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Abstract: Mitochondria are key structures providing most of the energy needed to maintain home-
ostasis. They are the main source of adenosine triphosphate (ATP), participate in glucose, lipid
and amino acid metabolism, store calcium and are integral components in various intracellular
signaling cascades. However, due to their crucial role in cellular integrity, mitochondrial damage and
dysregulation in the context of critical illness can severely impair organ function, leading to energetic
crisis and organ failure. Skeletal muscle tissue is rich in mitochondria and, therefore, particularly
vulnerable to mitochondrial dysfunction. Intensive care unit-acquired weakness (ICUAW) and critical
illness myopathy (CIM) are phenomena of generalized weakness and atrophying skeletal muscle
wasting, including preferential myosin breakdown in critical illness, which has also been linked to
mitochondrial failure. Hence, imbalanced mitochondrial dynamics, dysregulation of the respiratory
chain complexes, alterations in gene expression, disturbed signal transduction as well as impaired
nutrient utilization have been proposed as underlying mechanisms. This narrative review aims
to highlight the current known molecular mechanisms immanent in mitochondrial dysfunction of
patients suffering from ICUAW and CIM, as well as to discuss possible implications for muscle
phenotype, function and therapeutic approaches.

Keywords: ICUAW; critical illness myopathy; intensive care medicine; critical illness; muscle wasting;
mitochondria

1. Introduction

Skeletal muscle weakness and muscle wasting are frequently observed phenomena in
the context of critical illness [1]. The phenotypical presentation of these patients includes
flaccid, symmetrical weakness of the limbs’ skeletal muscles, but respiratory muscles can
be also affected [2]. Based on clinical criteria, this syndrome is termed intensive care
unit-acquired weakness (ICUAW), and the diagnosis is primarily made by manual muscle
strength testing using the Medical Research Council Sum Score (MRC-SS), whereby an
MRC-SS < 48 defines ICUAW [3]. Currently, the clinical examination is the most frequently
used diagnostic approach to detect ICUAW [4]. However, due to frequently impaired
patient compliance, the clinical assessment of ICUAW may be difficult, so alternative di-
agnostic methods such as in vivo and in vitro biomarkers, neuromuscular ultrasound and
electrodiagnostics have been investigated [5–7]. Their acceptance in daily clinical practice
is, however, limited by the extended diagnostic effort for the ICU staff [4,8]. It must be
noticed that ICUAW is an umbrella term to cover different pathophysiological conditions
underlying this specific phenotype. Patients with confirmed ICUAW and documented
electrophysiological neuropathy and/or myopathy can be further classified: signs of an
axonal polyneuropathy define a critical illness neuropathy (CIP) and histological and/or
electrophysiological evidence of a myopathy refers to a critical illness myopathy (CIM),
which is considered to be the most frequent form [3]. The combined presence of CIP and
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CIM is, therefore, termed critical illness neuromyopathy (CINM). Clinical studies have
identified several risk factors contributing to the aforementioned pathologies, of which
the severity of critical illness, sepsis, multiple organ failure, prolonged immobilization
and complete muscle unloading are currently considered to be the most important [9].
The pathophysiological mechanisms that link these factors to neuromuscular dysfunction
have been studied experimentally in various animal models. To name a few, increased
protein degradation, reduced membrane excitability, impaired autophagy and disturbed
mitochondrial properties in ICUAW and CIM have been observed, suggesting that mito-
chondrial dysfunction contributes to the phenomenon of generalized muscle wasting [10].
Mitochondria are crucial cellular components to maintain skeletal muscle energy home-
ostasis in response to physiological and pathophysiological stresses [11]. Furthermore,
severely impaired skeletal muscle function is a key feature of genetic mitochondrial disease,
leading to a vast variety of symptoms including muscle weakness and muscle wasting [12].
Although the flaccid palsy seen in ICUAW itself is not merely the result of mitochondrial
dysfunction, it is very likely to contribute to the patients’ debilitating general weakness,
increased fatigability and reduced exercise capacity.

Therefore, this narrative review aims to highlight the current known molecular mech-
anisms immanent in mitochondrial dysfunction of patients suffering from critical illness-
induced muscle wasting, as well as to discuss possible implications for muscle phenotype,
function and therapeutic approaches.

2. Mitochondrial Structure and Function in Healthy Skeletal Muscle

Mitochondria can be found in the majority of eukaryotic cells, as they are essential or-
ganelles to maintain cellular metabolism and energy supply. In skeletal muscle fibers, their
subcellular localization can be either subsarcolemmal (SSM) or intermyofibrillar (IMF) [13].
According to the primary source of energy supply, skeletal muscle fibers can be distin-
guished into different types with varying mitochondrial content [14]. Slowly contracting
type I muscle fibers primarily rely on oxidative metabolism, and therefore contain many
mitochondria. Fast-contracting type II muscle fibers can be further differentiated into type
IIA fibers, using both oxidative and glycolytic metabolism for energy generation, and type
IIB fibers, which are mainly dependent on glycolysis. In humans, the type IIB-specific
myosin heavy chain is not expressed, and the respective fiber type should, consequently,
be named “IIx” [15]. In both type II fibers, mitochondria are relatively sparse compared to
type I fibers. Mitochondrial dysfunction can be assumed to have pronounced effects on
type I fibers, consistent with atrophy of these fibers in inactivity and critical illness [16,17].
On the other hand, a dominant atrophy of type II fibers due to a lower mitochondrial
volume has been proposed to occur in aging human muscles, but elaborate morphological
studies have questioned this view in recent decades [18].

Irrespective of differences in the reductions in mitochondrial content and shifts be-
tween different fiber types in skeletal muscle, it is clear that the increased ATP hydrolysis
during contractions needs to be balanced by ATP synthesis at some point: Whereas this
task is reached at the local level in type I fibers, it is delegated to the liver by type II fibers.
Thus, whenever considering the energy demands of the muscles, it is mandatory to take
account of the mitochondrial function of hepatocytes and—for the effort of transporting
oxygen and metabolites—cardiomyocytes. In both organs, severe alterations occur during
sepsis [19,20].

