and scalability both comparing
CPU or GPU variants, with the GPU variant being the better choice due to the
increased complexity of the LSTM layer compared to the dense layer.

For both experiments we can observe that the size of the fact table has the highest
impact on the model inference runtime. For use cases where the fact table is large,
a native integration either using a native ModelJoin operator or a ML runtime’s
API is the best choice, with the GPU implementations showing better scalability
and should therefore be used whenever possible. Especially in cloud environments
instance types can almost arbitrarily be chosen, so we argue that the existence of a
GPU on a database deployment can be easily realized.
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Table 6.2: Peak memory for model inference of 100K tuples

Model ModelJoin TF(C-API) TF(Python) ML-To-SQL

Dense(32,4) 109.5 MB 153.9 MB 2.8 GB 1.4 GB
Dense(128,4) 121.7 MB 154.8 MB 3.4 GB 2.4 GB
Dense(512,4) 194.9 MB 185.4 MB 10.5 GB 6.6 GB
LSTM(128) 123.5 MB 192.2 MB 3.4 GB 411 MB

Memory usage Besides performance, we compared the approaches in terms of
memory consumption. We measured peak memory of the database engine for
the ModelJoin operator, the Tensorflow C-API approach and ML-To-SQL while
measuring peak memory of the Python process for Tensorflow using Python. This
way we captured the model memory itself and the size of intermediate results. The
results for a representative subset of the models and a fact table of 100K tuples are
shown in Table 6.2. Due to the models themselves being quite small in size and being
shared by all threads, the ModelJoin operator has a very low memory consumption.
Tensorflow using the C-API has a similar memory consumption with a slightly higher
fixed memory. Tensorflow in Python shows a significantly higher memory usage due
to the Python environment and parallelism. ML-To-SQL’s memory consumption is
above the ModelJoin operator, caused by the use of more generic operators. However,
it is below Tensorflow(Python)’s memory consumption due to the pipelined execution
described in Section 6.3.3. For the LSTM experiment, memory consumption is only
slightly higher than the ModelJoin operator, again caused by more generic operators.
It is also lower than in the dense experiments, as the model only consists of a single
layer whose computation is however more complex. The memory consumption of the
UDF variant is not included in Table 6.2, as it can be seen as a wrapper around the
Tensorflow variant and therefore has similar memory requirements. During the design
of the ModelJoin operator’s GPU implementation we assumed that the model fits
into GPU memory. Comparing the memory consumption of the ModelJoin operator
from Table 6.2 to the device memory of our GPU (40 GB) or similar devices, we
argue that this is no limitation for typical model sizes.

Resume We evaluated model inference using candidates of the classes of approaches
introduced in Section 6.3.1 for models of different widths and depths. A qualitative
comparison of the results is given in Table 6.3. We observed that the native integration
using a specialized ModelJoin operator or using the native API of ML runtimes
significantly outperforms the alternatives for all models and data sizes by an order
of magnitude and has a low memory footprint. Enabling the GPU variant further
leads to better scalability, which is especially useful for large models or large fact
tables and should be used if respective hardware is available. ML-To-SQL showed to
scale worse, but is still a reasonable choice for small models or small data, e.g., to
classify periodical inserts or IoT data, as here the advantages of a portable solution
predominate the scalability issues. ML-To-SQL can be ported to any SQL-compliant
database system without requiring any changes in the engine code, neither any UDF
support or a ML runtime, but uses the existing capabilities of database engines for
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Table 6.3: Qualitative comparison of ML inference approaches

ML-To-
SQL

Native
ModelJoin

TF
(Python)

TF
(C-API)

UDF

Performance (Small Models) Good Good Medium Good Medium
Performance (Large Models) Bad Good Bad Good Bad
Memory Consumption Medium Good Bad Good Bad
Portability Good Bad Good Bad Medium
Generalizability Bad Bad Good Good Good

efficient query processing. Comparing the native integration approaches, the native
operator performes nearly as good as the integration of a highly specialized ML
runtime using the C-API.

Coming back to the quote of [166] questioned in Section 6.3.1, reimplement-
ing ML algorithms is consequently not reasonable and the drawbacks of limited
generalizability to only the reimplemented layer types dominate.

