Integration of host, pathogen and microbiome -omics
data for studying infectious diseases

Dissertation
in Partial Fulfilment of the Requirements for the Degree of

“Doctor of Philosophy” (PhD)

Submitted to the Council of the Faculty of Biological Sciences

of Friedrich Schiller University Jena

by Mohammadhassan Mirhakkak Esfahani

bornon 10. April 1990 in Esfahan, Iran



Reviewers:

1. Prof. Dr. Gianni Panagiotou (Hans-Knoell-Institute Jena)
2. Prof. Dr. Michael Bauer (Jena University Hospital)

3. Prof. Dr. Adil Mardinoglu (King’s College London)

The defense of the doctoral thesis took place on November 25, 2022 in Jena.

i



111

Table of Contents

INTRODUCTION ..ueutureuessasessasesessasessssesessasessasssssssssssssssssssssssassssssassssasessasansnsnne 1
T, INTECHIOUS QIS@ASES......c.uueeveeeeieereerieerreeseersensssessssssssssssssssssssssssssssssssssssssssssssssssssssssnns 2
1.1. Role of the microbiome in iNfectious diSEASES .....cccccccrereuiirerenriirereniirrerensiereresserrerssesnenes 3
1.2. Fungal infeCtioN........ccoiiiiiiiiiiiiirccrr e 4
{2 N e 11 To [ Lo [0 W || o] [oe 1o K 3 5
1.2.2. ASPEIGillUS fUMIGATUS ........eveeeeiieeeciee ettt ettt e e et e e ettt e e e st e e e e tt e e e sataeeesstaeeeanssaeeessaeeesnsseesassneesnnsens 6

2. Data-driven computational systems biology approaches in infectious diseases
8

2.1. Genome-scale metabolic Modeling..........cccveeiiiiiiiciiiiieerreere e rnnerreeeessees 13
2.1.1. Genome-scale metabolic Model BENEration ..........cocueiiiiiiiiinii e e 15

2.2. Systems biology of microbiome.............ccriiiiiiiiciiirrreeere e e e e e e s ees 17
2.2.1. Metabolic modeling toward microbial community analysis.........ccccceiiiiieeiiiiie e 18

3. Objectives of this diSSErtation.................ceceeevveeeeersseereeiniissisisssseressssssssssssssssnsssssnes 19
3.1. Research qUESLIONS ..o e s e s e s e s e s e e e e e e s e s e e e e 20
OVERVIEW OF THE MANUSCRIPTS ..cuuuitttteeeeerreennneeeeeesnessesseesssssesssssssssssssssnsssssees 25
IMANUSCRIPTS ... iiiiiiiiiiiiiiiiiiiisnsissssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssses 34

No 1. Comparative Transcriptomic Analysis of Rhinovirus and Influenza Virus Infection

No 2. An Integrative Understanding of the Large Metabolic Shifts Induced by Antibiotics
iN Critical HlIN@SS .......cooeeiiei e 51

No 3. Metabolic Modeling Predicts Specific Gut Bacteria as Key Determinants for
Candida albicans Colonization LevVels.............ccccvvvuiiiiiiieiiiiiiiiiiniiieneesssneessssseesssnne 79

No 4. Candida albicans SR-like protein kinases regulate different cellular processes:
Sky1 is involved in control of ion homeostasis, while Sky2 is important for dipeptide
L1 L] T2 1T o 96

No 5. Lactobacillus rhamnosus colonization antagonizes Candida albicans by forcing
metabolic adaptations that compromise pathogenicity .........ccccceeeiriciiirvernreriiiiccrrceennenn. 122

No 6. Candida expansion in the human gut is associated with an ecological signature
that supports growth under dysbiotic conditions...........cccceocuviiviiuriiiiiieiiiiiiiiiiiniiinecicne 173

No 7. A pan-genome resembling genome-scale metabolic model platform of 252
Aspergillus fumigatus strains reveals growth dependencies from the lung microbiome



BIBLIOGRAPHY

ACKNOWLEDGMENTS ..eutetreereeeeasesscsscsssssssssssssssssssssssssssssssssssssssssssssssassassassssses

DECLARATION OF HONOUR ......cciiiiiiiiiinieesesesssssssssssssssssssssssssssssssssssssssssssssssasanes

v






INTRODUCTION



1. Infectious diseases

Infection is the process of invasion of an organism with a disease-causing effect on the host.
It is threatening human health for centuries and remains a serious global problem until this
day. Early scripts describe the Black Death spreading in Europe in the 1300s. Not until many
years after, the germ theory of disease (i.e., certain diseases are caused by the invasion of
the body by microorganisms) was born in the 1500s. The scientific progress in the recognition
of infectious diseases resulted in remarkable findings. In the nineteenth century, Sir John
Scott Burden-Sanderson realized that bacteria cannot survive in a liquid growth culture
covered by mold. In 1871, Joseph Lister discovered the negative influences of
Penicillium glaucum on bacterial growth. In this regard, the word “antibiosis” was defined by
Jean Paul Vuillemin in 1889. This referred to any biological relationship in which one living
organism Kills another to ensure its survival. For instance, the Penicillin discovery by
Alexander Fleming in 1928 was one of the most remarkable findings in this area (Durand et
al., 2019). Later in the middle of the 1900s, during the second world war, Hans Knoell
achieved the penicillin production at a laboratory scale in Germany.

At the beginning of the twentieth century, infectious diseases caused a high mortality
rate in the United States (Armstrong et al., 1999). However, it gradually decreased due to
influencing factors such as better nutrition, better housing, improved hygiene and sanitation,
immunizations (such as antibiotics administration), and safer food and water (Cohen, 2000).
Although known infectious diseases could be reduced this way, new equally deadly infectious
diseases emerged in recent decades. The emergence of newly recognized infections is
mainly caused by factors influencing an increase in host susceptibility (Beldomenico &
Begon, 2010), increase in disease transmission (Grassly & Fraser, 2008), and evolution of
new organisms (Velavan & Meyer, 2020) or drug-resistant microorganisms (Srivastava et al.,
2018), which may be not only bacterial and viral but also fungal in origin. The advent of new
technologies and changes in patterns of social life inevitably resulted in factors that directly
impact the transmission of infectious diseases and the susceptibility of humans to them.
These factors include climate changes due to global warming, increased agricultural land
usage, aging populations in developed and rapidly growing populations in 2" and 3" world
countries, international travel and commerce, and breakdown of public health measures.

Given this global environment, the breakout of new infectious diseases appears
unavoidable, as the recent COVID-19 pandemic has demonstrated with brutal force.
Therefore, it is indispensable to recognize the serious challenge to overcome diseases



caused by pathogenic microorganisms on social and especially medical levels.
Understanding virulence modes and developing efficient treatments against infectious
disease is primarily hampered by constant microbial adaptation and evolution through the
production of beneficial mutations and emersion of new microbial strains. Besides, microbial
evolution potentially adds more complexity to recognizing microbial diversity in human

microbiota, whose pivotal role in developing the infection has been appreciated for years.

1.1. Role of the microbiome in infectious diseases

The human microbiome substantially influences the onset and progression of infectious
diseases as early as birth. Established interactions between the bacterial community and the
host during the evolutionary stages play a critical role in maintaining the health status of
individuals. Studies have shown that the microbiomes of healthy populations comprise
diverse ranges of taxonomic compositions and functional potentials (Huttenhower et al.,
2012; Qin et al., 2010). This complicates the identification of microbial compositions that
deteriorate the health of an individual. In the context of infectious diseases, however, it is
essential to understand microbial composition that potentially induces or prevents
colonization of opportunistic pathogens. For instance, increasing gut bacterial diversity using
oral delivery of fecal microbiota transplantation and preventing recurrent Clostridium difficile
infection has been shown to improve health (Khanna et al., 2016). In general, host-microbe
and microbe-microbe metabolic interactions are key factors in shaping a microbiome
composition that can lead to the colonization of potential human pathogens. In other words,
it causes an imbalance between the commensal and pathogenic microbiome which leads to
dysbiosis. Inflammatory bowel disease, Rheumatoid arthritis, Systemic lupus erythematosus,
and Ankylosing spondylitis are a few examples of inflammatory diseases that are caused by
impaired interaction between intestinal microbiota and mucosal immune system (Shi et al.,
2017). Furthermore, the effect of bacterial interactions on infectious diseases has been
revealed in several studies. Bacterial interactions shape host fitness through life-history
tradeoffs (Gould et al., 2017), potentially cause distinct microbiome of disease and healthy
states (Van Rensburg et al., 2015), and change the severity of the infection diseases
(Korgaonkar et al., 2013). In this regard, available nutrients from the consumed diet by

individuals are key factors shaping the metabolic interaction among the microbial community



as, depending on the metabolic composition, they can be beneficial or detrimental for
individual microorganisms.

The vast majority of the human microbiome is composed of bacterial species with very
low diversity. However, the less abundant part of the microbiome (rare biosphere) (Dethlefsen
et al., 2008) is more diverse and usually contains opportunistic pathogens causing health
issues when the host is compromised. The rare biosphere especially includes the fungal
microbiome (mycobiome) which is orders of magnitude smaller than the bacterial microbiome
(Huffnagle & Noverr, 2013). The role of human mycobiome in human health is recently
appreciated. Yet, there is little known about the dynamics of the mycobiome during health.
Therefore, it appears vital, same as bacterial species, to understand the factors predisposing
to the fungal infection, such as interaction with the microbiome through metabolism and diet

effects.

1.2. Fungal infection

Among the 50,000 to 250,000 identified fungal species (Richardson & Warnock, 2012),
around 600 are associated with human diseases (Brown, Denning, Gow, et al., 2012).
Despite this relatively low diversity, over 150 million severe cases of fungal infection occur
globally resulting in 1.7 million deaths per year (Bongomin et al., 2017). Besides, strain
diversity of individual species is an underestimated factor influencing the spread of infection.
The long-term therapeutic applications using antifungal drugs such as triazoles have elevated
the number of drug-resistant fungal species and strains. Yet, the fungal infection threat has
been underestimated by healthcare authorities (Fausto et al., 2019). Hence, fungal infection
can be counted a global threat that needs more effective research to become neutralized.
Metabolism of fungal pathogens is a key factor in developing pathogenicity. They
establish the infection by absorbing the local nutrients such as carbon and nitrogen sources.
It has been shown that perturbation of carbon, nitrogen, or micronutrient assimilation
attenuates fungal pathogenicity (Ene et al., 2014). Therefore, competition for assimilation of
nutrition sources due to coexistence with the bacterial community and the host appears
critical for the survival and pathogenicity of fungal pathogens. In this regard, identifying
mechanisms by which nutrition is deprived of fungal pathogens can provide insights into how
to counteract the pathogenicity of fungal pathogens. It has been shown that fungal infections

caused by Candida, Cryptococcus, and Aspergillus species are the most prevalent causing



high mortality rate annually (Janbon et al., 2019). This dissertation aims to provide a systems
biology perspective of how fungal pathogens (specifically Candida albicans and
Aspergillus fumigatus) benefit or detriment from coexistence with the microbial community

when metabolically interacting within this complex environment.

1.2.1. Candida albicans

Candida albicans is one of the ~600 fungal human pathogens existing on the earth (Brown,
Denning, & Levitz, 2012). In most individuals, it remains as a harmless commensal in the
human host body. However, it may cause infection under certain circumstances including an
impaired immune system in immunocompromised individuals, dysbalanced microbiota, and
an impaired intestinal barrier (Kumamoto et al., 2020). Diseases caused by opportunistic
C. albicans range from superficial infections like candidiasis in oral cavity, skin, and vagina,
to life-threatening systematic infections causing high morbidity and mortality rate. More than
thousands of Candida species can cause candidiasis, however in almost of the patients,
C. albicans is the most abundant isolate (Pfaller & Diekema, 2007). For instance, up to 95%
of the oral candidiasis (OC) cases are caused by C. albicans (Vila et al., 2020). About 75%
of women suffer from vulvovaginal candidiasis at least once in their life, which is mostly
caused by this fungus (Denning et al., 2018). Gastrointestinal tract has been found to be one
of the suitable niches for colonization of the Candida species increasing the risk of systematic
candidiasis (Nash et al., 2017), especially with suppressed immune system. Furthermore,
experimental models have indicated that C. albicans can enter the bloodstream by
translocating through the intestinal barrier (Kadosh et al., 2016; Vautier et al., 2012).
Therefore, the pathogenicity-leading factors of C. albicans in the intestinal tract can
potentially cause systemic candidiasis.

The results obtained from mouse models and human patients have shown that the
composition of microbiota is critical for establishment of C. albicans colonization (Panpetch
et al.,, 2019; Urzua et al., 2008). Some studies have revealed that mice treatment with
antibiotics, especially antibiotics targeting anaerobic bacteria eases the colonization of the
fungus (Mishra & Koh, 2018; White et al., 2007). In fact, lack of the bacterial species
antagonizing with C. albicans gives the opportunity for the fungus to overgrow and switch to
the pathogenic state (Graf et al.,, 2019). Not only the drug treatment but also the diet
influences the intestinal composition and C. albicans colonization by impacting metabolic

regulations. C. albicans is able to simultaneously consume multiple nutrients. This nutritional



flexibility makes the fungus adapt to environments with nutritional limitations (Miramoén et al.,
2020). Nutrient limitations and competition between bacteria and C. albicans provide
selective pressures that might result in the elimination of less-adapted bacteria and give the
fungus opportunity for growth (Calderone & Fonzi, 2001). Therefore, the interplay between
C. albicans and the microbiome appears to be a key factor in the commensal-to-pathogen
shift of the fungus. A longitudinal study of a cohort of 178 preterm infants has revealed that
C. albicans antagonizes Klebsiella pneumoniae whereas Staphylococcus spp. may
antagonize the fungus (Rao et al., 2021). Another study of 942 human adults has illustrated
a mutualistic relationship between fungal and bacterial kingdoms but failed to uncover
correlations at the species level (Sun et al., 2021). Despite these insights, there is still a
knowledge gap towards a holistic understanding of the functional interactions in the
gastrointestinal tract leading to disturbance or maintenance of the predisposing factors of
C. albicans pathogenicity. For instance, only a system-wide investigation of metabolic trade-
offs and mechanisms involved in interactions can potentially provide new insights into the
weakness and strength of this and likely other fungi. Altogether, there are different studies
towards this aim, yet studies including a theoretical system-wide understanding paving the
way for new approaches to combat the disease caused by fungal pathogens are still scarce.
A major aim of this dissertation was therefore to predict disease modulating fungal
interactions with the bacterial diversity in the gut at the genome-scale metabolic level, which
is inaccessible by experiment alone. These insights have the potential to suggest potential
key modulators of the fungus and thus open doors for designing new treatments against the

infection.

1.2.2. Aspergillus fumigatus

Aspergillosis is the most frequent cause of nosocomial fungal infections (Marr et al., 2002; L.
S. Wilson et al., 2002), which is caused by Aspergillus species. Out of over 600 species in
this genus (Geiser, 2009), A. fumigatus is a primary cause of invasive infection (Brakhage,
2005) and occurs naturally in soils. The proliferation of the fungus in its natural habitat results
in spreading numerous conidia into the air, which are inhaled daily by humans and animals.
The healthy immune system typically responds adequately to entered conidia and eliminates
them. However, the ability of the fungus to adapt in a new habitat, especially in
immunocompromised individuals, is remarkable and has an adverse effect leading to severe

infection (Latgé & Chamilos, 2020). The spectrum of Aspergillus diseases is considerably



broad-ranging from diseases happening in immunocompetent to immunocompromised
patients. In terms of the underlying immune status of the host, Aspergillus diseases are
classified into three groups of hypersensitivity allergy, structural disease with or without
inflammation, and severe immunodeficiency (Latgé & Chamilos, 2020). Severe asthma with
fungal sensitization (SAFS) is an Aspergillus-related type of asthma in immunocompetent
patients which affects millions of patients with asthma (Brown, Denning, Gow, et al., 2012).
Allergic bronchopulmonary aspergillosis (ABPA) is a hypersensitivity disease of the lung in
patients with a high immune response that is mostly caused by A. fumigatus. Aspergillus
colonization in asymptomatic patients with no evidence of invasive or allergic disease is quite
common (Maiz et al., 2015; Mortensen et al., 2011). Chronic Pulmonary Aspergillosis (CPA)
is a progressive type of aspergillosis that destroys lung tissue. It is provisionally estimated
that there are three million patients with CPA worldwide (Brown, Denning, Gow, et al., 2012).

A. fumigatus needs to adapt to its environment to successfully colonize, e.g. new
areas, such as human lungs. This adaptation results from the ability of the fungus to generate
genetic variations through asexual, parasexual, and sexual cycles (Jianhua Zhang et al.,
2021). Most importantly, the variations may be beneficial for the fungus to become
drug resistant causing treatment failure. Hence, it is critical to characterize A. fumigatus
population from different niches and the human host. To this end, the number of available
sequencing data on the fungus has recently increased (Ahangarkani et al., 2020; Barber et
al., 2021; Chen et al., 2020), leading to a substantial increase in knowledge of the genetic
diversity of A. fumigatus at the strain resolution. However, it remains unclear how genetic
diversity is linked to the phenotypic diversity of A. fumigatus strains and how this is leading
to metabolic adaptation either in the human lung or environmental niches such as agricultural
lands. Given that A. fumigatus faces an existing microbiome in the human lung,
understanding the microbiome interaction with the fungus can provide insights into how the
bacterial community influences the clearance or pathogenicity of the fungus. Metabolic
crosstalk between the fungus and bacterial community is one important element of
interaction. For example, Pseudomonas aeruginosa hinders the biofilm formation of A.
fumigatus by releasing some small heat-stable molecules (Mowat et al., 2010). Another study
showed the antagonistic effect of Staphylococcus aureus on A. fumigatus conidia in the co-
culture of the fungus and the bacterium (Granillo et al., 2015). Yet, due to its remarkable
genetic diversity, different metabolic potentials might be employed by the fungus to
counteract any growth disturbing effects of the coexisting microbial community. These
interactions are still poorly understood at a systems level and have not yet exploited systems



biology simulations. Hence, more effective research in this regard at the systematic level are
needed. A major goal of this dissertation is therefore to provide insights into how A. fumigatus
strains isolated from different niches differ in phenotypes and how the different strains
establish a metabolic lung landscape including potentially affecting the lung microbiome in
favor of fungal growth. Towards this aim computational system-wide in silico studies

appeared suitable to study fungal metabolism at the genome scale.

2. Data-driven computational systems biology approaches in infectious diseases

Infectious disease is one of the most important and tractable targets in medical studies. The
evolution of the human immune system and microorganisms contributing to infection and
their interactions inevitably adds complexity to adjusting efficient treatment of infected
patients. For instance, bacterial species and metabolites against a fungal pathogen have
been identified by performing a systematic study of the human gut where fungal and bacterial
species are interacting in patients with antibiotic treatment (Seelbinder et al., 2020). Due to
the prevalence of such complexities, reductionist efforts are not ideal to gain a broad
perspective of infectious diseases and for developing novel therapeutic approaches. One
way to systematically understand these complexities, given the advent of big life science
data, is system-wide computational approaches (systems biology) and particularly constraint-
based or genome-scale metabolic modeling. These approaches are suited to integrate and
combine multiple high-throughput omics- and pathogen-specific data to study respective
infectious diseases in a systematic manner.

Systems biology can provide predictions that upon experimental confirmation or
incompatibility lead to an iterative refinement of the model at hand and thus knowledge gain
that is not feasible by experiment alone (Figure 1). It can be divided into two broad categories:
‘studying biology as a system’ and ‘modeling biology as a system’. The definition of a system
in the former is the analysis of a large amount of data generated using current technologies
(O’Malley & Dupré, 2005). In contrast, modeling aims to integrate and model biological data
at a large, e.g. genome, scale to provide insights that pure data analysis alone cannot.
Modeling can be approached both in a Bottom-up or Top-down manner. The Top-down
approach aims to identify molecular interactions based on the molecular behavior observed
in omics data. The Bottom-up approach infers the molecular mechanisms of the system

based on interactions of known components in the system (Bruggeman & Westerhoff, 2007,



De Lorenzo & Galperin, 2009). The expected outcome of the study using either of the
approaches is a model of the investigated system. The model derived from the Bottom-up
approach gives a mechanistic understanding of how the system works (Arnold & Nikoloski,
2014). The Top-down approach, on contrary, represents a mathematical model that is
capable to predict the behavior of a system given certain parameters (Molina-Mora et al.,
2020). Both approaches have been frequently employed for metabolic network discovery
(Singh & Lercher, 2020), which enables describing the interconversion of metabolites through
encoded enzymes for achieving a particular objective in the cell. In this thesis, the bottom-up

approach was used to build genome-scale metabolic models (GEMs) of fungal pathogens

Model ! Data Analysis

Refinement and Integration

described in the next sections.

Systems Biology Cycle

Wet-lab In silico

Experiments i Simulations

Figure 1. The cycle of Systems Biology. Complex biological phenomena can be identified by a combinations
of modeling and wet-lab experiments. Regarding the research question and available data, a model is
generated. Integrating the biological, the model generates hypotheses by implementing predictions.
Accordingly, wet-lab experiments are designed and performed. If the model predictions contradict the wet-lab
experiment results, the model is refined. This cycle iterates until a model with high predictive power is obtained.

In the context of infectious diseases, the cycle of systems biology makes hypotheses,
tests them, and validates the results in order to gain comprehensive knowledge of host-
pathogen responses, testable models of pathogenesis, diagnostic signatures, and potential
drug targets (Aderem et al., 2011). Testable models include also metabolic models that are
specifically useful for studying the metabolism of infection where the system’s complexity is
rather high due to the coexistence of the host with the microbial community.

Availability of high-throughput data and technologies is one of the crucial prerequisites
for the implementation of a classical iterative systems biology cycle. This cycle includes
integration of data, modeling the system at hand, and refining again upon optional further
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data to reach a model of infection that allows for new hypothesis generation and testing.
Technologies such as next-generation sequencing have given the opportunity to sequence
transcriptomes, non-coding RNAs, and messenger RNAs. In addition, the advent of new
technologies such as mass spectrometry has eased the generation of metabolomics,
proteomics, lipidomics, and phenomics data. Besides analyzing the data to unravel the
phenotypes associated with infection, this thesis mainly aims to integrate them into GEM
reconstruction and analysis. Theoretical metabolic models can predict the phenotypic
behavior of the target organism (described in detail in section 2.1). In this thesis, GEM
reconstruction and analysis provide a testable platform for studying the role of metabolism in
fungal infection. Among the aforementioned omics data, genomics, transcriptomics,
metabolomics, and phenomics are the fundamental data sources used in this thesis and are

briefly introduced next.

Genomics

Genomics enables the study of the genome and reveals its structure, functions, and evolution.
It has been used to improve our understanding of human diseases in medical studies. To this
end, a plethora of genome-wide association studies (GWAS) linked to human diseases have
been conducted in recent years (Cano-Gamez & Trynka, 2020). These studies have
explained how genetic variations are associated with disease-causing effects and identified
mechanisms underlying complex diseases such as autoimmunities, neurodegenerations, and
cardiovascular. Similarly, it has been used to study the genetic causes of infectious diseases.
A GWAS prioritized human genes associated with an increased risk of developing systemic
Candida infection (de Vries et al., 2020). Another study on Helicobacter pylori strains
discovered genetic variants associated with gastric cancer risk (Berthenet et al., 2018).

Given the applicability of genomics analyses for describing the cell functions,
functional genomics allows gaining knowledge about cell metabolism. This information is a
primer to derive GEMs and even improve their qualities, ultimately improving our
understanding of the cell phenotypes. Vital to the survival of human pathogens is interspecies
phenotype variation occurring through evolutionary stages. Multi-strain GEM reconstruction
and analysis (Monk et al., 2013; Seif et al., 2018) is a promising approach to explaining such
population phenotypic variations, which can be derived from a large-scale functional
genomics study at the strain level.
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Transcriptomics

RNA sequencing (RNA-seq) is an evolving technology that makes utilization of next-
generation sequencing (NGS) or deep sequencing to deal with transcriptome profiling (Haas
& Zody, 2010). During the past decades, it has gradually replaced microarrays (Conway &
Schoolnik, 2003) and tag-based transcriptome (Harbers & Carninci, 2005) analysis. Being
both qualitative and quantitative is one of the biggest advantages of this technology. This
ability fulfills measuring the expression levels of expressed genes with even low abundance
levels. Better coverage and resolution compared to the previous methods is another
advantage of this technique. Hence, it has become a better choice for researchers dealing
with transcriptomics analysis.

RNA-seq has been widely employed for studying host-pathogen interactions. The
RNA-seq datasets provide insight into mechanisms of host cell invasion and immune evasion.
It, especially, assists in understanding infection dynamics. It concentrates on how pathogen
regulates the genetic circuits in the host and how that is linked to pathogenesis. These studies
may also open the door for the development of personalized therapies for patients suffering
from different levels of infection. Many studies have shown the efficacy of the RNA-seq
analysis to identify differentially expressed genes and metabolic and signaling pathways as
biomarkers of infectious diseases by using functional enrichment methods such as gene
ontology (GO) and gene set enrichment analysis (GSEA) (Alonso-Hearn et al., 2019; Y. Wang
et al., 2014; J. A. C. Wilson et al., 2017). Yet, considering the transcriptomic data besides
other approaches for investigating metabolism (e.g., metabolic modeling) as another layer

can provide a better resolution for understanding the genotype-phenotype connection.

Metabolomics

Metabolomics is the study of chemical processes involving metabolites. Novel technologies
including different types of mass spectrometry have enabled producing metabolic profiles
giving metabolic cues from the studied organism. The human metabolome project (Wishart
et al., 2007) is one of the remarkable studies in this regard. However, metabolomics rarely
provides a clear explanation for a biological phenomenon on its own and out of context.
Interpretation of metabolomics data can be enhanced by its integration into systems biology
approaches. This includes inferring the regulatory mechanisms in a biological network
(Bruggeman & Westerhoff, 2007), explaining the genetic variations (Suhre et al., 2011), and
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especially integrating the data into GEMs to derive context-specific metabolic networks (Cho
et al., 2019), identify different modes of metabolic regulations (Cakir et al., 2006), and
simulate the dynamic intracellular metabolic changes (Bordbar et al., 2017). As metabolomics
resembles the endpoint of biological processes, such as the end products of enzymatic
reactions, it is especially suited to be included in data-driven systems biology studies of

metabolism to improve GEMs’ completeness and accuracy of its predictions.

Phenomics

Phenomics enables the systematic study of phenotypes of a given organism. It provides
knowledge about phenomes emerging in response to different conditions such as
environmental influences and genetic mutations. For instance, human phenotype ontology
(Koéhler et al., 2017) was created to provide knowledge about observed phenotype
abnormalities linked to human diseases.

Phenotypic Microarray (PM) technology provides phenomics data enabling phenotypic
data analysis on a large scale. PM is a high-throughput technology for testing a large number
of cellular phenotypes at the same time. Each microarray is designed for testing a certain
category of substrates. The ability of the PMs in detecting cell phenotypes has been validated
for the first time by discovering undetected genetic changes in Escherichia coli (Bochner et
al., 2001). The phenotypic characterization includes testing the ability of the target organism
to catabolize basic nutrients such as carbon-, nitrogen-, sulfur- and phosphor-based
substrates, as well as drug and chemical sensitivities. Color changes in wells indicate the
intensity of growth due to redox reactions associated with cellular respiration, which occurs

over hours (https://www.biolog.com/). These experiments dynamically record the growth

signals represented as growth curves which need to be analyzed for correct interpretation. In
general, this platform's applicability includes identifying growth/no-growth conditions and
phenotypic differences when comparing different growth conditions or strains (Vaas et al.,
2012; Vehkala et al., 2015).