Likely due to their ancient evolutionary origin from bacterial predecessors, mitochon-
dria contain their own genome consisting of a circular double-stranded deoxyribonucleic
acid (DNA) with 37 genes encoding for mitochondrial proteins, especially subunits of the
respiratory chain complex and several transfer ribonucleic acids (RNA) [21]. They are
double membrane structures only a few micrometers in diameter, housing a great variety
of enzyme complexes and transporter proteins integrating them into multiple molecular
pathways (Figure 1). The outer mitochondrial membrane (OMM) is a double-layered
phospholipid membrane separating the mitochondrion from the cell cytosol. It contains
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various proteins which are essential key structures in mitochondrial dynamics, as well
as several carriers to import substrates for mitochondrial metabolism. Separated by the
intermembrane space, mitochondria contain the inner mitochondrial membrane (IMM),
which covers the mitochondrial matrix. The IMM is invaginated multiple times to form the
cristae, where the enzymes of the electron transport chain (ETC) are located. Mitochondria
are frequently referred as the “power plants” of the cell, because they are the main source
of adenosine triphosphate (ATP) generation for cellular energy supply [21]. Therefore, in
the first step, Acetyl-CoA is generated from either pyruvate by oxidative phosphorylation
(OXPHOS) executed by the enzyme pyruvate dehydrogenase, or by β-oxidation of free fatty
acids (FFAs). Afterwards, Acetyl-CoA enters the tricarboxylic acid (TCA) cycle to create
the energy-rich substrates nicotine amide dinucleotide (NADH) and flavin adenine dinu-
cleotide (FADH2), which donate electrons via the enzymes of the ETC (complex I—NADH
dehydrogenase, complex II—succinate dehydrogenase, complex III—cytochrome c reduc-
tase, complex IV—cytochrome c oxidase) to oxygen as a final electron acceptor [11]. This
electron transfer is coupled with a hydrogen ion flux from the mitochondrial matrix into
the intermembrane space. Thus, an electrochemical gradient is gradually build up to finally
fuel the ATP synthase (complex V), which generates ATP from adenosine diphosphate
(ADP).
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Figure 1. Schematic representation of the main metabolic pathways in mitochondria. The most
important functions of the mitochondria include the citrate cycle, the β−oxidation of fatty acids and
the mitochondrial respiratory chain with electron transport chain and oxidative phosphorylation. AA:
amino acids, Acyl−CoA: acyl−coenzyme A, ADP: adenosine diphosphate, ATP: adenosine triphos-
phate, C: Cytochrome C, CaU: mitochondrial calcium uniporter, CTP: carnitine palmitoyl transferase
(1 and 2), FAD: flavin adenine dinucleotide, FADH2: flavin adenine dinucleotide hydroquinone,
FAT/CD36: fatty acid translocator/cluster of differentiation 36, GLUTs: glucose transporters, GTP:
guanosine triphosphate, G−6−P: glucose−6−phosphate, H+: hydron, IMM: inner mitochondrial
membrane, MCT: monocarboxylate transporter, MPC: mitochondrial pyruvat carrier, mtDNA: mi-
tochondrial desoxyribonucleic acid, mtNa/Ca-EC: mitochondrial sodium−calcium exchanger, NAD+:
nicotineamid adenine dinucleotide, NADH: nicotineamide adenine dinucleotide hydroquinone, NADP+:
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nicotineamide adenine dinucleotide phosphate, NADPH: nicotineamide adenine dinucleotide phos-
phate hydroquinone, OMM: outer mitochondrial membrane, PDH: pyruvate dehydrogenase, I:
NADH dehydrogenase, II: succinate dehydrogenase, III: cytochrome c reductase, IV: cytochrome c
oxidase, V: ATP synthase.

3. Mitochondrial Dynamics in Healthy Skeletal Muscle

Mitochondria are highly dynamic organelles, undergoing permanent changes to their
structural organization by fusion, fission and degradation in response to various stimuli
to maintain and adapt their physiological function (Figure 2) [22]. This is part of a quality
control program where new mitochondria are created in a process called biogenesis, and
damaged or dysfunctional organelles are removed by mitophagy [23]. In brief, mitochon-
drial biogenesis starts with the replication of mitochondrial (mt) DNA. This is a complex
process orchestrated by numerous proteins and signaling cascades, in which peroxisome
proliferator-activated receptor gamma coactivator alpha (PGC1α) is considered to be the
key regulator [24]. In the first step, PGC1α is activated by phosphorylation through the
enzyme AMP-activated protein kinase (AMPK). In a downstream cascade, PGC1α activates
the nuclear respiratory factors (NRF) 1/2, which in turn promote the expression of the
mitochondrial transcription factor A (TFAM) and the mitochondrial transcription factors
B1 (TFBM1) and B2 (TFBM2). They are translocated into the mitochondrion, initiating
mtDNA replication and mtRNA transcription by promoting attachment of DNA and RNA
polymerases [22,25]. Mitochondrial fusion is a process whereby two or more organelles
are combined to form networks to fit energetic requirements or compensate for isolated
enzyme dysfunction [26]. Therefore, fusion of the OMM is regulated by the GTPases
mitofusin 1 (MFN1) and mitofusin 2 (MFN2), whereas fusion of the IMM is mediated
by the protein optic atrophy 1 (OPA1) [22,27]. In skeletal muscle fibers, mitochondrial
organization and fusion dynamics seem to differ between muscle fiber types. Whereas
fast-twitch muscle fibers are described to have a block-like compartmentalization of their
mitochondria, slow-twitch fibers seem to present elongated and interconnected networks
between distinct sarcomeres [28]. In contrast, mitochondrial fission is the separation of
fused organelles into distinct entities. Thus, the dynamin-related protein 1 (DRP1) binds
to the OMM by interacting with different receptor proteins (e.g., mitochondrial fission
1-Fis1, mitochondrial fission factor-MFF, mitochondrial dynamics protein of 49kDa-MID49,
MID59) and initiates constriction and separation of the OMM and IMM [22,29].
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mitochondria. Muscle mitochondria underlie extensive turnover and remodeling in response to a
diverse panel of physiological inputs. Among the many activators of PGC1α, AMPK seems to be the
most crucial for regulating mitochondrial metabolism and biogenesis. PGC1α activates mitochondrial
biogenesis and regulates mitochondrial dynamics by controlling the expression of MFN1, MNF2
and DRP1. Mitochondrial fusion is mediated by MFN1/2 for the fusion of the outer membrane
and OPA1 for the inner membranes. Mitochondrial fission is controlled by DRP1 and Fis1. DRP1 is
predominantly located in the cytosol and is targeted to the surface of mitochondria, where it binds to
Fis1. This complex acts as a potential scission site for fission. Damaged or dysfunctional mitochondria
are eliminated by mitophagy facilitated by different mediators. AMPK: AMP—activated kinase,
DRP1: dynamin-related protein 1, ETC: electron transport chain, Fis1: fission protein 1, MFN1/2:
mitofusin1/2, OPA1: optic atrophy 1, PGC1α: peroxisome proliferator—activated receptor gamma
coactivator alpha.

4. Assessment of Mitochondrial Function

As mitochondrial integrity is crucial for cellular bioenergetics and mitochondrial
dysfunction has been shown to participate in a great spectrum of disease entities, various
approaches have been taken in the detection and monitoring of mitochondrial function.
Thus, it can be roughly divided into in vitro and in vivo diagnostic methods, targeting
different functional units within the mitochondria [30]. In an attempt to link current
practical trends in modern intensive care medicine and recent advances in the assessment
of mitochondrial function at the molecular and metabolic levels, we would like to discuss
three promising in vivo diagnostic approaches for mitochondrial function.

Magnetic resonance spectroscopy (MRS) is a specialized technique of common MR-
imaging, which quantifies electromagnetic signals emitted by atoms or molecules within
a certain region of interest [31]. With MRS, metabolic processes can be assessed in vivo
using certain tracers, depending on the chemical composition of participating reactants.
In regard to mitochondrial metabolism, 13C-MRS can be used to determine utilization of
carbohydrates and lipids via the TCA cycle and 31P-MRS for evaluation of mitochondrial
ATP metabolism via the assessment of phosphocreatine turnover [31]. MRS has also
been used to evaluate ATP metabolism in primary motor neuron disease [32] and animal
models of sepsis [33], revealing impaired mitochondrial bioenergetics. However, according
to expert opinion, MRS can only reliably quantify ATP turnover in exercising muscles,
but seems inaccurate in resting muscle due to imbalances between ATP flux and actual
ATP production [34]. Furthermore, from practical reasons due to highly specialized and
bulky equipment, the application seems primarily suitable for research purposes, but
inappropriate in daily intensive care practice.