6.4 Conclusion

Based on our findings with the Grizzly frontend solution to push modern analytics
towards the database system in Section 5.5 we explored how to integrate Python
UDFs and Machine Learning model inference deeper into the database engine, with
the goal of achieving better performance.

User-defined Python functions are easy-to-use extensions to database engines
and provide support for modern analytical tasks. Motivated by the fact that the
execution of Python code suffers from bad performance and scalability we explored
the design space of accelerating Python UDFs in vectorized query engines. We
evaluated the impact of vectorization, parallelisation and compilation, with the
latter being realized by different existing compilation frameworks. We show how
UDFs can be compiled just-in-time during database runtime, dynamically loaded and
used in query execution and implemented this feature as an open-source prototype
engine. Furthermore we presented an approach to mitigate Python’s GIL issue
using separate UDF engine processes to enable parallel UDF execution. In our
evaluation we integrated the Cython compilation framework into the X100 query
engine and evaluated end-to-end query performance for representative use cases. We
thereby achieved significant speedups for different use cases with compilation and
parallelisation used together. With transparency as a main design goal, the presented
approaches are easy-to-use and work for arbitrary Python code constructs.

Pushing ML model inference into database systems offers great possibilities
for performance, scalability and data privacy. We evaluated different ways to
exploit the capabilities of database engines for ML model inference and focused
on neural networks as a subclass of ML models. Based on a generic relational
model representation that is able to hold dense layers as well as LSTM layers we
first described the design of the ML-To-SQL framework. ML-To-SQL offers an
easy-to-use API to transform ML models into tables and to perform the model
inference using standard SQL. As the opposite direction we discussed the design
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of a native ModelJoin database operator, which offers a parallel model building
phase and a vectorized inference phase. The ModelJoin operator is realized as a
CPU and a GPU variant. Our evaluation showed that ML-To-SQL is a reasonable
choice for small data sizes or small model sizes, but shows poor scalability as the
price for using generic database operators and therefore being highly portable. The
native ModelJoin operator integrated into the X100 engine however outperforms the
alternatives of using Python/Tensorflow or a Python UDF by an order of magnitude
and shows a significantly lower memory footprint for different model and data sizes.
The GPU variant further increases performance and scalability and is therefore the
best choice if respective hardware is available. However, it did not outperform a
native operator built on the C-API of existing ML runtimes both in CPU and GPU
variants. Consequently, reimplementing functionality for ML inference does not
amortize for the lack in generalizability and we conclude that using native APIs to
integrate existing ML runtimes is the best option for more native ML support.
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Chapter 7
Conclusion and
Open Research Questions

7.1 Conclusion
Cloud computing is one of the most successful technologies of the last decade and
will be an important, business-driving technology in the future. It significantly
changes the way developers and users design, deploy and use systems. In this thesis,
we focused on analytical database systems in the cloud and started by identifying
three interaction points of database systems with their environment that show a
shift in requirements compared to traditional, on-premise data warehouse solutions:
interaction with the elastic hardware environment, interaction with various endpoints
for data ingestion and interaction with data science and machine learning (ML)
environments for modern workloads. Based on these, this thesis provides three major
contributions.

Elastic scaling We presented an elastic scaling feature that allows a distributed
database engine built on a shared-nothing architecture to scale during system runtime,
thereby avoiding a system restart, a long running log replay and consequently a
potentially long offline time. The approach relies on the MPI group and communicator
management. As load distribution in these kind of systems is typically based on data
partitioning, we introduce a partition manager that supports elastic scaling. The
partition manager explicitly handles partition assignments for equivalence classes of
partitionings, which allows to minimize partition reassignment in the case of scaling
while still providing load balancing and preserving the co-location of partitions for
efficient partitioned query execution. In order to mitigate a cold start problem
caused by empty buffers after scaling we introduce the buffer matching and filling
mechanism, which makes use of buffer eviction priorities to find suitable datasets to
pre-heat buffers and benefit from an immediate performance gain. The evaluation
showed that the elastic scaling method enables fast scaling within a few seconds on
modern cloud hardware.