Phenotypic microarray data has been widely used for uncovering the characteristics
of mutations of different organisms for the genes whose functions are not well understood
(Jiagin Zhang & Biswas, 2009; Zhou et al., 2003). However, the usage advantage of this data
is not only limited to that. It also provides valuable phenotypic information to tune and test
GEMSs' accuracy in predicting the catabolic capabilities of different substrates (i.e., carbon,
nitrogen, sulfur, and phosphor sources) as it has been shown in many studies in the past
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(Jensen et al., 2020; Liao et al., 2011; Norsigian et al., 2018; B. Wang et al., 2016). The
quality of a metabolic model can then be improved by either filling the gaps (i.e., missing
biochemical reactions and/or metabolites) or removing the false information from the model

through the classical systems biology cycle.

2.1. Genome-scale metabolic modeling

With the emergence of genome sequencing technologies in the past years, the number of
complete genome sequences has been increasing rapidly (Figure 2). Although annotation of
genome sequences provides a huge amount of information about genome functions, the
phenotypes of a given cell can only be understood to a limited extent at the molecular level
based on genome annotation. In biotechnology and medicine applications, the relevant
research questions that a researcher might require to address include the following: How
does bacterial metabolism adapt to environmental changes? How does cell metabolism
respond to genotype modifications? What are the side effects of a particular drug on human
metabolism? Furthermore, confronting the information from the annotated genome and the
observed phenotypes of a given cell might lead to contradictions. For example, it might occur
that while an organism has been shown experimentally to grow on a certain medium, no
sequence might be identified that associates with the uptake or production of a compound
essential for the growth of the organism in the presence of the given medium. One approach
to bridge those gaps between genome-derived biochemical information and metabolic
phenotypes of the living cell is the reconstruction and analysis of GEMs (Palsson, 2015).
These models are built based on the genetic information of the target organism and represent
the association between a single or a group of gene/s and catalyzing a biochemical reaction

in a concise manner.

10000
7500

5000
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2500

Figure 2. The number of peer-reviewed papers on "whole genome sequencing” published per year according
to https://pubmed.ncbi.nim.nih.gov.
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Constraint-based GEMs are a group of models aiming at assessing the metabolic
behavior of the target organism through analyzing the biochemical reaction fluxes under a
certain environmental condition that ultimately shapes the physiological state of the
underlying metabolic network. They represent a network of metabolites flowing through the
edges of the network and converting to each other at nodes reflecting the role of reactions.
Some of those metabolites can be exchanged with the environment. The minimum and
maximum amount of flow of metabolites can be fixed to a certain extent while the network
achieves balanced production and consumption of all intermediate metabolites. This
condition is termed “steady-state,” meaning that it is assumed that there is no accumulation
of molecules in the system. The system is set to achieve a certain objective such as
maximization of the growth rate of the cell (Orth et al., 2010). Metabolic models provide a
mathematical representation of such a system. The mathematical representation is based on
the stoichiometric coefficients devoted to the molecules that are consumed or produced by a
reaction. These coefficients impose constraints on the flow of metabolites through the
metabolic network. All the coefficients for all the reactions in a network can be represented
in a matrix. Considering that the system is running under the steady-state condition, the

following represents the mathematical equation of the system:

maximize (or minimize) Z = f'v (D
suchthat S.v =0
vi<v <vl, j=1,2,..,n
where Z is the objective function, f is the vector of objective function coefficients, S is

the stoichiometric matrix, v is the vector of reaction fluxes. S*v = 0 constrains the network for
steady-state condition. L is the lower bound, and U is the upper bound for reaction j and v, v-
and vV are flux vectors. The boundaries impose the thermodynamic constraints of all defined
metabolic reactions. Ultimately, flux vector solutions can be obtained by using Linear
programming with respect to the mathematically defined objective function (Z in equation 1)
for which the objective flux value is optimized. However, alternative flux distributions towards
the same objective function value exist, since metabolic models encompass more reactions
than metabolites and thus potentially allow for equally possible routes through the given
system (Mahadevan & Schilling, 2003) (Figure 3).



2.1.1. Genome-scale metabolic model generation

Generally, metabolic models substantially depend on the reconstruction efforts including

manual curation to provide sufficient quality, genome coverage, and thus predictive power.

Therefore, one has to ensure sufficient quality when either using published models (if

possible) or when building a model from scratch. In principle, building a high-quality metabolic

model can be broken down into four major steps (Thiele & Palsson, 2010): I) creating a draft

reconstruction; 1) manual reconstruction refinement; 1ll) Conversion from reconstruction to

mathematical model; IV) Network evaluation.
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Figure 3. Toy metabolic network. The optimization problem can be solved to maximize the objective value

of the system (V7 in the toy metabolic model) by using linear programming. Due to the larger number of
reactions than metabolites (seven reactions and four metabolites in the toy model), the set of equations is
underdetermined, and alternate optimal solutions exist.
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In the first step, the draft reconstruction is created based on the genome annotation of
the target organism. Therefore, the initial model contains the collection of genome-encoded
metabolic functions. To this end, several tools and methods have been authored and
developed. A group of tools is aiming at merely building the draft models from scratch without
taking into account further refinements (Arakawa et al., 2006; Notebaart et al., 2006; Pinney
et al., 2005). In contrast, there is another group of tools and methods to generate the draft
models which consider some curation steps in order to represent partially refined models and
consequently decrease the effort for further refinements (Agren et al., 2013; Devoid et al.,
2013; Dias et al., 2015; Karp et al., 2016; Pitkanen et al., 2014; Swainston et al., 2011).
Nevertheless, the automated draft reconstructions often lack the complete information
relevant to metabolism and automated methods partially overlook standards for a high-quality
generation of reconstructions (Faria et al., 2018; Simeonidis & Price, 2015). Hence, manual
curation is essential in the second step of model creation.

In the second step, one must consider several refinements of reconstruction.
Thermodynamically favorable directions of reactions should be identified. This avoids
erroneous energy-generating cycles (EGCs) (Fritzemeier et al., 2017) in the network by which
energy molecules are produced without taking any nutrients. In the case of studying the
eukaryotic cells, genes and reactions should preferably be located in their subcellular
compartments. Having constructed compartments with an optimal number of metabolite
transporters avoids redundant exchanges of metabolites between the compartments and
improves the accuracy of predictions. However, this refinement suffers from a lack of
information on the location of enzymes activity in the cell and inner cell transporters.
Prediction-based tools such as WoLF PSORT (Horton et al., 2007) and gap-filling tools
(Bernstein et al., 2021) can accommodate it to some extent. Gene-protein-reaction (GPR)
association is one of the fundamental features of genome-scale metabolic models by which
the genotype-phenotype relationships can be revealed in simulations. Hence, these require
careful verification in all curation steps to ensure predictive capabilities. The most
conventional objective for microorganisms is growth since the typical goal of a cell is to
maximize its reproduction (Feist & Palsson, 2010). Therefore, estimating the precise
composition of biomass and incorporating the data into the model is vital to ensure the
accurate performance of the model predictions. In general, such refinements, in particular
manual curations, increase the quality of the reconstruction, especially for the details unseen
by the draft reconstruction step.
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After the manual curation, the reconstruction information is converted to a
mathematical format for model evaluation. Assessing the physiological properties of the
model is one of the major efforts in this step. In-silico simulations must be performed to
inspect whether the model is able to capture the substrate usage capabilities, gene
essentiality, and fermentation byproducts. This evaluation relies on the availability of
biological data such as phenotypic data. Phenotypic microarray data shows whether the
target organism can or cannot grow on individual substrates. Accordingly, the contradictions
between the model predictions and the growth data can be fixed by inspecting the metabolic
pathways in the model and correcting them by using the data obtained from the literature and

databases.

2.2. Systems biology of microbiome

With the emergence of metagenome sequencing technologies, the number of advanced
researches on the human microbiome has been rapidly increasing. Analyzing the
metagenomics data, on its own, provides numerous insights regarding the association of
microbial compositions with healthy and disease states such as infectious diseases.
However, there is little knowledge about the interaction of individual microorganisms with
other microbiome members and the host leading to disease and healthy states. Mathematical
modeling, in general, is a promising approach for providing a mechanistic understanding of
microbiome interactions and facilitates revealing the contribution of individual microbiome
members to the disease and healthy states.

The microbiome can be mathematically modeled from different aspects. Some of the
approaches focus on modeling based on sequence real abundance (Vandeputte et al., 2016)
predicting e.g. co-occurrence of microorganisms or agent-based modeling to simulate the
interactions between different communities (An et al., 2009). Investigating the metabolism
dynamics using ordinary differential equations (ODES) is also applied to model the cross-
talks among microbiome members (Van Wey et al., 2016), but generally suffers from a lack
of information on kinetic parameters, which are typically not available for all modeled species.

On the contrary, GEM analysis simplifies the simulations by considering the steady-
state condition in the system. Despite this simplification assumption, it is a promising
approach proven in different medical and industrial applications (Feist et al., 2007; Shlomi et

al., 2011). For this reason, it has also rapidly become a popular approach in microbiome
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studies (Chan et al., 2017; Shoaie et al., 2015). Recent developments in whole genome
sequencing have resulted in the comprehensive generation of metabolic models for the
microbiome bacterial species (Machado et al., 2018; Magnusdottir et al., 2017), facilitating
the modeling of the interplay between microorganisms in the ecosystem. This thesis employs
GEM analysis as a powerful mathematical modeling approach to study the role of the

microbiome in developing fungal infectious diseases.

2.2.1. Metabolic modeling toward microbial community analysis

GEMs have been broadly used for simulating the microorganism-microorganism and
microorganism-host interactions (Jamshidi & Raghunathan, 2015; Medlock et al., 2018).
Simulating an interaction between two bacterial species can provide a mechanistic
understanding of the interaction through metabolites exchanged between organisms.
Simulation of a bacterium-bacterium interaction explained that butyrate production by
Faecalibacterium prausnitzii is elevated with consuming acetic acid secreted from
Bifidobacterium adolescentis (ElI-Semman et al., 2014). Variant methods have been
developed for simulating the interactions among multiple microorganisms at the same time,
which inevitably adds more complexity to modeling (Chan et al., 2017; Koch et al., 2019).
This complexity increases when the target community is at a considerably large scale
comprising hundreds of microorganisms.

In contrast, a pairwise simulation (Figure 4) provides mechanistic insights into the
interaction between two organisms by applying a simpler mathematical formulation (Heinken
& Thiele, 2015). This approach is especially useful for obtaining insights into the direct effect
of one microorganism on another in the community. Each microbe is assumed to be a
separate compartment communicating with the other one through a shared environment,
which imitates a co-culture or complex ecosystem (e.g., human gut). The system's objective
function is considered to be the maximization of the summation of biomass fluxes of both
microorganisms as each one separately tries to maximize its reproduction. The predicted
growth rate of each microbe can be compared to its predicted growth rate when growing
alone. Hence, the simulation suggests either positive, negative, or neutral effects of one
microbe on another in the interaction. As the interaction is encoded in exchanged metabolites

between two microbes, it also provides an in-depth understanding of interaction at the
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molecular level. In the context of infectious diseases, a pairwise interaction reveals how a
pathogen can be benefited or harmed from interactions with individual microbes.
Metabolites play a critical role in interactions among microbiome members. For instance,
long-term dietary influences the composition and activity of the microbes colonizing the gut
(Walker et al., 2011). The metabolomics data can be integrated into GEM analysis of different
species to infer the effect of the metabolites on corresponding cell phenotypes. For example,
it may reveal how metabolites influence the reproduction and colonization of species through
GEM analysis. Large cohort sizes in microbiome studies make comprehensive metabolomics
profiling costly and logistically difficult to perform at a large scale. Hence, in case scenarios
where the metabolomics data is lacking, a computational predictive tool is advantageous to
this aim. Such methods predict the metabolomics profile reflecting the metabolic environment
caused by microbial composition (Yin et al., 2020). Integration of the predicted metabolome
profile into GEM analysis, therefore, can provide a better understanding of how the
microbiome can metabolically influence the colonization of individual members, especially

opportunistic pathogens existing in the biosphere.
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Figure 3. Pairwise interaction between two microbes. Each microbe reaches the maximum possible
growth rate when living in interaction with another microbe. Each microbe can metabolically cross-talk with the
paired one through the shared environment (e.g. intestinal lumen). The diet primarily specifies which
metabolites are available to both GEMs.

3. Objectives of this dissertation

The aim of this dissertation is to apply computational tools and implement systems
biology approaches with a focus on the metabolism of fungal pathogens (i.e., Candida
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albicans and Aspergillus fumigatus) to uncover key factors in the colonization of the
pathogens from a systems biology perspective and unseen by wet-lab experiments alone.
Vital to data-driven modeling is the analysis of wet-lab experimental data to obtain better
resolution for data interpretation. Due to the complexity of the topic, this thesis puts major
effort into the systematic study of the role of metabolism in infection, especially by generating
and analyzing GEMs of human fungal pathogens. Additionally, a part of this dissertation is
dedicated to my contribution to adequate data analysis. As a proof of principle, the thesis
starts with two studies showing the computational approaches' applicability to understand
better or confirm findings obtained by analyzing omics data. Then, it continues with genome-
scale metabolic model reconstruction and analysis of human fungal pathogens as the major

part.

3.1. Research questions

Besides fungal infection, there are a plethora of common infectious diseases originating
from viruses. Influenza and Rhinovirus are the predominant causes of the common cold.
Though major differences in inflammatory or immune response have been detected between
two common disease-causing viruses (To et al., 2018), a systematic transcriptomic analysis
directly comparing influenza and Rhinovirus is lacking. Alongside performing the
transcriptomics analysis, gene set enrichment analysis is carried out to address the following

question: What are the human phenotypes in response to infection with influenza and

Rhinovirus?

As human pathogens never live alone, this dissertation investigates the topic from a broader
perspective by integrating the effect of the microbiome into the study. Microbiome
composition has a high impact on predisposing infectious diseases. Consumption of
antibiotics is very common for treating patients in the Intensive Care Unit (ICU). It has been
shown that antibiotics have a significant impact on the microbial and metabolic composition
of the human gut that might cause an infection-vulnerable microbiome (Seelbinder et al.,
2020). Alongside a systematic investigation of microbiome samples of ICU patients to reveal
the effect of antibiotic treatment on microbial and metabolic changes, genome-scale

metabolic modeling was applied to address the following question: How antibiotic treatment
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alters the contribution of individual bacterial species to the metabolic landscape in the

human gut?

Next, my thesis continues with the major topic, i.e., fungal pathogens, to uncover the role of
metabolism in colonization and overgrowth in connection with the human microbiome.

Recent studies have found associations between changes in the composition of the
gut microbiota and the development of local C. albicans infection (da Silva Dantas et al.,
2016; Forster et al., 2016). However, the potential of gut microbes and individual contributions
of bacterial species to influence the development of systematic candidiasis by the fungus is
not clear. Several studies have shown the impact of different bacterial species on C. albicans
growth using wet-lab experiments (Shirtliff et al., 2009; Thein et al., 2006). For instance, the
probiotic bacterium Lactobacillus rhamnosus is well-known to antagonize the fungus by
inhibiting proliferation (Matsubara et al., 2016), the hypha formation (Allonsius et al., 2019),
and biofilm formation (Rossoni et al., 2018). Yet the interaction for many gut bacterial species
is unknown, as cultivation of many gut bacterial species is not doable. Moreover, metabolic
trade-off and underlying mechanisms between the fungus and the bacteria causing growth
inhibition and growth promotion are not well understood purely by experiments. In silico
simulations can overcome such limitations and systematically provide insights into the
fungus's metabolic interactions with the gut bacterial community.

Not only interaction with the microbiome but also particular functions of the fungus
involved in cellular processes are crucial for its growth and colonization in the human gut.
Regulating these processes is important for growth, proliferation, environmental adaptation,
and stress responses (Ramirez-Zavala et al., 2017). Protein kinases play a fundamental role
in regulating cellular processes. The C. albicans genome encodes two serine-arginine protein
kinases, Sky1 and Sky2, and their functions are not yet understood. Investigating the
phenotypes of the fungus in the presence and absence of encoding genes can reveal the
function of these proteins.

In order to reveal important factors affecting the colonization of C. albicans in the
human gut, a genome-scale metabolic model for the fungus was developed, validated, and
used to analyze the metabolic interactions of the fungus with the human microbiome. In
particular, the interaction of the fungus with L. rhamnosus was investigated in more detail by
incorporating omics data into the study. Validation of the model was mainly accomplished by
using phenotypic microarray data of C. albicans wild-type and some metabolic mutations.
Likewise, phenotypic microarray data was used to reveal the functions of the aforementioned
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protein kinases in the fungus. In this topic of the thesis, the following questions will be

addressed:

- Which functional interactions in the human gqut can promote or inhibit the growth of
the funqus?

- Which metabolic pathways in the funqus respond to promoting and inhibiting
influences?

- How can diet reflecting the metabolic environment influence C. albicans-microbiome
interactions?

Given Lactobacillus rhamnosus as a particular antagonizing case, an in-depth investigation
was carried out by in silico simulations in the presence of intestinal epithelial cells (IEC) and
by integrating the omics data into the study. Regarding that, the following questions will be

addressed:

e What is the role of human epithelial cells in the antagonizing effect of

L. rhamnosus?

e How metabolic pathways in the bacterium and IEC are coordinated to support

the negative effect on the funqus and how the funqus metabolically responds to

the negative effect?

Lastly, the analysis of the phenotypic microarray for the protein kinases will address the

following question:

e Whatis the contribution of Sky1 and Sky2 proteins to the catabolic capability of

C. albicans and what are the differences?

Aspergillus fumigatus is a globally occurring environmental saprotrophic mold that poses a
serious threat to hospitalized, particularly immunocompromised patients (Arastehfar et al.,
2020). It remains largely unknown to which extent environmental or clinical A. fumigatus
isolates possess specific characteristics due to the need of coping with environmental
stresses or accessible nutrient profiles. A recent study from our group explored the genetic
diversity of A. fumigatus to reveal a remarkably low core orthogroup (69%) shared by clinical
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and environmental isolates (Barber et al., 2021). However, it is not yet clear whether the
genetic diversity affects the phenotypic diversity of the isolates.

To this end, a platform of genome-scale metabolic models for 252 clinical and
environmental A. fumigatus isolates and a pan-model was generated. This platform can be
used to explain the phenotypic diversity of A. fumigatus isolates and assess the phenotypic
behavior of the fungus under different environmental conditions circumventing the technical
limitations and difficulties of the wet-lab experiments. In order to explore the applicability of
the generated clinical genome-scale models, the interaction of the fungus with the lung
microbiome of forty cystic fibrosis patients was analyzed. This part of the thesis will address

the following questions:

e What is the phenotypic diversity of the A. fumigatus isolates and what are the

metabolic differences between clinical and environmental isolates?

e How A. fumigatus contributes to the shaping of the metabolic landscape of the

lung microbiome in a favorable manner for fungal growth?
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Comparative Transcriptomic Analysis
of Rhinovirus and Influenza Virus
Infection

Status: Published in Frontiers in Microbiology

Bibliography: Dissanayake, Thrimendra Kaushika, Sascha Schauble, Mohammad Hassan
Mirhakkak, Wai-Lan Wu, Anthony Chin-Ki Ng, Cyril CY Yip, Albert Garcia Lopez et al.
"Comparative transcriptomic analysis of rhinovirus and influenza virus infection." Frontiers in
microbiology (2020): 1580.

Summary: This study carried out a systematic transcriptomics analysis directly comparing
Rhinovirus and Influenza. The systematic computational approaches identified differentially
expressed genes and enriched pathways through gene set enrichment analysis (GSEA). It
revealed the host phenotypes in response to the infection caused by Rhinovirus and
Influenza.
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An integrative understanding of the large metabolic shifts induced by antibiotics
in critical illness

Status: Published in Gut Microbes

Bibliography: Marfil-Sanchez, Andrea, Lu Zhang, Pol Alonso-Pernas, Mohammad
Mirhakkak, Melinda Mueller, Bastian Seelbinder, Yueqiong Ni et al. "An integrative
understanding of the large metabolic shifts induced by antibiotics in critical illness." Gut
Microbes 13, no. 1 (2021): 1993598.

Summary: This study performed a comprehensive characterization of the microbiome,
mycobiome, and functional potential of the gut community and individual species. It used a
cohort of 75 individuals, including ICU patients under antibiotic administration. Alongside this
systematic investigation, genome-scale metabolic modeling was applied to identify individual
bacterial species' contribution to the human gut's metabolic landscape, altered by the
antibiotic treatment.
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Metabolic modeling predicts specific gut bacteria as key
determinants for Candida albicans colonization levels

Status: Published in the ISME journal

Bibliography: Mirhakkak, Mohammad H., Sascha Schauble, Tilman E. Klassert, Sascha
Brunke, Philipp Brandt, Daniel Loos, Ruben V. Uribe et al. "Metabolic modeling predicts
specific gut bacteria as key determinants for Candida albicans colonization levels." The ISME
Jjournal 15, no. 5 (2021): 1257-1270.

Summary: In this study, a genome-scale metabolic model for Candida albicans was
generated. The model was used to identify bacterial species that potentially can inhibit or
promote the growth of the fungus through pairwise simulations. Moreover, it suggested
metabolites having positive or negative impact on C. albicans growth. In vitro experiment and
metagenomics analysis of 26 fecal samples of the cancer patients supported the findings of
in silico simulations.
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Candida albicans SR-like protein kinases regulate different cellular processes: Sky1
is involved in control of ion homeostasis, while Sky2 is important for dipeptide
utilization

Status: Accepted for publication in Frontiers in Cellular and Infection Microbiology

Authors: Philipp Brandt, Franziska Gerwien, Lysett Wagner, Thomas Krtger, Bernardo
Ramirez-Zavala, Mohammad H. Mirhakkak, Sascha Schauble, Olaf Kniemeyer, Gianni
Panagiotou, Axel A. Brakhage, Joachim Morschhauser and Slavena Vylkova

Summary: This study investigated the role of Serine-arginine (SR) protein kinases in the
cellular functions of Candida albicans that have not been understood before. Different
experimental growth assays and high-throughput phenotypic screening of SR gene knock-
outs revealed the effect of Sky1 and Sky2 proteins on cellular processes influencing the
fungal growth in different environmental and nutritional conditions.
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Lactobacillus rhamnosus colonisation antagonizes Candida albicans by forcing
metabolic adaptations that compromise pathogenicity

Status: Revised version submitted to Nature Communications

Authors: Raquel Alonso-Roman, Antonia Last, Mohammad H. Mirhakkak, Jakob L. Sprague,
Lars Moller, Peter Gromann, Katja Graf, Rena Gratz, Selene Mogavero, Slavena Vylkova,
Gianni Panagiotou, Sascha Schauble, Bernhard Hube, Mark S. Gresnigt

Summary: The colonizing and probiotic bacterium Lactobacillus rhamnosus can antagonize
Candida albicans. The study investigated the interplay between C. albicans, L. rhamnosus,
and intestinal epithelial cells (IEC) by integrating transcriptional and metabolic profiling, and
reverse genetics. Untargeted metabolomics combined with constraint-based metabolic
modeling identified antivirulence and antifungal metabolites and suggested that IEC fosters
bacterial growth by releasing specific metabolites, which was confirmed experimentally.



31

Candida expansion in the human gut is associated with an ecological signature that
supports growth under dysbiotic conditions

Status: In preparation

Authors: Bastian Seelbinder, Zoltan Lohinai, Ruben Vazquez-Uribe, Xiugiang Chen, Silvia
Lopez, Mohammad Mirhakkak, Anja Wellejus, Glen J. Weiss, Morten Sommer,
Gianni Panagiotou

Summary: The study integrated mycobiome and shotgun metagenomics data from 75 lung
cancer patients to demonstrate the critical role of gut bacteria in shaping mycobiome
compositions. It identified an ecological signature associated with Candida expansion,
addressing why many individuals with high levels of Candida do not develop systemic
candidiasis. As a complementary layer, the study took advantage of constraint-based
metabolic modeling to demonstrate the ability of bacterial species to produce short-chain fatty
acids and lactic acid.
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A pan-genome resembling genome-scale metabolic model platform of 252 Aspergillus
fumigatus strains reveals growth dependencies from the lung microbiome

Status: In preparation

Authors: Mohammad H. Mirhakkak, Xiugiang Chen, Tongta Sae-Ong, Lin Lin Xu, Thorsten
Heinekamp, Oliver Kurzai, Amelia Barber, Axel Brakhage, Sebastien Boutin, Sascha
Schauble, Gianni Panagiotou

Summary: In this study, a platform of 252 A. fumigatus GEMs at the strain resolution was
generated. It revealed the phenotypic diversity of A. fumigatus strains isolated from different
hospitals and farms in Germany and explained the contribution of the fungus to the shaping
of the metabolic landscape of the lung microbiome in a favorable manner for the fungal
growth.
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Rhinovirus (RV) and influenza virus are the most frequently detected respiratory viruses
among adult patients with community acquired pneumonia. Previous clinical studies
have identified major differences in the clinical presentations and inflammatory or
immune response during these infections. A systematic transcriptomic analysis directly
comparing influenza and RV is lacking. Here, we sought to compare the transcriptomic
response to these viral infections. Human airway epithelial Calu-3 cells were infected
with contemporary clinical isolates of RV, influenza A virus (IAV), or influenza B virus (IBV).
Host gene expression was determined using RNA-seq. Differentially expressed genes
(DEGs) with respect to mock-infected cells were identified using the overlapping gene-
set of four different statistical models. Transcriptomic analysis showed that RV-infected
cells have a more blunted host response with fewer DEGs than IAV or IBV-infected
cells. IFNL1 and CXCL10 were among the most upregulated DEGs during RV, IAV, and
IBV infection. Other DEGs that were highly expressed for all 3 viruses were mainly genes
related to type | or type lll interferons (RSAD2, IDO1) and chemokines (CXCL11). Notably,
ICAMB, a known receptor for enterovirus D68, was highly expressed during RV infection
only. Gene Set Enrichment Analysis (GSEA) confirmed that pathways associated with
interferon response, innate immunity, or regulation of inflammatory response, were most
perturbed for all three viruses. Network analysis showed that steroid-related pathways
were enriched. Taken together, our data using contemporary virus strains suggests that
genes related to interferon and chemokine predominated the host response associated
with RV, IAV, and IBV infection. Several highly expressed genes, especially ICAMS5 which
is preferentially-induced during RV infection, deserve further investigation.

Keywords: influenza, rhinovirus, transcriptomics analysis, ICAMS5, interferons, cytokines
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INTRODUCTION

Influenza virus is well-known to cause severe respiratory tract
infection. The number of deaths associated with seasonal
influenza virus infection has been estimated to be between
290,000 and 650,000 globally (Iuliano et al., 2018). Influenza
pandemics and seasonal epidemics are associated with sudden
surge in hospitalizations and deaths. Unlike influenza virus,
rhinovirus (RV) has been relatively neglected because of the
deep-rooted association with common cold. However, recent
studies have shown that RV is a frequent cause of severe
respiratory illnesses and is associated with a higher case-fatality
rate than influenza virus infection (Jain et al, 2015; Hung
et al,, 2017; Ieven et al,, 2018; Prill et al,, 2018). RV is also
the most commonly detected respiratory viruses among patients
with lower respiratory tract infection. Outbreaks of severe RV
infection have been reported (Marcone et al., 2017).

Clinically, both influenza virus and RV cause respiratory tract
infection, and can be complicated by extrapulmonary disease
(To et al., 2016a, 2019). However, there are important clinical
differences between RV and influenza virus infection. We have
previously found that hospitalized patients with RV infection
are more likely to present with exacerbation of chronic lung
diseases or complicated with extrapulmonary manifestations
(To et al., 2018, 2019).

Host response to infection provides tremendous insights into
the pathogenesis of an infection. Our previous study showed
that a persistently dysregulated cytokine and chemokine response
was associated with severe influenza A(HIN1)pdmo09 infection
(To et al, 2010). Our study in adult hospitalized patients
showed that influenza virus was associated with a much more
robust cytokine and chemokine response, especially CXCL10. In
contrast, RV was associated with an exaggerated T2 response,
characterized by an elevated eosinophil count and IL-5 (To
et al., 2018). The avian influenza virus A(H7N9), which is
associated with a much higher case-fatality rate than seasonal
influenza virus, can directly infect human mononuclear cells and
induce much more heightened cytokine response than seasonal
influenza virus (Lee et al, 2017). Host gene expression has
been utilized to assess host response. Peripheral blood gene
expression studies have shown that influenza and RV patients
exhibit different gene expression profile (Zaas et al., 2009;
Zhai et al., 2015).

