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Abstract
The automated identification and localisation of grid disturbances is a major research area
and key technology for the monitoring and control of future power systems. Current
recognition systems rely on sufficient training data and are very error‐prone to distur-
bance events, which are unseen during training. This study introduces a robust Siamese
recurrent neural network using attention‐based embedding functions to simultaneously
identify and locate disturbances from synchrophasor data. Additionally, a novel double‐
sigmoid classifier is introduced for reliable differentiation between known and unknown
disturbance types and locations. Different models are evaluated within an open‐set
classification problem for a generic power transmission system considering different
unknown disturbance events. A detailed analysis of the results is provided and classifi-
cation results are compared with a state‐of‐the‐art open‐set classifier.
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1 | INTRODUCTION

1.1 | Disturbance classification and current
limitations

The automated processing and analysis of phasor measurement
units (PMU) in transmission and distribution power systems has
been a main research field for several years [1–4]. PMUs provide
time‐synchronised frequency, voltage and current phasor mea-
surements with a high time resolution and enable new dynamic
control centre functions for themonitoring and control of future
power systems. Onemain issue is the automated classification of
grid disturbances (e.g. line trips, load losses and short‐circuits) by
the use of data‐driven machine learning techniques. Precise in-
formation about the origin and type of the disturbance enable
the automatic activation of countermeasures (e.g. remedial ac-
tion schemes) to maintain a stable system operation and to
prevent severe failures of the power supply. With that, PMU‐
based recognition systems can overcome drawbacks of existing

SCADA systems (low‐resolution, spontaneous and not
synchronisedmeasurements [5]) and protection systems (limited
to short circuits, risk of misoperations [6]).

Several approaches are proposed in [7–17] using different
techniques for feature extraction (e.g. wavelet decomposition,
Stockwell transformation or time series shapelets) and pattern‐
based classification techniques (e.g. decision trees, support‐
vector‐machines or artificial neural networks). Other studies
investigate different neural network models including con-
volutional and spiking neural networks [18–20]. All of these
approaches address one or more of the three main tasks of the
disturbance classification including

� detection (recognise deviations from steady state),
� identification (recognise the disturbance type),
� localisation (recognise the origin of a disturbance).

Typically addressed events include short circuits, outages,
switching operations as well as power quality‐related
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phenomena. The evaluations are based on dynamic grid sim-
ulations using reference topologies (e.g. IEEE 39‐Bus system)
or field measurements from the system operators. Dynamic
grid simulations are mainly used to generate appropriate
training data to recognise relevant disturbances without the
need for extensive long‐term measurements. In the application
phase, the classification model is confronted with PMU field
measurements. Due to the large number of degrees of freedom
in today's power systems, only a subset of all possible events
can be simulated with moderate numerical effort. This leads to
a high risk of misclassification in the application phase due to
unknown events that are not seen during training. These un-
known events can include new disturbance types or locations
as well as other events, which cause transient system responses
(e.g. capacitor switching, load tap changing and switching op-
erations). Additional performance degradations like measure-
ment errors or unknown steady states are not addressed within
this survey. Also, this study focusses on single disturbance
events and neglects cascading events or the superposition of
multiple events as investigated in [9].

1.2 | Learning approaches to handle
unknown classes

To handle unknown events or classes in recognition systems,
authors in [21–23] introduced the open‐set or open‐world
recognition problem. Accordingly, traditional classification
systems assume a known and limited number of classes, which
is valid during the training and application phase. In this closed‐
set assumption, new instances appear only from the known
classes. In the open‐set assumption, not all classes are known at
the training time and new instances of known and unknown
classes may appear during the application phase. Appropriate
classification systems require the additional capability to reject
instances of unknown classes and to correctly assign instances
of known classes. The general approach is to reduce the
classification error for instances that are far away from the
known class regions (open‐space). Several methods have been
presented to cope with this issue including 1‐vs‐Set machines
[21], an OpenMax layer for deep neural networks [24], nearest
non‐outliers (NNO) [23] and One‐Vs‐Rest sigmoid classifiers
[25].

