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Short Summary

Deep neural networks have reached an impressive performance in many tasks in
computer vision and its applications. Further, many of the methods developed in
computer vision are transferrable to other kinds of data, such as time series or text.
However, one prominent feature of deep learning is automatic feature selection. If
we use a deep neural network to make predictions, it is nontrivial to understand
which features the deep learning approach extracted from the data or which features
the deep neural network used to reach its prediction. Nevertheless, this information
is essential in some applications, for example, safety or security-critical applications,
where we expect the user to trust the decision of a neural network with their life or
well-being. As a specific example, we focus on dermoscopic image analysis in this
work. Another area in which it is crucial to understand the features a neural network
uses in tasks where we want to use it to further our understanding of a system. We
want to use a neural network to understand connections between variables and
are less interested in the correct predictions in these tasks. Examples of a field with
such tasks are climate and earth-system science.

Research into understanding deep learning is challenging due to the evaluation.
Since it is unknown which features deep neural networks use, it is hard to empirically
evaluate whether a result for which feature is used by a deep neural network is
correct. One effect that highlights our lack of understanding of deep neural networks
is adversarial examples. Given an input image classified correctly by a classifier, an
adversary can provoke a misclassification of the automatic classifier by adding a
carefully calculated but imperceptibly small noise to the image. The resulting image
is called an adversarial example. Since the imperceptibly small perturbation does
not change any of the features a human would deem relevant this demonstrates,
that deep neural networks do not rely only on the same features that humans would
use. In this work, we start by furthering the understanding of adversarial examples.
The main focus in that part of this work is to find a suitable definition of adversarial
examples that allows us to differentiate between the intriguing effect of adversarial
examples and the not at all intriguing observation, that we can alter the decision
of an automatic classifier by changing the content of the input image. We use
this definition to further our understanding of why adversarial examples exist. In
particular, we demonstrate that the modality of the data distribution impacts the
vulnerability of classifiers trained on the data.

The state-of-the-art for understanding which features a deep neural network
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uses to reach its prediction is sailiency maps. A sailiency map is a mapping that
assigns an importance value to each pixel of the input image. Consequently, it
can highlight important areas of the input image. The main ways to create these
sailiency maps are the gradient of the function represented by the deep neural
network, obfuscation of regions of the input image and Taylor-approximation of
the mapping from perturbation to change in output. For the gradient method, the
gradient of the function that maps the input images onto the prediction of the
deep neural network given the input pixel is calculated. This gradient is used either
directly as sailiency or slightly modified. For the obfuscation method, we obfuscate
parts of the input image and recalculate the classifier’s prediction. The sailiency is
the difference between the original prediction and the prediction containing the
obfuscation. The Taylor approximation method is an intermediate idea between
the two. The idea is to approximate the function that maps the perturbation onto
the change in the classifier’s prediction using a first-order Taylor approximation.
However, all methods built on sailiency maps share shortcomings that open a gap
between the current state-of-the-art and the requirements for understanding deep
neural networks. First, non of the three methods mentioned above are intrinsically
linked to an input influencing an output. Second, since semantic parts of the
image are in different positions in different images, it is challenging to generalize
observations made on single samples to the level of the classifier as a whole. Third,
and most importantly, since sailiency maps highlight areas of the input, they can
only be used for features represented by areas of the input. For example, features
that are parts of objects, such as the head of a bird, are represented by areas of the
input, while properties of the whole object, for example, the color of a bird, are not.

This work describes a method that does not suffer from these shortcomings. To
this end, we employ the framework of causal modeling. The framework of causal
modeling arranges the variables and processes of a system into a directed acyclic
graph where the variables form the nodes, and the processes form the edges. Such
a representation of a system is called a structural causal model. In this model, a
cause influences an effect if and only if a directed path in the graph connects the
cause to the effect. Using this framework, we represent supervised learning as a
structural causal model. To check whether a feature influences the prediction of
a classifier, we block all paths, except the one representing the inference function
of the classifier, by conditioning on variables along the respective paths. We test,
if, even after conditioning on these variables, the feature and the prediction of
the classifier are dependent. If the result is affirmative, the feature influences the
classifier’s prediction through the inference function. In other words, the classifier
extracts and uses the feature. We demonstrate that this method can understand
whether a supervised learning classifier uses a feature. To this end, we, on the
one hand, test shallow classifiers for which we can validate our findings, and, on
the other hand, deep learning classifiers for which we can only conclude that our
method returns plausible and meaningful results.

We further demonstrate two applications of our method. First, we show that
our method can further the understanding of automatic skin lesion classifiers. Skin
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cancer is a very deadly diseases, and early detection is vital in treating it. Since
early detection requires regular checks by medical professionals, they are labor
extensive. Automatic classification of skin lesions can support practitioners and
make early detection feasible. Visual analysis is a common first step in skin lesion
classification, and dermatologists have developed features to determine whether
a skin lesion is malignant. These features are named in the dermoscopic ABCD
rule, an algorithm developed to identify melanomas. We investigate multiple state-
of-the-art classifiers and determine whether they use the features named in the
dermoscopic ABCD rule. Further, we investigate whether the same classifiers rely
on bias variables, namely the patient’s age, sex, and skin color and the existence of
colorful patches in the input image.

We find that some of the features in the ABCD rule are used by the classifiers to
identify melanoma but not to identify seborrheic keratosis. In contrast, all classifiers
highly rely on the bias variables, particularly the age of the patient and the existence
of colorful patches in the input image.

The second application is adversarial debiasing. In adversarial debiasing, we
want to stop a neural network from using a known bias variable. To this end, the
idea is to use a second loss next to the classification loss. This debiasing loss
punishes the deep neural network for using the bias feature. Since an obvious
first step in this process is to determine whether the deep neural network uses a
feature, our work applies. The state-of-the-art in adversarial debiasing is to enforce
independence between the bias variable and the classifier’s prediction. Building
on the work on determining whether a classifier uses a feature, we propose to
use the conditional dependence conditioned on the ground truth instead. We
prove mathematically that under reasonable assumptions on the bias creation, an
optimal classifier fulfills this conditional dependence, while it does not fulfill the
unconditional independence used by the current state-of-the-art in adversarial
debiasing. Further, we demonstrate in a toy example and an example on real-world
images that our approach outperforms the state-of-the-art in adversarial debiasing.

In conclusion, we make deep neural networks more transparent and, conse-
quently, more robust. To this end, we demonstrate the current challenges in un-
derstanding deep neural networks using the phenomenon of adversarial examples.
We employ causality and the framework of structural causal models to determine
whether a deep neural network uses a feature. We demonstrate that this method
can determine whether an automatic classifier uses a feature. We demonstrate that
the resulting method is applicable and valuable by applying it to the problem of
skin lesion classification understanding. We develop a new, improved method for
adversarial debiasing based on our new method to determine whether the classifier
uses a feature and demonstrate that this method outperforms the state-of-the-art
from the literature.
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Kurzzusammenfassung

Tiefe neuronale Netze haben in vielen Aufgaben in Forschungsbereichen des Com-
putersehens beeindruckende Ergebnisse erzielt. Darüber hinaus lassen sich viele
der im Computersehen entwickelten Methoden auch auf andere Arten von Daten
wie Zeitreihen oder Text übertragen. Ein herausragendes Merkmal tiefer Learnver-
fahren ist die automatische Auswahl von Merkmalen. Wenn wir ein tiefes neuronales
Netz verwenden, um Vorhersagen zu treffen, ist es nicht trivial zu verstehen, wel-
che Merkmale das tiefe Lernverfahren aus den Daten extrahiert hat und welche
Merkmale das tiefe neuronale Netz verwendet hat, um seine Vorhersage zu treffen.
Diese Informationen sind jedoch bei einigen Anwendungen von entscheidender
Bedeutung, z.B. bei sicherheitskritischen Anwendungen, bei denen wir erwarten,
dass der Benutzer der Entscheidung eines neuronalen Netzes sein Leben oder sein
Wohlergehen anvertraut. Als konkretes Beispiel konzentrieren wir uns in dieser
Arbeit auf die dermatoskopische Bildanalyse. Ein weiterer Bereich, in dem es von
entscheidender Bedeutung ist, die Merkmale zu verstehen, die ein neuronales Netz
verwendet sind Situationen in denen wir ein neuronales Netz verwenden um unser
Verständnis eines Systems zu verbessern. In denen wir ein neuronales Netz verwen-
den, um die Verbindungen zwischen Variablen zu verstehen, und weniger an den
korrekten Vorhersagen interessiert sind. Beispiele für solch ein Gebiet sind Klima-
und Erdsystemwissenschaften.

Die Forschung zum Verständnis von tiefen Lernverfahren ist auch aufgrund
der Evaluation eine Herausforderung. Da nicht bekannt ist, welche Merkmale tie-
fe neuronale Netze verwenden, ist es schwierig, empirisch zu bewerten, ob das
Ergebnis, welches Merkmal von einem tiefen neuronalen Netz verwendet wird,
correct ist. Ein Effekt, der unser mangelndes Verständnis von tiefen neuronalen
Netzen hervorhebt, sind “adversarial examples”. Hierbei kann ein Angreifer eine
Fehlklassifizierung eines zuvor korrect klassifizierten Eingabebildes provozieren.
Dazu addiert er ein sorgfältig berechnetes, aber kaum wahrnehmbares Rauschens
zum Bild. Das resultierende Bild wird als “adversarial example” bezeichnet. Da
die kaum wahrnehmbare Störung kein einziges der Merkmale verändert, die ein
Mensch für relevant halten würde, zeigt dies, dass tiefe neuronale Netze sich nicht
ausschließlich auf die gleichen Merkmale stützen, die Menschen verwenden. In
dieser Arbeit beginnen wir mit der Vertiefung des Verständnisses von “adversari-
al examples”. Das Hauptaugenmerk in diesem Teil der Arbeit liegt auf der Suche
nach einer geeigneten Definition von “adversarial examples” zu finden, die es uns
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ermöglicht, zwischen dem faszinierenden Phänomen der “adversarial example”
und nicht verblüffenden Beobachtung, dass wir die Entscheidung eines automa-
tischen Klassifizierers ändern können, indem wir den Inhalt des Eingabebildes
ausreichend ändern. Wir verwenden diese Definition, um besser zu verstehen,
warum “adversarial examples” existieren. Insbesondere zeigen wir, dass die Modali-
tät der Datenverteilung die Robustheit der auf den Daten trainierten Klassifikatoren
auswirkt.

Der Stand der Technik, um zu verstehen, welche Merkmale ein tiefes neuro-
nales Netz verwendet, um seine Vorhersage zu erreichen, sind “Sailiency Maps”.
Eine “Sailiency Map” ist eine Abbildung, die jedem Pixel des Eingabebildes einen
Wichtigkeitswert zuweist. Folglich kann sie wichtige Bereiche des Eingabebildes
hervorheben. Die wichtigsten Methoden zur Erstellung dieser “Sailiency Maps” sind
der Gradient der Funktion, die durch das tiefe neuronale Netz dargestellt wird, das
Austauschen von Regionen des Eingabebildes und die Taylor-Approximation der
Abbildung von der Störung auf die Veränderung der Ausgabe des neuronalen Netzes.
Bei der Gradientenmethode wird der Gradient der Funktion, die die Eingabebilder
auf die Vorhersage des tiefen neuronalen Netzes abbildet, berechnet. Dieser Gradi-
ent wird entweder direkt als Wichtigkeit verwendet oder leicht modifiziert. Bei der
Austauschmethode werden Teile des Eingangsbildes ausgetauscht und die Vorher-
sage des Klassifikators neu berechnet. Die Wichtigkeit ergibt sich aus der Differenz
zwischen der ursprünglichen Vorhersage und der Vorhersage für das geänderte Bild.
Die Taylor-Approximationsmethode ist eine Zwischenlösung zwischen den beiden
Verfahren. Die Idee besteht darin, die Funktion, die die Störung auf die Änderung
der Vorhersage des Klassifikators abbildet, durch eine Taylor-Approximation erster
Ordnung zu approximieren. Alle Methoden, die auf “Sailiency Maps” aufbauen,
weisen jedoch Schwächen auf, die eine Lücke zwischen dem aktuellen Stand der
Technik und den Anforderungen an das Verständnis tiefer neuronaler Netze of-
fenbaren. Erstens ist keine der drei oben genannten Methoden natürlich mit der
Wichtigkeit einer Eingabe verbunden. Zweitens, da semantische Teile des Bildes in
verschiedenen Bildern an unterschiedlichen Positionen befinden, ist es schwierig,
Beobachtungen, die an einzelnen Proben gemacht wurden, auf die Ebene des Klassi-
fikators als Ganzes zu verallgemeinern. Aber vor allem, drittens, da “Sailiency Maps”
nur Bereiche des Inputs hervorheben, können sie nur für Merkmale verwendet
werden, die durch eindeutige Bereiche des Inputs repräsentiert werden. Beispiele
für Merkmale die durch Bereiche des Bildes eindeutig repräsentiert werden sind
Teile von Objekten sind, wie z. B. der Kopf eines Vogels, während Eigenschaften
des gesamten Objekts, z. B. die Farbe eines Vogels, nicht durch Regionen eindeutig
repräsentiert werden.

In dieser Arbeit beschreiben wir eine Methode, die diese Schwächen nicht teilt.
Dazu verwenden wir Methoden der kausalen Modellierung. Kausale Modellierung
ordnet die Variablen und Prozesse eines Systems in einem gerichteten azyklischen
Graphen an, wobei die Variablen die Knoten und die Prozesse die Kanten bilden.
Eine solche Darstellung eines Systems wird als strukturelles Kausalmodell bezeich-
net. In diesem Modell beeinflusst eine Ursache eine Wirkung genau dann, wenn ein
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gerichteter Pfad im Graphen die Ursache mit der Wirkung verbindet. Wir stellen
das überwachte Lernen als strukturelles Kausalmodell dar. Um zu überprüfen, ob
ein Merkmal die Vorhersage eines Klassifikators beeinflusst, blockieren wir alle Pfa-
de mit Ausnahme des Pfades, der die Inferenzfunktion des Klassifikators darstellt,
indem wir die Variablen entlang der jeweiligen Pfade bedingen. Wir testen, ob auch
nach der Bedingung auf diese Variablen das Merkmal und die Vorhersage des Klas-
sifikators voneinander abhängig sind. Wenn das Ergebnis positiv ist, beeinflusst das
Merkmal die Vorhersage des Klassifikators durch die Inferenzfunktion. Mit anderen
Worten: Der Klassifikator extrahiert und verwendet das Merkmal. Wir zeigen, dass
diese Methode bestimmen kann ob ein Klassifikator ein Merkmal verwendet. Zu
diesem Zweck testen wir zum einen einfache Klassifikatoren, für die wir unsere Er-
gebnisse validieren können, und andererseits tiefe neuronale Netze, für die wir nur
feststellen können, dass unsere Methode plausible und aussagekräftige Ergebnisse
liefert.

Wir demonstrieren außerdem zwei Anwendungen unserer Methode. Erstens
zeigen wir, dass unsere Methode das Verständnis für die automatische Klassifizie-
rung von Hautläsionen verbessern kann. Hautkrebs ist eine sehr tödliche Krankheit,
deren frühzeitige Erkennung für die Behandlung entscheidend ist. Da die Früher-
kennung regelmäßige Kontrollen durch medizinisches Fachpersonal erfordert, ist
sie sehr arbeitsintensiv. Die automatische Klassifizierung von Hautläsionen kann
Ärzte unterstützen und eine Früherkennung ermöglichen. Die visuelle Analyse ist
ein üblicher erster Schritt bei der Klassifizierung von Hautläsionen, und Dermatolo-
gen haben Merkmale entwickelt, um festzustellen, ob eine Hautläsion bösartig ist.
Diese Merkmale werden in der dermatoskopischen ABCD-Regel genannt, einem Al-
gorithmus, der zur Erkennung von Melanomen entwickelt wurde. Wir untersuchen
mehrere moderne Klassifikatoren und ermitteln, ob sie die in der dermatoskopi-
schen ABCD-Regel genannten Merkmale verwenden. Darüber hinaus untersuchen
wir, ob dieselben Klassifikatoren auf Stögrößen wie Alter, Geschlecht und Hautfarbe
des Patienten oder das Vorhandensein farbiger Pflaster im Eingabebild.

Wir stellen fest, dass einige der Merkmale in der ABCD-Regel von den Klas-
sifikatoren verwendet werden, um Melanome zu identifizieren, aber nicht, um
seborrhoische Keratose zu identifizieren. Im Gegensatz dazu verlassen sich alle
Klassifikatoren in hohem Maße auf die Biasvariablen, insbesondere auf das Alter
der Patienten und das Vorhandensein farbiger Pflaster im Eingangsbild.

Die zweite Anwendung ist “adversarial debiasing”. Beim “adversarial debiasing”
soll verhindert werden, dass ein neuronales Netz eine bekannte Biasvariable ver-
wendet. Zu diesem Zweck wird eine zweite Zielfunktion neben dem Klassifikations-
verlust verwendet. Dieser Debiasing-Verlust bestraft das tiefe neuronale Netz dafür,
dass es die Biasvariable verwendet. Da ein offensichtlicher erster Schritt in diesem
Prozess darin besteht, festzustellen, ob das tiefe neuronale Netz ein Merkmal ver-
wendet, findet unsere Arbeit Anwendung. Der Stand der Technik bei “adversarial
debiasing” besteht darin, die Unabhängigkeit zwischen der Biasvariable und der
Vorhersage des Klassifikators zu erzwingen. Aufbauend auf den Arbeiten zur Bestim-
mung, ob ein Klassifikator ein Merkmal verwendet, schlagen wir vor, stattdessen
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die bedingte Abhängigkeit, bedingt auf die richtige Klasse zu verwenden. Wir bewei-
sen mathematisch, dass ein optimaler Klassifikator unter vernünftigen Annahmen
bezüglich der Bias-Erzeugung diese bedingte Abhängigkeit erfüllt, während er die
bedingungslose Unabhängigkeit nicht erfüllt, die von anderen Arbeiten im Bereich
des “adversarial debiasing” verwendet wird. Darüber hinaus zeigen wir anhand
eines künstlichem und eines Beispiels auf Fotos, dass unser Ansatz den Stand der
Technik im “adversarial debiasing” übertrifft.

Zusammenfassend lässt sich sagen, dass wir tiefe neuronale Netze transparenter
und folglich robuster machen. Zu diesem Zweck zeigen wir die aktuellen Herausfor-
derungen beim Verständnis tiefer neuronaler Netze anhand des Phänomens der
“adversarial examples”. Wir verwenden Kausalität und struktureller Kausalmodelle,
um festzustellen, ob ein tiefes neuronales Netz ein Merkmal verwendet. Wir zeigen,
dass diese Methode feststellen kann, ob ein automatischer Klassifikator ein Merk-
mal verwendet. Wir zeigen, dass die daraus resultierende Methode anwendbar und
wertvoll ist, indem wir sie auf das Problem des Verständnisses der Klassifizierung
von Hautläsionen anwenden. Wir entwickeln ein neues, verbessertes Verfahren für
“adversarial debiasing”, das auf unserer neuen Methode basiert, und zeigen, dass
diese Methode andere Methoden aus der Literatur übertrifft.
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1 Introduction

In recent years, deep neural networks have reached impressive performance and
have superseded classical machine learning methods for many tasks in computer
vision. The adaption of deep learning brought many advantages but also rised new
challenges in these tasks. To illustrate these advantages and new challenges, we
use automatic skin lesion classification as an example throughout this introduction.
The task in skin lesion classification is to predict whether a skin lesion is malignant
from an image of the skin lesion. For a further introduction into this relevant,
challenging task, we refer the reader to Section 1.2.

The main structure of classical machine learning algorithms for classifying skin
lesions stayed the same for a long time. It is displayed and summarized in Celebi
et al. (2007). The algorithms include four steps. In the first step, the algorithm
divides the image into the lesion and the image’s background. The second step is
to extract the skin lesion’s handcrafted, medically relevant features. Candidates
for these features are, for example given by the ABCD rule (Nachbar et al., 1994;
Stolz and Kunz, 2021) or by the seven-point checklist (Bahmer et al., 1990). The
third step is to select a subset of these variables with a high predictive power for the
classification task. Finally, a classifier is trained on these features in the fourth step.
This methodology produced classifiers that reached classification performance
comparable to practitioners in practice as investigated, for example, by Hoffmann
et al. (2003). Not only was this multistep procedure state-of-the-art in skin lesion
classification, but it is representative of shallow machine learning methods in many
tasks. A significant advantage of this approach is its interpretability. Since the
features are handcrafted and relevant from the perspective of the domain, a simple,
interpretable classifier achieves excellent results.

However, deep learning approaches have proven to be even more effective
in recent years. Deep learning classifiers condense the multiple steps of shallow
learning classifiers into one end-to-end optimization. This condensation increases
the method’s effectiveness but these performance improvements come at a cost.
First, the method requires more images and computing capabilities, and, since the
features are selected automatically by the deep learning algorithm, it is non-trivial
to understand which features it selects.

In the example of skin lesion classification, large datasets are provided, for exam-
ple, by Tschandl et al. (2018), Combalia et al. (2019) and Codella et al. (2018). Newer
deep learning classifiers condense the four abovementioned steps into a single
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training step. A large ensemble of deep neural networks is used as the classifier.
These networks are pre-trained on large image datasets, for example, ImageNet
(Russakovsky et al., 2015) and employ heavy test time augmentation (Perez et al.,
2018). An example for such an ensemble classifier is described in Gessert et al.
(2020). The performance of these deep learning ensemble classifiers is impressive.
A study conducted by Tschandl et al. (2019) compared the performance of the best
algorithms from the ISCI 2018 challenge (Codella et al., 2019) with experienced
practitioners. They presented human readers with batches of thirty images that had
to be classified as one of seven predefined classes. They found that deep learning
algorithms outperformed even dermatologists with more than ten years of experi-
ence by a margin of 22 percentage points. However, the authors can no longer tell
which features the classifier uses, which motivates further research (Tschandl et al.,
2020).

Nevertheless, understanding which feature is used by an automatic classifier is
important in many tasks. This importance is highlighted by two example groups
of tasks where it is crucial to understand which feature is used by the classifier.
The first group is safety and security-critical tasks. This group includes not only
medical tasks such as the one explained in the example above but also tasks such
as the prediction of recidivism as employed in the USA (Barry-Jester et al., 2015)
or driver assistance systems that, for example, predict the aquaplaning risk from
a camera image as proposed, for example, by Schneider et al. (2018). In all of
these applications, people trust the predictions of deep learning algorithms with
their live, well-being or freedom. Therefore, it is important to understand which
feature is used by the automatic classifiers that make these decisions. For example,
Barry-Jester et al. (2015) and Larson et al. (2016) express concerns that Northpoint’s
COMPAS1 system uses the membership of an ethnic group.

The second group of classifiers for which it is important to understanding which
features are used by a deep neural network are classifiers in scientific areas where we
want to use their ability to detect informative features as well as find and understand
links in the data. An example for such an area is climate and earth-system science.
In climate science, classifiers often focus on understanding the system rather than
predicting it accurately. In many ways, deep learning is a good fit for climate science.
The amount of available data is immense, the data is highly autocorrelated, and we
cannot conduct large-scale controlled experiments. However, the focus is often not
to predict variables as precisely as possible but to understand the data. As described
above, the high complexity of deep neural networks and the fact that they are best
trained end-to-end makes it challenging to understand the predictions of deep
neural networks.However,

1. most tasks in climate science are not pure prediction or classification tasks.
Instead, they focus on understanding which features in the data are important
and how variables are connected.

2. Physics aims to understand micro-processes and infer the behavior of macro

1www.northpointeinc.com
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processes by the laws of statistics. Hence, micro-processes are precisely de-
fined, while macro processes are often inherently stochastic and fuzzily de-
fined. Therefore, the vast knowledge on these macro processes is hard to
present by labeled data points. This challenge necessitates a method to evalu-
ate whether these macro processes are respected and correctly modeled in
the deep learning models, including their connections.

3. Climate Science is often concerned with predicting future scenarios that have
never existed. While it is common to evaluate deep neural networks on hold-
out test data, measurements for these scenarios do not exist. Hence, we need
other ways to evaluate models in this situation. Understanding deep neural
networks and identifying which features they use in their decision-making
process can be an alternative way to evaluate deep neural networks.

4. The different climate and earth-system science variables are often heavily
interconnected and correlated. These connections make it difficult to develop
systems that ignore certain features of a situation. Due to the dependence
between variables, it is not enough to omit a variable from the input, but we
must actively correct other variables. The first step towards enforcing that a
classifier ignores a variable is to measure whether the classifier uses it.

The main goal of this work is to further our understanding of which features
are used by a deep neural network. More specifically, the focus of this work is to
understand whether the deep neural network uses a specific, previously known
feature. This task is, however, challenging. One observation that demonstrates the
missing understanding in this area is adversarial examples. An adversarial example
is an input image to an automatic classifier that an adversary manipulates to fool
the automatic classifier by adding a perturbation that is imperceptible to a human
observer. An example of adversarial examples can be found in Figure 2.2. Since the
perturbation is imperceptible to a human observer, it can not change any input
image feature that a human would consider relevant. Consequently, the fact that
this manipulated input is classified wrong by the automatic classifier, even though
all features relevant to a human are identical to the original input, proves that the
classifier considers different features than a human. For this reason, we start our
investigation with a study on adversarial examples. We investigate ways to measure
whether an example is an adversarial example objectively. We present theoretical
advances and empirical experiments on the reasons why adversarial examples exist
in Section 2.5 and Section 3.

Adversarial examples demonstrate that it is non-trivial to find which feature is
used by a deep neural network. To tackle this challenge, we developed a method to
determine whether an automatic classifier uses a feature. While the method applies
to any supervised learning algorithm, we focus primarily on deep neural networks
in this work.

One of the main challenges when developing an algorithm to determine which
feature a deep neural network uses is that there is no generally agreed-on method
against which to evaluate the algorithm. Hence, it is crucial to base the algorithm on
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a solid theoretical foundation. To this end, we base our method on the framework of
causal modeling introduced by Pearl (2009) and Peters et al. (2017). This framework
is specifically designed to answer questions about the influence of random variables
on each other and is, hence, a good fit for the question we want to tackle. We provide
a short introduction into the field of causal modeling as well as references to further
reading and discussion of the framework in Section 2.1.

One of the cornerstones of the causal modeling framework of Pearl (2009) and
Peters et al. (2017) is Reichenbach’s common cause principle (Reichenbach, 1991).
This principle states that if two variables are correlated or more generally statistically
dependent, either one of them is causing the other or there exists a third variable,
which we call a confounder, that is causing both of the original variables. This
principle allows us to connect whether a variable is causing another variable, or, in
other words, whether a variable is used to determine another variable to the result of
a mathematical independence test. By considering not only the resulting classifier
but the whole pipeline of supervised learning, this framework allows us to construct
a causal graph that represents the processes and variables involved in supervised
learning. These processes and variables are the distribution of the examples of
a specific label PL, the training set TS, the weights of the supervised learning
algorithm W , the feature of interest X, the set of features X̄ that are orthogonal
to the feature of interest as well as the prediction P of the supervised learning
algorithm, the sampling processes ST and SF to sample the training set or to sample
single examples for inference, respectively, as well as the training process T and the
inference process F . In Section 4.1.2 we explain how these variables and processes
form the graphical model depicted in Figure 4.3. Using that graphical model, we can
reduce the question of whether a deep neural network uses a feature to a conditional
independence test, namely the test

X ⊥⊥ P |L

whether the feature X we investigate and the prediction P of the supervised learn-
ing algorithm are dependent given the ground-truth label L of the input sample.
Hence, we reduced the challenging question of whether a deep neural network
uses a feature down to a simple mathematical dependence test. This solution has
excellent properties. First, it has a solid theoretical foundation in causal modeling
and causal inference. Due to its simplicity, it applies to black-box deep neural
network classifiers. Neither retraining nor intermediate results of the classifier are
needed. These properties allow the use of our method even for users outside of the
domain of deep learning experts, for example, domain experts from the domain
of the prediction or classification task. Further, our method is not specific to deep
neural networks but can instead be used for any supervised learning algorithm, for
example, the random forest (Ho, 1995) or the k nearest-neighbor classifiers (Altman,
1992). More importantly, since it is not specific to any supervised learning classifier,
it will most likely be valid for classifiers developed in the future.

A simple proof of concept on synthetic data is published in Reimers et al. (2019).
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Subsequent research demonstrates that our method applies to big data sets com-
posed of real-life images. These datasets include MSCOCO (Lin et al., 2014), a data
set of photographs of everyday situations and crowded scenes containing multiple
objects in every image, CUB200 (Welinder et al., 2010), a fine-grained bird recog-
nition data set and HAM10000 (Tschandl et al., 2018), a medical datasets of skin
lesions images. Experiments on these datasets, together with a thorough discussion
of the underlying theory, are published in Reimers et al. (2020). We describe the
theoretical considerations in Section 4 and the experiments in Section 4.3.1. In
two studies, we further demonstrated the usefulness of this new method to deter-
mine whether a deep neural network uses a feature. We present the first of the
two applications in Section 4.2.2. This application investigates which features a
state-of-the-art automatic skin lesion classifier uses to determine whether a skin
lesion is, for example, melanoma or seborrheic keratosis. To this end, we trained
two groups of deep neural networks recognizing different classes of skin lesions
following the training described in Perez et al. (2018) and Gessert et al. (2020). For
all classifiers in both groups, we evaluate whether they use any out of four groups
of features. The first group of features is features that have little to no information
on the skin lesion itself. The fact that our method does not indicate that any of the
groups of classifiers use any of the features indicates that our method is suitable for
this complex real-world medical dataset. Furthermore, it indicates that in the cases
where our method indicates that a feature is used, the classifier actually uses this
feature.

The second group of features contains medically relevant features. When der-
matologists decide whether a skin lesion is a melanoma, they rely on four fea-
tures named in the dermoscopic ABCD rule introduced by Nachbar et al. (1994).
To increase the trust in deep neural network classifiers for automatic skin lesion
classifiers, we test whether they also use these features. The four features in the
ABCD-rule are the number of orthogonal symmetry axes in the contour of the im-
age, the sharpness and clearness of the border of the skin lesion, the variation in
colors among different regions of the skin lesion and the presence of predefined
dermoscopic features in the skin lesion, namely milia like cysts, negative networks,
pigment networks, streaks, and globules. We find that the feature that concerns
the symmetry and the feature that concerns the border of the skin lesions is used
by classifiers trained to recognize melanoma but not by classifiers that recognize
seborrheic keratosis. This result is expected since, as mentioned above, the ABCD
rule was designed to recognize melanoma and not developed to recognize sebor-
rheic keratosis. Further, we found that the color feature, defined as the number of
colors appearing within the skin lesion, is not used by the classifiers. Finally, we
find that no network uses the dermoscopic structures-feature. The reason for this
observation is that discovering these structures is a challenging problem in itself. In
a challenge that was held specifically to segment skin lesions into the dermoscopic
structures, described by Codella et al. (2019), the best algorithm reached a Jaccard
score of only 0.307.

Since we found that the classifiers do not use the color feature, the third group
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of features quantifies the color of the skin lesion. If we include the value and the
saturation in addition to the color, many of the skin lesion classifiers use it to
determine their predictions.

As described earlier, one of the main concerns of domain experts against em-
ploying deep neural networks in safety or security-critical tasks like the automatic
classification of skin lesions is that deep neural network classifiers might be biased.
To this end, many biases have been found in different datasets of skin lesion images.
Some examples are explained and investigated in Bissoto et al. (2020). For the final,
fourth group of features, we focus on four biases in this work. The first two biases
on which we focus are the sex and age of a patient. Some deep learning classifiers
reach vastly different accuracies on images of skin lesions in women and images of
skin lesions in men as well as for groups of patients of different ages, as reported
for example in Muckatira (2020). Since the sex of the patient can be extracted from
the image, for example, by using the body hair, the first two features in this final
group are the age and the sex of the patient. The third bias we investigate is the skin
color of the patient. The available datasets only contain images of people of light
skin, and, hence, this test only considers different shades of light skin. We find that
especially the classifier trained to recognize seborrheic keratoses use this feature.
Based on these findings, we investigate the training set of the 2017 ISIC challenge
dataset (Codella et al., 2018) and find an unknown bias. Finally, we investigate the
existence of colorful patches in the image. These patches were introduced into
the ISIC archive 2 through the introduction of the data from the Study of Nevi in
Children (SONIC) Project (Scope et al., 2016). Some images of the SONIC Project
contain colorful patches that are stuck to the patient’s skin and can be found in the
image. Since the study only considers nevi, it introduces a bias into the ISIC archive
and connects colorful patches to nevi. Therefore, the colorful patches can be used
to form a cleverhans predictor (Lapuschkin et al., 2019). We find that all groups of
classifiers use at least one of these biases. The use of these biases demonstrates that
more work is needed to train reliable and unbiased classifiers. The results of our
study were presented in a talk at the ISIC-Workshop at CVPR 2021 (Reimers et al.,
2021b).

The most straightforward way to train an unbiased classifier is to use an unbi-
ased dataset. However, it is not feasible to collect an unbiased dataset for many
tasks, such as the medical task described above. Collecting an unbiased dataset
can be unfeasible if it is costly, dangerous or unethical to collect particular exam-
ples. Hence, we need methods to stop bias propagation from the biased dataset
to the classifier. One way to achieve this goal is adversarial debiasing. The idea
of adversarial debiasing is to construct and use an additional loss function that
penalizes the use of a known bias feature. An essential first step in this direction
is determining whether a classifier uses a specific feature. Since the method pro-
posed in this work is a criterion for whether a classifier uses a feature, we can use it
to improve adversarial debiasing if we turn the criterion into a differentiable loss
function. Therefore, the second application of the method proposed in this work

2www.isic-archive.com
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is an adversarial debiasing method in Section 4.2.2. In that section, we begin by
introducing the problem of adversarial debiasing. Furthermore, we introduce the
state-of-the-art and explain the differences between adversarial debiasing based on
our new criterion and adversarial debiasing based on other criteria. In contrast to
other methods from the literature that propose methods that fit any bias, we focus
on only one, well-defined bias. To define this bias, we divide all features of an image
into two categories. The first category contains features relevant to the classification
task at hand, and the second category contains features that do contain no or a
neglectable amount of information relevant to the classification task. An optimal
classifier would utilize the features of the first category and ignore all features of
the second category. However, when building a dataset, one of the second category
features can contain information on the label within the dataset. This connection
occurs because a feature of category two is correlated with features of category one
in the finite sample. This might sometimes happen due to a lack of caution when
collecting the dataset. However, it can also be due to valid concerns. One possible
reason can be safety concerns. As an example, consider a situation where we collect
data to train a driver assistance system that predicts the aquaplaning risk from
images as proposed, for example, by Schneider et al. (2018). For the situation of low
aquaplaning risk, recording images is straightforward. We can simply drive around
and collect data in the wild. This procedure is not only a cheap way of generating
images, but the data will, further, contain a realistic distribution of diverse road
surfaces and image backgrounds that mimics the distribution we expect during the
application of the system. In contrast, letting a driver drive into an aquaplaning
situation is dangerous. Therefore, all images that display a high aquaplaning risk
have to be recorded in a specific facility in which the driver’s safety can be guaran-
teed, even in situations where the car starts aquaplaning. This restriction influences
the distribution of street surfaces and backgrounds found in the images with high
aquaplaning risk. However, the road surface and the image background are features
of the second category that the system should not use to determine the aquaplaning
risk during its intended application. Due to the safety risk, the classifier will link
the road surface and the background in the special facility to high aquaplaning
risk. Hence, the dataset is biased. Another reason why a dataset might contain a
bias is ethical reasons. For example, in a medical image dataset, images of severe
illness might contain artifacts caused by the treatment of the illness. The only way
to create images of severe illness without these artifacts is to withhold treatment
from patients that need it. Since this would be unethical, we have to accept the
bias in the dataset. Finally, acquiring a specific combination of meaningful and
meaningless features might be unfeasible. Specifically, if both features are rare, the
combination might be missing in the dataset. These three situations demonstrate
that the kind of bias tackled in this work is common in many tasks of computer
vision. Further, the focus on one kind of bias allows us to give a formal definition of
the creation of the bias in the form of a structural causal model. This model allows
us to include a theoretical discussion, incorporating formal mathematical proof
for a simple case. This proof demonstrates that the optimal classifier fulfills our
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criterion of whether it uses the bias feature in a simple case. On the other hand, we
prove that the optimal classifier does not fulfill the criterion used by state-of-the-art
methods from the literature. To empirically evaluate the difference between these
two criteria, we need to implement them as differentiable losses. Hence, in Sec-
tion 4.2.2.3 we describe three different implementations of the criterion proposed
in this work as a differentiable loss function. The three implementations cover the
conditional mutual information, the maximum conditional correlation coefficient
and the Hilbert-Schmidt conditional independence criterion. In that section, we
explain the main idea of these implementations, including the relation to their
counterparts in the state-of-the-art approaches from the literature.

Finally, in Section 4.3.3, we empirically investigate the difference between adver-
sarial debiasing based on the method proposed in this work and the state-of-the-art
in adversarial debiasing from the literature. To this end, we propose three experi-
ments. For the first experiment, we create a synthetic dataset that maximizes the
difference between our adversarial debiasing method and the methods from the
literature. On this dataset, our method outperforms the methods from the literature.
In the second experiment, we conduct an ablation study to demonstrate that the
performance increases because we change how to check whether a deep neural
network uses a feature. Finally, to show that these advantages of our new method
also generalize to real-world images, we describe experiments on real data. On this
dataset, we train a classifier that distinguishes cats from dogs. To introduce a bias
into the dataset, we correlate a feature that is not suited to differentiate between
cats and dogs with the meaningful features that cover the differences between cats
and dogs. The meaningless feature we use for this experiment is whether the color
of the animal’s fur is light or dark. Using this feature, we create multiple datasets
with varying amounts of bias. These datasets allow us to compare our method to a
baseline classifier that does not utilize adversarial debiasing and methods from the
literature on datasets with varying amounts of bias. Furthermore, these datasets al-
low us to evaluate the connection between the amount of bias and the improvement
of our method over the state-of-the-art methods on datasets of varying amounts
of bias. We observe that our method outperforms the baseline and the methods
from the literature and that the improvement in accuracy on unbiased data emits a
strong correlation to the amount of bias in the dataset. This study was originally
published in Reimers et al. (2021a).

1.1 Adversarial Examples

In the first part of this work, we consider adversarial examples. An adversarial
example is an example an adversary produces from a clean input example. The
adversary’s goal is to add a perturbation to the input that is imperceptible for
a human observer but changes the classification of an automatic deep learning
classifier.

The idea that an adversary can slightly alter an input to an automatic classifica-
tion system to trick the automatic system into misclassifying the input is older than
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the recent success of deep neural networks. It is discussed, for example, by Dalvi
et al. (2004), and Lowd and Meek (2005) for the detection of spam in emails. Since
Szegedy et al. (2013) first considered adversarial examples for deep neural networks,
researchers made a great afford to find methods to create adversarial examples
(Carlini and Wagner, 2017; Goodfellow et al., 2014b; Moosavi-Dezfooli et al., 2017,
2016) and to make deep neural networks more robust against adversarial attacks
(Bai et al., 2017; Goodfellow et al., 2014b; Gu and Rigazio, 2014; Kannan et al., 2018;
Li and Li, 2017; Lu et al., 2017; Madry et al., 2017; Papernot et al., 2016c; Rozsa et al.,
2018, 2016b; Tramèr et al., 2017b).

Similar to the example of spam detection, at the beginning of the investigations
into adversarial examples for deep neural networks, most of the studies focused on
safety and security questions. For example, Eykholt et al. (2017), and Metzen et al.
(2017) demonstrated that adversarial attacks are robust enough to fool the visual
recognition systems of driver assistance systems in the real world. However, the
situation in which adversarial examples are a serious security risk is not obvious.
For example, Gilmer et al. (2018a) have called into question whether an actual threat
model exists. They argue that more manageable and more robust attacks in almost
all scenarios do not involve minimal perturbations. Hence, situations that require
an adversary to find a minimal perturbation of a given, genuine input that fool a
classification system but not a human observer are rare. In contrast to the research
on adversarial examples prior to the interest in deep learning, the motivation for
research on adversarial examples is not limited to security questions of automatic
classifiers. As described above, the existence of adversarial examples proves that
deep neural networks use different features than a human observer to classify an
input. More specifically, visualization methods as, for example, Erhan et al. (2009)
and Zeiler and Fergus (2014) suggest that the first layers of deep neural networks
identify basic structures like edges or colors, which are in deeper layers combined
to identify more complex parts of objects. However, adversarial examples challenge
this view. A classifier that combines basic features in later layers is inherently
immune to adversarial examples. The imperceptible perturbation does not change
any of these basic features such as edges or corners. If later layers do nothing but
combine these features, they would be immune to adversarial attacks. However,
as demonstrated, for example, in Dong et al. (2017), the representations in later
layers are changed by adversarial attacks. Because adversarial examples are linked
to the features a deep neural network uses, researchers consider them to get a better
fundamental understanding of deep neural networks. For example, Su et al. (2018)
link the adversarial vulnerability of a classifier to its generalization performance,
and Stutz et al. (2019) link them to the quality of gradients in interpretation tasks.

One way to understand why adversarial examples exist and, consequently, which
features are selected by a deep neural network is to link a classifier’s vulnerability
to adversarial examples to the properties of the deep neural networks and the
datasets on which they are trained. Previously, the first of these two ideas have been
investigated. For example, Cubuk et al. (2017) compare nine different classifiers on
the same task and compare the number of successful adversarial attacks, and Su
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introduced adversarial examples for deep neural networks. That work gives two
important properties of the adversarial examples in addition to the definition.
These two properties are that, first, we can find an adversarial example close to
every example in every dataset, meaning the adversarial perturbation is small, and,
second, that neither the perturbation nor the resulting adversarial image resembles
the target class. The idea of how we use the latter is displayed in Figure 1.1.

These properties are the difference between the intriguing and surprising phe-
nomenon of adversarial examples and the inevitable fact that a big enough per-
turbation will change the decision of a classifier. As we, for example, displayed in
Figure 3.2 in Section 3.1. In Section 3, we furthermore explain how we use both
of these properties to identify adversarial examples independent of the dataset.
Since we can measure adversarial examples independent of the dataset, we identify
a property of datasets associated with adversarial robustness, namely the multi-
modality of individual classes’ distribution. We find that the multi-modality of the
class distributions makes the adversarial examples not resemble the target class.
In our experiments in Section 3.3, the DeepFool algorithm introduced by Moosavi-
Dezfooli et al. (2016) was able to find true adversarial examples in the multimodal
case, while it only found adversarial examples that resemble the target class for the
unimodal case.