Since the primary site of damage occurs in the lung, the
local host response also plays an important role in respiratory
virus infection. Host gene response after RV infection has
been previously compared to that of influenza virus infection
in a human bronchial epithelial cell line BEAS-2B cells using
microarray analysis (Kim et al., 2015). However, BEAS-2B has
high basal production of interferon-stimulated genes which may
affect the response of other host genes (Seng et al., 2014; Hillyer
et al,, 2018). In this study, we compared the host response
between influenza virus and RV in a well-characterized lower
airway cell line, Calu-3, using RNA-seq. Calu-3 cell line was
chosen because it supports the growth of both influenza and RV
(Rajan et al., 2013, 2014; To et al., 2016b). Furthermore, Calu-3
cell line has been used extensively for transcriptomic experiments

previously because of high reproducibility (Aevermann et al.,
2014; Menachery et al., 2014).

MATERIALS AND METHODS

Viruses

The viruses used in this study were isolated from patients in
Hong Kong. Influenza A(HIN1) virus A/HK/415742/2009 and
influenza B virus (IBV) B/HK/411989/2011 were used in our
previous studies (Zheng et al, 2010; To et al., 2016a). RV
451892/2011 was isolated from a patient with pneumonia, and
belongs to RV species A type 1A. Influenza A virus (IAV) and IBV
were propagated in Madin Darby canine kidney (MDCK) cells at
37°C, while RV was propagated in RD cells at 33°C. Viruses were
concentrated by ultracentrifugation and then resuspended in 1 ml
of minimum essential medium (MEM) and Dulbecco’s Modified
Eagle Medium (DMEM) for influenza virus and RV, respectively.
Plaque number was determined on MDCK cells for IAV and IBV,
and on H1HeLa cells (ATCC CRL-1958) for RV.

Immunofluorescence Assay for Viral

Protein Expression

Immunofluorescence assay for viral protein expression was
performed as described previously with modifications (To et al.,
2016). Briefly, IAV, IBV or RV was added to Calu-3 cells at 1
multiplicity of infection (MOI) and incubated at 37°C for 1 h.
At 1 h post infection, cells were washed and minimum essential
free medium was added. At 24 h post-infection, the seeded cells
were fixed in chilled acetone at —20°C for 10 min and stained
with fluorescein-tagged murine monoclonal antibodies against
IAV, IBV (IAV and IBV DFA Reagent, D3® Ultra 8TM DFA
Respiratory Virus Screening and Identification Kit, Diagnostic
Hybrids, Inc., Quidel, United States) or pan-picornavirus
proteins (LIGHT DIAGNOSTICS™ Pan-Enterovirus Reagent,
Chemicon International, Temecula, CA, United States) at 37°C
for 30 min and examined under fluorescence microscope.

Virus Replication in Calu-3 Cells

Virus infection in Calu-3 cells (ATCC® HTB-55™, passage
number: 7) was performed as we described previously with
modification (To et al., 2009). Calu-3 was infected with IAV,
IBV, and RV at 1 MOI in DMEM-F12 medium. For the
determination of MOI, the virus quantification was performed
using plaque assay on MDCK cells for IAV and IBV, and H1Hela
for RV. Culture supernatant was collected at pre-determined
time points and real-time reverse transcription quantitative
polymerase chain reaction (RT-qPCR) for each virus was
performed. RNA extraction and RT-qPCR were performed as we
described previously with modifications (Zhao et al., 2018; Chan
et al., 2019). Briefly, viral RNA was extracted using QIlAamp®
Viral RNA Mini Kit (Qiagen, Hilden, Germany). One step RT-
qPCR was performed using AgPath-TD™ One-Step RT-PCR kit
(Applied Biosystems, California, United States). The primers and
probes for the detection of IAV, IBV, and RV were described
previously with modifications (Supplementary Table S1; To
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et al, 2017, 2018). Real-time RT-qPCR was performed using
LightCycler® LC96 instrument (Roche, Mannheim, Germany).
Duplicates were performed for each virus for each time point
in two independent experiments. Statistical significance was
calculated with two-way ANOVA.

Real-Time RT-PCR for Cytokines,
Chemokines, and ICAM5

Total RNA was extracted from infected cells using Qiagen
RNeasy Mini Kit (Qiagen, Hilden, Germany). Real time
reverse transcription polymerase chain reaction (RT-PCR) was
performed as described previously with modifications (Wei
et al, 2016). Briefly, RNA was reverse-transcribed to cDNA
using PrimeScript™ RT reagent kit (Takara Bio Inc., Shiga,
Japan). Real time PCR assays for TNF-o, IL6, CXCLIO,
IFNB, and ICAMS5 were performed in LightCycler 96 system
(Roche Applied Sciences, Indianapolis, United States) using
primers and probes, and cycling condition as in Supplementary
Table S2. The expression of house-keeping gene GAPDH was
quantified in parallel for RNA normalization. The relative
expression of the target genes was calculated by the AA Ct
method. Statistical analysis was performed using PRISM® 6.0 for
Windows. Duplicates were performed for each virus at each time
point in two independent experiments for measuring cytokine,
chemokine and ICAM5 expression. Statistical significance was
calculated with two-way ANOVA. One-way ANOVA with Holm-
SidaK’s multiple comparisons was performed when comparing
the fold change for ICAMS5 expression in cells infected by
different viruses or mock-infected cells test (**P < 0.001,
5D £ 0.0001).

Enzyme-Linked Immunosorbent Assay
(ELISA) for Cytokines and Chemokines

Cell supernatant was collected from Calu-3 cell infected with
IAV, IBV, and RV at 0, 6, 12, and 24 hpi in triplicates from
1 independent experiment. ELISA was done using Human
DuoSet ELISA kits for IFN-X1/12/\3 (Catalog number DY7246,
DY1587, DY5259) and CXCL10 (Catalog number DY266) (R&D
Systems). Error bars represent SEM. Statistical significance was
calculated with two-way ANOVA. Optical density for each well
was measured at 450 nM (corrected for 570 nM during analysis)
using Beckman Coulter DTX880 Multimode Detector.

RNA-Seq Library Preparation,

Sequencing, and Analysis

Total RNA was extracted from two replicates for mock infection
(control), RV, IAV, and IBV for time points 0, 6, 12, and 24 h post
infection, respectively, using RNeasy (Qiagen Hilden, Germany).
RNA quantity and quality were assessed using NanoDrop
Spectrophotometer and Bioanalyzer. Library preparation and
[lumina sequencing (paired-end sequencing of 101 bp) were
performed at University of Hong Kong, Centre for Genomic
Sciences (HKU, CGS). cDNA libraries were prepared by KAPA
Stranded mRNA-Seq Kit. One microgram of total RNA was used
as starting material. Manufacturer’s protocol was followed. In
brief, poly-A containing mRNA was collected by using poly-T

oligo-attached magnetic beads. The purified mRNA was broken
down into short fragments and was applied as template to
synthesize the first-strand ¢cDNA by using random hexamer-
primer and reverse transcriptase. In the second strand cDNA
synthesis, the mRNA template was removed and a replacement
strand was generated to form the blunt-end double-stranded (ds)
cDNA. The ds ¢cDNA underwent 3’ adenylation and indexed
adaptor ligation. The adaptor-ligated libraries were enriched by
10 cycles of polymerase chain reaction (PCR). The libraries were
denatured and diluted to optimal concentration and applied in
the cluster generation steps. HiSeq PE Cluster Kit v4 with cbot
was used for cluster generation on the flow cell. Illumina HiSeq
SBS Kit v4 was used for paired-end 101 bp sequencing. Whole
dataset has been deposited in the NCBI Sequence Read Archive
with accession number (PRJNA609228).

Bioinformatics Analysis

RNA-seq raw data were processed following the GEO2RNA-
Seq pipeline (Seelbinder et al., 2019) a RNA-Seq pre-processing
workflow and package for analyzing read files, trimming of
raw reads, mapping on reference genomes, counting reads
per gene and finding significant differentially expressed genes
(DEGs). Quality of raw read data was checked using FastQC
version 0.11.5. Reads were quality- and adapter-trimmed
using Trimmomatic version 0.36. Reads were rRNA-filtered
using SortMeRNA version 2.1 with a single rRNA database
concatenated from all rRNA databases shipped with SortMeRNA.
Reads were mapped against the human reference genome and
corresponding annotation GRCh38 89 (2017-05-07, obtained
from Ensembl) using TopHat2 version 2.1.0.

Reads per feature (gene) were counted using Rsubread’s
featureCounts version 1.20.6. The output off all pre-processing
steps was reviewed using MultiQC version 1.1 (Supplementary
Data S1). Additionally, human genome coverage and exome
coverage per sample was calculated using R version 3.2.0
(Supplementary Data S2). Hierarchical clustering of MRN-
normalized read counts using the unweighted pair group method
with arithmetic mean (UPGM) metric was calculated with the
“hclust” function from the R base package “stats” version 3.2.0.
Principal component analysis (PCA) of MRN-normalized read
counts was done with the “prcomp” function from the R base
package “stats” version 3.2.0. DEGs were determined using four
different tools, including DESeq (Anders and Huber, 2010),
DESeq2 (Love et al,, 2014), Limma (Ritchie et al, 2015), and
EdgeR (Robinson et al., 2010). A gene was considered to be
differentially expressed if the expression change was reported
significantly different by all tools with a p < 0.01. Using the
consensus identification of DEGs by the aforementioned four
tools assures controlling the false positive rate and increases
the specificity at the expense of reduced sensitivity. DEGs were
summarized together with log2 of fold changes based on MRN,
TPM or RPKM normalization (Supplementary Data S3). MRN
normalization was used for further analysis throughout the
manuscript, since MRN was reported to be superior over other
normalization schemes (Maza et al., 2013). Gene Set Enrichment
Analysis (GSEA) (Subramanian et al, 2005) was performed
by using g:Profiler (Raudvere et al, 2019). Enrichment score
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was calculated as the -logl0 (P-value) as described previously
(Morrison et al., 2014). Hierarchical clustering was performed
for DEGs with an absolute log2 fold change greater than
two using Ward’s method as implemented by the R package
“pheatmap,” version 1.0.12.

RESULTS

Virus Infection in Calu-3 Cells

To confirm whether Calu-3 cells are susceptible to IAV, IBV,
and RV infection, antigen expression and viral replication were
determined. Immunofluorescence assay showed that IAV, IBV
and RV could infect Calu-3 cells at 1 MOI (Figure 1A). Viral
load assay showed that all three viruses could replicate in Calu-3
cells (Figure 1B). Next, cytokine and chemokine expression were
measured to determine the host response of Calu-3 cells after
IAV, IBV or RV infection. TNF-q, IL-6, CXCL10, and IFN-f were
induced after infection with all three viruses (Figure 1C). ELISA
for the IFN-A1/12/)\3, and CXCL10 showed detection of proteins
at 12 hpi for IBV and 24 hpi for IAV and RV (Figure 1D). Results
shown in Figures 1C,D were consistent with RNA-seq data.

Longitudinal RNA-Seq During Infection
RNA-seq was performed to determine the gene expression profile
during IAV, IBV, and RV infection. Using software from Illumina
(bcl2fastq), sequencing reads were assigned into individual
samples with each sample having an average throughput of 6.6
Gb (Supplementary Table S3) and a total throughput of 210
Gb. In terms of sequence quality, an average of 93% of the bases
achieved a quality score of Q30 where Q30 denotes the accuracy
of a base call to be 99.9%. MultiQC and mapping statistics table
showed very good assignment rates of over 85% reads assigned
to the human reference genome for all samples (Supplementary
Data S1, S2).

A first global overview by hierarchical clustering of read
counts showed a clear separation of the IAV, IBV, RV from-
mock infection samples at 12 and 24 h post infection (hpi)
(Figures 2A,B). While IBV showed already clear separation at 6
hpi, there was no clear separation between IAV, RV and mock-
infected cells at 6 hpi, however (Figure 2C). Expression was
notable for several mitochondrial genes and influenced explained
variance in the PCAs (Supplementary Figure S1). In addition,
several of these most influencing genes, e.g., IFIT2, are known to
possess immune system functionality.

Differentially Expressed Genes (DEGs) Analysis

In order to elucidate the difference between RV and influenza
virus infection, we compared the DEGs after RV, IAV, and IBV
infection against mock and found a high agreement across all four
tools used for DEG identification (Supplementary Figure S2). Of
note, using the intersect of four different tools for identification of
DEGs ensured high specificity, and thus reliability, at a tolerable
sensitivity drop (Supplementary Figure S2). We observed a
gradual increase in the number of significantly upregulated
and downregulated DEGs for all three viral infections from
6 to 24 hpi (Supplementary Figure S2). When compared

to mock-infected cells, the number of DEGs was lower for
RV than those of TAV and IBV infection at each time point
(Supplementary Figure S3). For IAV the number of DEGs
increased from 147 to 2306 and for IBV from 1692 to 6788
over time. When compared to mock-infected cells, RV-infected
cells gave rise to the lowest number of DEGs when compared
to IAV or IBV-infected cells at all time points. In particular,
there were only two DEGs for RV at 6 hpi, with very low
log2 fold-change (<1.2) (Supplementary Data $3). These results
suggest a delayed host response for RV when compared to
influenza viruses.

Since only two DEGs were found for RV at 6 hpi, we focused
on the comparison for 12 and 24 hpi (Table 1 and Supplementary
Data $3). At 12 and 24 hpi, interferon-related genes and CXCL10
were highly expressed for both RV and IAV/IBV infection. IFN-
X genes (IFNL1, IFNL2, IFNL3) were the most highly expressed
among the interferon genes at both 12 and 24 h post-infection for
all viruses. CXCL10 was the top DEGs for all 3 viruses at 24 hpi,
but also within the top 6 DEGs at 12 hpi.

Next, we investigated the change over time for all 34 DEGs
that originate from investigating the top 20 upregulated DEGs
per virus infections vs. mock for 12 hpi. Thirty one out of 34
are also DEGs in the condition 12 hpi against 0 hpi in either
mock, IAV, IBV, or RV. Eight of these 31 DEGs are shared
by mock and all virus conditions, while four are shared by
mock and IAV and IBV (Supplementary Figure S4). However,
none of these DEGs were regulated in the same direction when
comparing mock expression with virus infections for 12 hpi
against 0 hpi. In fact, significant downregulation occurred for 12
of the 31 DEGs only in mock, whereas none were upregulated in
mock at 12 hpi.

In addition to interferons and CXCL10, several other genes
were also found to be highly expressed during RV and IAV/IBV
virus infection. At 12 or 24 hpi, two genes with known immune-
related functions (RSAD2 and IDO1) were found to be among
the top 20 DEGs for all 3 viruses (Table 1). ICAM5 was
more significantly induced in cells infected with RV than those
infected with IAV or IBV at 12 hpi (11th top DEG for RV;
log2 fold change 5.25) (Table 1 and Figure 3A). We additionally
performed ICAM5 monoplex real-time RT-PCR to confirm
the expression of ICAM5 gene. ICAM-5 was expressed at a
significantly higher level at 12 hpi for RV than that of IAV or
IBV (Figure 3B).

Gene Set Enrichment Analysis (GSEA)

First, GSEA was performed for all three viruses at the 12 hpi
time point. The majority of perturbed pathways were related
to innate immune and virus response, interferons and cytokine
signaling and revealed no major differentiation among different
virus infections (Table 2 and Supplementary Data S4). To dissect
the enriched function in the transcriptomics response further,
we focused on DEGs with a log2 fold change of at least two
across of all time points. We identified three major sub-clusters
of the remaining 1888 transcripts across all three viruses by
hierarchical clustering. GSEA was performed for each individual
sub-cluster and the major significantly enriched pathways were
identified, respectively (Figure 4 and Supplementary Data S5).
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FIGURE 1 | Infection of influenza A virus (IAV), influenza B virus (IBV) or rhinovirus (RV) in Calu-3 cells. (A) Calu-3 cells were infected with 1AV, IBV, or RV at 1 MOI.
1AV, IBV, and RV antigen expression was determined at 24 h post infection. Antigen expression was determined using fluorescein-tagged murine monoclonal
antibodies against 1AV, IBV, or RV. Mock-infected cells stained with respective monoclonal antibodies against 1AV, IBV, or RV are shown in the bottom row. White
scale bar = 50 um. (B) Multicycle growth assay. Calu-3 cells were infected with 1AV, IBV, or RV at 1 MOI. Viral load was determined using real-time RT-gPCR.

(C) Cytokine and chemokine expression of Calu-3 cells infected with 1AV, IBV, or RV at 1 MOI. Cytokine expression was determined using real time RT-PCR. GAPDH
was used for normalization of gene expression. (D) Cytokine and chemokine protein expression of Calu-3 cells infected with AV, IBV, or RV at 1 MOI. Protein
expression was determined using ELISA. Bars (B,C) represent means (error bars show standard error of mean) of duplicates in two independent experiments. Bars
(D) represent means (error bars show standard error of mean) of triplicates in one independent experiment. Statistical significance (for B-D) was calculated with
two-way ANOVA. (*P< 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). hpi, hours post infection; MOI, multiplicity of infection.
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This analysis showed that regulation of some major immune
response biological processes like defense response to virus were
induced by infection of all three virus types.

Since the number of DEGs specific to IBV infection
was substantially higher (Supplementary Figure S5), we
investigated enriched categories only for IBV regulated genes
(Supplementary Data S$6). Next to non-specific categories
related to cell cycle organization, regulation and communication,
we identified the enriched process “cellular response to stress,”
which included DEGs like CCL2, IL1B, or CD34 that were not
differentially regulated by IAV and RV (Supplementary Data S7).

We additionally interrogated the specific role of
downregulated DEGs in our data set, but could only find
non-specific cell cycle, cell organization and cell communication
GO biological process categories, which showcase that the
cells shift to response to the infecting viruses rather than

continuing cell cycle processes (Supplementary Figure S6 and
Supplementary Data S8).

In addition, we interrogated if different viruses exclusively
cause differentially regulated pathways enriched by DEGs.
The analysis showed that steroid-related pathways which
are specifically significantly regulated in RV-infected cells
relative to mock-infected subjects at 12 hpi (Supplementary
Data S9). These pathways include “cellular response to
mineralocorticoid stimulus” (GO:0071389), “glucocorticoid
mediated signaling pathway” (GO:0043402), “regulation of
glucocorticoid mediated signaling pathway” (GO:1900169), and
“response to dexamethasone” (GO:0071548) (Supplementary
Data S9). We identified 13 DEGs, such as EGFR or FOXO3,
to be common among steroid-relevant pathways (Figure 5).
Interestingly, we find upregulated IFNB1 and ICAM1 among
these with proposed steroid-pathway relevancy as well. Of
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FIGURE 2 | Hierarchical clustering of gene expression for (A) 12 hpi time point and (B) 24 hpi time point showing a distinct gene expression for 1AV, 1BV, and RV.
(C) Principal component analysis for 6, 12, and 24 hpi.

note, ICAM1 has been indicated to be increased by RV
infection and identified to be a target for the development of
therapeutic interventions for virus-induced asthma exacerbation
(Papi and Johnston, 1999).

DISCUSSION

Both RV and influenza virus can cause severe respiratory tract
infection (Hung et al, 2017). However, there are significant
differences in their clinical manifestations and immune or
inflammatory response (To et al, 2018). In this study, we
used a transcriptomic approach to systemically compare the
host response between RV and influenza virus infection in a
human lower airway epithelial cell line. We have found that RV
induced a more delayed and blunted host response than influenza

virus infection. Interferon response and other innate immune
response predominated for both RV and influenza virus infection.
Interestingly ICAMS5 was the only gene that was significantly
upregulated for RV but not for influenza virus infection.

Our study is unique in several aspects. First, we used virus
isolates that are isolated in recent years. Previous transcriptomic
studies used classical strains that were isolated many years ago
(Kim et al., 2015), and their results may not be representative of
the contemporary viruses. Second, we infected Calu-3 cells using
the same MOI to reduce the bias due to different virus titers.

The number of DEGs was much lower for RV than those of
influenza virus infection. This is consistent with our previous
study, which showed that the cytokine and chemokine responses
were significantly lower for patients with RV infection than
those with influenza virus infection (To et al., 2018). This is
also consistent with the study by Zhai et al. (2015) that the
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TABLE 1 | Top 20 upregulated DEGs when compared with mock-infected cells.

AV vs. mock IBV vs. mock RV vs. mock
Hours post-infection Gene name log2 (Fold Change) Gene name log2 (Fold Change) Gene name log2 (Fold Change)
12 IFNL2 7.10 IFNL1 9.88 IFNL2 7.61
IFNL1 7.09 CXCL10 9.63 IFNL3 7.38
IFNL3 6.89 IFNL2 9.55 IFNB1 7.34
RSAD2 6.76 IFNL3 9.36 IFNL1 714
CXCL10 6.68 IFNB1 8.95 AC011511.5 6.13
IFNB1 6.44 cxcLi 8.91 FAP 6.01
IDO1 6.28 IDO1 8.59 TULP2 5.77
BATF2 6.19 CCL5 8.40 RPL7P19 5.51
Mx2 5.92 BATF2 8.14 ZBP1 5.38
IFIT2 5.86 GBP5 8.09 AL133163.1 5.36
OAS2 5.76 CXCL9 8.01 ICAMS 5.25
OR52K3P 5.58 RSAD2 7.89 CXCL10 5.12
IFIT3 5.53 GBP4 7.70 RSAD2 5.02
ACO005515.1 5.53 ZBP1 7.42 BATF2 4.65
IFITT 5.52 CX3CL1 7.33 IFIT2 4.63
GBP4 5.52 ACO005515.1 7.24 Mx2 4.61
TRIM22 5.43 LRP2 718 IFIT1 4.48
ZBP1 5.40 Mx2 7.10 OAS2 4.46
ETV7 5.40 CD69 6.99 IFIT3 4.35
CMPK2 5.39 CSF3 6.94 CMPK2 4.31
24 CcxXcLio 10.32 CxXcLi1o 12.08 CXcLi1o 8.90
cxcLit 9.20 cxcLi1 11.58 IFNL3 7.68
ZBP1 9.01 IFNLT 10.44 IFNL2 7.62
IDO1 8.56 CCL5 10.35 cxcLit 7.59
IFNL2 8.31 CSF3 10.21 ZBP1 7.45
KLHDC7B 8.26 IFNL2 10.07 RSAD2 7.21
IFNL3 8.21 IFNL3 9.90 MX2 713
IFNLT 8.1 TNF 8.97 IFNL1 6.92
RSAD2 7.98 RSAD2 8.79 IDO1 6.90
TRIM22 7.76 IFNB1 8.76 OAS2 6.89
SLC15A3 7.69 ILe 8.73 TRIM22 6.79
MXx2 7.64 ZBP1 8.41 CMPK2 6.77
CCL5 7.55 IDO1 8.33 IFNB1 6.71
BST2 7.48 AL021578.1 8.28 KLHDC7B 6.53
OAS2 7.27 CX3CL1 8.12 SLC15A3 6.47
GBP4 7.21 HSPAG 8.04 GBP4 6.09
ACO005515.1 7183 CXorf49B 7.84 FAP 6.01
CX3CL1 7.01 OASL 7.83 ETV7 5.82
CMPK2 6.94 GBP4 7.82 BST2 5.82
ETV7 6.82 CCL22 7.71 BATF2 5.77

The log2 fold changes are based on MRN normalization (cf. Supplementary Data S3).

overall gene expression was much stronger for patients with
influenza virus infection than those with RV infection. We
do note that even though the same MOI were used for all
viruses a higher viral load was observed for IBV (Figure 1B),
which might be partially responsible for the elevated number
of DEGs expressed in Calu-3 cells when challenged with IBV.
This additional set of DEGs includes interesting genes, e.g.,
CCL2, IL1B or CD34 (Supplementary Data S7), which should be
further investigated.

IENL1, which encodes IFN-\1, was among the top DEG for
all 3 viruses at 12 h post-infection. IFNL2 and IFNL3, which
encode IFN-)2 and IFN-)3, respectively, were also induced in
RV or influenza virus infected cells, but were not detectable for
mock-infected cells. IFN-X is a type III interferon, which acts
via the IFN-\ receptor (Syedbasha and Egli, 2017). Through
ELISA, IFN-)\ was shown to be significantly expressed mainly
around 24 hpi across all viruses, IBV infected samples showed
significant IFN-\ expression much earlier, at 12 hpi (Figure 1D).
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IEN-)1 is an important antiviral cytokine. IFN-X has been
shown to be important for the immune defense against RV.
Asthmatic patients are more prone to severe RV infection,
which correlated with a poorer induction of IFN-X\ in airway
epithelial cells and alveolar macrophages isolated from asthmatic
patients than those isolated from healthy individuals (Contoli
et al,, 2006). In a mouse model, IFN-A has been shown to
reduce influenza virus replication, modulate immune response
and protect mice from IAV infection (Davidson et al., 2016).
Inhibition of IFNL3 has been shown to increase antibody
response against IAV infection (Egli et al., 2014). In a rhesus
macaque model infected with influenza virus A(H5N1), IFNx
genes were also found to be highly expressed in the lung tissues
(Shinya et al., 2012).

CXCL-10 was highly expressed for all infections. This
is compatible with our previous findings in patients, in
which CXCLI0 expression was induced at high levels
for both influenza virus and RV infection (To et al,
2018). This is also shown through the ELISA results,
where we can see significant expression of CXCL10 at 24
hpi (Figure 1D). Our results also corroborate with the
results from RNA-seq experiments on the nasopharyngeal
swabs from patients with respiratory virus infection, in
which CXCL10 was one of the genes that could be used

in identifying patients with infection
(Landry and Foxman, 2018).

At 12 or 24 h, most of common genes among the top 20
DEGs were interferons or interferon-inducible genes (IFNLI,
IFNBI, RSAD2, IDOI) or chemokines (CXCL10, CXCLI11).
RSAD2 and IDOI are mainly triggered by interferons as part
of the concerted counteraction against viral infection (Duschene
and Broderick, 2012; Gaelings et al., 2017). Interestingly, IRF7,
though differentially regulated (Supplementary Data S3), was
not among the top differentially regulated genes, although it
possesses a pivotal role in virus triggered IFN type I induction.
GBP4 is among our top regulated genes across all viruses and
was reported to interact with IRF7 in a negative manner (Hu
et al,, 2011). BATF2 is a transcription factor that controls the
differentiation of dendritic cells. BATF2 has been identified to
be one of the biomarkers that can predict the progression of
active tuberculosis for individuals who have close contact with
tuberculosis patients (Roe et al., 2019). Batf2-/- mice had more
severe Trypansoma infection (Kitada et al., 2017).

A previous study by Kim et al. (2015) compared the
transcriptomic profiles between RV and influenza virus in a
human bronchial cell line BEAS-2B. Similar to our study, they
have demonstrated that IFNB1, CXCL10, CXCL11, CCL5 was
upregulated in both IAV and RV infection. However, while our

respiratory virus
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hierarchical clustering are shown and GSEA was performed for each individual sub-cluster and the major significantly enriched pathways are indicated.
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current study in Calu-3 cells showed significant induction of
IEN\ genes, the study by Kim et al. in BEAS-2B cell line did
not show induction of these genes after infection. One major
limitation associated with BEAS-2B cell line is that there is a
high basal production of interferon-stimulated genes, such as
IRF7, ISG15, MX1, STING, which may affect the response of
other host genes and also lead to Influenza A virus resistance
(Seng et al., 2014).

ICAM5 was strongly expressed during RV infection, which
was verified by monoplex RT-qPCR. Although ICAMS5 is unlikely
to be a single factor to account for the difference between RV
and influenza virus, the fact that ICAM5 is much more highly
expressed in RV infected cells than both influenza A and influenza
B virus strongly suggests that ICAMS5 may play a major role in the
pathogenesis of RV. ICAMS5 is a known receptor for enterovirus
D68, which also belongs to the Picornaviridae family (Wei et al.,
2016). Nonetheless. the significance of ICAMS5 on RV infection
deserves further studies.