1.3 | Main contributions and paper
organisation

Despite being mentioned in previous studies [12], the problem
of unknown events is not addressed by current disturbance
classification approaches. For the first time, this study in-
vestigates the PMU‐based disturbance classification task as an
open‐set recognition problem to handle disturbances, which are
unknown during the model training. In contrast with existing
approaches, the integration of rejection mechanisms allows to
distinguish between known and unknown disturbance events
and to minimise potential misclassifications during the

application phase. This leads to better performance results on
new test data and is an important requisite for achieving robust
classification models [26]. For that, a Siamese recurrent neural
network with a novel double‐sigmoid classifier is presented and
compared to existing open‐set classification models to correctly
assign known disturbances at the training time and to reject
unknown disturbances at the test time. For better classification
results, different attention‐based embedding functions are
proposed to extract representative features from the multi‐
dimensional phasor data. In particular, the study's contribu-
tions can be summarised as follows:

� provide a fully trainable PMU classification model to effi-
ciently recognise known and unknown grid disturbance
events;

� develop a novel Siamese recurrent neural network archi-
tecture with additional attention mechanisms for the
simultaneous online identification and localisation of
different grid disturbances;

� introduce a novel probabilistic binary classifier based on
sigmoid functions to efficiently train and apply Siamese
networks in open‐set problems.

The study is organised as follows: Section 2 describes the
grid topology and the general procedure to derive the PMU
signals from dynamic simulations. Paragraph 3.1 introduces the
simultaneous disturbance identification and localisation
approach based on some preliminary work. Afterwards, the
classification models and the evaluation metrics are described
in the subsequent paragraphs 3.2, 3.3 and 3.4. Section 4 starts
with a description of the different test scenarios, which are
examined within this survey. It follows a detailed discussion of
the training, validation and test results. Finally, section 5 gives a
short summary of this study and describes possible future
work. A list of acronyms used in this study is given in Table 1.

1.4 | Basic notations

X ‐ matrix
x
�

‐ vector
x ‐ scalar
x̂ ‐ predicted/estimated value
�X ‐ set

2 | GRID TOPOLOGY AND DYNAMIC
SIMULATIONS

The power system model for generating the dynamic simula-
tion results is based on a simplified version of the ENTSO‐E
European Transmission System. The grid model consists of 33
substations at a 400 kV voltage level. To ensure the N‐1
criteria, grid redundancy in terms of multiple in-
terconnections between the nodes is implemented. Some
generator units are equipped with automatic voltage regulators
(AVR) and power system stabilisers (PSS) to control the system
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stability. The parameters of these units have been optimised in
order to ensure the system stability for the simulated contin-
gencies. A DIgSILENT® Programming Language (DPL) script
controls the event's creation, the stability assessment as well as
the data export to the simulation database. Based on a selection
of suitable operational points at the steady‐state, multiple
transient symmetric simulations are performed with a step size
of 1 ms for different contingencies (e.g. generator or line
outages). The simulations comprise 440 contingencies for
seven different operational points and serve as the training and
test database for the classification models. The PMU signals
are extracted from the simulation results as moving averages
over a fixed time interval. Based on prior investigations and
literature research, frequency and voltage magnitude signals are
used as relevant predictors with a reporting rate of 25 f.p.s. for
the classification tasks. Some exemplary simulation results for
four different PMU sensors are given in Figure 1.

In the case of no severe stability violations, the simulations
are stopped about 140 s after the event triggering. In a post‐
processing procedure, some contingencies are discarded from
the database including stability violations as well as events with
no significant signal changes compared to the steady‐state
conditions (e.g. trips of weakly loaded generators).

3 | CLASSIFICATION MODELS
CONSIDERING UNKNOWN
DISTURBANCE EVENTS

3.1 | Basic problem formulation

Based on previous work in [27], a single prediction model
approach is used to identify and locate disturbances by ana-
lysing measurement signals from several PMUs, which are
distributed over the grid. The analysis of the spatiotemporal

relationships between different PMU signals allows to classify
disturbance events, which are not directly observable by PMUs
and therefore make the classification approach somewhat in-
dependent from a specific PMU placement. With that, the
predictors or input matrix X ∈ ℝT�M for the classification
model consists of M measurements from multiple PMU sen-
sors with a fixed number of T timesteps. The targets or class
labels y contain the type yType and location yLoc of the
disturbance such that y¼ ½yLoc; yType�. All K training classes C
are summarised in the class configuration C ¼ ½C1;…;CK �.

