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Short Summary

Deep neural networks have reached an impressive performance in many tasks in
computer vision and its applications. Further, many of the methods developed in
computer vision are transferrable to other kinds of data, such as time series or text.
However, one prominent feature of deep learning is automatic feature selection. If
we use a deep neural network to make predictions, it is nontrivial to understand
which features the deep learning approach extracted from the data or which features
the deep neural network used to reach its prediction. Nevertheless, this information
is essential in some applications, for example, safety or security-critical applications,
where we expect the user to trust the decision of a neural network with their life or
well-being. As a specific example, we focus on dermoscopic image analysis in this
work. Another area in which it is crucial to understand the features a neural network
uses in tasks where we want to use it to further our understanding of a system. We
want to use a neural network to understand connections between variables and
are less interested in the correct predictions in these tasks. Examples of a field with
such tasks are climate and earth-system science.

Research into understanding deep learning is challenging due to the evaluation.
Since it is unknown which features deep neural networks use, it is hard to empirically
evaluate whether a result for which feature is used by a deep neural network is
correct. One effect that highlights our lack of understanding of deep neural networks
is adversarial examples. Given an input image classified correctly by a classifier, an
adversary can provoke a misclassification of the automatic classifier by adding a
carefully calculated but imperceptibly small noise to the image. The resulting image
is called an adversarial example. Since the imperceptibly small perturbation does
not change any of the features a human would deem relevant this demonstrates,
that deep neural networks do not rely only on the same features that humans would
use. In this work, we start by furthering the understanding of adversarial examples.
The main focus in that part of this work is to find a suitable definition of adversarial
examples that allows us to differentiate between the intriguing effect of adversarial
examples and the not at all intriguing observation, that we can alter the decision
of an automatic classifier by changing the content of the input image. We use
this definition to further our understanding of why adversarial examples exist. In
particular, we demonstrate that the modality of the data distribution impacts the
vulnerability of classifiers trained on the data.

The state-of-the-art for understanding which features a deep neural network



uses to reach its prediction is sailiency maps. A sailiency map is a mapping that
assigns an importance value to each pixel of the input image. Consequently, it
can highlight important areas of the input image. The main ways to create these
sailiency maps are the gradient of the function represented by the deep neural
network, obfuscation of regions of the input image and Taylor-approximation of
the mapping from perturbation to change in output. For the gradient method, the
gradient of the function that maps the input images onto the prediction of the
deep neural network given the input pixel is calculated. This gradient is used either
directly as sailiency or slightly modified. For the obfuscation method, we obfuscate
parts of the input image and recalculate the classifier’s prediction. The sailiency is
the difference between the original prediction and the prediction containing the
obfuscation. The Taylor approximation method is an intermediate idea between
the two. The idea is to approximate the function that maps the perturbation onto
the change in the classifier’s prediction using a first-order Taylor approximation.
However, all methods built on sailiency maps share shortcomings that open a gap
between the current state-of-the-art and the requirements for understanding deep
neural networks. First, non of the three methods mentioned above are intrinsically
linked to an input influencing an output. Second, since semantic parts of the
image are in different positions in different images, it is challenging to generalize
observations made on single samples to the level of the classifier as a whole. Third,
and most importantly, since sailiency maps highlight areas of the input, they can
only be used for features represented by areas of the input. For example, features
that are parts of objects, such as the head of a bird, are represented by areas of the
input, while properties of the whole object, for example, the color of a bird, are not.

This work describes a method that does not suffer from these shortcomings. To
this end, we employ the framework of causal modeling. The framework of causal
modeling arranges the variables and processes of a system into a directed acyclic
graph where the variables form the nodes, and the processes form the edges. Such
a representation of a system is called a structural causal model. In this model, a
cause influences an effect if and only if a directed path in the graph connects the
cause to the effect. Using this framework, we represent supervised learning as a
structural causal model. To check whether a feature influences the prediction of
a classifier, we block all paths, except the one representing the inference function
of the classifier, by conditioning on variables along the respective paths. We test,
if, even after conditioning on these variables, the feature and the prediction of
the classifier are dependent. If the result is affirmative, the feature influences the
classifier’s prediction through the inference function. In other words, the classifier
extracts and uses the feature. We demonstrate that this method can understand
whether a supervised learning classifier uses a feature. To this end, we, on the
one hand, test shallow classifiers for which we can validate our findings, and, on
the other hand, deep learning classifiers for which we can only conclude that our
method returns plausible and meaningful results.

We further demonstrate two applications of our method. First, we show that
our method can further the understanding of automatic skin lesion classifiers. Skin



cancer is a very deadly diseases, and early detection is vital in treating it. Since
early detection requires regular checks by medical professionals, they are labor
extensive. Automatic classification of skin lesions can support practitioners and
make early detection feasible. Visual analysis is a common first step in skin lesion
classification, and dermatologists have developed features to determine whether
a skin lesion is malignant. These features are named in the dermoscopic ABCD
rule, an algorithm developed to identify melanomas. We investigate multiple state-
of-the-art classifiers and determine whether they use the features named in the
dermoscopic ABCD rule. Further, we investigate whether the same classifiers rely
on bias variables, namely the patient’s age, sex, and skin color and the existence of
colorful patches in the input image.

We find that some of the features in the ABCD rule are used by the classifiers to
identify melanoma but not to identify seborrheic keratosis. In contrast, all classifiers
highly rely on the bias variables, particularly the age of the patient and the existence
of colorful patches in the input image.

The second application is adversarial debiasing. In adversarial debiasing, we
want to stop a neural network from using a known bias variable. To this end, the
idea is to use a second loss next to the classification loss. This debiasing loss
punishes the deep neural network for using the bias feature. Since an obvious
first step in this process is to determine whether the deep neural network uses a
feature, our work applies. The state-of-the-art in adversarial debiasing is to enforce
independence between the bias variable and the classifier’s prediction. Building
on the work on determining whether a classifier uses a feature, we propose to
use the conditional dependence conditioned on the ground truth instead. We
prove mathematically that under reasonable assumptions on the bias creation, an
optimal classifier fulfills this conditional dependence, while it does not fulfill the
unconditional independence used by the current state-of-the-art in adversarial
debiasing. Further, we demonstrate in a toy example and an example on real-world
images that our approach outperforms the state-of-the-art in adversarial debiasing.

In conclusion, we make deep neural networks more transparent and, conse-
quently, more robust. To this end, we demonstrate the current challenges in un-
derstanding deep neural networks using the phenomenon of adversarial examples.
We employ causality and the framework of structural causal models to determine
whether a deep neural network uses a feature. We demonstrate that this method
can determine whether an automatic classifier uses a feature. We demonstrate that
the resulting method is applicable and valuable by applying it to the problem of
skin lesion classification understanding. We develop a new, improved method for
adversarial debiasing based on our new method to determine whether the classifier
uses a feature and demonstrate that this method outperforms the state-of-the-art
from the literature.






Kurzzusammenfassung

Tiefe neuronale Netze haben in vielen Aufgaben in Forschungsbereichen des Com-
putersehens beeindruckende Ergebnisse erzielt. Dariiber hinaus lassen sich viele
der im Computersehen entwickelten Methoden auch auf andere Arten von Daten
wie Zeitreihen oder Text iibertragen. Ein herausragendes Merkmal tiefer Learnver-
fahren ist die automatische Auswahl von Merkmalen. Wenn wir ein tiefes neuronales
Netz verwenden, um Vorhersagen zu treffen, ist es nicht trivial zu verstehen, wel-
che Merkmale das tiefe Lernverfahren aus den Daten extrahiert hat und welche
Merkmale das tiefe neuronale Netz verwendet hat, um seine Vorhersage zu treffen.
Diese Informationen sind jedoch bei einigen Anwendungen von entscheidender
Bedeutung, z.B. bei sicherheitskritischen Anwendungen, bei denen wir erwarten,
dass der Benutzer der Entscheidung eines neuronalen Netzes sein Leben oder sein
Wohlergehen anvertraut. Als konkretes Beispiel konzentrieren wir uns in dieser
Arbeit auf die dermatoskopische Bildanalyse. Ein weiterer Bereich, in dem es von
entscheidender Bedeutung ist, die Merkmale zu verstehen, die ein neuronales Netz
verwendet sind Situationen in denen wir ein neuronales Netz verwenden um unser
Verstdndnis eines Systems zu verbessern. In denen wir ein neuronales Netz verwen-
den, um die Verbindungen zwischen Variablen zu verstehen, und weniger an den
korrekten Vorhersagen interessiert sind. Beispiele fiir solch ein Gebiet sind Klima-
und Erdsystemwissenschaften.

Die Forschung zum Verstdndnis von tiefen Lernverfahren ist auch aufgrund
der Evaluation eine Herausforderung. Da nicht bekannt ist, welche Merkmale tie-
fe neuronale Netze verwenden, ist es schwierig, empirisch zu bewerten, ob das
Ergebnis, welches Merkmal von einem tiefen neuronalen Netz verwendet wird,
correct ist. Ein Effekt, der unser mangelndes Verstindnis von tiefen neuronalen
Netzen hervorhebt, sind “adversarial examples”. Hierbei kann ein Angreifer eine
Fehlklassifizierung eines zuvor korrect klassifizierten Eingabebildes provozieren.
Dazu addiert er ein sorgféltig berechnetes, aber kaum wahrnehmbares Rauschens
zum Bild. Das resultierende Bild wird als “adversarial example” bezeichnet. Da
die kaum wahrnehmbare Storung kein einziges der Merkmale verdndert, die ein
Mensch fiir relevant halten wiirde, zeigt dies, dass tiefe neuronale Netze sich nicht
ausschlieflich auf die gleichen Merkmale stiitzen, die Menschen verwenden. In
dieser Arbeit beginnen wir mit der Vertiefung des Verstindnisses von “adversari-
al examples”. Das Hauptaugenmerk in diesem Teil der Arbeit liegt auf der Suche
nach einer geeigneten Definition von “adversarial examples” zu finden, die es uns
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ermoglicht, zwischen dem faszinierenden Phdnomen der “adversarial example”
und nicht verbliiffenden Beobachtung, dass wir die Entscheidung eines automa-
tischen Klassifizierers andern konnen, indem wir den Inhalt des Eingabebildes
ausreichend dndern. Wir verwenden diese Definition, um besser zu verstehen,
warum “adversarial examples” existieren. Insbesondere zeigen wir, dass die Modali-
tat der Datenverteilung die Robustheit der auf den Daten trainierten Klassifikatoren
auswirkt.

Der Stand der Technik, um zu verstehen, welche Merkmale ein tiefes neuro-
nales Netz verwendet, um seine Vorhersage zu erreichen, sind “Sailiency Maps”.
Eine “Sailiency Map” ist eine Abbildung, die jedem Pixel des Eingabebildes einen
Wichtigkeitswert zuweist. Folglich kann sie wichtige Bereiche des Eingabebildes
hervorheben. Die wichtigsten Methoden zur Erstellung dieser “Sailiency Maps” sind
der Gradient der Funktion, die durch das tiefe neuronale Netz dargestellt wird, das
Austauschen von Regionen des Eingabebildes und die Taylor-Approximation der
Abbildung von der Stérung auf die Verdnderung der Ausgabe des neuronalen Netzes.
Bei der Gradientenmethode wird der Gradient der Funktion, die die Eingabebilder
auf die Vorhersage des tiefen neuronalen Netzes abbildet, berechnet. Dieser Gradi-
ent wird entweder direkt als Wichtigkeit verwendet oder leicht modifiziert. Bei der
Austauschmethode werden Teile des Eingangsbildes ausgetauscht und die Vorher-
sage des Klassifikators neu berechnet. Die Wichtigkeit ergibt sich aus der Differenz
zwischen der urspriinglichen Vorhersage und der Vorhersage fiir das gednderte Bild.
Die Taylor-Approximationsmethode ist eine Zwischenlésung zwischen den beiden
Verfahren. Die Idee besteht darin, die Funktion, die die Stérung auf die Anderung
der Vorhersage des Klassifikators abbildet, durch eine Taylor-Approximation erster
Ordnung zu approximieren. Alle Methoden, die auf “Sailiency Maps” aufbauen,
weisen jedoch Schwichen auf, die eine Liicke zwischen dem aktuellen Stand der
Technik und den Anforderungen an das Verstdndnis tiefer neuronaler Netze of-
fenbaren. Erstens ist keine der drei oben genannten Methoden natiirlich mit der
Wichtigkeit einer Eingabe verbunden. Zweitens, da semantische Teile des Bildes in
verschiedenen Bildern an unterschiedlichen Positionen befinden, ist es schwierig,
Beobachtungen, die an einzelnen Proben gemacht wurden, auf die Ebene des Klassi-
fikators als Ganzes zu verallgemeinern. Aber vor allem, drittens, da “Sailiency Maps”
nur Bereiche des Inputs hervorheben, kénnen sie nur fiir Merkmale verwendet
werden, die durch eindeutige Bereiche des Inputs reprasentiert werden. Beispiele
fiir Merkmale die durch Bereiche des Bildes eindeutig reprasentiert werden sind
Teile von Objekten sind, wie z. B. der Kopf eines Vogels, widhrend Eigenschaften
des gesamten Objekts, z. B. die Farbe eines Vogels, nicht durch Regionen eindeutig
reprasentiert werden.

In dieser Arbeit beschreiben wir eine Methode, die diese Schwéchen nicht teilt.
Dazu verwenden wir Methoden der kausalen Modellierung. Kausale Modellierung
ordnet die Variablen und Prozesse eines Systems in einem gerichteten azyklischen
Graphen an, wobei die Variablen die Knoten und die Prozesse die Kanten bilden.
Eine solche Darstellung eines Systems wird als strukturelles Kausalmodell bezeich-
net. In diesem Modell beeinflusst eine Ursache eine Wirkung genau dann, wenn ein
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gerichteter Pfad im Graphen die Ursache mit der Wirkung verbindet. Wir stellen
das tiberwachte Lernen als strukturelles Kausalmodell dar. Um zu tiberpriifen, ob
ein Merkmal die Vorhersage eines Klassifikators beeinflusst, blockieren wir alle Pfa-
de mit Ausnahme des Pfades, der die Inferenzfunktion des Klassifikators darstellt,
indem wir die Variablen entlang der jeweiligen Pfade bedingen. Wir testen, ob auch
nach der Bedingung auf diese Variablen das Merkmal und die Vorhersage des Klas-
sifikators voneinander abhéngig sind. Wenn das Ergebnis positiv ist, beeinflusst das
Merkmal die Vorhersage des Klassifikators durch die Inferenzfunktion. Mit anderen
Worten: Der Klassifikator extrahiert und verwendet das Merkmal. Wir zeigen, dass
diese Methode bestimmen kann ob ein Klassifikator ein Merkmal verwendet. Zu
diesem Zweck testen wir zum einen einfache Klassifikatoren, fiir die wir unsere Er-
gebnisse validieren kdnnen, und andererseits tiefe neuronale Netze, fiir die wir nur
feststellen konnen, dass unsere Methode plausible und aussagekréftige Ergebnisse
liefert.

Wir demonstrieren auerdem zwei Anwendungen unserer Methode. Erstens
zeigen wir, dass unsere Methode das Verstdndnis fiir die automatische Klassifizie-
rung von Hautldsionen verbessern kann. Hautkrebs ist eine sehr tddliche Krankheit,
deren friihzeitige Erkennung fiir die Behandlung entscheidend ist. Da die Friiher-
kennung regelméifige Kontrollen durch medizinisches Fachpersonal erfordert, ist
sie sehr arbeitsintensiv. Die automatische Klassifizierung von Hautldsionen kann
Arzte unterstiitzen und eine Friiherkennung erméglichen. Die visuelle Analyse ist
ein tiblicher erster Schritt bei der Klassifizierung von Hautldsionen, und Dermatolo-
gen haben Merkmale entwickelt, um festzustellen, ob eine Hautldsion bosartig ist.
Diese Merkmale werden in der dermatoskopischen ABCD-Regel genannt, einem Al-
gorithmus, der zur Erkennung von Melanomen entwickelt wurde. Wir untersuchen
mehrere moderne Klassifikatoren und ermitteln, ob sie die in der dermatoskopi-
schen ABCD-Regel genannten Merkmale verwenden. Dariiber hinaus untersuchen
wir, ob dieselben Klassifikatoren auf Stogrof3en wie Alter, Geschlecht und Hautfarbe
des Patienten oder das Vorhandensein farbiger Pflaster im Eingabebild.

Wir stellen fest, dass einige der Merkmale in der ABCD-Regel von den Klas-
sifikatoren verwendet werden, um Melanome zu identifizieren, aber nicht, um
seborrhoische Keratose zu identifizieren. Im Gegensatz dazu verlassen sich alle
Klassifikatoren in hohem Mal3e auf die Biasvariablen, insbesondere auf das Alter
der Patienten und das Vorhandensein farbiger Pflaster im Eingangsbild.

Die zweite Anwendung ist “adversarial debiasing”. Beim “adversarial debiasing”
soll verhindert werden, dass ein neuronales Netz eine bekannte Biasvariable ver-
wendet. Zu diesem Zweck wird eine zweite Zielfunktion neben dem Klassifikations-
verlust verwendet. Dieser Debiasing-Verlust bestraft das tiefe neuronale Netz dafiir,
dass es die Biasvariable verwendet. Da ein offensichtlicher erster Schritt in diesem
Prozess darin besteht, festzustellen, ob das tiefe neuronale Netz ein Merkmal ver-
wendet, findet unsere Arbeit Anwendung. Der Stand der Technik bei “adversarial
debiasing” besteht darin, die Unabhéngigkeit zwischen der Biasvariable und der
Vorhersage des Klassifikators zu erzwingen. Aufbauend auf den Arbeiten zur Bestim-
mung, ob ein Klassifikator ein Merkmal verwendet, schlagen wir vor, stattdessen
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die bedingte Abhédngigkeit, bedingt auf die richtige Klasse zu verwenden. Wir bewei-
sen mathematisch, dass ein optimaler Klassifikator unter verniinftigen Annahmen
beziiglich der Bias-Erzeugung diese bedingte Abhingigkeit erfiillt, wihrend er die
bedingungslose Unabhiéngigkeit nicht erfiillt, die von anderen Arbeiten im Bereich
des “adversarial debiasing” verwendet wird. Dariiber hinaus zeigen wir anhand
eines kiinstlichem und eines Beispiels auf Fotos, dass unser Ansatz den Stand der
Technik im “adversarial debiasing” tibertrifft.

Zusammenfassend ldsst sich sagen, dass wir tiefe neuronale Netze transparenter
und folglich robuster machen. Zu diesem Zweck zeigen wir die aktuellen Herausfor-
derungen beim Verstdndnis tiefer neuronaler Netze anhand des Phanomens der
“adversarial examples”. Wir verwenden Kausalitdt und struktureller Kausalmodelle,
um festzustellen, ob ein tiefes neuronales Netz ein Merkmal verwendet. Wir zeigen,
dass diese Methode feststellen kann, ob ein automatischer Klassifikator ein Merk-
mal verwendet. Wir zeigen, dass die daraus resultierende Methode anwendbar und
wertvoll ist, indem wir sie auf das Problem des Verstdndnisses der Klassifizierung
von Hautldasionen anwenden. Wir entwickeln ein neues, verbessertes Verfahren fiir
“adversarial debiasing”, das auf unserer neuen Methode basiert, und zeigen, dass
diese Methode andere Methoden aus der Literatur tibertrifft.
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1 | Introduction

In recent years, deep neural networks have reached impressive performance and
have superseded classical machine learning methods for many tasks in computer
vision. The adaption of deep learning brought many advantages but also rised new
challenges in these tasks. To illustrate these advantages and new challenges, we
use automatic skin lesion classification as an example throughout this introduction.
The task in skin lesion classification is to predict whether a skin lesion is malignant
from an image of the skin lesion. For a further introduction into this relevant,
challenging task, we refer the reader to Section 1.2.

The main structure of classical machine learning algorithms for classifying skin
lesions stayed the same for a long time. It is displayed and summarized in Celebi
et al. (2007). The algorithms include four steps. In the first step, the algorithm
divides the image into the lesion and the image’s background. The second step is
to extract the skin lesion’s handcrafted, medically relevant features. Candidates
for these features are, for example given by the ABCD rule (Nachbar et al., 1994;
Stolz and Kunz, 2021) or by the seven-point checklist (Bahmer et al., 1990). The
third step is to select a subset of these variables with a high predictive power for the
classification task. Finally, a classifier is trained on these features in the fourth step.
This methodology produced classifiers that reached classification performance
comparable to practitioners in practice as investigated, for example, by Hoffmann
et al. (2003). Not only was this multistep procedure state-of-the-art in skin lesion
classification, but it is representative of shallow machine learning methods in many
tasks. A significant advantage of this approach is its interpretability. Since the
features are handcrafted and relevant from the perspective of the domain, a simple,
interpretable classifier achieves excellent results.