Near-infrared spectroscopy (NIRS) is an in vivo optical method that utilizes the ability
of heme groups to absorb infrared light by different amounts depending on their oxygena-
tion status for the quantification of the overall oxygen saturation in the local tissue volume
below [30]. This principle can be used to indirectly estimate mitochondrial oxidative capac-
ity via assessment of muscle oxygen consumption. Therefore, the NIRS sensor is applied
above a region of interest with the muscle below. Following muscular exercise, short serial
occlusion maneuvers lead to intermittent secessions of blood flow, whereas changes in
oxygen saturation only depend on muscle oxygen consumption, which is directly propor-
tional to mitochondrial respiratory capacity [35]. In the case of reduced mitochondrial
oxidative capacity, re-oxygenation after exercise is assumed to be faster [36]. This method
provides several advantages, including its non-invasive and easy application, and has
been successfully used to detect disturbed mitochondrial function in aging, myopathies
and muscular dystrophies [35,37]. However, in critically ill patients, several limitations
might impair its diagnostic accuracy. According to Adami et al. the rate constant of muscle
oxygen consumption depends on tissue oxygen concentration, so the oxidative capacity
can only be reliably estimated when oxygen is abundantly available [38]. In conditions
of critical illness, such as heart failure, shock and sepsis, microcirculation and, therefore,
tissue oxygenation can already be severely impaired, theoretically hampering NIRS mea-
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surements [39]. Additionally, due to prevailing bioenergetic failure in critical illness, it
could be impossible to raise mitochondrial enzyme activity by exercising to a maximum
that is comparable to healthy conditions, theoretically overestimating the oxidative capacity
assessed by NIRS. Furthermore, uncertainties regarding the actual penetration depth of
the infrared light in case of edema or a thickened subcutaneous fat layer may bias NIRS
measurements.

The protoporphyrin IX-triplet state lifetime technique (PpIX-TSLT) is another optical
approach to assess mitochondrial function in vivo. The aim of this non-invasive method is
to estimate the mitochondrial oxygen tension, which is assumed to be a surrogate param-
eter for the balance between mitochondrial oxygen supply and demand [40]. Therefore,
5-aminolevulinic acid can be administered to the skin, which leads to the formation and
accumulation of protoporphyrin IX in the underlying tissue mitochondria. When stimu-
lated, the emission of red light from the protoporphyrin IX can be detected; the lifetime of
the fluorescence is inversely related to mitochondrial oxygen tension [40]. This innovative
approach has been already evaluated in conditions of critical illness using animal models of
sepsis, with promising results [41,42]. Furthermore, the cellular oxygen metabolism monitor
(COMET), a novel device which incorporates the principle of the PpIX-TSLT, has recently
been evaluated in critically ill patients and seems feasible for measuring mitochondrial
oxygen tension at the bedside [43]. However, as this technique quantifies mitochondrial
oxygen tension locally in a small area of tissue, estimates for mitochondrial function in an
entire organ or body might not be accurate. Furthermore, due to the limited penetration
depth of light pulses, detected signals may rather reflect mitochondrial function from
superficial tissues than deeper skeletal muscles. Therefore, the diagnostic and prognostic
value of this new in vivo approach has yet to be determined for mitochondrial function in
skeletal muscles, especially in critically ill patients.

5. Structural and Functional Impairment of Mitochondria following Immobilization

Different attempts have been made to evaluate changes in mitochondrial structure
and function following pure immobilization and unloading of skeletal muscles. Frequently
used methods include cast immobilization, hindlimb suspension, denervation and neural
cord dissection [44–47]. Therefore, it appears that SSM is more vulnerable than IMF to
mechanical unloading in limb skeletal muscles, leading to severely impaired mitochondrial
membrane integrity [47–50]. In contrast, following mechanical ventilation, severe morpho-
logical alterations, including fragmentation, shrinking and loss of branched architecture,
were observed mainly in diaphragmatic IMF, but to a much lesser degree in SS [51]. This
could be explained by the fact that passive stretching of muscle fibers is already present
under mechanical ventilation. Aside from morphological alterations, overall mitochondrial
content and mtDNA have been found to be significantly reduced following immobilization
in skeletal muscles of the limbs [52–54]. Furthermore, mitochondrial turnover seems to
be impaired. Essential factors promoting mitochondrial fusion (including PGC1α, MFN1,
MFN2 and TFAM) are downregulated in the majority of studies following immobilization
in limb skeletal muscles [44,45,51,53,55]. These findings might support an impaired mi-
tochondrial fusion process. However, data regarding changes in pro-fission factors (e.g.,
DRP1) are heterogeneous, showing reduced [53], increased [51,56] and no changes [57],
which might be explained be different methods of muscle unloading and applied durations
of immobilization.

At the functional level, the majority of investigations seem to demonstrate an overall
decrease in mitochondrial ETC enzyme protein concentration, enzyme activity, respiratory
capacity and ATP production [44,46–49,53,56–60]. Furthermore, it appears that besides
reduced mitochondrial energy production, dysregulation of the OXPHOS system and
uncoupling of the ETC lead to increased formation of ROS. This has been hypothesized
by numerous studies demonstrating increased H2O2 concentrations and overshooting
activation or depletion of antioxidant defense systems [44,47–49,56,58]. These results
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are underpinned by studies observing attenuated mitochondrial protein damage and
restoration of protein expression by antioxidant treatment after immobilization [61].

Mitophagy also seems to be impaired after denervation, possibly promoting accumu-
lation of dysfunctional mitochondria and further increasing oxidative stress [62]. However,
these results could not be observed using hindlimb suspension even after four weeks of
immobilization, suggesting a more severe impact of nerval disruption on muscle bioener-
getics [53].

6. Structural and Functional Impairments of Mitochondria in ICUAW and CIM
6.1. Animal Models of CIM and Mitochondrial Dysfunction

The use of animal experiments is common practice in critical care research to mimic
and study distinct features of critical illness, as it provides several advantages such as high
reproducibility, control of environmental parameters and the absence of interfering chronic
disease or therapeutic interventions [63]. In an attempt to deepen the understanding of the
basic pathophysiological mechanisms leading to muscle and mitochondrial dysfunction
under conditions of critical illness, different animal models have been developed in recent
decades [10]. However, the translation of results from animal studies to human properties
is not possible without restrictions, as some biological and methodical aspects need to
be discussed. Variations in the (a) study settings, (b) investigated animal species and
(c) skeletal muscles themselves need to be compared to clinical studies on critically ill
patients with ICUAW and CIM.

In an attempt to replicate hallmark features of muscle weakness and wasting in criti-
cal illness, several different methods, including mechanical denervation, with or without
steroids [64–67]; induction of sepsis [68–72]; and sedation and mechanical ventilation with
or without paralytics [65,73] have been investigated either individually or in combina-
tion [69,74,75]. Although the majority of studies were able to mimic certain pathophysio-
logical aspects, it has been found that the combined effect and prolonged application of
some methods was best suited to replicate predominant myosin loss, decreased compound
muscle action potentials and normal nerve conduction velocities, similar to patients with
CIM [69,74,75]. In this context, porcine animal models of critical illness revealed marked
downregulations in mitochondrial gene expression controlling the PGC1-family, the ETC
enzyme complexes and several metabolic pathways [73,76], matching at least in part with
the results of patients with CIM [77,78]. Although not covering all methodical aspects of
a fully grown ICU animal model, studies investigating mitochondrial function by pure
immobilization [52–54], denervation [47,49,59] or sepsis [79,80] also show deficits in mi-
tochondrial structure and function comparable to observations in critically ill patients,
including mitochondrial swelling, decreased mitochondrial content and downregulation of
PGC1α mRNA expression as well as several mitochondrial metabolic pathways [81–83].

The majority of experimental studies have used mice [68,69], rats [47,84] and
pigs [65,71,74–76] in their animal models to investigate the impact of different conditions
of muscle unloading and neuromuscular impairment on muscle integrity and function.
Human physiology shares many similarities with these mammalians, of which porcine
physiology is considered to be closest to humans. However, it must be kept in mind that
certain aspects, e.g., the skeletal muscle transcriptome and metabolome, can significantly
differ between species. Mitochondrial oxidative capacity, mRNA expression of respiratory
chain complexes and metabolic coupling vary between mice, rats and humans [85]. Further-
more, despite the preservation of many physiological mechanisms among mammalians,
the onset of age-related muscle wasting and subsequent changes in muscle phenotype as
well as muscle transcriptome can vary between species and even within certain strains of
one single species [86]. These findings imply that the biological characteristics of an animal
model should match the requirements of the scientific hypothesis, and that the researcher
should know about the advantages and disadvantages of a certain model organism.

