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Steep resonance of parametrically excited active MEMS cantilevers for
dynamic mode in Atomic Force Microscopy
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Ongoing developments in nanotechnology demand higher spatial resolution and thus, higher amplitude sensitivity in Atomic
Force Microscopy (AFM). In this work, active cantilevers with integrated sensor and actuator systems are parametrically
excited using a novel, analog feedback circuit. With that it is possible to adapt the strength and sign of a cubic nonlinearity
which provides a bound to the amplitudes in resonance operation . The system response shows steeper resonance curves and
therefore higher amplitude sensitivities compared to forced excited cantilevers. Theoretical findings are validated experimen-
tally.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Introduction

Nowadays, the ongoing development of live sciences and industrial manufacturing technologies in nanotechnology demands
higher spatial resolution for surface topographic analysis. One important technique for such analyses is the Atomic Force
Microscope (AFM), which is a subgroup of the so-called Scanning Probe Microscopes (SPM), [1, p. 597]. Generally, the
AFM can be distinguished between those using passive probes and the others utilizing active probes, see Fig. 1. The probes
itself are structured as micro cantilevers. Shortly, in dynamic mode AFM a micro cantilever is forced excited by a probe
actuator at a fixed frequency, which is in the vicinity of the cantilever’s first bending mode eigenfrequency. The oscillating
micro cantilever is moved along the sample surface in x-direction at nanometer distance, see Bhushan [1]. Due to distance
depending interaction forces Fts(ζ), so-called tip-sample interaction forces, between the cantilever’s tip and the surface of the
sample, a shift of the eigenfrequency of the coupled probe-sample system occurs, when the distance ζ between cantilever tip
and sample surface changes. Therefore, a change of the micro cantilevers amplitude occurs and is measured. This is illustrated
in Fig. 1b). A z-Scanner corrects the distance ζ within a feedback control loop to keep the quasistatic part of it constant. In
such a way it is possible to get the topology and other characteristics of the sample.

Passive cantilevers neither have sensors nor actuators included. So, AFM with passive cantilevers needs external sensors
and actuators. Usually, the sensor comprises a laser combined with a photo diode. For actuation in most cases a piezoelectric
transducer is chosen with base excitation of the cantilever, see Fig. 1. Active cantilevers have both, sensor and actuator,
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Fig. 1: Schematic dynamic mode AFM setups with a probe scanner. With passive cantilever a), with active cantilever c). Shift of eigenfre-
quency due to tip sample interaction forces b).

integrated into the structure.
In detail, active cantilevers are micro-electromechanical systems, such as those, developed by Rangelow et al. [2] for

active SPM. In their work, the sensor system is realised by a piezo-resistive Wheatstone bridge and the actuator system by an
electro-thermo-mechanical actuator combined with a bimorph bending structure of the cantilever. An electric current heats up
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the cantilever and the different thermal expansion coefficients of the two bimorph layers cause bending of the cantilever under
thermal heating. The thermal heating is realized by an electric current through the aluminum resistor on top of the cantilever.
Using a harmonic excitation current results in an oscillating displacement of the cantilever.

Compared to passive cantilevers, active cantilevers offer more compact microscopes with less components. Furthermore,
optical alignment of the sensor system (laser and photo diode) and the cantilever itself is not necessary. This has relevance
especially when changing the cantilever.

Within AFM, the spatial resolution is determined by the amplitude sensitivity of the system that can be understood as the
steepness of the resonance curve at the working point (red dot in Fig. 1b, 2a). Now, to increase the amplitude sensitivity of
AFM, classical approaches are operating AFM in vacuum [3] or using Q-control [4]. Vacuum leads to a natural increase of
the Q-factor and with that steeper resonance curves due to less damping because of air friction. Q-Control uses a feedback
circuit to add a controlled, self-exciting effect to the system that artificially increases the Q-factor. So, both approaches lead
to higher Q-factors and thus, higher amplitude sensitivity.
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Fig. 2: a) Qualitative resonance curves of cantilever (left: forced excitation, right: parametric excitation). b) Feedback circuit as developed
by Moreno-Moreno et al. and Prakash et al. [5–7].