However, deep learning approaches have proven to be even more effective
in recent years. Deep learning classifiers condense the multiple steps of shallow
learning classifiers into one end-to-end optimization. This condensation increases
the method’s effectiveness but these performance improvements come at a cost.
First, the method requires more images and computing capabilities, and, since the
features are selected automatically by the deep learning algorithm, it is non-trivial
to understand which features it selects.

In the example of skin lesion classification, large datasets are provided, for exam-
ple, by Tschandl et al. (2018), Combalia et al. (2019) and Codella et al. (2018). Newer
deep learning classifiers condense the four abovementioned steps into a single
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training step. A large ensemble of deep neural networks is used as the classifier.
These networks are pre-trained on large image datasets, for example, ImageNet
(Russakovsky et al., 2015) and employ heavy test time augmentation (Perez et al.,
2018). An example for such an ensemble classifier is described in Gessert et al.
(2020). The performance of these deep learning ensemble classifiers is impressive.
A study conducted by Tschandl et al. (2019) compared the performance of the best
algorithms from the ISCI 2018 challenge (Codella et al., 2019) with experienced
practitioners. They presented human readers with batches of thirty images that had
to be classified as one of seven predefined classes. They found that deep learning
algorithms outperformed even dermatologists with more than ten years of experi-
ence by a margin of 22 percentage points. However, the authors can no longer tell
which features the classifier uses, which motivates further research (Tschandl et al.,
2020).

Nevertheless, understanding which feature is used by an automatic classifier is
important in many tasks. This importance is highlighted by two example groups
of tasks where it is crucial to understand which feature is used by the classifier.
The first group is safety and security-critical tasks. This group includes not only
medical tasks such as the one explained in the example above but also tasks such
as the prediction of recidivism as employed in the USA (Barry-Jester et al., 2015)
or driver assistance systems that, for example, predict the aquaplaning risk from
a camera image as proposed, for example, by Schneider et al. (2018). In all of
these applications, people trust the predictions of deep learning algorithms with
their live, well-being or freedom. Therefore, it is important to understand which
feature is used by the automatic classifiers that make these decisions. For example,
Barry-Jester et al. (2015) and Larson et al. (2016) express concerns that Northpoint’s
COMPAS! system uses the membership of an ethnic group.

The second group of classifiers for which it is important to understanding which
features are used by a deep neural network are classifiers in scientific areas where we
want to use their ability to detect informative features as well as find and understand
links in the data. An example for such an area is climate and earth-system science.
In climate science, classifiers often focus on understanding the system rather than
predicting it accurately. In many ways, deep learning is a good fit for climate science.
The amount of available data is immense, the data is highly autocorrelated, and we
cannot conduct large-scale controlled experiments. However, the focus is often not
to predict variables as precisely as possible but to understand the data. As described
above, the high complexity of deep neural networks and the fact that they are best
trained end-to-end makes it challenging to understand the predictions of deep
neural networks.However,

1. most tasks in climate science are not pure prediction or classification tasks.
Instead, they focus on understanding which features in the data are important
and how variables are connected.

2. Physics aims to understand micro-processes and infer the behavior of macro
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processes by the laws of statistics. Hence, micro-processes are precisely de-
fined, while macro processes are often inherently stochastic and fuzzily de-
fined. Therefore, the vast knowledge on these macro processes is hard to
present by labeled data points. This challenge necessitates a method to evalu-
ate whether these macro processes are respected and correctly modeled in
the deep learning models, including their connections.

3. Climate Science is often concerned with predicting future scenarios that have
never existed. While it is common to evaluate deep neural networks on hold-
out test data, measurements for these scenarios do not exist. Hence, we need
other ways to evaluate models in this situation. Understanding deep neural
networks and identifying which features they use in their decision-making
process can be an alternative way to evaluate deep neural networks.

4. The different climate and earth-system science variables are often heavily
interconnected and correlated. These connections make it difficult to develop
systems that ignore certain features of a situation. Due to the dependence
between variables, it is not enough to omit a variable from the input, but we
must actively correct other variables. The first step towards enforcing that a
classifier ignores a variable is to measure whether the classifier uses it.

The main goal of this work is to further our understanding of which features
are used by a deep neural network. More specifically, the focus of this work is to
understand whether the deep neural network uses a specific, previously known
feature. This task is, however, challenging. One observation that demonstrates the
missing understanding in this area is adversarial examples. An adversarial example
is an input image to an automatic classifier that an adversary manipulates to fool
the automatic classifier by adding a perturbation that is imperceptible to a human
observer. An example of adversarial examples can be found in Figure 2.2. Since the
perturbation is imperceptible to a human observer, it can not change any input
image feature that a human would consider relevant. Consequently, the fact that
this manipulated input is classified wrong by the automatic classifier, even though
all features relevant to a human are identical to the original input, proves that the
classifier considers different features than a human. For this reason, we start our
investigation with a study on adversarial examples. We investigate ways to measure
whether an example is an adversarial example objectively. We present theoretical
advances and empirical experiments on the reasons why adversarial examples exist
in Section 2.5 and Section 3.

Adversarial examples demonstrate that it is non-trivial to find which feature is
used by a deep neural network. To tackle this challenge, we developed a method to
determine whether an automatic classifier uses a feature. While the method applies
to any supervised learning algorithm, we focus primarily on deep neural networks
in this work.

One of the main challenges when developing an algorithm to determine which
feature a deep neural network uses is that there is no generally agreed-on method
against which to evaluate the algorithm. Hence, it is crucial to base the algorithm on
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a solid theoretical foundation. To this end, we base our method on the framework of
causal modeling introduced by Pearl (2009) and Peters et al. (2017). This framework
is specifically designed to answer questions about the influence of random variables
on each other and is, hence, a good fit for the question we want to tackle. We provide
a short introduction into the field of causal modeling as well as references to further
reading and discussion of the framework in Section 2.1.

One of the cornerstones of the causal modeling framework of Pearl (2009) and
Peters et al. (2017) is Reichenbach’s common cause principle (Reichenbach, 1991).
This principle states that if two variables are correlated or more generally statistically
dependent, either one of them is causing the other or there exists a third variable,
which we call a confounder, that is causing both of the original variables. This
principle allows us to connect whether a variable is causing another variable, or, in
other words, whether a variable is used to determine another variable to the result of
a mathematical independence test. By considering not only the resulting classifier
but the whole pipeline of supervised learning, this framework allows us to construct
a causal graph that represents the processes and variables involved in supervised
learning. These processes and variables are the distribution of the examples of
a specific label Py, the training set 7'S, the weights of the supervised learning
algorithm W, the feature of interest X, the set of features X that are orthogonal
to the feature of interest as well as the prediction P of the supervised learning
algorithm, the sampling processes S and Sr to sample the training set or to sample
single examples for inference, respectively, as well as the training process 7' and the
inference process F. In Section 4.1.2 we explain how these variables and processes
form the graphical model depicted in Figure 4.3. Using that graphical model, we can
reduce the question of whether a deep neural network uses a feature to a conditional
independence test, namely the test

XLP|L

whether the feature X we investigate and the prediction P of the supervised learn-
ing algorithm are dependent given the ground-truth label L of the input sample.
Hence, we reduced the challenging question of whether a deep neural network
uses a feature down to a simple mathematical dependence test. This solution has
excellent properties. First, it has a solid theoretical foundation in causal modeling
and causal inference. Due to its simplicity, it applies to black-box deep neural
network classifiers. Neither retraining nor intermediate results of the classifier are
needed. These properties allow the use of our method even for users outside of the
domain of deep learning experts, for example, domain experts from the domain
of the prediction or classification task. Further, our method is not specific to deep
neural networks but can instead be used for any supervised learning algorithm, for
example, the random forest (Ho, 1995) or the k nearest-neighbor classifiers (Altman,
1992). More importantly, since it is not specific to any supervised learning classifier,
it will most likely be valid for classifiers developed in the future.

A simple proof of concept on synthetic data is published in Reimers et al. (2019).



Subsequent research demonstrates that our method applies to big data sets com-
posed of real-life images. These datasets include MSCOCO (Lin et al., 2014), a data
set of photographs of everyday situations and crowded scenes containing multiple
objects in every image, CUB200 (Welinder et al., 2010), a fine-grained bird recog-
nition data set and HAM10000 (Tschandl et al., 2018), a medical datasets of skin
lesions images. Experiments on these datasets, together with a thorough discussion
of the underlying theory, are published in Reimers et al. (2020). We describe the
theoretical considerations in Section 4 and the experiments in Section 4.3.1. In
two studies, we further demonstrated the usefulness of this new method to deter-
mine whether a deep neural network uses a feature. We present the first of the
two applications in Section 4.2.2. This application investigates which features a
state-of-the-art automatic skin lesion classifier uses to determine whether a skin
lesion is, for example, melanoma or seborrheic keratosis. To this end, we trained
two groups of deep neural networks recognizing different classes of skin lesions
following the training described in Perez et al. (2018) and Gessert et al. (2020). For
all classifiers in both groups, we evaluate whether they use any out of four groups
of features. The first group of features is features that have little to no information
on the skin lesion itself. The fact that our method does not indicate that any of the
groups of classifiers use any of the features indicates that our method is suitable for
this complex real-world medical dataset. Furthermore, it indicates that in the cases
where our method indicates that a feature is used, the classifier actually uses this
feature.

The second group of features contains medically relevant features. When der-
matologists decide whether a skin lesion is a melanoma, they rely on four fea-
tures named in the dermoscopic ABCD rule introduced by Nachbar et al. (1994).
To increase the trust in deep neural network classifiers for automatic skin lesion
classifiers, we test whether they also use these features. The four features in the
ABCD-rule are the number of orthogonal symmetry axes in the contour of the im-
age, the sharpness and clearness of the border of the skin lesion, the variation in
colors among different regions of the skin lesion and the presence of predefined
dermoscopic features in the skin lesion, namely milia like cysts, negative networks,
pigment networks, streaks, and globules. We find that the feature that concerns
the symmetry and the feature that concerns the border of the skin lesions is used
by classifiers trained to recognize melanoma but not by classifiers that recognize
seborrheic keratosis. This result is expected since, as mentioned above, the ABCD
rule was designed to recognize melanoma and not developed to recognize sebor-
rheic keratosis. Further, we found that the color feature, defined as the number of
colors appearing within the skin lesion, is not used by the classifiers. Finally, we
find that no network uses the dermoscopic structures-feature. The reason for this
observation is that discovering these structures is a challenging problem in itself. In
a challenge that was held specifically to segment skin lesions into the dermoscopic
structures, described by Codella et al. (2019), the best algorithm reached a Jaccard
score of only 0.307.

Since we found that the classifiers do not use the color feature, the third group
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of features quantifies the color of the skin lesion. If we include the value and the
saturation in addition to the color, many of the skin lesion classifiers use it to
determine their predictions.

As described earlier, one of the main concerns of domain experts against em-
ploying deep neural networks in safety or security-critical tasks like the automatic
classification of skin lesions is that deep neural network classifiers might be biased.
To this end, many biases have been found in different datasets of skin lesion images.
Some examples are explained and investigated in Bissoto et al. (2020). For the final,
fourth group of features, we focus on four biases in this work. The first two biases
on which we focus are the sex and age of a patient. Some deep learning classifiers
reach vastly different accuracies on images of skin lesions in women and images of
skin lesions in men as well as for groups of patients of different ages, as reported
for example in Muckatira (2020). Since the sex of the patient can be extracted from
the image, for example, by using the body hair, the first two features in this final
group are the age and the sex of the patient. The third bias we investigate is the skin
color of the patient. The available datasets only contain images of people of light
skin, and, hence, this test only considers different shades of light skin. We find that
especially the classifier trained to recognize seborrheic keratoses use this feature.
Based on these findings, we investigate the training set of the 2017 ISIC challenge
dataset (Codella et al., 2018) and find an unknown bias. Finally, we investigate the
existence of colorful patches in the image. These patches were introduced into
the ISIC archive ? through the introduction of the data from the Study of Nevi in
Children (SONIC) Project (Scope et al., 2016). Some images of the SONIC Project
contain colorful patches that are stuck to the patient’s skin and can be found in the
image. Since the study only considers nevi, it introduces a bias into the ISIC archive
and connects colorful patches to nevi. Therefore, the colorful patches can be used
to form a cleverhans predictor (Lapuschkin et al., 2019). We find that all groups of
classifiers use at least one of these biases. The use of these biases demonstrates that
more work is needed to train reliable and unbiased classifiers. The results of our
study were presented in a talk at the ISIC-Workshop at CVPR 2021 (Reimers et al.,
2021b).

The most straightforward way to train an unbiased classifier is to use an unbi-
ased dataset. However, it is not feasible to collect an unbiased dataset for many
tasks, such as the medical task described above. Collecting an unbiased dataset
can be unfeasible if it is costly, dangerous or unethical to collect particular exam-
ples. Hence, we need methods to stop bias propagation from the biased dataset
to the classifier. One way to achieve this goal is adversarial debiasing. The idea
of adversarial debiasing is to construct and use an additional loss function that
penalizes the use of a known bias feature. An essential first step in this direction
is determining whether a classifier uses a specific feature. Since the method pro-
posed in this work is a criterion for whether a classifier uses a feature, we can use it
to improve adversarial debiasing if we turn the criterion into a differentiable loss
function. Therefore, the second application of the method proposed in this work
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is an adversarial debiasing method in Section 4.2.2. In that section, we begin by
introducing the problem of adversarial debiasing. Furthermore, we introduce the
state-of-the-art and explain the differences between adversarial debiasing based on
our new criterion and adversarial debiasing based on other criteria. In contrast to
other methods from the literature that propose methods that fit any bias, we focus
on only one, well-defined bias. To define this bias, we divide all features of an image
into two categories. The first category contains features relevant to the classification
task at hand, and the second category contains features that do contain no or a
neglectable amount of information relevant to the classification task. An optimal
classifier would utilize the features of the first category and ignore all features of
the second category. However, when building a dataset, one of the second category
features can contain information on the label within the dataset. This connection
occurs because a feature of category two is correlated with features of category one
in the finite sample. This might sometimes happen due to a lack of caution when
collecting the dataset. However, it can also be due to valid concerns. One possible
reason can be safety concerns. As an example, consider a situation where we collect
data to train a driver assistance system that predicts the aquaplaning risk from
images as proposed, for example, by Schneider et al. (2018). For the situation of low
aquaplaning risk, recording images is straightforward. We can simply drive around
and collect data in the wild. This procedure is not only a cheap way of generating
images, but the data will, further, contain a realistic distribution of diverse road
surfaces and image backgrounds that mimics the distribution we expect during the
application of the system. In contrast, letting a driver drive into an aquaplaning
situation is dangerous. Therefore, all images that display a high aquaplaning risk
have to be recorded in a specific facility in which the driver’s safety can be guaran-
teed, even in situations where the car starts aquaplaning. This restriction influences
the distribution of street surfaces and backgrounds found in the images with high
aquaplaning risk. However, the road surface and the image background are features
of the second category that the system should not use to determine the aquaplaning
risk during its intended application. Due to the safety risk, the classifier will link
the road surface and the background in the special facility to high aquaplaning
risk. Hence, the dataset is biased. Another reason why a dataset might contain a
bias is ethical reasons. For example, in a medical image dataset, images of severe
illness might contain artifacts caused by the treatment of the illness. The only way
to create images of severe illness without these artifacts is to withhold treatment
from patients that need it. Since this would be unethical, we have to accept the
bias in the dataset. Finally, acquiring a specific combination of meaningful and
meaningless features might be unfeasible. Specifically, if both features are rare, the
combination might be missing in the dataset. These three situations demonstrate
that the kind of bias tackled in this work is common in many tasks of computer
vision. Further, the focus on one kind of bias allows us to give a formal definition of
the creation of the bias in the form of a structural causal model. This model allows
us to include a theoretical discussion, incorporating formal mathematical proof
for a simple case. This proof demonstrates that the optimal classifier fulfills our
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criterion of whether it uses the bias feature in a simple case. On the other hand, we
prove that the optimal classifier does not fulfill the criterion used by state-of-the-art
methods from the literature. To empirically evaluate the difference between these
two criteria, we need to implement them as differentiable losses. Hence, in Sec-
tion 4.2.2.3 we describe three different implementations of the criterion proposed
in this work as a differentiable loss function. The three implementations cover the
conditional mutual information, the maximum conditional correlation coefficient
and the Hilbert-Schmidt conditional independence criterion. In that section, we
explain the main idea of these implementations, including the relation to their
counterparts in the state-of-the-art approaches from the literature.

Finally, in Section 4.3.3, we empirically investigate the difference between adver-
sarial debiasing based on the method proposed in this work and the state-of-the-art
in adversarial debiasing from the literature. To this end, we propose three experi-
ments. For the first experiment, we create a synthetic dataset that maximizes the
difference between our adversarial debiasing method and the methods from the
literature. On this dataset, our method outperforms the methods from the literature.
In the second experiment, we conduct an ablation study to demonstrate that the
performance increases because we change how to check whether a deep neural
network uses a feature. Finally, to show that these advantages of our new method
also generalize to real-world images, we describe experiments on real data. On this
dataset, we train a classifier that distinguishes cats from dogs. To introduce a bias
into the dataset, we correlate a feature that is not suited to differentiate between
cats and dogs with the meaningful features that cover the differences between cats
and dogs. The meaningless feature we use for this experiment is whether the color
of the animal’s fur is light or dark. Using this feature, we create multiple datasets
with varying amounts of bias. These datasets allow us to compare our method to a
baseline classifier that does not utilize adversarial debiasing and methods from the
literature on datasets with varying amounts of bias. Furthermore, these datasets al-
low us to evaluate the connection between the amount of bias and the improvement
of our method over the state-of-the-art methods on datasets of varying amounts
of bias. We observe that our method outperforms the baseline and the methods
from the literature and that the improvement in accuracy on unbiased data emits a
strong correlation to the amount of bias in the dataset. This study was originally
published in Reimers et al. (2021a).

1.1 Adversarial Examples

In the first part of this work, we consider adversarial examples. An adversarial
example is an example an adversary produces from a clean input example. The
adversary’s goal is to add a perturbation to the input that is imperceptible for
a human observer but changes the classification of an automatic deep learning
classifier.

The idea that an adversary can slightly alter an input to an automatic classifica-
tion system to trick the automatic system into misclassifying the input is older than
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the recent success of deep neural networks. It is discussed, for example, by Dalvi
et al. (2004), and Lowd and Meek (2005) for the detection of spam in emails. Since
Szegedy et al. (2013) first considered adversarial examples for deep neural networks,
researchers made a great afford to find methods to create adversarial examples
(Carlini and Wagner, 2017; Goodfellow et al., 2014b; Moosavi-Dezfooli et al., 2017,
2016) and to make deep neural networks more robust against adversarial attacks
(Bai et al., 2017; Goodfellow et al., 2014b; Gu and Rigazio, 2014; Kannan et al., 2018;
Liand Li, 2017; Lu et al., 2017; Madry et al., 2017; Papernot et al., 2016c; Rozsa et al.,
2018, 2016b; Tramer et al., 2017b).

Similar to the example of spam detection, at the beginning of the investigations
into adversarial examples for deep neural networks, most of the studies focused on
safety and security questions. For example, Eykholt et al. (2017), and Metzen et al.
(2017) demonstrated that adversarial attacks are robust enough to fool the visual
recognition systems of driver assistance systems in the real world. However, the
situation in which adversarial examples are a serious security risk is not obvious.
For example, Gilmer et al. (2018a) have called into question whether an actual threat
model exists. They argue that more manageable and more robust attacks in almost
all scenarios do not involve minimal perturbations. Hence, situations that require
an adversary to find a minimal perturbation of a given, genuine input that fool a
classification system but not a human observer are rare. In contrast to the research
on adversarial examples prior to the interest in deep learning, the motivation for
research on adversarial examples is not limited to security questions of automatic
classifiers. As described above, the existence of adversarial examples proves that
deep neural networks use different features than a human observer to classify an
input. More specifically, visualization methods as, for example, Erhan et al. (2009)
and Zeiler and Fergus (2014) suggest that the first layers of deep neural networks
identify basic structures like edges or colors, which are in deeper layers combined
to identify more complex parts of objects. However, adversarial examples challenge
this view. A classifier that combines basic features in later layers is inherently
immune to adversarial examples. The imperceptible perturbation does not change
any of these basic features such as edges or corners. If later layers do nothing but
combine these features, they would be immune to adversarial attacks. However,
as demonstrated, for example, in Dong et al. (2017), the representations in later
layers are changed by adversarial attacks. Because adversarial examples are linked
to the features a deep neural network uses, researchers consider them to get a better
fundamental understanding of deep neural networks. For example, Su et al. (2018)
link the adversarial vulnerability of a classifier to its generalization performance,
and Stutz et al. (2019) link them to the quality of gradients in interpretation tasks.