Comparing animal models and human studies of ICUAW and CIM also demands
discussion of individual skeletal muscle properties. In clinical studies of CIM and mito-
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chondrial dysfunction, the majority of biopsies have been taken from the vastus lateralis
muscle [1,78,82,83,87–90]. This contrasts with many ICU animal models, in which a great
variety of limb skeletal muscles, including the soleus muscle [16,64,65,69,75,84], the gastroc-
nemius muscle [47,64,75], the extensor digitorum longus muscle [65,69,70,75,91], plantaris
muscles [16], the biceps femoris muscle [73,76] and the tibialis anterior muscle [64,65,68,75],
have been assessed. This is important to recognize, as human and animal skeletal muscles
do not necessarily share the same anatomical characteristics. The skeletal muscles of human
limbs show a relatively uniform fiber composition, with equal distributions of type I and
type II fibers [92]. In contrast, skeletal muscles in rodents and pigs may contain predomi-
nantly type I or type II fibers [16,93–95]. Whereas the human vastus lateralis contains about
40% type I and 60% type II fibers [96], the porcine as well as the rat vastus lateralis consists
of approx. 80% type II fibers [16,93–95].

Both biomechanical and metabolic properties may vary between human and animal
skeletal muscles. Early works demonstrated the different activity levels of ETC complex II
between different animal species within the same muscle fiber types [97,98]. Furthermore,
it has been shown that in humans, the enzymatic activity of ETC complex II within one
muscle fiber type may vary between different skeletal muscles of the limbs [98]. These
findings have been corroborated by Murgia et al., who demonstrated that the metabolic
setup (mitochondrial content and mitochondrial enzyme activities) can significantly differ
between individual muscle fiber types [99]. In line with this, the mitochondrial content
and PGC1α levels within muscle fibers from mice and rats seem not to correspond to
humans [100]. In conclusion, ICU animal models offer several advantages to study cer-
tain aspects of CIM and contributing mitochondrial dysfunction, but inherent biological
and methodical issues limit the translation to human physiology, especially in critically
ill patients.

6.2. Mitochondrial Content and Morphology Is Altered in Critical Illness

Bioenergetic failure related to critical illness seems to be accompanied by an overall
reduction in mitochondrial content and function (Figure 3). In an animal model of severe
burn injury (with full-thickness burns, 60% of the total body surface area), a 36% decrease
in the number of mitochondria was observed [101]. Similar results have been demonstrated
in septic mice; a loss of about 30% was seen in limb and respiratory skeletal muscles [102].
This results are in line with data from critically ill patients with sepsis and MOF, in whom
overall mitochondrial degradation was evident [13].

Furthermore, not only a diminished number of mitochondria, but also ultrastructural
changes in the remaining organelles point to severe alterations in mitochondrial integrity
during critical illness. Mitochondrial swelling, a fragmented or nearly absent cristae
structure, matrix space enlargement and vacuolization are the most frequent morphological
pathologies that have been reported in animal [79,80,103] and human [13,104] skeletal
muscle biopsies associated with critical illness-induced muscle wasting. In accordance
with the rapid development of muscle weakness and the degradation of muscle mass due
to critical illness, the decrease in mitochondrial content can be observed within several
days after ICU admission [83]. Besides the inflammatory and metabolic challenges, critical
illness is accompanied by physical inactivity, a factor which, by itself, is strongly associated
with mitochondrial alterations [105].
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Figure 3. Impact of critical illness on mitochondrial dynamics in skeletal muscle cells. Interference
with the homeostatic regulation of mitochondrial fusion and fission pathways, resulting in abnormal
mitochondrial morphology. The presence of fragmented mitochondria due to a decrease in fusion
and/or an increase in fission may compromise mtDNA integrity, mitochondrial structural and
functional complementarity and mitochondrial biogenesis. Each one can lead to mitochondrial
dysfunction. Conversely, the formation of enlarged mitochondria as a result of decreased fission
and/or increased fusion events may decrease mitochondrial turnover by impairing mitophagy and
biogenesis. This leads to the accumulation of damaged mitochondria in the cells. Critical diseases
can cause bioenergetic failure, increased formation of ROS and imbalances in homeostatic regulation
which damage mitochondria, leading to swelling, increases in matrix space, decreases in cristae
structure and decreases in functionality. Accumulation of dysfunctional mitochondria in the cells
finally results in cell death. ETC: electron transport chain, mtDNA: mitochondrial desoxyribonucleic
acid, ROS: reactive oxygen species.

6.3. Impaired Biogenesis, Mitophagy and Mitochondrial Regeneration

Dysregulation of mitochondrial dynamics has already been linked to critical illness-
induced organ dysfunction. In sepsis, dysfunction of multiple regulating proteins con-
tributes to impaired mitochondrial biogenesis and recovery. Inhibition of mitochondrial
fusion by suppression of MFN2 and extensive mitochondrial fission by upregulation of
DRP1 may promote multiple organ failure [106]. In relation to skeletal muscle homeostasis,
experimental defects in MFN1 and MFN2 have been shown to directly promote muscle
wasting [107]. Furthermore, recent evidence has suggested hampered translocation of
TFAM, as an initiator of mtDNA replication, to be associated with altered mitochondrial
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turnover [108]. PGC1α, the key regulator in mitochondrial biogenesis, also seems to be
affected during critical illness. In an animal model of sepsis, expression of PGC1α mRNA
was significantly reduced in limb and respiratory skeletal muscles, and limb muscles seem
to be more vulnerable [80]. Critically ill patients often experience bedrest and muscle
disuse due to mechanical ventilation and sedation. Prolonged immobilization steadily
decreases PGC1α, NRF1/2 and TFAM protein expression, as well as mitochondrial content,
in skeletal muscles [109]. Although the availability of studies investigating mitochondrial
biogenesis in patients with ICUAW and CIM is limited, this is in line with data from
33 patients at risk for ICUAW who presented marked reductions in skeletal muscle PGC1α
mRNA expression, suggesting impairments in mitochondrial biogenesis that were already
profound during the early phase of critical illness [90]. The relevance of PGC1α, TFAM
and NRF1/2 as regulators for mitochondrial recovery and restoration of skeletal muscle
function has been underlined in early investigations, demonstrating an upregulation of
these biogenesis promotors in critical illness survivors [82,110].

Mitophagy is a specialized form of autophagy which allows the removal of dys-
functional or damaged mitochondria and related protein complexes to maintain cellular
homeostasis. This process is facilitated by the parkin E3 ligase, an enzyme promoting
degradation of dysfunctional mitochondria [111]. Impairments to this cellular quality con-
trol mechanism can severely disrupt mitochondrial integrity, leading to failure of skeletal
muscle contractile function [112]. Therefore, mitophagy seems to be affected to different
extents in limb and respiratory skeletal muscles [80]. This is underlined by results showing
that improvements in autophagy by artificial parkin overexpression resulted in preserved
mitochondrial quality control and prevented myofiber atrophy [112].