3.2 | Siamese recurrent neuronal networks
with double‐sigmoid classifiers

Siamese neural networks (SNN) are widely used for face
recognition, person re‐identification or object tracking tasks to
compute discriminative embeddings [28, 29] or to directly
perform classifications [30, 31]. SNNs use a predefined set of
known class examples (support set) and compute the distance
or similarity between these support instances and a new
instance (query instance) to estimate its class affiliation. In
contrast with traditional classification approaches (e.g. Soft-
max‐Regression), SNN‐based feature embeddings can lead to a
better generalisation performance due to a better representa-
tion of the intra‐class and inter‐class variances [28, 32].
Additionally, class rejection mechanisms can be implemented
in a straightforward way. Within this study, recurrent neural
networks are used to efficiently process and analyse the high‐
dimensional PMU data records and to learn discriminative
feature embeddings. The use of gating mechanisms in gated
recurrent units (GRU) or long short‐term memory (LSTM)
cells enables backpropagation over long time periods and

T A B L E 1 List of acronyms

BLPP Base load power plant outage

DOCSig DOC‐sigmoid classifier

DoubleSig Double‐sigmoid classifier

GRU Gated recurrent unit

LL Load loss

LSTM Long short‐term memory

PMU Phasor measurement unit

PV PV plant power loss

SC Short circuit

SCADA Supervisory control and data acquisition

SNN Siamese neural network

SingleSig Single‐sigmoid classifier

SPP Steam power plant outage

STD Standard deviation

F I G U R E 1 Exemplary phasor measurement unit signal patterns for a
generator trip
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minimises the vanishing gradient problem. GRU or LSTM
cells can be easily integrated into SNN architectures, which
allows an end‐to‐end learning of all model components. In this
study, GRUs are preferred over LSTMs to minimise overfitting
problems. The computation time for recurrent neural network
cells is very low compared to other feature extraction tech-
niques (e.g. dynamic time warping (DTW) or time‐frequency
transformations) due to the simple matrix calculations, which
enables a fast online processing and classification of the PMU
data streams [27].

The general model architecture of the proposed Siamese
recurrent neural network‐based classifier is given in Figure 2.
The support X S and query instances X Q are fed into a GRU
layer to compute the corresponding hidden state matrices H S
and HQ.

A subsequent embedding layer extracts the representative
feature vectors f

�
S and f

�
Q by the use of attention mechanisms.

This is done by analysing the hidden state information of all
time steps and not just the last hidden state of the input
sequence. For this, attention weights αt are calculated with a
scoring function, which computes a score value st for each
hidden state h

�

t. The score values are squashed into the range
[0,1] with a softmax function to obtain the attention weights as
follows:

αt ¼
expðstÞ

P
texpðstÞ

: ð1Þ

As given in (2), the final context vector c
�

α serves as a
feature vector and is the weighted sum of the attention weights
and the hidden states

f
�

¼ c
�

α ¼
X

t
αt ⋅ h

�

t: ð2Þ

Within this study, different trainable and non‐trainable
scoring functions are investigated. The trainable scoring
model (derived from [33]) uses a small feedforward neural
network to compute the score values. The network can be
shared over time steps (global embedding—see Equation (3))
or learnt for each time step separately (local embedding—see
Equation (4)):

stGlobal ¼ tanh
 
WSh

�

t þ b
�
S
�

and ð3Þ

stLocal ¼ tanh
 
W t

Sh
�

t þ b
�

t
S

�
: ð4Þ

The non‐trainable scoring model (cosine embedding) uses a
cosine similarity to compare each hidden state h

�

t with the last
hidden state h

�

T given by

stCosine ¼
〈h
�

t
; h
�

T〉

�
�h
�

t
�
� ⋅

�
�h
�

T
�
�:

ð5Þ

Figure 3 shows the model building blocks of the attention‐
based embedding functions. The GRU and embedding weights
θ
�

F and θ
�

E are shared between the support and query branch.
A comparator computes the Manhattan distance d between the
support and query feature vector.