One way to understand why adversarial examples exist and, consequently, which
features are selected by a deep neural network is to link a classifier’s vulnerability
to adversarial examples to the properties of the deep neural networks and the
datasets on which they are trained. Previously, the first of these two ideas have been
investigated. For example, Cubuk et al. (2017) compare nine different classifiers on
the same task and compare the number of successful adversarial attacks, and Su
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Figure 1.1: The basic idea to distinguish between meaningful changes in images
and adversarial examples. We create adversarial candidates for the images in the
training set. Then, a neural network is trained to predict the adversarial labels from
these candidates. The neural network is evaluated on the correctly labeled original
test set. If the network is able to learn the correct relationship between the image
and the label from the adversarial candidates, the candidates are not adversarial,
because they resemble the target class.

etal. (2018) and Rozsa et al. (2016a) investigate the connection between the accuracy
of a classifier on clean test data and its robustness against adversarial attacks. Other
researchers have compared different training methods and their influence on the
robustness of a deep learning classifier against adversarial examples. They compare
classifiers optimized with their new method to those optimized with the standard
methods, such as stochastic gradient descent with a cross-entropy loss. Examples
of papers following this idea are Goodfellow et al. (2014b), Gu and Rigazio (2014),
Rozsa et al. (2016b), Papernot et al. (2016c¢), Lu et al. (2017), Li and Li (2017), Tramer
et al. (2017b), Madry et al. (2017), Bai et al. (2017), Kannan et al. (2018) and Rozsa
etal. (2018).

The abovementioned research links classifiers and their optimization methods
to their adversarial robustness. On the other hand, we link adversarial robustness to
the properties of the datasets on which they are trained. In Section 3.1.2, we start by
demonstrating that the properties of datasets are crucial for the vulnerability of deep
neural networks to adversarial examples using two example datasets. Classifiers
are vulnerable to adversarial examples when trained on one but not if trained on
the other dataset, even though the datasets have the same input dimension and the
same number of classes.

One of the major challenges one has to face when evaluating the adversarial
robustness of a classifier is that the definition of an adversarial example depends
on the notion of being indistinguishable from the clean original image. The notion
of indistinguishability is linked to a human observer. Most of the works mentioned
above tackle this problem by setting an arbitrary threshold on an L,-norm, most
commonly, the L;, L or Lo,-norm. However, Wang (2004) and Zhang et al. (2018b)
demonstrate that neither L,,-norm is a good measure for imperceptibility. Therefore,
to measure adversarial robustness, we revisit the work of Szegedy et al. (2013) that

10



Identifying Features Relevant for Skin Lesion Classification | 1.2

introduced adversarial examples for deep neural networks. That work gives two
important properties of the adversarial examples in addition to the definition.
These two properties are that, first, we can find an adversarial example close to
every example in every dataset, meaning the adversarial perturbation is small, and,
second, that neither the perturbation nor the resulting adversarial image resembles
the target class. The idea of how we use the latter is displayed in Figure 1.1.

These properties are the difference between the intriguing and surprising phe-
nomenon of adversarial examples and the inevitable fact that a big enough per-
turbation will change the decision of a classifier. As we, for example, displayed in
Figure 3.2 in Section 3.1. In Section 3, we furthermore explain how we use both
of these properties to identify adversarial examples independent of the dataset.
Since we can measure adversarial examples independent of the dataset, we identify
a property of datasets associated with adversarial robustness, namely the multi-
modality of individual classes’ distribution. We find that the multi-modality of the
class distributions makes the adversarial examples not resemble the target class.
In our experiments in Section 3.3, the DeepFool algorithm introduced by Moosavi-
Dezfooli et al. (2016) was able to find true adversarial examples in the multimodal
case, while it only found adversarial examples that resemble the target class for the
unimodal case.

1.2 Identifying Features Relevant for Skin Lesion
Classification

The first application of our method that we describe in this work is the investigation
of state-of-the-art automatic skin lesion classifiers. These classifiers are used to
classify images of skin lesions. One essential task in skin lesion classification is
determining whether a skin lesion is skin cancer.

Skin cancer is one of the most common forms of cancer, and melanoma is the
most dangerous form of skin cancer. As described, for example, by Geller et al.
(2007), the most promising method to increase the chance of survival for patients
is early diagnosis. Regular checkups by trained medical professionals are needed
to guarantee an early diagnosis. However, the medical professionals necessary
to offer such labor-intensive examinations comprehensively are not available in
many regions. One possibility to reduce the amount of human labor necessary is to
employ automatic skin lesion classifiers.

To this end, many methods have been proposed to support practitioners. In one
approach that, for example, Celebi et al. (2007) pursue, hand-crafted features are
automatically extracted from the input and then processed by a simple classification
method. Another approach is to use deep neural networks. For example, Perez
et al. (2018),Gessert et al. (2020), Esteva et al. (2017) and Brinker et al. (2019) feed
the sample images directly into a deep neural network, which performs feature
extraction and classification in a single step.

The main advantage of the former approach is interpretability. Since the classifi-
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cation methods used in this approach are simple, the main difficulty is selecting
features. One suitable set of features used in these algorithms is the set of features
named in the dermoscopic ABCD rule presented by Nachbar et al. (1994) and Stolz
and Kunz (2021). The ABCD rule is an algorithm for dermatologists to differentiate
between melanoma and nevi in dermoscopic skin lesion images. To aid with this
differentiation, the user extracts four features of the skin lesion, namely Asymmetry,
Border, Color and Dermoscopic structures. A numerical value for each feature
is calculated, and all values are combined linearly into a total dermoscopy score.
Thresholding this total score yields high accuracy to distinguish melanoma from
benign nevi. When using these features, we can guarantee that the automatic classi-
fier bases its decision on meaningful features and, therefore, dermatologists and
patients can trust the predictions of these algorithms. The fact that the ABCD rule
is an algorithm makes it straightforward to automatize. The most challenging task
is to extract the four abovementioned features automatically.

In contrast, the deep learning approach has the advantage of higher accuracy. In
recent years, a new state-of-the-art has formed. Instead of extracting hand-crafted
features according to the ABCD rule, for example, in Gessert et al. (2020) a large
ensemble of very deep neural networks selects the features automatically. Addition-
ally, pretraining on large out of domain image datasets like ImageNet (Russakovsky
etal., 2013) and heavy data augmentation, including test time augmentation, as pro-
posed in Perez et al. (2018) is used. These advancements allow researchers to create
automatic skin lesion classification systems that outperformed even experienced
practitioners, as was evaluated by Brinker et al. (2019) and Tschandl et al. (2019).
However, a user who employs a deep learning system has no control over the feature
selection process of the system’s features for classification, because, as described,
for example, by Reimers and Requena-Mesa (2020) a central idea of deep learning is
automatic feature extraction. In the automatic skin lesion classification setting, it is
challenging to determine whether the classifier still relies on the features named in
the ABCD rule. Instead classifiers might rely on bias features, which are, for example,
described by Mishra and Celebi (2016), Rieger et al. (2020), Muckatira (2020) and
Bissoto et al. (2019) and exist in all datasets.

To tackle this question, in Section 4.2.1 we present three results. First, we verify
that the method presented in this work is suitable for classifiers in the complex, real-
world problem of automatic skin lesion classification. To this end, we selected four
features of skin lesion images that contain little to no information useful towards
classifying the skin lesion in the image. Our experiments show that our method
produces almost no false positives for these meaningless features. Second, we in-
vestigate whether state-of-the-art deep neural networks use the features named in
the ABCD rule. Our experiments show that networks trained to identify melanoma
use the asymmetry and border feature but not the color and dermoscopic structure
feature. In contrast, models trained to identify seborrheic keratosis use only the
color, but neither asymmetry and border nor the dermoscopic structures. Third, we
test whether the deep neural networks rely on known biases. Our experiments find
that the classifiers use the patients’ age and skin color to classify a skin lesion. Fur-
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ther, we find that classifiers use the spurious connection between colorful patches
and nevi in the SONIC dataset (Scope et al., 2016) which Mishra and Celebi (2016)
and Rieger et al. (2020) previously reported. We describe the exact features and
how we score them automatically in Section 4.2.1.4. Furthermore, we describe the
experimental results in Section 4.3.2.

1.3 Debiasing

The second application we use to investigate the performance of the method de-
scribed in this work is adversarial debiasing.

The impressive performance of deep neural networks makes their use in many
areas more desirable. These areas comprise classical computer vision tasks like
object detection, for example, Russakovsky et al. (2015) and semantic segmentation,
for example, Long et al. (2015). Furthermore, they include safety- and security-
critical areas, for example, the prediction of recidivism described in Angwin et al.
(2016) or medical tasks, for example, the automatic classification of skin lesions
described in the previous section and presented, for example, in Perez et al. (2018),
Gessert et al. (2020) and Tschandl et al. (2018). However, many domain experts have
concerns about using automatic deep learning classifiers, especially for safety and
security-critical tasks. Even though, for example, Tschandl et al. (2019) shows that
these classifiers outperform human experts, users fear biased classifiers. Indeed, for
example, in the task of automatic skin lesion classification Muckatira (2020) show
that the performance of classifiers varies across age groups, and Wang et al. (2020)
demonstrates that many image datasets contain biases.

One main reason classifiers are biased is that they are trained on biased datasets.
Every dataset is a unique slice through the visual world (Torralba and Efros, 2011).
Hence, a dataset does not represent the real world perfectly. To further describe
the bias, we partition all input features into two sets. The first set contains features
relevant to the classification task, and the second set contains all features that are
not relevant for the classification task. The optimal classifier identifies the first
set of features and uses it to predict the class. However, a feature from the second
group is correlated to a class label in a biased dataset. We call such a feature a bias
feature. As described above, this is not necessarily due to carelessness during the
data collection process but might instead be due to security or safety concerns, due
to ethical considerations or due to it being difficult to acquire certain samples. If a
classifier is trained on such a dataset, it might use this meaningless feature to create
a “Clever-Hans” classifier (Lapuschkin et al., 2019). One way to stop a classifier
from picking up such a bias-feature is adversarial debiasing. The idea of adversarial
debiasing is to introduce a second loss function £ in addition to the classification
loss L. This second loss function, which we call the debiasing loss, penalizes the
use of the feature by the classifier.

The first step in this direction is a quantitative way to measure whether the
classifier uses a feature. To this end, related work (see Section 4.2.1.2) from the liter-
ature uses statistical dependence between the bias feature B and an intermediate
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representation R extracted from the deep neural network
B 1 R. (1.1)

In the main part of this work, in Section 4.1, we demonstrate that this criterion is
too strict. While a representation can only be independent of a bias feature if the
classifier does not use it, the inverse is false. Even if a classifier ignores a feature,
the independence in (1.1) might still not hold. Instead, we use the conditional
dependence, conditioned on the ground truth label L,

B 1 R|L. (1.2)

As discussed, for example, in Wang et al. (2020), various kinds of bias exist for
a multitude of reasons. In contrast to other papers from the literature, we do not
propose our method as a solution for every kind of bias. In contrast, we tackle only
one kind of bias for which we present a specific bias model in Section 4.1.2. This
formal description of the data generation model has two advantages. First, the
formal description allows us to provide rigorous mathematical proof. To this end,
we prove that the optimal classifier fulfills our conditional independence criterion
(1.2) but not the independence criterion (1.1). Second, this specific bias model
allows users to determine whether the method is suitable for a given situation.

To evaluate the change in criterion empirically, we need to turn the conditional
independence test into a differentiable loss. To this end, we propose to use the test
statistic of various conditional dependence tests, namely the conditional mutual
information (Wyner, 1978, Lemma 3.1), the maximum partial correlation coefficient
(Sarmanov, 1958) and the Hilbert-Schmidt conditional dependence criterion (Gret-
ton et al., 2007). We provide further explanations in Section 4.2.2.3. We demonstrate
that these new loss functions lead to a higher accuracy on an unbiased test set in
Section 4.3.3. In Section 4.3.3.1, we observe this increased accuracy in experiments
on a synthetic dataset, in Section 4.3.3.2, in experiments that show that this increase
in accuracy is due to the change in the criterion and, in Section 4.3.3.3, experiments
that show that this increase in accuracy generalizes to real-world images.

1.4 Outline

The rest of this work is structured as follows: We start, in Section 2, by introducing
the necessary fundamentals that are needed to follow the rest of this work. The
first of these fundamentels is the structural causal model theory introduced by
Pearl (2009) and Peters et al. (2017) in Section 2.1. To this end, we motivate causal
modeling in Section 2.1.3, introduce the framework of Pearl (2009) in Section 2.1.2,
discussing some shortcomings and limitations of this framework in Section 2.1.3
and, finally, discuss why this framework is a good fit for the problem tackled in this
work in Section 2.1.4. Afterward, in Section 2.2, we introduce the basic concepts of
deep learning. We begin that section by describing the problem of statistical learn-
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ing and, in particular, the problem of deep learning in Section 2.2.1 and, afterward,
explain why neural networks are a suitable instrument to tackle deep learning tasks
in Section 2.2.2. The method we propose in this work reduces whether a deep neural
network uses a feature to a conditional dependence test. Hence, we introduce the
theory of dependence tests as well as three unconditional and three conditional de-
pendence tests in Section 2.3. These dependence tests include the correlation and
partial correlation criterion in Section 2.3.1, the maximum correlation coefficient
criterion and the maximum partial correlation coefficient criterion in Section 2.3.2,
the mutual information criterion and conditional mutual information criterion
in Section 2.3.3 and, finally, the Hilbert-Schmidt independence criterion and the
Hilbert-Schmidt conditional independence criterion in Section 2.3.4. Afterward,
in Section 2.4, we introduce the state-of-the-art in understanding which features
a deep neural network uses. Our primary focus in this section lies on saliency
maps. We introduce the general idea of saliency map methods in Section 2.4.1.
This introduction includes the three main ways to create saliency maps, namely
gradient-based methods in Section 2.4.1.1, methods based on obfuscation of parts
in the input image in Section 2.4.1.2 and methods based on a combination of the
value and the gradient of the neural network at the input image in Section 2.4.1.3.
Afterward, we discuss other methods not based on saliency maps in Section 2.4.2.
We describe the method using concept activation vectors that is presented in Kim
et al. (2018) in Section 2.4.2.1 and the causal concept effect method presented in
Goyal et al. (2019) in Section 2.4.2.2. We explain methods that link intermediate
representations of a deep neural network to semantic concepts in Section 2.4.2.3
and, finally, methods that find images that maximize the score for a specific class,
in Section 2.4.2.4, and methods that explain the classifier using examples from the
training data in Section 2.4.2.5. As discussed above, we use adversarial examples
to demonstrate the lack of knowledge about which feature a deep neural network
extracts from the training set and uses for its predictions. Therefore, we close the
section on basics with an introduction to adversarial examples in Section 2.5. This
section includes an overview on methods to create adversarial examples in Sec-
tion 2.5.1. It contains, in Section 2.5.2, a discussion of the most intriguing properties
of adversarial examples, namely, that they exist close to each clean examples in
Section 2.5.2.1, that they do not resemble the target class in Section 2.5.2.2, that
they are robust to random noise in Section 2.5.2.3, that adversarial examples are
transferable between classifiers in Section 2.5.2.4, that the curvature of the decision
boundary is positive close to them in Section 2.5.2.5 and, finally, that the robustness
and the accuracy of a classifier are related in Section 2.5.2.6.

Further, in Section 2.5.3, we discuss whether adversarial examples provide a
realistic threat in real-world situations. Finally, in Section 2.5.4, we list suggestions
from the literature on why adversarial examples exist. These suggestions include the
theory of pockets of low probability in Section 2.5.4.1, the theory of overfitting a low
dimensional manifold in Section 2.5.4.2, the theory that the effect of correctly clas-
sified examples is too small in Section 2.5.4.3, the theory that the neural networks
are too linear in Section 2.5.4.4, the theory that adversarial examples are a natural
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consequence of misclassification in Section 2.5.4.5 and the theory of boundary
tilting in Section 2.5.4.6.

We then, in Section 3 describe our work in the field of adversarial examples.
Our main contribution in this field is to find an objective measure for the defining
principle of imperceptibility independent of the dataset. This objective measure
allows us to evaluate the influence of properties of the datasets on the adversarial
robustness of classifiers. We start the section by explaining the drawbacks of the
state-of-the-art ways to define adversarial examples and show why they do not
generalize across datasets in Section 3.1. We, afterward, describe how we adapt
this definition to make it comparable across datasets in Section 3.2. In Section 3.3
we present three experiments. First, in Section 3.3.1, we demonstrate that the
definitions we proposed in this work is dataset agnostic. Second, we compare
the adversarial robustness measured with the different definitions of adversarial
examples in Section 3.3.2. In the third experiment, in Section 3.3.3, we demonstrate
how these new definitions are used to find the relation between properties of the
dataset and the adversarial robustness of the classifier by demonstrating that the
adversarial robustness of classifiers trained on datasets where the distributions
of individual classes are multimodal is less than the adversarial robustness on
classifiers trained on other datasets.

We present the main contribution of our work in Section 4. That section is
divided into three parts. The first part, Section 4.1, introduces the theoretical back-
ground of our new method to determine whether a deep neural network uses a
feature. We start this section with an illustrative example in Section 4.1.1 and
continue with the explanation of the structural causal model that we construct
to represent the setting of supervised learning in Section 4.1.2. We first introduce
all variables and processes that are part of supervised learning and describe how
we can combine them in a structural causal model in Section 4.1.3. Afterward, we
present an introductory example to illustrate the described variables in Section 4.1.4.
Further, we describe the structural causal model and focus on the scope and lim-
itations of our proposed method. First, in Section 4.1.5, we discuss examples of
supervised learning where the introduced structural causal model does not fit. In
Section 4.1.5.1, we discuss situations in which the inference function has different
inputs, and, in Section 4.1.5.2, we discuss the possibility that one of the involved
processes is deterministic. We find that in both these cases, the conclusions that we
drew in Section 4.1.2 hold. In contrast, we describe the limitations of our method in
Section 4.1.6. In Section 4.1.7, we describe the relations between our new method
and the state-of-the-art methods from the literature. In Section 4.1.7.1 we compare
it to the saliency map methods. Furthermore, in Section 4.1.7.2 we compare it
with the method using concept activation vectors that is presented in Kim et al.
(2018) and in Section 4.1.7.3 to the causal concept effect method presented in Goyal
et al. (2019). We, furthermore, compare our method to methods that also rely on
causal modeling but use the neural network as a structural causal model in Sec-
tion 4.1.7.4 and, in Section 4.1.7.5, to methods of feature visualization. Finally, in
Section 4.1.7.6, we compare it to methods that explain the classifier using examples
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from the training data.

Following these theoretical considerations, we discuss the two main applica-
tions in Section 4.2. First, we present the direct application of determining which
features are used by state-of-the-art automatic skin lesion classification systems
in Section 4.2.1 and, second, in Section 4.2.2, the application of our method to the
problem of adversarial debiasing. We start Section 4.2.1, the section concerning
the application to skin lesion classification, by arguing why the method presented
in this work is suitable for this challanging real-live task in Section 4.2.1.1. In Sec-
tion 4.2.1.2, we discuss the related work from the literature. We introduce the
classifiers we investigate in Section 4.2.1.3 and the four groups of features in Sec-
tion 4.2.1.4. In the second application, the application to adversarial debiasing
presented in Section 4.2.2, we start by introducing the problem of adversarial de-
biasing in Section 4.2.2.1. As explained in the introduction, we tackle a specific
bias. To define this bias, we introduce the data creation model, a structural causal
model, in Section 4.2.2.2. In that section, we further present a discussion on the
situations in machine learning where we think that the bias model is suitable and
for which situations we do not consider it suitable. Further, we include proof that
demonstrates that, in a simple setting, the optimal classifier will fulfill our proposed
criterion, while it will not fulfill the criterion, which is more widely used throughout
the literature. Finally, in Section 4.2.2.3, we present three ways to implement our
new criterion as a differentiable loss function.

In Section 4.3, we present the empirical evidence that supports the theoretical
statements in the earlier sections. That section is divided into three parts. In the first
part, Section 4.3.1, we present the experiments to corroborate the general useability
of our method on complex, real-world datasets and show that it returns correct and
reasonable results. In the second part, in Section 4.3.2, we present the results for
which feature is used by state-of-the-art automatic skin lesion classification meth-
ods. Finally, in the third part, in Section 4.3.3, we present evidence that underpins
the claim that our new criterion outperforms the methods from the literature in
adversarial debiasing if the bias was created as presented in Section 4.2.2.2. The first
part contains three experiments. First, in Section 4.3.1.1, we present an experiment
on synthetic data created to verify that our method produces the correct results.
The second experiment, which we present in Seciton 4.3.1.2, demonstrates how this
method can be used to compare classifiers on specific aspects of the data without
using a specialized dataset. Finally, in Section 4.3.1.3, we present a further experi-
ment on the fine-grained problem of distinguishing bird species. The third part of
Section 4.3, the experiments to underpin the use of our method as an adversarial
debiasing criterion, also starts with a synthetic data experiment designed to maxi-
mize the difference between the two criteria in Section 4.3.3.1. In Section 4.3.3.2, we
present an ablation study that shows that we can attribute the increase in accuracy
to the change in criterion. Finally, we demonstrate that the increase in accuracy can
also be observed in real-world datasets in Section 4.3.3.3.