6.4. Dysregulation of the ETC Complex

Alterations to the ETC enzyme complexes in skeletal muscle have frequently been
observed in connection to critical illness and muscle wasting [11]. Studies evaluating
rodent animal models of sepsis (induced either through the injection of lipopolysaccharide
(LPS) or by performing cecal puncture and ligation) have reported a functional decrease in
various enzyme complexes. From a methodological point of view, it should be mentioned
that the measurement of enzyme activities does not necessarily reflect the functional status
of mitochondria. An overall reduction in organelles can also contribute to reductions in
enzyme activities. However, to distinguish functional alterations of enzyme complexes
from pure changes in overall mitochondrial count, signal intensities have to be compared
to a reference enzyme within the same cellular compartment. For assessment of the ETC
enzyme complex, the activity of the citrate synthase, which is located in the mitochondrial
matrix, can be used as a reference [88,113]. In this context, a recent study reported a
profound downregulation of the enzyme activities of complex II, III and IV in mechanically
ventilated and LPS-treated mice diaphragm muscle strips [114]. However, the results were
expressed as activity per gram protein, making conclusions in regard to the function status
of the ETC enzymes difficult. In another investigation, Oliveira and coworkers reported a
marked downregulation of all ETC enzyme complex mRNAs, as well as a reduced protein
expression of the complexes III and IV in the diaphragms of septic mice [102]. Skeletal
muscles of not only the respiratory system, but also of the limbs, experience significant
alterations in their OXPHOS systems. In an experimental study on mice, functional deficits
of ETC enzymes in limb skeletal muscles persisted for weeks after the onset of sepsis,
and were accompanied by a significant reduction of complex I driven electron transport
capacity and activity of the ETC complexes II and IV [79]. Therefore, it has been suggested
that, along with other mitochondrial impairments, a reduction in the ETC complex activity
seems to contribute to persistent muscle weakness, independent of inflammatory status
and accompanied muscle atrophy [79]. However, these results must be interpreted with
caution, because no data regarding the level of physical activity during the observational
period have been reported. In this context, overall severe organ damage (e.g., brain and
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heart) rather than mitochondrial failure might have contributed to physical inactivity and
disability, leading to muscle weakness.

Although it seems obvious that reduced ETC enzyme activity is related to a reduction
in muscle strength and function, studies investigating the relationship between integrity of
the OXPHOS system, muscle strength and function in critically ill patients with ICUAW
are sparse and partly inconsistent. Some studies examined the function and integrity of
the OXPHOS system in biopsies from limb skeletal muscle in critically ill patients. Early
investigations by Brealey et al. demonstrated significantly reduced ATP concentrations,
but no differences in skeletal muscle citrate synthase-normalized ETC enzyme activities
between sepsis survivors and non-survivors [89].

Duceau and coworkers used proteome and metabolome analysis to demonstrate a
marked downregulation in OXPHOS gene expression in septic patients [81]. However, a
depletion of mitochondrial protein content suggests that an overall reduction in mitochon-
drial count rather than specific reductions in ETC enzyme activities were reported in other
studies [13,82]. As the patients’ muscle strength was not assessed in either study, the clinical
significance remains elusive. Jiroutková and coworkers assessed the ETC enzyme complex
function in a cohort of ICUAW patients [88]. It was found that citrate synthase-normalized
enzyme activities of complex I and IV were not different from healthy controls. Surprisingly,
an increase in enzyme activity of complex II and III was observed, which was explained
by a compensatory switch in mitochondrial nutrient utilization. Unfortunately, the study
by Jiroutková et al. did not compare critically ill patients with and without ICUAW with
each other. Furthermore, no correlation between mitochondrial dysfunction and muscle
strength was established. Based on these first observations, they reproduced their results in
a following study, again with muscle biopsies from ICUAW patients, but without direct
correlation to muscle strength and function [87]. The findings of Jiroutková and cowork-
ers are in line with a recent study investigating ETC enzyme activities in stroke patients
with ICUAW [113]. Although the activity of ETC complex I was increased compared to
postoperative controls, no comparisons between critically ill patients with and without
ICUAW were made. Taken together, despite some evidence from animal models suggesting
alterations in the ETC complex activity in the context of critical illness-induced skeletal
muscle dysfunction, data from critically ill patients with ICUAW and CIM are sparse and
at least partly divergent.

6.5. Increased Oxidative Stress

Besides its function as the most important source of ATP, the mitochondrial respiratory
chain also contributes to the production of reactive oxygen species (ROS), which are
thought to participate physiologically in cell signaling [115]. However, damage to the
respiratory chain can induce ROS overproduction, leading to oxidative stress, disruption of
cellular organelles and, finally, apoptosis. Due to the ubiquitous presence of mitochondria,
neuromuscular dysfunction may not solely result from ROS-associated damage within
muscle fibers. Instead, ROS-mediated alterations at the level of the neuromuscular synapses,
motor nerves and the central nervous system are known to contribute to weakness in a
number of neuromuscular diseases [116–118].

At the level of the neuromuscular junction (NMJ) of motor nerve terminals, a ROS-
mediated inhibition of transmitter release has been described [119]. Whereas the function
of postsynaptic structures seems to remain intact, presynaptic disruption of the NMJ was
thought to lead to distal motor neuron degeneration and consecutive muscle denervation
by ROS [120]. Not only an overproduction of ROS, but also the downregulation of major
antioxidant defense systems such as the superoxide dismutase (SOD) 1 and 2, which are lo-
cated within mitochondria, might impair the neuromuscular function, especially at the NMJ
and connected nerve terminals. In various studies using SOD-knockout animal models, sig-
nificant damage to the NMJ and adjacent nerve terminals has been demonstrated [121–124].
Therefore, motor neurons seem to be more affected than sensory nerves [124]. However,
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in the condition of increased oxidative stress not exclusively mitochondrial, but also ROS
from other cellular compartments might contribute to neuromuscular failure [125].

In the skeletal muscles of patients suffering from critical illnesses, the ROS-associated
damage may persist even after sepsis has been overcome [79]. Furthermore, not only an
overproduction of ROS, but also a downregulation of antioxidant systems seems to be at
hand in critical illness [81,115]. In skeletal muscles, the combined effect of muscle unload-
ing and systemic inflammation could further augment oxidative stress and downregulate
antioxidant defense mechanisms such as SOD 2 [102]. Besides the direct downregulation of
gene expression, the inability to translocate nuclear transcription factors that are essential
for mitochondrial protein synthesis could also be hypothesized as a potential mechanism
in antioxidant response failure [108]. A downregulation of antioxidant systems, such as
the thioredoxin/peroxiredoxin, glutaredoxin 5 and glutathione systems, has already been
described in patients with ICUAW [81,89]. The compensatory upregulation of genes and
proteins regulating oxidative homeostasis, such as PGC1α, TFAM and SOD2, are seen in
sepsis survivors in response to increased oxidative stress and ROS production, and might
be a possible explanation for resilience and recovery in critical illness [13,82,126]. Among
other important functions controlling mitochondrial homeostasis, PGC1α has been sug-
gested to be a master regulator in this antioxidative response [127]. Furthermore, activation
of the Janus kinase (JAK)/signal transducer and activator of transcription proteins (STAT)
pathway may also contribute to increased oxidative stress in skeletal muscle mitochon-
dria [115]. In this context, recent evidence has suggested interleukin-mediated JAK/STAT
activation as a potential mechanism for muscle wasting in sepsis [128].