PatchIndexes to increase schema quality A cloud database is highly available
and accessible from nearly everywhere, so data can be ingested from many devices.
Additionally, data freshness for real-time analytics is of major importance. Supporting
frequent data ingestions from many endpoints fundamentally differs from bulk
loads or ETL processes in traditional on-premise data warehouse solutions. In
many cases users avoid defining database constraints to prevent aborts due to
constraint conflicts or to accelerate ingestion by skipping expensive constraint checks.
We introduce the PatchIndex concept that allows the definition of approximate
constraints in database systems, i.e., constraints that hold for all tuples except a set
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of exceptions. The PatchIndex maintains these exceptions in a sharded bitmap data
structure, which offers efficient scan and update support. The information about
approximate constraints can be used in query optimization and execution. Typically
the datastream is splitted into data fulfilling a constraint and exceptions, and
expensive operators can be skipped on the first one. While PatchIndexes are designed
as a generic data structure that can be used for arbitrary constraints by realizing a
simple interface, we showed how to apply the approach to traditional constraints
with approximate sorting and approximate uniqueness. The evaluation showed that
we can achieve similar performance as traditional materialization approaches in
sort queries and distinct queries even for large exception rates, while PatchIndexes
can be updated significantly more efficiently. As a second example we showed how
PatchIndexes can be used to achieve a multi-key data partitioning, i.e., finding a
data partitioning where the constraint that equal values are assigned to the same
partition holds for multiple partitioning keys. With PatchIndexes it is possible to
relax this problem to a patched multi-key partitioning. We show that this problem
can be mapped to a graph partitioning problem and present a workflow to find a
solution using arbitrary graph partitioning algorithms. The evaluation here showed
that we can achieve robust query performance for workloads that require multiple
different partition keys without replicating data or repartitioning full tables during
query execution.

In-database support for modern analytics In parallel to the success of cloud
computing, the shape of typical analytic workload changed in the recent years.
While traditional SQL based workloads used to be the common case for business
intelligence and had been researched over decades to run efficiently, data science and
machine learning workloads gained significant importance. These workloads often
run in Python in different environments like Python Pandas for data processing or
Tensorflow for machine learning. As database systems do not support these workloads
data is simply downloaded from the database to run the workloads outside of the
database engine, wasting its great capabilities for efficient query processing. As this
has major drawbacks we aimed at pushing modern workloads towards the database
engine. We started with introducing the Grizzly framework, a DataFrame-to-SQL
transpiler that is intended to work as a drop-in replacement for Pandas. Instead of
eagerly executing operations, the framework lazily collects DataFrame operations
in a query tree and transpiles it to a SQL query when a result is needed. This way
it moved the query to where the data resides to exploit the database engine for
efficient processing, leading to a speedup of several orders of magnitude compared
to Pandas. Grizzly can work as a totally different frontend to the database system,
enabling a whole new user group that is used to data processing in Python to use
database systems. We extended Grizzly with API extensions for external file support,
user-defined functions (UDFs) and ML model inference. Based on this we identified
Python UDFs and ML model inference as typical tasks that can greatly benefit from
a deeper database engine integration. We therefore investigated opportunities to
integrate Python UDFs optimized performance using just-in-time compilation of
UDF code, vectorization and parallelization. Furthermore we compared different
approaches to push ML model inference towards the engine, starting with a naive
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Python UDF approach, followed by a mapping of model inference to SQL, a native
integration using Tensorflow’s C-API or a native integration using a designated
ModelJoin database operator. The evaluation showed that while a SQL mapping is
very portable and can be useful for small models or small data, a native integration
using the runtime’s C-API is the most efficient and generic solution.

7.2 Open Research Questions
In this thesis we overall introduced building blocks for a database engine to more
natively support the challenges and opportunities the cloud environment offers. In
this environment we believe that a database system should mature towards a data
platform that is most importantly easy-to-use, flexible, self-managing as much as
possible, feature-rich and offers support for many use cases in an integrated way.
While engine performance has been the major differentiator over the last decades,
we believe that user experience becomes even more important for the success of a
database system. Based on our contributions we propose the following open questions
for the future that would help to come closer to this vision.