Our network pathway enrichment analysis showed that
steroid-related pathways are enriched. RV is more likely to be
associated with acute exacerbation of asthma than influenza virus
infection (To et al., 2019). A previous study has shown that RV

infection leads to steroid-resistance in airway epithelium (Papi
et al,, 2013). Therefore, our transcriptomic analysis reveals that
the difference in steroid pathways may be associated with the
clinical manifestations.

Though there are studies which have analyzed the
transcriptome of influenza virus or RV infection, most did
not compare these viruses together. In a study with experimental
human infections, comparison of blood mRNA expression
showed that SOCSI gene were uniquely expressed for RV
infection when compared with IAV and RSV (Zaas et al., 2009).
However, in our study, SOCSI was upregulated for all 3 viruses,
with higher levels among influenza virus infected cells.

Our study has demonstrated that there are some important
differences like ICAM5 expression which may explain the
clinical findings of these viral infections. To generalize on
our findings future work should include additional subtypes
from different viruses on top of the strains we used in
the present study. Our investigation revealed a number
of genes that are similarly expressed upon infection with
any of the studied viruses. These genes may yield broad
spectrum antivirals for the treatment of influenza virus and
RV infection.
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ABSTRACT ARTICLE HISTORY
Antibiotics are commonly used in the Intensive Care Unit (ICU); however, several studies Received 25 February 2021
showed that the impact of antibiotics to prevent infection, multi-organ failure, and death in Revised 6 August 2021

the ICU is less clear than their benefit on course of infection in the absence of organ Accepted 9 August 2021
dysfunction. We characterized here the compositional and metabolic changes of the gut KEYWORDS
microbiome induced by critical illness and antibiotics in a cohort of 75 individuals in con- Gut microbiota; antibiotics;
junction with 2,180 gut microbiome samples representing 16 different diseases. We revealed critical iliness; intensive care
an “infection-vulnerable” gut microbiome environment present only in critically ill treated with unit; metagenomics;
antibiotics (ICU"). Feeding of Caenorhabditis elegans with Bifidobacterium animalis and metabolomics; ITS2
Lactobacillus crispatus, species that expanded in ICU* patients, revealed a significant negative

impact of these microbes on host viability and developmental homeostasis. These results

suggest that antibiotic administration can dramatically impact essential functional activities in

the gut related to immune responses more than critical illness itself, which might explain in

part untoward effects of antibiotics in the critically ill.

Introduction are responsible for nearly 60% of deaths

Critical illness leads to the admission of more than ~ in ICUs and account for approximately 40% of
5 million patients per year to intensive care units ICU costs.”

(ICUs) in the United States alone. Intensive or Vincent etal.6reported that while only 54% of ICU
invasive monitoring of ICU patients accounts for  patients had suspected or proven infection, as many as
approximately 20% of the total US hospital cost, ~ 70% received at least one antibiotic, reflecting a rather
while the worldwide death rates for critically ill ~ “liberal use” within contemporary ICUs. This reflects
patients are increasing at a higher rate than any  an early antibiotic treatment - in order to avoid the
other common cause of death . Almost half of deleterious impact of a missed or delayed antibiotic
ICU patients show symptoms related to an initial ~ therapy if infection triggers organ dysfunction.”
systemic inflammatory response syndrome (SIRS).>  However, several studies showed that the benefits of

However, besides inflammation, signs of im-  antibiotics for prevention of infection, multi-organ
mune exhaustion or ‘paralysi might occur failure, and death in the ICU are unclear.® Evidence
simultaneously.” A disbalance of pro- and anti-  suggests that approximately 37% of antibiotic treat-

inflammatory responses can lead to an increased = ments are unnecessary or mnot compliant with
risk of infection % and related sepsis, which guidelines.9 Infections and antibiotics can cause
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a rapid loss of commensal gastrointestinal
microbiota,' which can result in metabolic and
immune disturbances in the critically ill. An impor-
tant role of gut bacteria is the fermentation of dietary
fiber into short-chain fatty acids (SCFAs), which play
an important role in preserving gut integrity."!
A decrease in SCFAs concentrations may result in
colonization by pathogenic species. For example, sev-
eral Bacteroides and Bifidobacteria species secrete
SCFAs inhibiting pathogen growth.'>'? Similarly,
Clostridium scindens and Ruminococcus obeum pro-
duce secondary bile acids (BAs) that prevent the
growth of Clostridium difficile '* and Vibrio
cholerae,”” respectively. Gut bacteria also play an
important role in the activation of host immunity
against infections, both through innate and adaptive
mechanisms.'®

With advent of the concept of the human being as
a “holobiont” and the perception of the gut micro-
biome as being highly relevant in the regulation of the
immune system, attention to interventions affecting
the microbiome is now given also in critical illness.
Previous studies have focused predominantly on taxo-
nomic information using 16S rRNA gene sequencing
to identify differences between health and disease.'”"®

Fungal constituents of the microbiome represent
an overlooked but very important kingdom.
Research is beginning to show that fungi are critical
for maintaining systemic immunity and intestinal
homeostasis.'” The mycobiome of skin,® gut,*'
oral cavity,”” and lungs,”> among other anatomical
sites, in healthy individuals has been characterized
in previous studies. Based on these studies, it seems
that between individuals and anatomic sites there is
high variability in the human mycobiome
diversity,* which is consistent with what we know
from the Human Microbiome Project (HMP, 2012)
for the bacterial microbiome. Most of the anatomic
sites in humans are dominated by members of the
Basidiomycota phylum, such as Cryptococcus spp.,
Malassezia spp. and Filobasidium spp., and the
Ascomycota phylum including Saccharomyces cere-
visiae, Candida spp., and Cladosporium spp.”>*°
Despite the recent findings showcasing the fungal
role on host health, host-microbe and microbe-
microbe interactions, only less than 0.5% of the
published microbiome papers investigate or refer
to the fungal population.'” The mycobiota is
increasingly recognized as a critical player in the

development of human diseases, including inflam-
matory bowel disease, allergic airway diseases, skin
disease, alcoholic liver disease, autoimmunity, neu-
rological disorders, and metabolic syndrome.*” >
In relation to microbe-microbe interactions, exist-
ing studies indicate that a competitive association
between bacteria and fungi exists in the human gut.
This was shown in antibiotic-treated subjects and
germ-free mice, where an overgrowth of particular
fungi in the gut and/or susceptibility to fungal
infection was observed.”’ In addition, overgrowth
of fungi due to antibiotics treatment has been asso-
ciated with the development of allergic airway
responses to Aspergillus fumigatus mold spores.”
Part of the chemical warfare between bacteria and
fungi is also the secretion of antifungal peptides
from epithelial cells, which can be induced by com-
mensal bacteria such as Blautia producta and
Bacteroides thetaiotaomicron.”® Previous research
related to critically ill patients and mycobiome is
very limited.>** One recent study characterized
the mycobiome of the lower respiratory tract of
patients in ICU showing that Candida spp. domi-
nated the fungal community in both with and with-
out antibiotic therapy patient groups.>* Another
prospective pilot study showed an increase of
C. albicans in the oral mycobiome after an admis-
sion to the ICU.>® However, systematic investiga-
tion of the interactions between the gut mycobiome
of critically ill patients and the bacteria functional
activity is currently lacking.

Here, by a comprehensive characterization of the
microbiome, mycobiome, and functional potential
of the gut community and individual species, we
demonstrate that even though antibiotics do not
significantly disturb the bacterial and fungal com-
position of critically ill patients, as observed in
healthy individuals,"” they cause abundance
changes in a handful of species that are highly
connected with the production of SCFAs and BAs,
allowing the expansion of pathogenic species.

Results
Highly distinct microbiome in ICU patients

To investigate the gut microbiome composition of
critically ill patients, we initially included 70 criti-
cally ill patients. Of these, 54 were diagnosed with
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probable or microbiologically confirmed infection
as defined by Calandra et al. *' (respiratory tract
(n = 37), abdominal (n = 6), bones/soft tissue
(n = 3), chest (n = 2), catheter associated (n = 1),
urogenital (n = 1), and unknown (n = 4)). These 54
received antibiotic treatment, whereas 16 did not
presented an infection and did not receive antibio-
tic treatment. Of those, we collected stool samples
from 49 patients receiving antibiotic treatment
(broad spectrum beta-lactam antibiotics; n = 19
meropenem and n = 30 piperacillin/tazobactam)
and 14 patients without antibiotic treatment, as
well as from 12 healthy human volunteers. Basic
anthropometric and clinical characteristics of the
participants are displayed in Supplementary File 1.
There were no significant differences between the
two ICU groups in gender, age, BMI, type of admis-
sion or surgery and length of ICU or hospital stay
(continuous data were compared by the Student’s
t-test, dichotomous variables by the chi-squared
test, a p-value < 0.05 was considered significant).
Similarly, there were no significant differences
between the healthy volunteers and ICU patients
in the basic demographic characteristics.

We assessed the structure of the gut microbiome
via shotgun metagenomics generating 39 million
high-quality reads per sample on average
(Supplementary Table 1). We used MetaPhlan2 *?
for taxonomic profiling, and we identified 428 spe-
cies in total. Alpha-diversity measured as Shannon,
Simpson, and Chaol index dropped significantly in
both antibiotics treated (ICU') (Wilcoxon rank-
sum test, P = 8.6e-6, P = 53e-6, P = 3.8e-5,
Shannon, Simpson and Chaol indices, respectively)
and untreated subjects (ICU") (Wilcoxon rank-
sum test, P = .0037, P = .0025, P = .0054,
Shannon, Simpson and Chaol indices, respectively)
compared to healthy individuals (Figure 1(a)). In
contrast to what has been observed in healthy
volunteers,***> antibiotics administration had no
significant impact on the alpha diversity when com-
paring the ICU" against the ICU™ patients
(Wilcoxon rank-sum test, P = .79, P = .79, P = .64,
Shannon, Simpson and Chaol indices, respec-
tively). The type of beta-lactam used had no sig-
nificant impact either (Supplementary Figure 1).

We subsequently investigated the variation in
the microbiome structure of the three groups by
calculating the distance to centroid (Figure 1(b)).

GUT MICROBES (&) e1993598-3

The gut microbiome of the ICU" group had sig-
nificantly higher structural variation compared to
both healthy individuals (Wilcoxon rank-sum test,
P =1.1e-12) and the ICU" group even though it did
not reach statistical significance (Wilcoxon rank-
sum test, P = .056). Next, we calculated the beta-
diversity (Bray-Curtis distance) of the three
groups, which showed that although there was
a high community dissimilarity between ICU" and
Healthy (PERMANOVA, P = .001) and between
ICU™ and Healthy (PERMANOVA, P = .001), the
ICU" and ICU™ groups did not show significant
differences (PERMANOVA, P = .104) (Figure 1
(c), Supplementary Figure 9(a)). Similarly, to
alpha diversity, when we examined the two beta-
lactam groups (meropenem and piperacillin/tazo-
bactam) separately, we did not observe any signifi-
cant difference (Supplementary Figure 1,
Supplementary Figure 9(b)). To further evaluate
our findings, we repeated the taxonomic analysis
using the Metagenomic Species method (MGS) *
and we observed the same patterns as above
(Supplementary ~ Figure 2,  Supplementary
Figure 9(c)).

As evident from both, the alpha- and beta-
diversity comparisons, the similarities in the
structure of the gut microbiome of the ICU*
compared to the ICU™ group triggered our inter-
est to examine our cohort in relation to another,
small publicly available dataset of critically ill
patients.'” In that study, the authors performed
a longitudinal sampling of critically ill patients
with and without antibiotics administration to
study abundance changes in the resistome profile
of known pathogens. For the comparative analy-
sis, we applied a microbial source tracking algo-
rithm, namely FEAST.*> When using our cohort
as a sink we noticed how progressively the public
ICU" group becomes more taxonomically similar
with our ICU" group, as well as the composi-
tional similarities between the two ICU™ groups
(Figure 1(d)). From the methodological point of
view, this analysis confirms that FEAST * is
a relatively sensitive method but also that despite
the non-significant overall differences between
ICU* and ICU  groups there is still
a characteristic microbiome signature due to the
antibiotic administration. Considering the rela-
tively small differences between the ICU" and
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Figure 1. Distinct gut microbiota signatures in ICU patients. (a — b, d) Box plots showing the median (centerlines), first and third
quartiles (box limits) and 1.5x interquartile range (whiskers) measurements. A comparison was considered significant if P < .05.(a)
Alpha diversity of bacterial species using Shannon (left), Simpson (middle), and Chao1 (right) indices. Significant differences were
determined using Wilcoxon rank-sum test.(b) Beta dispersion of bacterial species measured as the distance of the samples from one
group to the group centroid in multivariate space. Significant differences were determined using Wilcoxon rank-sum test.(c) Principal
component analysis (PCoA) of Bray-Curtis dissimilarity between bacterial species abundance profiles. Significant differences were
determined using PERMANOVA and were considered significant if P < .05.(d) FEAST 43 astimation of microbial source contribution for
each “sink”. Here, sinks are species level relative abundances from samples from a publicly available ICU cohort.'® For sources, we used
species level relative abundances of our Healthy, ICU™ and ICU* groups. Significant differences were determined using Kruskal-Wallis
test (*P < .05; **P < .01, ***P < .001, ****P < .0001).(e) Receiver operating characteristic curve (ROC) of a cross-validated random forest
classifier. The model was trained on taxonomic and functional profiles from 63 samples from the ICU™ and ICU" groups. Model
performance was summarized as area under ROC (AUC). The average AUC value and confusion matrix (threshold 0.5) are calculated
based on a 5-fold cross validation results.
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Figure 2. Comparative analysis of the microbiome of critically ill patients with other diseases. (a - b) FEAST ** estimation of microbial
source contribution for each “sink”. Here, sinks are taxonomic and functional compositions from a panel of diseases. Source are
taxonomic and functional compositions of samples from our Healthy, ICU™ and ICU™ groups. Box plots show the median (centerlines),
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metabolic diseases and (b) infectious diseases. (a — b) Significant differences were determined using Kruskal-Wallis test (*P < .05;

¥*P < .01, ¥**P < .001, ****P < .0001).

ICU™ groups, we next investigated whether these
subtle differences in microbial signatures could be
integrated into an algorithm to correctly classify
the patients. To this end, a random forest classi-
fier integrating species and pathways was devel-
oped and achieved an area under the receiver
operating characteristic (ROC) curve (AUC) of
0.934  (Figure 1(e)) using 20 features
(Supplementary Figure 3). Enterococcus faecalis,
a known pathogen®® whose abundance has been
associated to an increase in susceptibility to
V. cholerae infection,'> and several amino acid
pathways that can serve as precursors for the
synthesis of short-chain fatty acids (SCFAs) were
among the selected features.

Critically ill patients treated with antibiotics show
an “infection-vulnerable” gut microbiome

We subsequently used HUMAnN2 *° for functional
profiling of the microbial communities and identi-
fied 483 pathways in total. To further evaluate the
community taxonomic and functional characteris-
tics of the critically ill patients, we compared our
cohort with a panel of publicly available datasets.
For that, we retrieved 2,180 taxonomically and
functionally annotated samples from 16 human
diseases using the curatedMetagenomicData *°
package in R and we applied FEAST,* treating
our samples as sources and the disease panel as
sinks. In these settings, FEAST ** revealed that
there is a significantly lower similarity
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Figure 3. Differential abundance analysis reveals changes in bacteria with important functional properties in critically ill. (a) Taxonomic trees
visualized using R package metacoder.*’ Only taxa differentially abundant between Healthy, ICU* or ICU™ (P < .05, Wilcoxon rank-sum
test) are highlighted in the tree by color. Color of the taxa reflects the group with higher abundance. Bar plots show the relative
abundances of significantly different (FDR<0.05, Wilcoxon rank-sum test) short-chain fatty acid producers (green circles), bile acid
producers (red circles), disease-associated species (purple circles) or differentially abundant species identified in all pairwise compar-
isons (yellow circles).(b) Co-abundance networks of differentially abundant bacterial species (P < .05, Wilcoxon rank-sum test) between
Healthy and ICU" and between ICU* and ICU". Only significant correlations (P < .05) with absolute correlation coefficient >0.4 were
used for network construction. Nodes are colored based on their affiliated phyla. Node sizes reflect the mean abundance of the species.
Edge colors reflect either negative correlation (blue) or positive correlation (red). Edge widths reflect the strength of the correlation.
(c-d) Germ-free L1 larval stage C. elegans worms were populated with depicted bacterial strains in the anoxic chamber for indicated
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times, followed by transfer to normoxia and UV-killed OP50 E. coli diet. In (C) host survival was measured after 24 h of normoxic culture
and in (D - left panel) the timely development was assessed after 48 h of normoxic culture; (D - right panel) depicts reproductive aging

of nematodes following anoxic reconstitution with B. animalis.

(Kruskal-Wallis, P < .0001) between the micro-
biome structure and function of individuals in the
critically ill patients group with patients with cancer
(colorectal cancer,”'™>® melanoma®”®), inflamma-
tory (ankylosing spondylitis,” atherosclerosis,*’
Behcet’s disease,”’ hypertension,”* inflammatory
bowel disease’®), and metabolic diseases
(cirrhosis,”> metabolic syndrome,** nonalcoholic
fatty-liver disease,”® obesity,*>®” Type-1-Diabetes,-
899 Type-2-Diabetes’®”") compared to Healthy
individuals (Figure 2(a)). Due to this unexpected
association, we expanded the range of diseases as
sinks using infectious diseases and specifically 66
samples from patients with acute diarrhea,”
C. difficile infection” and V. cholerae infection.”*
In contrast to what we observed with noninfectious
diseases, the taxonomic composition of the criti-
cally ill patients is significantly more similar
(Kruskal-Wallis, P < .0001) to infectious diseases
than the gut composition of healthy individuals
(Figure 2(b)). At the functional level, this difference
is even more profound with the ICU" group having
the highest similarity (Kruskal-Wallis, P < .0001)
with all three infectious diseases, suggesting that
critically ill patients may be at a risk of severe
infections by gut pathogens and that antibiotic
treatment increases significantly that risk.

Immunomodulatory metabolites and their microbial
producers are depleted from critically ill patients
exposed to antibiotics

We subsequently focused on the impact of antibiotic
administration in the ICU in relation to abundance
changes in microbes with a potential role in immune
regulation and host-immune homeostasis. Significant
differences were observed at the phylum level among
the three groups. The Healthy group had, on average,
higher abundance of Bacteroidetes (17.9%, Kruskal-
Wallis, P = .0063), Actinobacteria (9.9%, Kruskal-
Wallis, P = .035), and Verrucomicrobia (4.7%,
Kruskal-Wallis, P = .0098) (Supplementary
Figure 4(a)). At the genus level, a striking difference

in the abundance of Enterococcus was found, with the
ICU" group having the highest abundance compared
to the other two groups (Kruskal-Wallis, P = 3.6e-6).
In contrast, the relative abundance of Blautia was
significantly higher in ICU™ (Kruskal-Wallis,
P =.029) (Supplementary Figure 4(a)).

At the species level, we found 106 and 80
species  significantly differentially abundant
(Wilcoxon rank-sum test, P < .05) between the
Healthy and ICU" and Healthy and ICU"
groups, respectively. The species enriched in
the Healthy group include known SCFAs and
BAs producers, such as Ruminococcus bromii,”®
Faecalibacterium  prausnitzii,”  Eubacterium
eligens,”® Eubacterium hallii ® and Eubacterium
rectale,””’® among others (Figure 3(a) and
Supplementary Figure 4(b)). On the contrary,
species enriched in ICU" and ICU™ included
known  pathogens such as  Klebsiella
pneumoniae,”® Klebsiella oxytoca,”” E. faecalis,*®
and Enterococcus faecium 48 (Figure 3(a) and
Supplementary Figure 4(b)). Comparing ICU"
and ICU™ groups, we found 12 species signifi-
cantly differentially abundant (8 enriched in
ICU" and 4 in the ICUY). R. gnavus,
Clostridium symbiosum, and Veillonella parvula,
known SCFAs and BAs producers,’*™® were
enriched in ICU", whereas from the species
enriched in ICU" (Figure 3(a)) Bifidobacterium
animalis has been indicated as a SCFAs
producer.®* Since B. animalis was the only
SCFA producer enriched in ICU", we retrieved
the genome-scale metabolic model of B. animalis
from the AGORA repository * and we simu-
lated growth on an ICU media using flux bal-
ance analysis. We monitored the potential of
B. animalis to produce SCFAs, including acetate,
propionate, and butyrate; however, none of
these compounds was predicted to be produced
in our in silico simulations (data not shown).

We used the enriched species to reconstruct the
species co-abundance network using all samples
from our cohort. We observed a much more
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intense within group communication between the
Healthy-enriched species (vs. ICU™) with 162 posi-
tive and 19 negative correlations (absolute correla-
tion coefficient >0.4) compared to the species
enriched in ICU" (vs Healthy and/or ICU") that
showed 43 positive and no negative correlations
(Figure 3(b) and Supplementary Table 2). Alistipes
putredinis, F. prausnitzii, and Bacteroides uniformis
were interconnected healthy-enriched species
showing negative correlations with Klebsiella and
Staphylococcus species, common sources of serious
infections in ICU.* From the species enriched in
ICU" compared to Healthy, E. faecium,
Staphylococcus  epidermidis, and Lactobacillus
rhamnosus showed the highest number of correla-
tions, suggesting that these may be important spe-
cies to maintain the community structure. From
the species enriched in ICU" compared to ICU",
Lactobacillus crispatus showed positive correlations
with known pathogens such as Enterococcus and
Klebsiella species, as well as negative correlations
with Healthy-enriched SCFAs and BAs producers
including F. prausnitzii, E. rectale, and A. shahii.
To examine in vivo host effects of the species
enriched in ICU" patients compared to ICU", we
utilized nematode C. elegans as a model host.
C. elegans recently emerged as a suitable simple
model for discovering conserved host-microbiome
interactions.®” The experiments were conducted by
reconstituting germ free L1 nematodes with the
two, sufficiently annotated, bacterial strains
enriched in ICU" (B. animalis and L. crispatus).
We found that both strains had a strong negative
impact on the host homeostasis: L. crispatus exerted
direct toxicity in the model host (Figure 3(c)), and
B. animalis instigated a delay in the C. elegans
development indicative of the physiological stress
(Figure 3(d)). By including heat-killed bacteria as
an additional control and performing OD normal-
ization across conditions, we found that host toxi-
city of L. crispatus requires live bacteria, while
B. animalis rather acts as a passive stressor
(Supplementary Figure 5). Interestingly, the nema-
todes, which overcame the developmental hin-
drance by B. animalis, displayed a delay in
reproductive aging (Figure 3(d)) consistent with
the putative probiotic effect of B. animalis in the
animals that were able to conquer the initial stress
caused by this bacterium. To probe the potential

probiotic effect of B. animalis at the mechanistic
level, we tested its ability to induce nuclear translo-
cation of DAF-16/FOXO transcription factor -
a conserved mediator of stress resistance and long-
evity extension.””"*> We found that live B. animalis
indeed had the strongest capacity to induce DAF-
16 activation among all conditions tested
(Supplementary Figure 6). Our results are thus in
line with the previously reported ability of
B. animalis to cause disease in immunocompro-
mised human patients, while it acts as a probiotic
in healthy humans,” demonstrating the physiolo-
gical relevance of our nematode findings.
Collectively, our in vivo tests indicate that the rar-
efication of the microbiome, which is exacerbated
by antibiotics exposure in ICU™ patients, facilitates
the enrichment of microbes with potential of exert-
ing direct detrimental effects on the host.

Functional shifts in the microbiome

Next, we compared MetaCyc pathway abundance
to explore the gut microbiome functionality in the
three groups. As shown in the ordination plot
(Figure 4(a)), the differences between ICU" com-
pared to the other 2 groups at the functional level
are driven by SCFA biosynthesis, AA biosynthesis,
and fermentation to SCFA, whereas the abundance
of pathways related to nucleotide and nucleoside
degradation and vitamin biosynthesis are the main
drivers in the comparison of Healthy vs ICU".
Therefore, we then focused on AAs, SCFAs, and
BAs due to their important role in the regulation of
the immune system and their influence in diseases
associated with dysbiosis."" In total, we identified
117 significantly differentially abundant pathways
related to the metabolism of AAs, SCFAs, and BAs
(Wilcoxon rank-sum test, P < .05). Even though the
majority of these pathways had a higher relative
abundance in the Healthy compared with ICU~
group, only a few pathways reached statistical sig-
nificance. On the contrary, the differences in the
relative abundances between the ICU" with the
Healthy group were striking (Figure 4(b)). The
relative abundance of 98 of the 117 unique path-
ways was significantly lower in ICU". Despite the
small number of significantly differentially abun-
dant species between ICU" and ICU", there were
more differences in the metabolic pathways
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between the two groups than between Healthy and
ICU", suggesting that antibiotic treatment has
a stronger effect in the metabolism of AAs,
SCFAs, and BAs than critical illness. Several of
these pathways were selected in the random forest
model to classify the two groups of ICU patients
(Figure 1(e) and Supplementary Figure 3).

Metabolomics analysis

We then performed targeted metabolomic analysis
and quantified the levels of 10 SCFAs and 27 BAs in
38 stool samples (see Methods). Consistently with
the results from the MetaCyc pathway analysis, we
observed a significant decrease in the abundance of
SCFAs and BAs in the ICU" group compared to the
Healthy and ICU™ groups (Figure 5(a)). Of 10 iden-
tified SCFAs, 6 were significantly different between
the groups (Figure 5(a)). Acetic acid, propionic acid,
butyric acid, and valeric acid were significantly lower
in the ICU" group compared to both the Healthy
and ICU"™ groups (Wilcoxon rank-sum test, P < .05).
The levels of these SCFAs were not found to differ
significantly between the ICU™ and Healthy groups.
A similar pattern was observed with the BAs; keto-
lithocholic acid, deoxycholic acid, glycolithocholic
acid, hyodeoxycholic acid, isolithocholic acid, litho-
cholic acid, and ursodeoxycholic acid were all found
significantly lower in abundance in ICU" patients
(Wilcoxon rank-sum test, P < .05) compared to
both Healthy and ICU™ patients (Figure 5(a)).
Among them, ursodeoxycholic acid is increasingly
used in the clinical setting for a treatment of a variety
of conditions.”*” Ketolithocholic acid, lithocholic
acid, and ursodeoxycholic acid have been also
found to provide resistance against C. difficile infec-
tions and to modulate the host inflammatory
response during the infection.”® The BA profiling
of ICU" patients may also explain the high similarity
at the functional level revealed by FEAST with the
C. difficile cohort (Figure 2(b)).

To identify which species were mainly responsible
for the differences in the levels of the measured
SCFAs and BAs in ICU" compared to the other
two groups, we performed growth rate analysis *
and Spearman’s correlation between the 13 metabo-
lites and 38 species. The species selected were either
having (i) significantly higher abundance in the
Healthy group compared to ICU™ but not compared

to the ICU™ group or (ii) significantly higher abun-
dance in the ICU™ compared to the ICU" group
(Figure 5(b)). As shown in Figure 5b, A. putredinis,
Lachnospiraceae bacterium 2 1 58FAA and
Lachnospiraceae bacterium 1 1 57FAA showed posi-
tive correlations with SCFAs and/or BAs and were
predicted through Flux Variability Analysis (FVA) **
to secrete SCFAs. Several Bacteroides species, includ-
ing B. uniformis, were actively growing (GRiD
8> 1), they showed positive correlations with the
measured SCFAs and they were predicted through
FVA * to secrete SCFAs supporting the identified
correlation (Figure 5(b)). Since BA metabolism is
not included in these metabolic models, we analyzed
the BA biosynthesis potential of the species showing
high correlation with BAs using differential analysis
of enzymes involved in the BA biosynthesis pathway.
The enzymes cbh and baiN were found in the gen-
omes of Bacteroides xylanisolvens, L. bacterium 2 1
58FAA, R. obeum, and R. gnavus. The abundance
levels of B. xylanisolvens and R. obeum cbh and the
abundance levels of R. obeum baiN were found sig-
nificantly higher in the Healthy group compared to
the ICU" (Wilcoxon rank-sum test, P < .05, data not
shown). R. obeum has been previously shown to have
an inhibitory effect on V. cholerae due to its capacity
to degrade virulence-activating signals in the gut
through the synthesis of bile salt hydrolases."