6.6. Mitochondrial Calcium Homeostasis and Dysregulation

Calcium ions are indivisibly linked to proper skeletal muscle structure and function by
fueling the contractile apparatus, acting as intracellular signaling molecules and impacting
muscle fiber plasticity [129]. In recent decades, mitochondria have been recognized as
crucial components shaping calcium dynamics in myocytes [130]. Therefore, mitochondrial
contribution to calcium homeostasis obviously differs between certain types of muscle
fibers [131]. In contrast to mainly glycolytic type II fibers, mitochondria actively participate
in controlling intracellular calcium concentrations in slow-contracting oxidative type I
fibers [132,133]. Mitochondria can transiently store high amounts of calcium and, there-
fore, might act as calcium-buffering organelles [134]. Furthermore, mitochondrial function
and intracellular calcium control seem to impact the excitation–contraction coupling in
skeletal muscles. A study by Eisner and coworkers demonstrated that the inhibition
of MFN causes alterations in myocyte calcium dynamics, impairing active muscle con-
traction [135]. Furthermore, PGC1α also takes part in regulating mitochondrial calcium
homeostasis by preventing the age-related downregulation of genes, including those en-
coding for the mitochondrial calcium uniporter (MCU) [136]. Therefore, besides various
other proteins, the MCU seems to be responsible for the majority of mitochondrial calcium
influx [137–140]. The crucial role of transient mitochondrial calcium uptake through the
MCU has recently been underlined by Gherardi et al., who demonstrated that a depletion of
the MCU impairs skeletal muscle force generation and glycolysis and induces a slow-to-fast
fiber switch [141]. Furthermore, increased mitochondrial FFA oxidation as well as intensi-
fied hepatic glycogenolysis and ketone body production emerged in this study, reflecting
widespread alterations in mitochondrial nutrient utilization capabilities. In aged individu-
als, a decrease in MCU activity was linked to increased mitochondrial ROS production, and
restoration of MCU function enhanced antioxidant defense [142]. The involvement of mito-
chondria in shaping myocyte calcium signaling via interactions with the sarcoplasmatic
reticulum is, overall, a finely tuned system of machinery, whereby transient fluctuations in
mitochondrial calcium concentrations occur physiologically [143]. However, dysfunctional
mitochondria are unable to limit excitation-induced calcium transients, leading to impaired
control of overall cytoplasmatic calcium concentrations. Subsequently, states of chroni-
cally increased intramitochondrial calcium may occur, promoting enzyme dysfunction
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and organelle damage and ultimately inducing cell death by apoptosis [144,145]. One
mechanism which likely contributes to this fatal cascade includes altered opening kinetics
of the mitochondrial permeability transition pore (mPTP) in response to impaired mito-
chondrial calcium handling [146]. The mPTP is located within the IMM and can translocate
pro-apoptotic factors such as the Bcl-2-associated X protein (Bax), triggering the release of
cytochrome c and activation of caspase 9 and 3 and inducing apoptosis [147–149]. Inves-
tigations by Csukly et al. have already demonstrated that following muscle denervation,
myocyte calcium concentrations increased significantly, leading to calcium overload, and
facilitated mPTP opening [150]. These findings were complemented by Karam et al., who
proposed the absence of calcium transients as a trigger for mitochondrial dysfunction
and demonstrated that the reoccurrence of calcium transients is essential for restoring the
opening kinetics of the mPTP [151]. Following muscle denervation, mitochondrial calcium
transients cease, causing increased mPTP opening and ROS production. Another mecha-
nism possibly contributing to impaired calcium transients was proposed by Friedrich et al.,
who showed inhibition of sarcoplasmatic reticulum calcium release by IL1α, promoting
muscle weakness in CIM [152]. In contrast, transient openings of the mPTP have been
proposed to protect mitochondria from calcium overload by releasing calcium into the cy-
toplasm [153]. Disturbances to this finely orchestrated regulation of mitochondrial calcium
homeostasis certainly appear under conditions of critical illness. In animal models, the
induction of sepsis by either LPS or CPL was associated with a reduction in mitochondrial
calcium transients in cardiomyocytes [154], as well as increased mPTP opening, causing
myocardial damage [155]. Furthermore, sepsis-induced mitochondrial calcium overload
contributes to impairments in mitochondrial respiratory chain activity, possibly promoting
contractile dysfunction and muscle weakness [70,156]. The first evidence for impaired
skeletal muscle calcium homeostasis in critically ill patients with CIM was reported by
Friedrich and coworkers [157]. In this context, the complete mechanical silencing frequently
observed in patients with ICUAW and CIM impairs overall myocyte calcium dynamics by
inhibition of sarcolemmal calcium release [158]. However, studies from critically ill patients
directly investigating mitochondrial calcium dynamics are still lacking, leaving most of the
experimental findings presented herein uncertain.

6.7. Relations to Mitochondrial Gene Expression and MicroRNAs

Various conditions of critical illness have been linked to mtDNA damage and pro-
found alterations in gene expression encoding for key regulators in mitochondrial func-
tion [90,159,160]. Muscle biopsies from critically ill patients revealed an overall decrease
in mtDNA content and a downregulation of many genes orchestrating mitochondrial
function [90,161]. This was also recently confirmed in patients with CIM [77]. Especially
genes for mitochondrial fusion and replication, such as PGC1α, MFN2 and OPA1, seem to
be affected in skeletal muscles [102,114]. Therefore, PGC1α mRNA expression is already
significantly downregulated in skeletal muscles within the first days after ICU admission,
indicating impairments in mitochondrial biogenesis and turnover in the early phase of
critical illness [78,90]. In a recent animal model of septic mice, it was shown that IL-6
may play a crucial role in the suppression of PGC1α mRNA expression, suggesting a
direct involvement of cytokines in sepsis-mediated muscle wasting [127]. Another essential
regulator of mitochondrial replication dynamics is TFAM. As a core transcription factor, it
directly interacts with mtDNA, covering and stabilizing entire DNA regions and controlling
RNA polymerase interaction, as well as, therefore, gene expression [162]. Similar to PGC1α,
a marked decrease in TFAM protein levels has been observed in sepsis-induced diaphragm
damage, which might be the result of a failure of translocation of precursor TFAM into
mitochondria for final initialization rather than nuclear gene suppression [108,114]. Reduc-
tions in or complete abolishment of TFAM have been associated with marked decreases in
mtDNA, leading to profound skeletal muscle wasting [163]. The important role of TFAM in
preservation of muscle mass is underlined by the fact that TFAM overexpression has been
shown to protect from hindlimb suspension-induced muscle wasting [164]. In contrast,
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in survivors of critical illness, an upregulation in the mRNA of PGC1α, NRF1 and TFAM
could be indicative of ongoing repairing processes or, on the other hand, could serve as
a mechanism of resilience [82]. This may be strengthened by recent findings showing an
upregulation of peroxisome proliferator-activated receptor gamma (PPARγ) signaling in
sepsis, through which PGC1α could express its anti-inflammatory function [81].

Another mechanism proposed to disrupt mitochondrial function in critical illness
might be mediated through microRNAs (miRNA). These non-coding RNA molecules are
assumed to regulate protein expression by translational repression, a post-transcriptional
mechanism in the modulation of gene expression [165]. Their involvement has been
extensively described for many different conditions of muscle wasting, including muscular
dystrophies [166], cancer cachexia [167] and aging [168]. Furthermore, they seem to play
a crucial role in critical illness-induced muscle wasting. Therefore, miRNA can be either
factors thought to protect from or to promote muscle wasting through their regulation of
different key proteins of mitochondrial biogenesis, such as PGC1α and NRF1 [169]. It is
noteworthy that possible differences in molecular regulation patterns between different
species can produce contradicting results. In an animal model of sepsis, miRNA 181a seems
to promote muscle wasting through the direct suppression of mitochondrial function and
reduction in mtDNA content [104]. In contrast, miRNA 181a has been shown to protect
from muscle wasting by counteracting insulin-like growth factor (IGF)-15 in critically ill
patients [170]. However, a widespread network of differently expressed miRNAs may
play a potential role not only in critical illness-induced muscle wasting, but also in muscle
regeneration and recovery by targeting mitochondrial regulators. In patients with ICUAW,
miRNA 542-3p/5p was supposed to induce muscle wasting through a depression in
mitochondrial 12S/16S ribosomal RNA [171]. Downregulation of miRNA-424-3p/5p in
quadriceps muscle biopsies, for example, has been shown to correlate with alterations in
muscle mass, muscle strength and overall physical function in the acute phase of critical
illness. Patients recovering from muscle wasting and regenerating muscle mass showed
miRNA expression patterns distinct from those of patients who were unable to regain
muscle mass [172].