We finish the work by summarizing our conclusions in Section 5 and describing
possible directions of future work in Section 6.
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In this section, we introduce some basic concepts and frameworks needed to un-
derstand the rest of this work. The main focus of this work is whether a feature
causes or, in other words, is relevant for the prediction of a deep neural network.
Therefore, as the first concept, in Section 2.1, we introduce the notation of cause
and effect, particularly, the causal modeling framework introduced in Pearl (2009)
and Peters et al. (2017). Afterward, in Section 2.2, we present the problem of statisti-
cal learning, including some applications and deep neural networks as a suitable
solution for these applications. A major component of the method proposed in this
work is statistical dependence tests. Section 2.3 introduces the concept of statistical
dependence tests and describes well-known dependence tests, namely correlation
and partial correlation, maximum correlation coefficient and maximum partial cor-
relation coefficient, mutual information and conditional mutual information, and
the Hilbert-Schmidt independence criterion and the Hilbert Schmidt conditional
independence criterion. Further, in Section 2.4, we introduce state-of-the-art in
feature attribution and visualization of deep neural networks. Finally, in Section 2.5,
we introduce the concept of adversarial examples.

2.1 Cause-Effect

This section introduces the basic concepts of the causal modeling framework intro-
duced by Pearl (2009) and Peters et al. (2017). We first, in Section 2.1.1, introduce
the problem that causal modeling is aiming to solve. Afterward, in Section 2.1.2,
we explain the basics of this causal modeling framework. Finally, we conclude
with some drawbacks of this causal modeling framework, with a comparison to
other causality frameworks and with a short conclusion in Section 2.1.3, as well as a
discussison on why this framework is suitable for the problem tackeled in this work
in Section 2.1.4.

2.1.1 Motivation of Causal Inference

The goal of statistical methods is to describe and analyze data. If we observe
a system composed of multiple variables X1, ..., X, all information about this
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system is in the joint distribution
P(X1,...,X,) 2.1

of the variables involved. All other distributions, such as the marginal distribution
of one variable

P(X;) = /P(Xl,...,Xn)da:Q...xn 2.2)
or the conditional distribution
_P(Xy,..., X)
P(X:| Xo,...,X,) = F(Xo . X)) 2.3)

can be calculated from the joint distribution. These distributions allow us to solve
many interesting problems in machine learning. For example, if we want to identify
outliers in a dataset, we can use the joint distribution to find the likelihood for each
example. Further, we can use the conditional distribution to, for example, fill gaps in
data where one of the variables is unknown while the other variables are observed.
Finally, knowing the joint distribution allows us to sample more unknown examples
from the same distribution.

However, there are also some tasks we can not solve, even if we have access to
the joint distribution. One of these tasks is to predict how a system will react if
the distribution of one of the involved variables changes. To illustrate this fact, we
provide the following example. This example involves two systems, each containing
two variables, X and Y. In the first system, these are given by

X, ~N(0,1) (2.4)
e~ N(0,1) (2.5)

1 1
Y+ —=X1 + —e¢. 2.6
1 NG 1 ﬂe? (2.6)

In contrast, in the second example, these variables are connected by

Ya ~ N(0,1) 2.7)
e~ N(0,1) 2.8)

1 1
Xo e+ —=Yo + —e¢. 2.9
2 NG 2 \/56 2.9)

Here, the <~ indicates, that a change in the right hand side would cause a change
in the left hand side. In contrast, a change in the left hand side will not result
in a change in the right hand side. Both of these systems lead to the same joint
distribution. In both systems, the two variables follow the distribution

0 1 0.5
(0 (). a0
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However, if the distribution of either X or Y changes, these two systems respond
in a very different way. When changing X in the first system, the distribution of
Y will also change. In contrast, if we change the distribution of X in the second
system, the distribution of Y will stay the same. If we are presented with one of
these systems at random, we can not know which of the systems it is because the
joint distribution of both systems is identical under the initial conditions.

To formalize these systems, Pearl (2009) introduces a hierarchy of questions,
which they call the “ladder of causality.” According to this ladder, questions about
systems can be categorized into three ranks. The lowest rank is the rank of “associ-
ation.” This rank contains all questions that can be answered from observations.
Examples for these kinds of problems are, as mentioned above, outlier detection,
anomaly detection, classification, regression and generating new examples. The
advantage of this lowest rank is that the answers to questions of this rank can be val-
idated using observations. Hence, these questions are the only questions for which
we can validate findings for systems that we can only observe but not manipulate
as, for example, astrophysical systems.

The second rank of the ladder of causality is called the rank of “intervention.”
This rank contains exactly the abovementioned kind of questions that can not
be solved from the joint distribution alone. Questions of this rank often concern
how the system will respond if the distribution of one of the variables changes
or which variables’ distribution change if we manipulate the distribution of one
variable in the system. Since changing one of the variables in a system away from its
observed distribution can be understood as an intervention on the system, this rank
is called “intervention.” The answers to questions on this rank can not be verified
from observations. The only way to answer them is to manipulate the variable in
the system to follow the prescribed distribution without interfering with the other
variables. This is, however, only possible for some systems, and even in systems in
which we can intervene, setting a variable to a specific intervention distribution
might prove impossible.

The final and third rung of the ladder of causality is the rank of “counterfactuals.”
As the name suggests, counterfactuals are data points that did not happen. Hence
these data points are not factual but counterfactual. Questions on this rank are of
the form “What would have happened if A would have happened instead of B?”
The difference between a counterfactual and an intervention is that all random
variables involved are sampled again from the new intervention distribution when
conducting an intervention. In contrast, when considering a counterfactual, we do
not resample any of the variables but assume that they stay on their original value,
not considering how likely or unlikely this value is under the new intervention
distribution. We use the following example to illustrate the difference between
intervention and counterfactuals further. The example system is a game where
a player tries to predict a dice-roll of a fair six-sided dice. The system contains
three variables. These variables are the number the player guesses, the number
the dice shows after it is rolled and the binary variable indicating whether the
player has won or not. Let us assume we observe one run of this game and find
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that the player guesses a four, the dice then shows a five and, consequently, the
player has lost the game. An example question on the first rank of the causal
ladder would be to determine whether the player has won given his guess and the
dice roll result. An example for a question on the rank of intervention would ask
whether the chance of winning for the player would change if we force them to
guess five every game. The answer to this question is negative because the chance of
winning is 0.167, independent of the player’s guess. In contrast, the counterfactual
question is: "Would the player have won if they had guessed a five in this run of
the game?" The answer to this question is yes. This discrepancy demonstrates the
difference between questions of rank two and questions of rank three. However,
it also reflects a drawback. We can often verify the answers to questions of rank
two by conducting experiments and manipulating the system. In comparison,
counterfactual questions can not be answered since they consider past events that
we can no longer control. Since the player makes their guess before the dice is
thrown, we can not go back in time and manipulate it afterward. If we, furthermore,
manipulate it and throw the dice again, the dice might show a different number.

Even though questions above the first rank are hard to verify, many scientific
questions are in these categories. For example, questions that ask how the Earth’s
climate will react to increasing the amount of atmospheric CO; are on the second
rank of the ladder of causality. Additionally, if we want to understand the effect
of an event, such as a natural disaster, we often try to estimate how the environ-
ment would look if the natural disaster would not have occurred. This question is
counterfactual.

Hence, researchers have spent a lot of time and energy to find ways to answer, or
at least talk about, questions on the second or third rank of the ladder of causality.
In the next section, we introduce one of these solutions. Specifically, we introduce
the causal modeling framework using structural causal models introduced by Pearl
(2009).

2.1.2 The Framework of Pearl (2009)

The main part of the causal modeling framework described in Pearl (2009) and
Peters et al. (2017) is the structural causal model (SCM). A structural causal model
consists of three parts. A set of endogenous variables { X, ... X,, }, aset of exogenous
variables {¢1,...,e,} and a set of functions { f1, ..., f,} connecting these variables.
All three sets have the same number of elements. The exogenous variables are
pairwise independent. Each endogenous variable X is calculated by one of the
functions using one of the exogenous variables and some of the other endogenous
variables. These other variables are called the “parents” of the variable X. We
denote them by P(X). Similarly, we call X a “descendant” of its parents.

We can represent a causal structural model as a directed graph by using the
endogenous variables as the nodes. In this graph, an edge from node X; to X exists,
if and only if X; is a parent of X;. One of the main assumptions in the framework of
Pearl (2009) is that this directed graph is circle free. This assumption corresponds
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to the assumption that no variable influences itself in the modeled system, neither
directly nor indirectly. One conclusion of this assumption is that we can number the
nodes or endogenous variables of the system so that, for every ¢, all parents of the
variable X; have an index smaller than i. The corresponding SCM can be denoted
as

X1 = fier) (2.11)
Xo = f2(P(X2),¢e2) (2.12)

: (2.13)
Xn—l = fn—l(P(Xn—1)7 6n—l) (214)
Xn = fn(P(Xn),en)- (2.15)

As an example, we describe how to model the game described above. The game
contains three endogenous variables, namely G, the player’s guess, D, the result
of the dice throw, and W, which has a value of one if the player has won and zero
otherwise. The exogenous variables are ¢ which determines with which probability
the player is guessing each number, ¢, which is the probability for each face of the
dice. more specifically, it is 0.167 for each number between one and six, and ey,
which is trivial as W is fully determined by G and D and has no internal variability.
The structural causal model describing this system is then given by

G =c¢q (2.16)
D=¢p (2.17)
1 ifD=G
_ . (2.18)
0 else

Here the functions f; and fp are both the identity, while fyy is the characteristic
function of { D, G, ey | D = G}, which is independent of y;-. This structural causal
model is represented by the graphical model displayed in Figure 2.1.

One of the great advantages of representing a system by a structural causal model
is that it lets us understand which pairs of variables are dependent and which are
independent. To this end, it is essential to understand which path through the causal
models will lead to mutual information between variables. The first observation
is that such a path does not need to be directed. A simple counterexample is
the dependence between shoe size and handwriting ability in children. These are
dependent, even though neither one influences the other, but the age of the children
drives both. The corresponding graphical model is Handwriting ability + Age —
Shoesize with no directed path between the two. More generally, the nodes along a
path can be categorized into three categories. The first category are nodes through

which the path is directed, namely “... - X — ... or “... < X « ...” The second
class of nodes contains nodes that influence both neighboring variables along the
path, meaning a node of the form “... < X — ...” The variable corresponding

to such a node is called a “confounder.” An example of a confounder is the Age
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¢ ——(G) (D)y——ep

cw (b)
(a)

Figure 2.1: The structural causal model for the dice guessing game. The endogenous
variables G, D and W form the nodes of the model, and the the arrows between them
represent the functions fy in graph (a). We also included the exogenous variables
€G, €p, ew . However, in the usual graphical representation of an SCM, as displayed
in (b), the exogenous variables are omitted.

variable in the example above, which is a confounder of whildren’s shoe size and
handwriting ability. The third class of nodes contains nodes which are influenced
by both, the predecessor along the path and the successor along the path, omitting
the form “... — X <« ...” The variables associated with this kind of node are called
“colliders.” An example of such a collider in the dice game is the variable W, which
indicates whether the player has won.

If we now consider an undirected path, we say it is open if it does not contain
a collider. Further, we can close an open path if we condition on a non-collider
variable along it. Consider the age variable in the example above. If we condition
on the age, meaning considering only children of the same age, we expect to find no
statistical dependence between the shoe size and the handwriting skills. The path
through the age variable would be closed. Similar to closing a path by conditioning
on a non-collider variable, we can also open a path by conditioning on all colliders
along it. As an example, consider the dice game. If we condition on W, meaning
considering, for example, only realizations in which the player won the game, we
will find a strong statistical dependence between the previously independent guess
G of the player and result D of the dice throw. If we know that the player won and
guessed a five, we can deduct that the dice must have shown a five. The same is true
if we condition on a descendant of a collider or a non-collider (Pearl, 2009; Peters
etal., 2017).

Situations like these can be modeled using a graphical model. This graphical
model should have an unblocked path between two variables if and only if they are
statistically dependent. To ensure this, we employ two more assumptions. The first
assumption is related to Reichenbach’s common cause principle. This principle is
introduced in Reichenbach (1991) and states that if two variables are correlated,
either one of them is causing the other or there exists a third variable that causes
both of them. We use an updated version of this principle for the framework of
causal modeling. First, we replace the correlation by statistical dependence to take
non-linear relations into account. Second, as discussed above, in addition to the
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possibilities that one variable is causing the other and that a third variable is causing
both variables, we consider the third possibility that both variables cause a collider
variable on which we condition.

Less formally, the central claim of this assumption is that variables can not be
correlated or statistically dependent without reason. Hence, whenever we detect a
statistical dependence, there has to be an open path connecting the two variables
in the corresponding graphical model. Since this assumption was introduced in
Reichenbach (1991), a lot of literature that discusses the philosophical perspective
of this assumption exists. The assumption is widely accepted for most situations
with some exceptions, for example, the situation described in Bell (1964).

The second assumption is much stronger and less discussed in the philosophical
literature. This assumption states that if a variable is causing another, then the
distributions of the two variables are statistically dependent. Using this second
assumption ensures the other direction, namely that if an open path between two
variables exists, then the two variables will be dependent.

If we accept these assumptions, we can use the resulting causal structural mod-
els to answer questions on the second and third ranks of the ladder of causality. As
described above, the association between variables is different from the effect a
variable has on another. While the association is through any open path, the actual
causal influence from a variable X to a variable X is evaluated only along directed
paths from X; to X,. To assess the causal effect, we can, therefore, close all open
paths that are not directed paths from X; to X5 by conditioning on variables along
them. Then, a straightforward regression will correctly evaluate the causal influence
of X; on Xos.

One of the great advantages of structural causal models is that a rigorous math-
ematical theory exists inside the model. This theory allows us to test individual
causal relations directly using independences tests and conditional independence
tests in an automated fashion Runge (2020); Runge et al. (2019). Further, a lot of
additional research has broadened the applicability of the model, for example, by
allowing for known but unobserved variables Gerhardus and Runge (2020).

2.1.3 Criticism and Comparison to Other Causality
Frameworks

This section, first introduces other frameworks of causality and, afterward, explains
the differences to the framework introduced by Pearl (2009).

Since the questions that are on the second and third ranks of the ladder of
causality are essential in many fields of science, multiple methods to answer these
questions were proposed, for example, by Berkeley (1881); Granger (1969); Hill
(1965); Hume (1896); Mackie (1965).

These frameworks can be divided into two philosophical definitions of causality:
Generative causality and Regularity causality as discussed, for example, in Thygesen
et al. (2005).

The generative view of causality sees a causal link from a variable X; to a variable
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Xo if X influences X, through some physical process or mechanism. However, it
is often unclear what constitutes a mechanism or process, as described in Dalkin
et al. (2015). It is unclear how to evaluate or verify whether a physical process exists.
The extreme form of this definition of causality is the definition that is, for example,
presented in Mackie (1965), stating that an event X, is causing an event X if and
only if X is necessary and sufficient for event X, to happen. This definition is very
restrictive. If we consider, for example, the relation between smoking and cancer,
we find that smoking is neither necessary nor sufficient for someone to get cancer.

The alternative is the regularity definition of causality. For example, Hume (1896)
and Berkeley (1881) define a cause and effect by the cause being followed by the
effect, and every object similar to the cause will be followed by an object similar to
the effect. Hence, this definition is based on statistical relations of the appearance
of events and less on processes. One of the frameworks that follow this view is the
framework presented in Granger (1969). This framework for causality considers
more relations as causal than other frameworks. More specifically, this framework
defines a variable X to be a cause of variable X, if X is measured before X5 and
the value of X, is useful to predict the value of X, even if the past of X5 is known.
If we consider the example of shoe size and handwriting ability in children, this
framework might detect a causal link between the two because knowing a child’s
shoe size will help to predict its hand writing ability.

In summary, following the generative view on causality leads to causality that
can not be detected from data and seems to be a too strict criterion for causality. In
contrast, following the regularity view on causality leads to identifying connections
as causal, which we usually would not consider being causal. These problems have
discouraged some researchers from using causality as a scientific concept. For
example, Russell (2013) stated:

“The law of causality, I believe, like much that passes muster among
philosophers, is a relic of a bygone age, surviving, like the monarchy,
only because it is erroneously supposed to do no harm.” (Russell, 2013)

Other researchers think that this necessitates a compromise between the two cri-
teria. The most widely accepted compromise and the definition that most closely
matches the colloquial view of causality is the framework proposed by Hill (1965).
That paper introduces nine heuristic criteria to decide whether a specific depen-
dency is due to a causal relation case-by-case. These criteria are neither necessary
nor sufficient to decide that a relationship is causal, but they can help a researcher
make a sensible case-by-case decision. The criteria are:

1. Strength: The first criterium is the strength of the statistical dependence. A
stronger connection, meaning that the potential cause can explain more of the
variance in the potential effect makes it more likely that the relation should be
considered causal.

2. Consistency: The second criterium demands that the relation between the
potential cause and the potential effect is visible in a various contexts. This
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consistency reduces the chance that the real cause of the potential effect can
be found in the context.

3. Specificity: The more specific the potential cause and the potential effect are,
the harder it is to fulfill the other criteria by chance.

4. Temporality: One of Hill’s criteria is that the potential cause should appear
before the potential effect. This criterium is widely viewed more like a cri-
terium to decide on the direction of the causal link and less as a criterium to
identify whether a relationship should be considered causal.

5. Biological gradient: As an epidemiologist, Hill focused mainly on biological
processes. However, the main idea can be adapted to most other fields of
science. This main idea is that a stronger cause should lead to a stronger
effect.

6. Plausibility: If a causal relation is more plausible by prior knowledge, we need
less justification from the data to accept its existence.

7. Coherence: The criterium of coherence is very similar to the criterium of
plausibility. The focus for this criterium is on not contradicting any prior
knowledge.

8. Experiment and Analogy: This criterium is similar to the two above. The
focus of this criterium is more on comparing to related fields. In Hill (1965),
experiment and analogy are counted as two criteria.

These criteria are a combination of both the regularity and the generative view
of causality (Thygesen et al., 2005) but are neither meant nor suitable as a hard
criterion but only to support a researcher to make a case-by-case decision. The
criteria form three groups: The statistical criteria are the strength, consistency and
biological gradient. The semantic criteria namely, specificity, plausibility, coherence,
experiment and analogy. The temporality criterion forms its own group. The
first group corresponds to the regularity view on causality, and the second group
corresponds to a generative view on causality. The temporality criterion is used to
orient the causal link.

We consider a scale from the most restrictive framework of causality (Mackie,
1965) to the framework that considers most links causal (Granger, 1969). The
framework of Pearl (2009) is closer to Granger (1969) than the criteria proposed by
Hill (1965). The main reason is that the framework of Pearl (2009) is similar to other
frameworks like, for example, San Liang (2014), based only on data and does not
consider semantic features. While this allows automatic and efficient detection of
causal mechanisms under certain assumptions, it also has some drawbacks and
fail-cases.

Reichenbach’s common cause principle (Reichenbach, 1991) is discussed in
the literature and widely accepted outside of quantum effects (Bell, 1964). The
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inverse, meaning the assumption that a causal relation leads to statistical depen-
dence between variables, is harder to defend. A simple counterexample is the dice
guessing game described above. Even though the guess of the player obviously has
an influence on the outcome of the game, as demonstrated in the counterfactual
example, the distribution of the variable IV that indicates whether the player has
won is independent of the guess of the player.

Another limitation is that the framework of Pearl (2009) does not allow for
feedback loops in the data. This limitation is present in many natural systems. To
illustrate this point, we use two examples. The first example is a river system for
which we measure the weekly amount of water near the source and the estuary of
the river. If we model this system as a causal model and consider two experiments.
For the first experiment, we dump a large amount of water near the river’s source.
We expect to see a strong effect in both measurements in this experiment. For
the second experiment, we dump the same amount of water into the river near
the estuary. We expect a strong effect in only one of the measurements in this
experiment. However, the increased water level near the estuary will lead to a slower
flow, and, hence, this experiment will also slightly influence the amount of water
upstream. In this situation, even though modeling this connection as directed in
the river flow direction is only an approximation, the approximation error will be
small and, hence, the model will be useful. The second example is a rope where
we measure the position of both ends of the rope. To create the causal model, we
again consider two interventions, one on each end of the rope. If we pull on the left
end of the rope, both ends will move. If we pull on the right end of the rope, both
ends will move. In this example, modeling the system with only a directional link
between the position of the two ends is far from the truth and will not be useful.

Further, in Pearl (2009), the author refrains from giving a formal definition of
a causal link. This lack of definition includes not not specifying between which
entities we can have causal links. It is especially relevant to consider causal links
between categories and their defining properties such as being an author and
writing or being a researcher and conducting research. The framework of Pearl
(2009) does not specify what can be used as the endogenous variables.

Another point of criticism against all frameworks that try to formalize the con-
cept of causality without considering semantic properties of the link is that it is
unclear when the notation of “causing” is transitive. An example is a causal chain
that Hitchcock (2001) attributes to Hall (2004).

In this example, a huge boulder starts rolling and threatens to kill a hiker. A
second hiker who notices this shouts a warning, causing the first hiker to duck. The
boulder misses the hiker, which, consequently, survives.