Another approach was proposed in a series of works by Moreno-Moreno et al. [5] and Prakash et al. [6, 7]. Their system
is schematically illustrated in Fig. 2. To get steeper resonance curves and thus higher amplitude sensitivity, a feedback
circuit is used to parametrically excite the cantilever. Parametric excitation means, that one parameter of a system is changed
periodically. A classical example is a swing, where the eigenfrequency is modulated by using the own legs to change the
length of the swing. The first time parametric excitation was used in the context of cantilevers is the work by Rugar and
Grütter, [3].

In the works of Moreno-Moreno and Prakash, parametric excitation is realized as follows. The displacement of the can-
tilever is read out by a photo diode with an inherent cubic nonlinearity. The signal of the photo diode is fed into the feedback
circuit where it is multiplied by a harmonic excitation signal. The output of the feedback circuit is used as input of the ac-
tuator. However, the disadvantages of the described system are that first, it includes complex components, i.e., a laser-photo
diode sensor system that has to be aligned to the cantilever. This brings disadvantages, as already mentioned above. Second,
the functional nonlinearity in the system is not tunable and with it the general frequency response of the cantilever and the
limitation of its parametric resonance amplitude is fixed.

The aim of this work is to demonstrate for the first time a novel approach for parametric excitation of active cantilevers
in dynamic AFM to achieve higher amplitude sensitivities than with classical forced resonance excitation. The proposed
approach utilizes a self-developed analog circuit with parametric excitation and nonlinear displacement amplitude limitation.
The nonlinearity is tunable and with that the steepness of the parametric resonance curve is also tunable and can be adapted
to the process conditions and sample properties. The basic effects are shown with active cantilevers. The proposed work
distinguish from state-of-the art results [5–7] by using a engineered nonlinearity for parametric resonance limitation and not
an instrinsic one.

2 Theory

Improved sensitivities can be achieved by operating in vacuum [3] and/or applied Q-control modi [4], both with forced
excitation. To obtain yet steeper resonance curves and thus higher amplitude sensitivities, parametric excitation is a promising
pathway. Prakash et al. [5–7] use a feedback circuit as shown in Fig. 2b to parametrically excite a passive cantilever, which
conventionally is base excited as shown in Fig. 1a. The cantilever’s equation of motion for the first bending eigenmode is
given by the modal lumped mass model

mü+ d u̇+ k u = k w(t) , (1)
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with the cantilever tip displacement u(t), the base excitation w(t) as well as the modal mass m, damping d and stiffness k,
respectively. For the sake of simplicity, the damping term in excitation neglected.

The tip-sample forceFts(ζ) is not included there and elsewhere, because it is not necessary for demonstrating the parametric
oscillating mechanisms, discussed in this work. Now, in this case, (1), the tip displacement u(t) of the cantilever is read out
by a photo diode which inherits a nonlinear behavior, see Fig. 1a). So, the voltage signal Us(t) of the photo diode is

Us = Ks

(
u+ γu2 + δu3

)
, (2)

see [7, p. 5, (6)]. This sensor equation comprise the sensor-displacement proportionality factor Ks and the factors γ, δ of the
inherent nonlinearities of the photo diode. The signal Us(t) is then multiplied by a harmonic excitation signal

p(t) = p̂ cosΩt . (3)

The resulting signal is fed back to the actuator and yields the equation of motion of the parametrically excited passive cantilever

mü+ d u̇+ k
[
(1 +Ks p(t))u+Ks γ p(t)u

2 +Ks δ p(t)u
3
]
= 0 . (4)

According to the authors [7, p. 6], the cubic term kKs δ p(t)u
3 limits the parametric resonance. It also bends the resonance

curve to the left, due to δ < 0, and therefore causes a softening behavior.
The proposed concept by [5–7] leads to a change of the qualitative frequency response of the system from the known

behavior of conventional forced excitation to a new behavior of parametric excitation where the resonance curve is steeper
and out of the resonance equal to zero, as seen in Fig. 2a. By this, higher amplitude sensitivity is achieved. Unfortunately, the
limitation of the resonance and the general frequency response is fix due to the inherent nonlinearity. Also, the nonlinearity is
coupled with the parametric excitation. So far, this represents state-of-the-art knowledge.