Candida species and resistant genes flourish in
critically ill patients

Since the microbiome composition and functional
profile of critically ill patients appeared to be dys-
biotic, we investigated next if this leads to systema-
tic changes in the structure of the fungal
community, with emphasis on Candida species
and the antibiotic resistance gene (ARG) levels in
the three groups. We built high-quality libraries for
ITS2 sequencing of 74 available stool samples from
the Healthy, ICU" and ICU™ groups. We estimated
the fungal relative abundance using the DADA2
pipeline.”” The taxonomic profiling revealed that
Ascomycota (85.63%) was the most abundant fun-
gal phyla, followed by Basidiomycota (9.84%) and
Muromycota (3.44%) (Figure 6(a)). There was no
significant difference in the alpha diversity
(Shannon, Simpson, Chaol) between any of the
two groups and the type of beta-lactam
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administrated in the ICU" group did not appear to
influence this pattern (Wilcoxon rank-sum test,
P > .05) (Supplementary Figure 7). However,
when we calculated the Bray-Curtis distance of
the three groups we observed a high community
dissimilarity ~between ICU" and Healthy
(PERMANOVA, P = .001) and between ICU™ and
Healthy (PERMANOVA, P = .001), whereas the
ICU" and ICU™ groups did not show significant
differences (PERMANOVA, P = .703) (Figure 6
(a), Supplementary Figure 10(a)). We subsequently
investigated differences in fungal species relative
abundance between the three groups. In total 19,
11, and 3 fungal species were found significantly
different (Wilcoxon rank-sum test, P < .05) in the
comparisons between Healthy vs ICU", Healthy vs
ICU~, ICU" vs ICU7, respectively (Figure 6(b)). The
Candida genus, which includes species that are
opportunistic pathogens, was found to have the
greatest number of differentially abundant species
between the three groups. Candida albicans,
Candida glabrata, Candida pseudolambica, and
Candida tropicalis were all found to have the high-
est abundance in ICU™ patients (Figure 6(b)).

To determine whether antibiotic treatment exerts
selective pressure on the resistome as a whole, we
analyzed the change in Pfams related to the resistome
and mobilome, as well as the abundance differences
of ARGs between the three groups. In the abundance
comparison between the Healthy and the ICU"
groups, there were 71 statistically significant Pfams
(Wilcoxon rank-sum test, P < .05) related to the
resistome and/or mobilome, with 48 of them being
more abundant in the ICU" and 23 in the Healthy
group (Supplementary Figure 8(a)). Interestingly, the
differences between ICU™ and Healthy groups were
also large with 30 and 16 Pfams being more abundant
in the ICU™ and the Healthy group, respectively
(Supplementary Figure 8(a)). In the comparison
between ICU" and ICU" there were 19 significant
Pfams with 14 being more abundant in the ICU"
and 5 in the ICU™ group (Supplementary
Figure 8(a)).

Subsequently, we annotated the ARGs in the
three groups using deepARG.”® The overall ARG
abundance profile of the ICU" and ICU™ groups
using the Bray-Curtis distances indicates that there
is no substantial perturbation during antibiotic
treatment (PERMANOVA, P = .261), but there

are significant differences between ICU" and
Healthy (PERMANOVA, P = .001) and between
ICU™ and Healthy (PERMANOVA, P = .001)
(Supplementary  Figure 8(b), Supplementary
Figure 10(b)). Comparing the total accumulative
relative ARGs abundance led to the same conclu-
sion; critically ill patients have already a unique
resistome profile compared to healthy individuals,
which is only marginally disturbed by antibiotics
administration  (Wilcoxon  rank-sum test,
P = 597e-8, Supplementary Figure 8(c)).
Considering the polypharmacology approaches
often applied in ICU, our observation is in agree-
ment to recent studies suggesting that human tar-
geted drugs can significantly impact on the gut
resistome profile.”” Nevertheless, an abundance
comparison of the individual ARGs revealed 24
ARGs, including 3 beta-lactams (SHV, PENA,
AMPC), significantly higher in the ICU" group
and only 1 in the ICU™ group (dabestr,
Confidence Interval (CI) = 95%, Supplementary
Table 3). Among the ARGs that exhibit the highest
abundance differences (dabestr, 95%) between the
ICU" and ICU"™ groups were AAC(6')-1 (aminogly-
coside), ADEC (multidrug), ERMB (macrolide, lin-
cosamide and streptogramin), VANS
(glycopeptide), and MSRC (macrolide, lincosamide
and streptogramin) (Supplementary Figure 8(d)).

Discussion

Sepsis, acute respiratory distress syndrome (ARDS),
and multi-organ failure represent common condi-
tions most frequently driven by an inappropriate
host response to pathogens of the critically ill.
These conditions are responsible for immense global
mortality accompanied by a tremendous economic
burden '. While breakthroughs of molecular medi-
cine have revolutionized treatment in oncology and
rheumatology, in critical illness research endeavors
of decades have not resulted in any targeted thera-
pies. In practice, intensive care can be considered
mostly as supportive and antibiotics are
a cornerstone of care for patients with sepsis, i.e.
infection-driven organ dysfunction.”

The off-target effects of antibiotics on the micro-
biome are, however, also particularly obvious in the
ICU population. Antibiotics often fail to resolve
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organ failure despite evidence of infection and,
even more concerning, are frequently administered
not to miss an occult infection. While the resulting
increase of multi-resistant bacteria is an obvious
problem, the negative impact on the “holobiont”
in the ICU have largely been ignored. More to the
point, considerations in intensive care are more
dwelling around the early days of introduction of
antimicrobial therapy when Paul Ehrlich propa-
gated the concept of “therapia sterilisans magna”
where only “parasitotropic® effects in the absence of
“organotropic” effects of drugs were envisioned.'”
Thus, molecular therapies for these common and
lethal diseases are desperately needed and depend
on a better understanding of systems biology of the
host metabolome-microbiome interplay.'®" Up to
now, the downstream consequences, such as host
inflammation and cellular damage, and not the
upstream sources, in particular the complex micro-
bial ecosystems that reside in and on the human
body, have been the priority of research.
Nevertheless, two recent studies in mice '°*'** indi-
cate that Fecal Material Transplantation (FMT) and
specific species in the gut microbiome could pre-
vent sepsis opening up new clinical research
avenues.

Here, we present evidence from a human study
that the selective pressures to which critically ill
patients are exposed (parenteral nutrition, poly-
pharmacy, including e.g., proton pump inhibitors,
shock states requiring invasive life support mea-
sures, such as catecholamine treatment) shape the
microbiome of these patients in a unique way with
highly distinct characteristics compared to healthy
or other disease states, including metabolic, inflam-
matory, or malignant diseases. As we have shown,
the microbiome structure and function of critically
ill patients resembles signatures mainly observed in
severe infections such as C. difficile and V. cholerae.
This already “infection-vulnerable” microbiome
structure in critical illness becomes severely dysbio-
tic after antibiotic treatment with an observed
depletion of SCFAs, including propionate, butyrate,
and acetate, and BAs. Similarly, in an elegant mice
study Kim et al., > demonstrated using FMT from
healthy littermates that high levels of butyrate (and
potentially also propionate), provided mainly by
Bacteroidetes, can rescue from lethal sepsis caused
by a pathogenic mixture of K. oxytoca, E. faecalis,

Serratia marcescens and C. albicans isolated from
a septic patient. Three of these pathogenic species,
K. oxytoca, E. faecalis and C. albicans, were found
in significantly higher abundance in our critically ill
patients compared to healthy individuals. However,
the poor similarity in gut microbial taxonomic
abundances between human and mice '** high-
lights the importance of investigating the relation-
ship between critical illness and gut microbiota in
human clinical samples. For example, while Kim
et al., "% hypothesized that critical illness itself may
result in the depletion of gut butyrate. In our
human study, this was not the case and only after
antibiotics administration we observed a dramatic
decrease in the SCFA levels. Nevertheless, we
observed a significant change in taxonomy also in
ICU™ compared to Healthy related to inflamma-
tion, such as a significant increase in the abundance
of Staphylococcus and Enterococcus, which have
been reported as key factors for the development
of signs of systemic inflammation, nosocomial
infection and complications in the ICU course.*®%

Our study has several limitations. Critically ill
patients represent a heterogeneous patient group
characterized by comorbidities, past infections
and age, leakage of alveolar, and intestinal barriers
as well as impaired defense and repair
mechanisms.'”>'% Low flow states up to overt
shock, autonomic dysfunction, and lack of suffi-
cient options for enteral feeding, e.g., due to dys-
phagia or impaired consciousness affect gut
function, transit time, and defecation.'”” Many
drugs that are applied routinely in addition to anti-
biotics, such as proton pump inhibitors or catecho-
lamines can affect gut function substantially.”
Nevertheless, while rodent studies allow to control
many of the aforementioned confounders, only
clinical studies allow to address the impact of anti-
biotics on the gut microbiome as it relates to clini-
cally meaningful outcomes. Thus, we aimed at
control of confounders through inclusion of patient
cohorts requiring critical care but not receiving
antibiotics.

Patients in ICUs represent a relatively small sub-
group of hospitalized patients, but they reflect
a specific at-risk population that accounts for
approximately 25% of all hospital-acquired
infections.'” Infection as a typical complication
of critical illness increases length of ICU stay,
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morbidity, mortality, and costs.'” Moreover, the

rise in multidrug-resistant strains prompts atten-
tion on nonantibiotic strategies in the prevention
and treatment of nosocomial infections, such as
pro- or synbiotics. However, mechanisms of action
in the vulnerable population of critically ill patients
requires further investigation into the mechanisms
that shape the gut microbiome. From our study we
suggest that the loss of a handful of species, that are
highly connected with the production of SCFAs
and BAs, during antibiotic administration in the
ICU allows the expansion of pathogenic species,
which exhibit potential to cause direct hindrance
of host homeostasis. Despite the availability of
more advanced antibiotics in ICUs death rates
from sepsis following nosocomial infections keep
increasing, indicating that these antibiotics do not
increase survival but instead they produce a highly
dysbiotic gut ecosystem that allows more aggres-
sively resistant and lethal pathogens to thrive.'
These changes are likely associated with or even
to promote a state of “protracted critical illness”,
a frequent observation in patients discharged after
prolonged intensive care and characterized by per-
sistent systemic infection. It seems warranted to
design studies that aim to restore the gut micro-
biome or replace key metabolites, such as SCFAs or
BAs, in this vulnerable patient population to restore
homeostasis of the “metaorganism” after discharge
from intensive care.

Materials and methods
Study design

A prospective observational study was undertaken
from May 2018 until January 2019 at the Jena
University Hospital. Adult critically ill patients
either treated with systemic antimicrobial therapy
(piperacillin/tazobactam or meropenem) for at
least 2 days or without any systemic antimicrobial
therapy within the last 7 days were eligible for this
study. Patients with inflammatory bowel disease,
major bowel resection, selective decontamination
of the oral and digestive tract, oral vancomycin
therapy, immunocompromised patients, history of
chemotherapy during the last 6 months, or known
travel history to areas of high antimicrobial resis-
tance within the last 4 weeks were excluded from
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this study. The need for informed consent was
waived by the IRB, since this investigation did not
involve any intervention at the patient. The col-
lected basic data were used only for calculating
mean values per group and were not linked to the
individual metagenomic profiles. Stool samples
from healthy volunteers (>50 years old) with no
antimicrobial therapy within the last 6 months
served as a control group. Healthy volunteers inter-
ested in participating were invited for
a consultation with medical doctors in the Jena
University Hospital. Their health status and prior
antibiotic use was self-reported. The basic demo-
graphic data for the healthy cohort is provided in
Supplementary File 1. We collected up to 100 ml
feces which were sampled immediately after natural
defecation. Fecal specimens were transferred into
two sterile containers, one that was mixed with
liquid thioglycolate medium supplemented with
catalase and 10% glycerol and one without buffer
solution. Both containers were stored at -80°C.
Each patient contributed with only one stool
sample.

DNA extraction from stool samples

All stool samples were processed by Novogene
(UK). DNA was extracted using the following
protocol: Stool samples were thoroughly mixed
with 900 pL of CTAB lysis buffer. All samples
were incubated at 65°C for 60 min before being
centrifuged at 12000 x g for 5 min at 4°C.
Supernatants were transferred to fresh 2-mL
microcentrifuge tubes and 900 pL of phenol:
chloroform:isoamyl alcohol (25:24:1, pH = 6.7;
Sigma-Aldrich) was added for each extraction.
Samples were mixed thoroughly prior to being
incubated at room temperature for 10 min. Phase
separation occurred by centrifugation at
12,000 x g for 15 min at 4°C, and the upper
aqueous phase was re-extracted with a further
900 pL of phenol:chloroform:isoamyl alcohol.
Next, samples were centrifuged at 12,000 x g for
10 min at 4°C, and the upper aqueous phases were
transferred to fresh 2-mL microcentrifuge tubes.
The final extraction was performed with 900 pL of
chloroform:isoamyl alcohol (24:1), and layer
separation occurred by centrifugation at
12,000 x g for 15 min at 4°C. Precipitation of
DNA was achieved by adding the upper phase
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from the last extraction step to 450 pL of isopro-
panol (Sigma-Aldrich) containing 50 uL of 7.5 M
ammonium acetate (Fisher). Samples were incu-
bated at — 20°C overnight, although shorter incu-
bations (1 h) produced lower DNA yields. Samples
were centrifuged at 7500 x g for 10 min at 4°C,
and supernatants were discarded. Finally, DNA
pellets were washed three times in 1 mL of 70%
(v/v) ethanol (Fisher). The final pellet was air-
dried and re-suspended in 200 puL of 75 mM TE
buffer (pH = 8.0; Sigma-Aldrich).

Library preparation and sequencing for
metagenomics

Sequencing library was generated based on
[lumina technologies and following manufactures’
recommendations. Index codes were added to each
sample. Briefly, the genomic DNA was randomly
fragmented to a size of 350 bp, then DNA frag-
ments were narrowly size selected with sample pur-
ification beads. The selected fragments were then
end polished, A-tailed, and ligated with adapter.
These fragments were filtered with beads again
and amplified by PCR reaction. At last, the library
was analyzed for size distribution and quantified
using real-time PCR. The library was then to be
sequenced on an Illumina platform Novaseq 6000
(Novogene) with paired-end reads of 150 bp.

Internal transcribed spacer sequencing

The concentration of genomic DNA was determined
by Qubit, and the DNA quality was checked on the
gel. 200 ng of DNA was used as input for PCR
reaction with corresponding primer set specifically
binding to different hypervariable regions. Each pri-
mer set had a unique barcode. PCR product was then
run on the gel and DNA fragment with the proper
amplification size was cut and purified. The purified
PCR product was then used as template for library
preparation. The PCR products were pooled
together with equal amount and then end polished,
A-tailed, and ligated with the adapter. These frag-
ments were filtered with beads again. After PCR
reaction (to make library fully double strand), the
library was analyzed for size distribution and quan-
tified using real-time PCR. The library was then to be
sequenced on Hiseq2500.

Metabolomics analysis
We performed targeted metabolomics analysis for
38 of the 75 available samples. The remaining sam-
ples were destroyed during a prolonged stay in the
customs during the COVID-19 pandemic.
Quantification of SCFAs: SCFAs were extracted
by addition of 2 mg ultra-pure water pr. mg of
sample. The samples were vortex mixed for 1-
2 min until suspension is reached, and centrifuged
at max speed for 10 min at 4°C. The supernatant
was transferred to a spinX centrifuge filter and
centrifuged for additional 5 min at 4°C. The filtrate
was collected and stored at —20°C until analysis.
Sample analysis was carried out by MS-Omics as
follows. Samples were acidified using hydrochloric
acid, and deuterium labeled internal standards
where added. All samples were analyzed in
a randomized order. Analysis was performed
using a high polarity column (ZebronTM ZB-
FFAP, GC Cap. Column 30 m x 0.25 mm
x 0.25 pm) installed in a GC (7890B, Agilent)
coupled with a quadrupole detector (59778,
Agilent). The system was controlled by
ChemStation (Agilent). Raw data was converted to
netCDF format using Chemstation (Agilent),
before the data was imported and processed in
Matlab R2014b (MathWorks, Inc.) using the
PARADISe software described by Johnsen et al.''’
Quantification of BAs: Bile acids were extracted
by addition of 4 mg methanol pr. mg of sample. The
samples were vortex mixed for 1-2 min until sus-
pension is reached, and centrifuged at max speed for
10 min at 4°C. The supernatant was transferred to
a spinX centrifuge filter and centrifuged for addi-
tional 5 min at 4°C. In a HPLC vial, 285 pL filtrate is
mixed with 15 pL internal standard. The final
volume of filtrate of CS10768 and CS10798 where
below 285 pl. Therefore, 200 pl were combined with
85 pl Methanol and 15 pl internal standard. Sample
analysis was carried out by MS-Omics as follows.
The analysis was carried out using a Thermo
Scientific  Vanquish LC coupled to Thermo
Q Exactive HF MS. An electrospray ionization inter-
face was used as ionization source. Analysis was
performed in negative ionization mode. The chro-
matographic separation of bile acids was carried out
on a Waters Acquity HSS T3 1.8 um 2.1 x 150 mm
(Waters). The column was thermostated at 30°C.
The mobile phases consisted of (A) ammonium
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acetate 10 mmol/l, and (B) methanol:acetonitrile
(1:1, v/v). Bile acids were eluted by increasing B in
A from 45% to 100% for 16 min. Flow rate was
0.3 min. Peak areas were extracted using
Tracefinder 4.1 (Thermo Scientific). Identification
of compounds were based on accurate mass and
retention time of authentic standards.

Data processing

Quality control of sequence data

Quality control to remove low-quality reads was
performed as described previously.''" Briefly, all
Mlumina primer/adapter/linker sequences were
removed. Subsequently, low-quality regions (con-
secutive regions with Phred quality <20) were
trimmed. Finally, all reads were mapped to the
human genome with BWA version 0.7.4 ''* and
reads with >95% identity and 90% coverage were
removed as human DNA contamination.

Taxonomic profiling

Taxonomic annotation of the high-quality reads
was performed using MetaPhlAn2** version 2.7.7
with default settings, generating taxonomic relative
abundances. Bacterial community profiles were
constructed at phylum, genus and species level for
further analyses.

Taxonomic annotation of fungal ITS was per-
formed using the DADA2 pipeline”” version 1.14
with default parameters including adapter removal,
quality filtering and trimming, dereplication of iden-
tical reads, read-pair merging, ITS2 extraction and
chimera removal. Remaining reads were binned as
operational taxonomic units and aligned to the
UNITE fungi database using RDP classifier.'’* All
samples were then normalized by cumulative sum
scaling using R package metagenomeSeq.''*

Functional annotation

The HUMANN?2 pipeline ** version 0.11.2 was used
for functional annotation of the high-quality reads
after the quality control. The quantified pathway and
gene family abundances in the units of RPKs (read per
kilobase) were then normalized to copies per million
(CPM) units by the provided HUMANN2 script,
resulting in transcript-per-million-like (TPM) nor-
malization. Gene families were then regrouped to
Pfam domains for further analyses.
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Abundance comparisons
Species, pathways, and Pfams were filtered by 10%
prevalence across all samples and their relative
abundances were used for statistical comparisons
between the three groups. Differentially abundant
features were identified by the Wilcoxon rank-sum
test and were considered significantly differentially
abundant if the P-value was less than 0.05.
Differentially abundant phyla and genera were
identified by the Kruskal-Wallis test and were con-
sidered significantly differentially abundant if the
P-value was less than 0.05.

Metagenomics sequences from HUMAnN2 profiles
Gene family abundances were clustered using mgs-
canopy*® version 1.0 software with standard para-
meters. Gene family clusters were considered meta-
genomic sequences (MGS) if they had at least 700
genes. Taxonomic annotation of MGS was done
using species annotation information available for
each gene family.

We calculated contributions of each species to an
MGS. An MGS was annotated to the species with the
largest contribution if: the gene contribution of that
species was more than 50% and the second largest
species was “unclassified” or contributed less
than 10%.

Diversity analysis

Alpha diversity indices Shannon, Simpson, and
Chaol were calculated using the R packages
vegan’> and fossil''> based on relative species
abundance. Wilcoxon rank-sum test was used
to test for significant differences in alpha diver-
sity. For estimating community dissimilarities,
Bray-Curtis distances were calculated using the
R package vegan’” based on the relative species
abundance. To test for significant differences in
the microbial composition, permutational multi-
variate analysis of variance (PERMANOVA), as
implemented in the function adonis from
R package vegan,”> was used to analyze beta-
diversity.

Co-abundance networks

The relative abundance table for significantly dif-
ferent species was processed using SparCC ''° for
co-abundance network inference. Species—species
correlation coefficients were estimated as the
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average of 20 inference iterations and 100 permuta-
tions were used for the pseudo P-value calculation.
For the visualization of the co-abundance network,
only interactions with an absolute correlation coef-
ficient >0.4 were used.

Metabolic modeling

To estimate the availability and composition of
metabolites in ICU patients, the nutrition fed in
ICU (https://www.fresenius-kabi.com/de/ernaeh
rung/fresubin-original) was considered.
Metabolic composition of complex products
such as fish oil was described by vmh diet
designer (https://www.vmbh.life/#nutrition/dietde
signer). The human genome-scale metabolic
model Recon3D 3.01 ' simulated based on the
ICU specific diet (Supplementary File 2) was used
to predict metabolites that can potentially be
secreted by the host. Flux Variability Analysis
(EVA) % was used to determine feasible exchange
reaction flux bounds that support metabolite
secretion alongside optimal growth rate.
Identified metabolites were assumed to be avail-
able for the bacterial species and strains to be
consumed. Genome-scale metabolic models of
the studied species and strains were collected
from two different gut model repositories,
AGORA 1.03 (https://www.vmbh.life) 8 and
CarveMe.''® Taking into account the availability
of ICU diet compounds and potential host-
secreted metabolites in the gut, the maximum
amount of SCFAs (acetic acid, propionic acid,
and butyric acid) production by bacterial species
and strains were predicted by applying FVA *
again alongside achieving maximum ATP yield as
objective for the available bacterial metabolic
models.

Abundance of ARGs

The metagenomic reads were analyzed using the
deepARG pipeline,”® which uses deep learning to
identify and quantify ARGs. Reads were compared
to the provided DeepARG-DB database using
a prediction model to evaluate sequence similarities
and predict antibiotic resistance. The pipeline was
run in short sequence mode with a minimum prob-
ability cutoff of 0.8, an identity cutoff of 80%, an
E-value cutoff of le-10 and a minimum coverage
of 50%.

Testing for significant differences in ARG abun-
dance was performed using R package dabestr '*°
with a confidence interval of 95%.

Bacterial growth rate estimation

Bacterial growth rate was calculated using the
growth rate index (GRiD) * version 1.2. The algo-
rithm first calculates the coverage of all contigs of
a reference genome in the sample, sorts them from
high to low, and reorders them to two groups, pla-
cing an ori-containing contig at start and a fer-
containing contig at the mid-region of the genome.
Next, it calculates coverage drops across a sliding 10
Kb window, with values representing the coverage
ratio of the peak and trough of the curve. High values
represent faster growth rates.

Random forest model

A Random Forest classifier was built to classify ICU
patients into ICU™ and ICU" based on bacterial taxo-
nomic profiles and pathways. The model was imple-
mented using R package caret '*° with all bacterial
species and pathway abundances as input features.
The model was trained after centering and scaling the
data and removing variables with near zero variance,
using a tune length of 10 and fivefold cross-validation
as resampling method, the rest of the parameters
were left as default. Feature importance were calcu-
lated using function varImp from R package caret.'*’
A random forest model was then built using only the
20 most important features. R package PRROC '*'
was used for ROC calculation and plot.

Bacterial exposure and survival assay in C. elegans
Bacterial strains used were Escherichia coli OP50,
Lactobacillus  crispatus  (DSM  20356), and
Bifidobacterium animalis (DSM 20104). All strains
except E. coli were acquired from the German
Collection of Microorganisms and Cell Cultures
and cultured following the supplier guidelines.
Bacterial stocks were kept at -80°C until use.
C. elegans strain used was N2 wild-type isolate
obtained from the Caenorhabditis Genetics Center.
Bacterial stocks were inoculated in anoxic broth
(MRS for L. crispatus and BSM for B. animalis) and
incubated at 37°C for 72 h. 150 pL of each bacterial
culture was spread onto medium sized NGM agar
plates (5,5 cm diameter) and incubated for 24 h at
37°C in an anaerobic container (BD GasPak™ EZ
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container systems) prior to worm addition. E. coli
was grown on NGM in normoxia. UV-killed OP50
was produced by exposing NGM plates to UV light
(320 nm) in a Chemi-Doc XRS+ transilluminator
(BioRad) for 10 min.

Age-synchronized germ-free ~worms were
obtained by collecting eggs from gravid adults
upon treatment with alkaline hypochlorite solution
(composition per liter: 200 mL 1 M KOH, 250 mL
bleach, and 500 mL ddH20) and letting the eggs
hatch overnight at 20°C in M9 buffer. Synchronized
L1 larvae were seeded onto NGM plates containing
respective bacterial strains (4 plates per strain).
Approximately 150 worms were seeded per plate.
Plates were incubated at 20°C in an anaerobic con-
tainer for 5 h or 24 h. After incubation worms were
washed with M9 buffer and transferred to UV-killed
OP50 plates. UV-killed OP50 plates were incubated
at 20°C in normoxic conditions for 24 h prior to
survival assessment. Heat-killed bacteria was
obtained by submerging bacterial cultures at 80°C
for 60 min and OD600 was normalized to 0,2 before
placing the cultures onto NGM plates. Live bacteria
was also subjected to OD600 normalization in all
tests, which involved heat-killed control conditions.

Survival rate was assessed by screening all the
worms present in each plate. A worm was regarded
as dead if it did not respond to gentle touch with
a platinum wire. Survival was expressed as percen-
tage of the total number worms. Each experiment
was performed 3 times.

Developmental fitness and reproductive aging assays
in C. elegans

Bifidobacterium animalis was grown for 72 h on
anoxic BSM broth at 37°C. Afterward, 150 uL of
bacterial culture was spread onto medium-sized
NGM plates (4 plates) and incubated for 24 h at
37°C in an anaerobic container (BD GasPak™ EZ
container systems) prior to worm addition. E. coli
OP50 was grown on NGM at normoxic conditions.
C. elegans N2 population was synchronized as
described above and approximately 150 worms
were seeded on either B. animalis or OP50 plates.
Plates were incubated for 24 h at 20°C in the anae-
robic container. Developmental assay was carried
out as previously described.'** In brief, 30 worms
per bacterium were put individually onto small
UV-killed OP50 plates and incubated for 48 h at
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20°C before developmental stage of each worm was
visually assessed. Reproductive aging assay was car-
ried out as described previously.'*® In brief, after
incubation with B. animalis or OP50 the worms
were washed with M9 and let to develop until L4
stage on UV-killed OP50 plates at 20°C, normoxia.
At this moment 25 randomly picked worms (per
condition) were transferred individually onto
small-sized UV-killed OP50 plates. Every day the
brood size of each worm was determined (sum of
eggs and L1s) and parent worm was transferred to
new plate until egg laying ceased. These experi-
ments were performed 3 times.