In this story, we find the following causal chain: Boulder starts rolling — the
second hiker shouts — the first hiker ducks down — the boulder misses — the first
hiker survives. The end of this chain is transitive. Most people would agree that the
hiker survived because they ducked down and that the hiker survived because the
other warned him. However, nobody will claim that the hiker survived because the
boulder started rolling. This discrepancy demonstrates that the concept of cause
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is sometimes transitive and sometimes not, making it difficult to formalize causal
relations as mathematical relations.

2.1.4 The Suitability of this Framework for the Problem
Tackled in this Work

Many of these difficulties are not present in the scenario we consider in this work.
In this section, we discuss which difficulties are present or absent when applying
the framework of Pearl (2009) in our method. First, we use the word relevant instead
of causes since it gives a better intuition in this exact application of the framework
and to avoid confusion with the colloquial term “causes” or other definitions of
causation such as the ones discussed above.

The first problem discussed above is the assumption that guarantees that if a
feature is relevant for the prediction of a deep neural network, its distribution will
be statistically dependent on the distribution of the prediction of the deep neural
network. Above, we gave an example in which this assumption does not hold. We
believe that this assumption can be violated in some deep learning problems and,
hence, some features are wrongly not identified as used. However, many examples
in which this happens are discrete, for example, the XOR-gate. However, these
examples are uncommon in deep learning.

The second limitation named above is the feedback circles contained in natural
systems. However, a supervised learning algorithm is not a natural system. In
particular, it does not contain feedback. Most importantly, the prediction of the
supervised learning algorithm has no influence on any feature of the data and
changing it will not change the input. Hence, feedbacks are no problem in our
application of the framework of Pearl (2009).

The third limitation named above is the ambiguity on what can be used as a
variable in the causal model. In our method, however, this is not ambiguous. The
only causal relation we investigate is the relation between features of the input and
the classifier’s prediction. Both of these are random variables by definition.

Further, also the problem of transitivity is not critical in our application of the
causal framework because we are not trying to infer a causal relation from a chain
of causal relations.

In summary, we conclude that the framework of Pearl (2009) has certain limi-
tations. However, it is suitable for our application, namely determining whether a
deep neural network uses a feature.

2.2 Machine Learning

In this section, we introduc the basic concepts of machine learning. Section 2.2.1,
introduces the basic concept of statistical learning and, in particular, supervised
learning and deep learning. Afterward, we explain the concept and the structure
of neural networks. To this end, we introduce neural networks as a solution to the
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learning problem in Section 2.2.2. More particular, we present the universal ap-
proximation theorem, which provides evidence that neural networks are especially
suited for deep learning tasks.

2.2.1 The Problem of Statistical Learning

In this section, we introduce the problem of statistical learning. We follow the
information from the first chapter of Vapnik (1998) and refer the reader to this work
for further details.

The problem of statistical learning is choosing an optimal function from a set of
functions. To this end, we need a risk functional R that maps any function f to its
risk

Risk = R(f) (2.19)

and a set ‘H of functions from which we aim to select the one with the lowest risk.
Hence, the problem is
arg min R(f), (2.20)
fer
identifying the minimum of the risk functional over the set of functions #.

An example of this is the method of least squares for finding the best linear
fit. The class of functions, in this case, is the set of linear functions H = R*. The
risk-functional is given by the mean squared error. If the inputs = and outputs y to
the linear function follow the distribution F(x, y), the risk-functional is given by

arg min/ (f(x) —y)? dF(z,y). (2.21)
feRr*

However, this is not yet a statistical learning problem but a problem of variational
calculus. The problem of statistical learning starts if we cannot observe the dis-
tribution but have to evaluate the value of the risk functional from some samples
drawn from the distribution F'(x,y). The risk based on this sample is called the
empirical risk, and the functional evaluating it is called empirical risk functional.
For the above example, it is given by

n

Empirical Risk = > R((x, 1)) = % S (Fls) — wi)? (2.22)

i=1 =1

To this end, two problems arise. The first problem is to find the function in the
set of functions that minimizes the empirical risk functional. The second problem is
to select a set of functions for which the function that minimizes the empirical risk
functional also minimizes the risk functional. The second question is answered in
the central result of Vapnik (1998). Here we focus on the first part. More specifically,
we focus on the task of supervised learning.

In statistical learning, we can differentiate between three kinds of algorithms.
The three kinds are unsupervised, reinforced and supervised learning algorithms.
The main difference between these kinds of learning algorithms is the supervision
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signal provided to the algorithm. As described above, the goal of statistical learning
is to select a function from samples of a distribution. In the first kind of learning
algorithm, unsupervised learning, only the function input and not the function
output are provided. Examples of these learning algorithms are clustering algo-
rithms or density estimation. The second kind of learning algorithm, the reinforced
learning algorithm, receives a quality measure for its output in addition to the
inputs. A typical example of a problem solved using reinforcement algorithms is
games. The algorithm has to map a game’s situation onto the optimal next move.
The inputs to this mapping can be observed while playing the game. However,
whether the predicted move was indeed optimal cannot be observed. The learning
algorithm is not provided with the correct output but with a quality measure for
the suggested solution, namely, whether the game was won or not. Finally, the
third kind of learning algorithm is supervised learning algorithms. For this kind
of algorithm, the input and the correct output to the function are provided as a
learning signal. A supervised learning algorithm can be described as a pair (T, F)
of two functions. The first function, 7, is called the training function. It maps the
set of labeled training, examples {(5, Ys)}, onto the weights, W, that are used to
parametrize the second function F,

T:P(SxY)—R",

{(S,Ys)} — W. (2.23)

The second function, F, is the inference function. This function is the learned
function of the statistical learning algorithm. It maps an input example I and the
set of weights W onto the prediction of P

F:SxR™ =Y

2.24
(I,W)— P. (224

We illustrate these definitions using two examples. The first example is, again, a
linear regression, the function 7 in this example is the method of least squares that
maps the training examples onto the optimal coefficients. The function ' multiplies
the coefficients and the inputs I to find the prediction P. A second example is the
k-nearest-neighbor classifier. In this example, the function 7" is the identity. The set
of weights 7 is the same as the labeled training set {(.5, Ys)}. The second function,
F, identifies the k-nearest-neighbors of I in W and combines their labels into a
single prediction P.

In traditional shallow learning, the researcher will select and handcraft features
from the inputs. These features are then used as input to, for example, a neural
network. Hence, a learning algorithm consists of two distinct functions. The first
function, F¥, is the function that maps an input / onto its feature representation.
The second function, F,, is the function that afterward takes in the feature represen-
tation and performs the classification or regression tasks. Hence, the approximated
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function F', that maps the input onto the desired output is given by
F =F,oFy. (2.25)

The main difference to deep learning, as described, for example, in Reimers and
Requena-Mesa (2020), is that instead of optimizing both of these functions individ-
ually, we optimize their concatenation F directly in an end-to-end fashion. Since
this requires fitting complex functions, neural networks are a suitable choice.

2.2.2 Neural Networks

The two central parts of a statistical learning problem are the risk functional and
H, the set of functions. One possibility for this set of functions and the way to
parametrize and optimize these functions efficiently is deep neural networks. A
deep neural network comprises multiple layers, each containing numerous neurons.
A neuron is a function that maps a set of inputs x onto one output y. To this end, the
neuron has a set of weights w, one for every input to the neuron, and a bias variable
b. Furthermore, the neuron contains an activation function o. The neuron is given
by

n
y=o (Z w;m; + b) : (2.26)
i=1
The neural network is built of multiple layers, each consisting of multiple neurons.
The first layer receives the inputs to the neural network as inputs to its neurons. The
subsequent layers’ neurons get the outputs of the previous layers’ neurons as input.
Finally, the outputs of the last layers’ neurons become the neural network’s output.

One of the main advantages of neural networks is the universal approximation
theorem that was introduced for different classes of activation functions 0. We
follow the formulation of Cybenko (1989) to state the universal approximation
theorem:

Theorem 1. (Universal Approximation Theorem) Let o be a suitable activation
function. The finite sums of the form

N
F(x) = ZO&jO‘ (w]Ter bj)
Jj=1
are dense in C(1,,), the continuous functions on the unit interval, with respect to

the supremum norm. In other words, given any continuous function f on the unit
interval I, and any e > 0, there is a sum G(x) of the above form, for which

VfeC(l,): Ve>0:Vxel,: |G(x)— f(x)| <e.

These finite sums F'(x) correspond to neural networks with two layers, one
hidden layer of N neurons, which uses ¢ as an activation function and an output
layer with one neuron that uses the identity as an activation function and no bias.
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Note that the n-dimensional unit interval can be replaced by any compact subset of
R™.

This theorem is proven for multiple classes of activation functions . For exam-
ple, Cybenko (1989) proves it for continuous sigmoidal functions in their Theorem 2
and Hornik (1991) for continuous, bounded and nonconstant functions in their The-
orem 2. Furthermore, Leshno et al. (1993) prove it for every function o, which is not
an algebraic polynomial in their Theorem 1. The same was proven in Theorem 3.1
of Pinkus (1999).

Hence, a neural network can be used as a general function approximator even
for complex functions with a previously unknown structure. Therefore, neural
networks are suited to tackle the additional complexity resulting from combining
the feature selection and the classification task in deep learning.

2.3 Test of Independence

When dealing with random variables or random processes, such as the training of a
neural network using stochastic gradient descent or the endogenous variables of a
structural causal model, it is not trivial to determine whether an observed difference
is due to an effect or whether the differences are just due to the internal variance of
the variables.

Statistical tests determine whether an effect is due to randomness or whether it
is significant. In a statistical test, we are presented with two hypotheses. The first
hypothesis, Hy, is called the null hypothesis. The null hypothesis is the hypothesis
we will assume is true unless we find it highly unlikely given the data. In that case,
we assume the alternative hypothesis H;. To make this decision, we need to decide
the probability at which we decide that Hj is highly unlikely. This number is called
the level of significance. The most common choice for the level of significance is
0.05, due to a subjective choice of R. A. Fisher, who wrote:

“The value for which P = .05, or 1 in 20, is 1.96 or nearly 2; it is conve-
nient to take this point as a limit in judging whether a deviation is to be
considered significant or not. Deviations exceeding twice the standard
deviation are thus formally regarded as significant. Using this criterion
we should be led to follow up a negative result only once in 22 trials,
even if the statistics are the only guide available. Small effects would still
escape notice if the data were insufficiently numerous to bring them
out, but no lowering of the standard of significance would meet this
difficulty.” (Fisher, 1925, p. 47)

Nevertheless, the level of significance has to be decided for every situation
individually.

In this work, we use statistical dependence tests to decide whether two dis-
tributions are dependent. For these tests, the null hypothesis H is that the two
distributions are independent, while hypothesis H; is that the two distributions
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are dependent. We estimate the likelihood of both hypotheses given the data. To
this end, we assume a prior probability of 0.5 for each hypothesis. Since the ob-
served data is fixed, we can use Bayes’ theorem to prove that the likelihood of the
hypothesis given the data is proportional to the likelihood of the data under the
hypothesis.

Because finding the likelihood for the data is often untraceable, we reduce it
to the likelihood of one feature of the data. Ideally, this feature is scalar and has a
different distribution under the different assumptions. Further, it usually is larger
under assumption H; than for assumption Hj, such that we can evaluate the later
tests only to one side. This feature is called the test statistic, and selecting it is the
main difference between different dependence tests.

To test the dependence of two random variables, we need to evaluate the test
statistic distribution under the assumption of each hypothesis. This evaluation is
especially hard for H;, the assumption of dependence. Since we do not specify the
nature of the dependence, we need to approximate the distribution for each possible
dependence simultaneously. To this end, we assume a uniform distribution of the
test statistic under the assumption H; meaning any data has the same likelihood.
We use a shuffle test to evaluate the distribution under the null hypothesis Hy. If
the two variables are independent, the probability of the observed data, (X;, Y;)icz,
equals the probability of (X;, Y (;))iez for any permutation 7. Hence, we can find
the distribution of the test statistic under Hj, the assumption of independence by
calculating the test statistics for all possible permutations 7, or approximate the
test statistic distribution by calculating it for many permutations.

Since every set of observations has the same likelihood under the assumption H;,
we want to evaluate the likelihood under hypothesis Hy. To this end, we assess the
probability of observing data with an equal or higher test statistic in the distribution
under the assumption H, that we evaluated as described above. This value is called
the p-value.

Note that if assumption H) is true, the p-value will be uniformly distributed
on the interval [0, 1], while if hypothesis H is true, the p-value will be very low. As
described above, we will reject the null hypothesis H if the p-value is lower than
our selected level of significance.

Two things are important when using and interpreting the results of the method
of statistical dependence test. First, since the p-values are uniformly distributed if
the null hypothesis is true, we will always encounter false positives, where we reject
the null hypothesis even though it is true. The fraction of these false positives is
equal to our level of significance. Second, since the p-value is uniformly distributed
if the null hypothesis is correct, it does not make sense to compare the p-value of
tests for different variables and argue that one is “more dependent” because its test
resulted in a lower p-value. A statistical dependence test only returns a binary result,
and the p-value should never be interpreted further than this binary decision.
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2.3.1 Correlation and Partial Correlation

The first test statistic we consider is the correlation between the two variables. The
correlation is given by
E(XY) - E(X)E(Y)

XY R - B(OR/E() B0V e

While the correlation for independent variables is zero, the correlation for depen-
dent variables is not necessarily bigger than zero. The correlation captures only
linear relations between the variables. Hence, it is an independent test only for
certain classes of distributions. For example, if all involved variables are Gaussian.
The main advantage of correlation as a dependence test is that it is fast to calculate,
even for high dimensional variables. Further, it is interpretable in the form of the
coefficient of determination. To turn the correlation into a conditional dependence
test, we use the partial correlation instead. The partial correlation between the two
variables X and Y given Z is calculated by first finding the best linear fit from Z
onto X,

ay = argmax(a(Z — E(Z)) + E(X) — X)?, (2.28)

(03

and the best fit from Z onto Y,

ay = argmax(a(Z — E(Z)) + E(X) — X)2. (2.29)
Afterward, we calculate the correlation between the residuals of X and Y, meaning
the part of X and Y that can not be explained by Z. Formally, the residuals are
defined as
X =X - (ax(Z —E(2)) + E(X)) (2.30)
and
Y =Y — (ay(Z —E(2)) + E(Y)). (2.31)

Then the partial correlation is given by

_ E(XY) — E(X)E(Y) . (2.32)

VE(X?) —E(X)2 - \/E(¥2) —E(Y)?

Pxy.-z =Pxy

The test statistic is calculated as the coefficient of determination p ¢ ; between

Y and X. As described above, we perform a shuffle test to check whether the
correlation is significant. Since the partial correlation is based on the correlation,
it shares the same advantages and disadvantages. First, it is not a mathematical
independence test in general. It only captures linear connections between the
variables. However, as shown, for example, in Baba et al. (2004), this includes
relevant cases such as the case where all distributions are multivariate Gaussian.
Further, the partial correlation can be calculated fast, even for high dimensional
variables, similar to the correlation. Finally, the test statistic of the partial correlation
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can be interpreted. Its square denotes the fraction that is explained by X of the
variance in Y that can not be explained by Z.

2.3.2 Maximum Correlation Coefficient

As described above, in general, the correlation and partial correlation are no sta-
tistical dependence or conditional statistical dependence test, respectively. One
possibility to extend the idea of correlation to a general statistical dependence test
is the maximum correlation coefficient introduced by Sarmanov (1958). To cal-
culate the maximum correlation coefficient, we transform both random variables
using an arbitrary function to maximize their correlation. Formally, the maximum
correlation coefficient is given by

MCC(X,Y) = S}lp PF(X),g(Y)
7g

— sup E(f(X)g(Y)) — E(f(X)E(g(Y)) | (2.33)
ro VE(F(X)?) —E(f(X))2VE(9(Y)?) — E(g(Y))?

The maximum correlation coefficient is zero if and only if the two variables are
independent. Hence, the maximum correlation coefficient is a general statistical
dependence test. However, calculating it requires fitting two arbitrary functions,
which is a challenging problem by itself.

To transform the maximum correlation coefficient into a conditional depen-
dence test. We substitute the correlation for a partial correlation

sup pf(X),g(Y) Z- (2.34)
I
As described above, to calculate the partial correlation, we use the best linear fits
fx(Z) and fy(Z). Calculating a linear fit is not sufficient to create a general condi-
tional dependence test. Instead, we use an additional function 4 which transforms
Z to get

This conditional dependence test has the same drawbacks as the unconditional
version of the maximum correlation coefficient. However, the high complexity of
fitting functions is an even more severe drawback because one more function has
to be fitted. For this reason, the maximum correlation coefficient is suitable in
situations where we have some prior information on the structure of the possible
functional connections between variables.

Another test that is based on fitting functions between the involved variables is
the Fast Conditional Independence Test (FCIT) proposed by Chalupka et al. (2018).
However, in contrast to the maximum correlation coefficient, we only have to fit
two functions in the FCIT. The reason is that FCIT builds on Doob’s conditional
independence property (Kallenberg, 1997, Proposition 5.6)

XLY|ZsPY|X,2)=P(Y|Z) as. (2.36)
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Consequently, this test uses two decision trees, one to predict the value of Y from
only Z and the other predicts the value of Y from X and Z. The test statistic is then
given by

Var(Y — E(Y | Z) — Var(Y — E(Y | X, Z)). (2.37)

The advantage of this procedure is that we have to fit only two functions. However,
FCIT is no statistical dependence test. An obvious counterexample, where a depen-
dence goes undetected, is given by Y ~ U[-1,1], X = Y? and Z = 0. In this case
E(Y|Z) =E(Y | X, Z) = 0 and hence the test statistic is zero. However, X and Y
are clearly dependent. However, it can correctly detect many dependencies and is
very fast compared to the other tests described in this section. Therefore, it can be
used in situations where many tests need to be performed.

2.3.3 Mutual Information and Conditional Mutual
Information

The next quantity we can use as a test statistic is the mutual information between
the two variables. For two independent variables, X and Y, the joint distribution
factorizes into

P(X,Y) =P(X)P(Y). (2.38)

As the test statistic, we, hence, use the Kulback-Leibler divergence between the joint
distribution of X and Y and the product of their marginal distributions

MICY.Y) = Dy (B V)PPV = [ [ (o o (L2t oy,
(2.39)

As described above, for independent variables, the two distributions in the Kulback-
Leibler divergence are the same, and, hence, the test statistic is zero. However, if
the two variables are not independent, the mutual information will be positive as
shown by (Wyner, 1978, Lemma 3.1).

The main drawback of using the mutual information as a dependence test is
that we must approximate the joint distribution and the two marginal distributions
from the data. The fraction of the distributions is the focus of these approximations.
To this end, it is essential to approximate small values accurately. To approximate
distributions, in particular distributions with a different number of dimensions
consistently, is a complex problem. Hence, this independence test is best suited if
we have prior knowledge of the distributions, which allows us to approximate the
distributions efficiently.

The conditional version of the mutual information is the conditional mutual
information. The formula of the conditional mutual information is the same as for
the mutual information, but for the joint distribution, we also include the variable
Z on which we condition. Resulting in a joint distribution of three variables. In the
marginal distributions, we still marginalize over one of the variables and, therefore,
get the joint distribution of each variable together with the variable we condition
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on. Consequently, the conditional mutual information is given by

CMI(X,Y | Z) = Dg1(P(X,Y, Z);P(X, Z)P(Y, Z))
(2.40)
/ / / pxv.z(T,y,z)log (px,y,z(% Y, z>pz(z)> dxdydz.
px,z(z,2)py,z (Y, 2)

The conditional mutual information intensifies the drawbacks of unconditional
mutual information. The weakness that we have to approximate distributions
of different dimensionality consistently is still present, but the dimensionality of
each distribution is higher than in the unconditional case. Hence, especially for the
conditional case, this dependence test is suitable if we have prior information on the

form of the distribution, for example, if we know that they are from a parametrized
family of distributions.

2.3.4 Kernel Independence Tests
One of the central principles in data science was formulated by Vapnik (1998):

“If you possess a restricted amount of information for solving some prob-
lem, try to solve the problem directly and never solve a more general
problem as an intermediate step. It is possible that the available infor-
mation is sufficient for a direct solution but is insufficient for solving a
more general intermediate problem.” (Vapnik, 1998, page 12)

However, the dependence tests we introduced before violate this principle. In
the maximum correlation coefficient described in Section 2.3.2, we do not only
calculate the test statistic, but as an intermediate step, we approximate two, or
in the conditional case three, functions that connect the variables. Note that the
information on the functions is enough to calculate the test statistic, but knowing
the test statistic is not enough information to infer the three functions. Hence,
the problem of approximating the functions is more general than the problem we
are trying to solve. In the cases of mutual and conditional mutual information
introduced in Section 2.3.3, we have to approximate the joint, and the marginal
distribution of multiple variables. Similar to the above case, the test statistic can
easily be calculated from the distributions. However, knowing the test statistic is
not enough information to infer all distributions. Consequently, the problem of
approximating the distributions can be considered a more general problem than
estimating the mutual information.