Elasticity Our proposed scaling mechanism assumes that the system can be on
hold for a short amount of time in order to scale up. As an improvement online
scaling could at least allow read queries during the scaling process. The logical next
step however would be a more flexible serverless approach (similar to a Function
as a Service approach), i.e., managing a pool of stateless workers that can execute
arbitrary (sub-)queries. While this leads to more elasticity and reduces the effort to
start and configure a compute cluster, it also introduces new challenges like isolation
in a multi-tenant environment. Furthermore it requires to separate state from the
workers. Metadata and catalog information need to be stored separately in a scalable
service to be queried by workers on demand. For both approaches, a stateful online
scalable system or a serverless engine, system monitoring is a key to automatically
scale the system in order to match the workload demand in the most cost-effective
way. Several workload-driven scaling approaches have been proposed like [134] that
can be realized on top of a system monitoring component. At the time of writing
this thesis such a system monitoring feature is under development at Actian to be
integrated with Actian Avalanche.

PatchIndexes PatchIndexes offer the possibility to maintain and benefit from
constraints even if these constraints do not hold for all tuples. To reach the goal of a
self-managing database engine, columns that could benefit from PatchIndexes should
be automatically discovered. In a workload-driven approach possible candidates are
columns that are often queried in a certain manner, e.g., aggregated when using a
uniqueness constraint or sorted when using a sorting constraint. Runtime metrics
like the number of aggregation groups can give indications on the expected exception
rates. Additionally, PatchIndexes are designed in a generic way to be applied to
arbitrary constraints. More candidates for constraints could be evaluated and even
user-defined constraints could be made available.
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DataFrame Frontend - Grizzly Our Grizzly framework offers a new way to
use a database system from the Python environment. While Grizzly works easily
with Jupyter notebooks, the most common way to work with Python nowadays, this
setup offers room for improvement. In Jupyter execution can be done cell-by-cell in
a stepwise manner. This can be exploited in Grizzly by materializing intermediate
results as, e.g., materialized views to be reused when executing code cells again.
Moreover, a logical next step for Grizzly is the support for heterogeneous data
sources, i.e., holding connections to multiple databases. In the query graphs that
Grizzly is based on join operations between different database instances can then be
seen as “pipeline breakers”, where data needs to be fetched from both join sides and
combined locally. Using a query optimizer, computation effort needs to be pushed
into the database instances as much as possible to reduce intermediate result sizes,
transfer costs and the client-side processing costs. In order to combine intermediate
results locally Grizzly could be extended with an embedded processing engine like
DuckDB [128] or MonetDBLite [127]. With this, Grizzly could work as a frontend
for hybrid cloud setups, e.g., combining data from a public cloud instance and a
private instance.

Modern workloads We presented approaches to push Python UDFs and ML
model inference towards the database engine. Estimating execution costs for these
operations is crucial for query optimization and achieving robust and efficient query
plans. These costs are impacted by many properties that are hard to quantify,
particularly because Python UDF code can be of arbitrary shape. Such a cost
estimator could be constructed out of explicit costs of using a learning-based approach.
To the best of our knowledge related work about integrating Python UDFs or ML
workloads has not covered this topic yet. In addition to that, support for data
preprocessing is needed in the desired feature-rich data platform in order to support
the construction and execution of whole pipelines. These preprocessing steps include
feature encoding, scaling or normalization and are already investigated in MADlib [69]
or in [137]. Last, we waived the topic of ML model training in our investigations.
While there are several works on in-database model training, we believe that the
update-heavy training process is conceptually not a very good fit for a database
engine optimized for read performance on large data. Additionally, parallelizing the
training in a distributed database engine is challenging, as multiple model instances
are trained simultaneously and independently. Merging these models is a difficult
problem and synchronizing the parallel training would significantly reduce parallelism.
For feature encoding this might even lead to inconsistent results, e.g., if similar values
are differently mapped by independent dictionary instances.
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[137] Maximilian E. Schüle et al. “Blue Elephants Inspecting Pandas: Inspection
and Execution of Machine Learning Pipelines in SQL”. In: Proceedings 26th
International Conference on Extending Database Technology, EDBT 2023,
Ioannina, Greece, March 28-31, 2023. Ed. by Julia Stoyanovich et al. Open-
Proceedings.org, 2023, pp. 40–52.
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