DAF-16 nuclear translocation assay
Nematodes expressing DAF-16::GFP fusion protein
were obtained from the Caenorhabditis Genetics
Center (strain TJ356). Bacterial strains used were
the same as described above. Anoxic broth was
inoculated with an aliquot of actively growing bac-
terial culture and incubated at 37°C for 48 h.
OD600 of all living cultures was normalized to 0,1.
150 pL of each bacterial culture was spread onto
medium sized NGM agar plates (5,5 cm diameter)
and incubated for 24 h at 37°C in an anaerobic
container (BD GasPak™ EZ container systems)
prior to worm addition. E. coli was grown on
NGM in normoxia. Heat-killed bacteria was gener-
ated as described above and OD600 was normalized
to 0,2 prior to seeding onto NGM plates.
Age-synchronized germ-free worms were
obtained as described above and grown until L4
stage on UV-killed OP50. L4 worms were washed
with M9 buffer and transferred to NGM plates
containing bacteria. Approximately 150 worms
were seeded per plate. Plates were incubated at
20°C in an anaerobic container (BD GasPak™ EZ
container systems) on either live or heat-killed bac-
teria for 5 h. Control plates were incubated in
normoxia on live bacteria only. After incubation,
30 worms were picked from each condition and
transferred to empty NGM plates for imaging.
Imaging was carried out using a ZEISS Axio
Zoom.V16 microscope equipped with fluorescence
light. Imaged worms were sorted into three cate-
gories (nuclear, intermediate, cytosolic) depending
on the localization of the GFP tagged DAF-16 tran-
scription factor. This experiment was performed
three times.
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Statistical analysis

To determine differential abundance of taxonomic,
functional, and metabolic features between groups
Wilcoxon two-tailed rank-sum test was applied
when analyzing the differences between two
groups, whereas Kruskal-Wallis test was used
when more than two groups were compared.
Correlation between microbial taxa and metabo-
lites was assessed by Spearman’s correlation. The
R package dabestr''” was used to test differential
abundance of ARGs. Significant differences in
source contributions to sinks using FEAST* were
assessed using Wilcoxon two-tailed rank sum test.
To assess differences in alpha diversity and beta
dispersion, Wilcoxon two-tailed rank sum test was
used, whereas PERMANOVA was used for beta
diversity.
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Abstract

Candida albicans is a leading cause of life-threatening hospital-acquired infections and can lead to Candidemia with sepsis-
like symptoms and high mortality rates. We reconstructed a genome-scale C. albicans metabolic model to investigate
bacterial-fungal metabolic interactions in the gut as determinants of fungal abundance. We optimized the predictive capacity
of our model using wild type and mutant C. albicans growth data and used it for in silico metabolic interaction predictions.
Our analysis of more than 900 paired fungal-bacterial metabolic models predicted key gut bacterial species modulating C.
albicans colonization levels. Among the studied microbes, Alistipes putredinis was predicted to negatively affect C. albicans
levels. We confirmed these findings by metagenomic sequencing of stool samples from 24 human subjects and by fungal
growth experiments in bacterial spent media. Furthermore, our pairwise simulations guided us to specific metabolites with
promoting or inhibitory effect to the fungus when exposed in defined media under carbon and nitrogen limitation. Our study
demonstrates that in silico metabolic prediction can lead to the identification of gut microbiome features that can
significantly affect potentially harmful levels of C. albicans.

Highlights

e Genome-scale model reconstruction of C. albicans with 89% growth accuracy.

Mutualism and parasitism are the most common predicted C. albicans-gut bacteria interactions.
Metagenomic sequencing and in vitro assays reveal modulators of fungal growth.

Alistipes putredinis potentially prevents elevated C. albicans levels.

Introduction

The fungus Candida albicans is found on the mucosal
surfaces of at least 50-70% of healthy adults [1] and is a
classic opportunistic pathogen. It resides as a harmless
Supplementary information The online version of this article (https:// commensal but can become pathogenic in immunocom-
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albicans causes up to 300,000 deaths per annum world-
wide with an increasing number of individuals at risk [4].
Therefore, efforts to understand drivers of commensal or
pathogenic outcomes of this fungus have intensified.

Recent studies found links between alterations in the
composition and functionality of the gut microbiota and
development of local or systemic C. albicans infections
[5, 6]. A microbial tryptophan metabolic pathway appears
to preserve immune physiology at mucosal surfaces by
promoting indole-3-aldehyde production that contributes to
IL-22 transcription [7]. Other gut microbial products such
as bacteriocin are directly active against C. albicans [8]. A
study of rectal samples from a cohort of 150 children linked
gut microbiota to Candida prevalence, with a relative
reduction in Candida species in children who received
probiotics along with broad spectrum antibiotics [9]. Nei-
ther the dynamics of Candida species in the human gut nor
the specific microbial contributors to the observed reduction
have been studied, however. Based on these diverse find-
ings, the commensal status of C. albicans appears to be
related to the global taxonomy and functionality of the host
microbiome.

A promising approach to analyzing interactions between
C. albicans and gut microbial species uses genome-scale
metabolic models (GSMMs) GSMMs have improved the
biotechnological productivity of bacteria [10-12], revealed
plant metabolic processes [13], and elucidated the Crabtree
effect in yeast [14-16] and the Warburg effect in cancer
cells [17]. Recent pioneering studies have developed high-
quality GSMMs for gut bacteria that enable in silico ana-
lysis of gut metabolic functions and interactions [18, 19].
These resources have advanced the study of gut microbes
and their respective pairwise interactions but have not yet
been used to study interactions with opportunistic fungal
pathogens such as C. albicans. The potential of gut
microbes to influence the overall fitness of the fungus must
be elucidated to support development of prophylactic or
therapeutic strategies to control C. albicans.

We constructed a GSMM of C. albicans, starting with an
automatically generated template model [20, 21]. We sub-
stantially improved its performance with manual curation
and adaptation to phenotype microarray experiments. We
used both, publicly available data [22] and new phenotypic
microarray data for both wild type and mutant C. albicans
strains. Our model predictions surpassed those of other
GSMMs for species closely related to C. albicans that could
serve as proxies for this fungus. We used the GSSM to
simulate in silico pairwise metabolic interactions between
C. albicans and each of 910 gut bacteria models. We
challenged our predictions in vitro by growing C. albicans
in carbon or nitrogen limited defined media in the presence
of predicted fungal growth affecting metabolites. We further
validated our results with stool samples from 24 human
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subjects, using metagenomics and internal transcribed
spacer (ITS) sequencing to identify bacterial species asso-
ciated with significant effects on C. albicans metabolism
and growth. Finally, we assessed fungal growth in bacterial
spent media experiments.

Materials and methods
Model reconstruction

To generate the C. albicans GSMM, we used the C. albicans
metabolic model automatically reconstructed by the CoReCo
pipeline as a template. In brief, CoReCo combines infor-
mation from multiple data sources into a unified database and
evaluates the probability of any reaction occurring in the
target organism by computing a score for each enzyme based
on sequence homology [20]. We refined the model in four
consecutive steps (Fig. 1A) that included the identification
and removal of duplicate metabolites, determination and
resolve of erroneous energy-generating cycles [23], adapta-
tion to phenotypic microarray data and exchange reaction
modification based on flux variability analysis (FVA, Sup-
plementary Material, Supplementary Data S1) [24].

Pairwise simulations

Pairwise simulations adapted from Heinken and Thiele [25]
were performed using 818 AGORA 1.03 GSMMs [18]
downloaded from (https://www.vmbh.life) and 92 CarveMe
gut bacterial GSMMs [19]. In brief, the C. albicans GSMM
was paired to individual bacterial GSMMs and subse-
quently optimized by simultaneously maximizing C. albi-
cans and bacteria biomass reactions. Interaction type was
determined by taking the optimized growth rate in the pair
compared to the growth rate of the individual GSMM into
account (Supplementary Material).

To evaluate dissimilarities between promoters and inhi-
bitors of C. albicans from different phyla, Bray-Curtis
distances were calculated based on flux distributions
of individual bacteria from pFBA simulations on different
media  [18] (https://www.vmh.life, ~ Supplementary
Table S1). Fisher’s exact tests were calculated to determine
if a specific phylum was enriched with species that either
inhibited or promoted C. albicans growth. The python code
and metabolic models for simulating pairwise GSMMs are
available at https:/github.com/mohammadmirhakkak/Ca
ndida-albicans-microbiome-interaction.

Phenotypic microarray experiments

C. albicans wild type and multiple mutant strains (Table 1)
were pre-grown on YPD (1% yeast extract, 2% peptone,
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Fig. 1 Candida albicans GSMM reconstruction. A Based on a
template [20] a manually curated metabolic model was achieved
in several steps. Adjustment of model features such as modifying
metabolic reactions or resolving energy cycles and model impact are
indicated. Relative growth rates show relative differences to the tem-
plate GSMM growth rate. B Benchmark results for model optimization
using phenotypic microarray data for C. albicans growth. Light gray

Other

bar indicates accuracy on carbon media without arginine mutants
that show growth on phenotypic microarray data without additional
arginine (see main text for details). Accuracy was calculated as number
of growth experiments that agree with model predictions across
all growth experiments that were simulated. C carbon, N nitrogen,
P phosphor, S sulfur. C Assigned pathway distribution of the
final model.

Table 1 Selected Candida albicans strains for phenotypic microarrays experiments.

Strain Genotype Reference
SC5314 Prototroph [65]
CEC2908 ura3A::Aimm434/ura3A::Aimm434 hislA::hisG/HISI arg4A::hisG/ARG4 ADH1/adhl::pTDH3-carTA::SATI [66]
SN87 leu2A/leu2A hislA/hislA URA3/ura3A::imm434 IRO1/irolA::imm434 [67]
SN152 leu2A/leu2A +LEU?2, hislA/his]A +HIS1, arg4A/arg4A, URA3/ura3A::imm434, IRO1/irolA::imm434 [68]
JRCI2 arglA::FRT/arglA::FRT [69]
JRC38 arg3A::FRT/arg3A::FRT [69]
CFG318 NEUTS5L/neut5l::FRT, put2A/put2A [47]

2% glucose, 2% agar) plates. Phenotype microarrays were
performed by using microarray plates, reagents and devi-
ces according to the manufacturer Biolog, Inc. (Hayward,
CA, USA) instructions. Briefly, C. albicans cells were
taken directly from YPD agar plates and diluted in sterile
dH20 to 62% transmittance as measured by a turbidimeter
(Biolog, Inc.). Next, cells were combined with inoculating
fluid IFY-0 base (1.2x), redox dye mix D (75x) (Biolog
Inc.), and further supplemented with either Glucose, L-
glutamic acid, potassium phosphate or sodium sulfate
(Sigma-Aldrich) were required. 100 ul of the respective
mixture (83.33% IFY-0 base, 1.33% redox dye D, 8.33%

supplements, 2.08% cells, and if required 3.12% Glucose
and dH20) was added to each well of a Biolog Phenotype
Microarray 96-well plate for fungi to test for metabolic
activity in the presence of carbon sources (PMI and
PM2A), nitrogen sources (PM3B), and phosphorus and
sulfur sources (PM4A). The phenotype microarrays were
incubated at 30 °C in an OmniLog multiple plate reader in
order to prevent hyphae formation that otherwise perturb
growth measurements. Reduction of the redox dye, an
indicator for metabolic activity, was measured kinetically
every 15min at an OD of 750 nm for 24-48 h. Each
experiment was performed twice. Data analysis was done
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using the R opm package for Omnilog phenotype
microarray datasets [26].

In vitro experiments
Growth of C. albicans in presence of metabolites

To determine the effect of the metabolites on C. albicans
growth, the clinical isolate SC5314 was grown overnight
at 30 °C in YPD complex medium (1% yeast extract, 2%
peptone, 2% glucose). 30 °C were chosen to prevent
hyphae formation provoked at higher temperatures, which
otherwise perturb growth curve measurements. Yeast cells
were washed three times with sterile HO by centrifuga-
tion for 5 min at 4,200 x g. Test medium was composed of
1x yeast nitrogen base (YNB, Formedium) with either
(standard) 0.25% NH4S0O4/2% glucose, (C limited) 0.25%
NH;S04/0.25% glucose, (N limited) 0.008% NH4SO4/2%
glucose, or (C/N low) 0.016% NH4S04/0.5% glucose.
Test substances were obtained from Sigma-Aldrich
and were dissolved in H,O at (nitrite) 156 mM, (desoxy-
adenosine) 100 mM, (sodium formate) 1 M, (putrescine)
500 mM, (L-asparagine) 100 mM, or (L-proline) 15.6
mM. Assays were performed as 1:2 dilution series in
96 well plates (TPP, flat bottom) and were composed of
180 ul test medium, 10pul test substance, 10pul yeast
solution (1:10 dilution in H,O, final ODgq of 0.1). Initial
pH was verified to be at the expected =5.8. Growth
was followed over at least 24 h using a Tecan infinite 200
multiwell plate reader set to 30 °C, with measurements at
600 nm every 15 min following 10s of orbital shaking.
All measurements were performed in triplicate from
independent overnight cultures at different days. Growth
was evaluated as area under the curve (AUC, trapezoidal
method using GraphPad prism 8.1.2; baseline at mean of
first three measurement) over 24 h and expressed as per-
cent change compared to control setups (H,O instead
of test substance) in the same medium. AUCs were
determined for three replicates, and mean change com-
pared to controls is shown with standard deviations (SD)
as error bars.

Strains and culture conditions

A. putredinis (DSM17216), B. ovatus (ATCC 8483), B.
vulgatus (ATCC8482), E. lenta (DSM2243), P. copri
(DSM18205), R. torques (ATCC27756), E. coli (MG1655
and BAA-1161), P. corporis (DSM18810), C. albicans
(SC5314/ATCC MYA-2876), C. albicans (ATCC 10231)
and C. albicans (ATCC 18804) were grown at 37 °C under
anaerobic conditions (gas mixture, 95% N, and 5% H,) in
prereduced modified GAM (mGAM, Nissui Pharmaceutical
Co. Ltd.) broth for liquid cultures or broth supplemented
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with agar for growth on plates. 37 °C and anaerobic con-
ditions were chosen to resemble best the natural environ-
ment of these gut bacteria.

Sterile bacterial spent media

Bacterial strains were grown for 48 h in GAM broth, then
subcultured 1:50 in fresh GAM broth and grown for 48 h in
anaerobic conditions at 37 °C to resemble the gut environ-
ment. Cultures were centrifuged at 11,000 x g for 5 min and
spent media removed without disturbing the pellet. Spent
media were passed through a 0.2 um syringe filter to remove
remaining bacteria. After filtration, the pH of the spent
media was analyzed using an electronic pH-meter (Sup-
plementary Table S2). 1% (v/v) of Phosphate-buffered
saline (PBS) was added in each experiment to maintain a
constant pH.

Growth assays

An overnight culture of C. albicans was grown aerobically
in mGAM media at 37 °C. Aerobic conditions were chosen
to enable sufficient growth of C. albicans. Cells were then
subcultured at a 1:1000 dilution into 150 pl of sterile spent
bacterial media in different proportions: 75 and 100%. The
spent media were diluted in fresh 25% mGAM broth for
75% spent media proportion and PBS (1% v/v), accord-
ingly. The fermentation was performed in flat-bottom, 96-
well plates. The plates were incubated for 24 h at 37 °C,
with continuous orbital shaking at 900 rpm. 37 °C did not
induce notable hyphae formation in growth assays and
therefore did not perturb growth measurements on spent
media. Cell densities were measured every 10 min at optical
density 600 nm (OD600) using a microtiter reader (BioTek
ELx800). Growth rates were calculated by plotting log of
OD measurements in log phase and calculating the slope of
the time points in log phase where 7> was closest to 1, using
at least 12 time points over 2h. Growth inhibition was
determined as the growth rate of C. albicans in spent bac-
terial media normalized to the growth rate in the corre-
sponding mGAM fresh media dilution.

Microbiome profiling

Bacterial and fungal species profiles were generated for
stool samples from a human cohort of 24 individuals at
Western Regional Medical Center, Goodyear, Arizona,
USA. Samples were collected after signed informed consent
under a protocol approved by the Western Institutional
Review Board (WIRB protocol number 20140271, Pallyup,
Washington, USA). All subjects had been diagnosed with
different types of cancer, with heterogeneous stage, treat-
ment, and histological findings. Metagenomic sequencing
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was performed at BGI, Hong Kong S.A.R., China, as
described in Qin et al. [27], and ITS amplicon sequencing of
the mycobiome was performed at ZIK Septomics, Uni-
versity Hospital Jena, Thuringia, Germany (extended details
in Supplementary Material). Bacterial reads were obtained
using 150-bp Illumina PE whole metagenome sequencing.
Species profiling was by MetaPhlAn 2.7.6 [28]. after
applying an in-house pipeline for quality control [29] and
removal of human reads. Fungal reads were obtained using
250-bp Ilumina PE ITS1 amplicon sequencing (extended
details in Supplementary Material). The DADA2 ITS
Pipeline Workflow 1.8 was followed for amplicon sequence
variants [30]. Mothur classifier [31] called from QIIME
1.9.1 [32] and the UNITE database 7.2 [33] were used for
fungal taxonomic assignments. Bacterial species were
considered for further analysis, if a GSMM model was
available, the species was part of the Open Tree of Life 10.4
[34] and it was prevalent in at least 4 of 26 samples. Cor-
relations of bacterial abundance and growth rates to C.
albicans abundance were tested using two-sided Spearman
correlation (p <0.05). The bacterial and fungal profiles are
available under the ENA Study Nr. PRIEB33756.

Partial spearman correlation was computed within R
using the package PResiduals (v0.2-6).

Ordinal regression model

Relative abundance values for C. albicans from human
samples were grouped into two sets determined by a 20%
relative abundance threshold. To predict C. albicans
abundance levels, three binomial ordinal regression mod-
els were generated using as independent variables the
bacterial abundance values, predicted interaction coeffi-
cients, and products of multiplying abundance values by
predicted interaction coefficients. For model building, we
either selected five bacterial species that significantly
correlated with C. albicans by relative abundance and two
that significantly correlated by GRiD value, or selected
bacteria based on whether they increase performance as
described in the main text. The predictive power of each
model was assessed by determining the true/false positive/
negative and accuracy values and by analyzing receiving
operating characteristic curves using the R package ROCR
(ver. 1.0-7).

Results and discussion

Reconstruction of a Candida albicans genome-scale
metabolic model

To develop a C. albicans GSMM, we started with a
model automatically generated by the Comparative

ReConstruction (CoReCo) pipeline [20]. The initial C.
albicans CoReCo model (BioModels ID 1604280052)
comprised 2770 metabolites and 3298 reactions, of which
3150 were network and 148 transport reactions (Fig. 1A). In
addition to a unique reaction set, the initial CoOReCo GSMM
for C. albicans contained multiple nontrivial duplicate
reactions and metabolites. Typically, these involved mar-
ginally differing metabolite names such as L-Glutamate and
Glutamate that had not been automatically detected by the
CoReCo platform (Fig. 1A, Supplementary Data S1, Tables
S1, S3, and S4).

We also curated energy-generating cycles (EGCs) that
created energy compounds such as ATP without requiring
nutrient uptake [23]. We resolved these infeasible EGCs by
identifying and correcting implausible reaction directional-
ities using metabolic pathway databases such as BioCyc
(Supplementary Table S4). For example, in our initial C.
albicans model, we found an ATP-producing EGC that
involved phosphate rather than pyrophosphate as indicated
by BRENDA, Biocyc and KEGG databases. Correcting the
involved reaction acetoacetate:CoA ligase resolved this
particular EGC and additional EGCs while maintaining a
viable biomass flux. We corrected six reactions by either
changing metabolite usage or reaction directionality
based on KEGG or BioCyc information (Supplementary
Table S4). Resolving EGCs also reduced the flux through
the biomass reaction towards 1.4, which is closer to the
biomass reaction flux for other fungal models such as the
yeast consensus model [35, 36] (Fig. 1A).

Next, we adapted our model to multiple phenotypic
microarray growth experiments of C. albicans. These
comprise up to 1440 different defined media experiments
with diverse carbon, nitrogen, phosphorus or sulfate sour-
ces. We used a publicly available dataset with different C.
albicans phenotypes [22] and created additional phenotypic
microarray growth experiments including several mutant
strains for e.g., different arginine biosynthesis steps (see
Methods for details). Of the metabolites in the dataset, 455
mapped to metabolites in our C. albicans GSMM. First, we
adapted our model to growth experiments that were in
agreement between data from Ene et al. [22] and our own
prototrophic C. albicans wild type strain SC5314 dataset for
C. albicans. Of note, using only compatible growth mea-
surements ensured robust growth information across dif-
ferent temperatures applied in our and in the published data
by Ene et al. [22] (cf. Materials and Methods). Second, we
adapted our model to all phenotypic growth experimental
data of C. albicans mutant strains for those growth condi-
tions that yielded the same results for both our wild type and
the Ene et al. dataset in the prior step (Supplementary
Table S4). These refinement steps included, for example,
enabling ammonia production from urea or via lysine
degradation, which was not initially present in our model
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(Supplementary Tables S4 and S5). Based on the growth
data, we added 107 potentially feasible exchange reactions
involving metabolites associated with C. albicans growth.
By applying flux variability analysis [24] we also identified
five exchange reactions that shuttle 4-aminobenzoate, foli-
nic acid, 7,8-diaminononanoate, hexadecanal, and hydro-
gensulfite in and out of the network, but do not support
growth and removed these from the GSMM accordingly.
Overall, we achieved a high compatibility between our
model predictions and the phenotypic microarray growth
experiments with nitrogen and sulfur predictions reaching
above 90% accuracy over all mutant experiments (Fig. 1B,
Supplementary Table S4). Of note, model predictions for
carbon source experiments of three different C. albicans
mutants for arginine biosynthesis (arg/A, arg3A and
arg4A) predicted no growth rate for all carbon sources,
since arginine is essential for the biomass objective func-
tion. Surprisingly, up to 33% of the associated phenotypic
microarray data showed fungal growth, despite the inability
to synthesize arginine due to the knock out. This might be
due to recycling of available proteins in e.g., fungal
vacuoles, as the defined growth media itself does not con-
tain arginine, unless specifically tested. Considering only
growth experiments that show no growth for arginine bio-
synthesis mutant strains our model accuracy for carbon
sources reaches 90% across all tested C. albicans mutant
(Fig. 1B).

Finally, we added gene annotation for ~1500 reactions
and associated individual gene to reaction rules using the
KEGG database. We also added pathway association for all
reactions if available and unified pathway associations
across resources. This step resulted in 83 pathway defini-
tions, including all essential pathways such as in central
carbon, amino acid, and lipid metabolism (Fig. 1C). Over-
all, our model refinements resulted in an addition of 771
genes, led to a final model comprising 3082 metabolic
reactions (—68 compared to draft model) and 2733 meta-
bolites (—37 metabolites compared to draft model) and a
reduced active flux flexibility towards biomass by 11.7%
(Fig. 1A, Supplementary Data S1, Tables S1, S3, and S4).

Pairwise growth simulations predict gut bacteria
modulating essential C. albicans metabolic activity

Next, we generated in silico metabolic interaction predic-
tions about C. albicans coupled to gut bacteria GSMM
models. Using 910 publicly available GSMMs for gut
microbial species [18, 19], we performed pairwise meta-
bolic analysis by linking our C. albicans model with each
gut microbe GSMM [25] (Supplementary Table S1). The
majority of GSMMs from different sources [18, 19] gave
compatible growth rate predictions. To streamline further
analysis, we continued with the assembly of gut organisms
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through reconstruction and analysis (AGORA) GSMMs
(https://www.vmh.life) [18] unless models were available
from both sources. In the latter case, we continued with the
CarveMe model versions, since these are refined to bacterial
growth data across 19 different media including extended
pathway gap correction [37] and are based on a manually
curated template model [19].

We simulated growth on two different media composi-
tions that resemble typical Western and high-fiber diets
(https://www.vmh.life) [18]. We identified the interaction
type of each C. albicans-gut microbe pair by analyzing
differences in predicted growth rates compared to growth
rates derived from individual simulations using a flux bal-
ance analysis approach [38] (Methods, Pairwise simula-
tions; Supplementary Material, Table S1). Predictions based
on Western and high-fiber diets gave similar interaction-
type distributions: mutualism (positive growth effect for
both, C. albicans and paired bacteria) and parasitism (here,
negative effect on C. albicans growth, positive growth
effect on bacteria) were the most abundant (>81% of
observed interaction types, Fig. 2A). Other interaction
predictions included commensalism, in which both C.
albicans and bacterial growth was promoted without
negative effects on the respective paired microorganism
(12% and 17% for Western and high-fiber diets, respec-
tively). Only a few examples of parasitism in which C.
albicans exerted negative effects on gut bacteria or
amensalism (no growth effect on C. albicans, negative
effect on bacteria) or neutralism (no growth effect on both,
C. albicans and gut bacteria) were observed. We further
examined prediction accuracy with additional simulations
on standard Gifu anaerobic medium (GAM), which was
used for in vitro validation experiments (Supplementary
Table S6). Growth simulations on GAM were feasible for
only 200 GSMM models, as all other models yielded no
biomass formation. GAM simulations identified parasitism
with negative effects on bacteria for up to 16% of viable
bacteria models, while parasitism with negative effects on
C. albicans (53%) and mutualism (28%) were again the
most commonly occurring interaction types (Fig. 2A). Our
interaction-type analysis based on predicting growth rate
differences for microorganisms in individual and paired
model setups hints that the majority of gut bacteria have
either a mutualistic or a parasitic relationship with C.
albicans irrespective of medium.