1.2 Identifying Features Relevant for Skin Lesion

Classification

The first application of our method that we describe in this work is the investigation
of state-of-the-art automatic skin lesion classifiers. These classifiers are used to
classify images of skin lesions. One essential task in skin lesion classification is
determining whether a skin lesion is skin cancer.

Skin cancer is one of the most common forms of cancer, and melanoma is the
most dangerous form of skin cancer. As described, for example, by Geller et al.
(2007), the most promising method to increase the chance of survival for patients
is early diagnosis. Regular checkups by trained medical professionals are needed
to guarantee an early diagnosis. However, the medical professionals necessary
to offer such labor-intensive examinations comprehensively are not available in
many regions. One possibility to reduce the amount of human labor necessary is to
employ automatic skin lesion classifiers.

To this end, many methods have been proposed to support practitioners. In one
approach that, for example, Celebi et al. (2007) pursue, hand-crafted features are
automatically extracted from the input and then processed by a simple classification
method. Another approach is to use deep neural networks. For example, Perez
et al. (2018),Gessert et al. (2020), Esteva et al. (2017) and Brinker et al. (2019) feed
the sample images directly into a deep neural network, which performs feature
extraction and classification in a single step.

The main advantage of the former approach is interpretability. Since the classifi-
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cation methods used in this approach are simple, the main difficulty is selecting
features. One suitable set of features used in these algorithms is the set of features
named in the dermoscopic ABCD rule presented by Nachbar et al. (1994) and Stolz
and Kunz (2021). The ABCD rule is an algorithm for dermatologists to differentiate
between melanoma and nevi in dermoscopic skin lesion images. To aid with this
differentiation, the user extracts four features of the skin lesion, namely Asymmetry,
Border, Color and Dermoscopic structures. A numerical value for each feature
is calculated, and all values are combined linearly into a total dermoscopy score.
Thresholding this total score yields high accuracy to distinguish melanoma from
benign nevi. When using these features, we can guarantee that the automatic classi-
fier bases its decision on meaningful features and, therefore, dermatologists and
patients can trust the predictions of these algorithms. The fact that the ABCD rule
is an algorithm makes it straightforward to automatize. The most challenging task
is to extract the four abovementioned features automatically.

In contrast, the deep learning approach has the advantage of higher accuracy. In
recent years, a new state-of-the-art has formed. Instead of extracting hand-crafted
features according to the ABCD rule, for example, in Gessert et al. (2020) a large
ensemble of very deep neural networks selects the features automatically. Addition-
ally, pretraining on large out of domain image datasets like ImageNet (Russakovsky
et al., 2013) and heavy data augmentation, including test time augmentation, as pro-
posed in Perez et al. (2018) is used. These advancements allow researchers to create
automatic skin lesion classification systems that outperformed even experienced
practitioners, as was evaluated by Brinker et al. (2019) and Tschandl et al. (2019).
However, a user who employs a deep learning system has no control over the feature
selection process of the system’s features for classification, because, as described,
for example, by Reimers and Requena-Mesa (2020) a central idea of deep learning is
automatic feature extraction. In the automatic skin lesion classification setting, it is
challenging to determine whether the classifier still relies on the features named in
the ABCD rule. Instead classifiers might rely on bias features, which are, for example,
described by Mishra and Celebi (2016), Rieger et al. (2020), Muckatira (2020) and
Bissoto et al. (2019) and exist in all datasets.

To tackle this question, in Section 4.2.1 we present three results. First, we verify
that the method presented in this work is suitable for classifiers in the complex, real-
world problem of automatic skin lesion classification. To this end, we selected four
features of skin lesion images that contain little to no information useful towards
classifying the skin lesion in the image. Our experiments show that our method
produces almost no false positives for these meaningless features. Second, we in-
vestigate whether state-of-the-art deep neural networks use the features named in
the ABCD rule. Our experiments show that networks trained to identify melanoma
use the asymmetry and border feature but not the color and dermoscopic structure
feature. In contrast, models trained to identify seborrheic keratosis use only the
color, but neither asymmetry and border nor the dermoscopic structures. Third, we
test whether the deep neural networks rely on known biases. Our experiments find
that the classifiers use the patients’ age and skin color to classify a skin lesion. Fur-
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ther, we find that classifiers use the spurious connection between colorful patches
and nevi in the SONIC dataset (Scope et al., 2016) which Mishra and Celebi (2016)
and Rieger et al. (2020) previously reported. We describe the exact features and
how we score them automatically in Section 4.2.1.4. Furthermore, we describe the
experimental results in Section 4.3.2.

1.3 Debiasing

The second application we use to investigate the performance of the method de-
scribed in this work is adversarial debiasing.

The impressive performance of deep neural networks makes their use in many
areas more desirable. These areas comprise classical computer vision tasks like
object detection, for example, Russakovsky et al. (2015) and semantic segmentation,
for example, Long et al. (2015). Furthermore, they include safety- and security-
critical areas, for example, the prediction of recidivism described in Angwin et al.
(2016) or medical tasks, for example, the automatic classification of skin lesions
described in the previous section and presented, for example, in Perez et al. (2018),
Gessert et al. (2020) and Tschandl et al. (2018). However, many domain experts have
concerns about using automatic deep learning classifiers, especially for safety and
security-critical tasks. Even though, for example, Tschandl et al. (2019) shows that
these classifiers outperform human experts, users fear biased classifiers. Indeed, for
example, in the task of automatic skin lesion classification Muckatira (2020) show
that the performance of classifiers varies across age groups, and Wang et al. (2020)
demonstrates that many image datasets contain biases.

One main reason classifiers are biased is that they are trained on biased datasets.
Every dataset is a unique slice through the visual world (Torralba and Efros, 2011).
Hence, a dataset does not represent the real world perfectly. To further describe
the bias, we partition all input features into two sets. The first set contains features
relevant to the classification task, and the second set contains all features that are
not relevant for the classification task. The optimal classifier identifies the first
set of features and uses it to predict the class. However, a feature from the second
group is correlated to a class label in a biased dataset. We call such a feature a bias
feature. As described above, this is not necessarily due to carelessness during the
data collection process but might instead be due to security or safety concerns, due
to ethical considerations or due to it being difficult to acquire certain samples. If a
classifier is trained on such a dataset, it might use this meaningless feature to create
a “Clever-Hans” classifier (Lapuschkin et al., 2019). One way to stop a classifier
from picking up such a bias-feature is adversarial debiasing. The idea of adversarial
debiasing is to introduce a second loss function Ldb in addition to the classification
loss Lcl. This second loss function, which we call the debiasing loss, penalizes the
use of the feature by the classifier.

The first step in this direction is a quantitative way to measure whether the
classifier uses a feature. To this end, related work (see Section 4.2.1.2) from the liter-
ature uses statistical dependence between the bias feature B and an intermediate
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representation R extracted from the deep neural network

B ⊥⊥ R. (1.1)

In the main part of this work, in Section 4.1, we demonstrate that this criterion is
too strict. While a representation can only be independent of a bias feature if the
classifier does not use it, the inverse is false. Even if a classifier ignores a feature,
the independence in (1.1) might still not hold. Instead, we use the conditional
dependence, conditioned on the ground truth label L,

B ⊥⊥ R |L. (1.2)

As discussed, for example, in Wang et al. (2020), various kinds of bias exist for
a multitude of reasons. In contrast to other papers from the literature, we do not
propose our method as a solution for every kind of bias. In contrast, we tackle only
one kind of bias for which we present a specific bias model in Section 4.1.2. This
formal description of the data generation model has two advantages. First, the
formal description allows us to provide rigorous mathematical proof. To this end,
we prove that the optimal classifier fulfills our conditional independence criterion
(1.2) but not the independence criterion (1.1). Second, this specific bias model
allows users to determine whether the method is suitable for a given situation.

To evaluate the change in criterion empirically, we need to turn the conditional
independence test into a differentiable loss. To this end, we propose to use the test
statistic of various conditional dependence tests, namely the conditional mutual
information (Wyner, 1978, Lemma 3.1), the maximum partial correlation coefficient
(Sarmanov, 1958) and the Hilbert-Schmidt conditional dependence criterion (Gret-
ton et al., 2007). We provide further explanations in Section 4.2.2.3. We demonstrate
that these new loss functions lead to a higher accuracy on an unbiased test set in
Section 4.3.3. In Section 4.3.3.1, we observe this increased accuracy in experiments
on a synthetic dataset, in Section 4.3.3.2, in experiments that show that this increase
in accuracy is due to the change in the criterion and, in Section 4.3.3.3, experiments
that show that this increase in accuracy generalizes to real-world images.

1.4 Outline

The rest of this work is structured as follows: We start, in Section 2, by introducing
the necessary fundamentals that are needed to follow the rest of this work. The
first of these fundamentels is the structural causal model theory introduced by
Pearl (2009) and Peters et al. (2017) in Section 2.1. To this end, we motivate causal
modeling in Section 2.1.3, introduce the framework of Pearl (2009) in Section 2.1.2,
discussing some shortcomings and limitations of this framework in Section 2.1.3
and, finally, discuss why this framework is a good fit for the problem tackled in this
work in Section 2.1.4. Afterward, in Section 2.2, we introduce the basic concepts of
deep learning. We begin that section by describing the problem of statistical learn-
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ing and, in particular, the problem of deep learning in Section 2.2.1 and, afterward,
explain why neural networks are a suitable instrument to tackle deep learning tasks
in Section 2.2.2. The method we propose in this work reduces whether a deep neural
network uses a feature to a conditional dependence test. Hence, we introduce the
theory of dependence tests as well as three unconditional and three conditional de-
pendence tests in Section 2.3. These dependence tests include the correlation and
partial correlation criterion in Section 2.3.1, the maximum correlation coefficient
criterion and the maximum partial correlation coefficient criterion in Section 2.3.2,
the mutual information criterion and conditional mutual information criterion
in Section 2.3.3 and, finally, the Hilbert-Schmidt independence criterion and the
Hilbert-Schmidt conditional independence criterion in Section 2.3.4. Afterward,
in Section 2.4, we introduce the state-of-the-art in understanding which features
a deep neural network uses. Our primary focus in this section lies on saliency
maps. We introduce the general idea of saliency map methods in Section 2.4.1.
This introduction includes the three main ways to create saliency maps, namely
gradient-based methods in Section 2.4.1.1, methods based on obfuscation of parts
in the input image in Section 2.4.1.2 and methods based on a combination of the
value and the gradient of the neural network at the input image in Section 2.4.1.3.
Afterward, we discuss other methods not based on saliency maps in Section 2.4.2.
We describe the method using concept activation vectors that is presented in Kim
et al. (2018) in Section 2.4.2.1 and the causal concept effect method presented in
Goyal et al. (2019) in Section 2.4.2.2. We explain methods that link intermediate
representations of a deep neural network to semantic concepts in Section 2.4.2.3
and, finally, methods that find images that maximize the score for a specific class,
in Section 2.4.2.4, and methods that explain the classifier using examples from the
training data in Section 2.4.2.5. As discussed above, we use adversarial examples
to demonstrate the lack of knowledge about which feature a deep neural network
extracts from the training set and uses for its predictions. Therefore, we close the
section on basics with an introduction to adversarial examples in Section 2.5. This
section includes an overview on methods to create adversarial examples in Sec-
tion 2.5.1. It contains, in Section 2.5.2, a discussion of the most intriguing properties
of adversarial examples, namely, that they exist close to each clean examples in
Section 2.5.2.1, that they do not resemble the target class in Section 2.5.2.2, that
they are robust to random noise in Section 2.5.2.3, that adversarial examples are
transferable between classifiers in Section 2.5.2.4, that the curvature of the decision
boundary is positive close to them in Section 2.5.2.5 and, finally, that the robustness
and the accuracy of a classifier are related in Section 2.5.2.6.

Further, in Section 2.5.3, we discuss whether adversarial examples provide a
realistic threat in real-world situations. Finally, in Section 2.5.4, we list suggestions
from the literature on why adversarial examples exist. These suggestions include the
theory of pockets of low probability in Section 2.5.4.1, the theory of overfitting a low
dimensional manifold in Section 2.5.4.2, the theory that the effect of correctly clas-
sified examples is too small in Section 2.5.4.3, the theory that the neural networks
are too linear in Section 2.5.4.4, the theory that adversarial examples are a natural
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consequence of misclassification in Section 2.5.4.5 and the theory of boundary
tilting in Section 2.5.4.6.

We then, in Section 3 describe our work in the field of adversarial examples.
Our main contribution in this field is to find an objective measure for the defining
principle of imperceptibility independent of the dataset. This objective measure
allows us to evaluate the influence of properties of the datasets on the adversarial
robustness of classifiers. We start the section by explaining the drawbacks of the
state-of-the-art ways to define adversarial examples and show why they do not
generalize across datasets in Section 3.1. We, afterward, describe how we adapt
this definition to make it comparable across datasets in Section 3.2. In Section 3.3
we present three experiments. First, in Section 3.3.1, we demonstrate that the
definitions we proposed in this work is dataset agnostic. Second, we compare
the adversarial robustness measured with the different definitions of adversarial
examples in Section 3.3.2. In the third experiment, in Section 3.3.3, we demonstrate
how these new definitions are used to find the relation between properties of the
dataset and the adversarial robustness of the classifier by demonstrating that the
adversarial robustness of classifiers trained on datasets where the distributions
of individual classes are multimodal is less than the adversarial robustness on
classifiers trained on other datasets.

We present the main contribution of our work in Section 4. That section is
divided into three parts. The first part, Section 4.1, introduces the theoretical back-
ground of our new method to determine whether a deep neural network uses a
feature. We start this section with an illustrative example in Section 4.1.1 and
continue with the explanation of the structural causal model that we construct
to represent the setting of supervised learning in Section 4.1.2. We first introduce
all variables and processes that are part of supervised learning and describe how
we can combine them in a structural causal model in Section 4.1.3. Afterward, we
present an introductory example to illustrate the described variables in Section 4.1.4.
Further, we describe the structural causal model and focus on the scope and lim-
itations of our proposed method. First, in Section 4.1.5, we discuss examples of
supervised learning where the introduced structural causal model does not fit. In
Section 4.1.5.1, we discuss situations in which the inference function has different
inputs, and, in Section 4.1.5.2, we discuss the possibility that one of the involved
processes is deterministic. We find that in both these cases, the conclusions that we
drew in Section 4.1.2 hold. In contrast, we describe the limitations of our method in
Section 4.1.6. In Section 4.1.7, we describe the relations between our new method
and the state-of-the-art methods from the literature. In Section 4.1.7.1 we compare
it to the saliency map methods. Furthermore, in Section 4.1.7.2 we compare it
with the method using concept activation vectors that is presented in Kim et al.
(2018) and in Section 4.1.7.3 to the causal concept effect method presented in Goyal
et al. (2019). We, furthermore, compare our method to methods that also rely on
causal modeling but use the neural network as a structural causal model in Sec-
tion 4.1.7.4 and, in Section 4.1.7.5, to methods of feature visualization. Finally, in
Section 4.1.7.6, we compare it to methods that explain the classifier using examples
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from the training data.
Following these theoretical considerations, we discuss the two main applica-

tions in Section 4.2. First, we present the direct application of determining which
features are used by state-of-the-art automatic skin lesion classification systems
in Section 4.2.1 and, second, in Section 4.2.2, the application of our method to the
problem of adversarial debiasing. We start Section 4.2.1, the section concerning
the application to skin lesion classification, by arguing why the method presented
in this work is suitable for this challanging real-live task in Section 4.2.1.1. In Sec-
tion 4.2.1.2, we discuss the related work from the literature. We introduce the
classifiers we investigate in Section 4.2.1.3 and the four groups of features in Sec-
tion 4.2.1.4. In the second application, the application to adversarial debiasing
presented in Section 4.2.2, we start by introducing the problem of adversarial de-
biasing in Section 4.2.2.1. As explained in the introduction, we tackle a specific
bias. To define this bias, we introduce the data creation model, a structural causal
model, in Section 4.2.2.2. In that section, we further present a discussion on the
situations in machine learning where we think that the bias model is suitable and
for which situations we do not consider it suitable. Further, we include proof that
demonstrates that, in a simple setting, the optimal classifier will fulfill our proposed
criterion, while it will not fulfill the criterion, which is more widely used throughout
the literature. Finally, in Section 4.2.2.3, we present three ways to implement our
new criterion as a differentiable loss function.

In Section 4.3, we present the empirical evidence that supports the theoretical
statements in the earlier sections. That section is divided into three parts. In the first
part, Section 4.3.1, we present the experiments to corroborate the general useability
of our method on complex, real-world datasets and show that it returns correct and
reasonable results. In the second part, in Section 4.3.2, we present the results for
which feature is used by state-of-the-art automatic skin lesion classification meth-
ods. Finally, in the third part, in Section 4.3.3, we present evidence that underpins
the claim that our new criterion outperforms the methods from the literature in
adversarial debiasing if the bias was created as presented in Section 4.2.2.2. The first
part contains three experiments. First, in Section 4.3.1.1, we present an experiment
on synthetic data created to verify that our method produces the correct results.
The second experiment, which we present in Seciton 4.3.1.2, demonstrates how this
method can be used to compare classifiers on specific aspects of the data without
using a specialized dataset. Finally, in Section 4.3.1.3, we present a further experi-
ment on the fine-grained problem of distinguishing bird species. The third part of
Section 4.3, the experiments to underpin the use of our method as an adversarial
debiasing criterion, also starts with a synthetic data experiment designed to maxi-
mize the difference between the two criteria in Section 4.3.3.1. In Section 4.3.3.2, we
present an ablation study that shows that we can attribute the increase in accuracy
to the change in criterion. Finally, we demonstrate that the increase in accuracy can
also be observed in real-world datasets in Section 4.3.3.3.

We finish the work by summarizing our conclusions in Section 5 and describing
possible directions of future work in Section 6.
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2 Background and Basics

In this section, we introduce some basic concepts and frameworks needed to un-
derstand the rest of this work. The main focus of this work is whether a feature
causes or, in other words, is relevant for the prediction of a deep neural network.
Therefore, as the first concept, in Section 2.1, we introduce the notation of cause
and effect, particularly, the causal modeling framework introduced in Pearl (2009)
and Peters et al. (2017). Afterward, in Section 2.2, we present the problem of statisti-
cal learning, including some applications and deep neural networks as a suitable
solution for these applications. A major component of the method proposed in this
work is statistical dependence tests. Section 2.3 introduces the concept of statistical
dependence tests and describes well-known dependence tests, namely correlation
and partial correlation, maximum correlation coefficient and maximum partial cor-
relation coefficient, mutual information and conditional mutual information, and
the Hilbert-Schmidt independence criterion and the Hilbert Schmidt conditional
independence criterion. Further, in Section 2.4, we introduce state-of-the-art in
feature attribution and visualization of deep neural networks. Finally, in Section 2.5,
we introduce the concept of adversarial examples.

2.1 Cause-Effect

This section introduces the basic concepts of the causal modeling framework intro-
duced by Pearl (2009) and Peters et al. (2017). We first, in Section 2.1.1, introduce
the problem that causal modeling is aiming to solve. Afterward, in Section 2.1.2,
we explain the basics of this causal modeling framework. Finally, we conclude
with some drawbacks of this causal modeling framework, with a comparison to
other causality frameworks and with a short conclusion in Section 2.1.3, as well as a
discussison on why this framework is suitable for the problem tackeled in this work
in Section 2.1.4.

2.1.1 Motivation of Causal Inference

The goal of statistical methods is to describe and analyze data. If we observe
a system composed of multiple variables X1, . . . , Xn, all information about this
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system is in the joint distribution

P(X1, . . . , Xn) (2.1)

of the variables involved. All other distributions, such as the marginal distribution
of one variable

P(X1) =

∫
P(X1, . . . , Xn)dx2 . . . xn (2.2)

or the conditional distribution

P(X1 |X2, . . . , Xn) =
P(X1, . . . , Xn)

P(X2, . . . , Xn)
(2.3)

can be calculated from the joint distribution. These distributions allow us to solve
many interesting problems in machine learning. For example, if we want to identify
outliers in a dataset, we can use the joint distribution to find the likelihood for each
example. Further, we can use the conditional distribution to, for example, fill gaps in
data where one of the variables is unknown while the other variables are observed.
Finally, knowing the joint distribution allows us to sample more unknown examples
from the same distribution.

However, there are also some tasks we can not solve, even if we have access to
the joint distribution. One of these tasks is to predict how a system will react if
the distribution of one of the involved variables changes. To illustrate this fact, we
provide the following example. This example involves two systems, each containing
two variables, X and Y . In the first system, these are given by

X1 ∼ N (0, 1) (2.4)

ε ∼ N (0, 1) (2.5)

Y1 7→1√
2
X1 +

1√
2
ε. (2.6)

In contrast, in the second example, these variables are connected by

Y2 ∼ N (0, 1) (2.7)

ε ∼ N (0, 1) (2.8)

X2 7→1√
2
Y2 +

1√
2
ε. (2.9)

Here, the 7→indicates, that a change in the right hand side would cause a change
in the left hand side. In contrast, a change in the left hand side will not result
in a change in the right hand side. Both of these systems lead to the same joint
distribution. In both systems, the two variables follow the distribution

Xi, Yi = N
((

0

0

)
,

(
1 0.5

0.5 1

))
. (2.10)

20



Cause-Effect 2.1

However, if the distribution of either X or Y changes, these two systems respond
in a very different way. When changing X in the first system, the distribution of
Y will also change. In contrast, if we change the distribution of X in the second
system, the distribution of Y will stay the same. If we are presented with one of
these systems at random, we can not know which of the systems it is because the
joint distribution of both systems is identical under the initial conditions.

To formalize these systems, Pearl (2009) introduces a hierarchy of questions,
which they call the “ladder of causality.” According to this ladder, questions about
systems can be categorized into three ranks. The lowest rank is the rank of “associ-
ation.” This rank contains all questions that can be answered from observations.
Examples for these kinds of problems are, as mentioned above, outlier detection,
anomaly detection, classification, regression and generating new examples. The
advantage of this lowest rank is that the answers to questions of this rank can be val-
idated using observations. Hence, these questions are the only questions for which
we can validate findings for systems that we can only observe but not manipulate
as, for example, astrophysical systems.

The second rank of the ladder of causality is called the rank of “intervention.”
This rank contains exactly the abovementioned kind of questions that can not
be solved from the joint distribution alone. Questions of this rank often concern
how the system will respond if the distribution of one of the variables changes
or which variables’ distribution change if we manipulate the distribution of one
variable in the system. Since changing one of the variables in a system away from its
observed distribution can be understood as an intervention on the system, this rank
is called “intervention.” The answers to questions on this rank can not be verified
from observations. The only way to answer them is to manipulate the variable in
the system to follow the prescribed distribution without interfering with the other
variables. This is, however, only possible for some systems, and even in systems in
which we can intervene, setting a variable to a specific intervention distribution
might prove impossible.

The final and third rung of the ladder of causality is the rank of “counterfactuals.”
As the name suggests, counterfactuals are data points that did not happen. Hence
these data points are not factual but counterfactual. Questions on this rank are of
the form “What would have happened if A would have happened instead of B?”
The difference between a counterfactual and an intervention is that all random
variables involved are sampled again from the new intervention distribution when
conducting an intervention. In contrast, when considering a counterfactual, we do
not resample any of the variables but assume that they stay on their original value,
not considering how likely or unlikely this value is under the new intervention
distribution. We use the following example to illustrate the difference between
intervention and counterfactuals further. The example system is a game where
a player tries to predict a dice-roll of a fair six-sided dice. The system contains
three variables. These variables are the number the player guesses, the number
the dice shows after it is rolled and the binary variable indicating whether the
player has won or not. Let us assume we observe one run of this game and find
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that the player guesses a four, the dice then shows a five and, consequently, the
player has lost the game. An example question on the first rank of the causal
ladder would be to determine whether the player has won given his guess and the
dice roll result. An example for a question on the rank of intervention would ask
whether the chance of winning for the player would change if we force them to
guess five every game. The answer to this question is negative because the chance of
winning is 0.167, independent of the player’s guess. In contrast, the counterfactual
question is: "Would the player have won if they had guessed a five in this run of
the game?" The answer to this question is yes. This discrepancy demonstrates the
difference between questions of rank two and questions of rank three. However,
it also reflects a drawback. We can often verify the answers to questions of rank
two by conducting experiments and manipulating the system. In comparison,
counterfactual questions can not be answered since they consider past events that
we can no longer control. Since the player makes their guess before the dice is
thrown, we can not go back in time and manipulate it afterward. If we, furthermore,
manipulate it and throw the dice again, the dice might show a different number.

Even though questions above the first rank are hard to verify, many scientific
questions are in these categories. For example, questions that ask how the Earth’s
climate will react to increasing the amount of atmospheric CO2 are on the second
rank of the ladder of causality. Additionally, if we want to understand the effect
of an event, such as a natural disaster, we often try to estimate how the environ-
ment would look if the natural disaster would not have occurred. This question is
counterfactual.

Hence, researchers have spent a lot of time and energy to find ways to answer, or
at least talk about, questions on the second or third rank of the ladder of causality.
In the next section, we introduce one of these solutions. Specifically, we introduce
the causal modeling framework using structural causal models introduced by Pearl
(2009).

2.1.2 The Framework of Pearl (2009)

The main part of the causal modeling framework described in Pearl (2009) and
Peters et al. (2017) is the structural causal model (SCM). A structural causal model
consists of three parts. A set of endogenous variables {X1, . . . Xn}, a set of exogenous
variables {ε1, . . . , εn} and a set of functions {f1, . . . , fn} connecting these variables.
All three sets have the same number of elements. The exogenous variables are
pairwise independent. Each endogenous variable X is calculated by one of the
functions using one of the exogenous variables and some of the other endogenous
variables. These other variables are called the “parents” of the variable X. We
denote them by P(X). Similarly, we call X a “descendant” of its parents.

We can represent a causal structural model as a directed graph by using the
endogenous variables as the nodes. In this graph, an edge from node Xi to Xj exists,
if and only if Xi is a parent of Xj . One of the main assumptions in the framework of
Pearl (2009) is that this directed graph is circle free. This assumption corresponds
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to the assumption that no variable influences itself in the modeled system, neither
directly nor indirectly. One conclusion of this assumption is that we can number the
nodes or endogenous variables of the system so that, for every i, all parents of the
variable Xi have an index smaller than i. The corresponding SCM can be denoted
as

X1 = f1(ε1) (2.11)

X2 = f2(P(X2), ε2) (2.12)

... (2.13)

Xn−1 = fn−1(P(Xn−1), εn−1) (2.14)

Xn = fn(P(Xn), εn). (2.15)

As an example, we describe how to model the game described above. The game
contains three endogenous variables, namely G, the player’s guess, D, the result
of the dice throw, and W , which has a value of one if the player has won and zero
otherwise. The exogenous variables are εG which determines with which probability
the player is guessing each number, εD, which is the probability for each face of the
dice. more specifically, it is 0.167 for each number between one and six, and εW ,
which is trivial as W is fully determined by G and D and has no internal variability.
The structural causal model describing this system is then given by

G = εG (2.16)

D = εD (2.17)

W =

{
1 if D = G

0 else
. (2.18)

Here the functions fG and fD are both the identity, while fW is the characteristic
function of {D,G, εW |D = G}, which is independent of εW . This structural causal
model is represented by the graphical model displayed in Figure 2.1.

One of the great advantages of representing a system by a structural causal model
is that it lets us understand which pairs of variables are dependent and which are
independent. To this end, it is essential to understand which path through the causal
models will lead to mutual information between variables. The first observation
is that such a path does not need to be directed. A simple counterexample is
the dependence between shoe size and handwriting ability in children. These are
dependent, even though neither one influences the other, but the age of the children
drives both. The corresponding graphical model is Handwriting ability ← Age →
Shoesize with no directed path between the two. More generally, the nodes along a
path can be categorized into three categories. The first category are nodes through
which the path is directed, namely “. . . → X → . . . ” or “. . . ← X ← . . . ” The second
class of nodes contains nodes that influence both neighboring variables along the
path, meaning a node of the form “. . . ← X → . . . ” The variable corresponding
to such a node is called a “confounder.” An example of a confounder is the Age
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Figure 2.1: The structural causal model for the dice guessing game. The endogenous
variables G, D and W form the nodes of the model, and the the arrows between them
represent the functions fW in graph (a). We also included the exogenous variables
εG, εD, εW . However, in the usual graphical representation of an SCM, as displayed
in (b), the exogenous variables are omitted.

variable in the example above, which is a confounder of whildren’s shoe size and
handwriting ability. The third class of nodes contains nodes which are influenced
by both, the predecessor along the path and the successor along the path, omitting
the form “. . . → X ← . . . ” The variables associated with this kind of node are called
“colliders.” An example of such a collider in the dice game is the variable W , which
indicates whether the player has won.

If we now consider an undirected path, we say it is open if it does not contain
a collider. Further, we can close an open path if we condition on a non-collider
variable along it. Consider the age variable in the example above. If we condition
on the age, meaning considering only children of the same age, we expect to find no
statistical dependence between the shoe size and the handwriting skills. The path
through the age variable would be closed. Similar to closing a path by conditioning
on a non-collider variable, we can also open a path by conditioning on all colliders
along it. As an example, consider the dice game. If we condition on W , meaning
considering, for example, only realizations in which the player won the game, we
will find a strong statistical dependence between the previously independent guess
G of the player and result D of the dice throw. If we know that the player won and
guessed a five, we can deduct that the dice must have shown a five. The same is true
if we condition on a descendant of a collider or a non-collider (Pearl, 2009; Peters
et al., 2017).

Situations like these can be modeled using a graphical model. This graphical
model should have an unblocked path between two variables if and only if they are
statistically dependent. To ensure this, we employ two more assumptions. The first
assumption is related to Reichenbach’s common cause principle. This principle is
introduced in Reichenbach (1991) and states that if two variables are correlated,
either one of them is causing the other or there exists a third variable that causes
both of them. We use an updated version of this principle for the framework of
causal modeling. First, we replace the correlation by statistical dependence to take
non-linear relations into account. Second, as discussed above, in addition to the
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possibilities that one variable is causing the other and that a third variable is causing
both variables, we consider the third possibility that both variables cause a collider
variable on which we condition.

Less formally, the central claim of this assumption is that variables can not be
correlated or statistically dependent without reason. Hence, whenever we detect a
statistical dependence, there has to be an open path connecting the two variables
in the corresponding graphical model. Since this assumption was introduced in
Reichenbach (1991), a lot of literature that discusses the philosophical perspective
of this assumption exists. The assumption is widely accepted for most situations
with some exceptions, for example, the situation described in Bell (1964).

The second assumption is much stronger and less discussed in the philosophical
literature. This assumption states that if a variable is causing another, then the
distributions of the two variables are statistically dependent. Using this second
assumption ensures the other direction, namely that if an open path between two
variables exists, then the two variables will be dependent.

If we accept these assumptions, we can use the resulting causal structural mod-
els to answer questions on the second and third ranks of the ladder of causality. As
described above, the association between variables is different from the effect a
variable has on another. While the association is through any open path, the actual
causal influence from a variable X1 to a variable X2 is evaluated only along directed
paths from X1 to X2. To assess the causal effect, we can, therefore, close all open
paths that are not directed paths from X1 to X2 by conditioning on variables along
them. Then, a straightforward regression will correctly evaluate the causal influence
of X1 on X2.

One of the great advantages of structural causal models is that a rigorous math-
ematical theory exists inside the model. This theory allows us to test individual
causal relations directly using independences tests and conditional independence
tests in an automated fashion Runge (2020); Runge et al. (2019). Further, a lot of
additional research has broadened the applicability of the model, for example, by
allowing for known but unobserved variables Gerhardus and Runge (2020).

2.1.3 Criticism and Comparison to Other Causality

Frameworks

This section, first introduces other frameworks of causality and, afterward, explains
the differences to the framework introduced by Pearl (2009).

Since the questions that are on the second and third ranks of the ladder of
causality are essential in many fields of science, multiple methods to answer these
questions were proposed, for example, by Berkeley (1881); Granger (1969); Hill
(1965); Hume (1896); Mackie (1965).

These frameworks can be divided into two philosophical definitions of causality:
Generative causality and Regularity causality as discussed, for example, in Thygesen
et al. (2005).

The generative view of causality sees a causal link from a variable X1 to a variable
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X2 if X1 influences X2 through some physical process or mechanism. However, it
is often unclear what constitutes a mechanism or process, as described in Dalkin
et al. (2015). It is unclear how to evaluate or verify whether a physical process exists.
The extreme form of this definition of causality is the definition that is, for example,
presented in Mackie (1965), stating that an event X1 is causing an event X2 if and
only if X1 is necessary and sufficient for event X2 to happen. This definition is very
restrictive. If we consider, for example, the relation between smoking and cancer,
we find that smoking is neither necessary nor sufficient for someone to get cancer.

The alternative is the regularity definition of causality. For example, Hume (1896)
and Berkeley (1881) define a cause and effect by the cause being followed by the
effect, and every object similar to the cause will be followed by an object similar to
the effect. Hence, this definition is based on statistical relations of the appearance
of events and less on processes. One of the frameworks that follow this view is the
framework presented in Granger (1969). This framework for causality considers
more relations as causal than other frameworks. More specifically, this framework
defines a variable X1 to be a cause of variable X2 if X1 is measured before X2 and
the value of X1 is useful to predict the value of X2 even if the past of X2 is known.
If we consider the example of shoe size and handwriting ability in children, this
framework might detect a causal link between the two because knowing a child’s
shoe size will help to predict its hand writing ability.

In summary, following the generative view on causality leads to causality that
can not be detected from data and seems to be a too strict criterion for causality. In
contrast, following the regularity view on causality leads to identifying connections
as causal, which we usually would not consider being causal. These problems have
discouraged some researchers from using causality as a scientific concept. For
example, Russell (2013) stated:

“The law of causality, I believe, like much that passes muster among
philosophers, is a relic of a bygone age, surviving, like the monarchy,
only because it is erroneously supposed to do no harm.” (Russell, 2013)

Other researchers think that this necessitates a compromise between the two cri-
teria. The most widely accepted compromise and the definition that most closely
matches the colloquial view of causality is the framework proposed by Hill (1965).
That paper introduces nine heuristic criteria to decide whether a specific depen-
dency is due to a causal relation case-by-case. These criteria are neither necessary
nor sufficient to decide that a relationship is causal, but they can help a researcher
make a sensible case-by-case decision. The criteria are:

1. Strength: The first criterium is the strength of the statistical dependence. A
stronger connection, meaning that the potential cause can explain more of the
variance in the potential effect makes it more likely that the relation should be
considered causal.

2. Consistency: The second criterium demands that the relation between the
potential cause and the potential effect is visible in a various contexts. This
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consistency reduces the chance that the real cause of the potential effect can
be found in the context.

3. Specificity: The more specific the potential cause and the potential effect are,
the harder it is to fulfill the other criteria by chance.

4. Temporality: One of Hill’s criteria is that the potential cause should appear
before the potential effect. This criterium is widely viewed more like a cri-
terium to decide on the direction of the causal link and less as a criterium to
identify whether a relationship should be considered causal.

5. Biological gradient: As an epidemiologist, Hill focused mainly on biological
processes. However, the main idea can be adapted to most other fields of
science. This main idea is that a stronger cause should lead to a stronger
effect.

6. Plausibility: If a causal relation is more plausible by prior knowledge, we need
less justification from the data to accept its existence.

7. Coherence: The criterium of coherence is very similar to the criterium of
plausibility. The focus for this criterium is on not contradicting any prior
knowledge.

8. Experiment and Analogy: This criterium is similar to the two above. The
focus of this criterium is more on comparing to related fields. In Hill (1965),
experiment and analogy are counted as two criteria.

These criteria are a combination of both the regularity and the generative view
of causality (Thygesen et al., 2005) but are neither meant nor suitable as a hard
criterion but only to support a researcher to make a case-by-case decision. The
criteria form three groups: The statistical criteria are the strength, consistency and
biological gradient. The semantic criteria namely, specificity, plausibility, coherence,
experiment and analogy. The temporality criterion forms its own group. The
first group corresponds to the regularity view on causality, and the second group
corresponds to a generative view on causality. The temporality criterion is used to
orient the causal link.

We consider a scale from the most restrictive framework of causality (Mackie,
1965) to the framework that considers most links causal (Granger, 1969). The
framework of Pearl (2009) is closer to Granger (1969) than the criteria proposed by
Hill (1965). The main reason is that the framework of Pearl (2009) is similar to other
frameworks like, for example, San Liang (2014), based only on data and does not
consider semantic features. While this allows automatic and efficient detection of
causal mechanisms under certain assumptions, it also has some drawbacks and
fail-cases.

Reichenbach’s common cause principle (Reichenbach, 1991) is discussed in
the literature and widely accepted outside of quantum effects (Bell, 1964). The
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inverse, meaning the assumption that a causal relation leads to statistical depen-
dence between variables, is harder to defend. A simple counterexample is the dice
guessing game described above. Even though the guess of the player obviously has
an influence on the outcome of the game, as demonstrated in the counterfactual
example, the distribution of the variable W that indicates whether the player has
won is independent of the guess of the player.

Another limitation is that the framework of Pearl (2009) does not allow for
feedback loops in the data. This limitation is present in many natural systems. To
illustrate this point, we use two examples. The first example is a river system for
which we measure the weekly amount of water near the source and the estuary of
the river. If we model this system as a causal model and consider two experiments.
For the first experiment, we dump a large amount of water near the river’s source.
We expect to see a strong effect in both measurements in this experiment. For
the second experiment, we dump the same amount of water into the river near
the estuary. We expect a strong effect in only one of the measurements in this
experiment. However, the increased water level near the estuary will lead to a slower
flow, and, hence, this experiment will also slightly influence the amount of water
upstream. In this situation, even though modeling this connection as directed in
the river flow direction is only an approximation, the approximation error will be
small and, hence, the model will be useful. The second example is a rope where
we measure the position of both ends of the rope. To create the causal model, we
again consider two interventions, one on each end of the rope. If we pull on the left
end of the rope, both ends will move. If we pull on the right end of the rope, both
ends will move. In this example, modeling the system with only a directional link
between the position of the two ends is far from the truth and will not be useful.

Further, in Pearl (2009), the author refrains from giving a formal definition of
a causal link. This lack of definition includes not not specifying between which
entities we can have causal links. It is especially relevant to consider causal links
between categories and their defining properties such as being an author and
writing or being a researcher and conducting research. The framework of Pearl
(2009) does not specify what can be used as the endogenous variables.

Another point of criticism against all frameworks that try to formalize the con-
cept of causality without considering semantic properties of the link is that it is
unclear when the notation of “causing” is transitive. An example is a causal chain
that Hitchcock (2001) attributes to Hall (2004).

In this example, a huge boulder starts rolling and threatens to kill a hiker. A
second hiker who notices this shouts a warning, causing the first hiker to duck. The
boulder misses the hiker, which, consequently, survives.

In this story, we find the following causal chain: Boulder starts rolling → the

second hiker shouts → the first hiker ducks down → the boulder misses → the first

hiker survives. The end of this chain is transitive. Most people would agree that the
hiker survived because they ducked down and that the hiker survived because the
other warned him. However, nobody will claim that the hiker survived because the
boulder started rolling. This discrepancy demonstrates that the concept of cause

28



Machine Learning 2.2

is sometimes transitive and sometimes not, making it difficult to formalize causal
relations as mathematical relations.

2.1.4 The Suitability of this Framework for the Problem

Tackled in this Work

Many of these difficulties are not present in the scenario we consider in this work.
In this section, we discuss which difficulties are present or absent when applying
the framework of Pearl (2009) in our method. First, we use the word relevant instead
of causes since it gives a better intuition in this exact application of the framework
and to avoid confusion with the colloquial term “causes” or other definitions of
causation such as the ones discussed above.

The first problem discussed above is the assumption that guarantees that if a
feature is relevant for the prediction of a deep neural network, its distribution will
be statistically dependent on the distribution of the prediction of the deep neural
network. Above, we gave an example in which this assumption does not hold. We
believe that this assumption can be violated in some deep learning problems and,
hence, some features are wrongly not identified as used. However, many examples
in which this happens are discrete, for example, the XOR-gate. However, these
examples are uncommon in deep learning.

The second limitation named above is the feedback circles contained in natural
systems. However, a supervised learning algorithm is not a natural system. In
particular, it does not contain feedback. Most importantly, the prediction of the
supervised learning algorithm has no influence on any feature of the data and
changing it will not change the input. Hence, feedbacks are no problem in our
application of the framework of Pearl (2009).

The third limitation named above is the ambiguity on what can be used as a
variable in the causal model. In our method, however, this is not ambiguous. The
only causal relation we investigate is the relation between features of the input and
the classifier’s prediction. Both of these are random variables by definition.

Further, also the problem of transitivity is not critical in our application of the
causal framework because we are not trying to infer a causal relation from a chain
of causal relations.

In summary, we conclude that the framework of Pearl (2009) has certain limi-
tations. However, it is suitable for our application, namely determining whether a
deep neural network uses a feature.

2.2 Machine Learning

In this section, we introduc the basic concepts of machine learning. Section 2.2.1,
introduces the basic concept of statistical learning and, in particular, supervised
learning and deep learning. Afterward, we explain the concept and the structure
of neural networks. To this end, we introduce neural networks as a solution to the
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learning problem in Section 2.2.2. More particular, we present the universal ap-
proximation theorem, which provides evidence that neural networks are especially
suited for deep learning tasks.

2.2.1 The Problem of Statistical Learning

In this section, we introduce the problem of statistical learning. We follow the
information from the first chapter of Vapnik (1998) and refer the reader to this work
for further details.