The distance value is passed to a Double‐Sigmoid classifier,
which combines two contrary sigmoid functions. The general
idea is illustrated in Figure 4. In the case of a Single‐Sigmoid
classifier (SingleSig), high probabilities are computed for
low distances such that below the threshold distance dThr
observations of X Q are assigned to a class of X S (pB → 1). If
the distance value exceeds dThr, the observation belongs to
another class (pB → 0). The separation between positive pre-
dictions (yB ¼ 1) and negative predictions (yB ¼ 0) mainly
depends on this threshold value. Similar to the contrastive or
triplet loss formulations [29], the Double‐Sigmoid classifier
(DoubleSig) introduces an additional margin to increase the
space between the positive and negative predictions and to
sharpen the corresponding decision boundaries. This is done
by computing the probability for positive predictions pPos
and negative predictions pNeg with two separate sigmoid
functions:

pPosðdÞ ¼ 1 −
1

1 þ exp
�

− d−dThr
σ

� and ð6Þ

F I G U R E 2 Basic concept of a Siamese gated recurrent units based
disturbance classification model
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pNegðdÞ ¼
1

1 þ exp
�

− d−ðdThrþmÞ

σ

�: ð7Þ

An additional bandwidth parameter σ is used to control
and adapt the decision boundaries. The class label ŷ is

estimated by the outcomes of the positive prediction results for
all classes in the support set �S following a simple One‐Vs‐Rest
strategy given by

p
�
Pos

¼
�
pSPos

�

S∈ �S and ð8Þ

ŷ¼

(
max p

�
Pos

> 0:5 : argmax
S

p
�
Pos

reject : ð9Þ

In the training phase, support instances are chosen for each
target class y and operational point. Query instances are
sampled randomly for each instance of the support set such
that the number of equal (yB ¼ 1) and non‐equal (yB ¼ 0) pairs
is balanced within each training batch. Binary cross‐entropy is
used as the loss function to train the classification model via
backpropagation:

L ¼ −

0

B
B
B
B
@

yBlog
�
1 − pNegðdÞ

�

þ
 
1 − yB

�
log pNegðdÞ

þ yBlog pPosðdÞ

þ
 
1 − yB

�
log

 
1 − pPosðdÞ

�

1

C
C
C
C
A

: ð10Þ

By contrast, the frequently used rank‐based losses (e.g.
quadruplet loss [34], triplet loss [29] and contrastive loss)
require expensive sampling strategies to generate informa-
tive training instances and focus on learning discriminative
embeddings. Classification‐based losses [31] mainly formu-
late a multi‐class softmax function over the squared
Euclidean distances without the need for expensive sam-
pling strategies. These approaches strongly rely on the
closed‐set assumption (see Section 1.2) and lack of suitable
rejection options.

3.3 | Conventional recurrent neural
networks with One‐Vs‐Rest sigmoid classifiers

Based on the preliminary work in [25], the second classification
approach utilises a One‐Vs‐Rest sigmoid classifier to enable
the rejection of unknown classes (DOCSig). In accordance
with the authors, this classification approach is called deep
open classification (DOC) and is designed especially for neural
network architectures. In contrast with the previous model, a
non‐Siamese architecture is required such that the PMU
measurements X are directly fed into the classifier via the
embedding functions described before. For each class C, a
binary classifier is learnt based on a sigmoid function to
compute probability pC, whether the actual feature vector f

�belongs to the class (pC → 1) or not (pC → 0). This can be
expressed as

pC
 
f
�

�
¼ 1 −

1
1 þ exp

 
−

 
w
�
C f

�
þ bC

��
:

ð11Þ

F I G U R E 3 Global (left) and cosine (right) embedding models

F I G U R E 4 Basic principles of Single‐Sigmoid (top) and Double‐
Sigmoid (bottom) classifiers
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The class label ŷ is estimated by the probability outcomes
for all classes in the class configuration �C following a One‐Vs‐
Rest strategy similar to (8) and (9) from the previous section.
A global probability threshold decides whether to reject the
actual observation or not and is set to 0.5 by default.
Compared to the Siamese GRU‐based classifier, individual
decision boundaries can be estimated for each class, which
leads to a higher model capacity and an increased number of
classifier parameters. Additionally, no storing of the support
instances is required and a faster computation of the model
predictions can be achieved due to the single branch model
architecture.