As mentioned before, the aim of our work is to achieve a design with i) tunable strength of nonlinearity and ii) a nonlinearity
which is independent from that parametric excitation, thus avoiding terms p(t) · u3-Term. To keep the explanation simple and
to see the governing main effects clearly, a purely phenomenological model of the active cantilever is given here. Alternatively,
there exists a model built in our group that models the cantilever as bimorph, electro-thermo-mechanical Euler-Bernoulli beam
model, [8]. In this work, it was decided to represent the cantilever as a longitudinal oscillator. In Fig. 3 the model is sketched.

Fig. 3: Simple lumped mass modal cantilever model with eletro-thermomechanical actuation.

A massless rod with modal mass m at its end is excited electrically by the voltage Ua. Aluminum wires cover the rod
surface. The current through the Aluminum wires with Ohmic resistance R results in Joule heating. In our model only heat
conduction is represented. Convectional and radiation effects are neglected. The temperature rise then leads to a thermome-
chanical elongation of the rod. This effect represents the electro-thermomechanical actuator.

The model consists of two dynamic equations, a thermomechanical one and a electrothermal one with the state variables
tip displacement and tip temperature difference compared to environment, (u, θ),

mü+ du̇+ kθu =
1

2
Aτ θ , (5)

1

2
mcS θ̇ + λ

A

l
θ =

1

R
U2
a (t) . (6)

The first equation comes from the linear momentum equation of a lumped mass model. The second equation represents one-
dimensional heat conduction from the cantilever tip to the apex, where the cantilever is supported. The geometric parameters
are the rod length l and the cross section area A. The other parameters are the modal mass m, the modal damping d, the
modal stiffness kθ from the mechanical side as well as the heat capacity cS and the heat conductivity λ from the thermal side.
On the right hand sides are the thermal actuation coefficient τ in the mechanical equation and the Ohmic resistance R of the
aluminum heater and the electric actuation voltage Ua in the electrothermal equation.
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The piezoresistive sensor voltage signal Us(t) of the Wheatstone bridge is proportional to the cantilevers tip displace-
ment u(t)

Us = Ks u , (7)

with the gain of the sensorKs. Contrary to the optical readout in (2) the piezoresistive readout is linear.
For achieving the design objective a self-developed analog electronic circuit for parametric excitation of active cantilevers

was developed. A schematic overview of the developed feedback loop and the cantilever is shown in Fig. 4. The voltage
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Fig. 4: Feedback loop for parametric excitation with cubic resonance limitation. Sensor voltage signal Us is processed to get nonlinearity
term and by inserting excitation term p(t) and offset U0. The resulting signal Ua is fed back to the probe actuator.

signal of the piezoresistive sensor Us is fed into the circuit, where it is processed in two branches. In the first branch, the signal
is multiplied by itself two times to get a cubic nonlinearity term U3

s (t) for parametric resonance limitation. Afterwards, the
cubic term is multiplied by a tunable gainKnl to set the sign and strength of the nonlinearity. In the second branch, the signal
is multiplied by a harmonic parametric excitation signal p(t) = p̂ cosΩt. After that, an offset voltage U0 is added. To get the
excitation voltage signal Ua(t), both branches are added, so that the parametric modulated, displacement proportional signal
together with the cubic nonlinearity gives

up = U0 + pUs +Knl U
3
s . (8)

Compared to the parametric modulated signal with the passive cantilever contained in (4), here the nonlinearity is separately
from the parametric modulation p.

This signal up is negative fed back to the proportional controller (P-control), which results in the actuation voltage Ua of
the heater

Ua = KP e , with KP > 0 . (9)

Here KP is the controller’s proportionality factor and e the control difference between the desired cantilever tip displacement
ud and the parametric modulated signal up,

e = ud − up . (10)

The forced excitation term is set to zero, ud = 0, to give a purely parametrically excited system. Combining the above
equations by subsequently inserting (7) - (9) into (1) results into the equations of motion of the parametrically excited active
cantilever

mü+ du̇+ kθu =
1

2
Aτ θ , (11)

1

2
mcS θ̇ + λ

A

l
θ =

1

R

[
−Kp

(
U0 + pKs u+Knl K

3
s u

3
)]2

. (12)

The necessity of the offset term U0 can now be seen in (12) on the right hand side of the equation. Expanding the quadratic
expression on the right site of (12) gives

(
. . .+ 2U0 K

2
p Ks p̂ cosΩtu+ . . .