The problem of statistical learning is choosing an optimal function from a set of
functions. To this end, we need a risk functional R that maps any function f to its
risk

Risk = R(f) (2.19)

and a set H of functions from which we aim to select the one with the lowest risk.
Hence, the problem is

argmin
f∈H

R(f), (2.20)

identifying the minimum of the risk functional over the set of functions H.
An example of this is the method of least squares for finding the best linear

fit. The class of functions, in this case, is the set of linear functions H = R
∗. The

risk-functional is given by the mean squared error. If the inputs x and outputs y to
the linear function follow the distribution F (x, y), the risk-functional is given by

argmin
f∈R∗

∫
(f(x)− y)2 dF (x, y). (2.21)

However, this is not yet a statistical learning problem but a problem of variational
calculus. The problem of statistical learning starts if we cannot observe the dis-
tribution but have to evaluate the value of the risk functional from some samples
drawn from the distribution F (x, y). The risk based on this sample is called the
empirical risk, and the functional evaluating it is called empirical risk functional.
For the above example, it is given by

Empirical Risk =

n∑

i=1

R(f(x, y)) =
1

n

n∑

i=1

(f(xi)− yi)
2 . (2.22)

To this end, two problems arise. The first problem is to find the function in the
set of functions that minimizes the empirical risk functional. The second problem is
to select a set of functions for which the function that minimizes the empirical risk
functional also minimizes the risk functional. The second question is answered in
the central result of Vapnik (1998). Here we focus on the first part. More specifically,
we focus on the task of supervised learning.

In statistical learning, we can differentiate between three kinds of algorithms.
The three kinds are unsupervised, reinforced and supervised learning algorithms.
The main difference between these kinds of learning algorithms is the supervision
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signal provided to the algorithm. As described above, the goal of statistical learning
is to select a function from samples of a distribution. In the first kind of learning
algorithm, unsupervised learning, only the function input and not the function
output are provided. Examples of these learning algorithms are clustering algo-
rithms or density estimation. The second kind of learning algorithm, the reinforced
learning algorithm, receives a quality measure for its output in addition to the
inputs. A typical example of a problem solved using reinforcement algorithms is
games. The algorithm has to map a game’s situation onto the optimal next move.
The inputs to this mapping can be observed while playing the game. However,
whether the predicted move was indeed optimal cannot be observed. The learning
algorithm is not provided with the correct output but with a quality measure for
the suggested solution, namely, whether the game was won or not. Finally, the
third kind of learning algorithm is supervised learning algorithms. For this kind
of algorithm, the input and the correct output to the function are provided as a
learning signal. A supervised learning algorithm can be described as a pair (T, F )

of two functions. The first function, T , is called the training function. It maps the
set of labeled training, examples {(S, YS)}, onto the weights, W , that are used to
parametrize the second function F ,

T : P (S× Y) → R
m,

{(S, YS)} 7→ W.
(2.23)

The second function, F , is the inference function. This function is the learned
function of the statistical learning algorithm. It maps an input example I and the
set of weights W onto the prediction of P

F : S× R
m → Y

(I,W ) 7→ P.
(2.24)

We illustrate these definitions using two examples. The first example is, again, a
linear regression, the function T in this example is the method of least squares that
maps the training examples onto the optimal coefficients. The function F multiplies
the coefficients and the inputs I to find the prediction P . A second example is the
k-nearest-neighbor classifier. In this example, the function T is the identity. The set
of weights W is the same as the labeled training set {(S, YS)}. The second function,
F , identifies the k-nearest-neighbors of I in W and combines their labels into a
single prediction P .

In traditional shallow learning, the researcher will select and handcraft features
from the inputs. These features are then used as input to, for example, a neural
network. Hence, a learning algorithm consists of two distinct functions. The first
function, Ff , is the function that maps an input I onto its feature representation.
The second function, Fc, is the function that afterward takes in the feature represen-
tation and performs the classification or regression tasks. Hence, the approximated

31



Chapter 2 BACKGROUND AND BASICS

function F , that maps the input onto the desired output is given by

F = Fc ◦ Ff . (2.25)

The main difference to deep learning, as described, for example, in Reimers and
Requena-Mesa (2020), is that instead of optimizing both of these functions individ-
ually, we optimize their concatenation F directly in an end-to-end fashion. Since
this requires fitting complex functions, neural networks are a suitable choice.

2.2.2 Neural Networks

The two central parts of a statistical learning problem are the risk functional and
H, the set of functions. One possibility for this set of functions and the way to
parametrize and optimize these functions efficiently is deep neural networks. A
deep neural network comprises multiple layers, each containing numerous neurons.
A neuron is a function that maps a set of inputs x onto one output y. To this end, the
neuron has a set of weights w, one for every input to the neuron, and a bias variable
b. Furthermore, the neuron contains an activation function σ. The neuron is given
by

y = σ

(
n∑

i=1

wixi + b

)
. (2.26)

The neural network is built of multiple layers, each consisting of multiple neurons.
The first layer receives the inputs to the neural network as inputs to its neurons. The
subsequent layers’ neurons get the outputs of the previous layers’ neurons as input.
Finally, the outputs of the last layers’ neurons become the neural network’s output.

One of the main advantages of neural networks is the universal approximation
theorem that was introduced for different classes of activation functions σ. We
follow the formulation of Cybenko (1989) to state the universal approximation
theorem:

Theorem 1. (Universal Approximation Theorem) Let σ be a suitable activation

function. The finite sums of the form

F (x) =
N∑

j=1

αjσ
(

wT
j x + bj

)

are dense in C(In), the continuous functions on the unit interval, with respect to

the supremum norm. In other words, given any continuous function f on the unit

interval In and any ǫ > 0, there is a sum G(x) of the above form, for which

∀f ∈ C(In) : ∀ǫ > 0 : ∀x ∈ In : |G(x)− f(x)| < ǫ.

These finite sums F (x) correspond to neural networks with two layers, one
hidden layer of N neurons, which uses σ as an activation function and an output
layer with one neuron that uses the identity as an activation function and no bias.
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Note that the n-dimensional unit interval can be replaced by any compact subset of
R
n.

This theorem is proven for multiple classes of activation functions σ. For exam-
ple, Cybenko (1989) proves it for continuous sigmoidal functions in their Theorem 2
and Hornik (1991) for continuous, bounded and nonconstant functions in their The-
orem 2. Furthermore, Leshno et al. (1993) prove it for every function σ, which is not
an algebraic polynomial in their Theorem 1. The same was proven in Theorem 3.1
of Pinkus (1999).

Hence, a neural network can be used as a general function approximator even
for complex functions with a previously unknown structure. Therefore, neural
networks are suited to tackle the additional complexity resulting from combining
the feature selection and the classification task in deep learning.

2.3 Test of Independence

When dealing with random variables or random processes, such as the training of a
neural network using stochastic gradient descent or the endogenous variables of a
structural causal model, it is not trivial to determine whether an observed difference
is due to an effect or whether the differences are just due to the internal variance of
the variables.

Statistical tests determine whether an effect is due to randomness or whether it
is significant. In a statistical test, we are presented with two hypotheses. The first
hypothesis, H0, is called the null hypothesis. The null hypothesis is the hypothesis
we will assume is true unless we find it highly unlikely given the data. In that case,
we assume the alternative hypothesis H1. To make this decision, we need to decide
the probability at which we decide that H0 is highly unlikely. This number is called
the level of significance. The most common choice for the level of significance is
0.05, due to a subjective choice of R. A. Fisher, who wrote:

“The value for which P = .05, or 1 in 20, is 1.96 or nearly 2; it is conve-
nient to take this point as a limit in judging whether a deviation is to be
considered significant or not. Deviations exceeding twice the standard
deviation are thus formally regarded as significant. Using this criterion
we should be led to follow up a negative result only once in 22 trials,
even if the statistics are the only guide available. Small effects would still
escape notice if the data were insufficiently numerous to bring them
out, but no lowering of the standard of significance would meet this
difficulty.” (Fisher, 1925, p. 47)

Nevertheless, the level of significance has to be decided for every situation
individually.

In this work, we use statistical dependence tests to decide whether two dis-
tributions are dependent. For these tests, the null hypothesis H0 is that the two
distributions are independent, while hypothesis H1 is that the two distributions
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are dependent. We estimate the likelihood of both hypotheses given the data. To
this end, we assume a prior probability of 0.5 for each hypothesis. Since the ob-
served data is fixed, we can use Bayes’ theorem to prove that the likelihood of the
hypothesis given the data is proportional to the likelihood of the data under the
hypothesis.

Because finding the likelihood for the data is often untraceable, we reduce it
to the likelihood of one feature of the data. Ideally, this feature is scalar and has a
different distribution under the different assumptions. Further, it usually is larger
under assumption H1 than for assumption H0, such that we can evaluate the later
tests only to one side. This feature is called the test statistic, and selecting it is the
main difference between different dependence tests.

To test the dependence of two random variables, we need to evaluate the test
statistic distribution under the assumption of each hypothesis. This evaluation is
especially hard for H1, the assumption of dependence. Since we do not specify the
nature of the dependence, we need to approximate the distribution for each possible
dependence simultaneously. To this end, we assume a uniform distribution of the
test statistic under the assumption H1 meaning any data has the same likelihood.
We use a shuffle test to evaluate the distribution under the null hypothesis H0. If
the two variables are independent, the probability of the observed data, (Xi, Yi)i∈I ,
equals the probability of (Xi, Yπ(i))i∈I for any permutation π. Hence, we can find
the distribution of the test statistic under H0, the assumption of independence by
calculating the test statistics for all possible permutations π, or approximate the
test statistic distribution by calculating it for many permutations.

Since every set of observations has the same likelihood under the assumptionH1,
we want to evaluate the likelihood under hypothesis H0. To this end, we assess the
probability of observing data with an equal or higher test statistic in the distribution
under the assumption H0 that we evaluated as described above. This value is called
the p-value.

Note that if assumption H0 is true, the p-value will be uniformly distributed
on the interval [0, 1], while if hypothesis H1 is true, the p-value will be very low. As
described above, we will reject the null hypothesis H0 if the p-value is lower than
our selected level of significance.

Two things are important when using and interpreting the results of the method
of statistical dependence test. First, since the p-values are uniformly distributed if
the null hypothesis is true, we will always encounter false positives, where we reject
the null hypothesis even though it is true. The fraction of these false positives is
equal to our level of significance. Second, since the p-value is uniformly distributed
if the null hypothesis is correct, it does not make sense to compare the p-value of
tests for different variables and argue that one is “more dependent” because its test
resulted in a lower p-value. A statistical dependence test only returns a binary result,
and the p-value should never be interpreted further than this binary decision.
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2.3.1 Correlation and Partial Correlation

The first test statistic we consider is the correlation between the two variables. The
correlation is given by

ρX,Y =
E(XY )− E(X)E(Y )√

E(X2)− E(X)2
√
E(Y 2)− E(Y )2

. (2.27)

While the correlation for independent variables is zero, the correlation for depen-
dent variables is not necessarily bigger than zero. The correlation captures only
linear relations between the variables. Hence, it is an independent test only for
certain classes of distributions. For example, if all involved variables are Gaussian.
The main advantage of correlation as a dependence test is that it is fast to calculate,
even for high dimensional variables. Further, it is interpretable in the form of the
coefficient of determination. To turn the correlation into a conditional dependence
test, we use the partial correlation instead. The partial correlation between the two
variables X and Y given Z is calculated by first finding the best linear fit from Z

onto X,
αX = argmax

α
(α(Z − E(Z)) + E(X)−X)2, (2.28)

and the best fit from Z onto Y ,

αY = argmax
α

(α(Z − E(Z)) + E(X)−X)2. (2.29)

Afterward, we calculate the correlation between the residuals of X and Y , meaning
the part of X and Y that can not be explained by Z. Formally, the residuals are
defined as

X̂ = X − (αX(Z − E(Z)) + E(X)) (2.30)

and
Ŷ = Y − (αY (Z − E(Z)) + E(Y )). (2.31)

Then the partial correlation is given by

ρX̂,Ŷ ·Z = ρX̂,Ŷ =
E(X̂Ŷ )− E(X̂)E(Ŷ )√

E(X̂2)− E(X̂)2 −
√
E(Ŷ 2)− E(Ŷ )2

. (2.32)

The test statistic is calculated as the coefficient of determination ρX̂,Ŷ between

Ŷ and X̂. As described above, we perform a shuffle test to check whether the
correlation is significant. Since the partial correlation is based on the correlation,
it shares the same advantages and disadvantages. First, it is not a mathematical
independence test in general. It only captures linear connections between the
variables. However, as shown, for example, in Baba et al. (2004), this includes
relevant cases such as the case where all distributions are multivariate Gaussian.
Further, the partial correlation can be calculated fast, even for high dimensional
variables, similar to the correlation. Finally, the test statistic of the partial correlation
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can be interpreted. Its square denotes the fraction that is explained by X of the
variance in Y that can not be explained by Z.

2.3.2 Maximum Correlation Coefficient

As described above, in general, the correlation and partial correlation are no sta-
tistical dependence or conditional statistical dependence test, respectively. One
possibility to extend the idea of correlation to a general statistical dependence test
is the maximum correlation coefficient introduced by Sarmanov (1958). To cal-
culate the maximum correlation coefficient, we transform both random variables
using an arbitrary function to maximize their correlation. Formally, the maximum
correlation coefficient is given by

MCC(X,Y ) = sup
f,g

ρf(X),g(Y )

= sup
f,g

E(f(X)g(Y ))− E(f(X))E(g(Y ))√
E(f(X)2)− E(f(X))2

√
E(g(Y )2)− E(g(Y ))2

.
(2.33)

The maximum correlation coefficient is zero if and only if the two variables are
independent. Hence, the maximum correlation coefficient is a general statistical
dependence test. However, calculating it requires fitting two arbitrary functions,
which is a challenging problem by itself.

To transform the maximum correlation coefficient into a conditional depen-
dence test. We substitute the correlation for a partial correlation

sup
f,g

ρf(X),g(Y ) ·Z . (2.34)

As described above, to calculate the partial correlation, we use the best linear fits
fX(Z) and fY (Z). Calculating a linear fit is not sufficient to create a general condi-
tional dependence test. Instead, we use an additional function h which transforms
Z to get

MPCC(X,Y |Z) = ρf(X),g(Y ) ·h(Z). (2.35)

This conditional dependence test has the same drawbacks as the unconditional
version of the maximum correlation coefficient. However, the high complexity of
fitting functions is an even more severe drawback because one more function has
to be fitted. For this reason, the maximum correlation coefficient is suitable in
situations where we have some prior information on the structure of the possible
functional connections between variables.

Another test that is based on fitting functions between the involved variables is
the Fast Conditional Independence Test (FCIT) proposed by Chalupka et al. (2018).
However, in contrast to the maximum correlation coefficient, we only have to fit
two functions in the FCIT. The reason is that FCIT builds on Doob’s conditional
independence property (Kallenberg, 1997, Proposition 5.6)

X ⊥⊥ Y |Z ⇔ P(Y |X,Z) = P(Y |Z) a.s. (2.36)
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Consequently, this test uses two decision trees, one to predict the value of Y from
only Z and the other predicts the value of Y from X and Z. The test statistic is then
given by

Var(Y − E(Y |Z)− Var(Y − E(Y |X,Z)). (2.37)

The advantage of this procedure is that we have to fit only two functions. However,
FCIT is no statistical dependence test. An obvious counterexample, where a depen-
dence goes undetected, is given by Y ∼ U[−1, 1], X = Y 2 and Z = 0. In this case
E(Y |Z) = E(Y |X,Z) = 0 and hence the test statistic is zero. However, X and Y

are clearly dependent. However, it can correctly detect many dependencies and is
very fast compared to the other tests described in this section. Therefore, it can be
used in situations where many tests need to be performed.

2.3.3 Mutual Information and Conditional Mutual

Information

The next quantity we can use as a test statistic is the mutual information between
the two variables. For two independent variables, X and Y , the joint distribution
factorizes into

P(X,Y ) = P(X)P(Y ). (2.38)

As the test statistic, we, hence, use the Kulback-Leibler divergence between the joint
distribution of X and Y and the product of their marginal distributions

MI(X,Y ) = DKL(P(X,Y );P(X)P(Y )) =

∫

X

∫

Y
pX,Y (x, y) log

(
pX,Y (x, y)

pX(x)pY (y)

)
dxdy.

(2.39)
As described above, for independent variables, the two distributions in the Kulback-
Leibler divergence are the same, and, hence, the test statistic is zero. However, if
the two variables are not independent, the mutual information will be positive as
shown by (Wyner, 1978, Lemma 3.1).

The main drawback of using the mutual information as a dependence test is
that we must approximate the joint distribution and the two marginal distributions
from the data. The fraction of the distributions is the focus of these approximations.
To this end, it is essential to approximate small values accurately. To approximate
distributions, in particular distributions with a different number of dimensions
consistently, is a complex problem. Hence, this independence test is best suited if
we have prior knowledge of the distributions, which allows us to approximate the
distributions efficiently.

The conditional version of the mutual information is the conditional mutual
information. The formula of the conditional mutual information is the same as for
the mutual information, but for the joint distribution, we also include the variable
Z on which we condition. Resulting in a joint distribution of three variables. In the
marginal distributions, we still marginalize over one of the variables and, therefore,
get the joint distribution of each variable together with the variable we condition
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on. Consequently, the conditional mutual information is given by

CMI(X,Y |Z) = DKL(P(X,Y, Z);P(X,Z)P(Y, Z))

=

∫

X

∫

Y

∫

Z
pX,Y,Z(x, y, z) log

(
pX,Y,Z(x, y, z)pZ(z)

pX,Z(x, z)pY,Z(y, z)

)
dxdydz.

(2.40)

The conditional mutual information intensifies the drawbacks of unconditional
mutual information. The weakness that we have to approximate distributions
of different dimensionality consistently is still present, but the dimensionality of
each distribution is higher than in the unconditional case. Hence, especially for the
conditional case, this dependence test is suitable if we have prior information on the
form of the distribution, for example, if we know that they are from a parametrized
family of distributions.

2.3.4 Kernel Independence Tests

One of the central principles in data science was formulated by Vapnik (1998):

“If you possess a restricted amount of information for solving some prob-
lem, try to solve the problem directly and never solve a more general
problem as an intermediate step. It is possible that the available infor-
mation is sufficient for a direct solution but is insufficient for solving a
more general intermediate problem.” (Vapnik, 1998, page 12)

However, the dependence tests we introduced before violate this principle. In
the maximum correlation coefficient described in Section 2.3.2, we do not only
calculate the test statistic, but as an intermediate step, we approximate two, or
in the conditional case three, functions that connect the variables. Note that the
information on the functions is enough to calculate the test statistic, but knowing
the test statistic is not enough information to infer the three functions. Hence,
the problem of approximating the functions is more general than the problem we
are trying to solve. In the cases of mutual and conditional mutual information
introduced in Section 2.3.3, we have to approximate the joint, and the marginal
distribution of multiple variables. Similar to the above case, the test statistic can
easily be calculated from the distributions. However, knowing the test statistic is
not enough information to infer all distributions. Consequently, the problem of
approximating the distributions can be considered a more general problem than
estimating the mutual information.

This section, follows the principle more closely and evaluates the test statistic
directly. The statistical independence test that follows this idea is the Hilbert-
Schmidt independence criterion.

The idea of this independent test is to evaluate whether, for the pairs (Xi, Yi),
the value of the first variable Xi is similar to the first value Xj of the same pairs of
which the second value Yj is similar to Yi. To this end, we start by calculating the
kernel matrix for each variable, KX for the variable X and KY for the variable Y . By
definition, each entry of the kernel matrix kij ∈ KX contains the similarity between
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the values Xi and Xj . To make the kernel matrices comparable, we normalize them.
We do this by multiplying the kernel matrix with a normalizing matrix H , whose
entries are given by

hij = δij −m−2 (2.41)

with δ denoting the Kronecker-delta andm is the number of data points. To calculate
the test statistic, we, afterward, sum up the dot products between the similarity
vectors corresponding to each pair (Xi, Yi), namely the i-th collum of the two
normalized kernel matirices

m∑

i=1

〈(KXH)i, (KY H)i〉. (2.42)

Note that the dot product of normalized vectors is related to the cosine similarity
between the vectors. If the variables are dependent, the similarity structure in both
spaces is the same. Hence, this value will be high for dependent variables but small
if the variables are independent. Since the kernel matrices are symmetric, using the
i-th column of the kernel matrix is the same as using the i-th row. Further, the dot
product of the i-th collum of the kernel matrix KX and the i-th row of the kernel
matrix KY is the i-th element of the diagonal of their product. Summing them up is
equivalent to calculating the trace of this matrix

m∑

i=1

〈(KXH)i, (KY H)i〉 = Tr (KXHKY H) . (2.43)

We multiply this value with a normalizing factor to calculate the test statistic

HSIC(X,Y ) =
1

(m− 1)2
Tr (KXHKY H) . (2.44)

The Hilbert-Schmidt independence criterion was introduced by Gretton et al. (2007).
However, they use a different way to derive it and prove that it is a statistical de-
pendence test, meaning that the test statistic is zero if and only if the variables are
independent. To this end, the authors of that paper relate the formula presented
above to the Hilbert-Schmidt norm of the cross-covariance operator between the
two kernel spaces. When the kernel spaces of both variables are universal repro-
ducing kernel Hilbert spaces, meaning that the functions in the kernel spaces are
dense in the space of bounded continuous functions, the largest singular value of
the cross-covariance operator, ||CXY ||, is equal to zero if and only if X ⊥⊥ Y .

As described above, the great advantage of the dependence test based on the
Hilbert-Schmidt independence criterion is that we do not approximate any more
information than the test statistic. However, to calculate it, we have to select a
suitable kernel, and we have to calculate and multiply the kernel matrices. The
former is difficult. The similarity decoded in the kernel has to be sensitive enough
to capture the relations between the variable but not such sensitive that it picks up
finite data effects. The higher the sensitivity of a kernel, for example, a universal
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kernel such as the radial basis functions kernel, the more data we need to distinguish
between genuine and spurious relations. Unfortunately, the second drawback
prohibits us from using this dependence test in large datasets. If we have many
data points, creating the kernel matrix will scale quadratically in the number of
inputs, O(m2), and multiplying these matrices will scale like O(m2.3728596) (Alman
and Williams, 2021). Hence, for large datasets, evaluating this criterium becomes
infeasible.

To turn this test into a conditional dependence test, Fukumizu et al. (2007)
replace the cross-covariance similar to extending the correlation to the partial
correlation in Section 2.3.1. To this end, instead of evaluating the similarity between
the kernel matrices KX and KY directly, we first remove the similarity that can
also be observed in KZ , the kernel matrix of the variable we condition on. This
calculation leads to the formula

HSICONIC(X,Y |Z) = Tr ((HKXH −HKXHHKZH) (HKY H −HKY HHKZH))

(2.45)
for the Hilbert-Schmidt conditional independence criterion. This straightforward
calculation, however, is numerically unstable. Hence, different authors have sug-
gested different approximations of this formula, that are more stable to evaluate.
For example, the approximation

(1− x) ≈ 1

1 + x
(2.46)

that holds for small values of x leaves us with

HSCONIC(X,Y |Z) ≈ trGXSZGY SZ . (2.47)

Here, for A ∈ {X,Y, Z}, we use GA = HKAH and SZ = (I + 1/mGZ)
=1 with the

identity matrix I.
As for the other dependence tests described here, the drawbacks of the uncon-

ditional dependence tests are intensified in the conditional version. Specifically,
we have to select three suitable kernels, and since we have to perform more matrix
multiplications, the bad scaling in the number of samples becomes a more severe
problem. Further, the conditional version of this test has some numerical stability
issues. Hence, numerically more stable approximations to this criterion are used in
practice. For more information, we refer the reader to Fukumizu et al. (2007).

Two additional dependence tests that build on this idea are the Randomized
Conditional Independence Test (RCIT) and the Randomized conditional Correla-
tion Test (RCoT) proposed by Strobl et al. (2019). They substitute the radial basis
function, which can be understood as an infinite sum of Fourier features, by an
approximation with a finite selection of Fourier features. These features are se-
lected randomly. This approximation allows for better scaling in the number of
examples and hence, for this test to be used even for large datasets. However, we
encounter another error rising from the approximation. Fortunately, Strobl et al.
(2019) demonstrated that this error is small. For further information, we refer the
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reader to their work.

2.3.5 Predictability

A common idea in determining whether variables are dependent is to check whether
the value of one can be predicted from the other. For two variables B, R, we can
quantify this, for example, by the mean squared error

min
f

∫
(b− f(r))2 dpB,R(b, r) (2.48)

where the function f is typically parameterized, for example, by a deep neural net-
work. Predictability is not an independence criterion. However, the predictability
criterion is similar to the maximum correlation criterion. Since predictability is not
an independence criterion, we can not turn it into a conditional dependence crite-
rion. However, we can extend the predictability criterion, similar to the maximum
correlation coefficient to the conditional case by replacing the correlation with the
partial correlation.

We start by showing the connection between the predictability criterion and the
maximum correlation coefficient. To this end, we first consider the case where the
function f is linear and both variables are univariate,

min
f

∫
(b− f(r))2 dpB,R(b, r) = min

α,β

∫
(b− αr − β)2 dpB,R(b, r). (2.49)

Since the optimal parameter for β will center both variables in this case, this is the
same as the variance between the bias variable B and the best linear prediction of
B given the prediction R,

min
α,β

∫
(b− αr − β)2 dpB,R(b, r) = min

α
Var (B − αR) . (2.50)

We use this functional as a loss. The relevant properties for this use are the minima
and the relative values of the functions. None of these properties change if we scale
the function by a constant, positive factor. Since the choice of the function f has
no influence on the variable B, the variance of B is such a constant, positive factor.
Hence, we can simply scale the function by this factor and get

min
α

Var (B − αR)

Var (B)
. (2.51)

Further, instead of minimizing, we can maximize the negation, leading to

max
α

1− Var (B − αr)

Var (B)
. (2.52)

This is the definition of the coefficient of determination (Egert, 2012), which, in this
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linear case, is the square of the Pearson correlation coefficient,

max
α

1− Var (B − αR)

Var (B)
= ρ2B,R = Corr (B,R)2 . (2.53)

To generalize this relation from the linear to the non-linear case, we find the func-
tions f that maximizes this correlation

max
f

Corr (B, f(R))2 . (2.54)

This loss function was, for example, used for adversarial debiasing by Adeli et al.
(2021). However, this is not a dependence test, more specifically, this can be zero
even if the two variables are independent. For example, if the prediction R is
uniformly distributed on the interval [−1, 1]

R ∼ U [−1, 1] (2.55)

and the bias variable B is given by

B = R2. (2.56)

Obviously, the two variables are not independent, but for any function f , the covari-
ance between B and R is given by

Cov(B, f(R)) =

∫
bf(r)dpB,R(b, r). (2.57)

Substituting B by definition (2.56), we get

∫
bf(r)dpB,R(b, r) =

∫ 1

−1
rf(r2)dr. (2.58)

Splitting the interval at zero, changing the variable in the first half from r to −r,
exchanging the borders of the integral and reuniting the two integrals evaluate this
integral to

∫ 1

−1
rf(r2)dr (2.59)

=

∫ 0

−1
rf(r2)dr +

∫ 1

0
rf(r2)dr (2.60)

=

∫ 1

0
−rf((−r)2)dr +

∫ 1

0
rf(r2)dr (2.61)

=

∫ 1

0
(r − r)f(r2)dr (2.62)

=0. (2.63)

Hence, the loss functional maxf Corr(B, f(R))2 is equal to zero, although the
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two variables are not independent. This example demonstrates that not being
useful for prediction is not a criterion for independence.

This criterion is related to the maximum correlation coefficient described in
Section 2.3.2. This criterion uses the following maximum as a test statistic,

MCC(R,B) = max
f,g

Corr(f(R), g(B)). (2.64)

To turn this into a conditional independence test, we use the partial correlation

MPCC(R,B |L) = min
h

max
f,g

ρf(R),g(B) ·h(L). (2.65)

2.4 Attribution and Visualization

In the shallow learning setting, a researcher selects the features that a learning
algorithm uses to perform its classification. One advantage of this approach is that
it is easy to understand which feature the algorithm uses to reach its prediction.
However, as described, for example, in Reimers and Requena-Mesa (2020), in deep
learning, selecting features and classifying are combined into one process. This
combination makes it difficult to understand, whether a feature is used by the
algorithm to make its prediction.

Researchers have developed many methods to extend this advantage of shallow
approaches to the deep learning approaches. The most common method is creating
a saliency map. In a saliency map, we assign a salience value to each input quan-
tifying its importance. Note that the individual inputs are often not meaningful
features in the deep learning setting, but the meaningful features are aggregation
functions of multiple inputs. For example, in an image, we do not expect an in-
dividual pixel to be important, but a pattern of pixels, representing some higher
level feature. Multiple different approaches on how to quantify the salience of
inputs have been proposed in the literature. We introduce and compare them in
Section 2.4.1. Afterward, in Section 2.4.2, we present alternatives to saliency maps
proposed to determine whether a feature is relevant in the classifier’s decision.

2.4.1 Saliency-Based Methods

The main idea of saliency maps is to create a saliency or importance value for
each input. In the setting of images, this means creating a saliency value for each
pixel. These saliency values can then be arranged as the original image to highlight
important areas in the image. However, defining how important a pixel is is difficult.
At the moment, we do neither have a way to evaluate it empirically nor is there
widespread agreement on the theoretical definitions. Considering these difficulties,
multiple ways to derive saliencies are proposed, leading to different results. The
three main ways are using the gradient of the deep neural network, which we discuss
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in Section 2.4.1.1, measuring the sensitivity of the output to replacing some of the
inputs we consider in Section 2.4.1.2 and methods that approximate the effect of
perturbations using a first-order Taylor approximation. We describe these methods
in Section 2.4.1.3. Finally, we summarize the drawbacks of saliency maps in general
in Section 2.4.1.4.

2.4.1.1 Gradient Based Methods

The first idea that can be used to assign a salience value to each pixel is to use the
gradient. To motivate the use of the gradient as saliency, we use the example of a
linear regressor. In a linear regressor, the gradient of the output given one input
variable is the linear coefficient, and, hence, the gradient explains how much the
output changes if the input changes by one unit.

Multiple methods were proposed that use the gradient or slight variations of the
gradient of the neural network’s output depending on each input as the salience
of that input. For example, Zeiler and Fergus (2014) use the derivative for all parts
of the neural network except for the ReLU non-linearities, for which they use the
ReLU again instead of its derivative.

This method of forming saliency maps has some drawbacks. The most severe
drawback is that the derivative, by definition, is highly local. However, suppose
we want to understand whether a feature is important. In that case, we are not
just interested in whether a minimal increase in the feature will lead to a minimal
change in the prediction. To demonstrate this drawback, we use the following
example. This example looks at the relation between two features, X and Y , and
the probability P of the example being classified as class C. The relation between
the features and the outputs is given by

P =
sin(1000X)

100
+

0.99

1 + e1000Y
. (2.66)

In this situation, the derivative of P for X can be as high as 10, but the feature is
meaningless towards the algorithm’s decision, as the influence is at most 0.01. In
contrast, for any value of Y with |X| > 0.01, the derivative of P for Y is smaller than
10−3. Nevertheless, the feature is obviously very relevant to the classifier’s decision.
Hence, we find that using the gradient or derivative of a function can lead to local
solutions that might not reflect the global behavior of the function enough to be
used as a saliency.

In addition to these specific drawbacks of using the derivative to quantify
the saliency, methods following this idea have more general drawbacks, which
they share with all saliency map methods. We describe these drawbacks in Sec-
tion 2.4.1.4.

2.4.1.2 Obfuscation Based Methods

The second common way to derive salience values is to obfuscate the image. The
main idea is to delete some of the inputs and replace them with something mean-
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ingless. To find the saliency of the replaced inputs, we take the difference between
the prediction of the original and the manipulated sample.

The main difference between the various methods that employ obfuscation to
create saliency maps for deep neural networks is the replacement for the obfuscated
inputs. The suggestions start at straightforward ideas such as replacing areas in
an image with a black or gray box as suggested in Zeiler and Fergus (2014), or
noise as suggested, for example, in Dabkowski and Gal (2017) and end with more
complicated ideas. For example, Zintgraf et al. (2017) replace the patches from the
inputs by patches from the training set, which have similar neighboring pixels, by
sampling from the knockoff distribution (Barber and Candès, 2015) as suggested
by, for example, Popescu et al. (2021) or using a generative adversarial network
(Goodfellow et al., 2014a) for gap-filling as suggested, for example, in Agarwal and
Nguyen (2020).

This approach to creating saliency maps has some drawbacks. The first draw-
back is that the result of the approach depends on how we replace the obfuscated
pixels. If we, for example, replace parts of an image with black boxes, light areas will
receive a higher saliency than dark areas. The second problem is that this method
can only detect localized features within the image. Meaning that we can use it
to detect the meaningfulness of, for example, an eye pattern to classify an image,
but not, for example, a distributed pattern such as the symmetry between two eye
patterns. Third, obfuscation is, in many situations, too global.

To demonstrate this global scale, we use an example similar to the previous one.
In the example, the probability P is given by

P =
99sin(1000X)

100
+

0.01

1 + e1000Y
. (2.67)

Here, the more important feature is obviously X since the effect of Y is limited to
0.01. However, if we compare the values for high and low values of Y , there is no
difference. In contrast, the probabilities P for high and low values X are significantly
different.

In addition to these drawbacks, which are specific to creating a saliency map
using obfuscation, these methods also have some drawbacks shared by all methods
that create saliency maps. We discuss these drawbacks in Section 2.4.1.4.

2.4.1.3 Methods based on Taylor-extensions

As described in the two previous sections, using the gradient to produce a saliency
map is, in many situations, too local, while using the distribution and replacing
inputs by other values from that distribution is, in some situations, too global.
Hence, in this section, we present a compromise that uses the values, and the
gradient to create the salience map. The main idea is to look at the function that
maps a perturbation of the input onto the output change. Since this function is
unknown, we approximate it by a first-order Taylor approximation

∆P ≈ F ′(x0)(x0 − x). (2.68)
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To create the saliency map, we evaluate this difference function at zero. This evalua-
tion is because we expect zero to be a good approximation of a point at which each
class has the same probability.

This compromise between the local and global approaches to creating saliency
maps is the most common approach. It was suggested, for example, by Bach et al.
(2015) and in Lapuschkin et al. (2019). Further, it was adapted to the special case
of deep convolutional neural networks by, for example, Mopuri et al. (2018) and
Selvaraju et al. (2016). Further, for example, Montavon et al. (2017) investigate
whether the results improve if zero is replaced by a close-by point, at which all
classes have the same probability. However, they find that the additional difficulties
and ambiguities counteract the benefits of this approach. Saliency maps created
using this approach share the general drawbacks of saliency maps we describe in
Section 2.4.1.4.

2.4.1.4 Drawbacks of Saliency Maps

All methods that use saliency maps to determine which features are used by a deep
neural network share some common drawbacks. It is very difficult to evaluate
methods that determine which feature deep neural networks use to find their
prediction. Hence, we rely on other properties such as consistency to evaluate
whether these methods work correctly. To this end, we check whether saliency maps
lead to explanations that have decent properties. First of all, saliency maps cannot
explain and are not consistent with the phenomenon of adversarial examples, which
we introduce in Section 2.5. Second, it is shown by Adebayo et al. (2018) that the
saliency maps created for neural networks with random weights are similar to
the saliency maps created for neural networks with trained weights. Third, the
reaction of the saliency map to constant shifts is not consistent, as is shown by
Kindermans et al. (2019). Fourth, Ghorbani et al. (2019) show that, saliency maps
are also vulnerable to adversarial examples, similar to deep neural networks. The
most important drawback, however, is that saliency maps can only be used for
features that are represented by a region of the image. An example of such a feature
would be an eye pattern. In contrast, saliency maps can not be used to determine
whether a feature such as symmetry, that is not connected to one specific, but rather
to the relation of multiple regions, is used by the deep neural network.

2.4.2 Other Methods

While saliency map-based methods, which we described in the previous section,
are the most common method to interpret deep neural networks, other methods
exist. In this section, we introduce some alternatives.

2.4.2.1 Quantitative Testing with Concept Activation Vectors (TCAV)

The first alternative method we describe here is proposed by Kim et al. (2018).
Saliency maps are a local explanation method in a diffeent sense: They only explain
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the behavior of the classifier for the exact input on which it was used. In contrast,
TACV is a method that aims at a global explanation for the classifier, meaning that
it explains the behavior of a classifier as a whole. More specifically, TCAV aims
to determine whether a specific, predefined concept C is used by a deep neural
network F in its prediction. A concept is any feature that partitions all images into
two parts: images that contain the concept and images that do not contain the
concept. As such, a concept admits a natural binary classification task. For a given
deep neural network F , one of the output classes of this deep neural network and
a concept, the question that is answered with TACV is whether the deep neural
network uses the concept to recognize the class. To this end, the activations in
some intermediate layer are used as a representation R of the inputs. On these
representations, we train a linear classifier to distinguish between examples that
contain the concept and examples that do not contain the concept. The unit vector
vRC that is orthogonal to this decision boundary is called the concept activation
vector. The importance of the concept is then evaluated as the directional derivative
of the detector of the class in the direction of the class activation vector.

More formally, we can understand F as a concatenation of two functions F =

F2 ◦ F1. The first function F1 is the feature extractor

F1 : R
n → R

m (2.69)

I 7→ R (2.70)

and the function F2 is the classifier

F2 : R
m → R

c (2.71)

R 7→ P. (2.72)

Then the importance S of a concept towards the classification of the class is given by
the directional derivative of the classifier F2 in the direction of the class activation
vector

S = DvR
C

F2 =
〈
∇F2, v

R
C

〉
. (2.73)

2.4.2.2 Explaining Classifiers with Causal Concept Effect (CaCE)

Another idea to understand classifiers, meaning to understand whether the classifier
extracts a feature from the data and uses it as input for its classification, is causal
concept effect (CaCE). This idea is introduced by Goyal et al. (2019). Their idea is
to build a generative model, for example, the decoder of an autoencoder or a GAN
(Goodfellow et al., 2014a) to create an input image that is the same in every aspect
but differs with respect to containing or not containing the concept in question.
The prediction for the original input and the prediction for the altered input are
compared, and the difference is considered the causal concept effect. For important
concepts, we expect this effect to be high.

The main drawback of this method is the dependence on a generative model.
First, in comparison to predictive models, which try to approximate a set of condi-
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tional probabilities, generative models have to capture the whole joint probability.
Hence, the problem of training a generative model is more difficult than the prob-
lem of training a predictive model. Second, if different features are correlated in the
dataset, then the generative model will not be able to differentiate between them.

2.4.2.3 Methods that Link Intermediate Representations to Concepts

While it is difficult to understand the decision process of a deep neural network in a
semantically meaningful way, it is easy to understand how the decision is calculated
from the intermediate representations in a mathematical way. Hence, one way of
solving the task of understanding which feature is used by the deep neural network
is to link the intermediate representations to semantic concepts. For example,
Narendra et al. (2018) employ causal methods to a deep neural network. They treat
every node as a binary encoding for a concept. The same approach is discussed in
Harradon et al. (2018). However, they find that the connection between single neu-
rons and semantic concepts is unclear. More specifically, some neurons can not be
connected to semantic concepts but specific pixel patterns. Furthermore, multiple
neurons might represent the same concept, and linear combinations of multiple
neurons can represent some concepts. Another approach in this direction is pre-
sented in Stomberg et al. (2021). In this approach, an intermediate representation
is clustered, and then each cluster is linked to a semantic concept.

2.4.2.4 Feature Visualization

Another method developed to understand deep neural networks is the feature visu-
alization framework presented by, for example, Erhan et al. (2009), Simonyan et al.
(2013), Mordvintsev et al. (2015), Olah et al. (2017). The goal of feature visualiza-
tion is twofold. On the one hand, it aims to get prototypical images for the classes
the deep neural network can identify or, in other words, to understand how the
deep neural network “expects” a prototypical example of the class to look like. On
the other hand, it helps to understand what information is detected by individual
neurons.

While methods of this kind achieve impressive and interesting images, even
the basic assumptions underlying this method as an interpretation tool for deep
neural networks are problematic. First, a classifier learns to discriminate between
classes. As such it does not have to learn prototypes for the classes it can identify.
Hence it is unclear why a prototypical image for every class should be extractable.
Second, the notion of a prototypical image indicates that the approximated function
is concave, meaning the score the deep neural network assigns to a class is at least
close to monotone in the distance between the input image and the prototype.
However, this is not the case for deep neural networks in general. Third, it is not
clear why every neuron in the deep neural network should correspond to a semantic
concept. This is a special case of the understanding, that subsequent layers of deep
neural networks extract semantic features of increasing complexity. This idea is,
however not compatible with the concept of adversarial examples as described
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in Section 3. Fourth, many concepts are not explained by single neurons but by
linear combinations of neurons (Szegedy et al., 2013), and a single neuron can be
activated by images containing vastly different concepts (Olah et al., 2017). Finally,
an unrestricted optimization of the input image to maximize the output of a neuron
does not converge to a meaningful image but seemingly random noise patterns.
Strong regularizations are necessary to arrive at images from which concepts can
be interpreted. To this end, authors have employed heavy L2-regularization, for
example, Simonyan et al. (2013), a mix of different regularization methods as, for
example, Olah et al. (2017), or even more complex image statistics, for example,
Mordvintsev et al. (2015). The selection of the regularization has a large influence
on the result and, hence, a large part of the explanations created by these methods
are determined by the implementation of the explanation method rather than the
deep neural network it aims to explain.

2.4.2.5 Explanation by Example

A class of models that are intuitively explainable are nearest neighbor classifiers.
These classifiers simply compare the input at test time to all training inputs, select
the k closest inputs and predict the most common label among these for the test
input. To explain of this classifier’s decision, one can look at the closest examples
from the training data.

The core of these methods is the definition of similarity. Obviously, when classi-
fying, for example, natural objects in images, the Euclidean distance is not a good
measure for similarity as it is massively dependent on the background, it is not in-
variant to translation or rotation, and perturbations of the same Euclidean distance
have very different perceived distortion as demonstrated, for example, in Wang
(2004).

One way to overcome these shortcomings of the euclidean distance is kernels,
which allow us to translate an arbitrary notion of similarity into a euclidean distance.
One interpretation of deep neural networks used, for example, by Simon et al. (2017)
and Simon et al. (2018), is kernelized linear discriminant analysis. To this end, the
whole neural network is the feature function of the kernel, and the last linear layer
performs a logistic regression in the feature space.

Therefore, to explain a deep neural network, we can search for the closest train-
ing examples in this feature space. These examples can be presented to the user
to explain of the learned invariances or to identify important features that all pre-
sented examples share. In particular, it is useful when understanding why the deep
neural network failed to classify some inputs correctly.