This section, follows the principle more closely and evaluates the test statistic
directly. The statistical independence test that follows this idea is the Hilbert-
Schmidt independence criterion.

The idea of this independent test is to evaluate whether, for the pairs (X;,Y;),
the value of the first variable X is similar to the first value X; of the same pairs of
which the second value Y is similar to Y;. To this end, we start by calculating the
kernel matrix for each variable, K x for the variable X and Ky for the variable Y. By
definition, each entry of the kernel matrix k;; € K x contains the similarity between
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the values X; and X ;. To make the kernel matrices comparable, we normalize them.
We do this by multiplying the kernel matrix with a normalizing matrix H, whose
entries are given by

hl‘j = (51 — m_2 (2.41)

with ¢ denoting the Kronecker-delta and m is the number of data points. To calculate
the test statistic, we, afterward, sum up the dot products between the similarity
vectors corresponding to each pair (X;,Y;), namely the i-th collum of the two
normalized kernel matirices

m

> (ExH);, (KyH);). (2.42)
=1

Note that the dot product of normalized vectors is related to the cosine similarity
between the vectors. If the variables are dependent, the similarity structure in both
spaces is the same. Hence, this value will be high for dependent variables but small
if the variables are independent. Since the kernel matrices are symmetric, using the
i-th column of the kernel matrix is the same as using the i-th row. Further, the dot
product of the i-th collum of the kernel matrix K x and the i-th row of the kernel
matrix Ky is the i-th element of the diagonal of their product. Summing them up is
equivalent to calculating the trace of this matrix

Zm:«KXH)i, (KyH)i) =Tr(KxHKyH). (2.43)
i=1

We multiply this value with a normalizing factor to calculate the test statistic

1

HSIC(X,Y) = 1P

Tr(KxHKyH). (2.44)
The Hilbert-Schmidt independence criterion was introduced by Gretton et al. (2007).
However, they use a different way to derive it and prove that it is a statistical de-
pendence test, meaning that the test statistic is zero if and only if the variables are
independent. To this end, the authors of that paper relate the formula presented
above to the Hilbert-Schmidt norm of the cross-covariance operator between the
two kernel spaces. When the kernel spaces of both variables are universal repro-
ducing kernel Hilbert spaces, meaning that the functions in the kernel spaces are
dense in the space of bounded continuous functions, the largest singular value of
the cross-covariance operator, ||Cxy ||, is equal to zero if and only if X 1L Y.

As described above, the great advantage of the dependence test based on the
Hilbert-Schmidt independence criterion is that we do not approximate any more
information than the test statistic. However, to calculate it, we have to select a
suitable kernel, and we have to calculate and multiply the kernel matrices. The
former is difficult. The similarity decoded in the kernel has to be sensitive enough
to capture the relations between the variable but not such sensitive that it picks up
finite data effects. The higher the sensitivity of a kernel, for example, a universal
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kernel such as the radial basis functions kernel, the more data we need to distinguish
between genuine and spurious relations. Unfortunately, the second drawback
prohibits us from using this dependence test in large datasets. If we have many
data points, creating the kernel matrix will scale quadratically in the number of
inputs, O(m?), and multiplying these matrices will scale like O(m?-37285%) (Alman
and Williams, 2021). Hence, for large datasets, evaluating this criterium becomes
infeasible.

To turn this test into a conditional dependence test, Fukumizu et al. (2007)
replace the cross-covariance similar to extending the correlation to the partial
correlation in Section 2.3.1. To this end, instead of evaluating the similarity between
the kernel matrices Kx and Ky directly, we first remove the similarity that can
also be observed in Kz, the kernel matrix of the variable we condition on. This
calculation leads to the formula

HSICONIC(X,Y | Z) =Tr (HKxH — HKxHHK;H) (HKyH — HKyHHK 7 H))

(2.45)
for the Hilbert-Schmidt conditional independence criterion. This straightforward
calculation, however, is numerically unstable. Hence, different authors have sug-
gested different approximations of this formula, that are more stable to evaluate.
For example, the approximation

1

1-— ~ 2.4
( ) 1+ (2.46)
that holds for small values of x leaves us with

HSCONIC(X,Y | Z) = trGxS;Gy S7. (2.47)

Here, for A € {X,Y,Z}, weuse G4 = HK H and Sz = (I + 1/mGz)~! with the
identity matrix I.

As for the other dependence tests described here, the drawbacks of the uncon-
ditional dependence tests are intensified in the conditional version. Specifically,
we have to select three suitable kernels, and since we have to perform more matrix
multiplications, the bad scaling in the number of samples becomes a more severe
problem. Further, the conditional version of this test has some numerical stability
issues. Hence, numerically more stable approximations to this criterion are used in
practice. For more information, we refer the reader to Fukumizu et al. (2007).

Two additional dependence tests that build on this idea are the Randomized
Conditional Independence Test (RCIT) and the Randomized conditional Correla-
tion Test (RCoT) proposed by Strobl et al. (2019). They substitute the radial basis
function, which can be understood as an infinite sum of Fourier features, by an
approximation with a finite selection of Fourier features. These features are se-
lected randomly. This approximation allows for better scaling in the number of
examples and hence, for this test to be used even for large datasets. However, we
encounter another error rising from the approximation. Fortunately, Strobl et al.
(2019) demonstrated that this error is small. For further information, we refer the
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reader to their work.

2.3.5 Predictability

A common idea in determining whether variables are dependent is to check whether
the value of one can be predicted from the other. For two variables B, R, we can
quantify this, for example, by the mean squared error

min / (b — f(r)? dpp.r(D,T) (2.48)

where the function f is typically parameterized, for example, by a deep neural net-
work. Predictability is not an independence criterion. However, the predictability
criterion is similar to the maximum correlation criterion. Since predictability is not
an independence criterion, we can not turn it into a conditional dependence crite-
rion. However, we can extend the predictability criterion, similar to the maximum
correlation coefficient to the conditional case by replacing the correlation with the
partial correlation.

We start by showing the connection between the predictability criterion and the
maximum correlation coefficient. To this end, we first consider the case where the
function f is linear and both variables are univariate,

min / (b— f(r))*dpp,r(b,r) = min / (b — ar — B)* dpp r(b, 7). (2.49)
Since the optimal parameter for S will center both variables in this case, this is the
same as the variance between the bias variable B and the best linear prediction of
B given the prediction R,

mlﬁn/ (b — ar — B)*dpp gr(b,r) = min Var (B — aR). (2.50)
a, ol

We use this functional as a loss. The relevant properties for this use are the minima
and the relative values of the functions. None of these properties change if we scale
the function by a constant, positive factor. Since the choice of the function f has
no influence on the variable B, the variance of B is such a constant, positive factor.
Hence, we can simply scale the function by this factor and get

Var (B — aR)

Further, instead of minimizing, we can maximize the negation, leading to

Var (B —
max ] _ var(B —ar)

a Var (B) (2.52)

This is the definition of the coefficient of determination (Egert, 2012), which, in this
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linear case, is the square of the Pearson correlation coefficient,

Var (B —aR) 5 2
moé}X]. W = pB,R = COIT (B, R) . (2.53)

To generalize this relation from the linear to the non-linear case, we find the func-
tions f that maximizes this correlation

max Corr (B, f(R))*. (2.54)

This loss function was, for example, used for adversarial debiasing by Adeli et al.
(2021). However, this is not a dependence test, more specifically, this can be zero
even if the two variables are independent. For example, if the prediction R is
uniformly distributed on the interval [—1, 1]

R~U[-1,1] (2.55)
and the bias variable B is given by
B =R (2.56)

Obviously, the two variables are not independent, but for any function f, the covari-
ance between B and R is given by

Cov(B, f(R)) = / bf (r)dps.r(b, 7). (2.57)

Substituting B by definition (2.56), we get

1
/ bf(r)dpp,r(b,T) = / rf(r?)dr. (2.58)
-1
Splitting the interval at zero, changing the variable in the first half from r to —r,
exchanging the borders of the integral and reuniting the two integrals evaluate this
integral to

/ i (2:59)

-1
0 1

:/ rf(rQ)dr—l—/ rf(r?)dr (2.60)
-1 0
1 1

= [ =ty [rrear 2.61)
0 0
1

= [ = nsyar 2.62)
0

=0. (2.63)

Hence, the loss functional max Corr(B, f(R))? is equal to zero, although the
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two variables are not independent. This example demonstrates that not being
useful for prediction is not a criterion for independence.

This criterion is related to the maximum correlation coefficient described in
Section 2.3.2. This criterion uses the following maximum as a test statistic,

MCC(R, B) = H}ax Corr(f(R), g(B)). (2.64)
g

To turn this into a conditional independence test, we use the partial correlation

MPCC(R,B|L) = m}}n H}aéx PF(R),g(B)-h(L)- (2.65)

2.4 Attribution and Visualization

In the shallow learning setting, a researcher selects the features that a learning
algorithm uses to perform its classification. One advantage of this approach is that
it is easy to understand which feature the algorithm uses to reach its prediction.
However, as described, for example, in Reimers and Requena-Mesa (2020), in deep
learning, selecting features and classifying are combined into one process. This
combination makes it difficult to understand, whether a feature is used by the
algorithm to make its prediction.

Researchers have developed many methods to extend this advantage of shallow
approaches to the deep learning approaches. The most common method is creating
a saliency map. In a saliency map, we assign a salience value to each input quan-
tifying its importance. Note that the individual inputs are often not meaningful
features in the deep learning setting, but the meaningful features are aggregation
functions of multiple inputs. For example, in an image, we do not expect an in-
dividual pixel to be important, but a pattern of pixels, representing some higher
level feature. Multiple different approaches on how to quantify the salience of
inputs have been proposed in the literature. We introduce and compare them in
Section 2.4.1. Afterward, in Section 2.4.2, we present alternatives to saliency maps
proposed to determine whether a feature is relevant in the classifier’s decision.

2.4.1 Saliency-Based Methods

The main idea of saliency maps is to create a saliency or importance value for
each input. In the setting of images, this means creating a saliency value for each
pixel. These saliency values can then be arranged as the original image to highlight
important areas in the image. However, defining how important a pixel is is difficult.
At the moment, we do neither have a way to evaluate it empirically nor is there
widespread agreement on the theoretical definitions. Considering these difficulties,
multiple ways to derive saliencies are proposed, leading to different results. The
three main ways are using the gradient of the deep neural network, which we discuss
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in Section 2.4.1.1, measuring the sensitivity of the output to replacing some of the
inputs we consider in Section 2.4.1.2 and methods that approximate the effect of
perturbations using a first-order Taylor approximation. We describe these methods
in Section 2.4.1.3. Finally, we summarize the drawbacks of saliency maps in general
in Section 2.4.1.4.

2.4.1.1 Gradient Based Methods

The first idea that can be used to assign a salience value to each pixel is to use the
gradient. To motivate the use of the gradient as saliency, we use the example of a
linear regressor. In a linear regressor, the gradient of the output given one input
variable is the linear coefficient, and, hence, the gradient explains how much the
output changes if the input changes by one unit.

Multiple methods were proposed that use the gradient or slight variations of the
gradient of the neural network’s output depending on each input as the salience
of that input. For example, Zeiler and Fergus (2014) use the derivative for all parts
of the neural network except for the ReLU non-linearities, for which they use the
ReLU again instead of its derivative.

This method of forming saliency maps has some drawbacks. The most severe
drawback is that the derivative, by definition, is highly local. However, suppose
we want to understand whether a feature is important. In that case, we are not
just interested in whether a minimal increase in the feature will lead to a minimal
change in the prediction. To demonstrate this drawback, we use the following
example. This example looks at the relation between two features, X and Y, and
the probability P of the example being classified as class C. The relation between
the features and the outputs is given by

sin(1000.X) 0.99
P==700 T 1 etwov (2.66)

In this situation, the derivative of P for X can be as high as 10, but the feature is
meaningless towards the algorithm’s decision, as the influence is at most 0.01. In
contrast, for any value of Y with | X| > 0.01, the derivative of P for Y is smaller than
10~3. Nevertheless, the feature is obviously very relevant to the classifier’s decision.
Hence, we find that using the gradient or derivative of a function can lead to local
solutions that might not reflect the global behavior of the function enough to be
used as a saliency.

In addition to these specific drawbacks of using the derivative to quantify
the saliency, methods following this idea have more general drawbacks, which
they share with all saliency map methods. We describe these drawbacks in Sec-
tion 2.4.1.4.

2.4.1.2 Obfuscation Based Methods

The second common way to derive salience values is to obfuscate the image. The
main idea is to delete some of the inputs and replace them with something mean-
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ingless. To find the saliency of the replaced inputs, we take the difference between
the prediction of the original and the manipulated sample.

The main difference between the various methods that employ obfuscation to
create saliency maps for deep neural networks is the replacement for the obfuscated
inputs. The suggestions start at straightforward ideas such as replacing areas in
an image with a black or gray box as suggested in Zeiler and Fergus (2014), or
noise as suggested, for example, in Dabkowski and Gal (2017) and end with more
complicated ideas. For example, Zintgraf et al. (2017) replace the patches from the
inputs by patches from the training set, which have similar neighboring pixels, by
sampling from the knockoff distribution (Barber and Candeés, 2015) as suggested
by, for example, Popescu et al. (2021) or using a generative adversarial network
(Goodfellow et al., 2014a) for gap-filling as suggested, for example, in Agarwal and
Nguyen (2020).

This approach to creating saliency maps has some drawbacks. The first draw-
back is that the result of the approach depends on how we replace the obfuscated
pixels. If we, for example, replace parts of an image with black boxes, light areas will
receive a higher saliency than dark areas. The second problem is that this method
can only detect localized features within the image. Meaning that we can use it
to detect the meaningfulness of, for example, an eye pattern to classify an image,
but not, for example, a distributed pattern such as the symmetry between two eye
patterns. Third, obfuscation is, in many situations, too global.

To demonstrate this global scale, we use an example similar to the previous one.
In the example, the probability P is given by

~99sin(1000X) 0.01

P :
100 T 1 etoooy

(2.67)

Here, the more important feature is obviously X since the effect of Y is limited to
0.01. However, if we compare the values for high and low values of Y, there is no
difference. In contrast, the probabilities P for high and low values X are significantly
different.

In addition to these drawbacks, which are specific to creating a saliency map
using obfuscation, these methods also have some drawbacks shared by all methods
that create saliency maps. We discuss these drawbacks in Section 2.4.1.4.

2.4.1.3 Methods based on Taylor-extensions

As described in the two previous sections, using the gradient to produce a saliency
map is, in many situations, too local, while using the distribution and replacing
inputs by other values from that distribution is, in some situations, too global.
Hence, in this section, we present a compromise that uses the values, and the
gradient to create the salience map. The main idea is to look at the function that
maps a perturbation of the input onto the output change. Since this function is
unknown, we approximate it by a first-order Taylor approximation

AP ~ F'(zo)(zo — 7). (2.68)
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To create the saliency map, we evaluate this difference function at zero. This evalua-
tion is because we expect zero to be a good approximation of a point at which each
class has the same probability.

This compromise between the local and global approaches to creating saliency
maps is the most common approach. It was suggested, for example, by Bach et al.
(2015) and in Lapuschkin et al. (2019). Further, it was adapted to the special case
of deep convolutional neural networks by, for example, Mopuri et al. (2018) and
Selvaraju et al. (2016). Further, for example, Montavon et al. (2017) investigate
whether the results improve if zero is replaced by a close-by point, at which all
classes have the same probability. However, they find that the additional difficulties
and ambiguities counteract the benefits of this approach. Saliency maps created
using this approach share the general drawbacks of saliency maps we describe in
Section 2.4.1.4.

2.4.1.4 Drawbacks of Saliency Maps

All methods that use saliency maps to determine which features are used by a deep
neural network share some common drawbacks. It is very difficult to evaluate
methods that determine which feature deep neural networks use to find their
prediction. Hence, we rely on other properties such as consistency to evaluate
whether these methods work correctly. To this end, we check whether saliency maps
lead to explanations that have decent properties. First of all, saliency maps cannot
explain and are not consistent with the phenomenon of adversarial examples, which
we introduce in Section 2.5. Second, it is shown by Adebayo et al. (2018) that the
saliency maps created for neural networks with random weights are similar to
the saliency maps created for neural networks with trained weights. Third, the
reaction of the saliency map to constant shifts is not consistent, as is shown by
Kindermans et al. (2019). Fourth, Ghorbani et al. (2019) show that, saliency maps
are also vulnerable to adversarial examples, similar to deep neural networks. The
most important drawback, however, is that saliency maps can only be used for
features that are represented by a region of the image. An example of such a feature
would be an eye pattern. In contrast, saliency maps can not be used to determine
whether a feature such as symmetry, that is not connected to one specific, but rather
to the relation of multiple regions, is used by the deep neural network.

2.4.2 Other Methods

While saliency map-based methods, which we described in the previous section,
are the most common method to interpret deep neural networks, other methods
exist. In this section, we introduce some alternatives.

2.4.2.1 Quantitative Testing with Concept Activation Vectors (TCAV)

The first alternative method we describe here is proposed by Kim et al. (2018).
Saliency maps are a local explanation method in a diffeent sense: They only explain
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the behavior of the classifier for the exact input on which it was used. In contrast,
TACV is a method that aims at a global explanation for the classifier, meaning that
it explains the behavior of a classifier as a whole. More specifically, TCAV aims
to determine whether a specific, predefined concept C' is used by a deep neural
network F in its prediction. A concept is any feature that partitions all images into
two parts: images that contain the concept and images that do not contain the
concept. As such, a concept admits a natural binary classification task. For a given
deep neural network F', one of the output classes of this deep neural network and
a concept, the question that is answered with TACV is whether the deep neural
network uses the concept to recognize the class. To this end, the activations in
some intermediate layer are used as a representation R of the inputs. On these
representations, we train a linear classifier to distinguish between examples that
contain the concept and examples that do not contain the concept. The unit vector
vZ that is orthogonal to this decision boundary is called the concept activation
vector. The importance of the concept is then evaluated as the directional derivative
of the detector of the class in the direction of the class activation vector.

More formally, we can understand F' as a concatenation of two functions F' =
F5 o Fy. The first function Fj is the feature extractor

F, :R*" - R™ (2.69)
I—R (2.70)

and the function F; is the classifier

Fy : R™ — R° (2.71)
R— P (2.72)

Then the importance S of a concept towards the classification of the class is given by
the directional derivative of the classifier F; in the direction of the class activation
vector
R
S=D,nFy = (VF,v0). (2.73)

2.4.2.2 Explaining Classifiers with Causal Concept Effect (CaCE)

Another idea to understand classifiers, meaning to understand whether the classifier
extracts a feature from the data and uses it as input for its classification, is causal
concept effect (CaCE). This idea is introduced by Goyal et al. (2019). Their idea is
to build a generative model, for example, the decoder of an autoencoder or a GAN
(Goodfellow et al., 2014a) to create an input image that is the same in every aspect
but differs with respect to containing or not containing the concept in question.
The prediction for the original input and the prediction for the altered input are
compared, and the difference is considered the causal concept effect. For important
concepts, we expect this effect to be high.

The main drawback of this method is the dependence on a generative model.
First, in comparison to predictive models, which try to approximate a set of condi-
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tional probabilities, generative models have to capture the whole joint probability.
Hence, the problem of training a generative model is more difficult than the prob-
lem of training a predictive model. Second, if different features are correlated in the
dataset, then the generative model will not be able to differentiate between them.

2.4.2.3 Methods that Link Intermediate Representations to Concepts

While it is difficult to understand the decision process of a deep neural network in a
semantically meaningful way; it is easy to understand how the decision is calculated
from the intermediate representations in a mathematical way. Hence, one way of
solving the task of understanding which feature is used by the deep neural network
is to link the intermediate representations to semantic concepts. For example,
Narendra et al. (2018) employ causal methods to a deep neural network. They treat
every node as a binary encoding for a concept. The same approach is discussed in
Harradon et al. (2018). However, they find that the connection between single neu-
rons and semantic concepts is unclear. More specifically, some neurons can not be
connected to semantic concepts but specific pixel patterns. Furthermore, multiple
neurons might represent the same concept, and linear combinations of multiple
neurons can represent some concepts. Another approach in this direction is pre-
sented in Stomberg et al. (2021). In this approach, an intermediate representation
is clustered, and then each cluster is linked to a semantic concept.

2.4.2.4 Feature Visualization

Another method developed to understand deep neural networks is the feature visu-
alization framework presented by, for example, Erhan et al. (2009), Simonyan et al.
(2013), Mordvintsev et al. (2015), Olah et al. (2017). The goal of feature visualiza-
tion is twofold. On the one hand, it aims to get prototypical images for the classes
the deep neural network can identify or, in other words, to understand how the
deep neural network “expects” a prototypical example of the class to look like. On
the other hand, it helps to understand what information is detected by individual
neurons.