To analyze if predicted interactions that promoted or
inhibited C. albicans growth were phylum- or diet-specific
effects, we performed non-metric multidimensional scaling
analysis (NMDS) based on parsimonious flux balance
analysis (pFBA)-derived values for the top 50 promoting
and inhibiting bacterial species [39] (Supplementary
Table S1). The predicted top 50 inhibiting bacterial species
comprised mainly species from the genus Bifidobacterium

87



Metabolic modeling predicts specific gut bacteria as key determinants for Candida albicans... 1263

A Interaction [C.a./B.s.]
Bl Amensalism (/0] [l Amensalism [o/-] lll Commensalism [+/0]
c ism [o/+] Il Competition [~/-] s [+/+]
e _ - Il Neutralism [o/0] I Parasitism [-/+] [l Parasitism [+/-]
0

100

ia

Medi

25 50 75
Relative distribution of interaction type (%)

B Western diet High-fiber diet GAM media
iy F 5 EY
o  ® A . ° 3 Ay
o A A H A A A .
° ° ® .m % { o *
o le o |& oy o [oR 04 R4
1% 0 |e @
g ° g g 24 : #
z I Y =z o z o go A
oA . & A%y
. . 1 o a ‘} A
e ° o °
= . A -
° o ° °
NMDS1 NMDS1 NMDS1
Interaction ¢ Inhibitor 4 Promoter Phylum = i ia ™ i W Firmicutes M Proteobacteria
1
C D
Median C. albicans flux
across all interactions
B b )
S Putrescine 4

T s succ s
et 5 28 o s
b e e
Lo LCe e

Nitrite -

L-Proline 4

L-Aspartate 1
S

Formate 1

deoxy—-Adenosine

feos
et s AT 6

——
25 50 75 100

S < 0
& 3 HI1 (81 + #P) (%
- (#+#P) (%)
2

& = | Consumed by bacteria
Flux value (z score) Interaction Phylum = gonsumedbb);C. albicans

] M Promoter [l Actinobacteria roduced by bacteria
42024 M Inhibitor | Bacteroidetes B Produced by C. albicans

Firmicutes

M Proteobacteria

Pathway

W Fatty acid metabolism

. Arginine and proline metabolism
Purine metabolism

= Methane metabolism
henylalanie, tyrosing and tryptophan metabolism
antothenate and CoA biosyninesis
ine, leucine and isoleucine metabalism B One carbon pool by folate
lannose/Mannitol, Fructose and Sorbose/Sorbitol metabolism Wl Pentose phosphate pathway
iycolysis | Gluconeogenesis

and Listeria, but also included several bacteria from the  Clostridium or Vibrio genus (Supplementary Table S1).
Bacteriodetes phylum including e.g., Alistipes putredinis. In ~ After removal of a few outliers (up to seven GSMMs
contrast, the predicted top 50 C. albicans promoting bac-  comprising several Escherichia coli strains, among others)
teria included many bacteria with the Bacillus, Bacteroides, =~ we observed distinct grouping of the Firmicutes phylum on
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<« Fig. 2 Pairwise in silico interaction experiments. A Distribution of

interaction type for C. albicans (C.a.) and bacterial species (B.s.).
Interactions have positive (+), negative (—) or no (o) effect on growth
rates of fungus or bacteria as indicated for interaction types. B Non-
metric multidimensional scaling (NMDS) plots of bacterial reaction
flux rates for top 50 C. albicans-inhibiting and -promoting bacteria
simulated for three different media (Western and high-fiber diet, Gifu
anaerobic media (GAM)). C Metabolic reactions of C. albicans with
the most substantially differing flux rates of C. albicans when paired
with top 50 inhibiting or promoting bacteria. Top: median C. albicans
flux rate differences across all bacterial species paired with C. albi-
cans. D Analysis for selected metabolites based on exchange reaction
fluxes of simulated fungal-bacterial pairs for top 50 promoting or
inhibiting bacterial species (cf. Supplementary Table S5). x-axis
indicates the percentage of exchange reaction fluxes with bacteria that
inhibit C. albicans growth.

both Western and high-fiber diets in the NDMS plots, with a
largely predicted positive effect on C. albicans growth
(Fig. 2B). The majority of Proteobacteria (for 71% of the
respective GSMMs on Western, and 73% on high-fiber diet)
were predicted to show a positive effect on C. albicans
growth as well and show similar flux distributions to some
Bacteroidetes and most Actinobacteria. In contrast, the
predicted impact of Bacteroidetes was primarily negative
(for 87% GSSMs on Western, and 86% on high-fiber diet)
on C. albicans growth with differing flux distributions for
both, Western and high-fiber diet (Fig. 2B). All Actino-
bacteria were predicted to inhibit C. albicans growth as well
and showed similar flux distributions to some Bacteroidetes
and most Proteobacteria for Western and high-fiber diets.
Of note, in silico simulations on GAM revealed notable
differences of flux distributions compared to Western or
high-fiber diet (e.g., 53% of the paired Actinobacteria
showed promoting effects on C. albicans) showing that
GAM based simulations differ to some degree from these
diets (Fig. 2B). The predicted interaction type was sig-
nificantly dependent on phyla (chi-squared test, p value =
2.5e—9 on Western diet) with Actinobacteria (false dis-
covery rate-corrected Fisher’s exact test p value =7.0e—7)
and Firmicutes (false discovery rate-corrected Fisher’s exact
test p value = 1.5e—5) primarily responsible for the inter-
action type. Altogether, our analyses suggested that under
Western and high-fiber diets, species from specific phyla
had positive (Firmicutes, Proteobacteria), or negative
(Actinobacteria, Bacteriodetes) effects on C. albicans
growth with distinct flux distributions particularly for pre-
dicted growth-promoting Firmicutes species.

Next, we investigated C. albicans-specific reaction fluxes
derived from paired fungal-bacterial model simulations.
Paired bacteria were again selected based on their predicted
impact on C. albicans growth rates such that its difference
between paired fungal-bacterial and individual model
simulations is most pronounced and comprised bacteria
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from four different phyla (Fig. 2C, Supplementary Fig. S1).
From the obtained flux distributions C. albicans reactions
were selected based on the most pronounced flux differ-
ences between C. albicans paired with predicted growth
inhibiting and growth-promoting bacterial GSMMs (Meth-
ods, Pairwise simulations). Of note, predicted median flux
differed notably for many reactions comparing the top
inhibiting and promoting bacteria to all paired gut microbes
(Fig. 2C, upper panel). These changes were particularly
present in sugar, fatty acid, folate, and small amino acid
associated pathways, but also in glycolysis and hint towards
a shifted flux in the selected bacteria that dominantly affect
C. albicans growth. Altered reaction fluxes were identified
across major pathways including carbon, amino acid, purine
and fatty acid metabolism. Central metabolites such as
alpha-ketoglutarate, pyruvate and glutamate were balanced
towards net production or consumption, depending on the
paired gut microbe in the in silico simulation. C. albicans
growth is affected by modulating carbohydrate metabolism
[40] or the availability of amino acids such as leucine or
valine [41] and might be used by gut microbiota to prevent
or promote C. albicans growth. Specifically, we predicted
elevated reaction fluxes that consumed L-glutamate in C.
albicans when paired with fungal growth-promoting bac-
teria via the aminotransferases Glycine:2-oxoglutarate
aminotransferase and branched-chain amino acid amino-
transferase. Aminotransferases were studied before in the
context of Candida infection and were attributed to the
nutritional versatility of Candida species [42, 43]. More-
over, glutathione synthesized from L-glutamate is important
in counteracting oxidative stress [44]. Predicted reaction
fluxes including amino acids were notably different among
top promotors and inhibitors and may serve as potential
targets for identifying antifungal agents [45]. These findings
suggest that gut bacteria that potentially perturb C. albicans
growth may cause metabolic shifts in C. albicans towards
L-glutamate-promoting reactions, which may allow the
fungus to evade harmful oxidative stress levels.

Next, we focused on investigating fluxes of metabolite
exchange reactions. Exchange reactions allow to shuttle
metabolites in and out of a joint compartment in our paired in
silico models. These joint compartments serve as a connection
between the respective bacterial and the fungus model and
allow to predict potentially C. albicans growth rate influen-
cing metabolites (Fig. 2D, Supplementary Table S7). To
identify such metabolites we specifically filtered for exchange
reaction fluxes of metabolites that are primarily present for
either C. albicans growth inhibiting or promoting bacteria as
derived from our paired fungal-bacterial model simulations.
Again, many amino acids like L-proline, or L-aspartate, but
also other factors such as nitrite or putrescine are predicted to
be notably differentially consumed by fungus or bacteria.
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In vitro experiments and metagenomics analyses
support metabolic dependencies of C. albicans

To test the quality of our in silico analysis, we investigated
C. albicans growth in the presence of metabolites, per-
formed metagenomic sequencing for 24 individuals and
assessed C. albicans growth in bacterial spent media.
First, we grew C. albicans in the presence of metabolites
and investigated the growth-promoting or -inhibiting effect
of these metabolites under different carbon and/or nitrogen
availabilities (Fig. 3A). We selected six metabolites that
were either primarily consumed or produced by either
fungus or bacteria in our paired metabolic in silico simu-
lations (Fig. 2D, Supplementary Table S7). We hypothe-
sized that metabolites that e.g., are predicted to be
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Fig. 3 Experimental and clinical data supporting in silico predic-
tions. A Area under the curve (AUC) measurements for fungal growth
in presence of selected metabolites in a series of concentration dilution
experiments. AUCs were determined for three replicates. Mean change
compared to medium-only controls is shown with standard deviations
(SD) as error bars. B Bacterial abundance and growth rates were
obtained using MetaPhlAn2 and GRiD 1.2, respectively. Modeled
species were arranged according to the Open Tree of Life 10.4 [34].
Annotation rings from inner to outer: Significant correlations between
C. albicans abundance and bacterial abundance (magenta stars) or
bacterial GRiD score (green stars, Spearman’s coefficient, p <0.05);
species with GRiD score greater than 1 in at least one sample (black
triangles); in silico interaction coefficients from GSMM analysis (blue

consumed by fungal growth inhibiting bacteria are either
withheld from the fungus or cannot be metabolized by the
fungus and are thus beneficial for the bacteria to outgrow C.
albicans. Likewise, metabolites that are predicted to be
produced by bacteria or consumed by the fungus when C.
albicans is paired with growth inhibiting bacteria might
provide clues of metabolites with a potential negative
effect on C. albicans growth. Nitrite showed severe growth
inhibiting effects on C. albicans, irrespective of available
carbon and nitrogen source concentrations. The same inhi-
biting influence was observed to a lesser extent for putres-
cine and for the formic acid salt, sodium formate. Both
putrescine and formic acid were also predicted to be pri-
marily consumed by C. albicans when paired with fungal
growth inhibiting bacteria. In contrast, L-Aspartate and
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L-Proline showed concentration-dependent fungal growth-
promoting effects specifically under nitrogen limitation. For
both metabolites, we predicted a net consumption by C.
albicans growth inhibiting bacteria. It is noteworthy that,
while we did not test for morphological changes, proline
and putrescine are known inducers of hyphae formation in
C. albicans, which may therefore be influenced by bacterial
production and consumption of these metabolites [46—48].
Interestingly, desoxy-adenosine showed a growth-
promoting effect at low concentrations, most pronounced
under nitrogen limitation, whereas higher metabolite con-
centrations had negative effects on C. albicans growth. In
our in silico model we predicted its production by C.
albicans growth inhibting bacteria. A bacterial production
of desoxy-adenosine may therefore lead to sufficiently high
concentration levels of this metabolite that might restrict
growth of the fungus. In summary, our in silico analysis of
metabolite exchanges between fungus and bacteria and the
shown experimental data provide a concept for predicting
and testing potentially fungal growth modulating
metabolites.

Next, we investigated whether metabolic interactions are
the main driver of the observed abundance-based associa-
tions of gut bacteria and C. albicans by analyzing stool
samples from a cohort of 24 cancer patients (Supplementary
Table S8). We assessed the structure of the gut microbiome
in samples via shotgun metagenomic sequencing, generat-
ing 118.1 Gbp of sequencing data with an average of 2 x
26.2 million paired-end reads per sample. Taxonomic pro-
filing revealed that Bacteroidetes (54.3%) and Firmicutes
(36.3%) were the most abundant phyla, followed by Pro-
teobacteria (5.83%), Verrucomicrobia (1.46%) and Acti-
nobacteria (1.34%). From the 400 bacterial species
identified in our samples, we retrieved GSMMs for 247
(Fig. 3B, Supplementary Fig. S2). The mean relative
abundance of C. albicans within the fungal community as
revealed by ITS1 amplicon sequencing of all cancer patient
samples was 39.7% over all patient samples, while indivi-
dual samples covered a broad relative abundance range
from 0.1% to 99.8% relative C. albicans abundance. Only
five bacterial species had a relative abundance with a sig-
nificant correlation by Spearman’s coefficient to C. albicans
relative abundance across all patients (Clostridium scindens
p = 0.45, Hungatella hathewayi p = 0.55, Flavonifacfractor
plautii p=0.46, Barnesiella intestinihominis p= —0.47
and Alistipes putredinis p = —0.42, Fig. 3B). Although the
influence of external factors such as gender, age or therapy
type cannot be completely ruled out, this suggests that, at
least in terms of relative abundance compared to other
fungal species, a limited set of gut microbes might influence
C. albicans prevalence levels more than the remaining gut
microbiome constituting bacteria. Of note, the directionality
of the observed significant correlation was in accordance
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with the predicted paired-growth relationship by the
GSMMs for all five bacteria (Supplementary Table S1). We
also calculated Growth Rate InDex (GRiD) [49] to estimate
in situ growth rates for bacteria species and analyze corre-
lation to C. albicans relative abundance. We observed a
finite GRiD value for 98 of the species in Fig. 3B (cf.
Supplementary Table S9). GRiD values for two bacteria
significantly correlated with C. albicans abundance (posi-
tive for Roseburia inulinivorans and negative for Para-
bacteroides distasonis, Fig. 3B) in the same direction as
predicted by our GSMMs.

We next investigated to what extent fungal growth is
influenced by spent media of selected bacterial strains for
which we established cultivation protocols in our lab
(Methods). Among the species selected for in vitro spent
media experiments, A. putredinis had the strongest inhibi-
tory effect in Western-diet conditions in in silico predictions
(Supplementary Table S1). This species was also found
significantly negatively correlated with C. albicans abun-
dance in the human gut (Fig. 3B). Of note, adjusting for the
external factors gender, age, ethnicity or immunotherapy
application in our metagenomic dataset, affected this sig-
nificant negative correlation only slightly (Supplementary
Table S8). The addition of spent media from A. putredinis
to C. albicans cultures (cf. Methods for details) resulted in
up to 23% growth inhibition of the fungus (Supplementary
Table S2). Interestingly, both butanoic and propanoic acid,
two short chain fatty acids (SCFAs) with fungistatic prop-
erties produced by the gut microbiome [50, 51] were found
with slight elevated concentrations in the spent media of A.
putredinis (202 uM and 116 uM compared to 148 uM and
88 uM in modified GAM for propanoic and butanoic acid,
respectively, Supplementary Table S2). A. putredinis is a
reported producer of propionate presumably next to succi-
nate [51]. Of note, for pairwise in silico simulations over all
possible combinations of A. putredinis and any bacteria that
are present in our human samples, we predicted that in 63%
of the paired models A. putredinis can secrete propanoic
acid. These data indicate that to a certain extend A. putre-
dinis might contribute to global propanoic but also butanoic
acid levels, two health promoting SCFAs [52]. In addition,
A. putredinis is dominant in the fecal microbiota of healthy
humans [53] and important for the maintenance of a healthy
intestinal barrier [54]. Generally, the genus Alistipes shows
disease protective effects against a number of diseases
including fibrosis, colitis, cancer or cardiovascular disease
[55]. Our results hint that A. putredinis is also potentially
able to prevent elevated C. albicans levels, and we suggest
more in-depth studies of A. putredinis in conjunction with
C. albicans. To further examine whether the observed
inhibition was a methodological artifact we performed
additional experiments with species showing either positive
or negative interaction with C. albicans. For example, our
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in silico predictions show that Ruminococcus torques con-
tributes positively to C. albicans growth, while also a non-
significant positive correlation between this species and C.
albicans levels was observed from the metagenomics data
(Fig. 3B, Supplementary Table S8). Indeed, in our spent
media experiment we also observed a positive effect of
Ruminococcus torques on C. albicans growth (15% for
100% spent media, 12% for 75% spent media, Supple-
mentary Table S2). Other strains showed varied levels of C.
albicans growth inhibition which is in agreement with our
metagenomic and spent media data except for Escherichia
coli. For E. coli we observe a disagreement between a
predicted positive growth effect on C. albicans, a low
positive correlation in the metagenomics data, and a nega-
tive effect in the spent media experiments. Interestingly, E.
coli was found to produce a soluble fungicidal factor, which
cannot be captured by our metabolic model and might
explain the discordance to our spent media results [56].
To further support the idea that metabolic interactions
with a few bacterial species might be sufficient to determine
C. albicans colonization levels, we investigated, by ordinal
regression analysis, if the ratio of abundance x growth
coefficients for all bacterial inhibitors vs. promoters corre-
lated with C. albicans levels (Methods, Ordinal regression
model). No significant correlation was seen when con-
sidering all species (Fig. 3C, left), indicating that the use of
all species as predictors does not allow for a good model to
predict C. albicans levels. Of note, the ratio of inhibitors to
promoters calculated using only species that were active in
at least one patient sample according to GRiD was not
significantly correlated to C. albicans abundance levels as
well (Fig. 3C, right). The critical role of metabolic inter-
actions between the limited set of 7 significantly correlating
bacterial species identified above to C. albicans relative
abundances was evident in the ordinal regression model we
developed using the interaction growth coefficients and
relative abundances of the bacteria. We investigated if
GSMM computed growth coefficients, relative bacterial
abundance, or both were good predictors for C. albicans
levels (Method, Ordinal regression models). We obtained
the highest performance of 0.78 Area Under the Receiver
Operating Characteristics (AUROC) using growth predic-
tion coefficients from our GSMM computation (Fig. 3D,
left). Using only relative bacteria abundance resulted in 0.56
AUROC, whereas a model using both interaction coeffi-
cients and growth data resulted in 0.58 AUROC. In addition
to using bacteria that show significant correlations to C.
albicans relative abundances as model features, we filtered
candidate bacteria by discarding first the bacteria prevalent
in at least 10%, but not more than 90% of the samples. This
reduces the number of feature candidates to 121 bacteria.
We selected next 10 subgroups of our samples by ignoring
~10% samples in each subset, such that each sample was

once not part of the subset. For each subset we started with
one bacterium and assessed model performance con-
secutively by adding further bacteria until all bacteria were
included as features. Bacteria that caused a drop in model
accuracy or regression slope were discarded, followed by
another iteration of the model performance evaluation.
These steps were repeated until no performance-impairing
bacteria were left in the feature list. The union of the gained
feature candidates across all 10 subsets resulted in a feature
list of 57 gut bacteria, which included, among others, A.
putridinis (Supplementary Table S10). We evaluated the
regression model with these bacteria and obtained 0.89
AUROC using only growth prediction coefficients from
our GSMM computation (Fig. 3D, right). Using only
relative bacteria abundance or both, interaction coefficients
and growth data, resulted again in a performance drop
down to 0.60 and 0.54 AUROC, respectively. These
results demonstrate that GSMM analysis based interaction
coefficients could be used as predictors of ordinally scaled
C. albicans levels. Our results indicate that the intrinsic
metabolic interactivity between a fungus and bacteria
contains valuable information about the performance of
classification models. This information should be more
extensively applied in future classification studies.

In conclusion we expanded the concept of using in silico
metabolic interaction calculations to accurately predict
pairwise beneficial or detrimental effects on co-existing
organisms [18, 25, 57] to bacterial-fungal interaction pre-
dictions based on studies suggesting that key gut species
might determine beneficial outcomes in patients with a
range of diseases [5, 6, 9]. Selected metabolite experiments
and shotgun metagenomics sequencing back our in silico
modeling concept based on pairwise metabolic interaction
simulations. Further studies of our predictions for major
metabolic pathways, for example for carbon compounds
and amino acids, may elucidate the specific mechanisms of
these influences. Selected metabolite measurements in
defined media could be used further for accurate predictions
of potential metabolite candidates that are preferentially
used by e.g., gut microbes over C. albicans and can hint
towards bacterial species that specifically secrete C. albi-
cans-inhibiting metabolites. Taken together, our findings
support that specific gut bacteria influence gut colonization
by C. albicans. Moreover, our analysis indicates that it may
be possible to design synthetic communities with only a
few bacterial species that could then influence essential
metabolic activities of C. albicans and prevent fungal
overgrowth. Further refinements of our model including
compartmentalization complemented by comprehensive
single-knockout studies of bacteria or the fungus may fur-
ther improve the predictive capacity. Also additional diets
and growth media compositions beyond the three used in
this study may be tested, since e.g., GAM compositions
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may vary, therefore influence in silico predictions and in
general, might not reflect in vivo conditions as well as high
fiber, western or other common human diets. Despite pair-
wise interactions were shown to be key drivers of the
dynamics of microbial communities [58], additional in
silico simulations of multiple interactions with e.g., the
recently published MAMBO algorithm [59] need to be
addressed, to potentially extend our understanding of the
intricate relationship between C. albicans and the gut
microbiota and its effect on C. albicans levels. Finally, tools
that incorporate spatial information [60, 61] could deter-
mine the impact of niche colonization by gut fungal and
bacterial species. In the present study we specifically
focused on the intricate relationship between (gut) bacteria
and C. albicans to elucidate their relationship independent
of host factors in order to keep free parameters in a feasible
range. Host factors are key modulators of fungal-bacterial
or fungal-bacterial-host interactions as could be shown in
other studies [3, 62-64]. Though adding considerable
complexity to the setup, an extension of our conceptual
approach to study specifically metabolic modes of
fungal-bacterial interaction with host factors might play an
important complementary role as long as the predictive
capacity can be supported by sufficient data around the
triangle host, bacteria and fungus. In summary, our strategy
of studying fungal-bacterial relationships in the gut using
an in silico, metabolism-driven approach already yielded
promising results. Our approach adds another useful layer
of in silico predictions that can contribute to stratify iden-
tification of potentially clinically relevant gut bacteria in
face of the steadily growing amount of high throughput
data. Ultimately, including metabolic in silico analysis
could promote additional systems-biology and systems-
medicine studies that focus on fungal infections and their
often lethal implications to humans.
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Abstract

Protein kinases play a crucial role in regulating cellular processes such as growth, proliferation,
environmental adaptation and stress responses. Serine-arginine (SR) protein kinases are highly
conserved in eukaryotes and regulate fundamental processes such as constitutive and alternative
splicing, mRNA processing and ion homeostasis. The Candida albicans genome encodes two (Sky1,
Sky2) and the Candida glabrata genome one homolog (Sky1) of the human SR protein kinase 1, but
their functions have not yet been investigated. We used deletion strains of the corresponding genes in
both fungi to study their cellular functions. C. glabrata and C. albicans strains lacking SKY! exhibited
higher resistance to osmotic stress and toxic polyamine concentrations, similar to their ortholog Sky1
in Saccharomyces cerevisiae. Deletion of SKY2 in C. albicans resulted in impaired utilization of
various dipeptides as the sole nitrogen source. Subsequent phosphoproteomic analysis identified the
di- and tripeptide transporter Ptr22 as a potential Sky2 substrate. The transcript levels of this transporter
remained constant regardless of the genomic background or the stimulus, suggesting that it is regulated
on a post-transcriptional level. Sky2 seems to be involved in Ptr22 regulation since overexpression of
PTR22 in the sky2A mutant restored the ability to grow on dipeptides and made the cells more
susceptible to the dipeptide antibiotics Polyoxin D and Nikkomycin Z. Altogether, our results
demonstrate that C. albicans and C. glabrata Sky1 protein kinases are functionally similar to Sky1 in
S. cerevisiae, whereas C. albicans Sky?2 is important for regulation of dipeptide uptake via Ptr22.

Introduction
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The human fungal pathogen Candida albicans colonizes various host niches, such as the oral cavity,
the gastrointestinal and urogenital tracts, and the skin of healthy individuals. In immunocompromised
patients and other susceptible individuals it can cause mucosal or systemic infections (Odds, 1988).
Both its commensal and pathogenic lifestyles are regulated via complex networks in which protein
kinases play an essential role. The C. albicans genome comprises 108 predicted protein kinases, many
of which were shown to regulate cellular growth and proliferation, resistance to environmental stresses,
and the expression of virulence attributes (Monge et al., 2006; Hogan and Sundstrom, 2009; Ramirez-
Zavala et al., 2017). Despite their importance for commensalism and pathogenicity, the exact role of
more than half of the protein kinases in C. albicans remains unknown.

The serine-arginine (SR) protein kinase (SRPK) subfamily is highly conserved from yeast to humans.
They commonly catalyze the phosphorylation of mRNA regulatory proteins enriched in serine/arginine
recognition motifs and therefore termed SR proteins (Zahler et al., 1992). Human SRPK1-3 are critical
for the regulation of both constitutive and alternative splicing, mRNA nuclear export and stability, as
well as translational control via shuttling of SR proteins to the cytoplasm (Zhou and Fu, 2013). In
addition, human SRPKI is also exploited during viral infections to facilitate the viral cell cycle and
can also act as a tumor suppressor by modulating the state of the Akt kinase, a hallmark of several
cancers like prostate, breast, and lung cancer (Hayes et al., 2007; Karakama et al., 2010; Odunsi et al.,
2012; Wang et al., 2014).

Fungal SRPK-like kinases can be found across the whole fungal kingdom, including the phyla
Ascomycota, Basidiomycota, Kickxellomycotina, Mortierellomycotina, and Mucoromycotina.
However, their functions were studied only in the plant pathogens Fusarium graminearum, Physarum
polycephalum, and Puccinia striiformis f. sp. tritici (Liu et al., 2009; Cheng et al., 2015; Wang et al.,
2018), and in the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Both
model yeasts have a single SRPK member that is homologous to the human SRPK1: S. pombe Dskl
regulates mitosis and pre-mRNA splicing (Takeuchi and Yanagida, 1993; Tang et al., 1998; Tang et
al., 2007), whereas S. cerevisiae Skyl (ScSkyl) broadly regulates cellular functions. For example,
ScSky1 phosphorylates Npl3, an SR-like protein involved in histone H2B ubiquitination, pre-mRNA
splicing, and export of mRNA from the nucleus (Moehle et al., 2012). In addition, ScSky1 regulates
polyamine transport and is involved in ion homeostasis and salt tolerance (Erez and Kahana, 2001;
Forment et al., 2002). Importantly, its reported targets lack the typical SR protein structure found in
mammalian SRPK substrates which are characterized by one or two N-terminal RNA recognition
motifs and a C-terminus enriched in SR/RS sites, typically as a stretch of repeats (Ghosh and Adams,
2011). Instead, ScSky1 targets contain up to three randomly positioned RNA recognition motifs and
the SR/RS sites are dispersed throughout the protein sequence, making the identification of SRPK
substrates difficult. Due to these differences, ScSkyl and its targets are termed “SR-like” (Gilbert et
al., 2001).

According to the Candida Genome Database (CGD), the C. albicans genome encodes two ScSkyl
orthologs - C1 _06090C (orf19.2436) and C2_06600W (orf19.35), termed CaSky1 and CaSky?2 in this
article. In contrast, the C. glabrata genome encodes one ortholog, CAGLOF03905g, termed CgSkyl
in this article. The functions of these predicted protein kinases have not yet been investigated. Hence,
in this work we focus on functional characterization of the SRPK1 homologs in C. albicans and C.
glabrata.

In this study, we confirm that CaSkyl and CaSky2 are homologs of the human SRPK1 protein.
Likewise, other pathogenic Candida spp. including Candida auris, Candida parapsilosis and Candida
tropicalis possess two SRPK1 homologs, except for C. glabrata, which has only a single member —
CgSkyl. We investigated their cellular roles by utilizing strains lacking these proteins. Cgsky/A and
CaskylA mutants were resistant to osmotic stress and toxic polyamine concentrations compared to the
wild type strains, which indicates a conserved functional similarity to ScSkyl. In contrast, Casky2A
mutants were impaired in utilization of dipeptides, a feature important for metabolic adaptation to
human host niches (Dunkel et al., 2013). Phosphoproteomic analysis of C. albicans skylA and sky2A
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mutants revealed little overlap in the potential phosphorylation target proteins of these two kinases.
Among the candidate target proteins of CaSky2 was Ptr22, a di- and tripeptide transporter in C.
albicans. This transporter appeared to be regulated post-transcriptionally, since the transcript levels
remained constant regardless of the genomic background. Furthermore, overexpression of PTR22 in
the Casky2A mutant restored the ability to grow on dipeptides as the sole nitrogen source and rendered
the cells more susceptible to the dipeptide antibiotics Polyoxin D and Nikkomycin Z. These results
demonstrate the distinct functions of the two SR-like protein kinases in C. albicans, with CaSkyl
regulating ion homeostasis and CaSky2 being involved in regulation of dipeptide uptake via the Ptr22
transporter.

Materials and Methods
Strains and growth conditions

The C. albicans, C. glabrata, and S. cerevisiae strains used in this study are listed in Supplementary
Table 1. All strains were stored as frozen stocks containing 20% glycerol at -80°C and sub-cultured
on YPD agar plates (1% yeast extract, 2% peptone, 2% glucose) at 30°C for 2 days. Strains were
routinely grown in YPD liquid medium at 30°C overnight with shaking at 180 rpm.

Candida albicans strain construction

C. albicans deletion mutants and complemented stains were constructed as described previously
(Ramirez-Zavala et al., 2017). C. albicans PTR22 overexpression strains were generated using the
Apal-Sacll fragment from plasmid pPTR22E1 to integrate PTR22 under the control of the ADH1
promoter in the wild-type strain SC5314 and the sky2A mutants as described previously (Reuss et al.,
2004; Dunkel et al., 2013). The correct genomic integration of all constructs was confirmed by
Southern hybridization with the upstream and downstream flanking sequences. All primers are listed
in Supplementary Table 2.