6.8. Metabolic Changes and Mitochondrial Dysfunction

Mitochondria are essential components for generating energy to fuel cellular function
by integrating the final steps in the metabolism of glucose and lipids. Acetyl-CoA, the main
substrate for the TCA cycle, is generated by either pyruvate from glycolysis or β-oxidation
of fatty acids. Disturbances in the metabolism of glucose or fatty acids have frequently been
observed in critical illness, and are inextricably linked to altered mitochondrial function
and skeletal muscle homeostasis [173].

Adequate glucose utilization is vital for preserving mitochondrial function in skeletal
muscles, and is mediated via the action of insulin-activating subsequent signaling path-
ways [174]. Regularly, insulin binds to its receptor and induces autophosphorylation,
which allows for the recruitment of insulin receptor substrates (IRS) 1 and 2. IRS are
able to activate phosphoinositide 3-kinase (PI3K), which results in the phosphorylation of
plasma membrane lipids generating various phospholipids, which are able to bind and
activate phosphoinositide-dependent kinase 1 (PDK1). PDK1, in turn, can activate the
serine/threonine kinase AKT, which is considered a checkpoint enzyme integrated in many
different intracellular signaling cascades, including glucose transporter type 4 (GLUT4) and
the forkhead box (FOXO) transcription factors [174]. Furthermore, intact insulin signaling
not only preserves adequate glucose uptake to fuel the TCA, but also directly maintains
mitochondrial function by inducing mitochondrial protein and DNA synthesis, stimulating
ATP production and promoting FFA oxidation [175,176].

The term “insulin resistance” describes the failure of insulin to induce subsequent
metabolic pathways, resulting in impaired cellular glucose uptake, inadequate inhibition of
gluconeogenesis and downregulation of anabolic processes. It is frequently associated with
hyperinsulinemia, hyperglycemia and increased concentrations of FFAs. In reference to
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mitochondrial integrity, states of chronic hyperglycemia and insulin resistance have been
directly linked to skeletal muscle mitochondrial dysfunction, including reduced mitochon-
drial content, reductions in OXPHOS activity and OXPHOS gene expression, dysregulation
of mitochondrial biogenesis through suppression of PGC1α and ROS overproduction in
diabetes mellitus [177,178]. In this context, is should be mentioned that mitochondrial
dysfunction itself can lead to insulin resistance [179]. Not only in chronic disease, but
also in acute conditions of critical illness, insulin resistance has been linked to impaired
mitochondrial biogenesis [180]. The phenomenon of insulin resistance was highlighted as
a metabolic hallmark feature in critical illness myopathy and ICUAW [90,181,182]. Further-
more, overall gastrointestinal function may be impaired especially in critically ill patients
with neuromuscular alterations [183]. In muscle biopsies from critical ill patients with
CIM, partial impairment of the insulin receptor-mediated signaling cascade was demon-
strated [78]. Despite preserved AKT activation, insulin was unable to promote glucose
utilization, suggesting a subsequent failure of insulin signaling downstream of AKT. As
mentioned earlier, AKT can phosphorylate and thereby inhibit members of the FOXO
transcription factor family. Subsequent disinhibition of FOXO transcription factors has
been demonstrated in animal models of sepsis, theoretically providing a possible linkage to
mitochondrial dysfunction [91,184]. Increased FOXO activity indirectly impairs mitochon-
drial function by induction of the heme oxygenase 1 (HMOX1), which cleaves heme that is,
therefore, unavailable in the ETC enzymes [185]. Furthermore, FOXO directly suppresses
PGC1α, a key regulator of mitochondrial biogenesis. Therefore, impairments of AKT-
mediated FOXO suppression in critical illness may directly hamper mitochondrial function
and promote muscle wasting. Furthermore, insulin-independent translocation of GLUT4
via activated AMPK was shown to be diminished in CIM patients [78,182]. The AMPK
is another enzyme interlinking glucose metabolism, mitochondrial function and skeletal
muscle integrity. Depending on the prevailing situations, AMPK has been shown to be a
kind of “double edged” sword, on one hand promoting protein degradation, mitophagy
and muscle wasting, and on the other hand protecting from muscle wasting and promoting
muscle regeneration by maintaining mitochondrial integrity. Therefore, exercise-induced
activation of AMPK stimulates mitochondrial biogenesis through activation of PGC1α and
NRF [177]. The protective effects of AMPK on muscle mass have recently been underlined
in sepsis [84]. However, whether disturbed glucose metabolism is a major cause or only a
bystander effect in the pathogenesis of CIM remains controversial [186].

The metabolism of lipids provides another essential pathway for the generation of ATP
that converges in mitochondria. Glucose and lipid metabolism are inextricably interlinked
with each other, preserving mitochondrial energetic integrity and muscle health. Therefore,
in conditions of critical illness, alterations in glucose metabolism are frequently accompa-
nied by disturbances in lipid homeostasis, aggravating skeletal muscle wasting. In states of
increased energy demands, lipids provide a quickly available fuel source for the organism.
When glucose utilization is impaired and glycogen stores are depleted, skeletal muscle
derives energy from the metabolism of FFAs and ketone bodies [187]. Lipolysis is increased
in sepsis involving pro-lipolytic hormones, as well as enzymes such as perilipin 1 and
hormone-sensitive lipase for the breakdown of triacylglycerol, which is the storage form
of lipids in adipocytes [173]. During this process, FFAs are released to meet the increased
energy demands. However, utilization of FFAs through β-oxidation is impaired in the early
course of sepsis, possibly by the downregulation of PPARγ signaling, a key regulator in
gene expression for mitochondrial lipid utilization. The imbalance between high fuel influx
and impaired utilization capacity can lead to uncontrolled accumulation of intracellular
lipids, leading to a cytopathic effect called lipotoxicity [173]. Thus, the intramuscular accu-
mulation of lipids can induce muscle damage and may impair muscle regeneration [188].
Increased intracellular concentrations of FFAs have been shown to hamper mitochondrial
ATP generation, and lipotoxicity can directly impair mitochondrial function [189]. The pro-
posed mechanisms of lipotoxicity are ROS overproduction and OXPHOS uncoupling [190].
Furthermore, the accumulation of FFAs and lipid intermediates can lead to insulin resis-
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tance in skeletal muscles [191]. The activation of stress-induced kinases such as protein
kinase C, IkB kinase and c-Jun N-terminal kinase, which phosphorylate and, therefore,
inactivate IRS, has been proposed as a possible mechanism in impaired insulin signal-
ing [177]. In line with these findings, β-oxidation enzyme concentrations are reduced in
the skeletal muscles of patients with ICUAW within the first days of critical illness [90]. In
the skeletal muscle of from septic patients, mitochondrial fatty acid degradation is reduced
within the first days [81]. Increased levels of circulating acyl carnitine derivatives within the
first postoperative week in intensive care patients with muscle wasting indicate impaired
utilization of lipids in β-oxidation rather than hampered mitochondrial import [192]. In
the condition of prolonged critical illness, remaining mitochondria seem to adapt to the
increased lipid supply after the first week. A metabolic switch in mitochondrial energy
utilization in sepsis from glucose to FFA has recently been described [114,193]. Increased
activity of ETC complex II, which receives electrons mainly from β-oxidation, suggests
augmented utilization of FFA for ATP production [88]. Furthermore, fatty acid oxidation
capacity was demonstrated to be significantly increased in the presence of FFAs in patients
with ICUAW [87]. However, in contrast to this hypothesis, recent studies demonstrated
no changes or lower activities of ETC complex II concentrations and activities in skeletal
muscles during prolonged critical illness in ICUAW patients and septic animals [79,113].