While methods of this kind achieve impressive and interesting images, even
the basic assumptions underlying this method as an interpretation tool for deep
neural networks are problematic. First, a classifier learns to discriminate between
classes. As such it does not have to learn prototypes for the classes it can identify.
Hence it is unclear why a prototypical image for every class should be extractable.
Second, the notion of a prototypical image indicates that the approximated function
is concave, meaning the score the deep neural network assigns to a class is at least
close to monotone in the distance between the input image and the prototype.
However, this is not the case for deep neural networks in general. Third, it is not
clear why every neuron in the deep neural network should correspond to a semantic
concept. This is a special case of the understanding, that subsequent layers of deep
neural networks extract semantic features of increasing complexity. This idea is,
however not compatible with the concept of adversarial examples as described
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in Section 3. Fourth, many concepts are not explained by single neurons but by
linear combinations of neurons (Szegedy et al., 2013), and a single neuron can be
activated by images containing vastly different concepts (Olah et al., 2017). Finally,
an unrestricted optimization of the input image to maximize the output of a neuron
does not converge to a meaningful image but seemingly random noise patterns.
Strong regularizations are necessary to arrive at images from which concepts can
be interpreted. To this end, authors have employed heavy L,-regularization, for
example, Simonyan et al. (2013), a mix of different regularization methods as, for
example, Olah et al. (2017), or even more complex image statistics, for example,
Mordvintsev et al. (2015). The selection of the regularization has a large influence
on the result and, hence, a large part of the explanations created by these methods
are determined by the implementation of the explanation method rather than the
deep neural network it aims to explain.

2.4.2.5 Explanation by Example

A class of models that are intuitively explainable are nearest neighbor classifiers.
These classifiers simply compare the input at test time to all training inputs, select
the & closest inputs and predict the most common label among these for the test
input. To explain of this classifier’s decision, one can look at the closest examples
from the training data.

The core of these methods is the definition of similarity. Obviously, when classi-
fying, for example, natural objects in images, the Euclidean distance is not a good
measure for similarity as it is massively dependent on the background, it is not in-
variant to translation or rotation, and perturbations of the same Euclidean distance
have very different perceived distortion as demonstrated, for example, in Wang
(2004).

One way to overcome these shortcomings of the euclidean distance is kernels,
which allow us to translate an arbitrary notion of similarity into a euclidean distance.
One interpretation of deep neural networks used, for example, by Simon et al. (2017)
and Simon et al. (2018), is kernelized linear discriminant analysis. To this end, the
whole neural network is the feature function of the kernel, and the last linear layer
performs a logistic regression in the feature space.

Therefore, to explain a deep neural network, we can search for the closest train-
ing examples in this feature space. These examples can be presented to the user
to explain of the learned invariances or to identify important features that all pre-
sented examples share. In particular, it is useful when understanding why the deep
neural network failed to classify some inputs correctly.

Caruana et al. (1999) recommended this method for neural networks in a medi-
cal example. Since then, multiple improvements where recommended. For instance,
Tschandl et al. (2020) present similar images from each class and Simon et al. (2017)
and Simon et al. (2018) use not the whole representation but localized representa-
tions to find not entire images but regions of images that are similar according to
the deep neural network. This progession is especially significant since we expect
a good classifier to be invariant with respect to translation and rotation of objects.
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This invariance leads to semantic areas of an image being detected in various image
locations.

However, this explanatory method has some weaknesses. For example, the
method only presents similar images and does not show why the images are similar.
This point is key when using this method to understand a classifier, but is difficult
when the images have multiple similarities or no obvious similarities. Therefore, the
method can lead to ambiguous results that require a lot of further interpretation.

2.5 Background of Adversarial Examples

Adversarial examples were introduced for neural networks by Szegedy et al. (2013).
They observed what they called blind spots in neural networks. They state:

“Our main result is that for deep neural networks, the smoothness as-
sumption that underlies many kernel methods does not hold. Specif-
ically, we show that by using a simple optimization procedure, we are
able to find adversarial examples, which are obtained by imperceptibly
small perturbations to a correctly classified input image, so that it is no
longer classified correctly.” Szegedy et al. (2013)

This observation is the foundation of the definition of adversarial examples. For
a given input image I, a corresponding adversarial example A; with respect to a
classifier F'is an image that meets two conditions:

1. The difference = between the example I and the adversarial example A; is
imperceptibly small,

A;r=1+7 s.t. 7imperceptibly small. (2.74)

We call 7 the adversarial perturbation.

2. The example [ is classified correctly by the classifier F' as ¢*, but the corre-
sponding adversarial example A; is classified as a different class c. Meaning

F(I)=c", F(Ar)=c st. " #c (2.75)

A real-world example for such a combination of an image 7, a corresponding adver-
sarial image A; and the adversarial perturbation 7 can be found in Figure 2.2.

This observation is intriguing because it challenges three fundamental beliefs
about deep neural networks. First, it seems to contradict to the impressive gener-
alization performance of deep neural networks against random noise. The imper-
ceptibly small perturbations seem not connected to any class and look like random
noise. Second, it contradicts the common belief that deep neural networks are hier-
archical feature extractors. This belief is a claim made by multiple authors Erhan
et al. (2009); Olah et al. (2017). They state that the first layer of neural networks
extracts basic features such as edges or colors, subsequent layers extract features
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Class Prob. Class Prob. Class Prob.
Spoonbill  0.9999 Wall Clock 0.3068 Library 0.6289
Flamingo  0.0001 . e . e

Am. Egret 0.0000 Spoonbill  0.0003 Spoonbill  0.0152
Library 0.0000 Library 0.0000 Wall Clock  0.0000

Figure 2.2: An example for an original example on the left, an adversarial perturba-
tion in the middle (magnified) and the combined adversarial example on the right.
The output of the classifier is listed below the images. The original image is correctly
classified as a spoonbill, and the adversarial image is classified as a library. For
this example, we used a ResNet50 classifier (He et al. (2016)) trained on ImageNet
(Russakovsky et al. (2015)). We used the Projected Gradient Descent attack presented
in Madry et al. (2017) to calculate the adversarial perturbation. Photo by luis rock
from Freelmages

comprised of these basic features, such as corners or basic shapes. Every higher
layer then extracts features built of the features in the layer bevor until we end up
with high-level features that detect object parts, for example eye shapes. This idea
of a hierarchical classifier was used as motivation for other research like Simon
and Rodner (2015) and discussed critically, for example, by Dong et al. (2017). The
notion of adversarial examples is not compatible with this idea of a hierarchical
feature extractor. The small perturbation used to change the prediction of the deep
neural network is imperceptible. In particular, it does not change basic, easily
perceptible features of an image, such as edges. Since these basic features are still
intact, features that are simply combinations of these features should not change
either. The observations, however, speak a different language. In Dong et al. (2017),
the authors investigate the difference of neurons to images and corresponding
adversarial images. They found that neurons in the first layers respond similarly
to the original image and the image containing the adversarial perturbation. In
contrast, the neurons in later layers respond vastly differently to the original and
the adversarial image. The authors conclude that neurons from later layers do
not react to high-level semantic features but just to more complex pixel patterns.
Third, this seems to be a contradiction to the postulates of Niemann (1990) that are
fundamental to many theoretical arguments in pattern recognition. A selection of
these postulates states:
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Postulate 2: “A (simple) pattern has features that characterize its mem-
bership in a certain class.” (Niemann, 1990)

Postulate 3: “Features of patterns of one class occupy a somewhat com-
pact domain of feature space. The domains occupied by features of
different classes are separated.” (Niemann, 1990)

Postulate 6: “Two representations are similar if a suitably defined dis-
tance measure is small.” (Niemann, 1990)

An imperceptibly small perturbation only changes the features that characterizes
its membership in a certain class very little. Especially in tasks that are easy for
humans such as the classification of photographs of everyday objects, the features
that are important for the inference of the correct class are very perceptible. The
influence an imperceptibly small perturbation can have on them is very limited.
Consequently, according to the second postulate, the original and corresponding
adversarial image contain the same characteristic features. According to the sixth
postulate, the original image and the corresponding adversarial attack are close
concerning a suitably defined distance measure. Further, since the features of
patterns of one class occupy a somewhat compact domain that is separated from
the domains occupied by features of different classes, such a small perturbation
should not be able to change the classification of a pattern.

Since the existence of these adversarial examples challenge fundamental be-
lieves a lot of research has been conducted to shed light on how adversarial exam-
ples can be created, on why adversarial examples exist, how the above-mentioned
contradictions can be resolved and how neural networks can be defended against
such attacks.

2.5.1 Creation of Adversarial Examples

The main idea for creating adversarial examples is to calculate the gradient of the
difference between the score of the target class and the original class depending
on the input image. Then we look for the smallest perturbation in this direction
that moves the image across the decision boundary. The classifier is a non-linear
function, and the derivative of the original score-difference is only a linear approxi-
mation of these functions. Hence, most methods use an iterative approach where
they make an initial guess and update it using the gradients at this initial guess. Mul-
tiple methods for the details on how to make initial guesses and how to update them
are proposed in the literature, each of which has advantages and drawbacks. In this
work, we introduce only some representing of the main ideas. These ideas include
the original algorithm introduced in Szegedy et al. (2013) and its improvements
created in Goodfellow et al. (2014b) and Madry et al. (2017). Further, we present
the DeepFool algorithm presented in Moosavi-Dezfooli et al. (2016), the algorithm
presented in Carlini and Wagner (2017) and the one-pixel attack described by Su
etal. (2019).

The first algorithm to create adversarial examples is proposed by Szegedy et al.
(2013), with the observation that adversarial examples exist. They propose to use the
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L-BGFS algorithm, a memory-efficient variant of the Broyden-Fletcher-Goldfarb-
Shanno algorithm (Fletcher (2013)). This algorithm uses the direction indicated by
the initial derivative and then performs a line-search in this direction to find the
perturbation of minimum size. Since the initial direction might not be optimal, this
can lead to larger than necessary perturbations.

Goodfellow et al. (2014b) introduced the Fast Gradient Sign Method (FGS) to
speed up the calculations. The idea of that method is to use the sign of the gradient
as a direction and make a fixed size step in that direction. As such, the method is
very fast but the resulting perturbations might be larger than necessary or might
not lead to misclassification.

Another optimization technique to generate adversarial examples proposed by
Madry et al. (2017) is the projected gradient descent. The main idea is to use the
FGS algorithm iteratively. This change increases the quality of the results while also
increasing the time spent for each example.

The DeepFool algorithm introduced in Moosavi-Dezfooli et al. (2016) approx-
imates the decision boundary around the data point as a polyeder. It uses the
derivative at the original image to find the direction of shortest distance to the edge
of this polyeder. They find the smallest perturbation that should lead to a different
classification in that direction. Afterward, if the classification has not changed, they
repeat the process with the perturbed instead of the original image. While this leads
to very small perturbations that consistently change the classification of the image,
the algorithm is quite slow.

The idea presented in Carlini and Wagner (2017) is to replace relevant parts of the
network that hinder backpropargation. The final decision function of a deep neural
network is trained to look like a step function. Since step functions do not create
gradients suitable for optimization, it gets replaced by a different function. The
authors of Carlini and Wagner (2017) propose different replacements depending on
the desired properties of the adversarial example.

A different approach to the ideas presented above is proposed in Su et al. (2019).
The authors of that paper produce adversarial examples that differ only in one pixel
from the original image. The authors do not use a version of gradient descent but
differential evolution to find these adversarial perturbations.

Many more algorithms are proposed to create adversarial examples, for exam-
ple, BIM (Kurakin et al., 2016), JSMA (Papernot et al., 2016b), Decision Tree Attacks
(Papernot et al., 2016a), D-Patch (Liu et al., 2018b), Elastic-Net Attack (Chen et al.,
2018), HCLU (Grosse et al., 2018), HopSkipJumpAttack (Chen et al., 2020), Newton-
Fool (Jang et al., 2017), Shadow Attack (Ghiasi et al., 2020), SimBA (Guo et al., 2019),
Square Attack (Andriushchenko et al., 2020), Wasserstein Adversarials (Wong et al.,
2019), ZOO (Chen et al., 2017) and the decision-based attack (Brendel et al., 2017).
These algorithms share the ideas mentioned above and present improvements or
different compromises between runtime and quality of the resulting adversarial
examples.
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2.5.2 Intriguing Properties of Adversarial Examples

Another large field of research focuses on a better understanding of adversarial
examples. Researchers have found several intriguing properties of adversarial exam-
ples. These properties make the problem of adversarial examples more interesting
and allow us to reduce the number of possible reasons for adversarial examples.
In the following, we briefly introduce the properties that, in our opinion, are most
relevant to understanding the reason for adversarial examples.

2.5.2.1 Adversarial Examples Exist for Almost Any Kind of Data, any
Task and Any Network Architecture

The first observation of adversarial examples is made by Szegedy et al. (2013) for
a classification task on ImageNet (Russakovsky et al., 2015) data. In that dataset,
real-world images have to be classified as one of 1000 classes, some of which are
fine-grained, for example, different breeds of dogs, while others are more coarse,
for example, airplanes and libraries. However, later researchers showed that the
problem of adversarial examples is not limited to this kind of task. Goodfellow et al.
(2014b) reveal that almost every task and example within a dataset is vulnerable to
adversarial examples. The problem is further in no way bound to computer vision.
Adversarial examples are also observed in other tasks, for example, natural language
processing (Carlini and Wagner, 2018) or text (Ebrahimi et al., 2017). Further, the
problem of adversarial examples is not exclusive to neural networks. For example,
Dalvi et al. (2004); Lowd and Meek (2005) present ideas on robustness against an
adversary for classic machine learning methods and Tatu et al. (2011) present an
algorithm to derive adversarial examples for a classifier based on histogram of
gradient features.

2.5.2.2 Adversarial Examples do not Resemble the Target Class

Another observation made, for example, by Goodfellow et al. (2014b) about ad-
versarial examples is that neither the adversarial perturbation nor the resulting
adversarial example visually resembles the target class. This observation is impor-
tant. As demonstrated, for example, in Figure 3.2, we expect the classification of
a neural network to change if we mix important features of a different class into
the image. Especially if the target class has simple, decisive features, even a small
perturbation adding this feature can be enough to change the classification decision
of a neural network. However, the same happening without adding a clear feature
of the target class is intriguing. We further visualized this effect in Figure 2.2.

Using the fact that adversarial perturbations do not change the correct label
of the example, Goodfellow et al. (2014b) suggest using it to generate adversarial
examples data augmentation. They claim that this data augmentation aids general-
ization.

One reason for this observation might be that deep neural networks have found
clear, decisive features that are not obvious to humans. Since deep neural networks
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have reached superhuman performance in many vision tasks, for example, object
classification (Russakovsky et al., 2015) and in automatic skin lesion classification
(Tschandl et al., 2019), it is fair to assume that deep neural networks have found
meaningful features that are not obvious to humans.

2.5.2.3 Adversarial Examples are Robust to Random Noise

Even though adversarial examples result from an exact calculation process, the
adversarial perturbations look like random noise and do not resemble the target
class (comp. Figure 2.2). This property is intriguing, as neural networks have proven
to generalize well against noise. A natural attempt to mitigate the problem is, hence,
to either add gaussian noise to the adversarial example to obfuscate the adversarial
perturbation (Tabacof and Valle, 2016) or to use methods that have proven to be
effective against other kinds of noise, for example, denoising autoencoders (Gu and
Rigazio, 2014). Tabacof and Valle (2016) compare the robustness of adversarial and
original images to noise. They generate pairs of clean and adversarial examples.
Then they add random noise of increasing norm to both the adversarial and original
image. During this process, they measure whether the classifier’s prediction changes
due to the noise. They find that the noise needed to change the classification of
an original example is of a similar magnitude as the noise needed to change the
classification of an adversarial example. Even though the original examples are more
robust, they conclude that the adversarial examples are by no means isolated points
but populate dense areas. Bai et al. (2017); Gu and Rigazio (2014) use an autoencoder
to denoise the adversarial examples. While they found reasonable success against
an adversary not aware of this defense, they found it easy for an adversary to create
adversarial examples for this combination of two deep neural networks. Similarly,
Li and Li (2017) and Lu et al. (2017) try to evaluate the statistics and distributions in
later layers of the deep neural network to identify adversarial examples. However,
while they show significant differences in the distribution of adversarial and original
examples, these differences are not enough to decide whether a single example is
adversarial or themselves vulnerable to adversarial attacks. Further analysis about
the connection between the robustness against adversarial examples and random
noise can be found in Fawzi et al. (2015, 2018, 2016); Gilmer et al. (2019); Rozsa
et al. (2016a); Stutz et al. (2019); Su et al. (2018); Tsipras et al. (2018). In summary,
adversarial examples are not isolated and, therefore, simply adding noise can not
reliably recover the correct classification.

2.5.2.4 Adversarial Examples are Transferable Between Different
Networks

As described in the previous paragraph, the threat of adversarial examples can not
be reliably mediated by adding random noise or using denoising autoencoders.
However, most attack algorithms rely on specific model parameters to calculate a
gradient. To this end, a natural strategy to defend a neural network is to hide these
parameters and not do allow an attacker to calculate a gradient. Unfortunately, this

55



Chapter 2 | BACKGROUND AND BASICS

defense did not prove to be effective. Different researchers found that adversarial
examples derived for one classifier are likely to fool other classifiers. For example,
Szegedy et al. (2013) find that an adversarial example created for a handwritten digit
classifier trained on one half of the MNIST dataset (LeCun, 1998) can be transferred
to the same model trained on the other half. Further, researchers have demonstrated
that adversarial perturbations can transfer between different examples, forming
universal adversarial perturbations (Metzen et al., 2017; Moosavi-Dezfooli et al.,
2017). Adversarial examples transfer between deep neural networks with different
architectures (Li et al., 2019a; Tramer et al., 2017b) or even from more traditional
classifiers to deep neural network classifiers (Papernot et al., 2016a). In conclusion,
adversarial attacks can be transferred between classifiers. Hence, hiding the param-
eters, the architecture and the data on which the classifier is trained does not pose a
valid defense. The transferability of adversarial examples further demonstrates that
adversarial examples are not due to overfitting effects that over-emphasize single
examples, as such deficits would not be transferable to classifiers trained on other
datasets.

2.5.2.5 The Curvature of the Decision Boundary Near Adversarial
Examples is Positive and the Direction of Adversarial
Perturbations is Similar Across Multiple Examples

If a perturbation changes the classification of an image, it has to “push” the ex-
ample over the decision boundary. Multiple researchers observe that the decision
boundary is negatively curved (Moosavi-Dezfooli et al., 2019; Tramer et al., 2017b)
at the adversarial examples. This observation leads to investigations between the
geometry in the feature space and adversarial examples (see, for example, Gilmer
etal. (2018b); Stutz et al. (2019)). The fact that this curvature is negative is especially
surprising in high dimensions, as the area close to the decision boundary is much
larger on the side of positive curvature than negative curvature.

2.5.2.6 The Correlation Between Robustness and Accuracy

Another property of adversarial examples that has been investigated is the con-
nection between accuracy and adversarial robustness. While early research like
Rozsa et al. (2016a) concluded that accuracy and robustness are positively corre-
lated, newer research, for example, Su et al. (2018); Tsipras et al. (2018), find that
robustness and accuracy might conflict.

2.5.3 The Threat Level due to Adversarial Examples

Adversarial examples seem like a serious real-world threat, given the difficulty of
defending deep neural networks against them. This fact is further corroborated
by the research of, for example, Eykholt et al. (2017), Metzen et al. (2017) and
Sharif et al. (2019). Their research suggests that adversarial attacks are robust
enough to be carried out in the wild. Eykholt et al. (2017) create adversarial stickers
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that change the classification of a street sign even if photographed from multiple
angles and distances. Metzen et al. (2017) suggest a method to create adversarial
patterns that can be added to any image of an automobile camera and removes the
pedestrians from the segmentation map of the image. Sharif et al. (2019) present
patterns that can be printed on cloth or accessories like glasses that can doge
face recognition or detection by neural networks. However, Gilmer et al. (2018a)
describe, it is difficult to define a concrete thread scenario, where an adversarial
attack against an automatic classifier would be the easiest option for an adversary.
If we want to hinder the recognition of a street sign, it might be easier to either
remove or exchange it. If we can add noise to the image captured by a camera
in an autonomous car, we can simply replace the entire image instead of adding
imperceptible noise and, finally, an adversary that wants to doge face recognition
might simply wear a mask instead of glasses with an adversarial pattern.

Hence, our main interest in adversarial examples is not driven by security but by
curiosity. The existence of adversarial examples does not agree with some common
assumptions made when working with deep neural networks and understanding
why they exist. It will help us develop better neural network classifiers.

2.5.4 Theories on Why Adversarial Examples Exist

Given the intriguing properties of the adversarial examples, they reveal that we
have to reevaluate our knowledge of deep neural networks. To this end, multiple
researchers have proposed theories on why adversarial examples exist. As they
proposed theories of how deep neural networks learn from data that include the
existence of adversarial examples. These theories help us to better understand
deep learning as a whole better. In the following, we introduce some of the most
important theories on why adversarial examples exist. Note that, just because a
theory can not explain all properties of adversarial examples, it does not have to
be wrong. It is, instead, very likely, that multiple phenomena cause the effect of
adversarial examples, and adversarial examples caused by different phenomena
will have different properties.