Caruana et al. (1999) recommended this method for neural networks in a medi-
cal example. Since then, multiple improvements where recommended. For instance,
Tschandl et al. (2020) present similar images from each class and Simon et al. (2017)
and Simon et al. (2018) use not the whole representation but localized representa-
tions to find not entire images but regions of images that are similar according to
the deep neural network. This progession is especially significant since we expect
a good classifier to be invariant with respect to translation and rotation of objects.
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This invariance leads to semantic areas of an image being detected in various image
locations.

However, this explanatory method has some weaknesses. For example, the
method only presents similar images and does not show why the images are similar.
This point is key when using this method to understand a classifier, but is difficult
when the images have multiple similarities or no obvious similarities. Therefore, the
method can lead to ambiguous results that require a lot of further interpretation.

2.5 Background of Adversarial Examples

Adversarial examples were introduced for neural networks by Szegedy et al. (2013).
They observed what they called blind spots in neural networks. They state:

“Our main result is that for deep neural networks, the smoothness as-
sumption that underlies many kernel methods does not hold. Specif-
ically, we show that by using a simple optimization procedure, we are
able to find adversarial examples, which are obtained by imperceptibly
small perturbations to a correctly classified input image, so that it is no
longer classified correctly.” Szegedy et al. (2013)

This observation is the foundation of the definition of adversarial examples. For
a given input image I, a corresponding adversarial example AI with respect to a
classifier F is an image that meets two conditions:

1. The difference τ between the example I and the adversarial example AI is
imperceptibly small,

AI = I + τ s.t. τ imperceptibly small. (2.74)

We call τ the adversarial perturbation.

2. The example I is classified correctly by the classifier F as c∗, but the corre-
sponding adversarial example AI is classified as a different class c. Meaning

F (I) = c∗, F (AI) = c s.t. c∗ 6= c. (2.75)

A real-world example for such a combination of an image I , a corresponding adver-
sarial image AI and the adversarial perturbation τ can be found in Figure 2.2.

This observation is intriguing because it challenges three fundamental beliefs
about deep neural networks. First, it seems to contradict to the impressive gener-
alization performance of deep neural networks against random noise. The imper-
ceptibly small perturbations seem not connected to any class and look like random
noise. Second, it contradicts the common belief that deep neural networks are hier-
archical feature extractors. This belief is a claim made by multiple authors Erhan
et al. (2009); Olah et al. (2017). They state that the first layer of neural networks
extracts basic features such as edges or colors, subsequent layers extract features
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Class Prob.

Spoonbill 0.9999
Flamingo 0.0001
Am. Egret 0.0000
· · · · · ·
Library 0.0000

Class Prob.

Wall Clock 0.3068
· · · · · ·
Spoonbill 0.0003
· · · · · ·
Library 0.0000

Class Prob.

Library 0.6289
· · · · · ·
Spoonbill 0.0152
· · · · · ·
Wall Clock 0.0000

Figure 2.2: An example for an original example on the left, an adversarial perturba-
tion in the middle (magnified) and the combined adversarial example on the right.
The output of the classifier is listed below the images. The original image is correctly
classified as a spoonbill, and the adversarial image is classified as a library. For
this example, we used a ResNet50 classifier (He et al. (2016)) trained on ImageNet
(Russakovsky et al. (2015)). We used the Projected Gradient Descent attack presented
in Madry et al. (2017) to calculate the adversarial perturbation. Photo by luis rock
from FreeImages

comprised of these basic features, such as corners or basic shapes. Every higher
layer then extracts features built of the features in the layer bevor until we end up
with high-level features that detect object parts, for example eye shapes. This idea
of a hierarchical classifier was used as motivation for other research like Simon
and Rodner (2015) and discussed critically, for example, by Dong et al. (2017). The
notion of adversarial examples is not compatible with this idea of a hierarchical
feature extractor. The small perturbation used to change the prediction of the deep
neural network is imperceptible. In particular, it does not change basic, easily
perceptible features of an image, such as edges. Since these basic features are still
intact, features that are simply combinations of these features should not change
either. The observations, however, speak a different language. In Dong et al. (2017),
the authors investigate the difference of neurons to images and corresponding
adversarial images. They found that neurons in the first layers respond similarly
to the original image and the image containing the adversarial perturbation. In
contrast, the neurons in later layers respond vastly differently to the original and
the adversarial image. The authors conclude that neurons from later layers do
not react to high-level semantic features but just to more complex pixel patterns.
Third, this seems to be a contradiction to the postulates of Niemann (1990) that are
fundamental to many theoretical arguments in pattern recognition. A selection of
these postulates states:
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Postulate 2: “A (simple) pattern has features that characterize its mem-
bership in a certain class.” (Niemann, 1990)

Postulate 3: “Features of patterns of one class occupy a somewhat com-
pact domain of feature space. The domains occupied by features of
different classes are separated.” (Niemann, 1990)

Postulate 6: “Two representations are similar if a suitably defined dis-
tance measure is small.” (Niemann, 1990)

An imperceptibly small perturbation only changes the features that characterizes
its membership in a certain class very little. Especially in tasks that are easy for
humans such as the classification of photographs of everyday objects, the features
that are important for the inference of the correct class are very perceptible. The
influence an imperceptibly small perturbation can have on them is very limited.
Consequently, according to the second postulate, the original and corresponding
adversarial image contain the same characteristic features. According to the sixth
postulate, the original image and the corresponding adversarial attack are close
concerning a suitably defined distance measure. Further, since the features of
patterns of one class occupy a somewhat compact domain that is separated from
the domains occupied by features of different classes, such a small perturbation
should not be able to change the classification of a pattern.

Since the existence of these adversarial examples challenge fundamental be-
lieves a lot of research has been conducted to shed light on how adversarial exam-
ples can be created, on why adversarial examples exist, how the above-mentioned
contradictions can be resolved and how neural networks can be defended against
such attacks.

2.5.1 Creation of Adversarial Examples

The main idea for creating adversarial examples is to calculate the gradient of the
difference between the score of the target class and the original class depending
on the input image. Then we look for the smallest perturbation in this direction
that moves the image across the decision boundary. The classifier is a non-linear
function, and the derivative of the original score-difference is only a linear approxi-
mation of these functions. Hence, most methods use an iterative approach where
they make an initial guess and update it using the gradients at this initial guess. Mul-
tiple methods for the details on how to make initial guesses and how to update them
are proposed in the literature, each of which has advantages and drawbacks. In this
work, we introduce only some representing of the main ideas. These ideas include
the original algorithm introduced in Szegedy et al. (2013) and its improvements
created in Goodfellow et al. (2014b) and Madry et al. (2017). Further, we present
the DeepFool algorithm presented in Moosavi-Dezfooli et al. (2016), the algorithm
presented in Carlini and Wagner (2017) and the one-pixel attack described by Su
et al. (2019).

The first algorithm to create adversarial examples is proposed by Szegedy et al.
(2013), with the observation that adversarial examples exist. They propose to use the
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L-BGFS algorithm, a memory-efficient variant of the Broyden-Fletcher-Goldfarb-
Shanno algorithm (Fletcher (2013)). This algorithm uses the direction indicated by
the initial derivative and then performs a line-search in this direction to find the
perturbation of minimum size. Since the initial direction might not be optimal, this
can lead to larger than necessary perturbations.

Goodfellow et al. (2014b) introduced the Fast Gradient Sign Method (FGS) to
speed up the calculations. The idea of that method is to use the sign of the gradient
as a direction and make a fixed size step in that direction. As such, the method is
very fast but the resulting perturbations might be larger than necessary or might
not lead to misclassification.

Another optimization technique to generate adversarial examples proposed by
Madry et al. (2017) is the projected gradient descent. The main idea is to use the
FGS algorithm iteratively. This change increases the quality of the results while also
increasing the time spent for each example.

The DeepFool algorithm introduced in Moosavi-Dezfooli et al. (2016) approx-
imates the decision boundary around the data point as a polyeder. It uses the
derivative at the original image to find the direction of shortest distance to the edge
of this polyeder. They find the smallest perturbation that should lead to a different
classification in that direction. Afterward, if the classification has not changed, they
repeat the process with the perturbed instead of the original image. While this leads
to very small perturbations that consistently change the classification of the image,
the algorithm is quite slow.

The idea presented in Carlini and Wagner (2017) is to replace relevant parts of the
network that hinder backpropargation. The final decision function of a deep neural
network is trained to look like a step function. Since step functions do not create
gradients suitable for optimization, it gets replaced by a different function. The
authors of Carlini and Wagner (2017) propose different replacements depending on
the desired properties of the adversarial example.

A different approach to the ideas presented above is proposed in Su et al. (2019).
The authors of that paper produce adversarial examples that differ only in one pixel
from the original image. The authors do not use a version of gradient descent but
differential evolution to find these adversarial perturbations.

Many more algorithms are proposed to create adversarial examples, for exam-
ple, BIM (Kurakin et al., 2016), JSMA (Papernot et al., 2016b), Decision Tree Attacks
(Papernot et al., 2016a), D-Patch (Liu et al., 2018b), Elastic-Net Attack (Chen et al.,
2018), HCLU (Grosse et al., 2018), HopSkipJumpAttack (Chen et al., 2020), Newton-
Fool (Jang et al., 2017), Shadow Attack (Ghiasi et al., 2020), SimBA (Guo et al., 2019),
Square Attack (Andriushchenko et al., 2020), Wasserstein Adversarials (Wong et al.,
2019), ZOO (Chen et al., 2017) and the decision-based attack (Brendel et al., 2017).
These algorithms share the ideas mentioned above and present improvements or
different compromises between runtime and quality of the resulting adversarial
examples.
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2.5.2 Intriguing Properties of Adversarial Examples

Another large field of research focuses on a better understanding of adversarial
examples. Researchers have found several intriguing properties of adversarial exam-
ples. These properties make the problem of adversarial examples more interesting
and allow us to reduce the number of possible reasons for adversarial examples.
In the following, we briefly introduce the properties that, in our opinion, are most
relevant to understanding the reason for adversarial examples.

2.5.2.1 Adversarial Examples Exist for Almost Any Kind of Data, any
Task and Any Network Architecture

The first observation of adversarial examples is made by Szegedy et al. (2013) for
a classification task on ImageNet (Russakovsky et al., 2015) data. In that dataset,
real-world images have to be classified as one of 1000 classes, some of which are
fine-grained, for example, different breeds of dogs, while others are more coarse,
for example, airplanes and libraries. However, later researchers showed that the
problem of adversarial examples is not limited to this kind of task. Goodfellow et al.
(2014b) reveal that almost every task and example within a dataset is vulnerable to
adversarial examples. The problem is further in no way bound to computer vision.
Adversarial examples are also observed in other tasks, for example, natural language
processing (Carlini and Wagner, 2018) or text (Ebrahimi et al., 2017). Further, the
problem of adversarial examples is not exclusive to neural networks. For example,
Dalvi et al. (2004); Lowd and Meek (2005) present ideas on robustness against an
adversary for classic machine learning methods and Tatu et al. (2011) present an
algorithm to derive adversarial examples for a classifier based on histogram of
gradient features.

2.5.2.2 Adversarial Examples do not Resemble the Target Class

Another observation made, for example, by Goodfellow et al. (2014b) about ad-
versarial examples is that neither the adversarial perturbation nor the resulting
adversarial example visually resembles the target class. This observation is impor-
tant. As demonstrated, for example, in Figure 3.2, we expect the classification of
a neural network to change if we mix important features of a different class into
the image. Especially if the target class has simple, decisive features, even a small
perturbation adding this feature can be enough to change the classification decision
of a neural network. However, the same happening without adding a clear feature
of the target class is intriguing. We further visualized this effect in Figure 2.2.

Using the fact that adversarial perturbations do not change the correct label
of the example, Goodfellow et al. (2014b) suggest using it to generate adversarial
examples data augmentation. They claim that this data augmentation aids general-
ization.

One reason for this observation might be that deep neural networks have found
clear, decisive features that are not obvious to humans. Since deep neural networks
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have reached superhuman performance in many vision tasks, for example, object
classification (Russakovsky et al., 2015) and in automatic skin lesion classification
(Tschandl et al., 2019), it is fair to assume that deep neural networks have found
meaningful features that are not obvious to humans.

2.5.2.3 Adversarial Examples are Robust to Random Noise

Even though adversarial examples result from an exact calculation process, the
adversarial perturbations look like random noise and do not resemble the target
class (comp. Figure 2.2). This property is intriguing, as neural networks have proven
to generalize well against noise. A natural attempt to mitigate the problem is, hence,
to either add gaussian noise to the adversarial example to obfuscate the adversarial
perturbation (Tabacof and Valle, 2016) or to use methods that have proven to be
effective against other kinds of noise, for example, denoising autoencoders (Gu and
Rigazio, 2014). Tabacof and Valle (2016) compare the robustness of adversarial and
original images to noise. They generate pairs of clean and adversarial examples.
Then they add random noise of increasing norm to both the adversarial and original
image. During this process, they measure whether the classifier’s prediction changes
due to the noise. They find that the noise needed to change the classification of
an original example is of a similar magnitude as the noise needed to change the
classification of an adversarial example. Even though the original examples are more
robust, they conclude that the adversarial examples are by no means isolated points
but populate dense areas. Bai et al. (2017); Gu and Rigazio (2014) use an autoencoder
to denoise the adversarial examples. While they found reasonable success against
an adversary not aware of this defense, they found it easy for an adversary to create
adversarial examples for this combination of two deep neural networks. Similarly,
Li and Li (2017) and Lu et al. (2017) try to evaluate the statistics and distributions in
later layers of the deep neural network to identify adversarial examples. However,
while they show significant differences in the distribution of adversarial and original
examples, these differences are not enough to decide whether a single example is
adversarial or themselves vulnerable to adversarial attacks. Further analysis about
the connection between the robustness against adversarial examples and random
noise can be found in Fawzi et al. (2015, 2018, 2016); Gilmer et al. (2019); Rozsa
et al. (2016a); Stutz et al. (2019); Su et al. (2018); Tsipras et al. (2018). In summary,
adversarial examples are not isolated and, therefore, simply adding noise can not
reliably recover the correct classification.

2.5.2.4 Adversarial Examples are Transferable Between Different
Networks

As described in the previous paragraph, the threat of adversarial examples can not
be reliably mediated by adding random noise or using denoising autoencoders.
However, most attack algorithms rely on specific model parameters to calculate a
gradient. To this end, a natural strategy to defend a neural network is to hide these
parameters and not do allow an attacker to calculate a gradient. Unfortunately, this
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defense did not prove to be effective. Different researchers found that adversarial
examples derived for one classifier are likely to fool other classifiers. For example,
Szegedy et al. (2013) find that an adversarial example created for a handwritten digit
classifier trained on one half of the MNIST dataset (LeCun, 1998) can be transferred
to the same model trained on the other half. Further, researchers have demonstrated
that adversarial perturbations can transfer between different examples, forming
universal adversarial perturbations (Metzen et al., 2017; Moosavi-Dezfooli et al.,
2017). Adversarial examples transfer between deep neural networks with different
architectures (Li et al., 2019a; Tramèr et al., 2017b) or even from more traditional
classifiers to deep neural network classifiers (Papernot et al., 2016a). In conclusion,
adversarial attacks can be transferred between classifiers. Hence, hiding the param-
eters, the architecture and the data on which the classifier is trained does not pose a
valid defense. The transferability of adversarial examples further demonstrates that
adversarial examples are not due to overfitting effects that over-emphasize single
examples, as such deficits would not be transferable to classifiers trained on other
datasets.

2.5.2.5 The Curvature of the Decision Boundary Near Adversarial
Examples is Positive and the Direction of Adversarial
Perturbations is Similar Across Multiple Examples

If a perturbation changes the classification of an image, it has to “push” the ex-
ample over the decision boundary. Multiple researchers observe that the decision
boundary is negatively curved (Moosavi-Dezfooli et al., 2019; Tramèr et al., 2017b)
at the adversarial examples. This observation leads to investigations between the
geometry in the feature space and adversarial examples (see, for example, Gilmer
et al. (2018b); Stutz et al. (2019)). The fact that this curvature is negative is especially
surprising in high dimensions, as the area close to the decision boundary is much
larger on the side of positive curvature than negative curvature.

2.5.2.6 The Correlation Between Robustness and Accuracy

Another property of adversarial examples that has been investigated is the con-
nection between accuracy and adversarial robustness. While early research like
Rozsa et al. (2016a) concluded that accuracy and robustness are positively corre-
lated, newer research, for example, Su et al. (2018); Tsipras et al. (2018), find that
robustness and accuracy might conflict.

2.5.3 The Threat Level due to Adversarial Examples

Adversarial examples seem like a serious real-world threat, given the difficulty of
defending deep neural networks against them. This fact is further corroborated
by the research of, for example, Eykholt et al. (2017), Metzen et al. (2017) and
Sharif et al. (2019). Their research suggests that adversarial attacks are robust
enough to be carried out in the wild. Eykholt et al. (2017) create adversarial stickers
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that change the classification of a street sign even if photographed from multiple
angles and distances. Metzen et al. (2017) suggest a method to create adversarial
patterns that can be added to any image of an automobile camera and removes the
pedestrians from the segmentation map of the image. Sharif et al. (2019) present
patterns that can be printed on cloth or accessories like glasses that can doge
face recognition or detection by neural networks. However, Gilmer et al. (2018a)
describe, it is difficult to define a concrete thread scenario, where an adversarial
attack against an automatic classifier would be the easiest option for an adversary.
If we want to hinder the recognition of a street sign, it might be easier to either
remove or exchange it. If we can add noise to the image captured by a camera
in an autonomous car, we can simply replace the entire image instead of adding
imperceptible noise and, finally, an adversary that wants to doge face recognition
might simply wear a mask instead of glasses with an adversarial pattern.

Hence, our main interest in adversarial examples is not driven by security but by
curiosity. The existence of adversarial examples does not agree with some common
assumptions made when working with deep neural networks and understanding
why they exist. It will help us develop better neural network classifiers.

2.5.4 Theories on Why Adversarial Examples Exist

Given the intriguing properties of the adversarial examples, they reveal that we
have to reevaluate our knowledge of deep neural networks. To this end, multiple
researchers have proposed theories on why adversarial examples exist. As they
proposed theories of how deep neural networks learn from data that include the
existence of adversarial examples. These theories help us to better understand
deep learning as a whole better. In the following, we introduce some of the most
important theories on why adversarial examples exist. Note that, just because a
theory can not explain all properties of adversarial examples, it does not have to
be wrong. It is, instead, very likely, that multiple phenomena cause the effect of
adversarial examples, and adversarial examples caused by different phenomena
will have different properties.

2.5.4.1 Pockets of Low Probability

The original publication, Szegedy et al. (2013), that introduced adversarial exam-
ples, also proposed the first explanation on why they might exist. They propose
that adversarial examples form pockets of low probability that are dense in the
feature space, similar to how the rational numbers are dense in the real numbers
form a dens but zero-probability set. In other words, adversarial examples are an
overfitting effect, where a classifier approximates the true decision function using
an approximation with higher complexity than the true decision function. This
explanation is capable of explaining why adversarial examples exist close to every
example in the data set but do not occur naturally in the training or test set.

It is only half of an explanation, as it is unclear why deep neural networks
would create such pockets in the first place. However, this question is central to
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understanding the properties of adversarial examples. For example, the fact that
adversarial perturbations transfer between different neural networks trained on
different datasets and between different examples in the same dataset indicates
that the position of these pockets is far from random.

Further, small isolated pockets would not be robust to random noise. This theory
can explain the observation by Tabacof and Valle (2016). The same holds for the
observation that the curvature is negative. If adversarial examples formed small
pockets, we would expect the curvature of the decision boundary that we cross from
outside to inside to be positive. But it was consistently found to be negative by, for
example, (Moosavi-Dezfooli et al., 2019; Tramèr et al., 2017b).

2.5.4.2 Networks Only Learn a Low Dimensional Manifold and are
Random Outside of It

It is known that real-world images only form a low dimensional manifold inside the
pixel space [0, 1]m. One proposed theory is that deep neural networks only make
viable predictions for the data on this manifold. In contrast, the predictions outside
this manifold mainly rely on the random initialization.

While a lot of research indicates that the neural network behaves differently
inside and outside the data manifold (Stutz et al., 2019), the random initialization
can not explain the properties of adversarial examples. Even though this theory
explains why the curvature is negative, it does not explain why adversarial examples
are transferable between different neural networks or between different examples.

2.5.4.3 Diminishing Learning Effect of Positive Examples

This theory was proposed by Rozsa et al. (2016b). They suggest that the deep
neural network mainly focuses on wrong classifications during training. To this end,
the authors claim that neural networks build homogenous regions around falsely
classified examples. In contrast, correctly classified examples do not contribute as
much to the loss, and, hence, no homogenous regions are built around them.

Even though this theory does not attribute the existence of adversarial examples
to overfitting, the resulting classifier is similar to the classifiers proposed by the two
previous theories. The classifier will work well in regions where many datapoints
are present and will be basically random in other areas. Therefore, this theory can
explain the same properties of adversarial examples like the ones above.

2.5.4.4 Networks are Too Linear

An alternative to the abovementioned theory of small pockets that attributes the
existence of adversarial examples to overfitting of a classifier due to high complexity
is presented by Goodfellow et al. (2014b). The authors propose that the reason
for adversarial examples is that the non-linear true decision function can not be
approximated well enough by the piece-wise linear function represented by the
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deep neural network. Hence, they attribute the existence of adversarial examples to
an underfitting effect.

Many of the observations corroborate this claim. First, multiple algorithms that
have proven effective to generate adversarial examples, for example, the L-BFGS
algorithm (Szegedy et al., 2013), are linear. Second, since different networks ap-
proximate the decision boundary similarly, this theory can explain why adversarial
examples are transferable between neural network classifiers. Further, since the
dimensionality of the feature space is high compared to the number of examples,
we expect every example to lie close to the decision boundary.

However this theory can not explain why adversarial perturbations transfer
between different examples within a dataset, as observed, for example, by Metzen
et al. (2017) and Moosavi-Dezfooli et al. (2017). Underfitting the decision boundary
would lead to pockets at both sides of the decision boundary. Hence, it is also
difficult to explain why we find the curvature negative.

2.5.4.5 Adversarial Examples are a Natural Consequence of Imperfect
Generalization

Similar to the previous theory of the neural network being too linear, this theory also
attributes the existence of adversarial examples to an underfitting problem of the
classifier. Similar to the abovementioned theory, the idea is that a neural network
only approximates the true decision boundary and, hence, will create pockets next
to the decision boundary. The idea of how this creates adversarial examples is
the same as in the previous theory, and, hence, it explains the same observations.
Additionally, however, Gilmer et al. (2018b) and Gilmer et al. (2019) present more
evidence for this theory. They present empirical evaluations and calculations in toy
examples to corroborate this theory.

A significant consequence of this theory would be that the accuracy and the
adversarial robustness are correlated. Multiple researchers investigated the con-
nection between accuracy and adversarial robustness. While early research like
Rozsa et al. (2016a) concluded that accuracy and robustness are positively corre-
lated, newer research, for example, Su et al. (2018); Tsipras et al. (2018), find that
robustness and accuracy might conflict.

2.5.4.6 Boundary Tilting Perspective

Another theory on why adversarial examples exist is the boundary tilting perspective
introduced by Tanay and Griffin (2016). The main idea behind this theory is that
the decision boundary is underdefined due to the sparsity of the data. The locally
linear decision boundary is tilted randomly along the axis where the data has little
variation. To corroborate the claim that random tilting takes place and can lead to
adversarial examples, the authors present two simple examples using linear support
vector machines. The tilting of their decision boundary can be controlled with
the regularization parameter of the support vector machine. In these experiments,
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the misclassifications that result from a tilted decision boundary visually resemble
adversarial examples.

The high dimensionality of the data should ensure that there is a decision bound-
ary close to every example in most tasks. This fact explains why there is an adver-
sarial example close to every example. Since the decision boundary is in only one
direction from the example, random noise that expands in all directions will rarely
cross the decision boundary. Hence, adversarial examples will be robust to random
noise. This theory can also explain why adversarial examples transfer between
examples. Since the adversarial perturbations are along the axis of low variance in
the data, the direction will be the same for different examples and classifiers. How-
ever, this theory can not explain the observations on the curvature of the decision
boundary.
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3 Adversarial Examples

3.1 A Definition for Adversarial Examples

Despite the impressive amount of research conducted on adversarial examples
(see Section 2.5), there is still disagreement on some fundamental aspects. One of
these aspects is the definition of adversarial examples. In Szegedy et al. (2013), the
authors state that adversarial examples are “imperceptibly small perturbations to a
correctly classified input image, such that it is no longer classified correctly.” To turn
this description of adversarial examples into a mathematical definition, one has to
give a formal definition for its important parts. Authors use a variety of definitions
that focus on different aspects of this initial description. In this section, we, first,
introduce a selection of these definitions and discuss the selected focuses. Second,
we propose our definition of adversarial examples and compare it to the definitions
from the literature.

3.1.1 First Definition

The first definition is proposed by Szegedy et al. (2013). In the notation from
Section 2.5, they define adversarial examples as any feasible solution to the opti-
mization problem

min||τ ||2 s.t. (3.1)

F (I + τ) = c 6= c∗ (3.2)

I + τ ∈ [0, 1]m. (3.3)

This definition aims to find a perturbation that changes the output of the classifier
F (3.2) under the restriction that the resulting input should still be an image (3.3).
This definition, however, is far from the original description of adversarial examples.
It does not capture the idea of imperceptibly small perturbations, as a feasible
solution to this problem could be arbitrarily large. Therefore, it does not capture
the intriguing part of adversarial examples. In particular, every correctly classified
example Ic of class c would be an adversarial example to every correctly classified
example Ic∗ of class c∗. Therefore, τ = Ic − Ic∗ is a feasible solution since

F (Ic∗ + τ) = F (Ic∗ + Ic − Ic∗) = F (Ic) = c (3.4)
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and
Ic∗ + τ = Ic∗ + Ic − Ic∗ = Ic ∈ [0, 1]m (3.5)

hold. Hence, we follow Gu and Rigazio (2014), which states that:

“One could always engineer an additive noise at input to make the model
misclassify an example, and it is also a problem in shallow models such
as logistic regression Szegedy et al. (2013). The question is how much
noise is needed to make the model misclassify an otherwise correct
example. Thus, solving the adversarial examples problem is equivalent
to increasing the noticeability of the smallest adversarial noise for each
example.” (Gu and Rigazio, 2014)

3.1.2 Restricting the Norm of Tau

Various researchers, for example, Kurakin et al. (2016) and Tramèr et al. (2017a),
have used stricter definitions for adversarial examples since the previous definition
is too loose and classifies too many input images as adversarial examples. The main
approach in this direction is to limit the norm of the perturbation τ leading to the
optimization program

min||τ ||2 s.t. (3.6)

F (I + τ) = c 6= c∗ (3.7)

I + τ ∈ [0, 1]m (3.8)

||τ || < ǫ. (3.9)

However, neither ℓp-norm is considered a good measure for imperceptibility, as
discussed in Wang (2004) and Zhang et al. (2018b). While most researchers agree
that a very small norm of a perturbation leads to imperceptibility, the threshold
of which perturbation is still imperceptibly small is highly subjective. Different
authors have proposed different values. For example, Madry et al. (2017) limit the
infinity norm ||τ ||∞ to 0.3 for an MNIST (LeCun, 1998) example and to ||τ ||∞ < 8 for
an experiment on CIFAR (Krizhevsky et al., 2009). But authors not only disagree on
the threshold for different applications but also report different values for ǫ on the
same task, and some authors, for example, Kurakin et al. (2016) and Tramèr et al.
(2017a), report multiple thresholds for one task. These discrepancies demonstrate
the difficulty in measuring imperceptibility.

Further, perceptibility also depends on the user. Outside of computer-vision
applications, any perturbation might be imperceptible for non-experts. Especially
in unusual data that requires expert knowledge, such as medical data or climate
data, it will depend on the user’s expertise whether a perturbation is perceptible.

Therefore, most authors disregard the perceptibility and focus on the notation
of small. However, while the notation of small is more objective than the notation
of perceptibility, defining what constitutes a small perturbation is still not straight-
forward. To this end, we present an example to illustrate that the size of a small

62





Chapter 3 ADVERSARIAL EXAMPLES

Figure 3.1. The inputs for both tasks are uniformly distributed in two dimensions on
the interval [0, 1]. The ground truth for the classification label is indicated by color.
The blue areas contain examples of class one, and the red areas contain examples
of class two. Both these classes occupy the same area in the input space in both
tasks. While in the first case, in the left of Figure 3.1, a perturbation of norm 0.05

is always enough to change the class label in the second case, on the right, it takes
a perturbation of norm up to 0.707. This example demonstrates that T should be
chosen differently, even though the dimensions, the scaling, the number of classes,
and the area per class are the same in both tasks. Furthermore, it demonstrates that
it is impossible to find a data set-independent measure for small perturbations.

In this work, we make the notation of small perturbations more objective. We
compare the adversarial perturbations to the following non-adversarial pertur-
bations to determine what should constitute a small perturbation. We start by
introducing a method that produces a perturbation suited to change the decision
of a classifier in a non-intriguing way. We use the linear interpolation

Ic∗ + τλ = λIc + (1− λ)Ic∗ (3.10)

between an example Ic from the target class and the original example Ic∗ . The
perturbation τλ is, hence, given by

τλ = λIc − λIc∗ (3.11)

for λ ∈ [0, 1].
Note that for λ = 0, the perturbed image Ic∗ + τλ equals Ic∗ , and for λ = 1, the

perturbed image Ic∗ + τλ equals Ic. Hence, for large enough λ, the perturbed image
should be labeled as class c, as it resembles the target image more than the original
image. For λ ∈ (0, 1), the perturbed image is a linear interpolation between Ic∗

and Ic, as displayed in (3.10). An example of such interpolation can be viewed in
Figure 3.2.

While this looks very similar to the definition of adversarial examples, it misses
one of the main properties that make adversarial examples intriguing. The adver-
sarial perturbation and the resulting adversarial example do not resemble the target
class. Since the perturbed image following this process is a linear interpolation
between the input and an image of the target class, it will resemble the target class.

We define a perturbation as small if it is small compared to the smallest τλ that
can fulfill

F (Ic∗ + τλ) 6= c∗, (3.12)

which we calculate through solving the optimization problem

τ0 := EIc∗ ,Ic

[
min
λ∈[0,1]

||τλ|| s.t. F (Ic∗ + τλ) 6= c∗)

]
. (3.13)

We incorporate this idea of small into the definition of adversarial examples to get
Definition 1.
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Definition 1. For a classifier F and an input example Ic∗ that is classified as F (Ic∗) =

c∗, an adversarial perturbation τ is given by every feasible solution to

min
τ :||τ ||<η||τ0||

||τ || s.t. F (Ic∗ + τ) = c 6= c∗.

The data point Ic∗+τ is called an adversarial example. If we construct the adversarial

example for a fixed class c, we call it a targeted adversarial example and c the target
class.

This definition makes the notation of small independent of the data set. It
reduces the task of selecting an individual threshold for each task to selecting one
parameter η through the use of τ0. Of course, calculating the expectation in (3.13) is
hard to calculate over large datasets. However, this problem can easily be met by
calculating it only on a representative subset of the dataset. To show that τ0 is useful
to make the notation of a small perturbation objective and independent from the
dataset, we conduct experiments in Section 3.3.

3.1.3 Restricting the Perturbation to be Imperceptible

Some papers try to make the idea of imperceptibly small perturbations objective by
focusing on imperceptibility. However, the perceptual similarity is in the eye of the
beholder, and the concept of imperceptibility is challenging to extend to non-image
signals like time series, which only experts might be able to tell apart in the first
place.

We will first elaborate on why it is difficult to measure imperceptibility. A per-
turbation is imperceptible if the perturbed image perfectly resembles the original
image. We argue that no simple function can measure resemblance objectively.
We show that subjective measures by humans depend on the data set, and we give
examples for situations where humans might miss resemblance. Afterward, we
propose a method to objectively measure resemblance on any data set. We propose
to train a second neural network on the adversarial examples and check whether the
patterns it finds in adversarial examples with the same target are useful to identify
the class in clean images.

We start with three reasons why the task of identifying resemblance is challeng-
ing:

First, it is impossible to solve this problem with a simple metric. Measuring
visual resemblance is an open problem, and as described by Wang (2004), there are
multiple arguments not to assume that a simple metric can solve it. The most suc-
cessful way to measure visual resemblance is to use features extracted from neural
networks, as described by Zhang et al. (2018b). This way is, however, problematic in
the setting of adversarial examples.

Second, the visual resemblance between different images depends on the data
set. Compare a data set of real-life photographs and a data set of medical scan
images. The first kind of data is familiar to most observers, and they will easily detect
perturbations and might be able to identify a resemblance. Contrarily, the second
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kind of data is unfamiliar to most observers, and they might miss even significant
perturbations and judge visual resemblance differently than domain experts. The
same is true for data sets of different granularity. Two species of birds might look
similar to many people, even though the difference is distinct to a domain expert.
Therefore, we cannot rely on humans if we seek a data set-independent measure for
visual resemblance.

Third, one strength of deep neural networks is the automatic feature selection.
These features might not be interpretable or apparent for humans. To illustrate,
we describe the following example inspired by Tsipras et al. (2018) of a binary
classification task in which humans and automatic classifiers might prefer different
features. The two classes of the classification task are denoted by y = 1 and y = −1.
For every instance x of these classes, the features are distributed as follows

x1 =

{
y w.p. 0.9

−y w.p. 0.1
,

x2, . . . , x31 ∼ N (0.1y, 1).

(3.14)

In this setting, a human might consider the feature x1 to be most relevant and
especially to be more relevant than the other thirty features since the sign of feature
x1 agrees with the sign of y in 90% of cases and every one of the other thirty features
has only a probability of 54% to share a sign with y. However, the feature that is the
sum over all thirty of these features is of the same sign as y in more than 99.8% of
the cases

P

(
sign

( 31∑

i=2

xi
)
= y

)
> 0.998 (3.15)

and might, hence, be preferred by an automatic system.

A more applied example was presented by Lapuschkin et al. (2019). They used
spectral relevance analysis to understand the behavior of a classifier on horse images
from the PASCAL VOC data set (Everingham et al., 2010). They found many of these
images have a source tag in the bottom left corner. Suppose an adversary aims to
perturb an image to be classified as a horse by adding a light spot to the bottom
left corner. At first, it might seem that this has no visual resemblance to a horse.
However, it is not a random perturbation but resembles many horse images in the
dataset and is, hence, a feature that will generalize well across large parts of this
specific data set.

These examples demonstrate that neural networks might use features that hu-
mans do not consider and that we have to be careful not to disregard features
presented by neural networks as meaningless just because the resemblance to the
target class is unobtrusive at first.

It is difficult to ensure that a perturbation is imperceptible. Researchers claim
that perceptibility is linked to the semantic concept of the object that should be
classified. For example, if we want to classify an object in front of a background,
then a perturbation on the object is more perceptible than a perturbation on the
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background. To this end, researchers have suggested different solutions.
One solution to create adversarial perturbations that are imperceptible is rota-

tions. In classifying real-world images, a rotation of an image should not affect the
correct label. Hence, this perturbation in the relevant feature space is imperceptibly
small, even though it is large in the pixel space. This idea was first suggested by
Goodfellow et al. (2014b) and further explored, for example, by Engstrom et al.
(2019).

A different solution was proposed by Hosseini and Poovendran (2018). They
convert images into the HSV color model and then randomly shift the hue and
saturation components while keeping the value component fixed. They justify this
with the “shape bias” in the human cognitive system.

Rozsa et al. (2016b) replace the ℓp-norm with the perceptual adversarial sim-
ilarity score (PASS). This score is given by the structural similarity (Wang, 2004)
between an image and its adversarial counterpart. Since this score better corre-
sponds to the human perception, a small structural similarity will better correspond
to imperceptibility than a small ℓp norm.

Other authors reach imperceptibility by adding the noise to areas that do not
contain the relevant part of the image. Either by perturbing only parts of the image
outside of the bounding box of the object that should be classified (Luo et al., 2015)
or, for example, by perturbing only the lowest of the RGB values of each pixel (Carlini
and Wagner, 2017).

Most of these advances follow a similar idea. They try to measure the distance
between the clean and the adversarial example not in the pixel space. Instead, they
define a suitable space where the distance corresponds to the perceptible distance.
As discussed above, the ℓp-norm is not suitable to measure perceptible distance
(Wang, 2004). However, Zhang et al. (2018b) state that the later layers of deep neural
networks are unreasonably effective for capturing the perceptive distance. Hence,
in contrast to the abovementioned works, we use deep neural networks to measure
the perceptive distance.

3.2 A Quantitative Score for the Perceptibility of

Adversarial Perturbations

In this section, we derive our score R of adversarial robustness. We focus on whether
a perturbation is imperceptible, which is an important property of adversarial ex-
amples. Following the research mentioned above, a perturbation is imperceptible if
it does not change any suitable feature to distinguish the classes in the classification
task. However, it is difficult to decide whether a feature is suitable to distinguish be-
tween classes. In particular, since deep neural networks have reached superhuman
performance in some image classification tasks, see, for example, Russakovsky et al.
(2015) and Tschandl et al. (2019), a perturbation that seems meaningless to a human
might still be useful. Further, suppose we created adversarial examples for a deep
neural network. We obviously cannot use the same neural network to determine
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3.3 Experiments

In this section, we present three experiments. First, in Section 3.3.1, we show
empirically that the notation of “small” depending on τ0 better allows us to compare
the adversarial robustness on different datasets than ε in the original definition
(3.9). Second, in Section 3.3.2, we show that our score R agrees with the literature
in differentiating between adversarial and non-adversarial examples. Third, we
show that the adversarial robustness of a classifier is correlated to the modality of
individual classes’ distributions in the training set.

3.3.1 Demonstrating that τ 0 is Dataset Agnostic

We conduct experiments to demonstrate that our proposed method helps to make
adversarial robustness more comparable across datasets. In the first experiment, we
show that τ0 can be calculated on a subset of the data. In the second experiment, we
demonstrate that the same dataset under different transformations still has similar
adversarial vulnerability if normalized by τ0.

As a second experiment, we demonstrate that τ0 makes the definition of adver-
sarial examples robust against transformations of the dataset such as rescaling or
a smaller data manifold embedded into a bigger space. We show that the parame-
ter η in (3.13) captures the choice for small perturbations better than the original
parameter ||τ ||2.

3.3.1.1 Efficient Computation of τ 0

For the first experiment, we test which fraction of the dataset is needed to deter-
mine τ0 correctly. We test this for four datasets, namely MNIST (LeCun, 1998),
Fashion-MNIST (Xiao et al., 2017), CIFAR10, and CIFAR100(Krizhevsky et al., 2009).
The test sets to all these data sets contain 104 examples. The number of possi-
ble combinations of data points from different classes is, hence, 9 · 107 for MNIST,
Fashion-MNIST and CIFAR10 and 9.9 · 107 for CIFAR100. We calculate τ0 on differ-
ent fractions of these combinations. The results for Fashion-MNIST can be seen in
Figure 3.5. The results for the other datasets look similar.

As is expected because of the central limit theorem, the variance of the estimate
for τ0 gets smaller with the square root of the number of data points considered. We
observe that the variance of the estimates decreases as proposed in the central limit
theorem. However, for less than 10−4 of the examples, is the non-independence
of the data problematic. Hence, after evaluating 10−4 of the data, one can use
the variance on that subset to estimate how many samples are needed to reach a
specific accuracy needed for a task. The values of τ0 for the different datasets can
be found in Table 3.1.
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the target class and does not fulfill the definition for an adversarial example. The
results of the second experiment are similar. The adversarial candidates for the clas-
sifier regularized classifier visually resemble the target class, while for the classifier
“without regularization” the adversarial candidates do not resemble the target class.
Consequently, only the adversarial candidates for latter are adversarial examples.

In conclusion, the adversarial set contains real adversarial examples only in the
case “without regularization.” These results agree with the results reported by Tanay
and Griffin (2016).

Our score R in Table 3.2 quantifies these qualitative results. Our score detects in
both cases correctly whether the adversarial candidates are adversarial examples
or not. We run every experiment ten times. The score is ten times positive for the
non-adversarial case and ten times negative for the adversarial case.

We conclude that our score R can differentiate between examples that are
visually similar to the target class and those that are not. The existence of the former
is neither surprising nor problematic since large enough perturbations will always
be able to change the decision of a classifier while the latter should not exist. These
examples reinforce our belief that R allows us to distinguish between meaningful
features picked up by a neural network and noise even when domain knowledge is
needed otherwise.

3.3.3 The Connection Between Multimodality and

Adversarial Vulnerability

We need to be able to link properties of the dataset to adversarial robustness to
understand the fundamental learning behavior of deep neural networks through
why adversarial examples exist. In the previous sections, we took a step towards
making adversarial robustness more comparable across datasets. In this section,
we demonstrate an approach that utilizes this progress.

To demonstrate the usefulness of the results presented in Section 3.2, we show
that multimodality of the distribution of individual classes is linked to adversarial
robustness. To investigate this link, we need datasets that are the same in every way
except the modality of the distribution of examples of one class. To this end, we
start with the MNIST dataset and create new datasets by grouping several digits into
one class.

Since the images of one digit in the MNIST dataset are similar, we expect their
distribution to be unimodal. For our new datasets, where we grouped k digits into
one class, the different digits within one class are not visually similar. Hence, we
expect the resulting distribution to be k-modal.

We partition the ten MNIST classes into m ∈ {2, . . . 10} classes, such that the
number of classes in each part is as equal as possible. This new data set is called
MNIST(m). Note that MNIST(10) is equal to the original MNIST. We train a classifier
FO on each MNIST(m) dataset. We use these new labels for the MNIST set and
the DeepFool algorithm to calculate the adversarial set described in Section 3.2.
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Features for Deep Neural

Networks

4.1 Theory

In this section, we introduce the new method we developed to determine which
feature is used by a deep neural network. This method is based on the framework
of causality introduced by Pearl (2009). We can formulate supervised learning as a
structural causal model using this framework. Under some assumption on the su-
pervised learning algorithm and some assumptions of causal inference, mentioned
in Section 2.1, we can employ Reichenbach’s common cause principle (Reichen-
bach, 1991) to reduce the question of whether a feature is relevant to the decision of
a deep neural network to a conditional dependence test.