7. Dynamics of Mitochondrial Alterations and Therapeutic Implications

Alterations in the skeletal muscles’ mitochondrial structure and function can be ob-
served within the first few days after ICU admission. Mitochondrial swelling, decreased
mitochondrial content, a significant decline in muscle ATP and phosphocreatine concen-
trations as well as pathologically reduced activities of the ETC enzymes I and IV have
been described [82,89,90]. In line with this, severe impairments in mitochondrial metabolic
pathways including OXPHOS, TCA, ketone utilization and β-oxidation show up within
the first three days [81]. These findings are accompanied by early derangements at the
gene level. Sepsis survivors showed marked increases in PGC1α mRNA and NRF1 mRNA
expression compared to non-survivors, implying insufficient activation of mitochondrial
biogenesis contributing to adverse outcomes in critical illness [89]. Within the first two
weeks, mitochondrial dysfunction may be aggravated in prolonged critical illness and
have insufficient regenerative capacities, as a further decline in mitochondrial content,
gene expression (PGC1α, DRP1), metabolic activity (OXPHOS, β-oxidation) and biogenesis
are immanent [77,78,90]. However, metabolic and respiratory activity might adapt after
surviving critical illness, switching nutrient utilization of the remaining mitochondria to in-
creased FFA oxidation. This phenomenon is seen up to 41 days after ICU admission [87,88].
These findings are underpinned by recent data showing divergent dynamics in overall
mitochondrial integrity between survivors and non-survivors of critical illness, associating
preservation and restoration of metabolic function with beneficial outcomes [194]. Obser-
vations regarding long-term changes to muscle mitochondrial structure and function are
sparse. Six months after critical illness has been overcome, mitochondrial content may
restore up to normal, but structural and possibly functional impairments might persist over
months, accompanied by marked muscle weakness and wasting [83,195]. This is supported
by recent data showing that even few days of critical illness may contribute to significant
alterations of mitochondrial respiratory activity up to 6 months after ICU admission [196].
Considering the dynamics of mitochondrial dysregulation during the course of critical
illness, several interesting attempts can be made to restore and improve mitochondrial
function and patient outcome.

As insulin resistance and impaired glucose utilization have been linked to mitochon-
drial dysfunction promoting the development of neuromuscular failure in critically ill
patients, glycemic control has become a promising treatment option. The use of an intensi-
fied insulin treatment has been shown to reduce the incidence of CINM and CIM [197,198].
The underlying molecular mechanisms of insulin directly contributing to improvements
in mitochondrial function have yet to be fully explored, but may include increased mito-
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chondrial respiratory capacity, gene expression and protein synthesis, as well as improved
OXPHOS coupling efficacy [176,199,200]. Furthermore, intensified insulin treatment seems
to increase GLUT4 mRNA expression in skeletal muscles, further supporting glycemic
control [201]. In addition, non-pharmacological attempts to overcome insulin resistance
and promote glucose utilization have been made, showing that electrical stimulation can
help to translocate GLUT4 into the sarcolemmal membrane [84]. However, whether the
direct action of insulin or the control of glycemic levels are accountable for the preservation
and restoration of mitochondrial function may vary within different tissues, and remains
debatable [202].

Beyond glucose metabolism, a differentiated and personalized nutritional regime
might help to restore mitochondrial function in patients with critical illness, preventing
ICUAW and CIM. The amino acids leucine and glutamine have been shown to promote
activation of PGC1α and ETC complex I activity in skeletal muscles in a recent animal
model [203]. The infusion of ketone bodies has been shown to protect from sepsis-induced
muscle wasting [187]. Ketone bodies might help to fuel mitochondrial ATP production
in catabolic conditions such as critical illness by improving oxidative metabolism [204].
However, the effect of a prolonged administration of ketone bodies on muscle function and
integrity remains controversial.

Exercise might be an important non-pharmacological approach to improve mitochon-
drial function in critically ill patients. Early mobilization is safe, maintains muscle mass
and prevents against ICUAW [205]. On the molecular level, muscle contractions activate
the AMPK, which in turn promotes mitochondrial biogenesis, mitochondrial dynamics and
mitophagy via activation of PGC1α [206]. Furthermore, the combination of exercise and
insulin treatment might act synergistically and help to improve mitochondrial function in
critical illness, possibly further decreasing the risk of ICUAW [207].

In order to reduce oxidative stress and counteract free oxygen radical damage, various
antioxidative pharmacological agents have been evaluated to improve mitochondrial func-
tion and counteract muscle wasting and dysfunction. Thus, extensive research has been con-
ducted on sepsis-induced diaphragm dysfunction using rodent animal models [208–210].
Treatment with various antioxidant drugs (e.g., MitoTEMPOL, SS31, mitoquinone mesylate)
has been shown to reduce ROS concentrations, prevent myosin protein degradation and
preserve contractile muscle force generation in diaphragm muscle strips. Regarding the
molecular mechanism of action, it is believed that these molecules act directly on the IMM
by scavenging ROS and, therefore, reducing mitochondrial oxidative stress. In this context,
positive effects of antioxidant treatment have also been demonstrated for limb skeletal
muscle function [211,212]. Unfortunately, to date, no studies evaluating these antioxidants
in humans suffering from critical illness-induced muscle wasting are available.

Another approach to restore mitochondrial function in critical illness-induced muscle
weakness is to promote mitochondrial biogenesis and to preserve the fusion–fission bal-
ance in mitochondrial dynamics. Pharmacologically-induced activation of NRF2 has been
evaluated in an attempt to promote mitochondrial biogenesis and, therefore, to restore mi-
tochondrial count, with positive results [213,214]. This seems conclusive, since a reduction
in the mitochondrial content of the overall skeletal muscles is frequently observed in critical
illness [101,102]. Beyond activation of biogenesis, inhibition of overshooting mitochondrial
fission might also provide interesting attempts to overcome mitochondrial dysfunction.
The mitochondrial fission inhibitor Mdivi-1 has been shown to prevent sepsis-induced
organ dysfunction. Unfortunately, in this study, the effect on skeletal muscles was not
evaluated.

8. Conclusions

In this narrative review, we illustrated the molecular patterns of mitochondrial func-
tion in skeletal muscle homeostasis, in both health and critical illness. Mitochondrial
dysfunction seems to be involved in different aspects of neuromuscular failure in critical
illness, contributing to critical illness-induced muscle weakness and, at least in part, to
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muscle wasting. Thus, impairment is present at different levels of mitochondrial structure
and function. As mitochondria are involved in various cellular pathways, their failure leads
to bio-energetic crises, which impair cell integrity. However, the majority of data on mito-
chondrial dysfunction related to neuromuscular failure in critical illness were derived from
animal studies, whereas evidence from critically ill patients was sparse. Recent advances
in diagnostics and monitoring of mitochondrial function deepened our understanding
of the pathological mechanisms related to mitochondrial dysfunction in neuromuscular
failure, although their value for daily clinical practice remains to be approved. Interesting
therapeutic approaches have been made to preserve or restore mitochondrial metabolism
and, therefore, muscle function, representing one important factor in the multiprofessional
care of the critically ill. Future efforts should not only focus on the molecular patterns of
skeletal muscle mitochondrial dysfunction in the acute phase, but also need to evaluate the
adaptive processes in chronic states of critical illness.
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Function in an In Vitro Model of Skeletal Muscle of Patients with Protracted Critical Illness and Intensive Care Unit—Acquired
Weakness. J. Parenter. Enter. Nutr. 2016, 41, 1213–1221. [CrossRef] [PubMed]
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