3.4 | Evaluation procedure

This study strongly focusses on the rejection capabilities of
the classification models. Therefore, the training and vali-
dation set only contains known classes, while the test sets
only contain unknown classes. The classification accuracies
as well as the F1‐scores with macro averaging are
computed for the training, validation and test set to
evaluate the classifiers. For a correct evaluation, an addi-
tional rejection class CKþ1 is added to the set of known
classes C such that

C∗ ¼ ½C1;…;CK ;CU� ð12Þ

4 | CLASSIFICATION RESULTS AND
EVALUATION OF THE REJECTION
CAPABILITIES

4.1 | Experimental setup

For a detailed analysis of the model's rejection capabilities, four
scenarios are investigated including disturbance events, which
differ to some extent from the known training events—see
Table 2. Similar disturbance types correspond to test events
with a high resemblance to the training events (e.g. short cir-
cuits at different line positions, load losses at different levels).
Near‐by disturbance locations correspond to test events with a
close proximity to the training events (e.g. adjacent lines or
stations). Table 3 shows the number of contingencies for the
training and test datasets of the scenarios C.1 to C.4. Within
this study, the following disturbance types are considered:

� steam power plant outages (SPP),
� base load power plant outages (BLPP),
� solar plant power losses at 25%, 50% and 75% compared to

the steady state (PVXX),
� line trips (Line),
� three phase‐to‐ground short circuits at 10%, 50% and 90%

of the line length (SCXX), and
� load losses at 25%, 50% and 75% compared to the steady

state (LLXX).

The disturbance classification models use the frequency and
voltage magnitudes from the busbars of 13 selected substations
to build up the input matrix X . A fixed timespan of 2 s at a
reporting rate of 25 f.p.s. leads to T ¼ 50 input timesteps. The
training and test dataset comprises three operational points with
different load and generation conditions. For all classification
models, early stopping is used to control the number of iterations
(max. 1000) and RMSprop is used as an update rule for the
backpropagation algorithm with a fixed batch size of 50 in-
stances. Additional hyperparameter settings are discussed in the
subsequent paragraphs 4.2 and 4.3. The calculations are per-
formed in Python using the Keras library [35] on a CPUmachine
with a 2.8 GHz CPU processor and 16 GB RAM.

4.2 | Parameter tests for the siamese GRU‐
based double‐sigmoid classifier

For the evaluation of the DoubleSig classifier, different
parameter tests with variation of the embedding function, the
number of hidden units and the classifier parameters are per-
formed. To limit the amount of necessary simulation runs, the
learning rate (lr ¼ 0:005) and the bandwidth parameter
(σ ¼ 0:2) are fixed for all the tests. The average training, vali-
dation and test accuracies for scenarios C.1 to C.4 are given in
Table 4. For all simulation runs, the training and validation

T A B L E 2 Overview of the test scenarios

Scenario Disturbance types Disturbance location

C.1 Unknown and similar Known

C.2 Unknown and dissimilar Known

C.3 Known Near‐by locations

C.4 Known Far‐away locations

T A B L E 3 Number of training events (‘Tr’) and test events (‘Te’) for
the scenarios C.1 to C.4

Type

C.1 C.2 C.3 C.4

Tr Te Tr Te Tr Te Tr Te

SPP 2 2 2 3 1 1 2 2

BLPP 2 2 2 3 3 3 2 2

PV25 2 2 2 2 1 1 1 2

PV50 4 1 4 ‐ 2 2 2 3

PV75 2 2 2 1 1 1 1 2

Line 4 ‐ 4 4 4 4 4 4

SC10 2 2 2 2 2 2 2 2

SC50 1 2 1 1 1 1 1 1

SC90 1 2 1 1 1 1 1 1

LL25 1 1 1 1 1 1 1 1

LL50 2 2 2 2 2 2 2 2

LL75 1 2 1 ‐ 1 1 1 1

56 - KUMMEROW ET AL.



accuracies achieve over 98% but the test accuracies decrease
below 50%. The standard deviation for the test accuracies is
quite high (12.77%) compared to its average (40.07%). This
indicates a high sensitivity of the classification results with
regard to the selection of the hyperparameters. The highest
losses of the test accuracy occur for scenario C.1 (−84.34%
compared to training and −82.03% compared to validation)
and the lowest losses of the test accuracy can be observed for
scenario C.2 (−47.96% compared to training and −45.25%
compared to validation).

The use of the local embedding (mean: 43.67%) achieves
higher test accuracies than the use of the global embedding
(mean: 42.94%), cosine embedding (mean: 42.84%) or none
embedding (mean: 30.83%), whereby none embedding refers
to the case when the last hidden state h

�

T is used as the feature
vector. When the number of hidden units is increased from 15
to 20, the test accuracies remain nearly unchanged.