)
(13)

It is clear that without an offset term U0 no primary parametric excitation with p̂ cosΩtu(t) is possible.
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3 Experiment and Simulation

3.1 Setup

Experiment The experimental setup consists of circuit boards that contain the described feedback loop and general electron-
ics to operate the active cantilever. Also, digital oscilloscopes with built-in signal generators are used to excite and measure
the cantilever’s oscillations. A laser vibrometer is used to verify the sensor signal of the active cantilever. The active cantilever
is described earlier and has an experimentally determined eigenfrequency of f0 = 114.4 kHz.

The frequency response is measured as a stepped frequency sweep. That means that the desired frequency range is dis-
cretized. At each frequency step the cantilever is excited and after reaching the stationary state, 1000 periods of the oscillation
are recorded. From those time signals the frequency response is calculated.

The cantilever is also excited classically with forced excitation for comparison. For parametric excitation the excitation
frequency is around fexc = 2 f0 because we want Ω/ω0 = 2 : 1 parametric resonance to operate the cantilever in the first
instability tongue which is wider and therefore better to handle in first experiments compared to the other resonances.

Simulation The simulation parameters are chosen in a way that the eigenfrequency f0 of the simulation model is also
114.4 kHz and by this the same as the eigenfrequency of the real cantilever. Furthermore, a damping ratio ofD = 8.74 · 10−4

is taken from the experimental data. That equals a Q-factor of Q = 572.15.
For comparison reasons both parametric excitation and forced excitation are investigated. The excitation voltage terms of

the parametrically driven cantilever and the forced excited cantilever for the right hand side of (6) are

Ua, par(t) = Kp

(
U0 + pKs u+Knl K

3
s u

3
)
, (14)

Ua, for(t) = Ks [U0 + p̂ cosΩt] , (15)

where the parametrically excited equation of motion is already given in (12). Now, by using the numerical integration solver
ode45, frequency responses of the system are calculated for both excitation types.

3.2 Results

In Fig. 5 the amplitude response plot of the cantilever as resulting from the experiments is shown. The amplitudes are

Fig. 5: Experimental results comparing classical forced excitation
(blue markers) and parametric excitation (orange markers). The
latter shows steeper resonance behavior and thus higher amplitude
sensitivity.

Fig. 6: Simulation results show the same qualitatively behavior as
experimental results.

normalized by their maximum for better comparison of the general shape of the curves. It is important to note that on the
horizontal axis the response frequency ω of the cantilever is plotted and not the excitation frequency Ω. In case of forced
excitation, the excitation frequency is identical, Ω = ω. But in case of parametric excitation the excitation frequency is
doubled as mentioned above, Ω = 2ω. To bring both amplitude response curves in one plot, the response frequency was
chosen for all results. Now, comparing both curves it is clear that in the case of parametric excitation the resonance curve is
steeper. This yields in higher amplitude sensitivity. The curves bend to the left, showing the softening behavior, which was
set byKnl < 0 in the electronics nonlinearity setting.

The result from the simulation can be seen in Fig. 6. Also there, the resonance curve of the parametrically excited system
is steeper and equal to zero out of resonance. This is the same qualitative result as in experiment. The detailed shape in the
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vicinity of the peak is different to the experiment as well as the fact that the peaks of the curves of forced excitation and
parametric excitation show a frequency shift to each other. The reason for is not clear yet and could be a result of the modeling
itself or some parameter values that are chosen not ideally, i.e. as the strength of the nonlinearity which can not be calculated
directly out of the experiment data.

4 Conclusion

In this work the theory behind a self-developed analog feedback circuit is shown that enables parametric excitation of active
cantilevers for use in dynamic AFM. An experiment and simulation show that it is possible to get steeper resonance curves
and with that higher amplitude sensitivity by using the presented system. Smaller discrepancies between experiment and
simulation should be investigated in further works.

The proposed approach allows to tune the nonlinearity in the feedback loop to further set the sign and strength of said
nonlinearity. Beyond, the nonlinearity is decoupled from the parametric excitation, as is not the case in earlier works, [5–7].
With that, the frequency behavior of the system can be adapt and optimized. This should be investigated in future works by a
variation of parametric excitation parameters and nonlinearity parameters for parametric resonance limitation.
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