First, in Section 4.1.1, we motivate the basic idea of the method on example data
from the national football league. Second, in Section 4.1.2, we thoroughly explain
all variables and processes included in the structural causal model. To further
illustrate these explanations, we provide an elementary example on synthetic data
in Section 4.1.4. For the structural causal model described in Section 4.1.2 to be
valid, we make some assumptions on the supervised learning algorithm. Hence,
third, in Section 4.1.5, we investigate how to adapt the method demonstrated here
if these assumptions do not hold. While the structural causal model is different
if the assumptions do not hold, we end at the same conditional dependence test.
Nevertheless, the method presented here has several shortcomings. We discuss
these shortcommings in Section 4.1.6. Finally, in Section 4.1.7, we explain how our
new method compares to state-of-the-art methods for understanding deep neural
networks.

To demonstrate that this method is not limited to tasks on small synthetic
datasets as presented in this section, we present multiple experiments in Sec-
tion 4.3.1. We show that our method can be applied to complex real-world classi-
fiers.
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4.1.1 Motivational Example

We start by illustrating the method’s main idea for understanding whether a feature
is used by a supervised learning method. The core of the method is the conditional
dependence test

X ⊥⊥ P |L (4.1)

between the feature X and the prediction P of the supervised learning method
given the true label L. We especially want to demonstrate that this is intuitively
more reasonable than considering the unconditional dependence test

X ⊥⊥ P. (4.2)

The first example we use is a two-class classification task, where three-dimensional
inputs are classified as one out of L ∈ {0, 1}. The inputs are given by

I =

(
i1
i2

)
, I ∼ N

((
L

L

)
,

(
0.1 0

0 0.1

))
. (4.3)

Both dimensions on their own contain enough information to classify most exam-
ples correctly. This task corresponds to a situation where we want to classify inputs
with multiple unique features. A classifier could extract any one of these features
for classification. Hence, we consider two classifiers, F1 and F2. The former is a
simple logistic regression on the first dimension of the input I, meaning that the
probability of the input I coming from class one is given by

P(L = 1 | I) = F1(I) =
1

1 + exp
(
−
(
i1 − 1

2

)) . (4.4)

Similar, the latter classifier F2 is a simple logistic regression on the last dimension
of the input

P(L = 1 | I) = F2(I) =
1

1 + exp
(
−
(
i2 − 1

2

)) . (4.5)

For both of the classifiers, the chance that they misclassify one example out of a
training set of 200 is smaller than 10−4. The predictions of the two classifiers on an
example set can be observed in Figure 4.1.

Testing the dependence between the feature X and the prediction P of the
classifier is a naive approach to test whether a black-box classifier uses it. To evaluate
this for the two classifiers mentioned above, we use the correlation with a shuffle
test to find the distribution under the assumption of independence. The results are
presented in Table 4.1. We see a strong dependence between the prediction of each
classifier and both features. The chance of such a dependence appearing randomly
in a sample of independent data is smaller than one in a thousand. This correlation
between the prediction P and the feature not used by the classifier is due to the
strong correlation of the features. Both features are high for samples from class 1,
and both features are low for samples from class 0. In comparison, the conditional
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Table 4.2: The real-world data used in the example. We report values for twenty
players from the Seattle Seahawks (SS) and the New York Giants (NYG). We report
their weight in pounds and the time they needed for a 40-yard-dash in seconds, both
recorded at the NFL Combine. Finally, we report the position in which the players
played in the 2019/2020 season as either tackle (T), center (C) or wide receiver (WR)

Name Team Weight in lbs 40-Yard-Dash- Position
Time in s

Duane Brown SS 315 5.08 T
Jamarco Jones SS 299 5.50 T
Cedric Ogbuehi SS 306 4.98 T
Brandon Shell SS 324 5.22 T
Kyle Fuller SS 320 5.24 C
Ethan Pocic SS 320 5.15 C
Tyler Lockett SS 182 4.44 WR
DK Metcalf SS 235 4.33 WR
David Moore SS 215 4.43 WR
Freddie Swain SS 199 4.46 WR
Phillip Dorsett SS 192 4.25 WR
Spencer Pulley NYG 308 5.10 C
Jakson Barton NYG 302 5.18 T
Cameron Fleming NYG 323 5.28 T
Andrew Thomas NYG 315 5.22 T
C.J. Board NYG 181 4.42 WR
Austin Mack NYG 215 4.59 WR
Sterling Shepard NYG 201 4.48 WR
Darius Slayton NYG 190 4.39 WR
Golden Tate NYG 197 4.42 WR

classifiers similar to the synthetic data experiment above. The first classifier is

Fw =
1

1 + exp
(
−w−µw

σw

) , (4.6)

where µw and σw are the expected value and the standard deviation of the weights.
The second classifier is

Fs =
1

1 + exp
(
− s−µs

σs

) , (4.7)

where µs and σs are the expected value and the standard deviation of the 40 yard
dash times. A plot of the data can be found in Figure 4.2, and the calculated values
are displayed in Table 4.3. We observe that the findings from the synthetic data
extend to the real data.
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and then take an image under random conditions. The resulting image is labeled as
“dog.” Therefore, the underlying distribution of images in the classification task can
be understood as the combination of the distribution of all possible images of dogs
Pdog and the distribution of all images of cats Pcats, weighted by their respective
priors p(dog) and p(cat)

P = p(dog)Pdog + p(cat)Pcat. (4.8)

Similarly, during inference, we take an image of a real animal. This real animal
determines the correct label, and, hence, the image is not sampled from P but either
Pdog or Pcat. In conclusion, when sampling for inference as well as when creating the
training set, the images are sampled from the individual distributions Pdog and Pcat

given the label and not directly from the more general distribution P . Consequently,
we parametrize the distribution by the label and denote it by PL. More generally, if
we discriminate between n classes named c1 . . . cn, the distribution P is given by

P =

n∑

i=1

p(ci)Pci (4.9)

and when sampling, we sample from the distributions Pci .

The same holds if we are faced with a regression task. Instead of a class label, we
have a prediction target Y , and the density P is given by the integral

P =

∫

R

p(Y )PY dY. (4.10)

If we sample an input example, we sample from the distributions PY .

As demonstrated in the motivational example in Section 4.1.1, we condition on
this variable. Therefore, we need to understand the metric space formed by these
distributions. To this end, we use the metric induced by the labels. This metric is in
the trivial metric on the label space for classification tasks. From the third Postulate
of Niemann (Niemann, 1990), we know that the domains occupied by features of
different classes are different. Hence, the distributions for two classes, L1 6= L2 are
different from each other PL1

6= PL2
. Therefore, we use the metric

d(PL1
, PL2

) =

{
0 PL1

= PL2

1 PL1
6= PL2

=

{
0 L1 = L2

1 L1 6= L2

(4.11)

for a classification task.

The Training set TS: Since we want to learn the task at hand, we need a training
set. A training set is generated by drawing Labels L and then drawing images from
the respective distributions PL. Following Niemann’s postulates, we assume the
training set represents the underlying distribution, meaning that the samples in the
dataset are i.i.d. sampled from P .
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The Weights of the Learning Algorithm W : A data-driven classification approach
aims to find a function F that maps every input I onto the correct Label L

F : I 7→ L. (4.12)

Since we only have a limited amount of information, it is reasonable only to
consider a particular class of functions. We parametrized this class of functions by a
set of weights W . Consequently, this parametrization and the set of weights W are
very different between algorithms. Here, we give some examples.

In deep neural networks, the weights on the connections between the neurons
form the weights W . Similar, for a linear regression task, the weights W is the vector
of the linear coefficient of the algorithm. In contrast, for example, in the case of the
nearest neighbor classifier, the set of weights is the set of training images that are
simply stored as weights for the inference process.

The Prediction P of the Automatic Prediction System: Even though we try to
find a function F , which maps every input I onto the correct label L,

F : I 7→ L, (4.13)

we will not find such a function in most cases but will only find an approximation.
One reason for this is that the inputs might be ambiguous, such that identical inputs
might be labeled differently and, hence, we can only predict the most likely label. A
second reason might be due to finite data. The effect of finite data might lead to
some error in estimating the weights W . For this reason, the actual function we will
find will not map to L but will map to an approximation

P = L+ ǫ, (4.14)

where we model ǫ as random independent noise. We call this approximation of the
label generated by the automatic system the prediction P of the algorithm.

The input Image represented as X and X̄: One of the most important Variables
in understanding whether a deep neural network uses a feature is is the input
example. Critically, we have to separate the information in the input into the feature
X we want to investigate and the information X̄ orthogonal to this information. In
the following, we will call X the feature of interest.

For example, if the input consists of multiple variables and the feature of interest
is their mean, we can divide the information by using the mean as the feature of
interest and the differences between each variable and this mean forme the set X̄
of orthogonal features.

In this example, the feature of interest X is calculated by a mathematical formula.
Besides this, there are at least two other ways to receive the feature of interest. The
first is to use hand-annotation to get the value of X, and the second is to use a
simpler learning algorithm to predict the feature of interest X for every input I . All
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three of these methods of obtaining the feature of interest have advantages and
disadvantages.

As for the idea of calculating the feature from the image analytically: The main
reason we use a learning algorithm in the first place is that most semantically
meaningful features are very hard to calculate using a mathematical formula. Hence,
it might not be a valid approach for most interesting features to calculate it from the
image deterministically. However, if we can calculate the feature of interest from
the image directly, it is as close to the information presented to the algorithm. Both
other methods will add some amount of noise to the feature of interest.

In comparison, relying on hand annotations is often the only reliable way to find
the value for semantic features in an image. However, hand annotations require
a lot of time and often expert knowledge. Hence, it is often not feasible to create
annotations for images. Another drawback of this method is that an expert may
use information outside of the image. Hence, the hand annotation might add some
information not contained in the image, which means that the annotation is a noisy
version of the information contained in the image.

Finally, we can use a combination of both methods. To this end, we need
annotations on the feature of interest for some images, not necessarily images
from the original data set. The main idea is to train an auxiliary simple supervised
learning algorithm on these annotated images. Using this auxiliary algorithm, we
get a prediction of the feature for every input in the training set. This auxiliary
algorithm does not rely on additional information since it gets only the image as
an input. However, the most important advantage compared to relying solely on
annotations is that we need fewer annotations and that we can rely on other data
sets that are annotated already. However, a different kind of noise is introduced. This
noise originates from the approximation error of the auxiliary learning algorithm.
Since we either rely on very few labeled examples or have to rely on examples from
a slightly different domain, the simple classifier will not perfectly generalize to the
original data set.

To illustrate the above possibilities, we present a simple example. Consider an
application that identifies bird species from images. In particular, a supervised
classifier is trained that distinguishes American crows (Corvus brachyrhynchos)
from fish crows (Corvus ossifragus). Since these two bird species look very similar
(The Cornell Lab of Orniothology, 2020), we might be worried that the classifier
might use water in the background of images to indicate fish crows. If we employ
the method described in this work to investigate this question, we need to extract
a numerical feature that indicates whether and how much water is in the image;s
background.

To this end, we have multiple options to evaluate the feature. First, we can use
a mathematical formula. An example could be the cosine similarity between the
input image I and a blue image B of the same size

X1 =
〈I, B〉

||I|| ||B|| , (4.15)
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the cosine similarity between the bottom half of the input image I1/2 and a blue
image B1/2 of appropriate size

X2 =
〈I1/2, B1/2〉

||I1/2|| ||B1/2||
(4.16)

or something similar.

Second, we can use hand annotations. The person taking the images must also
note whether water is in the area the image is taken. If no such labels are provided,
we must manually label every image in the dataset. These labels could be binary,
one if there is water in the image and zero otherwise, or could, for example, denote
the number of pixels that contain water.

Third, we can either manually label some of the images, for example, ten percent,
of the dataset as described above or use images that contain no birds, but of which
we know whether they contain water. We then use these images to train the auxiliary
classifier, which could be, for example, a simple support vector machine, logistic
regression or a small neural network.

The sampling processes ST and SF : The first set of processes involved in super-
vised learning are the sampling processes. The first sampling process, ST , is used to
sample the training set, and the sampling process, SF , is used to sample examples
during inference.

To sample the training set, we start by sampling a sequence of labels according
to our prior distribution pl

ST1(ω, Pprior) = (l1, . . . , lm). (4.17)

Given this sequence of labels, we use a second sampling function S2 to sample an
example from the distributions of images corresponding to the label

ST2(ω, (l1, . . . lm), {Pl}) = ((l1, I1), . . . , (lm, Im))

= ((l1, {X1, X̄1}), . . . , (lm, {Xm, X̄m}))
(4.18)

where Ii is sampled from Pli . Hence, the sampling process ST is the combination of
the two abovementioned sampling processes

TS = ST (ω, {Pl}, Pprior) = ST2

(
ω, ST1(ω, Pprior), {Pl}

)

= ((l1, {X1, X̄1}), . . . , (lm, {Xm, X̄m})).
(4.19)

The second sampling process isSF , used to sample single examples for inference.
The process is very similar to the abovementioned process. It also consists of two
subprocesses. The first subprocess samples a label l fromPprior. The second samples
an image I from the corresponding distribution Pl. In contrast to ST , this sampling
process, however, samples only a single example instead of a set of examples. Hence,
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the first sampling subprocess is given by

SF1(ω, Pprior) = l, (4.20)

and the second subprocess is given by

SF2(ω, l, {Pl}) = I = {X} ∪ X̄. (4.21)

The sampling process SF is then given by combining these two subprocesses

SF (ω, Pprior, {Pl}, Pprior) = SF2(ω, SF1(ω, Pprior), {Pl}) = I = {X} ∪ X̄. (4.22)

The Training Process T : The most apparent process in supervised learning is the
training process T . The training process is used to find an optimal set of parameters
for the inference function of the supervised learning algorithm. While some super-
vised learning algorithms are deterministic, many also include randomness in the
training process. We illustrate both of these possibilities later in this section using
an example. Since our main focus is on deep neural networks, we use a stochastic
training function,

T (TS, ω) = W. (4.23)

We now proceed with the two examples. The first example for a deterministic
training function is the nearest neighbor classifier. The training process simply
stores the training set into the weights W for this classifier. Therefore, nearest neigh-
bor classifiers have a deterministic training process. Another supervised learning
method that uses a deterministic training function is a linear regression that min-
imizes the mean squared error, where we can find the optimal set of parameters
analytically. For both of these situations, the training function is given by

T (TS) = W. (4.24)

An example of a supervised learning algorithm that uses a stochastic training
process is deep neural networks. The weights are usually initialized at random
for deep neural networks and then updated iteratively using randomly selected
minibatches. These details, the random initialization and the random selection of
the mini-batches make the training process of neural networks a stochastic process

T (TS, ω) = W. (4.25)

Typically, supervised learning methods that use iterative optimization methods
are stochastic, while methods that reach their set of weights analytically employ a
deterministic training function.

The Inference Function F : The last process we consider is the inference process
of the supervised learning algorithm. This process is the only one that can form
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a causal connection between the feature of interest X and the prediction of the
supervised learning algorithm P .

The process is very dependent on the specific supervised learning method. For
example, for the nearest neighbor classifier, the inference function aggregates the
label of the k nearest neighbors into one prediction. In the example of the linear
classifier, the input is multiplied by the learned weights to get the prediction. In the
example of a neural network, the weights are used to calculate the prediction via a
forward pass of the classifier.

In all of these examples, we observe that the inference function uses the weights
W of the supervised learning algorithm and at least some of the features from the
set X̄. We are left with two possible inference functions. The first, in which the
supervised learning algorithm uses the feature of interest to calculate its prediction,

P = F (W, I) = F (W, {X} ∪ X̄), (4.26)

and the second, in which it does not,

P = F (W, I) = F (W, X̄). (4.27)

4.1.3 Combining the Variables and Processes into a

Structural Causal Model

We have introduced all relevant Variables and Processes involved in supervised
learning in Section 4.1.2 and now combine them into a structural causal model.
The intrinsic variables of the structural causal model are the distributions PL, the
training set TS, the weights of the supervised learning algorithm W , the feature of
interest X, the set of orthogonal features X̄ and the prediction of the supervised
learning algorithm P . As described above, these variables arrange in the following
structural causal model

TS = ST (PL) (4.28)

W = T (TS) (4.29)

{X, X̄} = SF (PL) (4.30)

P = F (W,X, X̄) or P = F (W, X̄). (4.31)

We excluded all dependencies on intrinsic or constant variables for this structural
causal model. For example, the sampling processes have the random choice of
labels as intrinsic variables. However, in the structural causal model, they only
depend on the specific distribution PL.

The corresponding graphical model can be found in Figure 4.3. This graphical
model and the structural causal model in equations (4.28) to (4.31) show that the
remaining question is whether the inference function F of the supervised learning
algorithm uses the feature of interest X to calculate the prediction P . To this end, we
test whether there is a statistical dependence between these two variables. However,
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PL X

TS W

X̄

P

ST

SF

SF

T

F

F

F

Figure 4.3: The graphical model corresponding to the structural causal model dis-
played in equations (4.28) to (4.31). The intrinsic variables, namely the distribution
of the examples of a specific label PL, the training set TS, the weights of the super-
vised learning algorithm W , the feature of interest X, the set of features X̄ that are
orthogonal to the feature of interest and the prediction P of the supervised learning
algorithm are displayed as the vertices of the graph. The arrows indicate the processes
that connect these variables, namely the sampling processes ST and SF to sample
the training set or single examples for inference, respectively, and the training process
T and the inference process F . The remaining question is whether the inference
function F uses the feature of interest X to calculate the prediction P . Therefore, the
corresponding arrow is dashed and red.

if we find dependence between these two variables, the direct connection between
the variables X and P is not the only possible reason. Reichenbach’s common cause
principle states that if two variables X and P are dependent, then either one is
causing the other, or there is a variable causing both,

X 6⊥⊥ P ⇒





X → P or

P → X or

∃Z : X ← Z → P.

(4.32)

We first investigate the third possibility. According to the graphical model,
besides the direct path X → P , there exist two indirect paths. The first path is
X ← PL → TS → W → P and the second X ← PL → X̄ → P . The variable that
blocks both paths is PL. Hence, to ensure that the direct path in the structural causal
model exists, we condition the dependence test on PL.

As discussed above in Section 4.1.2, the metric in the label space induces the
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chooses a pattern that appears in every image of a square but no image of a cross.
All seven patterns that appear in every image of a square but no image of a cross
are displayed in the right of Figure 4.5. While the network can solve the task using
another pattern, for example, a pattern that only appears in the cross images but
not in the images of squares or patterns that do not use the full 3 × 2 patch but
set some of the weights to zero, in our example it selected one of the patters in
Figure 4.5.

Note that all patterns in the right of Figure 4.5 appear in every image of a square.
No matter which pattern the classifier uses to detect the square, there will be a strong
correlation between the appearance of the pattern and the classifier’s prediction for
each of these patterns, as reported in Table 4.4. Hence, the underlying distribution
is a confounder for the existence of a pattern in the image and the classifier’s
prediction.

The classifier has seven weights. Six weights determine the pattern chosen by
the convolutional layer, and one weight is used as a bias in this layer. For simplicity,
in this example, we fix the bias to zero. Hence, the wheights W of the learning
algorithm are given by the convolutional filter values.

We calculate these weights W for the convolutional neural network using the
training algorithm T . In this case, we used stochastic gradient descent for ten
epochs. The accuracy on a test set created the same way as the training set is 1.0,
demonstrating that the learning algorithm identified a meaningful pattern.

One of the main reasons we use this simple classifier for this illustrative example
is its interpretability. As explained above, the classifier selects one pattern and uses
the highest similarity to a patch in the image for its decision. To understand the
classifier, we can look at the learned weights of the kernel. In this example, the
classifier used the horizontal stripe displayed in the first row of Table 4.4.

The function F we use in this example is given by the forward pass of the convo-
lutional neural network.

The final variable is the feature of interest X. As an example, in the graph in
Figure 4.4, we choose the highest cosine similarity between the bottom left corner
shape and every 3 × 2 patch of the image. The set X̄ contains all other features
with no information on the cosine similarity between patches of the image and the
bottom left corner shape. Even though we represent this set in Figure 4.4 by the
other patterns, this set contains every orthorgonal feature, as discussed above. It
is in no way limited to the similarity between the other patterns and patches of
the input. At this point, we want to emphasize again that the method presented
here is not suited to compare the use of different features. As mentioned, the seven
patterns we investigate here are no complete list of possible patterns, and no such
list is necessary. Every individual test for a feature is a test independent of other
tests, and no comparison between these tests is reasonable.

To finish this illustrative example, we report the results of our method compared
to the results using an unconditional correlation. We run the method three times,
once for the horizontal stripe and once for each vertical stripe patterns displayed in
Figure 4.5. We omitted the corner patterns from this investigation since they are,
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(a) The original graphical model.
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(b) The graphical model if the inference func-
tion does not use any feature from the set X̄.
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(c) The graphical model if the trainnig or in-
ference process is deterministic.
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(d) The graphical model if the training and
inference process are deterministic.

Figure 4.6: The possible graphical models for situations which deviate the scenario
described in Section 4.1.2. We display this graphical model in (a). In (b), the model
for the situation in which the inference function uses no feature besides X , the feature
of interest. In (c), we display the model for a supervised learning algorithm that uses
a deterministic training or inference process. In (d), we display the graphical model
for a supervised learning algorithm that uses a deterministic training and inference
process.

and at least one feature different from the feature of interest X in Section 4.1.5.1.
Then we discuss the assumptions that either the training process T or the inference
process F are deterministic or that both of these processes are deterministic in
Section 4.1.5.2.

4.1.5.1 The Assumption that the Inference Process F uses W and at
Least on Feature from the Set X̄

In Section 4.1.2, we assumed that the inference process uses W , the weights of the
supervised learning algorithm, and some at least one feature from the set X̄ , the set
of all orthogonal features to the feature of interest X.

We first discuss the assumption that the inference function uses the weights W .
If the inference function did not use any weights, it would, be independent of the
training set and, hence, would no longer be a learning algorithm. However, in this
work, we only focus on supervised learning algorithms.

The second assumption is that the inference uses at least one feature other than
the feature of interest X. This assumption does not influence the final result. If we
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drop this assumption, the inference process shown in equation (4.26) becomes

P = F (W, I) = F (W,X), (4.38)

and the inference process in equation (4.27) becomes

P = F (W ). (4.39)

Using these equations in the structural causal model in equation (4.31) leads to the
graphical model in Figure 4.6b. Again, dependence between the feature of interest
X and the prediction P can be explained by either a direct link given by the function
F in equation (4.38) or the indirect path X ← PL → TS → W → P . To block this
path, we can condition on any of the three variables PL, TS and W . Hence, if we
drop the assumption that at least one feature different from the feature of interest is
used by the inference process of the supervised learning algorithm, we still conclude

X 6⊥⊥ P |L ⇒ X → P. (4.40)

4.1.5.2 Deterministic Processes for Training and Inference

The other assumption that leads to the graphical model in Figure 4.6a is that the
training and inference processes are stochastic. Here we demonstrate that these
assumptions are not vital towards the final result.

First, we discuss the possibility that the training process is deterministic. This
is the case , for example, in the nearest neighbor classifier or a linear classifier
optimized with mean squared error, but not in, for example, deep neural networks.
If the training process is deterministic, the weights W of the supervised learning
algorithm contain no information not already included in the training set. Hence,
we can drop the weights W as a variable and instead consider the calculation of the
weights as part of the inference function. Hence, we drop the deterministic function
from the structural causal model. Under this assumption, the inference function
described in equation (4.26) can be written as

P = F ′(TS, I) = F (T (TS), {X} ∪ X̄) (4.41)

and the function in equation (4.27) as

P = F ′(TS, I) = F (T (TS), X̄). (4.42)

The resulting graphical model is presented in Figure 4.6c. We observe that, besides
the direct path X → P , two indirect paths, namely X ← PL → TS → P and
X ← PL → X̄ → P exist. Both of these paths can be blocked by conditioning on
the distribution of images of one class, which, as discussed above, is the same as
conditioning on the ground truth label. We find

X 6⊥⊥ P |L ⇒ X → P. (4.43)
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The second possibility we discuss here is that the inference process is determin-
istic. In this case, as in the case where the training function is deterministic, we
can interpret the inference function as taking the training set W as an input instead
of the weights W . As in the previous example, the inference function described in
equation (4.26) can be written as

P = F ′(W, I) = F (W, {X} ∪ X̄) (4.44)

and the function in equation (4.27) as

P = F ′(W, I) = F (W, X̄). (4.45)

The resulting graphical model is presented in Figure 4.6c. In contrast to the previous
example, this change is to include the stochasticity of the training process T into the
inference process F . Since the graphical model is the same as in the example above,
besides the direct path X → P , there are the two indirect paths X ← PL → W → P

and X ← PL → X̄ → P . Both of these paths can be blocked by conditioning on
the distribution of images of one class, which, as discussed above, is the same as
conditioning on the ground truth label. We find

X 6⊥⊥ P |L ⇒ X → P. (4.46)

The third possibility, in which the model can differ from the one displayed in
Figure 4.6a, is that the training process T and the inference process F are both
deterministic. In this case, we include the sampling process ST , the training process
T and the inference process F into one process. Hence, this new process is stochas-
tic due to the stochasticity in the sampling process. Thus, the resulting structural
causal model is given by

X, X̄ = SF (PL) (4.47)

P = F (PL, {X} ∪ X̄) or P = F (PL, X̄) (4.48)

The corresponding graphical model is presented in Figure 4.6d. In addition to the
direct path X → P , two indirect paths, namely X ← PL → P and X ← PL → X̄ →
P . Both of these paths can be blocked by conditioning on PL. Hence, as in the above
scenarios, we find

X 6⊥⊥ P |L ⇒ X → P. (4.49)

These cases show that even if the assumptions we made to reach the structural
causal model in equations (4.28) to (4.31) and the graphical model in Figure 4.3 are
violated, the final result remains the same. Suppose we want to determine whether
a supervised learning algorithm uses a feature of interest X. In that case, we can
evaluate whether the feature of interest X and the prediction P are dependent given
the label L.

We demonstrated that in the structural causal model, we can reduce the question
of whether the supervised learning algorithm uses the feature X to calculate its
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prediction P to a conditional dependence test X 6⊥⊥ P |L. However, as discussed in
Section 2.1, not every situation can be modeled using a structural causal model. In
this section, we discuss why the structural causal model is a suitable model for this
situation of supervised learning. Further, we will discuss the possibility of hidden
confounders in the data generation process, the implications and possibilities we
have to mitigate problems coming from hidden confounders.

4.1.5.3 The Possibility of Hidden Confounders

As described in Section 2.1, not every situation can be modeled using a structural
causal model. The most critical assumption is that we can find a set of functions that
form a directed acyclic graph. To this end, the situation of supervised learning has
some advantages. The first two processes involved in supervised learning, namely
the training process T and the inference process F , are mathematical algorithms.
As such, they have a natural representation as a function. As such, they not only
naturally form a directed acyclic graph, but we can further ensure that no hidden
confounder between the weights W of the supervised learning algorithm and any
other variable or between the prediction P of the supervised learning algorithm
and any other variable.

Further, we consider possible causal relations between the feature of interest X
and the set of all orthogonal features X̄. We first emphasize that there is no direct
causal link between them. To this end, we use the example of an image as input I.
If the input is an image, the feature of interest will be some property of this image.
For the set X̄ of orthogonal features, we include all properties of the image that,
through calculating them, do not depend on the feature of interest. To illustrate the
connection between the feature of interest, we use the following example:

Consider an input image I. As the feature of interest, we take the red value of
the top left corner

X = r0,0. (4.50)

One example feature that will be in the set X̄ will then be the green and blue values
of the same pixel

g0,0, b0,0 ∈ X̄. (4.51)

While, due to the task we look at, there might be information on these values in
the red value, they are not connected through the way they are calculated from the
image. In contrast, for example, the sum of these color values is not in the set X̄,

r0,0 + g0,0 + b0,0 6∈ X̄ (4.52)

because the feature of interest r0,0 = X is directly involved in calculating this
feature.

As is obvious from this example, there can not be a direct link X 6→ X̄ from the
feature of interest X to any feature from the set of orthogonal features X̄. If not
convinced, we can conduct a simple intervention experiment. If we change the
feature of interest in an image, the features in the set of orthogonal features will not
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change automatically. The same is true the other way around. Since the features
in the set X̄ do not contain any information on the feature of interest, there can
also be no direct causal link X̄ 6→ X. Hence, no direct causal link between the two
different features X, X̄ exists.

One final causal relation could be missing from the structural causal model in
equations (4.28) to (4.31) and the graphical model displayed in Figure 4.3. This
link connects the training set TS and either X, the feature of interest, or X̄, the
set of features orthogonal to the feature of interest. However, since the training
TS set and the images I are sampled independently, there can not be a direct
causal link between them. Further, since the distribution of both is determined
completely by the variable PL and all additional information is completely random
and independent between the training set TS and the features X and X̄, there can
further not be a hidden confounder between the training set TS and the example
I = {X, X̄}. The same is true for hidden confounders between the different features
of the input image I. There is no hidden confounder between X and X̄.

4.1.6 Limitations of Our Method

Despite the demonstrated independence to the assumptions leading to the exact
structural causal model and the promising results of the two illustrative examples, it
is not reasonable to apply the method in every situation. In this section, we discuss
the limitations of the method presented here.

The first limitation is the topic of redundancy in features. At this point, it is
important to emphasize this method is not built to compare different features. The
existence of the set X̄ of orthogonal features does not mean that any feature that is
different from X, the feature of interest, is in this set.

To explain this further, we use the following example of two features: the volume
of an object and the height of an object. To this end, consider a classification task of
objects and a labeled training set. We want to understand if the supervised learning
algorithm uses the height of the objects. We want to understand if the supervised
learning algorithm uses the object’s volume to calculate its prediction. To answer
these two questions, we have to construct two different structural causal models.
While most of the variables in the two structural causal models are the same, namely
the distributions PL, the training set TS, the weights W and the predictions P of
the supervised learning algorithm. The other two variables are different for the two
variables. Obviously, the feature of interest is the height in the first example and the
volume in the second example

Xh = h (4.53)

XV = V. (4.54)

Consequently, the sets X̄h and X̄V of orthogonal features are different between the
two structural causal models. It is important that neither the set X̄h contains the
object’s volume nor the set X̄V the object’s height. The reason for this observation
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is that the two features are not orthogonal. This implies some important limitations
of this method.

The first limitation is that the method can not differentiate between features
that are bijective functions of each other. The reason for this limitation is that
we rely on statistical dependence tests that detect whether two variables contain
information on each other. If two variables are connected through a bijective
function, they contain the same information. Hence, dependence tests can not
tell these variables apart. Reimers et al. (2020) state that in a situation where the
supervised learning algorithm ended at the function f(x3), no one can differentiate
whether the function uses x3 as an input or x. Further, such differentiation is neither
possible nor desirable. Both options have to be accepted as correct, even though
the values of these two features might seem to be non-trivially different. Another
situation is if a feature contains more information than is needed. Hence, another
feature relevant to calculating f(x3) is the feature (x, y). Since this feature contains
the relevant feature x, it will be detetected as relevant. Reimers et al. (2020) present
a further example to emphasize this further. This example is that any function f(x)

can be understood as the function f(log(exp(x))). As in the example above, it is
impossible to distinguish between the features x and exp(x) or any other feature
connected through an invertible mapping to x.

Unfortunately, as highlighted in the example above, the semantically meaningful
features in many real-world examples are not orthogonal. In the example above,
we considered the volume and height of objects. An object of a specific height can
have any volume, and we can vary the volume of an object without changing its
height. The same is true if we exchange the height and volume of the feature. Hence,
these two features might seem independent. However, in almost all datasets, these
two features will be correlated. Hence, the features are not orthogonal and can not
appear in the same structural causal model described above. This demonstrates
a further limitation of our method. If we test whether the supervised learning
algorithm uses the height of an object, it will answer affirmatively if the supervised
learning algorithm actually uses the volume of the object because the height of the
object contains information on the volume.

These challenges limit the use of our method. However, the following considera-
tions can mitigate them and help users employ the method in many situations.

First, one might argue that in the case of height and volume, determining that
both are used if one of them is used is the desired behavior, since naively increasing
the height of an object will increase the object’s volume and hence the prediction
of the supervised learning algorithm. Further, if we want to investigate whether
the height of an object influences the prediction of a supervised learning algorithm
besides the influence of the volume, we can do so by choosing a more appropriate
feature, for example,

Xh\v = h− E(h | v). (4.55)

Note that this can only happen because the two features are related in every class,
and the relation between the two is the same throughout the data.

Second, this problem of redundancy in features is common in low-dimensional
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inputs. It is easy to see that most features will be related through the single variable,
in the extreme case of a one-dimensional input. However, many independent and
orthogonal features will appear in a high-dimensional space. We expect many false
positives in simple low-dimensional examples, while we expect only little false
positives due to this effect in high-dimensional real-world examples.

Another way to mitigate this problem can be taken from other explanation
methods, such as, for example, explaining decisions by examples (Section 4.1.7.6)
or feature visualization (Section 4.1.7.5). Here, instead of one, many similar ex-
planations can be created, and a human observer has to find the essence of these
explanations. Analogously, if we identify a group of relevant features, a human
observer can look at these features and understand their essence.

Further, this method is not designed as an explorative method. Since every
test is individual and independent of all other tests, it can not be used to rate the
importance of a feature and identify a more important or less important feature. We
envision the use of the methods in situations where a lot of prior knowledge exists,
and users want to test whether a specific feature is relevant to the trained learning
algorithm. This situation is common in medicine or climate science, where we have
a lot of prior knowledge. It is further useful in situations of algorithmic fairness or
debiasing in which we want to understand the influence of one specific, predefined
feature.

As mentioned in Reimers et al. (2019), we rely on the assumptions of causal
inference. These assumptions can be violated even in simple situations such as an
XOR-gate, a trivial function or effects that cancel out. We discuss these assumptions
in Section 2.1.

Finally, testing conditional independence on finite data samples is a challenging
problem in itself. Additional assumptions often have to be made depending on the
dependence test we apply. We discuss the dependence test we used in this work
in Section 2.3. When using the method from this work, we recommend spending
enough time to decide on an appropriate conditional independence test based on
the data at hand.

4.1.7 Comparison to Existing Methods

Since understanding which feature is used by a deep neural network is an important
challenge, different methods to evaluate it were proposed. We describe the methods
in Section 2.4. In this section, we explain the difference between our method and
these methods proposed in the literature. We start by discussing the similarities and
differences to saliency maps, which we introduce in Section 2.4.1, in Section 4.1.7.1
and to explaining classifiers by examples from the training set, which we introduce
in Section 2.4.2.5, in Section 4.1.7.6. Both of these approaches have a different
aim than our method. Instead of globally, they explain the classifier locally, i.e.,
they explain single decisions of a classifier. Hence, these methods can be applied
in combination with our method in that they can find explanations for multiple
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examples. These can be used to generate a hypothesis on which feature is important,
and our method can be used to test this hypothesis.

Similarly, the method of feature visualization, which we discuss in Section 4.1.7.5,
can be used to generate hypotheses. While this method is a global explanation
method, its output heavily relies on the initialization and hyperparameters of the
explanation method. Hence, a group of explanations can be generated, and a
hypothesis can be induced from these explanations. Our method can then be
employed to test this hypothesis.

Finally, the methods that are most similar to ours are the idea of testing with
concept activation vectors, the method of causal concept effect and other methods
that employ causality to explain the classifier globally. We discuss these methods in
Section 4.1.7.2, Section 4.1.7.3 and Section 4.1.7.4, respectively.

4.1.7.1 Saliency Maps

The most common methods used to understand deep neural networks are saliency
maps, which we explained in Section 2.4.1. Our method differs in multiple central
points from saliency maps.

Firstly, As described in Section 2.4.1, saliency maps depend either on the classi-
fier’s derivative or on the classifier’s output on slightly altered input images. None of
these two methods are obviously a measure of the relevance of a specific feature. In
contrast, our method is based on the framework of causal inference. As explained in
Section 2.1, the framework of causal inference was developed to answer questions
of why a process reaches a specific result and which features influence the result
of the process. Hence, the framework of causal inference is uniquely qualified to
tackle the question of whether a deep neural network uses a feature. This fact is
further corroborated by different facts that are described in Section 2.4.1. Firstly,
different methods to find saliency maps lead to vastly different results. Secondly,
randomly-initialized neural networks produce saliency maps that are visually and
quantitatively similar to those produced by trained deep neural networks (Adebayo
et al., 2018). Thirdly, saliency maps fail to attribute correctly when a constant vector
shift is applied (Kindermans et al., 2019). Finally, similar to the prediction of a
deep neural network, the explanation of a saliency map is vulnerable to adversarial
examples (Ghorbani et al., 2019).

The second difference is in the amount of information on the weights and
predictions of the deep neural network that we need to calculate an explanation.
For the first kind of saliency maps, the ones based on the gradient, and the third
kind of saliency maps, the ones built similar to the Taylor expansion, we need
information on all weights of the deep neural network to calculate the gradient.
Hence, both of these explanations are only feasible in the white-box setting. The
second method to generate saliency maps, the method based on replacing single
pixels of the input image, is not only feasible in a white-box setting, but still requires
us to be able to query the deep neural network. In contrast, the method we present
here can be applied in a black-box setting. We neither need any information on the
weights of the deep neural network nor do we need to query the neural network for
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any result outside the data set. All we need to calculate whether the deep neural
network uses a specific feature are the feature for the input images, the correct
labels for the input images and the predictions for the input images. In particular,
we need no additional predictions on altered images.

Thirdly, the scope of our explanation method is different from the scope of
saliency maps. As described in Section 2.4.1, the goal of saliency maps is to explain
individual decisions of a deep neural network, while our approach aims to explain
the inference function learned by the deep neural network as a whole. Given F , the
inference function of the deep neural network, we want to determine whether this
function takes the feature of interest as an input.

Fourthly, the range of features for which we can determine whether it is used by
the deep neural network is different. As explained in Section 2.4.1, saliency maps
calculate the importance of every pixel in the input image. Saliency maps can only
highlight pixels or areas (sets of pixels) of the input image. Consequently, saliency
maps can only be used to determine whether a feature is used that is directly part
of the input image. Furthermore, in most cases, a semantic interpretation of the
saliency map is needed to map it to a semantic feature. We illustrate this limitation
of saliency maps using an example, where we distinguish images of two kinds of
birds, first the white-crowned sparrow (Zonotrichia leucophrys) and, second, the
white-throated sparrow (Zonotrichia albicollis). Birds of these species look very
similar to each other. The main differences are the white throat patch, which gives
the sparrow its name, and the yellow lores, on which we focus for this example. An
example image for both of these birds can be found in Figure 4.7. Further, in the
same figure, we display the saliency maps, based on the gradient of the classifier, for
a simple classifier based on the cosine similarity between the image and a yellow
image of the same size. From these saliency maps, we find that the region that
contains the yellow lore is highlighted. The yellow lore is represented directly by a
region of the image. However, other features, for example, the missing yellow lore,
can not be highlighted by a saliency map. Further, even if we accept the fact that
the yellow lore is important, the saliency map does not help us to determine, which
aspect of the yellow lores is important. It could, for example, be the area of the lores,
the similarity to a specific color, or both.

The combination of the two later differences demonstrates an important use-
case of our method together with saliency maps. As discussed in Section 4.1.6, one
limitation of our method is that we need to know the exact feature beforehand and
can not use our method exploratively. Hence, one approach to combineing saliency
maps and our method is to use a saliency map to explore which region is important
and then identify possible features that can be represented by this area. In the
above example, we can use saliency maps to identify that the region containing
the yellow lores is important. Afterward, we can identify features represented by
the highlighted area. In this example, this could be the distance to the dark yellow
in a color space, the area of the lore, or the number of yellow pixels in the image.
Now, we can use the method presented here, to determine for each of these features
independently, whether it is used by the classifier.
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Figure 4.7: Images of two bird species from the CUB200 dataset (Welinder et al.,
2010): the white-crowned sparrow (Zonotrichia leucophrys) on the left and the
white-throated sparrow (Zonotrichia albicollis) on the right. Further, in the second
row, we display the saliency based on the gradient of a simple classifier. In the right
saliency map, the yellow lore of the white-throated sparrow is highlighted.

4.1.7.2 Quantitative Testing with Concept Activation Vectors (TCAV)

Using this method, as described in Section 2.4.2.1, the importance S of a concept
towards the classification of the class is given by the directional derivative of the
second part of the classifier, wich we call F2, in the direction of the class activation
vector vRC ,

S = DvR
C

F2 =
〈
∇F2, v

R
C

〉
. (4.56)

The method of quantitative testing with concept activation is in many aspects
similar to the method we propose here. First, TACV, as well as our method, provides
global explanations. Both of them consider the classifier as a whole and do not
produce explanations for single examples. If the two methods report that a feature
or concept is used by the classifier, it is used in general. Second, in Section 4.1.2,
we explained that one can use a simple learning algorithm such as a linear SVM to
receive values for the feature of interest. This is similar to the linear classifier that
is used in TACV. Even further, the directional derivative is similar to a correlation.
Specifically, if we assume that the concept C is linear in R,

C = aR, (4.57)
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and that the function F2 is linear,

F2(R) = bR, (4.58)

then we find
vRC =

a

||a|| (4.59)

and
∇F2 = b. (4.60)

Hence, the importance of the concept C is given by

S = 〈vRC ,∇F2〉 =
〈a, b〉
||a|| , (4.61)

which is very similar to the correlation, which measures statistical dependence in
the linear case of the concept and the classifier’s prediction. More specifically, the
correlation is given by

Corr(C,F (I)) =
〈aR, bR〉√
||aR|| ||bR||

. (4.62)

Since the effect of the distribution of R should cancel out in general, the difference
between the correlation and the saliency given by the concept activation vector is
the same up to a factor. Importantly, if the correlation is zero if the concept and
the prediction are independent, then TACV will also assign a saliency of zero to this
concept.

Despite the similarity of the two methods, they vary in key aspects. First, TACV
only works on concepts, features that partition all input images into two disjoint
parts, while our method can be used for any feature, for which we can assign a
numerical value to every input. Even though this is a straight-up advantage of our
method, it is a minor improvement since we could simply expand the TCAV method
to any kind of feature by replacing the SVM that classifies the concepts by a support
vector regression (SVR).