Large impacts on the training and test accuracies can be
observed when changing the threshold distance dThr and the
margin parameter m. The corresponding results of the aver-
aged training and test accuracies are given in Figure 5 and
Figure 6. Irrespective of the margin, low threshold values lead
to a decrease of the distances for equal and non‐equal pairs as
well as a minimisation of the intra‐class and inter‐class vari-
ances of the data points. On the one hand, a low inter‐class
variation deteriorates the correct differentiation between the
known classes and decreases the training accuracy up to 5%
especially for low threshold distances (see Figure 5). On the
other hand, a low intra‐class variation significantly improves
the rejection capability and test accuracy of the classifier up to
20% (see Figure 6), because equal data points move closer
together and the open space increases.

A proper adjustment of the margin parameter can addi-
tionally enhance the test accuracy especially in case of low
threshold distances (see again Figure 6). In general, a high
margin leads to larger differences between equal and non‐equal
pairs and inter‐class variances, which increase the training and
test accuracies. Nonetheless, too high margin values diminish
the classification accuracies due to a poor model convergence.
For a better illustration, Figures A1–A3 show the histograms
of the distances between all training and test data points for
selected SingleSig and DoubleSig classification models.

4.3 | Parameter tests for the conventional
GRU‐based One‐Vs‐Rest sigmoid classifier

The average training, validation and test accuracy for the
DOCSig classifier is shown in Table 5. Compared to the
DoubleSig classifier, the validation accuracies (mean: 95.98%)
and test accuracies (mean: 12.24%) are quite low. In this case,
too, scenario C.1 shows the highest losses of the test accuracy
(−93.89% compared to training and −90.18% compare to
validation) and scenario C.2 shows the lowest losses of the test
accuracy (−82.50% compared to training and −78.65%
compared to validation). Compared to the case of the Dou‐
bleSig classifier, parameter changes have only a marginal

impact on the accuracy results. Variations of the embedding
function lead to test accuracy changes between −0.35% and
+1.16%. The validation accuracies can be increased using the
global embedding (+2.56%) and the cosine embedding
(+2.92%) compared to none embedding.

4.4 | Performance analysis for the best
hyperparameter settings

Based on the parameter tests in Sections 4.2 and 4.3, stratified
10‐fold cross‐validation runs are performed for the best
hyperparameter settings of the DoubleSig and DOCSig model.

T A B L E 4 Average accuracies for all parameter tests of the DoubleSig
classifier

Scenario

Accuracy

Training Validation Test

C.1 0.9821 0.9590 0.1387

C.2 0.9868 0.9597 0.5072

C.3 0.9867 0.9576 0.4793

C.4 0.9859 0.9587 0.4777

Average 0.9854 0.9587 0.4007

STD 0.0461 0.0534 0.1277

F I G U R E 5 Average training accuracies of the DoubleSig classifier for
different threshold distances and margins

F I G U R E 6 Average test accuracies of the DoubleSig classifier for
different threshold distances and margins
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Additional results of the SingleSig classification model are
investigated for a better comparison of the findings. In contrast
with the parameter tests, the accuracies and F1‐scores with
macro averaging are evaluated and discussed. Table 6 provides
the chosen hyperparameters that are used within scenarios C.1
to C.4.

For a more detailed comparison of the proposed model
architectures, the number of trainable parameters as well as the
average training and inference times have been evaluated. Here,
the inference time corresponds to the elapsed time to predict
the class label ŷ from a single observation X (in case of the
DOCSigmodel) or XQ (in case of the SingleSig and DoubleSig
model).

Compared to the DOCSig model, the SingleSig and
DoubleSig models lead to an increased training effort regarding
the number of trainable parameters as well as the training
times. It should be noted that the SingleSig and DoubleSig
models are trained in a binary classification regime with
randomly sampled positive and negative queries, which lead to
a different training and convergence behaviour than in the case
of the DOCSig model. The inference times required for the
online classification of grid disturbances are of particular in-
terest in the context of this study. Considering a PMU
reporting rate of 25 f.p.s. or 40 ms, all classification models
show sufficient time periods to predict the disturbance event
from given PMU input signals.