2.5.4.1 Pockets of Low Probability

The original publication, Szegedy et al. (2013), that introduced adversarial exam-
ples, also proposed the first explanation on why they might exist. They propose
that adversarial examples form pockets of low probability that are dense in the
feature space, similar to how the rational numbers are dense in the real numbers
form a dens but zero-probability set. In other words, adversarial examples are an
overfitting effect, where a classifier approximates the true decision function using
an approximation with higher complexity than the true decision function. This
explanation is capable of explaining why adversarial examples exist close to every
example in the data set but do not occur naturally in the training or test set.

It is only half of an explanation, as it is unclear why deep neural networks
would create such pockets in the first place. However, this question is central to
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understanding the properties of adversarial examples. For example, the fact that
adversarial perturbations transfer between different neural networks trained on
different datasets and between different examples in the same dataset indicates
that the position of these pockets is far from random.

Further, small isolated pockets would not be robust to random noise. This theory
can explain the observation by Tabacof and Valle (2016). The same holds for the
observation that the curvature is negative. If adversarial examples formed small
pockets, we would expect the curvature of the decision boundary that we cross from
outside to inside to be positive. But it was consistently found to be negative by, for
example, (Moosavi-Dezfooli et al., 2019; Tramer et al., 2017b).

2.5.4.2 Networks Only Learn a Low Dimensional Manifold and are
Random Outside of It

It is known that real-world images only form a low dimensional manifold inside the
pixel space [0, 1]™. One proposed theory is that deep neural networks only make
viable predictions for the data on this manifold. In contrast, the predictions outside
this manifold mainly rely on the random initialization.

While a lot of research indicates that the neural network behaves differently
inside and outside the data manifold (Stutz et al., 2019), the random initialization
can not explain the properties of adversarial examples. Even though this theory
explains why the curvature is negative, it does not explain why adversarial examples
are transferable between different neural networks or between different examples.

2.5.4.3 Diminishing Learning Effect of Positive Examples

This theory was proposed by Rozsa et al. (2016b). They suggest that the deep
neural network mainly focuses on wrong classifications during training. To this end,
the authors claim that neural networks build homogenous regions around falsely
classified examples. In contrast, correctly classified examples do not contribute as
much to the loss, and, hence, no homogenous regions are built around them.

Even though this theory does not attribute the existence of adversarial examples
to overfitting, the resulting classifier is similar to the classifiers proposed by the two
previous theories. The classifier will work well in regions where many datapoints
are present and will be basically random in other areas. Therefore, this theory can
explain the same properties of adversarial examples like the ones above.

2.5.4.4 Networks are Too Linear

An alternative to the abovementioned theory of small pockets that attributes the
existence of adversarial examples to overfitting of a classifier due to high complexity
is presented by Goodfellow et al. (2014b). The authors propose that the reason
for adversarial examples is that the non-linear true decision function can not be
approximated well enough by the piece-wise linear function represented by the
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deep neural network. Hence, they attribute the existence of adversarial examples to
an underfitting effect.

Many of the observations corroborate this claim. First, multiple algorithms that
have proven effective to generate adversarial examples, for example, the L-BFGS
algorithm (Szegedy et al., 2013), are linear. Second, since different networks ap-
proximate the decision boundary similarly, this theory can explain why adversarial
examples are transferable between neural network classifiers. Further, since the
dimensionality of the feature space is high compared to the number of examples,
we expect every example to lie close to the decision boundary.

However this theory can not explain why adversarial perturbations transfer
between different examples within a dataset, as observed, for example, by Metzen
etal. (2017) and Moosavi-Dezfooli et al. (2017). Underfitting the decision boundary
would lead to pockets at both sides of the decision boundary. Hence, it is also
difficult to explain why we find the curvature negative.

2.5.4.5 Adversarial Examples are a Natural Consequence of Imperfect
Generalization

Similar to the previous theory of the neural network being too linear, this theory also
attributes the existence of adversarial examples to an underfitting problem of the
classifier. Similar to the abovementioned theory, the idea is that a neural network
only approximates the true decision boundary and, hence, will create pockets next
to the decision boundary. The idea of how this creates adversarial examples is
the same as in the previous theory, and, hence, it explains the same observations.
Additionally, however, Gilmer et al. (2018b) and Gilmer et al. (2019) present more
evidence for this theory. They present empirical evaluations and calculations in toy
examples to corroborate this theory.

A significant consequence of this theory would be that the accuracy and the
adversarial robustness are correlated. Multiple researchers investigated the con-
nection between accuracy and adversarial robustness. While early research like
Rozsa et al. (2016a) concluded that accuracy and robustness are positively corre-
lated, newer research, for example, Su et al. (2018); Tsipras et al. (2018), find that
robustness and accuracy might conflict.

2.5.4.6 Boundary Tilting Perspective

Another theory on why adversarial examples exist is the boundary tilting perspective
introduced by Tanay and Griffin (2016). The main idea behind this theory is that
the decision boundary is underdefined due to the sparsity of the data. The locally
linear decision boundary is tilted randomly along the axis where the data has little
variation. To corroborate the claim that random tilting takes place and can lead to
adversarial examples, the authors present two simple examples using linear support
vector machines. The tilting of their decision boundary can be controlled with
the regularization parameter of the support vector machine. In these experiments,
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the misclassifications that result from a tilted decision boundary visually resemble
adversarial examples.

The high dimensionality of the data should ensure that there is a decision bound-
ary close to every example in most tasks. This fact explains why there is an adver-
sarial example close to every example. Since the decision boundary is in only one
direction from the example, random noise that expands in all directions will rarely
cross the decision boundary. Hence, adversarial examples will be robust to random
noise. This theory can also explain why adversarial examples transfer between
examples. Since the adversarial perturbations are along the axis of low variance in
the data, the direction will be the same for different examples and classifiers. How-
ever, this theory can not explain the observations on the curvature of the decision
boundary.
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3.1 A Definition for Adversarial Examples

Despite the impressive amount of research conducted on adversarial examples
(see Section 2.5), there is still disagreement on some fundamental aspects. One of
these aspects is the definition of adversarial examples. In Szegedy et al. (2013), the
authors state that adversarial examples are “imperceptibly small perturbations to a
correctly classified input image, such that it is no longer classified correctly.” To turn
this description of adversarial examples into a mathematical definition, one has to
give a formal definition for its important parts. Authors use a variety of definitions
that focus on different aspects of this initial description. In this section, we, first,
introduce a selection of these definitions and discuss the selected focuses. Second,
we propose our definition of adversarial examples and compare it to the definitions
from the literature.

3.1.1 First Definition

The first definition is proposed by Szegedy et al. (2013). In the notation from
Section 2.5, they define adversarial examples as any feasible solution to the opti-
mization problem

min||7|]2  s.t. (3.1)
FIl+71)=c#c" (3.2
I+7€[0,1]™. 3.3)

This definition aims to find a perturbation that changes the output of the classifier
F (3.2) under the restriction that the resulting input should still be an image (3.3).
This definition, however, is far from the original description of adversarial examples.
It does not capture the idea of imperceptibly small perturbations, as a feasible
solution to this problem could be arbitrarily large. Therefore, it does not capture
the intriguing part of adversarial examples. In particular, every correctly classified
example I. of class c would be an adversarial example to every correctly classified
example /.- of class ¢*. Therefore, 7 = I. — I.~ is a feasible solution since

F(Ios+T7)=F(Ip+1.— 1) =F(I.) =c (3.4)
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and
Ip+7=1Ip+1,—I-=1¢€[0,1]™ (3.5)

hold. Hence, we follow Gu and Rigazio (2014), which states that:

“One could always engineer an additive noise at input to make the model
misclassify an example, and it is also a problem in shallow models such
as logistic regression Szegedy et al. (2013). The question is how much
noise is needed to make the model misclassify an otherwise correct
example. Thus, solving the adversarial examples problem is equivalent
to increasing the noticeability of the smallest adversarial noise for each
example.” (Gu and Rigazio, 2014)

3.1.2 Restricting the Norm of Tau

Various researchers, for example, Kurakin et al. (2016) and Tramer et al. (2017a),
have used stricter definitions for adversarial examples since the previous definition
is too loose and classifies too many input images as adversarial examples. The main
approach in this direction is to limit the norm of the perturbation 7 leading to the
optimization program

min||7]]2  s.t. (3.6)
F(I4+71)=c#c" (3.7)
I+rel0,1]™ (3.8)
I7ll <e (3.9)

However, neither /,-norm is considered a good measure for imperceptibility, as
discussed in Wang (2004) and Zhang et al. (2018b). While most researchers agree
that a very small norm of a perturbation leads to imperceptibility, the threshold
of which perturbation is still imperceptibly small is highly subjective. Different
authors have proposed different values. For example, Madry et al. (2017) limit the
infinity norm ||7|| to 0.3 for an MNIST (LeCun, 1998) example and to ||7||~ < 8 for
an experiment on CIFAR (Krizhevsky et al., 2009). But authors not only disagree on
the threshold for different applications but also report different values for € on the
same task, and some authors, for example, Kurakin et al. (2016) and Tramer et al.
(2017a), report multiple thresholds for one task. These discrepancies demonstrate
the difficulty in measuring imperceptibility.

Further, perceptibility also depends on the user. Outside of computer-vision
applications, any perturbation might be imperceptible for non-experts. Especially
in unusual data that requires expert knowledge, such as medical data or climate
data, it will depend on the user’s expertise whether a perturbation is perceptible.

Therefore, most authors disregard the perceptibility and focus on the notation
of small. However, while the notation of small is more objective than the notation
of perceptibility, defining what constitutes a small perturbation is still not straight-
forward. To this end, we present an example to illustrate that the size of a small
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Figure 3.1: The ground truth for the class of an input uniformly distributed on [0, 1]>.
The first class is marked red and the second blue. On the left, the average norm of the
smallest perturbation needed to change the label of an input is 0.0167, while on the
right, it is 0.25.

e

Figure 3.2: Linear interpolation between an image of a car and an image of a horse
from the CIFAR-10 data set (Krizhevsky et al., 2009). The parameter )\, defined in
(3.10), increases by 0.1 in every image, starting at zero on the left and ending at one
on theright.

perturbation depends on the data set and can be different even if the dimension,
the scaling, the number of classes, and the area per class are the same in two data
sets.

For an adversarial example 7+ to be close to the corresponding input example 7,
we need the adversarial perturbation 7 to be of small norm ||7|| < T'. The threshold
T is not only subjective but also depends on the data set. Obviously, 7" will be
bigger if the input data is in the range [0, 255] than if the input data is in the range
[0,1]. Further, the data manifold of real images is often much smaller than the
input space. Small perturbations relative to the data manifold will be smaller than
small perturbations relative to the input space. Additionally, the relative position of
examples in the feature space is important to determine what perturbation can still
be considered small. As described above, a large enough perturbation will always be
able to change the prediction of a classifier. Therefore, to count as small, we want a
perturbation to be small compared to a perturbation that changes the classifier’s
prediction because the content of the image has changed so much, that a human
expert would change their prediction, too. However, the size of a perturbation that
is supposed to change the label depends not only on the number of classes and the
dimensionality of the data but also on the concrete distribution of the data in the
feature space. For example, consider the two binary classification tasks displayed in
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Figure 3.1. The inputs for both tasks are uniformly distributed in two dimensions on
the interval [0, 1]. The ground truth for the classification label is indicated by color.
The blue areas contain examples of class one, and the red areas contain examples
of class two. Both these classes occupy the same area in the input space in both
tasks. While in the first case, in the left of Figure 3.1, a perturbation of norm 0.05
is always enough to change the class label in the second case, on the right, it takes
a perturbation of norm up to 0.707. This example demonstrates that 7' should be
chosen differently, even though the dimensions, the scaling, the number of classes,
and the area per class are the same in both tasks. Furthermore, it demonstrates that
it is impossible to find a data set-independent measure for small perturbations.

In this work, we make the notation of small perturbations more objective. We
compare the adversarial perturbations to the following non-adversarial pertur-
bations to determine what should constitute a small perturbation. We start by
introducing a method that produces a perturbation suited to change the decision
of a classifier in a non-intriguing way. We use the linear interpolation

I« + 1=+ (1 — M) (3.10)

between an example I, from the target class and the original example I.-. The
perturbation 7, is, hence, given by

= Mo — M (3.11)

for A € [0,1].

Note that for A = 0, the perturbed image I.- + 7 equals /.-, and for A = 1, the
perturbed image /.- + 7, equals I.. Hence, for large enough ), the perturbed image
should be labeled as class ¢, as it resembles the target image more than the original
image. For A € (0,1), the perturbed image is a linear interpolation between I
and I, as displayed in (3.10). An example of such interpolation can be viewed in
Figure 3.2.

While this looks very similar to the definition of adversarial examples, it misses
one of the main properties that make adversarial examples intriguing. The adver-
sarial perturbation and the resulting adversarial example do not resemble the target
class. Since the perturbed image following this process is a linear interpolation
between the input and an image of the target class, it will resemble the target class.

We define a perturbation as small if it is small compared to the smallest 7, that
can fulfill

F(I + 1) # ¢, (3.12)

which we calculate through solving the optimization problem

70 :=Er. 1| min |7 st F(l +73) #¢*)|. (3.13)
A€[0,1]

We incorporate this idea of small into the definition of adversarial examples to get
Definition 1.
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Definition 1. For a classifier F' and an input example I .- that is classified as F (I.-) =
c*, an adversarial perturbation T is given by every feasible solution to

min  ||7|| St F(Ie+7)=c#c"
|7l <m0l
The data point I~ + is called an adversarial example. If we construct the adversarial
example for a fixed class c, we call it a targeted adversarial example and c the target
class.

This definition makes the notation of small independent of the data set. It
reduces the task of selecting an individual threshold for each task to selecting one
parameter 1) through the use of 7°. Of course, calculating the expectation in (3.13) is
hard to calculate over large datasets. However, this problem can easily be met by
calculating it only on a representative subset of the dataset. To show that 7 is useful
to make the notation of a small perturbation objective and independent from the
dataset, we conduct experiments in Section 3.3.

3.1.3 Restricting the Perturbation to be Imperceptible

Some papers try to make the idea of imperceptibly small perturbations objective by
focusing on imperceptibility. However, the perceptual similarity is in the eye of the
beholder, and the concept of imperceptibility is challenging to extend to non-image
signals like time series, which only experts might be able to tell apart in the first
place.

We will first elaborate on why it is difficult to measure imperceptibility. A per-
turbation is imperceptible if the perturbed image perfectly resembles the original
image. We argue that no simple function can measure resemblance objectively.
We show that subjective measures by humans depend on the data set, and we give
examples for situations where humans might miss resemblance. Afterward, we
propose a method to objectively measure resemblance on any data set. We propose
to train a second neural network on the adversarial examples and check whether the
patterns it finds in adversarial examples with the same target are useful to identify
the class in clean images.

We start with three reasons why the task of identifying resemblance is challeng-
ing:

First, it is impossible to solve this problem with a simple metric. Measuring
visual resemblance is an open problem, and as described by Wang (2004), there are
multiple arguments not to assume that a simple metric can solve it. The most suc-
cessful way to measure visual resemblance is to use features extracted from neural
networks, as described by Zhang et al. (2018b). This way is, however, problematic in
the setting of adversarial examples.

Second, the visual resemblance between different images depends on the data
set. Compare a data set of real-life photographs and a data set of medical scan
images. The first kind of data is familiar to most observers, and they will easily detect
perturbations and might be able to identify a resemblance. Contrarily, the second
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kind of data is unfamiliar to most observers, and they might miss even significant
perturbations and judge visual resemblance differently than domain experts. The
same is true for data sets of different granularity. Two species of birds might look
similar to many people, even though the difference is distinct to a domain expert.
Therefore, we cannot rely on humans if we seek a data set-independent measure for
visual resemblance.

Third, one strength of deep neural networks is the automatic feature selection.
These features might not be interpretable or apparent for humans. To illustrate,
we describe the following example inspired by Tsipras et al. (2018) of a binary
classification task in which humans and automatic classifiers might prefer different
features. The two classes of the classification task are denoted by y = 1 and y = —1.
For every instance x of these classes, the features are distributed as follows

y  w.p. 0.9
x] = ,
YTy wp. 01 (3.14)

T9y...,231 NN(Oly, 1)

In this setting, a human might consider the feature z; to be most relevant and
especially to be more relevant than the other thirty features since the sign of feature
x1 agrees with the sign of y in 90% of cases and every one of the other thirty features
has only a probability of 54% to share a sign with y. However, the feature that is the
sum over all thirty of these features is of the same sign as y in more than 99.8% of

the cases
31

P (sign( in) = y) > 0.998 (3.15)
=2
and might, hence, be preferred by an automatic system.

A more applied example was presented by Lapuschkin et al. (2019). They used
spectral relevance analysis to understand the behavior of a classifier on horse images
from the PASCAL VOC data set (Everingham et al., 2010). They found many of these
images have a source tag in the bottom left corner. Suppose an adversary aims to
perturb an image to be classified as a horse by adding a light spot to the bottom
left corner. At first, it might seem that this has no visual resemblance to a horse.
However, it is not a random perturbation but resembles many horse images in the
dataset and is, hence, a feature that will generalize well across large parts of this
specific data set.

These examples demonstrate that neural networks might use features that hu-
mans do not consider and that we have to be careful not to disregard features
presented by neural networks as meaningless just because the resemblance to the
target class is unobtrusive at first.

It is difficult to ensure that a perturbation is imperceptible. Researchers claim
that perceptibility is linked to the semantic concept of the object that should be
classified. For example, if we want to classify an object in front of a background,
then a perturbation on the object is more perceptible than a perturbation on the
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background. To this end, researchers have suggested different solutions.

One solution to create adversarial perturbations that are imperceptible is rota-
tions. In classifying real-world images, a rotation of an image should not affect the
correct label. Hence, this perturbation in the relevant feature space is imperceptibly
small, even though it is large in the pixel space. This idea was first suggested by
Goodfellow et al. (2014b) and further explored, for example, by Engstrom et al.
(2019).

A different solution was proposed by Hosseini and Poovendran (2018). They
convert images into the HSV color model and then randomly shift the hue and
saturation components while keeping the value component fixed. They justify this
with the “shape bias” in the human cognitive system.

Rozsa et al. (2016b) replace the /,-norm with the perceptual adversarial sim-
ilarity score (PASS). This score is given by the structural similarity (Wang, 2004)
between an image and its adversarial counterpart. Since this score better corre-
sponds to the human perception, a small structural similarity will better correspond
to imperceptibility than a small /, norm.

Other authors reach imperceptibility by adding the noise to areas that do not
contain the relevant part of the image. Either by perturbing only parts of the image
outside of the bounding box of the object that should be classified (Luo et al., 2015)
or, for example, by perturbing only the lowest of the RGB values of each pixel (Carlini
and Wagner, 2017).

Most of these advances follow a similar idea. They try to measure the distance
between the clean and the adversarial example not in the pixel space. Instead, they
define a suitable space where the distance corresponds to the perceptible distance.
As discussed above, the /,-norm is not suitable to measure perceptible distance
(Wang, 2004). However, Zhang et al. (2018b) state that the later layers of deep neural
networks are unreasonably effective for capturing the perceptive distance. Hence,
in contrast to the abovementioned works, we use deep neural networks to measure
the perceptive distance.

3.2 A Quantitative Score for the Perceptibility of
Adversarial Perturbations

In this section, we derive our score R of adversarial robustness. We focus on whether
a perturbation is imperceptible, which is an important property of adversarial ex-
amples. Following the research mentioned above, a perturbation is imperceptible if
it does not change any suitable feature to distinguish the classes in the classification
task. However, it is difficult to decide whether a feature is suitable to distinguish be-
tween classes. In particular, since deep neural networks have reached superhuman
performance in some image classification tasks, see, for example, Russakovsky et al.
(2015) and Tschandl et al. (2019), a perturbation that seems meaningless to a human
might still be useful. Further, suppose we created adversarial examples for a deep
neural network. We obviously cannot use the same neural network to determine
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Figure 3.3: We show the four steps of our approach. We start with a classifier. We
calculate the closest input that is classified differently. We train a new classifier on
this new set of inputs. We evaluate the new classifier on the original test set.

whether the example has been changed in a meaningful way. The created example
will fool the deep neural network whether it has been changed meaningful or ad-
versarial. We, further, cannot use a different neural network because adversarial
examples are transferable, as described in Section 2.5.

To solve this problem, we use learnability. Let I be an example of class ¢* and
I + 7 anew example classified as class c different than ¢*. If the perturbation 7 is
meaningless with regard to the classification, or if the new example I + 7 is adver-
sarial, it should not be possible to learn how examples of class ¢ look from image
I + 7. On the other hand, if the perturbation is meaningful in the corresponding
feature space, or in other words, if the perturbation 7 is not adversarial, the new
image should contain the relevant features, which the deep neural network uses to
recognize images of class ¢ and, therefore, these features can be learned from the
perturbed image. As a consequence, we can determine whether a perturbation is
advers