More importantly, as described above, the method of TACV is similar to testing
the correlation between the prediction and the concept. Our method differs in two
main aspects from this idea. Instead of the correlation, we, first, use a more general
dependence test. This more general test also considers non-linear dependencies.
Second, we use the conditional dependence test conditioned on the different distri-
butions PL from which the inputs of each class are sampled. This conditioning of
the dependence test is important to avoid false positives due to confounding. In fact,
Goyal et al. (2019) demonstrate that the performance of TCAV drops significantly in
situations with heavy confounding.
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4.1.7.3 Explaining Classifiers with Causal Concept Effect (CaCE)

Similar to our method, CaCE is based on the framework of causal inference. As
described in Section 2.1, the framework of causal inference was created to answer
questions, such as whether a variable is influencing another. Hence, it is a natural
choice to tackle the problem at hand. A second similarity to our method is the
focus on confounding. However, CaCE uses intervention to deal with the problem
of confounding, while we use conditioning in the graphical model. Intervention is
the most straightforward and the most agreed-on method to evaluate whether a
relationship is causal. Furthermore, the method does not rely on assumptions. In
contrast, our method relies on multiple assumptions that are necessary to establish
the connection between causal links and conditional dependence, as discussed
in Section 2.1. However, CaCE needs a generative model. It replaces the difficult
task of determining whether a feature is used by a deep neural network with the
difficult task of creating a generative model that can model the feature of interest
independently from other features. In contrast, our method reduces the same
task down to one conditional independence test. Testing for dependence is a well-
studied area of mathematical statistics and is considerably easier than the problem
of creating a generative model.

Therefore, CaCE is preferable if one has access to a strong generative model.
However, in situations with little data or very complex relations in the data our
method is preferable.

4.1.7.4 Methods That Use the Network Structure as Causal Model

Methods following this approach connect individual neurons to semantic concepts.
In contrast, our method considers the deep neural network as one process and

a representation of the input image in a suitable feature space. Further, all methods
that extract the structural causal model from the architecture of the deep neural
network need access to the architecture and intermediate results of the deep neural
network. Hence, this method only works in the white-box setting. In comparison,
our method can be applied in a black-box setting, where we do not have access to
the architecture, weights and intermediate results and can not query the neural
network on images outside of the dataset.

Another difference between our method and methods that use the network
architecture as a structural causal model is that we also consider the training of the
classifier, while other methods only consider the trained neural network.

4.1.7.5 Feature Visualization

As described in Section 2.4.2.4, feature visualization relies on multiple unreason-
able assumptions about neural networks. The existence of prototypical images is
questionable, and there is no one-to-one mapping between neurons and semantic
concepts. In contrast, no such conceptual problems exist if we employ our method.
Further, this method can only be applied in the white-box setting, while our method
can be applied in a black-box setting.
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4.1.7.6 Explanations by Example

Despite these advances, some drawbacks of this method remain. First, to use this
method for an explanation, one has to store the whole training set in addition to the
model. Given the size of modern deep learning datasets, this is a severe limitation.
In contrast, for our method, any dataset can be used to evaluate the distribution of
predictions and features. Second, translating the output of the explanation method
to a semantic feature is non-trivial. The explanation can only tell us which images
are similar to our test image. It does not tell us which image feature is responsible
for this similarity. A human observer has to look at the image, and figure out what
they have in common. In comparison, our method answers a very specific question
for one specific feature and no semantic interpretation of the result is necessary.

A further difference between our method and these methods is that our method
works in a black-box setting, while these methods require access to intermediate
results of the deep neural network. An advantage of the methods that explain
by example is that they are explorative, while the method we developed is not.
This advantage and the abovementioned problem of interpreting the results use
the combination of the two methods attractive. A user can query the explanation
by examples method for similar images, create a hypothesis on which feature is
important towards the decision of a deep neural network and use our method to
confirm or reject the hypothesis.

4.2 Applications

4.2.1 Direct Application to Skin Lesion Classification

In this section, we demonstrate a relevant use-case of the method presented in
this work. To this end, we present a study that investigates which features are used
by two groups of state-of-the-art classifiers, that employ deep neural networks to
the problem of automatic skin lesion classification. We determine whether the
classifiers use specific features which we split into three groups. The first group
of features should have no or very little information on the class of the skin lesion.
Therefore, it is highly unlikely that the classifiers use any of these features. The
reason we included these features in this study is to ensure that the method does
not produce a high number of false positives. The fact we find that none of these
features are used by the classifiers inspires trust in the positive results we find later.

The second group of features contains the four features named in the dermo-
scopic ABCD rule introduced by Nachbar et al. (1994). We find that all automatic
classifiers use at least some of these features. This fact furthers the trust in these
systems and that they will generalize to new unseen patients. However, we also
observe that the color feature is not used, even though it is considered very impor-
tant by practitioners. To further investigate this observation, we construct three
aditional ways to score the color feature.

Third, we investigate, whether the classifiers are so-called CleverHans-classifiers
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(Lapuschkin et al., 2019) that use shortcuts and rely on known bias features that are
connected to specific diagnoses in the training data but are not medically relevant
to them. Unfortunately, we find that all classifiers use at least one of these biased
features. We conclude, that more work is still necessary to increase the quality and
generalizability of these classifiers. The main part of the research presented here
was originally published in Reimers et al. (2021b).

The rest of this section is structured as follows: In Section 4.2.1.1 and Sec-
tion 4.2.1.2, we explain why the method presented in this work is a good fit for this
problem, especially compared to other methods, for example, saliency maps (com-
pare Section 2.4.1). Afterward, we will explain the classifiers we investigate for this
study in Section 4.2.1.3, and the features and how we score them in Section 4.2.1.4.

The experimental results of this study are presented in Section 4.3.2. More intro-
duction to the problem of identifying features relevant for skin lesion classification
is given in Section 1.2.

4.2.1.1 Suitability of Our Methode for this Application

Medical applications like this one, provide a set of specific challenges and require-
ments for methods aiming to understand automatic classifiers. In this section, we
name these specific challenges and discuss why they favor our method over, for
example, saliency maps which we explain in Section 2.4.1.

First, understanding the classifier and being able to reliable explain it is very
important in medical tasks. Since the patient puts their health and well-being at
risk, they have to make the final decision. However, to make an informed decision
the methods we employ to provide the basis for this decision have to be reliable
and understandable. For both of these aspects, it is important to be able to state
whether a feature is used to generate the prediction of an automatic system. Hence,
in medical tasks, it is of particular importance that a method used for understanding
a classifier is theoretically sound.

Our method is based on the framework of causal inference. As explained in
Section 2.1, this framework was developed to answer precisely these kinds of ques-
tions. Mathematical as well as philosophical discussions exist, for example, Pearl
(2009) or Reichenbach (1991). In comparison, most other methods are mainly based
on empirical results. For the example of saliency maps, we discuss some of the
resulting problems in Section 2.4.1. For example, some explanations are insensitive
to the trained weights of the deep neural network, as demonstrated by Adebayo
et al. (2018), some explanations change dramatically under transformations that
should be irrelevant to the classifier, as demonstrated by Kindermans et al. (2019),
and some explanations can be manipulated by the kind of adversarial examples
described in Section 3, as described by Ghorbani et al. (2019).

Another set of methods that is based on the strong theoretical foundation of
causal inference consists of methods that aim to perturb the input directly, for
example, Goyal et al. (2019). However, to perturb inputs in a meaningful way is
difficult. To change relevant features often requires the researcher to change large
parts of the image. These changes are not unique. If the feature we want to change
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is, for example, symmetry to at least one axis through the center of gravity, there are
infinite possibilities to change the image such that it becomes symmetric for one
axis. More specifically, we can select any axis and replace one half of the image by
mirroring the other half. This method, however, might change many other features
in addition to the symmetry and, hence, the different possibilities of altering the
symmetry might result in vastly different results. To alter one feature more precisely,
Goyal et al. (2019) suggest using a generative adversarial network. However, medical
data is often highly complex and, since data is difficult and expensive to obtain,
datasets are often relatively small. Hence, it is difficult to train a generative model
and the error introduced from the small sample size in training the generative
model will propagate into the final result of determining the relevance of features.

In contrast, our method does not need to train a generative model and still
can single out specific features. Hence, it is a good fit for the domain of small and
complex medical datasets.

Further, to ensure trust in a classifier in the medical domain, it is important
to verify that it is robust. Changes in the imaging system or other changes in the
environment that do not influence the skin lesion class should not influence the
prediction of the system. Hence, we need global explanations that can generalize
to unseen situations. Local explanations, on the other hand, only explain specific
decisions in hindsight. Since our method can identify whether a feature is used
by a classifier globally, it is suited to inspire trust in the predictions of automatic
classification systems.

One drawback of our proposed method is that it is not explorative. To test
whether a feature is used, we need to not only define the feature beforehand but we
need to calculate a value for each image. This might be difficult in situations where
the automatic classifier solves a problem that we are not able to solve. However, this
is not the situation in medical tasks. In these tasks, we have large amounts of prior
knowledge that tell us which features are important from a medical point of view.
Therefore, the challenge in the medical field is to ensure that a classifier is based on
these meaningful features and not based on bias variables rather than exploring
which features are used. Our method is suitable for this kind of analysis.

Finally, other methods, for example, saliency maps, see Section 2.4.1, only
highlight areas of the input images and leave the semantic interpretation of these
areas to the user. However, in medical tasks, many of the relevant features are
high-level descriptors of the image that can not be represented by areas of the input
image. For example, the symmetry of an image for any axis through its center, can
not be highlighted by any area of the image. In situations like these saliency maps
are not very useful and our method is more suitable.

4.2.1.2 Related Work

To the best of our knowledge, this study is the first to explicitly determine whether
the medical features named in the ABCD Rule are used by deep neural network
classifiers for automatic skin lesion classification. Previous work has only focused
on a more general investigation into which feature is used.
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The authors of previous work have often used saliency maps. For example,
Young et al. (2019) use saliency maps to determine which areas of the input image
are relevant to deep neural networks. However, due to the drawbacks of saliency
maps, described in Section 4.2.1.1, their investigation is limited to coarse analyses
of medical relavant features and bias features that can easily be localized in the
image.

Determining whether a specific bias is used by a deep neural network for au-
tomatic skin lesion classification is investigated more frequently. A list of known
artifacts in dermoscopy images was presented in Mishra and Celebi (2016). One
example is colorful patches next to the skin lesions that were introduced by the
SONIC dataset (Scope et al., 2016). Since this study investigats nevi, the colorful
patches only appear in images with nevi. Hence, this dataset introduces a bias in the
ISIC archive4. This bias influences the prediction of deep neural network classifiers.
Rieger et al. (2020) demonstrated that their classifier “looks” at these patches when
classifying skin lesions, using saliency maps.

Bissoto et al. (2019) propose a different approach. They replace the center of
images containing the skin lesion with black boxes. Surprisingly, the performance
of the deep neural network classifiers they investigate is still high, even if 90% of the
image is covered by a black box and the skin lesion itself is no longer visible. The
authors conclude, that deep neural networks do not rely on the ABCD rule features
but use bias features instead. In further investigations, Bissoto et al. (2020), shows
that this effect of high accuracy on images with no skin lesion in them decreases
if during training the background of images is replaced by a mean background.
Further, they score some of the main biases and measure the correlation to specific
classes.

Another approach is to evaluate the classifier on two test sets. One of these
test sets contains a certain bias and the second does not contain the bias. The
comparison of accuracy is then used to evaluate the importance of the bias. This
approach was, for example, used by Muckatira (2020). The authors find that the
accuracy of their classifier varies across different age groups and between male and
female patients.

All these methods only can investigate whether the classifiers use the foreground
or the background of the image and whether they use biases that are tied to specific
locations in the image, such as colorful patches or drawn scales. In comparison
to these methods, our method allows us to investigate the specific features of the
ABCD rule individually. In addition to the localized biases, it can also be used to
investigate biases that are hard to localize, such as, for example, the age or sex of
the patient.

4.2.1.3 Classifiers

In this section, we introduce the two classifiers we investigate in this study. We
start with the classifiers introduced by Perez et al. (2018). We chose this classifier

4www.isic-archive.com
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since it won the best paper award at the ISIC Skin Analysis Workshop at the 21st
International Conference on Medical Image Computing and Computer Assisted
Intervention 20185. We train multiple versions of this classifier. The second classifier
is the deep ensemble classifier presented by Gessert et al. (2020) that won the ISIC
challenge 20196.

The main idea behind the classifier introduced by Perez et al. (2018) is test
time augmentation. In test time augmentation, instead of classifying a test image,
we create some number m of copies of the test image. Each of these copies is
then independently, randomly augmented. The augmented copies are classified
individually by the backbone classifier. Then the individual classification results are
aggregated into one final classification.

Following the description, in Perez et al. (2018) we pre-train the classifier on
ImageNet (Russakovsky et al., 2015) and train it on the ISIC 2017 challenge dataset
(Codella et al., 2018). For the augmentations, we use the augmentation scenario “J”
as described by Perez et al. (2018).

We train models of this kind for two different tasks. First, we train models for
the recognition of melanoma, and, second, we train models for the recognition of
seborrheic keratosis. For both of these tasks, we train deep neural network backbone
classifiers with three different architectures. The first architecture is the ResNet-
152 introduced by He et al. (2015), the second is the Inception-v4 architecture
introduced by Szegedy et al. (2016) and the third is the DenseNet-161 architecture
introduced by Huang et al. (2018). For each of these architectures, we compare a
classifier that creates 26 augmented copies of every test image and a classifier that
creates 52 augmented copies of every test image. Finally, we compare two different
ways to aggregate the individual classification results. The first aggregation method
is the mean of all classification scores and the second is to take the maximum over
all the classification scores. This leaves us with 24 classifiers of this type.

The performance of the classifiers we trained can be found in Table 4.5. The
performance we observe is similar to Perez et al. (2018) on the melanoma detection
problem. For the seborrheic keratosis detection problem our models perform even
better.

Table 4.5: Performance of the Perez et al. (2018) models on the test set of the ISIC
2017 challenge (Codella et al., 2018). We report the area under receiver operating
characteristic curve (AUC) and the accuracy (ACC). These results where originally
published in Reimers et al. (2021b)

Melanoma Seborr. Keratosis

Backbone AUC ACC AUC ACC

ResNet-152 (He et al., 2015) 0.886 0.868 0.938 0.918
Inception-v4 (Szegedy et al., 2016) 0.851 0.835 0.924 0.887
DenseNet-161 (Huang et al., 2018) 0.877 0.852 0.944 0.913

5https://workshop2018.isic-archive.com/
6https://challenge.isic-archive.com/leaderboards/2019
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The classifier proposed by Gessert et al. (2020) won the first two tasks of the
ISIC 2019 Skin Lesion Classification Challenge. Besides the test time augmentation
described above, the main technique employed by this classifier is to use an ensem-
ble of deep neural network classifiers instead of a single deep neural network. To
this end, Gessert et al. (2020) use mostly multi-resolution EfficientNets (Tan and Le,
2020) pre-trained on ImageNet (Russakovsky et al., 2015). To replicate the ensemble,
we trained five EfficientNets (B0). Even though, this is a much smaller ensemble of
classifiers it is the default parameter setting of the code provided by the authors.7

Hence, although we expect this ensemble to work worse, we still expect it to be a
reasonable representation of the original classifier.

We follow the training scheme proposed by Gessert et al. (2020). The classifiers
are trained on three datasets, namely HAM10000 (Tschandl et al., 2018), BCN20000
(Combalia et al., 2019) and MSK (Codella et al., 2018). For more details on the
training details and hyperparameters, we refer the reader to Gessert et al. (2020).
Since this classifier is trained to perform a multiclass classification, we use it as the
nine individual detectors for each class.

The performance of our smaller ensemble classifier is presented in Table 4.6. It is
noticeably worse than the larger ensemble used in Gessert et al. (2020). It achieved
a training accuracy of only 0.541.

Table 4.6: AUC scores from an ensemble of five EfficientNets (B0) for different classes.
These results were originally published in Reimers et al. (2021b)

Class AUC score

Melanoma 0.802
Melanocytic Nevus 0.884
Basal Cell Carcinoma 0.895
Actinic Keratosis 0.889
Benign Keratosis 0.819
Dermatofibroma 0.844
Vascular Lesion 0.938
Squamous Cell Carcinoma 0.882

These two classifiers, the one by Perez et al. (2018) and the one by Gessert et al.
(2020), are a good representation of the state-of-the-art in automatic skin lesion
classification. They contain the main ideas of ensembles of large, pre-trained deep
neural networks and the idea of test time augmentation. They also cover melanoma
detection as well as multiclass skin lesion classification.

4.2.1.4 Features

In our investigation, we use three groups of features.
First, we extracted four features from the input images that should contain none

or very little information on the skin lesion in the image. We use these features

7https://github.com/ngessert/isic2019
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to make sure that the method proposed here does not produce an unreasonable
amount of false positives and, therefore, can be applied to this complex real-world
problem of automatic skin lesion classification. We selected features for this group
that match the meaningful and bias features in complexity and are derived similarly.
The fact that our method correctly identifies that these features are extremely rarely
used by any of the classifiers, reinsures us that a feature is used by a classifier if the
method indicates it. The features we use for this purpose are:

• Orientation: The orientation feature is calculated by estimating the ellipse
with the same second moments as the skin lesion’s contour. We then measure
the angle between the first axis of the image and the major axis of the ellipse.
Since this feature purely includes information on the specific image and not
on the skin lesion itself it should not be used by any classifier.

• Random Symmetry: This feature describes the symmetry of the contour of
the skin lesion to a random axis that leads through its center of gravity. To
evaluate the symmetry, we calculate the intersection over union between the
contour of the skin lesion and the contour flipped along the random axis. We
repeat the process for the orthogonal axis and multiply both intersection over
unions. Even though symmetry is an important feature, and a perfectly round
skin lesion will be symmetric to every axis, the symmetry to a random axis
should not contain much information and should not be used by a classifier.

• Image ID: As the third feature, we use the position of the image in the ISIC
archive (ISIC-archive, 2021). This feature contains some information since
images from the same source receive consecutive numbers in the archive.
However, this information is not very useful for the classification task and,
hence, we expect the classifiers to ignore it.

• MNIST class: We train a classifier for hand-written digits on the MNIST dataset
introduced by LeCun et al. (1998). We show the architecture of this classifier
in Table 4.7. It is trained for 50 epochs using stochastic gradient descent with
a learning rate of 0.01, Polyak-momentum (Polyak, 1964) of 0.9, and a weight
decay of 0.0005. It reaches an accuracy of 0.9939 on the MNIST test set. The
feature is then given by the prediction of this network for the segmentation
mask of the skin lesion. Since this feature includes no useful information we
expect all classifiers to ignore it.

We evaluate the distributions of all of these features on the HAM10000 dataset
(Tschandl et al., 2018), which is part of the ISIC archive. It contains 10015 images of
seven different classes. In addition, it contains the ground truth segmentations and
different metadata such as the age and sex of patients.

The second group of features we investigate are features that are determined to
be relevant by dermatologists. To this end, we consider the features named in the
ABCD rule (Nachbar et al., 1994), namely the Asymmetry, the Border, the Color and
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Table 4.7: The architecture of our MNIST classifier

Layertype Filter Size Filters Padding

Convolutional 5× 5 32 2× 2
Convolutional 3× 3 32 1× 1
Max Pooling 2× 2 - 2× 2
Convolutional 3× 3 64 1× 1
Convolutional 3× 3 64 1× 1
Convolutional 3× 3 128 1× 1
Convolutional 3× 3 10 1× 1
Global Average Pooling - - -

the Dermoscopic features. This rule was developed by dermatologists to identify
melanoma. The exact way we score these features is as follows:

• Asymmetry: To score this feature, practitioners identify axes to which the
skin lesion is almost symmetric. They find the maximum number of such
axes through the center of gravity of the skin lesion that are orthogonal. In
a two dimensional image, we can find a maximum of two such axes. Hence,
this feature is zero, one, or two. To score the asymmetry automatically, we
evaluate the intersection over union between the contour of the skin lesion
and the contour of the same skin lesion fliped along an axis. We evaluate
this value for 360 equidistand axis through the center of gravity of the skin
lesion’s contour. We say that the lesion is symmetric with respect to an axis
if this intersection over union is larger than 0.9. Note that some researcher
consider not just the contour but also the color of the skin lesion to score its
symmetry. We decided against the use of color to generate a simpler feature
and to distinguish it clearly from the color feature exaplained later. To find the
contour of the lesion, we use the ground truth annotation for the semantic
segmentation of the skin lesions provided by te HAM10000 dataset.

• Border: The goal of the border feature is to score whether the border of the
skin lesion is sharp and regular. In the original description of the ABCD rule
by Nachbar et al. (1994), this feature was scored by dividing the lesion into
eight pieces and determining for how many of these the border is sharp and
regular. This leads to a score between zero and eight. We use a different way to
score this featur where we focus on the irregularity of the border. We consider
the isoperimetric fraction, the fraction of the area A of the skin lesion and the
squared length of its perimeter P ,

border =
4πA

P 2
. (4.63)

This fraction should be small for lesions with irregular borders and is min-
imal for circular lesions. We evaluate this feature by using the handcrafted
segmentation maps of the HAM10000 dataset.
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Table 4.8: Ranges in the HSV-colorspace corresponding to the individual colors
named in the Color score of the ABCD-rule

Color Hue Saturation Value

White 0◦ - 360◦ 0% - 10% 90% - 100%
Red 350◦ - 25◦ 70% - 100% 80% - 100%
Light Brown 0◦ - 40◦ 50% - 100% 70% - 90%
Dark Brown 11◦ - 47◦ 60% - 100% 40% - 60%
Gray-Blue 216◦ - 252◦ 30% - 100% 60% - 100%
Black 0◦ - 360◦ 0% - 100% 0% - 15%

• Color: The next feature that dermatologists deem relevant is the color of the
skin lesion. They consider the variability of color that appears in the skin
lesion, more specifically, how many of six predefined colors, namely white,
red, light brown, dark brown, blue-gray, and black appear in the skin lesion.
This leads to a score between zero to six. The color in an image is not just
determined by the color of an object, but also by, for example, the surrounding
colors and the color of the light during the capturing of the image. Hence,
interpreting the existence of a specific color as containing a pixel of the exact
colors is too restrictive. To account for this fact, we assign a range of values
in the HSV color space to each color. The color feature is then given by the
number of color intervals for which the image contains a pixel with this color.
The exact color intervals can be found in Table 4.8

• Dermoscopic structures: Dermoscopic structures are structures that appear
in skin lesions. These structures are described in the Seven-Point Checklist
proposed by Argenziano et al. (1998). The possible structures that are included
in this feature are the milia like cysts, negative networks, pigment networks,
streaks, and globules. We count how many of these structures appear in the
skin lesion. To evaluate this feature, we rely on the ground truth annotation
from the corresponding task in the 2018 ISIC challenge (Codella et al., 2018).

Since these features are relevant from a medical point of view, an optimal model
should also use them to find the correct decision. To find the distribution of values
for all of these features and the predictions we rely on the HAM10000 dataset
(Tschandl et al., 2018) except for the last feature for which we use the 2018 ISIC
challenge (Codella et al., 2018). These features have a similar complexity to the first
four features that we use as a control group. For example, the asymmetry and border
feature are similar to the random symmetry and the orientation feature above in
complexity.

The experimental results in Section 4.3.2 indicate that the classifiers do not use
the color feature, although it is considered one of the most important features by
practitioners. To further investigate this fact, we calculated three additional ways to
extract the color information that differs from the feature described in the ABCD
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Table 4.9: Relaxed ranges in the HSV-colorspace corresponding to the individual
colors named in the Color score of the ABCD-rule

Color Hue Saturation Value

White 0◦ - 360◦ 0% - 10% 90% - 100%
Red 295◦ - 18◦ 40% - 100% 50% - 100%
Light Brown 349◦ - 43◦ 25% - 100% 60% - 90%
Dark Brown 349◦ - 43◦ 25% - 100% 10% - 60%
Gray-Blue 198◦ - 277◦ 30% - 100% 50% - 100%
Black 0◦ - 360◦ 0% - 100% 0% - 15%

rule but might have advantages in the automatic extraction and still capture the
idea of quantifying the variability in color within the skin lesion. We compare their
use to the color feature presented above, which we call “Color Count” throughout
this experiment. The three features are:

• Relaxed Color Count: The color intervals that we selected for the color feature
might be too restrictive. However, if we use intervals that are too large, the fea-
ture becomes meaningless. As a first alternative, we relax the intervals around
the colors until it stops matching the described color. Table 4.9 contains the
resulting interval borders, which are highly subjective.

• Variance of the Hue: Following Celebi et al. (2007), we use the variance of the
color within the area of the lesion. While Celebi et al. (2007) suggest a wide
variety of color channels, we decided on the hue in the HSV colorspace. The
HSV colorspace separates the color from the saturation and luminosity. In
comparison to the relaxed color count feature, this score is less subjective.
However, it differs more from the feature described by Nachbar et al. (1994).

• Volume in the RGB Color Space: The color feature named in the ABCD rule
counts the number of colors but does not consider the area that is colored this
way. However, the last feature, i.e. , the variance, depends heavily on the area
occupied by a specific color. As an alternative, we construct a point cloud in a
three-dimensional space by converting each pixel in the skin lesion into one
point using its RGB values as coordinates. We use the volume of the convex
hull of this point cloud as the final color feature.

These features depict three common ideas when designing color features. The
first feature determines relevant colors and measures whether they appear in the
skin lesion by relaxing the intervals around them. The second feature is a more
objective feature that does not contain a choice of colors but only the variance in
color. The third also does not contain any color choices but is closer to the original
feature. It does not consider the number of pixels of a specific color but only the
variety of colors existing within the skin lesion. Furthermore, it also considers the
luminosity and saturation of pixels.
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The final, third, group of features are known bias features. First, features that
are independent of the diagnosis in the real world, but are connected to some label
in the dataset, for example, the colorful patches or the skin color of the patient.
Second, features that we want the algorithm to ignore, even though they might
influence the probability of a skin lesion being cancerous, for example, the age and
sex of a patient. Independent of the differentiation into these two groups, we expect
an optimal classifier to use none of these features. The four features we use in this
group are the following:

• Age: The first feature which we want the classifier to ignore is the age of the
patient. Since we expect the age of the patient to influence the appearance of
the skin around the skin lesion, the classifier could extract this feature from
the image. Even though the probability of melanoma increases with age, we
want the algorithm to focus on the visual appearance of the skin lesion and
leave the inclusion of other features like age to the practitioner. To score this
feature, we rely on the annotations in the HAM10000 dataset (Tschandl et al.,
2018). In this dataset, the age rounded to the next multiple of five of each
patient is annotated.

• Sex: As a feature, the sex of the patient is very similar to the age of the patient.
As for the age, it can be determined from the appearance of the skin around
the skin lesion, it might be related to the risk to develop melanoma but we do
not want the automatic classifier to use it. As for the age of the patient the the
sex of the patient as a binary variable is annotated in the HAM10000 dataset
(Tschandl et al., 2018).

• Skin color: The third feature is skin color. This feature should not be used by
a classifier. To determine the skin color from an image, without considering
the color of the skin lesion, we consider only the pixels in the top-left corner of
the image. More specifically, we crop a ten-by-ten-pixel patch in the top-left
corner of the image. Unfortunately, some images have a black border. To
avoid problems from black borders, we excluded all images where the patch
was black from further investigation. On the remaining images, we perform
principal component analysis (PCA). We evaluate the score for this feature, we
calculate the loading of the first principal component. In other words, if the
top left corner patch x can be represented by the priciple components {ei}i∈I
as

x =

300∑

i=1

aiei, (4.64)

with ai the loading of the i-th principal component. Then the feature is scored
by a1. Visual inspection of the results, which are presented in Figure 4.8, show
that this loading corresponds to the lightness of the skin. A higher value is
given to images of patients with darker skin.

• Colorful patches: The final feature we use in this study is the existence of
colorful patches in the image. Through the inclusion of the SONIC dataset
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accuracy, the drawback is that the user can no longer control which features are
used by the classifier to predict the correct class. To this end, the classifier can
choose biased features, that in the training data co-occur with a specific label, but
are independent of this label in the real world and, consequently, a test set that is
representative of the real world.

If we know that our training set contains such a bias, we can employ adversarial
debiasing to stop the classifier from picking up the bias and, hence, learn an un-
biased classifier from the biased training set. To this end, the classifier is divided
into two parts: a feature extractor and a predictor. The feature extractor extracts a
representation R of the input. Note that there is no clear choice for where to divide
the deep neural network because every neuron can be part of any of the two parts,
and it is fair to assume that features of different complexity will be extracted at
different layers of the deep neural network (Erhan et al., 2009). Therefore, different
choices at which layer we cut the deep neural network and extract the intermediate
representation R are reasonable. The most common choice for convolutional neu-
ral networks is to use the convolutional layers as the feature extractor and the fully
connected layers as the predictor. In addition to classification loss Lcl that pushes
the weights of the deep neural network towards predicting the correct classes for
all inputs, a second loss is used enforcing that the bias feature B is not used to
calculate the representation. The risk in choosing a too early layer is that the bias
feature might still be used to calculate the representation, but is dropped later and,
hence, does not influence the final prediction. Therefore, in contrast to other works,
we use the final prediction of the deep neural network as the representation R. The
basic concept of adversarial debiasing can be observed in Figure 4.10.

Based on this concept, authors have to clarify two things to present a adversarial
debiasing method. First, we have to choose a criterion to determine whether the
classifier uses a feature B. Second, we have to turn this criterion into a differentiable
loss.

To the first point, most authors have used either predictability (Zhang et al.,
2018a), or statistical dependence (Kim et al., 2019) between the bias feature B

and the representation R. To this end, most state-of-the-art adversarial debiasing
methods aim to learn a feature representation that is informative for a task but
independent of the bias. They train a second neural network to predict the bias
variable B from the representation R. The feature extractor of the original network
is trained in an adversarial fashion. On the one hand, the classification loss pushes
the weights such that the representation R is as informative as possible of the true
label L, on the other hand, the debiasing loss pushes the weights of the network
such that the representation is as least informative as possible towards the bias
variable B. Since the bias variable B and the label L are dependent on the test set,
these two goals contradict each other and lead to an adversarial training.

As demonstrated in Section 4, independence is too restrictive as a criterion for
determining whether a deep neural network uses a certain feature, as a feature
might be dependent on the prediction even if it is not used as demonstrated, for
example, in Table 4.4. This fact is further reflected in results from the literature:
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Often, the debiased classifiers are less influenced by the bias feature B but also
less accurate in predicting the true label L. For example, Alvi et al. (2018) report
a significant reduction in bias in an age classifier trained on a dataset biased by
gender. However, this reduction in bias is accompanied by a drop in performance
on an unbiased test set. The accuracy drops from 0.789 to 0.781. Therefore, we
suggest a different criterion to determine whether a neural network uses a feature.
We use the conditional independence criterion proposed in Section 4.1.

Our method differs fundamentally from the methods presented in the literature
because the criterion to decide whether a bias feature B is used to calculate a
representation R is different. Since it diverges in this first aspect, it also diverges in
the second aspect of the implementation of these criteria. Other approaches from
the literature have proposed different loss functions for the debiasing loss Ldb. For
example, Zhang et al. (2018a) propose to use the mean squared error between the
bias variable and the best prediction of the bias variable from the representation.
Alvi et al. (2018) suggest minimizing the cross-entropy between the bias prediction
and an uniform distribution. Kim et al. (2019) propose using a combination of these
two losses and Adeli et al. (2021) suggest minimizing the correlation between the
predicted and the observed bias variable.

All of the above loss functions aim to find a representation R that is uncondi-
tionally independent of the bias feature, while our approach uses loss functions
that aim to find representations that are conditionally independent. To this end, we
extend three unconditional dependence methods from the literature. We extend
the work of Pérez-Suay et al. (2017) and Li et al. (2019b), which use the Hilbert-
Schmidt independence criterion (HSIC) introduced by Gretton et al. (2007) by using
the conditional criterion suggested by Fukumizu et al. (2007). We extend the idea
of using mutual information presented by Kim et al. (2019) to conditional mu-
tual information and the predictability criterion used, for example, by Adeli et al.
(2021) to the maximum correlation coefficient. We offer the details for these three
implementations in Section 4.2.2.3.

4.2.2.2 Bias Model

In this section, we discuss for which situations our new adversarial debiasing
method is suitable. To this end, we explain the data generation process as a graphi-
cal model, that leads to the kind of bias that our method is build to takle. We will
further discuss whether this is a common kind of bias in computer vision using ex-
amples where the graphical model does or does not fit the data. Further, we present
a mathematical proof for a simple situation, showing that the optimal classifier
does not satisfy the unconditional dependence which the state-of-the-art uses as a
criterion but does satisfy the conditional dependence criterion we suggest.

Many different kinds of bias exist. These different biases influence visual
datasets in various ways (Wang et al., 2020). Due to this variety, it is not possi-
ble to propose a one fits all solution for debiasing. Hence, in this section, we focus
on one specific kind of bias given by a specific, biased data generation process

The graphical model of the data generation for a biased dataset is displayed in
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Figure 4.11: A graphical representation of the specific bias. Circles represent vari-
ables, dotted circles represent unobserved variables. The label L is only dependent on
a signal S, while the input I is also dependent on some variable B. In the training
set, the signal S influences the variable B due to bias. This is indicated by the red
dashed arrow. This figure was originally published in Reimers et al. (2021a)

Figure 4.11. Following this data generation model, we assume that the input images
I used in a classification task contain a signal S that can be estimated from the
images and should be used to predict the label L. For example, if the classification
task is distinguishing between images of cats and dogs, this signal S contains all
features that are specific to cats or dogs and, hence, suitable to distinguish them.
Consequently, we expect the label of the image to depend only on the signal S.
On the other hand, the input image I is influenced by further features beyond the
signal S. In our example this includes features like the background or time of day
at which the images were taken. These features do not contain information on
the class of the object in the image. A bias is introduced into the dataset, if in the
dataset, one of these meaningless features is dependent on one of the meaningful
features included in the signal S. This can happen due to finite sample effects or
because recording specific combinations of meaningful and meaningless features
might be dangerous or unethical. The meaningless feature, which in the training
set is dependent on the signal S but at test time is independent of the signal S, is
called the bias feature B. In our experiments, we, for example, use the fur color
of the animal as the bias feature B. Note that, since the fur color is not suitable to
distinguish between cats and dogs, it is not part of the signal S but it still influences
the image I. Due to our construction of the dataset, the fur color is dependent on
whether the image contains a cat or a dog. This dependence can be utilized by a
machine-learning approach such as a deep neural network in what is known as a
“Clever-Hans” prediction (Lapuschkin et al., 2019), resulting in a biased classifier.

While most of the connections represented by the arrows in the graphical model
in Figure 4.11 are obvious, we want to offer additional information on the arrow
from S to B. First, we want to explain the consequence of the arrow being in this
direction and, afterward, we explain, why we think that this direction of the arrow is
correct for most tasks in computer vision.
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The arrow from S to B indicates the main difference between the train and the
test set. By orienting the arrow in this direction, we express the fact, that we expect
the distribution of the signal S to be the same during training and test. In contrast,
since one of the influences is eliminated at test time, we accept that properties
of the distribution of B will differ between the training set and the test set. We
consider this a realistic situation, as we would expect a researcher to ensure that the
important signals in the training set are a faithful representation of these signals in
the real world, while we expect the researcher to pay less attention to features that
are not meaningful towards classifying the object in the image.

Towards the second point, we want to emphasize that the data used in a classi-
fication task is not selected randomly, but a researcher will carefully select it. The
main criterion used to decide, whether to include an image, will always be the
signal S that contains information on the true label L. A researcher will ensure
that the distribution of this signal matches the distribution of this signal in the real
world and will, for this purpose, accept a misrepresentation of the distribution of
B. On the other hand, a researcher will not accept a mismatch between the true
distribution of S and its representation in the training set to model the distribution
of B correctly. Therefore, S influences B through the dataset acquisition while B

does not influence S through this process.

While this data generation model covers many relevant real world applications
of computer vision, no single model can cover all situations. To this end, we give
two examples where it does hold, and one example where it does not hold.

The first example is a driver assistance system that warns the driver of an aqua-
planing risk using a camera image as presented, for example, in Schneider et al.
(2018). To train a neural network for this task, we require a training set of images
containing situations with different levels of aquaplaning risk. Images of situations
of low aquaplaning risk can easily be collected on various streets in the wild. In con-
trast, driving in aquaplaning conditions is dangerous. Hence, images of situations
that depict a high aquaplaning risk have to be taken in a specific facility where it
is safe to drive into aquaplaning conditions. In this example, standing water on
the street is the signal S. The bias feature B in this example is the location, which
determines facts like the tarmac and the road markings in the image. Due to the
safety risk, these two signals are dependent in the training set but not during the
application of the system in the real world.

The second example is a system that automatically classifies skin lesions from
images as described, for example, by Tschandl et al. (2018). To train a deep neural
network we rely on images taken by practitioners. An important feature to deter-
mine whether the skin lesion is dangerous is the growth of the skin lesion over time.
Hence, if a practitioner suspects a skin lesion to be cancerous, they draw a scale
next to the skin lesion to compare the size during subsequent checkups. Hence, the
probability to be cancerous influences the probability of a scale drawn next to the
skin lesion. In this example, the medical features of the skin lesion form the signal
S and the drawn scales are the bias feature B. These two signals are dependent in
the training set, but we expect them to be independent during the application of an
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automatic skin lesion classifier in the wild. More examples of biases in this setting
can be found in Section 4.2.1.

These examples demonstrate that the data generation model fits different bias
situations in machine learning. However, since the possible biases are plentiful, no
single method can fit all bias situations. We find, that our method is not suited for
some situations in algorithmic fairness, since the connection between the meaning-
ful and the meaningless features prevails even during the application of the method.
For further explanations, we provide the following example.

This example concerns a system that predicts absenteeism from work as pro-
posed, for example, by Ali Shah et al. (2020). If a predictor is tasked to predict
absenteeism from work, the result might be biased against women, as they can
be absent from work due to pregnancy. In this example, the signal S consists of
personal reasons to be absent from work and the bias feature B is the sex of the
person. Due to pregnancy, these two are dependent in the training set, but, in
contrast to the situation described above, this dependence is also present during
the application of the method.

The fact that we rigorously define the bias model allows us to investigate the
advantages of our proposed solution analytically. Under the assumption of the bias
model, the optimal classifier fulfills the conditional dependence

R ⊥⊥ B |L (4.65)

but does not fulfill the unconditional dependence

R ⊥⊥ B. (4.66)

In this work, we only include a proof for a simple linear, univariate case. More
specifically, all arrows in the graphical model described above describe linear func-
tions and the label is univariate. We believe that this proof can be extended to
the non-linear case by substituting the scalar product with the scalar product in
a suitable kernel space. Furthermore, it can be extended to the multidimensional
case by multiplying with the inverse of the matrix 〈L,L〉 instead of dividing by it.

Theorem 2. If the bias can be modeled as displayed in Figure 4.11, the optimal

classifier fulfills the conditional independence in (4.65) but not the independence in

(4.66).

Proof of Theorem 2. This proof is taken verbatim from Reimers et al. (2021a)
and the supplementary material of that paper.

Throughout this proof, we denote all variables with capital Latin letters (C,L,R, S).
Capital Greek letters denote processes (Φ,Ψ,Ξ). For these processes, we denote the
linear coefficients with lower-case Greek letters (α, ζ). The only exception to this is
the optimal classifier that is denoted by F ∗.

We start the proof by defining all functions involved in the model. Afterward,
since dependence results in correlation in the linear case, a simple calculation
proves the claim. Let S denote the signal according to the bias model, as explained
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above. Since we are in the linear case, the bias variable B can be split into a part
that is fully determined by S and a part that is independent of S.

Let B∗ be the part of the bias variable that is independent of S. The bias variable
B is given by

B = α1S + α2B
∗ =: Φ (S,B∗) . (4.67)

Further, the label L can be calculated from the signal S

L = ζ1S =: Ξ (S) (4.68)

and the image I is given by

I =: Ψ (S,B) = Ψ (S,Φ (S,B∗)) . (4.69)

The optimal solution F ∗ of the machine learning problem will recover the signal
and calculate the label. By the assumptions of the bias model, the signal can be
recovered from the input. Thus, there exists a function Ψ† such that

Ψ† (Ψ (S,B)) = S (4.70)

holds. Therefore, F ∗ is given by

F ∗ := ΞΨ†. (4.71)

Now, we have defined all functions appearing in the model. The rest of the proof are
two straightforward calculations. In the linear case, the independence of variables
is equivalent to variables being uncorrelated. We denote the covariance of two
variables A,B with 〈A,B〉. To prove that (4.66) does not hold, we calculate

〈F ∗(I), B〉 =
〈
ΞΨ†Ψ(S,Φ (S,B∗)) ,Φ (S,B∗)

〉

= 〈ζ1S, α1S + α2B
∗〉 = ζ1α1 〈S, S〉 .

(4.72)

This is equal to zero if and only if either all inputs contain an identical signal
(〈S, S〉 = 0), the dataset is unbiased (α1 = 0), or the label does not depend on the
signal (ζ1 = 0).

For the conditional dependence, we compute the partial correlation. By defini-
tion of the partial correlation, we find

〈F ∗(I), B〉|L = 〈F ∗(I)− F̂ ∗
I (L), B − B̂(L)〉. (4.73)

Here, F̂ ∗
I (L) is the best linear regression of F ∗ given L, and B̂(L) is the best linear

regression of B given L.
Now we use the formula to calculate the linear regression coefficient and write

the best linear regression as the multiplication of the coefficient and the value L to
get

F̂ ∗
I (L) =

〈F ∗(I), L〉
〈L,L〉 L (4.74)
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and

B̂(L) =
〈B,L〉
〈L,L〉L. (4.75)

We plug these results into (4.73) to get

〈F ∗(I), B〉|L = 〈F ∗(I)− 〈F ∗(I), L〉
〈L,L〉 L,B − 〈B,L〉

〈L,L〉L〉. (4.76)

We expand the scalar product to find

〈F ∗(I), B〉|L =

〈F ∗(I), B〉 − 〈F ∗(I),
〈B,L〉
〈L,L〉L〉 − 〈〈F

∗(I), L〉
〈L,L〉 L,B〉+ 〈〈F

∗(I), L〉
〈L,L〉 L,

〈B,L〉
〈L,L〉L〉

= S1 − S2 − S3 + S4.