Figure 7 shows the averaged validation and test accuracy
results for all three classification models. The corresponding,
averaged F1‐scores are given in Figure 8. The SingleSig
classifier shows the highest validation accuracy of all four
test scenarios with 99.23% compared to the DoubleSig
classifier with 95.08% and the DOCSig classifier with
95.07%. The same applies for the macro F1‐scores of the
validation data (SingleSig: 94.55%, DOCSig: 91.47%, Dou‐
bleSig: 91.43%). In the case of scenario C.1, the rejection of
unknown classes is most difficult and very low accuracies
(<25%) can be observed. As a consequence, test instances
of similar disturbance types at known disturbance locations
seem to share a lot of common features with the training
instances. When the disturbance type or the disturbance
location differs from the training examples (scenarios C.2 to
C.4), the test results improve significantly for all three
classification models. In all four scenarios, the test accuracies

of the DoubleSig model (mean: 56.23%) are remarkably
higher than those of the SingleSig model (mean: 32.47%)
and the DOCSig model (mean: 13.84%). This especially
accounts for the test accuracies of scenario C.2 (DoubleSig:
71.22%, SingleSig: 43.28%, DOCSig: 17.76%). Because there
are no observations from known classes in the test data, the
macro F1‐scores are at a very low level between 1% and 3%
for all three classification models. As a consequence, the test
results suggest a superior performance of the DoubleSig
classifier compared to the SingleSig and DOCSig classifier
for a robust rejection of unknown disturbance events
combined with correct recognition and differentiation of
known disturbance events.

The results discussed so far assume a fixed probability
threshold of 0.5 to accept or reject observations. Changing
this value may strongly affect the classifier's ability to
recognise known and unknown disturbance events. To
evaluate this, the validation and test accuracies of the
DoubleSig and DOCSig models are computed for different
probability thresholds for scenario C.2—see Figure 9. In
both cases, the test accuracies increase linearly within a wide
probability range between 0.05 and 0.9 without significant
changes of the validation accuracies. Beyond probability
thresholds of 0.9, the number of misclassifications in the
validation set increases drastically. For both models, raising
the probability threshold from the default value of 0.5 to a
higher level between 0.8 and 0.9 can clearly improve the test
accuracies or rejection capabilities.

5 | CONCLUSION AND OUTLOOK

This study proposes the use of Siamese recurrent neural net-
works for robust disturbance classification based on PMU
data. In contrast with existing approaches, the recognition of
previously unknown disturbances is explicitly investigated,
which leads to an open‐set recognition problem. A Double‐
Sigmoid classifier is proposed and combined with a Siamese
GRU network to correctly recognise and distinguish between
known and unknown disturbance events. Additional trainable
and non‐trainable attention models are introduced to create
representative feature embeddings and to improve the classi-
fication results. Within different test scenarios for a large
400 kV power transmission system, the proposed Siamese
GRU classifier is compared with a state‐of‐the‐art open‐set
classifier and shows superior performance within different
training and test scenario conditions. For a high recognition
rate of unknown disturbances, the hyperparameters of the
Double‐Sigmoid classifier need to be selected carefully. Addi-
tionally, the test results highly depend on the nature of the
unknown events. Unknown and similar event types at known
event locations are very hard to recognise with test accuracies
below 25%. In contrast with that, high test accuracies over
70% can be achieved for dissimilar event types or events at far‐
away locations.

Further improvements of the robustness and test perfor-
mance of the classification models are necessary. Possible

T A B L E 5 Average accuracies of the DOCSig classifier

Scenario

Accuracy

Training Validation Test

C.1 0.9974 0.9603 0.0585

C.2 0.9961 0.9576 0.1711

C.3 0.9991 0.9636 0.1475

C.4 0.9954 0.9576 0.1126

Average 0.9970 0.9598 0.1224

STD 0.0068 0.0268 0.0358
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alternative approaches could include the integration of ‘virtual’
unknown classes within episodic training strategies (similar to
[32]), the use of range‐based loss functions for training of
Siamese networks (e.g. triplet loss or quadruplet loss) or the
integration of a compact abating probability model to better
estimate the open space risk.
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APPENDIX

F I G U R E A 1 Distances for a SingleSig classifier at scenario C.2 with
20.37% test accuracy (dThr = 5 highlighted with ‘‐‐’)

F I G U R E A 2 Distances for a SingleSig classifier at scenario C.2 with
41.29% test accuracy (dThr = 1 highlighted with ‘‐‐’)

F I G U R E A 3 Distances for a DoubleSig classifier at scenario C.2 with
76.29% test accuracy (dThr = 2 and m = 4 highlighted with ‘‐‐’)
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