(4.77)

Simplifying S2 and S3 individually by pulling the fraction out of the scalar prod-
uct, we get

S2 =
〈F ∗(I), L〉〈B,L〉

〈L,L〉 (4.78)

and

S3 =
〈B,L〉〈F ∗(I), L〉

〈L,L〉 . (4.79)

For S4 we pull both fractions out of the scalar product and reduce the resulting
fraction by 〈L,L〉 to get

S4 =
〈F ∗(I), L〉〈B,L〉

〈L,L〉2 〈L,L〉 = 〈B,L〉〈F ∗(I), L〉
〈L,L〉 . (4.80)

As we find
S2 = S3 = S4 (4.81)

we conclude

〈F ∗(I), B〉|L = S1 − S2 = 〈F ∗(I), B〉 − 〈F ∗(I), L〉〈B,L〉
〈L,L〉 . (4.82)

Now we substitute L by ζ1S, F ∗(I) by ζ1S, and B by α1S + α2B
∗ to get

〈F ∗(I), B〉 = 〈ζ1S, α1S + α2B
∗〉 = ζ1α1〈S, S〉+ ζ1α2〈S,B∗〉. (4.83)

Since B∗ and S are independent by definition of B∗, we can evaluate 〈S,B∗〉 = 0

and find
〈F ∗(I), B〉 = ζ1α1〈S, S〉. (4.84)
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Similarly, we find

〈F ∗(I), L〉〈B,L〉
〈L,L〉 =

〈ζ1S, ζ1S〉〈α1S + α2B
∗, ζ1S〉

〈‘ζ1S, ζ1S〉

=
ζ21 〈S, S〉(α1ζ1〈S, S〉+ α2ζ1〈B∗, S〉)

ζ21 〈S, S〉
.

(4.85)

We use the fact that 〈S,B∗〉 = 0 by definition of B∗ to find

〈F ∗(I), L〉〈B,L〉
〈L,L〉 =

ζ21 〈S, S〉α1ζ1〈S, S〉
ζ21 〈S, S〉

. (4.86)

Reducing this fraction by ζ21 〈S, S〉 leads to

〈F ∗(I), L〉〈B,L〉
〈L,L〉 = α1ζ1〈S, S〉. (4.87)

Finally, we include the results of (4.84) and (4.87) into (4.82) to arrive at

〈F ∗(I), B〉|L = α1ζ1〈S, S〉 − α1ζ1〈S, S〉 = 0. (4.88)

This concludes the proof.
A consequence of this theorem is that the optimal classifier does not fulfill the

independence (4.66) and hence, will not minimize any loss function based on this
criterion. Furthermore, Equation (4.72) tells us that the unconditional correlation
is given by ζ1α1〈S, S〉. To reduce this value, a neural network will try to ignore
the connection indicated by ζ1, which is the connection between the signal S and
image I . Hence, an unconditional dependence loss will drive the classifier towards
weakening the crucial connection between the relevant signal S and its prediction
P . Hence, the unconditional criterion will reduce the performance of a classifier
on an unbiased test set. This behavior was reported in the literature, for example,
Alvi et al. (2018), report a significant reduction in bias in an age classifier trained
on a dataset biased by gender. However, this reduction in bias is accompanied by
a drop in performance. On an unbiased test set, the accuracy droped from 0.789

to 0.781. And it is, further, what we found in our experiments, which we report in
Section 4.3.3.

In comparison, the optimal classifier fulfills the conditional dependence cri-
terion (4.65) and, therefore, will minimize losses based on this criterion. Thus,
using a loss function based on this criterion will not reduce the performance of the
classifier.

4.2.2.3 Implementation

The previous section explains why a loss based on our new conditional indepen-
dence is better suited for the bias situation depicted in Figure 4.11 than a loss based
on the traditional unconditional dependence criterion. However, conditional in-
dependence tests are binary in their result, and hence not differentiable, a loss
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function, in contrast, differentiable. To this end, we use the test statistic of different
conditional independence tests as a loss function. For conditionally independent
variables, the test statistics of the conditional independence test are close to zero.
More specifically, they would be zero for an infinite sample, but will be slightly larger
due to finite sample effects. Hence, we can use the test statistic as a loss function.

Further, for a conditional dependence test, we need to approximate the joint
distribution of the prediction P , the bias variable B and the true label L. During
the training, however, we see only a mini-batch of examples. To counteract this
fact, we use momentum on the optimizer to average the gradients across multiple
mini-batches.

In this section we present three conditional independence tests and describe
how to calculate the test statistics. This three conditional independence tests are
the conditional mutual information (MI), the Hilbert-Schmidt conditional indepen-
dence criterion (HSCONIC) and the maximum partial correlation criterion (MCC).
We introduce these tests in Section 2.3.

Conditional Mutual Information Criterion: The first conditional dependence
test we use is the conditional mutual information. The conditional mutual informa-
tion is the conditional version of the mutual information. The mutual information
between the predictions R and B is given by

MI(R;B) =
∑

r∈R,b∈B

pR,B(r, b) log
pR,B(r, b)

pR(r)pB(b)
. (4.89)

The mutual information is zero if and only if the two variables are independent.
Hence, the mutual information was used as a loss for adversarial debiasing by
Kim et al. (2019). Since we are looking for conditional independence, we suggest
using conditional mutual information instead. The conditional mutual information
between the prediction R and bias variable B given the label L is defined as

MI(R;B|L) =
∑

l∈L,b∈Br∈R

pR,B,L (r, b, l) log
pL(l)pR,B,L (r, b, l)

pR,L(r, l)pB,L)
. (4.90)

It is zero if and only if the prediction R and B are independent given the label L.
However, to evaluate the conditional mutual information we have to calculate the
densities pR,B, pR and pB which is difficult. We use kernel density estimation on
the mini-batches to determine the densities. We employ a Gaussian kernel with a
variance of one-fourth of the average pairwise distance within a mini-batch. This
setting proved best in preliminary experiments on reconstructing densities.

Hilbert-Schmidt Conditional Independence Criterion: The Hilbert-Schmidt in-
dependence criterion was introduced by Gretton et al. (2007). The main idea is
to create a kernel matrix that contains the pairwise similarities between samples.
Then, for the observed pairs of prediction R and the bias variable B, we quantify
whether the prediction R is close to predictions of the same pairs for which the bias
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variable is close to bias variable B. More specifically this can be calculated by

HSIC(R,B) =
1

(m− 1)2
trKRHKBH. (4.91)

Here, KR and KB denote the kernel matrices for R and B, respectively. These kernel
matrices contain the pairwise similarities between examples. For the Kronecker-
Delta δij and m the number of examples, H is given by Hij = δij − m−2. We
explain the idea behind the Hilbert-Schmidt independence criterion (HSIC) in
Section 2.3.4. The test statistic of the HSIC was suggested as an additional condition
for optimization in classical machine learning methods by, for example, Pérez-Suay
et al. (2017) and Li et al. (2019b). In contrast to our method, however, these classical
machine learning approaches do not rely on gradient descent and, hence, do not
have to solve the problem of differentiability and the problem to estimate the test
statistic on mini-batches.

For our method, we need a loss that enforces conditional independence. For
this reason, we use the test statistic of a Hilbert-Schmidt conditional independence
criterion,

HSCONIC(R,B |L) ≈ trGRSLGBSL. (4.92)

It is equal to zero if and only if the variables R and B are conditionally independent
given L. Here, SL is given by (I+ 1/mGL)

−1, where I is the identity matrix and
GX = HKXH with KX the kernel matrix for X ∈ {B,R,L} and Hij = δij −m−2 for
δij the Kronecker-Delta and m the number of examples. We use the same kernel as
above and estimate the loss on every mini-batch independently.

Maximum Partial Correlation Coefficient Criterion: A common idea in adver-
sarial debiasing is to penalize the predictability of the bias variable B from the
intermediate representation R measured, for example, by the mean squared error

min
f

∫
(b− f(r))2 dpB,R(b, r). (4.93)

This course of action was, for example, suggested by Zhang et al. (2018a). We
describe this idea and its relation to the maximum correlation coeficient in Sec-
tion 2.3.5. As described in that section, a form of this predictability criterion is given
by

max
f

Corr (B, f(R))2 . (4.94)

As an extension of this criterion, we use the maximum correlation criterion that
we introduce in Section 2.3.2. This criterion uses the following maximum as a test
statistic,

MCC(R,B) = max
f,g

Corr(f(R), g(B)). (4.95)
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To turn this into a conditional independence test, we use the partial correlation

MPCC(R,B |L) = min
h

max
f,g

PC(f(R), g(B) |h(L)). (4.96)

Note that in the classification setting we try to predict a discrete label in a metric
space that uses the trivial metric. This metric assigns zero as the distance between
a label and itself and a constant value to the distance between each pair of different
labels. A typical metric space that fulfills this requirement is one-hot encoded class
labels. In this setting every function is a linear function and, hence, we can omit the
function h to get

MPCC(R,B |L) = max
f,g

PC(f(R), g(B) |L). (4.97)

To parameterize both functions f and g, we use neural networks.

To disentangle the effects of both of these changes, the change from the pre-
dictability criterion used by Zhang et al. (2018a) and Adeli et al. (2021) to the maxi-
mum correlation criterion and the change from the maximum correlation criterion
to the maximum partial correlation criterion, we present an ablation study in Sec-
tion 4.3.3.2. In that section, we compare four loss function. First, the original loss
function used by Adeli et al. (2021) which we displayed in (4.94). Second, we use
the maximum correlation coefficient, which can be found in (4.95). The maximum
correlation coefficient includes the change to the maximum correlation but not the
change to partial correlation. Hence, third, we compare the contrary situation which
includes the change to the partial correlation but not the change to the maximum
correlation coefficient. In this situation, the loss is given by

max
f

PC(f(R), B |L). (4.98)

Finally, we compare these loss functions to the one that includes both changes, the
change to partial correlation and the change to maximum correlation. This loss
function is displayed in equation (4.97).

All three of these implementations can be used for vector-valued variables.
Therefore, they can also be used to de-bias from multiple bias variables at the same
time.

4.3 Experiments

In this section, we demonstrate the empirical evidence to support the claims made
in the previous sections. We start with experiments to show that our method is
suitable to determine whether a classifier uses a feature in Section 4.3.1. This
includes a study on automatic skin lesion classifiers in Section 4.3.2. Finally, we
present experiments that demonstrate that our method can be used for adversarial
debiasing in Section 4.3.3.

128



Experiments 4.3

4.3.1 Experiments to Demonstrate that the Method is

Applicable

In this section, we provide a proof of concept for our method and evidence that
it can be applied to real-world classifiers and find correct answers. Therefore we
present a synthetic data example where we know the feature usage of different
classifiers beforehand in Section 4.3.1.1. Then, we show how to use it to compare
classifiers concerning specific properties without a specialized dataset. In particular,
in Section 4.3.1.2, we present a comparison between two classifiers on the MS COCO
dataset (Lin et al., 2014). We compare two classifiers concerning their dependence
on the position of objects in the image. Since these classifiers detect 80 different
classes, creating a dataset, where each object appears even approximately in every
position equally often is infeasible. Our method can be used to compare these two
classifiers directly. Finally, our method can be used to determine more specific
information about features that have been discovered using explorative methods
or to evaluate hypotheses determined by other methods. In Section 4.1.7.1, we
introduced an example, where an area is highlighted but we do not know which
property of this area is important. Following this discussion, we use a classifier
trained to distinguish birds. In Section 4.3.1.3, we demonstrate how our method can
be used to test which property of the area is considered by the deep neural network.

4.3.1.1 A Synthetic Example

The first experiment we present for the method demonstrated in this work was
originally published in Reimers et al. (2019). The goal of this experiment is to
demonstrate that the method can identify the correct features used by different
prediction methods. We start with a short description of the synthetic dataset. Af-
terward, we present the features we consider in this study and describe the different
predictors we use in this experiment.

The inputs to the prediction task consist of mono-color 8× 8 images A. The val-
ues ai,j of their pixels are independently identically distributed following a normal
distribution

ai,j ∼ N (αA, β
2
A). (4.99)

The task is to estimate the parameter βA from the image. We created 20 000 examples
where both parameters α and β are uniformly distributed on the interval [0, 1].

The two features, which we use as the feature of interest are the sample mean
and the sample standard deviation. The sample mean α∗ is given by

α∗ =
1

64

8∑

i,j=1

ai,j (4.100)
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and the sample standard diviation β∗ is given by

β∗ =

√√√√ 1

64

8∑

i,j=1

(ai,j − α∗). (4.101)

Of course, the first feature is close to useless in predicting β, while the second feature
is near perfect.

We compare four predictors for this task. The first predictor, which we call F1, is
the sample standard deviation

F1(A) =

√√√√ 1

64

8∑

i,j=1

(ai,j − α∗) = β∗. (4.102)

This predictor obviously uses the second feature β∗ but is mathematically indepen-
dent of the feature α∗.

The second predictor we use in this experiment is given by a fully convolutional
neural network. This predictor is called F2. This network has three convolutional
layers with 4, 16 and 64 filters of size 2× 2 and a stride of 2× 2. After the three layers,
we are left with a representation of size 1 × 1 × 64. To reach our final prediction,
we use a final convolutional layer with 1 filter of size 1 × 1. We use regularized
linear units as the activation in all but the last layer. We trained the network using
the Tensorflow framework (Abadi et al., 2015). As the optimizer, we use stochastic
gradient descent for 200 000 steps with a learning rate of 3e−5.

The third predictor is a simple linear classifier on the pixel values of A. It is
called F3. Note that, since F3(A) is a linear combination of the ai,j it is independent
of the feature β∗. We expect that this predictor will over adapt to some finite data
effect in the training set and will hence make use of the linear feature α∗ but not the
quadratic feature β∗.

Finally, the fourth predictor F4 is an oracle classifier. This classifier is indepen-
dent of the input and, hence, it uses no feature, in particular not the feature α∗ and
the feature β∗.

As the independence test in this experiment, we use the fast conditional indepen-
dence test (FCIT) presented by Chalupka et al. (2018) and discussed in Section 2.3.2.
For this conditional independence test, we need to determine the joined distribu-
tion of the feature, the ground truth parameter and the prediction of the predictor
Fi:

(α, α∗, Fi) and (β, β∗, Fi). (4.103)

To this end, we use a test set of 10 000 images not used during training.

We first evaluate the quality of the four predictors. For each of the four predictors,
we calculated the mean squared error between the ground truth and the prediction
measured on the 10 000 test images. We report these values in the second column
of Table 4.10. The oracla predictor F4 reaches a perfect mean squared error of zero.
The linear predictor F3 achieves a mean square error of 0.084 which is worse than
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based on occlusion (compare Section 2.4.1.2) and one based on the combination
(compare Section 2.4.1.3). We argue that none of these outputs can be used to
determine whether feature α∗ or β∗ is used by any classifier other than F4.

4.3.1.2 Evaluating and Comparing Classifiers on the MS COCO Dataset

In the second experiment, we present evaluations and comparisons of complex
real-world classifiers on the MS COCO dataset (Lin et al., 2014). The MS COCO
Dataset is a multi-label multi-class dataset of real-world images. We present this
experiment to demonstrate three things: First, we want to demonstrate that the
method presented in this work can be applied to complex real-world datasets.
Second, we demonstrate that the method can be applied to complex, pre-trained
classifiers in a black-box setting. Third, we demonstrate how to use it to compare
classifiers beyond test set accuracy. This experiment was originally presented in
Reimers et al. (2020).

The first classifier we use for these experiments is the Multi-Label Graph Convo-
lutional Networks (ML-GCN) presented by Chen et al. (2019). The second classifier
is the Spatial Regularization with Image-level Supervision classifier (SRN) presented
by Zhu et al. (2017). For both of these classifiers, we relied on the code provided by
the authors. For the ML-GCN we, in addition to the code, used the weights provided
by the authors.

For this dataset and classifiers we investigate multiple features. The first feature
is the area of the object. We expect a classifier to be more sure the bigger the object
in the image is. To quantify the area we calculate the fraction of the image that is
used up by the object. If multiple instances of the object exist in the image we add
all there areas. To determine the area we use the ground truth image segmentation
provided with the dataset.

One of the differences between MS COCO and other datasets, for example,
ImageNet (Russakovsky et al., 2013) is that MS COCO has less bias towards the
center. While in ImageNet, the important object is most often in the center, in
MS COCO it can appear anywhere in the image. Hence, all additional features we
investigate concern the position of the object in the image.

Many classifiers, including the ML-GCN, are trained using data augmentations.
These data augmentations include horizontal flips of images. Hence, we are espe-
cially interested in the difference between the horizontal and the vertical position
of the object in the image. The features we investigate are:

• whether the object appears in the top or bottom half of the image,

• whether the object appears in the left or right half of the image,

• the x and y coordinates of the object in the image,

• the angle between the first axis of the image and the line between center of
the image and center of the object.

For the position, we consider the center of mass of all instances of the object in the
image.
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Table 4.11: The results of the experiments on the MS COCO dataset for the different
classifiers. For each feature and each classifier, we report, for how many out of the 80
classes, the feature was relevant. This table was originally published in Reimers et al.
(2020)

Feature ML-GCN SRN
(Chen et al., 2019) (Zhu et al., 2017)

Area 73/80 69/80

Half(Horizontal) 1/80 1/80
Position(Horizontal) 10/80 16/80
Half(Vertical) 25/80 32/80
Position(Vertical) 51/80 54/80
Angle 24/80 31/80

To test for independence, we use the Randomized conditional Correlation Test
(RCOT) presented in Strobl et al. (2019) and we explain it in Section 2.3.4. Since
we need the joint distribution of feature, prediction and ground truth, we approxi-
mate it using the validation set of the 2014 challenge data set. We perform many
independent tests. Therefore, we use a significance level of 0.001.

The results of our dependence tests are reported in Table 4.11. The MS COCO
dataset contains labels for 80 classes. In the table, we report for how many of these
classes we found a significant dependence.

We found that, for most classes, the area of the object is relevant for the detection
score. The only classes for which the area is irrelevant are “sheep,” “elephant,” “bear,”
“giraffe,” “kite,” “toaster,” and “hairdryer”. In contrast to an average object, which
appears in 1267 images of the dataset, instances of “hairdryer” and “toaster” appear
in only less than 75 images. This might lead to the network mostly relying on context
to recognize objects of these two classes and, hence, performs better if the context
is clearer and not if the object is bigger. Of the five remaining classes, interestingly,
four are animals.

For the positional features, we find that despite the horizontal flipping, for one
class, namely “mouse,” it is relevant to both classifiers in which half of the image
the object appears. Other than this, the results for the positional features are as
expected. The vertical position/half is more often used than the horizontal position
and the more informative features (Position) are used more often then the less
informative feature (Half).

In comparison, we find that the ML-GCN relies on the area of the object for more
objects and on the position for less classes then the SRN. Since we want the ideal
classifier to rely on the objet and be independent of the position of the object, we
can use this analysis to compare the classifiers. In this case we prefere the ML-GCN
over the SRN.
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difficult to interpret. This is in accordance with adversarial examples as described by
Szegedy et al. (2013) and Goodfellow et al. (2014b) and discussed in Section 3. The
network instead focusses on many small differences that provide complex patterns
that identify these birds.

These experiments only demonstrate the general use of the method and show
that they can be applied to and return meaningful results for real-world deep neural
network classifiers. We demonstrated that it can be used for complex classifiers
without any retraining or extraction of intermediate results and on features that can
not easily be manipulated without changing integral parts of the image or for which
a derivative can be calculated.

While this is only a proof of concept, we demonstrate a real-world use case,
in which we apply the method to the relevant problem of automatic skin lesion
classification in Section 4.3.2.

4.3.2 Experiments on Skin Lesion Classification

Tables 4.13, 4.14, 4.16 and 4.15 contain the results of the experiments for the four
groups of features explained in Section 4.2.1.4. We divide the rows of these tables
into three groups. The first group contains the models following Perez et al. (2018)
that we trained for melanoma recognition. The second group contains the models
following Perez et al. (2018) that we trained to recognize seborrheic keratosis. The
third group is the models following Gessert et al. (2020). We abbreviate the different
models in the following way: First, we denote whether the model follows Perez et al.
(2018) by “Per” or Gessert et al. (2020) by “Ges”. For the models following Perez et al.
(2018), we then denote the backbone network (ResNet-152 (R), Inception-v4 (I),
DenseNet-161 (D)) the aggregation method (mean (n), maximum (x)), the num-
ber of augmented samples and the class it is trained to recognize. For example,
Per:Dx26::MEL is a DenseNet-161 trained following Perez et al. (2018) for melanoma
recognition using maximum aggregation of 26 augmented samples. For the ensem-
ble classifier following Gessert et al. (2020) we simply denote the class it is trained
to recognize.

We report the results of three different dependence tests, namely PC, FCIT, and
HSIC (compare Section 2.3). If we say a feature is used by a classifier, we mean
that a majority of dependence tests indicated that the feature was conditionally
dependent on the prediction.

We first report the results for the four features that have little to no information
on the skin lesion in Table 4.13. No test indicates that the orientation of the skin
lesion is used. This is promising since it contains no information on the skin
lesion at all. Overall, the majority of tests indicated the use of a feature for only
four combinations of classifier and feature out of the 128 combinations tested in
this group of features. The results of these experiments match the expectation for
this experiment. The features are not, or very rarely used by any classifier which
increases our trust in the correctness of the positive results found in the following
experiments.
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Table 4.13: Results of the validation of the conditional dependence method. For every
classifier and feature/test, we indicate that the feature is used with a Xor not used
with an ✗. We assume a feature is used if the test reports a significant dependence
at p = 0.01. The models of Perez et al. (2018) are denoted by “Per” followed by
their backbone (ResNet-152 (R), Inception-v4 (I), DenseNet-161 (D)) the aggregation
method (mean (n), maximum (x)) and the number of augmented samples. Models
from the ensemble from Gessert et al. (2020) are denoted by “Ges” followed by the
predicted class as melanoma (MEL), melanocytic nevus (NV), basal cell carcinoma
(BCC), actinic keratosis (AK), benign keratosis (BKL), dermatofibroma (DF), vascular
lesion (VASC) and squamous cell carcinoma (SCC). The star (∗) denotes cases where
the labels already explain all of the observed variance. These results were originally
reported in Reimers et al. (2021b)

Classification Orientation Rand. Symmetry Image ID MNIST Class

Model PC FCIT HSIC PC FCIT HSIC PC FCIT HSIC PC FCIT HSIC

Per:Dx26::MEL ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Per:Dn26::MEL ✗ ✗ ✗ ✗ ✗ X ✗ ✗ ✗ ✗ ✗ ✗

Per:Dx64::MEL ✗ ✗ ✗ ✗ ✗ X ✗ ✗ ✗ ✗ ✗ ✗

Per:Dn64::MEL ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Per:Ix26::MEL ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Per:In26::MEL ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Per:Ix64::MEL ✗ ✗ ✗ ✗ ✗ X ✗ ✗ ✗ ✗ ✗ ✗∗

Per:In64::MEL ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗∗

Per:Rx26::MEL ✗ ✗ ✗ ✗ ✗ X ✗ ✗ X ✗ ✗ ✗

Per:Rn26::MEL ✗ ✗ ✗ ✗ ✗ X ✗ ✗ ✗ ✗ ✗ ✗

Per:Rx64::MEL ✗ ✗ ✗ ✗ X X ✗ ✗ ✗ ✗ ✗ ✗

Per:Rn64::MEL ✗ ✗ ✗ ✗ ✗ X ✗ ✗ ✗ ✗ ✗ ✗

Per:Dx26::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ X ✗ ✗ ✗

Per:Dn26::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ X ✗ ✗ ✗

Per:Dx64::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Per:Dn64::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ X ✗ ✗ ✗

Per:Ix26::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗∗

Per:In26::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Per:Ix64::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Per:In64::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Per:Rx26::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Per:Rn26::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Per:Rx64::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Per:Rn64::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Ges::MEL ✗ ✗ ✗ ✗ ✗ ✗ X X X ✗ ✗ ✗

Ges::NV ✗ ✗ ✗ ✗ ✗ ✗ ✗ X X ✗ ✗ ✗

Ges::BCC ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Ges::AK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Ges::BKL ✗ ✗ ✗ ✗ ✗ ✗ ✗ X ✗ ✗ ✗ ✗

Ges::DF ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗∗

Ges::VASC ✗ ✗ ✗ ✗ X X ✗ ✗ ✗ ✗ ✗ ✗

Ges::SCC ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Second, we report the results for the features named in the dermoscopic ABCD
rule in Table 4.14. This rule was designed by dermatologists to recognize melanoma.
This fact is reflected in the first two columns of Table 4.14. If we compare the models
that we trained following Perez et al. (2018) to recognize melanoma and the same

136



Experiments 4.3

Table 4.14: Results for the features from the ABCD-rule. For every classifier and
feature/test, we indicate that the feature is used with a Xor not used with an ✗. We
assume a feature is used if the test reports a significant dependence at p = 0.01.
The models of Perez et al. (2018) are denoted by “Per” followed by their backbone
(ResNet-152 (R), Inception-v4 (I), DenseNet-161 (D)) the aggregation method (mean
(n), maximum (x)) and the number of augmented samples. Models from the en-
semble from Gessert et al. (2020) are denoted by “Ges” followed by the predicted
class as melanoma (MEL), melanocytic nevus (NV), basal cell carcinoma (BCC),
actinic keratosis (AK), benign keratosis (BKL), dermatofibroma (DF), vascular lesion
(VASC) and squamous cell carcinoma (SCC). These results were originally reported
in Reimers et al. (2021b)

Classification Asymmetry Border Color Derm. Structures

Model PC FCIT HSIC PC FCIT HSIC PC FCIT HSIC PC FCIT HSIC

Per:Dx26::MEL X X X X X X X ✗ X ✗ ✗ X

Per:Dn26::MEL X X X X X X X ✗ X ✗ ✗ X

Per:Dx64::MEL X X X X X X X ✗ X ✗ ✗ X

Per:Dn64::MEL X X X X X X X ✗ X ✗ ✗ X

Per:Ix26::MEL X X X X X X ✗ ✗ X ✗ ✗ X

Per:In26::MEL X X X X X X ✗ ✗ ✗ ✗ ✗ ✗

Per:Ix64::MEL X X X X X X ✗ ✗ X ✗ ✗ X

Per:In64::MEL X X X X X X ✗ ✗ ✗ ✗ ✗ ✗

Per:Rx26::MEL X X X X X X ✗ ✗ X ✗ ✗ X

Per:Rn26::MEL X X X X X X ✗ ✗ ✗ ✗ ✗ X

Per:Rx64::MEL X X X X X X ✗ ✗ X ✗ ✗ X

Per:Rn64::MEL X X X X X X ✗ ✗ ✗ ✗ ✗ X

Per:Dx26::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ X ✗ ✗ X

Per:Dn26::SK ✗ ✗ ✗ ✗ ✗ X ✗ ✗ ✗ X ✗ X

Per:Dx64::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ X

Per:Dn64::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ X ✗ X

Per:Ix26::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ X

Per:In26::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ X ✗ X

Per:Ix64::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ X

Per:In64::SK ✗ ✗ ✗ ✗ ✗ X ✗ ✗ ✗ X ✗ X

Per:Rx26::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ X

Per:Rn26::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ X ✗ X

Per:Rx64::SK ✗ ✗ ✗ ✗ ✗ X ✗ ✗ ✗ ✗ ✗ X

Per:Rn64::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ X ✗ ✗ X

Ges::MEL ✗ ✗ X ✗ X X X X X ✗ ✗ X

Ges::NV ✗ ✗ X X ✗ X X X X ✗ ✗ X

Ges::BCC ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ X

Ges::AK ✗ ✗ X X ✗ X ✗ ✗ ✗ ✗ ✗ X

Ges::BKL ✗ ✗ X X ✗ X ✗ ✗ X X ✗ X

Ges::DF ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Ges::VASC ✗ X ✗ ✗ X X ✗ ✗ ✗ ✗ ✗ X

Ges::SCC ✗ ✗ X X ✗ X ✗ X X ✗ ✗ X

models trained to recognize seborrheic keratosis, all tests agree that all models of the
first group use the asymmetry and the border feature while all models of the second
group do not. Out of the eight classifiers trained following Gessert et al. (2020), six
use the border feature, while none use the asymmetry feature. The color feature is
used by almost none of the classifiers. Finally, roughly half of the models trained to
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Table 4.15: Results for the alternative color features. For every classifier and fea-
ture/test, we indicate that the feature is used with a Xor not used with an ✗. We
assume a feature is used if the test reports a significant dependence at p = 0.01.
The models of Perez et al. (2018) are denoted by “Per” followed by their backbone
(ResNet-152 (R), Inception-v4 (I), DenseNet-161 (D)) the aggregation method (mean
(n), maximum (x)) and the number of augmented samples. Models from the en-
semble from Gessert et al. (2020) are denoted by “Ges” followed by the predicted
class as melanoma (MEL), melanocytic nevus (NV), basal cell carcinoma (BCC),
actinic keratosis (AK), benign keratosis (BKL), dermatofibroma (DF), vascular lesion
(VASC) and squamous cell carcinoma (SCC). These results were originally reported
in Reimers et al. (2021b)

Color Count Relaxed C.C. Variance Volume

Classification Model PC FCIT HSIC PC FCIT HSIC PC FCIT HSIC PC FCIT HSIC

Per:Dx26::MEL X ✗ X X ✗ X ✗ ✗ ✗ X ✗ X

Per:Dn26::MEL X X X X ✗ X ✗ ✗ ✗ X ✗ X

Per:Dx64::MEL X X X X ✗ X ✗ ✗ ✗ X ✗ X

Per:Dn64::MEL X ✗ X X ✗ X ✗ ✗ ✗ X ✗ X

Per:Ix26::MEL ✗ ✗ X X ✗ X ✗ ✗ ✗ X ✗ X

Per:In26::MEL ✗ ✗ ✗ ✗ ✗ X ✗ ✗ ✗ ✗ X X

Per:Ix64::MEL ✗ ✗ X X ✗ X ✗ ✗ ✗ X ✗ X

Per:In64::MEL ✗ ✗ ✗ ✗ ✗ X ✗ ✗ ✗ ✗ ✗ X

Per:Rx26::MEL ✗ ✗ X X ✗ X ✗ ✗ ✗ X ✗ X

Per:Rn26::MEL ✗ ✗ ✗ X ✗ X ✗ ✗ ✗ ✗ ✗ X

Per:Rx64::MEL ✗ ✗ X X ✗ X ✗ ✗ ✗ X ✗ X

Per:Rn64::MEL ✗ ✗ ✗ X ✗ X ✗ ✗ ✗ X ✗ X

Per:Dx26::SK ✗ ✗ X ✗ ✗ X ✗ ✗ ✗ X X X

Per:Dn26::SK ✗ ✗ ✗ ✗ ✗ X ✗ ✗ X X X X

Per:Dx64::SK ✗ ✗ ✗ ✗ ✗ X ✗ ✗ X X X X

Per:Dn64::SK ✗ ✗ X ✗ ✗ ✗ ✗ ✗ ✗ X ✗ X

Per:Ix26::SK ✗ ✗ ✗ ✗ ✗ X ✗ ✗ ✗ X ✗ X

Per:In26::SK ✗ ✗ ✗ ✗ X X ✗ X X X X X

Per:Ix64::SK ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ X ✗ X

Per:In64::SK ✗ ✗ ✗ X ✗ X ✗ ✗ ✗ X ✗ X

Per:Rx26::SK ✗ ✗ ✗ X ✗ X ✗ ✗ ✗ X ✗ X

Per:Rn26::SK ✗ ✗ ✗ X ✗ X ✗ ✗ ✗ X ✗ X

Per:Rx64::SK ✗ ✗ ✗ X ✗ X ✗ ✗ ✗ X ✗ X

Per:Rn64::SK ✗ ✗ X X ✗ X ✗ ✗ ✗ X ✗ X

Ges::MEL X X X X X X ✗ ✗ X X X X

Ges::NV X X X X X X ✗ ✗ ✗ X X X

Ges::BCC ✗ ✗ ✗ ✗ X ✗ ✗ X X ✗ ✗ X

Ges::AK ✗ ✗ ✗ ✗ X ✗ ✗ ✗ ✗ ✗ ✗ X

Ges::BKL ✗ ✗ X X X X ✗ ✗ ✗ ✗ ✗ X

Ges::DF ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Ges::VASC ✗ ✗ ✗ ✗ X X X X X ✗ ✗ ✗

Ges::SCC ✗ X X ✗ X ✗ ✗ ✗ ✗ ✗ ✗ X

recognize seborrheic keratosis following Perez et al. (2018) and one of the ensemble
models trained following Gessert et al. (2020) use the dermoscopic structure feature.
We suspect the reason why this feature is used only rarely is the high complexity
of the feature. A challenge in the 2018 ISIC workshop, in which contestants were
asked to identify areas that showed the dermoscopic structures used in this feature.
The task proved to be very difficult with the best submission reaching a Jaccard
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Table 4.16: Results for the bias features. For every classifier and feature/test, we
indicate that the feature is used with a Xor not used with an ✗. We assume a
feature is used if the test reports a significant dependence at p = 0.01. The models of
Perez et al. (2018) are denoted by “Per” followed by their backbone (ResNet-152 (R),
Inception-v4 (I), DenseNet-161 (D)) the aggregation method (mean (n), maximum
(x)) and the number of augmented samples. Models from the ensemble from Gessert
et al. (2020) are denoted by “Ges” followed by the predicted class as melanoma (MEL),
melanocytic nevus (NV), basal cell carcinoma (BCC), actinic keratosis (AK), benign
keratosis (BKL), dermatofibroma (DF), vascular lesion (VASC) and squamous cell
carcinoma (SCC). These results were originally reported in Reimers et al. (2021b)

Classification Age Sex Skin Color Colorful Patches

Model PC FCIT HSIC PC FCIT HSIC PC FCIT HSIC PC FCIT HSIC

Per:Dx26::MEL X ✗ X ✗ X X ✗ ✗ X X X X

Per:Dn26::MEL X X X ✗ ✗ X ✗ X ✗ X X X

Per:Dx64::MEL X ✗ X ✗ X X ✗ ✗ X X X X

Per:Dn64::MEL X ✗ X ✗ ✗ ✗ ✗ X ✗ X X X

Per:Ix26::MEL X X X ✗ ✗ X ✗ ✗ X X X X

Per:In26::MEL X X X ✗ X X X X X X X X

Per:Ix64::MEL X X X ✗ ✗ X ✗ ✗ X X X X

Per:In64::MEL X X X X X X X ✗ X X X X

Per:Rx26::MEL X ✗ X ✗ ✗ ✗ ✗ ✗ ✗ X X X

Per:Rn26::MEL X ✗ X ✗ ✗ ✗ ✗ ✗ X X X X

Per:Rx64::MEL X ✗ X ✗ ✗ X ✗ X ✗ X X X

Per:Rn64::MEL X ✗ X ✗ ✗ ✗ ✗ ✗ X X X X

Per:Dx26::SK X ✗ X ✗ ✗ ✗ X ✗ X X X X

Per:Dn26::SK X ✗ X ✗ ✗ ✗ X X X X X X

Per:Dx64::SK X ✗ X ✗ X X X X X X X X

Per:Dn64::SK X ✗ X ✗ ✗ X X X X X X X

Per:Ix26::SK X ✗ X ✗ ✗ X X ✗ X X X X

Per:In26::SK X ✗ X ✗ X X X ✗ X X X X

Per:Ix64::SK X ✗ X ✗ ✗ X X ✗ X X X X

Per:In64::SK X ✗ X ✗ X X X ✗ X X X X

Per:Rx26::SK X ✗ X ✗ ✗ X X ✗ X X X X

Per:Rn26::SK X ✗ X ✗ ✗ X X X X X X X

Per:Rx64::SK X ✗ X ✗ X X X X X X X X

Per:Rn64::SK X ✗ X ✗ ✗ X X X X X X X

Ges::MEL ✗ ✗ X ✗ ✗ ✗ X X X X X X

Ges::NV X ✗ X ✗ ✗ X X X X ✗ X ✗

Ges::BCC X ✗ X ✗ ✗ ✗ ✗ X ✗ ✗ X ✗

Ges::AK X ✗ X ✗ ✗ X ✗ X X ✗ X ✗

Ges::BKL X ✗ X ✗ ✗ ✗ X X X X X X

Ges::DF ✗ ✗ ✗ ✗ ✗ ✗ ✗ X X ✗ X X

Ges::VASC ✗ ✗ ✗ ✗ ✗ ✗ ✗ X ✗ ✗ X X

Ges::SCC X ✗ X ✗ X X ✗ X X ✗ X X

index of 0.307. For more information, we refer the reader to Codella et al. (2019).
Finally, only the four classifiers, trained for melanoma recognition following Perez
et al. (2018), that use the Densenet-161 as a backbone, as well as three classifiers
trained following Gessert et al. (2020) use the color feature. This is surprising since
the color is considered one of the most important features in determining the class
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of a skin lesion by dermatologists. To investigate this further, we conduct the next
experiment.

Table 4.15 contains the results for the different ways to quantify the color feature.
We find that considering a wider window for the colors increases the number of
classifiers that use the feature considerably. The relaxed color feature is used by 20
of the 32 models distributed across all three model types. The melanoma models
trained following Perez et al. (2018) use the feature in ten out of 12 cases, the
seborrheic keratosis models trained in that way and the ensembles following Gessert
et al. (2020) use it it half of the cases. In contrast, the variance of the hue is used only
by three classifiers. The first is a seborrheic keratosis model trained following Perez
et al. (2018) and the two others are models trained following Gessert et al. (2020).
Compared to this feature based only on the hue, we consider the volume feature
that also considers the pixel’s luminosity and saturation. This feature is used by ten
of the melanoma and all seborrheic keratosis recognition models trained following
Perez et al. (2018). Additionally, two of the ensemble classifiers trained following
Gessert et al. (2020) use this feature.

The final experiment in this study considers the known bias features. The results
of this experiment are summarized in Table 4.16. Every model included in this study
uses at least one of the bias features. To this end, most of the models use the age of
the patient and the existence of colorful patches. Both were used by 29 out of the 32
classifiers. All models that did not use at least one of these features are ensemble
classifiers trained following Gessert et al. (2020). The remaining two features are less
used by the classifiers. The sex of the patient is used by nine out of the 32 models
distributed across all three groups of classifiers. For the skin color feature, the
results differ among the three groups of classifiers. More than half of the classifiers
trained following Gessert et al. (2020) incorporate this feature. In the models trained
following Perez et al. (2018), only two out of the twelve melanoma classifiers rely
on this feature while, in contrast, all the seborrheic keratosis classifiers trained this
way use the skin color.

We find that all seborrheic keratosis models trained following Perez et al. (2018)
use the skin color feature. Following up on this observation, we suspected an
unknown bias regarding the skin color in the ISIC 2017 training dataset. Figure 4.14
shows the distribution of the feature for both the seborrheic keratosis and the
melanoma labels. The median score for seborrheic keratosis images is significantly
lower, indicating a clear bias. In contrast, the skin color score of the melanoma and
not melanoma images is almost equally distributed.

Another question, we can tackle using these experiments is, which hyperparam-
eters have the most impact on which feature is used by a classifier. The hyperpa-
rameters we study here are the following: First, we examine the task for which the
network was trained, namely melanoma detection (MEL) or seborrheic keratosis
(SK) detection. Second, we compare the backbone classifier, namely the DenseNet-
161 (D), the ResNet-152 (R), and the Inception-v4 (I). The third hyperparameter is
the aggregation method, which can be the mean (n) or the maximum (x), and the
last hyperparameter is the number of samples during the test time augmentation,

140





Chapter 4 DETERMINING THE RELEVANCE OF FEATURES FOR DEEP NEURAL

NETWORKS

Table 4.17: Agreement scores and standard error for different hyperparameters of the
models trained following Perez et al. (2018). The possible tasks are melanoma and
seborrheic keratosis recognition. The three backbones are DenseNet-161, Inception-
v4 and ResNet-152. We employ mean and maximum aggregation and use either 26
or 64 augmented examples

Hyperparameter Score

Task 0.774± 0.066

Backbone 0.595± 0.107

Aggregation method 0.563± 0.112

Number of examples 0.549± 0.113

not able to outperform the baseline. To ensure that this difference in performance
originates from the change from the unconditional to the conditional dependence
criterion and not from other changes in the implementation, we present the results
of an ablation study in Section 4.3.3.2. Finally, in Section 4.3.3.3, we show that this
effect is also observable on real-world images. To this end, we created eleven biased
training sets out of the dataset of cats and dogs introduced by Lakkaraju et al. (2016).
On these test sets, we can not only show that the implementation of our models
outperforms all unconditional methods from the literature, but we, furthermore,
observe a strong correlation between the strength of the bias and improvement of
our method over its unconditional counterpart. The three experiments described
in this section were originally included in Reimers et al. (2021a).

To evaluate our experiments, we measure the accuracy on an unbiased test
set. This is not the only possibility to evaluate debiasing methods. Other common
evaluation methods include the “equalized odds” (Hardt et al., 2016),

(R ⊥⊥ B |L), (4.105)

or “demographic parity” (Dwork et al., 2012),

(R ⊥⊥ B), (4.106)

both of which are the same in this situation since the test set is unbiased. The
main drawback of these measures is that they are binary and, hence, rather coarse-
grained. We focus on the accuracy on unbiased test sets in this paper. The reason
is that we designed this method for situations in which a dataset is biased, but
we expect the system to be used in an unbiased, real-world situation. Hence, the
accuracy on an unbiased test set is our goal, and evaluating it directly is the most
precise quality measure for our method.

4.3.3.1 Experiments on Synthetic Data

To evaluate the quality of our suggested adversarial debiasing method, we, first,
conduct an experiment on synthetic data. To this end, we build a small dataset
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of tiny eight-by-eight pixel images. All but twenty pixels in these images are dark.
The twenty light pixels have two features. The first feature is the shape of the light
pixels, that form either a cross or a square. The second feature is the color of the
light pixels which is either green or violet.

More specifically, we create the images in the HSV color space. Depending on
the two signals, we first determine the value of each pixel. Since the first signal
contains the shape of the high-intensity pixels, we set the value of pixels within the
shape to 0.8 and of pixels outside of the shape to zero. Then independent identically
distributed noise following a uniform distribution on the interval [0, 0.2] is added to
the intensity of all pixels. To add the second signal we use the hue of the pixels. To
this end, the hue of all pixels is either set to 0.3 (green) or 0.9 (violet). We add noise
to the hue of every pixel. The noise is also sampled from a uniform distribution but
this time on the interval [−0.1, 0.1]. In the end, we convert the images into the RGB
color space, resulting in a nonlinear mixing of the two signals. Example images of
this dataset can be found in Figure 4.15.

The two criteria on whether a feature is used by a deep neural network, the
dependence criterion in (4.66) and the conditional dependence criterion (4.65)
agree if the bias variable B is independent of the label L, meaning that the dataset
is unbiased

B ⊥⊥ L ⇒ (B ⊥⊥ R ⇔ B ⊥⊥ R |L) . (4.107)

Further, the weaker the bias in the dataset, the closer are the two criteria. Since we
want to compare the effect of the two criteria for adversarial debiasing, we aim to
maximize the difference between these two criteria. Consequently, we maximize
the bias in this synthetic dataset. In our training set, all 600 images of squares are
violet and all images of crosses are green. In contrast, In the test set these two signals
are independent, meaning it contains as many green as violet crosses and as many
green as violet squares. Example images from the train and test set can be found in
Figure 4.15.

For two reasons, we limit the training set to this small number of images. First,
since the task is relatively easy, only a few images are needed to solve it and we do
not want to create an unrealistic setting in which the network has a much easier
task to extract a specific feature than it would have in a realistic setting. Second, the
use-case for adversarial debiasing is small datasets, since for large datasets other
methods, such as creating synthetic examples or downsampling the dataset can be
more advantageous.

Many authors argue that neural networks prefer features that are related to the
color of an object over features that concern the shape of an object or vice versa.
Since one of our features considers the color and one the shape, we have to be
careful that these preferences do not influence our investigation. To this end, we
use two setups: In the first setup, the shape of the high-value pixels is the signal S.
From this signal, we derive a binary label L which is either “cross” or “square”. As
the bias variable B, we use the color signal. We denote this setup as Setup I. For the
second setup, we invert the roles of the color and shape signals. The signal S is given
by the color and determines the binary label L which is either “green” or “violet”.
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Some of the methods from the literature require the training of additional neural
networks. Whenever a method, including the variant of our method that uses
the maximum partial correlation coefficient, requires the training of an additional
neural network, we use a neural network with one fully connected, hidden layer
of size 1024 and ReLU activations. If the respective publications of the literature
methods do not specify differently, we use the Adam optimizer (Kingma and Ba,
2014) to optimize the weights of the deep neural networks.

We run the experiment for each method, the four literature methods and the
three implementations suggested in Section 4.2.2.3, 100 times for each of the two
setups explained above. All hyperparameters are optimized for the two setups
independently. We restrict the hyperparameters for each of the literature methods
to the values described in the respective publications and used hyperparameter op-
timization only for the values which are either problem-dependent or not specified
in the publications. We report the average test set accuracy and the standard error
in Table 4.19.

If a method would decide half of the example based on the shape and the other
half based on the color, it would reach an accuracy of 0.75 in each setup. In our
results, we find that the baseline reaches an accuracy above this threshold in both
setups. This demonstrates that the hyperparameters influence which features (color
or shape) is extracted and used by a deep neural network. This strong influence of
hyperparameter might obscure the influence of the adversarial debiasing methods.
Hence, it is very important, to use rigorous hyperparameter optimization. We used
a grid search where we train ten models for each hyperparameter configuration
and used the hyperparameter optimization with the highest mean validation set
accuracy. The list of hyperparameters can be found in Table 4.18. For each method,
we report the learning rate of the backbone classifier (lrc), the number of epochs
(Nr. Ep.), and, for all methods other than the baseline, the weight of the adversarial
debiasing loss β. For each method that requires a second neural network to calculate
the debiasing loss, we report the learning rate of these additional neural networks
by lrb. Finally, we report whether we forced the mini-batches used during training
to be balanced in the classes (Bal.).

All methods from the literature employ the unconditional independence crite-
rion (4.66). With one exception, none of them can improve upon the baseline. This
is what we expected from our theoretical investigations in Section 4.2.2.2 and the
literature. When trained with an unconditional independence criterion, the meth-
ods trade biasedness for test set accuracy. Especially in a dataset with a very strong
bias, such as the one presented here, this effect has a huge influence. In contrast,
all implementations of our method outperform the baseline and consequently all
methods from the literature. In the first setup, the variance in test set accuracy
among the implementations of our method using the new conditional dependence
criterion (4.65) is 0.19 percentage points. Similarly, the variance among the test set
accuracy of the literature methods using the unconditional independence criterion
(4.66) is 0.53 percentage points. In contrast to these variances within these two
groups, the difference between the worst implementation of our method and the
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Table 4.18: The hyperparameters for all methods and all experiments

Method lrc Nr. Ep. β lrb Bal.

Setup I

Baseline 3e−5 30 – – False
Adeli et al. Adeli et al. (2021) 3e−4 1000 1 3e−4 False
Zhang et al. I Zhang et al. (2018a) 3e−3 30 2 3e−3 False
Zhang et al. II Zhang et al. (2018a) 3e−3 30 0.5 3e−3 False
Kim et al. Kim et al. (2019) 3e−4 1000 1 3e−4 False
Ours(CMI) 1e−5 100 0.0625 1e−5 False
Ours(MPCC) 3e−5 30 0.0625 3e−5 False
Ours(HSCONIC) 3e−5 30 0.0625 3e−5 True
Unconditional HSIC 3e−5 30 0.003 3e−5 True
Unconditional MI 1e−5 100 0.0625 1e−5 False
Ours(MPCC) – only MCC 3e−4 1000 1 3e−4 False
Ours(MPCC) – only PC 3e−5 30 0.0625 3e−5 False

Setup II

Baseline 3e−5 100 – – False
Adeli et al. Adeli et al. (2021) 3e−5 100 1 3e−5 False
Zhang et al. I Zhang et al. (2018a) 3e−3 30 0.5 3e−3 False
Zhang et al. II Zhang et al. (2018a) 3e−3 30 0.5 3e−3 False
Kim et al. Kim et al. (2019) 3e−5 100 1 3e−5 False
Ours(CMI) 1e−5 100 0.05 1e−5 False
Ours(MPCC) 3e−5 30 0.0625 3e−5 False
Ours(HSCONIC) 3e−5 30 0.0625 3e−5 True
Unconditional HSIC 3e−5 30 0.0625 3e−5 True
Unconditional MI 1e−5 100 0.05 1e−5 False
Ours(MPCC) – only MCC 3e−5 30 0.0625 3e−5 False
Ours(MPCC) – only PC 3e−5 30 0.0625 3e−5 False

Real-World Data

Baseline 1e−2 150 – – False
Adeli et al. Adeli et al. (2021) 1e−2 150 1 3e−4 False
Zhang et al. I Zhang et al. (2018a) 1e−2 150 1 3e−5 False
Zhang et al. II Zhang et al. (2018a) 1e−2 150 1 3e−5 False
Ours(HSCONIC) 1e−2 150 1 1e−5 False
Unconditional HSIC 1e−2 150 1 1e−5 False
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Table 4.19: The results from 100 experimental runs for our method and all baseline
methods. For both experiments, we report the mean accuracy ± standard error. The
best results are marked in bold. These results were first published in Reimers et al.
(2021a)

Method Setup I Setup II

Baseline 0.819 ±0.016 0.791 ±0.016

Adeli et al. (2021) 0.747 ±0.015 0.776 ±0.014

Zhang et al. (2018a) I 0.736 ±0.018 0.837 ±0.017

Zhang et al. (2018a) II 0.747 ±0.016 0.750 ±0.013

Kim et al. (2019) 0.771 ±0.012 0.767 ±0.016

Ours(CMI) 0.840 ±0.014 0.871 ±0.012

Ours(HSCONIC) 0.846 ±0.021 0.868 ±0.013

Ours(MPCC) 0.854 ±0.013 0.867 ±0.013

best method from the literature is 6.9 percentage points. In Setup II, the numbers
are similar, only one of the methods suggested by Zhang et al. (2018a) outperforms
the baseline. In this setup, the variance among the implementations of our methods
is smaller than 0.01 percentage points. The variance among the test accuracy of
the literature methods is 0.43 percentage points. The difference between the worst
implementation of our method and the best performing method from the literature
is 3.0 percentage points.

We summarize the findings from these experiments in the following two obser-
vations. The synthetic dataset is suitable to demonstrate the difference between
the two debiasing criteria. As intended, it proves challenging for the methods from
the literature. In the first setup, none of the literature methods can outperform
the baseline and in Setup II, only one of the methods can outperform the baseline.
This is expected since it is a known fact, that these methods trade unbiasedness
for accuracy and fail for strong biases. The reason for this tradeoff is explained in
Section 4.2.2.2. In contrast, all implementations of our new conditional indepen-
dence criterion for debiasing reach higher test set accuracy than the baseline and,
consequently a higher test set accuracy than all methods from the literature.

4.3.3.2 Ablation Study

In the experiment on synthetic data that we presented in Section 4.3.3.1, we found
that the proposed implementations outperformed the methods from the literature.
To demonstrate that this increase in performance originates from our new con-
ditional independence criterion (4.65) and not, for example, from details in the
implementation, we present an ablation study in this section. In this study, we com-
pare the implementations we proposed for the conditional dependence criterion
with counterparts that are implemented in the same way but use the unconditional
dependence test. We compare eight variations of the implementations described
in Section 4.2.2.3. First, for the method based on conditional mutual information

147



Chapter 4 DETERMINING THE RELEVANCE OF FEATURES FOR DEEP NEURAL

NETWORKS

Table 4.20: The results of the ablation study. Every method is trained on a biased
training set and evaluated on an unbiased test set according to the indicated setup.
We report the accuracy averaged over 100 runs and the standard error. The best
results are marked in bold. This table was originally included in Reimers et al.
(2021a)

Method Setup I Setup II

Ours – CMI 0.583 ±0.010 0.833±0.011

Ours – MI 0.840 ±0.014 0.871±0.012

Ours – HSCONIC 0.744 ±0.011 0.590±0.011

Ours – HSIC 0.846 ±0.021 0.868±0.013

Adeli et al. (2021) 0.747 ±0.015 0.776±0.014

Ours(MPCC) – only MCC 0.757 ±0.016 0.807±0.015

Ours(MPCC) – only PC 0.836 ±0.014 0.830±0.015

Ours(MPCC) – complete 0.854 ±0.013 0.867±0.013

(“Ours – CMI”), we create an implementation that is equal in every way other than
the fact that it uses unconditional mutual information. We denote this method as
“Ours – MI”. Second, we created an implementation that is in every way equal to
our method that employs the Hilbert-Schmidt conditional independence criterion
(“Ours – HSCONIC”) other than that it uses the unconditional Hilbert-Schmidt
independence criterion. We denote this method as “Ours – HSIC”. Finally, since we
made two individual changes to turn the predictability criterion suggested by Adeli
et al. (2021) and Zhang et al. (2018a) into our maximum partial correlation criterion
we compare the four different loss functions described in Section 4.2.2.3. First, in
Table 4.20, we denote the predictability criterion following Adeli et al. (2021), by
Adeli et al. (2021). The method that improves upon this method by using the maxi-
mum correlation coefficient instead of the predictability criterion as explained in
Equation (4.95) is denoted by “Ours(MPCC) – only MCC”. The method that improves
upon Adeli et al. (2021) by using the partial correlation instead of the correlation,

MPCCPConly(R,B |L) = max
f

PC(f(R), B |L), (4.108)

is denoted by “Ours(MPCC) – only PC”. Finally, our implementation using the
maximum partial correlation criterium is denoted by “Ours(MPCC) – complete”.

In both setups, we find that the implementations using the conditional indepen-
dence criteria outperform their unconditional counterparts for all three implemen-
tations. For the implementations based on mutual information and conditional
mutual information as well as the implementations based on the Hilbert-Schmidt in-
dependence criterion and the Hilbert-Schmidt conditional independence criterion,
the accuracy increased on average by 0.169. For the implementations related to the
maximum correlation criterion, we evaluate the effects of the two different changes
we made individually. The first change, from the predictability to the maximum
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correlation coefficient, increased the test set accuracy on average by 2 percentage
points in the unconditional case (Adeli et al. (2021) vs. “Ours(MPCC) – only MCC”)
and on average by 2.8 percentage points in the conditional case (“Ours(MPCC) –
only PC” vs. “Ours(MPCC) – complete”). In contrast, the second change from un-
conditional to the conditional criterion increased the test set accuracy on average
by 7.2 percentage points when using the predictability criterion (Adeli et al. (2021)
vs. “Ours(MPCC) – only PC”) and on average by 7.9 percentage points when using
the maximum correlation criterion (“Ours(MPCC) – only MCC” vs. “Ours(MPCC) –
complete”). We conclude, that the effects that we observed in Section 4.3.3.1 can
be attributed to the change from the unconditional to the conditional dependence
criterion.

Even further, since our unconditional methods perform worse than the compa-
rable methods from the literature, we conclude that we could improve our results
further by improving details in the implementations.

4.3.3.3 Real-world data

Table 4.21: Experimental results on the cats and dogs dataset introduced by Kim
et al. (2019). All methods were trained on a dataset in which p% of all dogs are dark-
furred dogs and p% of all cats are light-furred. The first column of the table indicates
the fraction p. The following columns contain the accuracies on an unbiased test set
averaged over three runs and the standard error. We marked the best results in bold.
The results in this table were originally presented in Reimers et al. (2021a)

Fra. Baseline Adeli et al.
(2021)

Zhang et al.
(2018a) I

Zhang et al.
(2018a) II

Ours
(HSIC)

Ours
(HSCONIC)

0% 0.627 ±0.004 0.597 ±0.004 0.590 ±0.002 0.617 ±0.001 0.611 ±0.003 0.615 ±0.005

10% 0.800 ±0.001 0.774 ±0.002 0.779 ±0.005 0.785 ±0.007 0.759 ±0.012 0.801 ±0.001

20% 0.845 ±0.003 0.829 ±0.000 0.812 ±0.002 0.809 ±0.005 0.816 ±0.002 0.855 ±0.004

30% 0.852 ±0.007 0.842 ±0.003 0.837 ±0.004 0.834 ±0.003 0.834 ±0.002 0.863 ±0.002

40% 0.859 ±0.007 0.855 ±0.004 0.870 ±0.002 0.850 ±0.001 0.861 ±0.003 0.875 ±0.003

50% 0.859 ±0.006 0.866 ±0.003 0.856 ±0.001 0.853 ±0.001 0.863 ±0.004 0.860 ±0.002

60% 0.866 ±0.006 0.837 ±0.001 0.850 ±0.003 0.860 ±0.004 0.844 ±0.001 0.856 ±0.005

70% 0.844 ±0.003 0.854 ±0.003 0.835 ±0.005 0.841 ±0.005 0.835 ±0.003 0.859 ±0.000

80% 0.829 ±0.002 0.822 ±0.005 0.820 ±0.005 0.826 ±0.003 0.820 ±0.007 0.836 ±0.002

90% 0.773 ±0.010 0.743 ±0.001 0.758 ±0.001 0.731 ±0.002 0.757 ±0.003 0.791 ±0.004

100% 0.612 ±0.001 0.612 ±0.004 0.604 ±0.001 0.609 ±0.001 0.606 ±0.002 0.616 ±0.002

In Section 4.3.3.1, we have demonstrated the effectiveness of our approach on a
synthetic dataset. Further, in Section 4.3.3.2, we demonstrated that the observed
improvements over the methods from the literature can be attributed to the change
from the unconditional to the conditional independence criterion. In this section,
we demonstrate that this improvement generalizes to real-world images. To this
end, we use a dataset of cats and dogs that was introduced by Lakkaraju et al. (2016)
for the same purpose. In this dataset, each image has two different labels. The
first label indicates whether the image contains a cat or a dog and the second label
indicates whether the animal in the image is light-furred or dark-furred. These
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labels are manually created. The fact that each image has two labels allows us to
create biased training sets and an unbiased test set. To create these sets, we first
divide the dataset into four groups, namely the light-furred dogs, the dark-furred
dogs, the light-furred cats and the dark-furred cats. To create the test set, we then
select twenty percent of the smallest of these four sets and the same number of
images from the other three sets. This creates an unbiased test set, in which the fur
color has no information on whether the animal in the image is a cat or a dog. Using
the remaining images, we create eleven training sets. To this end, we start with a
training set that contains only light-furred dogs and dark-furred cats. In Table 4.21
this dataset is denoted as 0% because the training set contains zero percent dark-
furred dogs. We continue creating datasets with a higher fraction of dark-furred
dogs and light-furred cats. In Table 4.21 a fraction of p% denotes that in the training
set a fraction of p% of all images of dogs contain dark-furred dogs while the other
(1 − p)% images of dogs contain light-furred dogs. At the same time, this means
that of all images of cats in the dataset, a fraction of p% is light-furred and a fraction
of (1 − p)% is dark-furred. All of these datasets contain as many images of dogs
as they contain images of cats. To further guarantee a fair evaluation, we created
all of the datasets to have the same number of images in total. Consequently, the
number of images in the training set is limited by two times 80% of the smallest fur
color-class combination, as it will have to provide half of the images in the p = 0%

or the p = 100% case. Unfortunately, this limits us to training sets of 2469 images,
which is 14.7% of the training data of the original dataset.

In Table 4.21, we report the test set accuracy and the standard error averaged
over three runs for six methods. The first method is a baseline, a neural network
without any debiasing method. Further, we report results for the method presented
by Adeli et al. (2021) and both methods presented in Zhang et al. (2018a). Finally,
we report the results for one of our implementations, namely the implementation
based on the Hilbert-Schmidt independence criterion “Ours (HSIC)” and the imple-
mentation based on the Hilbert-Schmidt conditional independence criterion “Ours
(HSCONIC)”. For details see Section 4.3.3.1 and Section 4.3.3.2.

As the backbone network for the classifiers in this experiment on real-world
data, we use a ResNet-18 proposed by He et al. (2016). The network is trained for
150 epochs using the Adam optimizer proposed by Kingma and Ba (2014). The
learning rate follows a cosine decay with warm restarts (Loshchilov and Hutter,
2016). Furthermore, we use random cropping during training and center cropping
during inference (Simonyan and Zisserman, 2014) as well as a progressive resizing
scheme. As in the previous experiments, whenever a method requires an additional
neural network, we use a network with one hidden layer of 1024 neurons. To
optimize the hyperparameters for the baseline, we apply a grid search. For the
hyperparameters of literature methods and our implementations we adapt the
hyperparameters of Setup I in Section 4.3.3.3 by comparing the hyperparameters of
the baselines in Setup I of Section 4.3.3.3 and the baseline in this experiment.

The test set accuracies that we reached in this study are lower than test set accu-
racies reported in other studies, for example, Kim et al. (2019). This discrepancy is
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due to two factors. First, we use only 14.7% of the training data, while other works
use all of the data for training. Second, other work uses pre-training on ImageNet
(Russakovsky et al., 2015). However, the ImageNet dataset already contains sev-
eral thousand images of cats and dogs. Hence, pre-training on this dataset can
influence whether the neural network picks up the bias from the dataset. Since
the applications of debiasing are more likely in situations where no large unbiased
datasets for pretraining exist, we choose to refrain from pretraining on ImageNet in
our experiments.

We find that the method suggested in this work outperforms the baseline and
the methods from the literature. Since both labels, the “cat”/“dog” as well as the
“dark-furred”/“light-furred”, are binary, the two signals cannot be distinguished if
either all dogs are dark-furred or all dogs are light-furred. No adversarial debiasing
method can work in this situation. Further, if exactly half of the cats and half of the
dogs are light-furred and the other half is dark-furred the signals are independent.
Hence, in this situation no adversarial debiasing is needed.

This leaves eight proper adversarial debiasing scenarios among the scenarios
listed in Table 4.21. Out of these eight scenarios, our method performs best in seven.
Furthermore, it reaches the highest overall accuracy of 0.875. To determine the
significance of the differences between our methods and the methods from the
literature, we use the standard error to determine the 95% confidence interval. In
six out of the seven scenarios where our method performs best, no other method
performs within this 95% confidence interval. As expected, the methods from the
literature, as well as our unconditional implementation of the Hilbert-Schmidt
independence criterion only improve upon the baseline in the scenarios with little
bias. While in situations with a strong bias, the methods decrease the test set
accuracy of the baseline.

Similar to the ablation study in Section 4.3.3.2, we compare the implemen-
tation based on the Hilbert-Schmidt conditional independence criterion (“Ours
(HSCONIC)”) and the implementation based on the unconditional Hilbert-Schmidt
independence criterion (“Ours (HSIC)”). We find that the conditional implemen-
tation outperforms the unconditional one in all but the unbiased scenario. More
importantly, the differences between the conditional and unconditional implemen-
tations is larger if the dependence between the two signals is stronger. We find that
the correlation between the absolute value of the difference between the fraction of
light-furred and dark-furred dogs and the difference between the conditional and
unconditional implementations is 0.858.

Further, we compare a baseline classifier and a classifier using HSCONIC both
trained on a training set with 70% dark-furred dogs. As expected, 65% of all images
correctly classified by the HSCONIC classifier but not by the baseline classifier are
light-furred dogs or dark-furred cats. In contrast, roughly half (56%) of the images
correctly classified by the baseline classifier but not by the classifier using HSCONIC
are light-furred dogs or dark-furred cats. We display 16 random images from the test
set that are correctly classified by the HSCONIC classifier but not by the baseline
classifier in Figure 4.16.
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Figure 4.16: Images correctly classified by the classifier using HSCONIC but not the
baseline both trained on the dataset with 70% dark-furred dogs. Most of the images
are dogs with light fur or cats with dark fur. Even the dog in the third column of the
first row, which is labeled as dark-furred, is very light for a dog with dark fur.
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5 Conclusions

In this work, we presented multiple steps towards understanding and debiasing
deep neural networks. In this section, we summarise these steps and draw con-
clusions. We start by describing the conclusions from our investigations into the
definition and the reason for adversarial examples, which we presented in Section 3.
We describe these conclusions in Section 5.1. The main result of this work is the
method to determine whether a feature is used by a deep neural network, which we
described in Section 4. Hence, in Section 5.2, we summarize our conclusions about
this main method. To demonstrate that this method is applicable to real-world
tasks and returns reasonable results, we discussed two applications of this method.
These applications are the investigation into automatic skin lesion classifiers pre-
sented in Section 4.2.1 and the use of the method for adversarial debiasing, which
we presented in Section 4.2.2. We summarize the findings for the former in Sec-
tion 5.2. This includes findings that demonstrate the usefulness and correctness of
the main contribution in Section 4.1 as well as the results that concern the specific
task of automatic skin lesion classification. The same is true for the results of the
adversarial debiasing study described in Section 4.2.2. In that study, we reached
results to corroborate the fact that our method can correctly identify whether a
feature is utilized by a deep neural network as well as results that only concern its
use as an adversarial debiasing method. We summarize the results for the latter in
Section 5.4.

5.1 Adversarial Examples

In the work described in Section 3, we took a step towards linking the properties
of datasets to adversarial robustness. We focused on two defining properties of
adversarial examples, namely the size of the perturbation and the non-resemblance
to the target class. Both of these properties depend on the dataset and are difficult
to compare between data sets.

For the first defining property, we introduced τ0, which makes the notation of
small independent of the data set. For the second defining property, we introduced
R to measure the resemblance. While we think that both of these tools will be
useful in future research, some problems still exist. For example, in big data sets,
both of these quantities are computationally expensive to calculate, and we have to
rely on evaluating them on subsets. However, since our goal is to understand how
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properties of the data set influence the adversarial robustness, most of the time we
have to rely on small, well-understood data sets and can not employ the big data
sets for which many properties are hard to determine.

Further, we show that our methods can be used to establish links between
properties of the data set and properties of adversarial examples. We demonstrated
this for the multimodality of the distribution of examples from one class.

5.2 Identifying Relevant Features

In Section 4 of this work, we presented a novel method to determine whether a
feature is considered relevant by a deep neural network. Our method is based on
the framework of causal inference, which we explained in Section 2.1. Our method
has several key properties that tell it apart from other methods and outline the use
case for our method.

The first property is that our method, in contrast to, for example, saliency maps
(c.f. Section 2.4.1), evaluates the global behavior of the classifier represented by the
deep neural network and not the local behavior at one example.

Second, our method can be applied post hoc to a black-box classifier. We do
not need access to any intermediate representations or gradients and we do not
need to alter the training process in any way. This is a big advantage, as it allows
our method to be used for pre-trained deep neural networks and even any super-
vised classifier that is not a deep neural network. This includes other supervised
learning algorithms as, for example, kernel-SVMs but also new supervised learning
algorithms that we do not know yet.

Third, our method is built on the strong theoretical background of causal infer-
ence. This is very important because, as described in Section 2.4, verifying methods
that decide whether a feature is used by a deep neural network empirically is dif-
ficult. Consequently, we need a strong theoretical foundation to ensure, that the
predictions of our method are correct and that it is not vulnerable to, for example,
confounding.

However, most importantly, our method is suited to evaluate whether features
are used that are not represented by areas of the input image, but are descriptions
of the whole image. Examples of these kinds of features are the relative position of
an object in an image, which we used in Section 4.3.1, the symmetry, length of the
border, the color variation within the skin lesion, which we used in Section 4.3.2,
and bias features such as the age or sex of patients wich we used in Section 4.3.2.
Furthermore, this property allows us to differentiate between features that are
represented by the same region of the input image. One example of such a feature,
which we presented in Section 4.3.1, is the two features that describe different
properties of the yellow lores that distinguish between white-crowned sparrows
(Zonotrichia leucophrys) and white-throated sparrows (Zonotrichia albicollis). In
addition, we explained in Section 4.3.1 how our method can be used to compare
classifiers with respect to specific properties if we do not have access to a specialized
dataset that contains images that only differ in this property. This is especially useful
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in applications such as medical image classification tasks or earth system science,
where it might be expensive, unethical or impossible to sample specific inputs.

As a result of these properties, we believe that our method has clear use cases for
certain scientific questions. One of these use cases is medical images, as we outline
in Section 4.2.1. We believe that in those tasks, our method is a valuable addition
that can provide additional and different insights than other methods, for example,
saliency maps.

In Section 4.1.5 we explain, that our method is suitable for many algorithms
even if these algorithms do not fit the original description. Further, in Section 4.3.1
we demonstrated that the method returns correct results for simple classifiers and,
in Section 4.3.2, we demonstrated that it returns at least reasonable results even in
the complex real-world situation of automatic skin lesion classification.

However, we also found clear limits and drawbacks of our method. First, our
method returns a binary decision on whether a feature is used or not. Neither can
we use it to understand what the influence of a feature is nor can we use it to find
whether a feature is more important than another. It is not suitable to compare
different features and should only be used for single features.

Second, our method can not differentiate between features that contain the
same information. This is a limitation because semantic features often contain
mutual information. In these situations, our method might indicate that a specific
feature is used, even though, the actual feature that is used is a different feature
that just contains a lot of mutual information. An example of such a pair of features
could be the surface and the volume of an object.

Third, while we reduce the semantic question of whether a feature is extracted
and used by a deep neural network to the more objective decision of a conditional
statistical dependence test, conditional statistical dependence testing is not triv-
ial. Each dependence test has advantages and disadvantages. Many dependence
tests, furthermore, contain hyperparameters, which have a strong influence on the
behavior of the dependence test. Hence, in each application of our methods, one
has to select a dependence test, including a set of suitable hyperparameters for this
dependence test, that fit the properties and connections of the dataset. Since these
properties and, in particular, the connections in the dataset are often unknown, this
remains a difficult problem.

To summarise, through the theoretical considerations in Section 4.1 and the
various experiments in Section 4.3, we show that our method is applicable to many
situations of supervised learning and that it returns reasonable results for deep
neural network classifiers on real-live datasets, such as HAM10000 (Tschandl et al.,
2018), CUB200 (Welinder et al., 2010) and MS COCO (Lin et al., 2014). We can use
it to evaluate classifiers, understand classifiers better and further the trust into
automatic classifiers.
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5.3 An Application to Skin Lesion Classification

In the previous section, we summarized our general conclusions on the method
discussed in this work. However, as a use case and to illustrate the application of the
method further, in Section 4.2.1, we applied the method to an example task. This
example is the task of automatic skin lesion classification. Our method is suitable
for this task because the number of images is limited and it is difficult to collect
more data. Further, the datasets contain multiple known biases as well as features
that are known to be relevant to the classification of skin lesions. Finally, the task
is difficult enough to represent state-of-the-art deep learning, and understanding
automatic classifiers is especially relevant in mecial tasks like this one.

Consequently, we divide the conclusions from this section into two parts. First,
we summarize our findings towards the general method presented in this work, and,
afterward, we describe the results of our findings, that focus on the application of
automatic skin lesion classification.

Towards the former, we find that the method demonstrated in this work pro-
duces meaningful results. It does not, or very rarely, consider a feature that contains
little to no information on the class of the skin lesion as relevant. This demonstrates
that the method is suitable for complex real-world classification tasks, such as auto-
matic skin lesion classification, especially because the features for this validation
are similar in complexity to the relevant features that we evaluate later. Furthermore,
one of the most significant observations is that the models trained for melanoma
recognition following Perez et al. (2018) use the asymmetry and border features,
while the models trained for seborrheic keratosis recognition following the same
work, do not. This is expected because the dermoscopic ABCD rule was developed
to distinguish melanoma and nevi and not to recognize seborrheic keratosis. This
study underpins the fact that our method is applicable to a wider range of features
than, for example, saliency maps. Saliency maps could only work for the colorful
patches feature out of the 15 features analyzed in this work.

Towards the latter, we investigate four questions: First, we evaluate, whether
the automatic, state-of-the-art deep neural network classifiers use the medically
relevant features named in the dermoscopic ABCD rule. Second, we check if these
classifiers also base their decisions on known bias variables. During the first of these
investigations, we find that the automatic classifiers do not use the color feature as
it is specified by the dermoscopic ABCD rule. Hence, third, we investigate different
methods to score the color feature. Fourth, we compare the influence of different
hyperparameters on the selection of features by the classifiers.

Towards the first question, we find that the different groups of classifiers we
investigate in this work, use different subgroups of the features named in the der-
moscopic ABCD rule. However, no group of classifiers uses none of the features.
While this inspires some trust in the classifiers, we expect an ideal classifier to use
all of the features named in this rule. Further, this opens a way to improve the
trust in automatic skin lesion classification by enforcing the use of these features.
The fact that the asymmetry and border features are used more consistently than
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the color and dermoscopic structure features. This indicates a possible inductive
bias that the automatic classifier prefers shape over color features. In particular,
the color feature, as it is described in the dermoscopic ABCD rule, is used by only
one architecture of the melanoma classifiers trained following Perez et al. (2018).
This is especially surprising since the color feature is considered one of the most
important features by practitioners. However, a negative test only indicates that
the deep neural network does not rely on the feature and does not mean that the
feature is not useful for the classification task.

Additionally, we found a large difference between the test results using the
nonlinear kernel-based Hilbert-Schmidt conditional independence criterion and
the linear partial correlation test. The reason for this is that the former indicates
nonlinear relationships as, for example, an increase in variance, while the latter is
affirmative only if the feature is an indicator for the specific class. This difference is
especially visible for the dermoscopic structures feature. This means, that dermo-
scopic structures most likely make the classification decision more difficult but are
not used by the classifier as an indicator of any class.

Towards the second question, we find that all four investigated bias variables,
namely the age and sex of a patient as well as the skin color and the existence of
colorful patches, are used by at least one group of classifiers. These observations
show that more work is needed to create automatic skin lesion classifiers that
can be used in practice. One possibility to construct classifiers without including
biases that are present in the dataset is the adversarial debiasing method that was
introduced in Reimers et al. (2021a) and which we explain in Section 4.2.2.

To investigate the fact, that the state-of-the-art classifiers do not use the color
feature, we investigate three additional implementations of the color feature. From
these additional implementations, we conclude that not only the hue but also the
value and saturation of the pixels within the skin lesion are important.

A common approach in state-of-the-art automatic skin lesion classifiers is the
use of large ensemble classifiers. The success of these ensemble classifiers relies on
the idea that the individual ensemble members base their decisions on different
features of the input image. To this end, we investigate the influence of different
hyperparameters on which feature is picked up by the classifier. Our study hints at
the architecture being the most important hyperparameter. However, the number
of classifiers trained for this study was not large enough to find a significant effect.

In summary, the method described in Section 4.1 is suitable and returns reason-
able results for the challenging and relevant real-world application of automatic
skin lesion classification, where many important features can not be analyzed us-
ing, for example, saliency maps. We find, that all groups of classifiers use at least
some of the features named in the dermoscopic ABCD rule, however, all of them
additionally rely on at least one bias variable. Finally, we demonstrated how we
can apply the method to identify unknown biases and how it can be used to create
stronger ensemble classifiers.
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5.4 Debiasing

In the previous sections, we summarized the conclusions about the theoretical
considerations and the application of the relevant and challenging real-world ap-
plication of automatic skin lesion classification. As a second application, in Sec-
tion 4.2.2, we used the new criterion in the context of adversarial debiasing to stop
an automatic classifier from picking up a bias that is present in the dataset it is
trained on.

Our first conclusion comes from the empirical results in Section 4.3.3 that
demonstrate that our new adversarial debiasing method outperforms other ad-
versarial debiasing methods from the literature. This increase in the debiasing
performance corroborates our theoretical claims in Section 4.1 and demonstrates
that the debiasing losses based on our method can correctly identify whether a
feature is used by a deep neural network.

We provided an exact model for the data creation method. This exact model
allows us to not only rely on empirical evaluations but also on theoretical arguments.
To this end, we mathematically prove that the optimal classifier fulfills our new
criterion to determine, whether the classifier ignores the bias feature in its decision,
while it does not fulfill the criteria of other methods from the literature.

The experimental results presented in Section 4.3.3 support these theoretical
findings. If the reason for a bias in a dataset is correctly modeled by the bias model
in Section 4.2.2, then our method explained in Section 4.2.2 is the better choice
compared to unconditional debiasing methods presented in the literature. On a toy
dataset, that we designed to maximize the difference between the two criteria our
method performed significantly better than methods from the literature. Further,
the difference in criteria is the reason for the increase in accuracy, and that we
showed that this increase extends to classification tasks on real real-world data.

A common drawback of many adversarial debiasing methods is that they de-
crease the accuracy if they are used erroneously on an unbiased dataset. We are
interested in whether the adversarial debiasing method that we described in Sec-
tion 4.2.2 suffers from the same drawback. For this evaluation, we consider the three
subsets of the cats vs dogs example, that are not suitable for adversarial debiasing,
namely the unbiased subset (50% in Table 4.21) and the two sets where all dogs
are either light- or dark-furred (0% and 100% in Table 4.21). In all three of these
experiments, our method performs on par with the baseline and we do not observe
a significant drop in performance.

Even though our method outperformed the methods from the literature, it is not
able to fully debias the resulting classifier, but only decreases the influence of the
bias variable. Multiple possible reasons could be responsible for these observations.
First, the independence criterion in our approach is used as a loss and not as a
constraint in the optimization. This allows the algorithm to find a solution that is
only close to the constraint. Second, since we use an iterative optimization, that only
converges to a local minimum and might, hence, not find the optimal, unbiased
solution. Third, in contrast to the classification loss, which can be evaluated on a
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sample level, the debiasing loss is a property on the level of distributions. Hence,
the finite sample effect when evaluating the loss on mini-batches will be very strong
for the debiasing loss, which might hinder convergence.
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6 Future Work

In this section, we lay out some further ideas and areas in which this work can be
improved. To this end, we start by outlining some ideas to improve the theoretical
approach which we introduced in Section 4.1. Then we name some possible future
applications where a similar procedure as described in Section 4.2.1 can be applied.

6.1 Identifying Whether a Feature is Relevant for

a Supervised Learning Classifier

In this section, we introduce interesting future research directions that can improve
the main method described in Section 4.1.

One limitation of our method is that it can not differentiate between features
that share the same information. This is a drawback, since semantically distinct
features often share some information. For example, in the automatic skin lesion
classification task the area of the skin lesion and the length of its border are two
features that are semantically distinct but share information because the border of
a larger skin lesion will, inevitably, be longer than the border of a small skin lesion.

While this difficulty naturally arises from the use of independence tests, in
Section 4.2.1 we already hinted at a possible way to deal with it by using features
that are explicitly independent of other features. As an example, when investigating
the features named in the dermoscopic ABCD rule, instead of the length of the
border we considered the isoperimetric fraction to disrupt the influence of the area
of the skin lesion.

However, there is no universal way to separate the information from different
semantic features. Hence, an interesting direction of future research is to find a way
to distinguish between features that are directly used by a classifier and features
whose main influence is due to containing the same information as another feature
that is used by the classifier.

As an example related to the study presented in Section 4.2.1, we would con-
sider the length of the border, the area of the skin lesion, the length of the border
normalized for the area of the skin lesion, and the area of the skin lesion normalized
for the length of the border. The relationship between these four features might
reveal insights into the relative importance of the two related features. To evaluate
the relationship between the four features, we could rely on an interpretable test

161



Chapter 6 FUTURE WORK

statistic, for example, the conditional mutual information which we introduced in
Section 2.3.3.

6.2 Direct Applications of the Method on Deep

Neural Network Classifiers

In this Section, we highlight two interesting possibilities for further application of
the method presented in Section 4.1 to determine whether specific features are used
by a deep learning classifier similar to the study presented in Section 4.2.1. More
specifically, the first possibility is to monitor features during the training process
and the second is to apply it to a problem from climate science.

6.2.1 Monitoring the Use of Features During the Training

Process

The method described in Section 4.1 allows us to understand which feature is
used by a deep neural network. An interesting question that can be tackled with
this method is to understand at which point during the training process of a deep
neural network, it learns to extract a feature. This investigation is motivated by our
observation in Section 4.3.3.1, where we found that the number of training epochs
influenced the accuracy of the baseline classifier when trained on a biased training
set and evaluated on a biased test set. This indicates that at the beginning of the
training, a different feature is used than at the end of the training process.

To this end, it would be interesting to train multiple, different classifiers for a
problem, for example, the problem presented in Section 4.2.1, and carry out the
analysis we presented in Section 4.3.2 after every epoch.

Further, not only the effect of the number of training epochs but the effect of
all hyperparameters on the selection of extracted features should be investigated.
To this end, interesting questions include, whether hyperparameters can lead to
neural networks preferring local patterns over global properties of images, whether
hyperparameters can lead to a more sparse feature representation, or whether
hyperparameters make the neural network prefer features of higher complexity over
simpler features.

6.2.2 Applying Our Method to Further Situations

The application of automatic skin lesion classification leads to interesting insights
into the advantages and drawbacks of the method presented in Section 4.1 and
also into state-of-the-art deep neural network classifiers performing skin lesion
classification. The success of this study relies on the fact, that we have prior knowl-
edge on how to solve the problem, in particular, which features are relevant to
reach a prediction. In the example, in Section 4.2.1 this prior knowledge is given
by the dermoscopic ABCD rule. To this end, it would be interesting to apply the
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method to other tasks where such prior knowledge exists. Some tasks that fulfill this
requirement are situated in climate science. For example, the authors of Kretschmer
et al. (2017), use methods from causal inference to identify meaningful features,
more specifically, averages over some regions where a variable behaves consistently.
The authors of that paper identify 471 possible regions of which they, in the end,
consider only four to be relevant. It would be very interesting to determine, whether
a deep neural network predictor trained on the same data would select the same or
similar features.

6.3 Adversarial Debiasing

In this section, we lay out possible ways to improve the adversarial debiasing
method described in Section 4.2.2. The first idea is to apply the analysis to other bias
models than the one presented in Section 4.2.2.2. We describe this idea further in
Section 6.3.1. The second idea is to extend the proof in Section 4.2.2. We described
this idea further in Section 6.3.2. Third, we describe further experiments that could
increase the trust in our method in Section 6.3.3. Finally, we outline one methodical
direction of future work in Section 6.3.4.

6.3.1 Applying the Debiasing Method to a Wider Range of

Biases

In Section 4.2.2, we described the data creation method that leads to the bias we
consider in this work. Even though this bias model covers many known biases in
computer vision, it does not cover all of them. One straightforward way to extend
the work presented here is to model the data creation methods for other kinds
of biases as used, for example, in algorithmic fairness, where standard debiasing
methods often are not the best solution, as discussed, for example, in Liu et al.
(2018a).

6.3.2 Extending the Proof in Section 4.2.2

In Section 4.2.2, we stated that if the data is related as displayed in the structural
causal model in Figure 4.11 then the optimal classifier fulfills our proposed condi-
tional independence criterion

P ⊥⊥ B |L (6.1)

but does not fulfill the unconditional independence criterion

P ⊥⊥ B (6.2)

used throughout the related work in the literature. However, in that section, we
present mathematical proof only for a simple linear case. The method we used to
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proof that result should be extendable to the general case. Extending this proof is
an important future research direction.

6.3.3 Additional Experiments for Adversarial Debiasing

The experiments we presented in Section 4.3.3 corroborate the claims made in
Section 4.2.2. However, more experiments could be useful to further explore the
use of our method and to ensure, that the method is applicable to a wide range
of computer vision tasks. Apart from the extremely simple regression experiment
presented in Section 4.3.3.1, all experiments described in Section 4.3.3 are binary
classification tasks. To this end, more experiments on tasks that are either multiclass
classification or real-world regression problems would either give us additional
insurance or highlight possible shortcomings of our method. Further, in the two
classification tasks, the box vs cross classification in Section 4.3.3.1 and the cats
vs dogs experiment in Section 4.3.3.3 the difference between the bias signal and
the meaningful system is that one is a color and the other is a structure feature.
To make sure, that our method is also applicable if the difference between these
Signals is different we want to conduct further experiments where both signals are
structure or color signals. Finally, while the cats vs dogs experiment is carried out
on real-world images of cats and dogs, hand-labeled as either light-furred or dark-
furred, the problem is scientific and has no relevance in practice. Consequently,
one could argue, that it does not have the same complexity as relevant real-world
problems. To this end, another direction of future work is to apply the method to
a relevant real-world problem, for example, the problem of automatic skin lesion
classification introduced in Section 4.2.1.

6.3.4 Handling the Difficulties of Estimating the Loss from

Minibatches

As mentioned in Section 5.4 the debiasing loss is, in contrast to the classification
loss, not calculated for each sample but instead for the whole dataset. This results
in a loss that has a different magnitude and variance across mini-batches. While the
former can be solved by a scaling factor, the latter is more difficult to handle. As a
direction of future research, we would like to understand the effect of this variance,
as well as ways to mitigate this effect.
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