Candida glabrata strain construction

The generation of CgskylA was conducted with a PCR-based Gibson Assembly cloning approach
(NEB) according to the manufacturers’ protocol. Purified PCR fragments for the puC19 vector
backbone, the CgSKY7 5’ flank (~1000 bp), a barcoded nourseothricin resistance cassette (NA77) with
constant flanking regions (Ul and D1) derived from the mutant 7G6 from Schwarzmiiller et al.
(Schwarzmiiller et al., 2014), and the CgSKY!7 3’ flank (~1000 bp) were fused into one vector. The
deletion construct was verified by sequencing, then PCR-amplified and used to transform the
C. glabrata wild-type strain ATCC2001 by a modified heat shock method (with 45°C heat shock for
15 min) (Sanglard et al., 1996). The transformants were plated onto YPD agar plates containing
200 pg/ml nourseothricin and positive knockout strains were verified by control PCRs. All primers are
listed in Supplementary Table 2.

Saccharomyces cerevisiae strain construction

The S. cerevisiae wild-type strain BY4741 (Y00000) and the sky /A mutant (YMR216C) were obtained
from Euroscarf (www.euroscarf.de). Both strains were transformed with the plasmid pHLUM
(Addgene, Massachusetts, USA) by a LiAc/SS carrier DNA/PEG method to restore the non-
auxotrophic strain background as described previously (Gietz and Schiestl, 2007).

Multiple alignment analysis

The alignment was generated using ‘MUSCLE Alignment’ implemented in Geneious Prime
(v2020.1.1.) using default settings. Sequence data originates from GenBank (NP 003128,
NP_013943) and the Candida Genome Database (C1_06090C, C2_06600W, CAGLOF03905g). The
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data presented in Figure 1A was exported from Geneious Prime. For Figure 1B the alignment was
restricted to the kinase domain only and illustrated by applying the R-package ‘ggmsa’ (by
Guangchuang Yu, https://CRAN.R-project.org/package=ggmsa) using the color scheme “Clustal”.

High-throughput phenotypic screen

C. albicans strains (Supplementary Table 1) were pre-grown on YPD plates. The high-throughput
phenotypic screen was performed using Phenotype MicroArrays for microbial cells (PM) plates,
reagents, and devices according to the manufacturers’ instructions (Biolog, Inc., USA). Briefly, C.
albicans cells were scraped from YPD agar plates and the cell number was adjusted in sterile dH>O to
62% transmittance as measured by a turbidimeter (Biolog, Inc., USA). The cells were added to
inoculating fluid IFY-0 base (1.2x), redox dye mix D (75x) (Biolog Inc., USA), and further
supplemented with potassium phosphate, sodium sulfate and either glucose or glutamic acid (Sigma-
Aldrich). 100 pul of the respective mixture was added to each well of PM plates for fungi (PM1-10 and
PM21-25) to test for metabolic activity in the presence of different carbon sources, nitrogen sources,
supplements, and chemicals. Plates were incubated at 37°C in an OmniLog multiple plate reader
(Biolog, Inc., USA). Metabolic activity was determined by reduction of the redox dye and kinetically
measured every 15min at an OD of 750 nm for 24 — 48 h. Each experiment was performed in
duplicates.

The respective negative control was substracted from the growth signals in each Phenotype
MicroArray. Negative values were replaced by zero, if present. Next, each array's growth signals were
categorized into two groups: active growth and non-active growth, as proposed by Vehkala et al.
(Vehkala et al., 2015). In brief, a data fitted logistic curve represented active growth, while a line
without showing exponential growth phase characteristics was interpreted as non-active growth in the
investigated time frame. The method was repeated for each replicate separately. Hence, a given
substrate's growth signal was detected as non-active or active growth if the analysis identified the same
behavior for both replicates. Potential growth was identified if not all replicates for a given tested
metabolite showed active growth. Next, a one-way ANOVA and a post-hoc Tukey's test were applied
to identify the significant growth differences per substrate across the different C. albicans strains. For
statistical analysis, the last time point per substrate per phenotypic microarray assay was chosen.
Grouping the growth signals was implemented in R version 3.6.0 with the pipeline proposed by
Vehkala et al., (Vehkala et al., 2015) built upon the opm package version 1.3.77 (Vaas et al., 2013).

Growth assays

YPD overnight cultures of the wild-type and mutant strains were centrifuged (4,000 x g, 5 min) and
washed twice with dH>O. Susceptibility to osmotic stress and stress caused by polyamines was tested
by spot dilution assays on YPD agar plates as described in the respective figure legends. Briefly, strains
were adjusted to an optical density (ODsoo) of 1.0 and 5 pul of each 10-fold serial dilutions was spotted
onto the respective plates and incubated for 2 days at either 30°C or 37°C.

Growth curves in liquid media were performed in YCB medium (11.7 g/L yeast carbon base, pH 5.0)
containing 10 mM of the respective dipeptides. YPD overnight cultures of the respective C. albicans
strains were centrifuged (4,000 x g, 5 min) and washed twice with dH»O. Strains were adjusted to an
ODeoo 0f 0.01 in 12 ml YCB medium containing 10 mM of the respective dipeptides and incubated for
48 h at 37°C shaking at 180 rpm. The OD was measured after 24 h and 48 h. In addition, growth curves
were performed in SD medium (0.17% (w/v) yeast nitrogen base without ammonium sulfate and amino
acids, 0.5% (w/v) ammonium sulfate, 2% (w/v) glucose, pH 5.0) supplemented with 140 pg/ml
Nikkomycin Z (Sigma-Aldrich) or 130 pg/ml Polyoxin D (Sigma-Aldrich) to test for sensitivity to
these antibiotics. Strains were adjusted to an ODgoo of 0.02 in 100 pl of the respective medium in 96-
well plates. Plates were incubated at 37°C in an Infinite 200 Pro plate reader (Tecan, Germany) and
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absorbance was measured every 20 min at an optical density of 600 nm for 24 h or 48 h. Each strain
was measured in triplicates and the means and standard derivations were calculated.

qRT-PCR

YPD overnight cultures of the wild-type and mutant strains were centrifuged (4000 x g, 5 min) and
washed twice with dH>O. Strains were adjusted to an optical density (ODsoo) of 0.1 in 30 ml YCB
medium containing 10 mM of the respective dipeptides and grown for 4 h at 37°C. Shock frozen cell
pellets were used for RNA isolation with a phenol-chloroform based method previously described by
Martin et al. 2011 (Martin et al., 2011). RNA quality and quantity were determined using the
Bioanalyzer device (Agilent) and the Nanodrop (Thermo Fisher Scientific), respectively. The
following digest of residual gDNA was performed for 8 pg high-quality RNA with the Turbo DNase
Kit (Ambion). After purification with the RNA Clean & Concentrator Kit (Zymo Research), cDNA
synthesis was conducted with the Maxima First Strand cDNA Synthesis Kit for RT-qPCR (Thermo
Fisher Scientific) for 2 pg RNA. qRT-PCR was conducted in technical and biological triplicates using
the Brilliant II SYBR Green system (Agilent) with diluted cDNA samples (1:10) and genomic DNA
from the SC5314 WT strain (1:10 dilutions ranging from 100 pg/ml to 0.1 pg/ml) to determine primer
efficiency. The qRT-PCR was run at the Agilent Stratagene Mx3005 device (Software MxPro) and
further analyzed using the Act method. The indicated expression is shown relative to the housekeeping
gene MEDI5. All primers are listed in Supplementary Table 2.

Proteomics sample preparation

YPD overnight cultures of the wild type and mutant strains were adjusted to an optical density (ODso0)
of 0.1 in 900 ml YPD medium and grown for 4 h at 37°C. Cells were disrupted by using mortar and
pestle with liquid nitrogen. Cell debris were homogenized in lysis buffer (1% (w/v) SDS, 150 mM
NaCl, 100 mM TEAB (triethyl ammonium bicarbonate), one tablet each of cOmplete Ultra Protease
Inhibitor Cocktail and PhosSTOP). After addition of 0.5 pul Benzonase nuclease (250 U/ul) the samples
were incubated at 37°C in a water bath sonicator for 30 min. Proteins were separated from insolubilized
debris by centrifugation (15 min, 18000 x g). Each 6 mg of total protein per sample was diluted with
100 mM TEAB to gain a final volume of 4 ml. Subsequently, cysteine thiols were reduced and
carbamidomethylated in one step for 30 min at 70°C by addition of 120 pl of 500 mM TCEP (tris(2-
carboxyethyl)phosphine) and 120 ul of 625 mM 2-chloroacetamide (CAA). The samples were further
cleaned up by methanol-chloroform-water precipitation using the protocol of Wessel and Fliigge
(Wessel and Fliigge, 1984). Protein precipitates were resolubilized in 5% trifluoroethanol of aqueous
100 mM TEAB and digested overnight (18 h) with a Trypsin+LysC mixture (Promega) at a protein to
protease ratio of 33:1. Each sample was divided in 6 x 1 mg used for the phosphopeptide enrichment
and 200 pg initial protein used as reference for proteome analysis. Samples were evaporated in a
SpeedVac. The reference proteome sample was resolubilized in 50 pl 0of 0.05% TFA in HoO/ACN 98/2
(v/v) filtered through Ultrafree-MC 0.2 pm PTFE membrane spin filters (Merck-Millipore). The
filtrate was transferred to HPLC vials and injected into the LC-MS/MS instrument for further analysis.

Phosphopeptide enrichment

Phosphopeptides were enriched by using TiO+ZrO> TopTips (Glygen Corp., Columbia, MD, USA).
TopTips were loaded with 1 mg protein isolate using 6 TopTips per biological replicate after
equilibration with 200 ul Load and Wash Solution 1, LWS1 (1% trifluoroacetic acid (TFA), 20% lactic
acid, 25% acetonitrile (ACN), 54% H>0). TopTips were centrifuged at 1500 rpm (~200 x g) for 5 min
at room temperature. After washing with 200 ul LWSI, the TiO2/ZrO, resin was washed with 25%
ACN and subsequently the phosphopeptides were eluted with 200 pl NH3- H>O (NH4OH), pH 12. The
alkaline solution was immediately evaporated using a vacuum concentrator (Eppendorf). The
phosphoproteome samples were resolubilized in 50 ul of 0.05% TFA in HoO/ACN 98/2 (v/v) filtered
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through Ultrafree-MC 0.2 um PTFE membrane spin filters (Merck-Millipore). The filtrate was then
transferred to HPLC vials and injected into the LC-MS/MS instrument for further analysis.

LC-MS/MS analysis

Each sample was measured in triplicates (3 analytical replicates of 3 biological replicates of a reference
proteome fraction and a phosphoproteome fraction). LC-MS/MS analysis was performed on an
Ultimate 3000 nano RSLC system connected to a QExactive HF mass spectrometer (Thermo Fisher
Scientific, Waltham, MA, USA). Peptide trapping for 5 min on an Acclaim Pep Map 100 column (2
cm x 75 um, 3 um) at 5 ul/min was followed by separation on an analytical Acclaim Pep Map RSLC
nano column (50 cm x 75 um, 2um). Mobile phase gradient elution of eluent A (0.1% (v/v) formic
acid in water) mixed with eluent B (0.1% (v/v) formic acid in 90/10 acetonitrile/water) was performed
using the following gradient for the more hydrophilic phosphoproteome samples: 0-5 min at 4% B, 15
min at 7% B, 50 min at 10% B, 100 min at 14% B, 150 min at 25% B, 190 min at 60% B, 205-215
min at 96% B, 215-240 min at 4% B. The reference proteome gradient was as follows: 0-4 min at 4%
B, 10 min at 7% B, 50 min at 12% B, 100 min at 16% B, 150 min at 25% B, 175 min at 35% B, 200
min at 60 %B, 210-215 min at 96% B, 215.1-240 min at 4% B.

Positively charged ions were generated at a spray voltage of 2.2 kV using a stainless-steel emitter
attached to the Nanospray Flex Ion Source (Thermo Fisher Scientific). The quadrupole/orbitrap
instrument was operated in Full MS / data dependent MS2 Top15 mode. Precursor ions were monitored
at m/z 300-1500 at a resolution of 120,000 FWHM (full width at half maximum) using a maximum
injection time (ITmax) of 120 ms and an AGC (automatic gain control) target of 3 x 10°. Precursor
ions with a charge state of z=2-5 were filtered at an isolation width of m/z 1.6 amu for further HCD
fragmentation at 30% normalized collision energy (NCE). MS2 ions were scanned at 15,000 FWHM
(ITmax=100 ms, AGC= 2 x 10°) using a fixed first mass of m/z 120 amu. Dynamic exclusion of
precursor ions was set to 30 s and the minimum AGC target for Precursor ions selected for HCD
fragmentation was set to 1e3. The LC-MS/MS instrument was run by Chromeleon 7.2, QExactive HF
Tune 2.8 and Xcalibur 4.0 software.

Protein database search

Tandem mass spectra were searched against the UniProt database (2021/07/19) (YYYY/MM/DD);
https://www.uniprot.org/proteomes/UP000000559) of Candida albicans SC5314 using Proteome
Discoverer (PD) 2.4 (Thermo) and the algorithms of Mascot 2.4.1 (Matrix Science, UK), Sequest HT
(version of PD2.4), MS Amanda 2.0, and MS Fragger 3.2. Two missed cleavages were allowed for the
tryptic digestion. The precursor mass tolerance was set to 10 ppm and the fragment mass tolerance was
set to 0.02 Da. Modifications were defined as dynamic Met oxidation, phosphorylation of Ser, Thr,
and Tyr, protein N-term acetylation as well as static Cys carbamidomethylation. A strict false
discovery rate (FDR) < 1% (peptide and protein level) and a search engine score of >30 (Mascot), > 4
(Sequest HT), >300 (MS Amanda) or >8 (MS Fragger) was required for positive protein hits. The
Percolator node of PD2.4 and a reverse decoy database was used for q value validation of spectral
matches. Only rank 1 proteins and peptides of the top scored proteins were counted. Label-free protein
quantification was based on the Minora algorithm of PD2.4 using the precursor abundance based on
intensity and a signal-to-noise ratio >5. Normalization was performed by using the total peptide
amount method. Imputation of missing quan values was applied by using abundance values of 75% of
the lowest abundance identified per sample. For the reference proteome analysis used for master
protein abundance correction of the phosphoproteome data, phosphopeptides were excluded from
quantification. Differential protein abundance was defined as a fold change of >4, ratio-adjusted pvalue
<0.05 (pvalue/logdratio) and at least identified in 3 of 3 replicates. Differential phosphopeptide
abundance was defined as a fold change of >4, ratio-adjusted pvalue <0.05 (pvalue/log4ratio) and at
least identified in 2 of 3 replicates. The mass spectrometry proteomics data have been deposited to the
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ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2019) partner repository with the
dataset identifier PXD027612.

Results
Sky1l and Sky2 are the sole predicted SR-like protein kinases in C. albicans

According to the Candida Genome Database, the C. albicans genome encodes two predicted SR
protein kinases, based on sequence similarity to the sole SR-like protein kinase in S. cerevisiae,
ScSkyl. These orthologs correspond to the proteins encoded by C1 _06090C (48.5% identity to
ScSkyl) and C2_06600W (46.5% identity to ScSkyl), named in this study CaSkyl and CaSky2,
respectively. To ensure that these are the only SRPKs in the pathogenic fungus and to identify
homologs in other pathogenic Candida spp., we performed a BLASTp search analysis against the
human SR protein kinase 1 protein (SRPKI1) (NCBI Reference Sequence: NP _003128.3).
Interestingly, except for C. glabrata, the most common pathogenic Candida spp. possess two SRPK
homologs (Supplementary Figure 1). Not surprisingly, the CAGLOF03905g-derived protein in C.
glabrata CgSkyl has 60.35% identity to ScSkyl (NCBI protein BLAST (Basic Local Alignment
Search Tool)). This illustrates the phylogenetic relationships between the examined species: C.
glabrata 1s more closely related to S. cerevisiae compared to the other Candida species that belong to
the CTG clade (Muiioz et al., 2018). Therefore, we decided to include CgSkyl in our further analysis.
The human SRPKs contain a well-conserved kinase domain at the C-terminus that is divided by a
large, non-conserved insert domain (about 250 amino acids) (Ghosh and Adams, 2011). Multiple
sequence alignment showed that the domains that contain the ATP binding sites, the activation loop
and the kinase-docking sites are particularly highly conserved between H. sapiens, S. cerevisiae, C.
glabrata, and C. albicans (Figure 1). Interestingly, the CaSky2 protein has a considerable number of
additional amino acid residues on the N-terminal side of the kinase domain (alignment position 29-57,
94-108 and 153-320) that are not present in the other proteins (Figure 1B).

SKY1 deletion in C. glabrata and C. albicans results in higher resistance to osmotic and polyamine stress

S. cerevisiae Sky1 has been characterized as a regulator of polyamine transport and ion homeostasis,
as mutants lacking SKY/ are more resistant to toxic cations and polyamine concentrations (Erez and
Kahana, 2001). Ion homeostasis is also a crucial process for C. albicans and C. glabrata growth and
proliferation, survival in the host, virulence mechanisms and resistance to antifungal drugs (Llopis-
Torregrosa et al., 2016; Li et al., 2018). To test whether CgSky1, CaSky1, and CaSky2 are involved
in similar cellular functions we generated C. glabrata and C. albicans mutant strains lacking SKY!
(CgskyIA, CaskylA) and C. albicans strains lacking both SKYI and SKY2 (CaskylA/sky2A). In
addition, we used available C. albicans sky2A (Casky2A) mutants (Ramirez-Zavala et al., 2017). As a
control we used the S. cerevisiae BY4741 wild-type strain and a sky/A mutant (Scsky/A) from
Euroscarf (www.euroscarf.de). In accordance with previous observations, the Scsky/A mutant was
more resistant to osmotic stress caused by NaCl or LiCl and to high concentrations of the polyamine
spermine (Erez and Kahana, 2001; Forment et al., 2002). Similar phenotypes were observed for C.
glabrata mutants lacking SKY1 (Figure 2). Deletion of SKY! in C. albicans resulted in high resistance
to LiCl and spermine, whereas lack of SKY2 rendered the cells partially resistant to these stressors.
None of the tested strains had altered resistance to NaCl (Figure 2). Altogether, these results
demonstrate the functional conservation of Skyl among the examined species.

C. albicans SKY2 is required for growth on various dipeptides as the sole nitrogen source

Since we noted phenotypic differences between the two C. albicans SRPKs CaSkyl and CaSky2 we
decided to apply a high-throughput phenotypic screen to further characterize their cellular roles. Given
that the two independently generated Casky/A and Casky2A mutant strains showed the same
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phenotypes, we utilized only strain A of the respective mutant for this analysis. The Casky/A and
Casky2A mutant strains were screened for metabolic activity on 904 different nutrients and
supplements and compared to the metabolic activity of the wild-type strain SC5314. This approach
enabled us to identify additional phenotypic differences of the Casky/A and Casky2A mutants
compared to the control strain and between each other. Overall, there were fewer and less pronounced
phenotypic differences between the Casky/A mutant and the wild type as opposed to the Casky2A
mutant vs. wild-type strain. For instance, the Casky2A mutant exhibited either no active growth or a
significantly reduced metabolic activity on multiple dipeptide combinations as a nitrogen source
(Figure 3). The Casky2A mutant was able to utilize only 104 out of the tested 268 dipeptides (38.8%),
whereas the wild-type strain and the Casky /A mutant were able to utilize 146 (54.5%) and 125 (46.6%)
dipeptides, respectively. Interestingly, the Casky2A mutant was as capable as the wild type in
utilization of tripeptides (Figure 3), single amino acids and more complex nitrogen sources (data not
shown), showing that the dipeptide growth defect is quite specific.

To validate the observations from the phenotypic screen, we grew C. albicans SC5314 wild type,
Casky2A mutants, and the SKY2 complemented strains on several peptide combinations as the sole
nitrogen source where we observed a growth defect for the Casky2A mutant in the phenotypic screen
(Figure 3): alanine-phenylalanine (Ala-Phe), phenylalanine-serine (Phe-Ser), and methionine-glycine
(Met-Gly). Indeed, the Casky2A mutants had significantly reduced growth compared to the wild-type
strain on these particular dipeptides (Figure 4). The SKY2 complemented strains either partially
restored the Casky2A mutant phenotype (Ala-Phe) or exhibited growth comparable to the Casky2A
mutant (Phe-Ser, Met-Gly). This could be due to either the observed differences between the two SKY?2
alleles (data not shown) or to a gene dosage effect. Taken together, these results confirm the findings
from the phenotypic screen that C. albicans Sky?2 is required for assimilation of dipeptides as a nitrogen
source.

Phosphoproteome analysis reveals a distinct set of potential protein targets for C. albicans Skyl and Sky2
protein kinases

We next performed a phosphoproteome analysis to identify the potential substrates responsible for the
functional differences between CaSkyl and CaSky2. In brief, we grew the strains in YPD medium,
extracted the proteins, and performed an LC-MS/MS analysis of tryptic peptides. TiO2/ZrO;-mediated
phosphopeptide enrichment facilitated the identification and quantification of phosphopeptides with
serine, threonine, and/or tyrosine phosphorylation. Phosphopeptide abundances were corrected against
the corresponding master protein abundances (obtained from the non-enriched fraction) to enable a
site-specific quantification. With this approach, we were able to identify 3946 proteins, 1663
phosphoproteins, 7243 phosphopeptides and 7727 phosphosites in total (Figure 5A). Of those, 19
proteins were less abundant and lacked phosphorylation at specific sites in both CaskylA and Casky2A
strains compared to the wild-type strain (Supplementary Table 3,4). For example, phosphorylation of
the nucleolar GTP binding protein 1 (Nogl) at S471 and S473 and the GTPase Bmsl1 at S767 was
detected neither in the Casky/A nor in the Casky2A mutant. Furthermore, both mutants exhibited
altered phosphorylation of the S81 site of the putative protein kinase Hrk1, which has a predicted role
in cellular ion homeostasis. We generated ArklA mutants and tested their resistance to osmotic stress
and toxic polyamine concentrations. Interestingly, ArklA mutants were as resistant as the CaskylA
mutants to high LiCl and spermine concentrations (Supplementary Figure 2), suggesting that C.
albicans Hrkl could act downstream of Skyl in a pathway that coordinates cellular responses to
osmotic stress and toxic polyamine levels.

Aside from the small number of shared potential protein targets of CaSky1 and CaSky?2, we identified
many phosphopeptides that were differentially abundant in only one of the examined protein kinase
mutants. For the Casky/A mutant we identified 268 phosphopeptides assigned to 224 proteins with
significantly altered abundance (175 more abundant, 49 less abundant) compared to the wild type



107

(Figure 5B). For instance, phosphorylation of the putative membrane protein Lem3 at S33, S34, S35,
and S41 and phosphorylation of the putative mRNA export protein Elfl at S1126 was not detected in
the CaskylA mutant, but found in the wild-type strain. For the Casky2A mutant, we identified 237
phosphopeptides assigned to 210 proteins significantly altered in abundance (23 more abundant, 187
less abundant) compared to the wild type (Figure 5B). Among the most liekly direct or indirect targets
were the transcription factors Fcrl and Sfl1. We could not detect phosphorylation of Ferl at S113 or
S114, S198, S329, S369, S370, S373 and T376 or phosphorylation of Sfll at S641 in the Casky2A
mutant, despite detectable phosphorylation in the wild type. Another potential target was the dipeptide/
tripeptide transporter Ptr22, for which phosphorylation was not detected at S2, T3, and S39 in the
Casky2A mutant compared to the wild type. Furthermore, phosphorylation of certain phosphorylation
sites of several protein kinases (Cst20, Gin4, Hsl1, Kicl, Ptk2, Sak1, Sat4, Swel and orf19.846) could
not be detected in the Casky2A mutant but was detectable in the wild type. This suggests that CaSky2
is either part of a regulatory protein kinase network or that deletion of SKY2 affects several pathways
in the cell. Furthermore, the experimental data demonstrate a role of CaSky?2 in regulation of dipeptide
transport and support the role of CaSkyl in regulating ion homeostasis and RNA metabolism, a
function shared with ScSkyl and CgSky1.

PTR22 overexpression overcomes the growth defect of the Casky2A mutant on dipeptides as the sole
nitrogen source

Phosphoproteome analysis identified the dipeptide/tripeptide transporter Ptr22 as a potential direct or
indirect target of CaSky2, which could explain the prominent growth defect of Casky2A mutants on
dipeptides as the sole nitrogen source (Figure 3). To test whether Sky?2 regulates dipeptide utilization
via the di- and tripeptide transporter Ptr22, we generated strains overexpressing PTR22 in the wild
type and in the Casky2A mutant background and monitored their growth on selected dipeptides as the
sole nitrogen source. As a control, we used the ptr22A mutant, which has a known growth defect on
dipeptides (Dunkel et al., 2013). As expected, the strains lacking PTR22 were unable to grow on the
tested dipeptides (Figure 6). Strains overexpressing PTR22 under the control of the constitutive ADH
promoter grew very well on the tested media yielding 4 times more cells (as measured by ODeoo)
compared to wild-type at 24 h with only slight further increase at 48 h. In comparison, the wild type
strain growth on dipeptides at 48 h was similar to that of the PTR22 overexpressing strains at 24 h.
Importantly, overexpression of PTR22 under control of the constitutive ADHI promoter rescued the
growth defect of the Casky2A mutants on all dipeptides tested (Figure 6).

The nucleoside antibiotics Nikkomycin Z and Polyoxin D are antifungal agents that act as competitive
inhibitors of chitin biosynthesis. It has been shown that C. albicans deletion mutant strains with
defective uptake of di- and tripeptides are resistant to nikkomycins, polyoxins, and bacilysin (Mehta
et al., 1984; Payne and Shallow, 1985). Therefore, we examined whether CaSky?2 regulates the uptake
of Nikkomycin Z or Polyoxin D via Ptr22. All strains grew well on SD medium (Figure 7). C. albicans
Ptr22 was required for the growth inhibitory effects of the two antibiotics tested, as Nikkomycin Z and
Polyoxin D did not affect the growth of the ptr22A mutant but did affect that of the wild-type strain
(Figure7). Strains lacking SKY2 also exhibited resistance to both antibiotics, but at a lower level
compared to the pr22A mutant. Overexpression of PTR22 in the Casky2A mutant abolished its
resistance to both antibiotics (Figure 7).

C. albicans PTR22 is transcriptionally not altered in the Casky2A mutant unlike other peptide transporters

The C. albicans genome encodes two dipeptide/tripeptide transporters (PTR2 and PTR22) and eight
oligopeptide transporters (OPTI-OPTS), of which OPT1-5 have been identified as the major
oligopeptide transporters (Reuss and Morschhéuser, 2006). We performed qRT-PCR analysis to
investigate whether these genes are differentially regulated in the C. albicans wild type and the
Casky2A mutants grown in YCB medium with Ala-Phe, Phe-Ser or Met-Gly as the sole nitrogen
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source. PTR22 was expressed equally in all strains and media conditions (Figure 8). In all tested
dipeptide media, PTR2 and OPT5 were expressed at lower levels compared to the other peptide
transporters. Differences in the expression of PTR2 and OPTS5 between the wild type and the Casky2A
mutants were observed in Ala-Phe (showing lower expression in the Casky2A mutants) and Met-Gly
(with higher expression levels in the Casky2A mutant strain B), while PTR22 and OPT1-4 were not
differentially expressed in all strains. In contrast, in medium with Phe-Ser as the sole nitrogen source,
the transcript levels of the peptide transporter genes OPT1-4 were increased in the Casky2A mutants
compared to the wild type, but these differences were statistically significant only for OP72 and OPT3
(Figure 8). These results suggest that Ptr22 is likely regulated at the post-transcriptional level, e.g., by
Sky2-dependent phosphorylation, and that impaired regulation of this transporter triggers the induction
of other, probably non-specific, permeases to compensate for the altered dipeptide uptake.

Discussion

The subfamily of SR protein kinases, defined by preferential phosphorylation of mRNA-binding
proteins that contain SR/RS-enriched sequences, is highly conserved from yeasts to humans
(Giannakouros et al., 2011). While the function of SRPK has been described in detail in the model
yeasts S. cerevisiae and S. pombe, where they control fundamental cellular processes such as mRNA
processing and mitosis, their roles in human pathogenic fungi have not been previously investigated.
This is the first work that examines their function in pathogenic Candida spp., specifically the SR
protein kinases Sky1 and Sky2 in C. albicans and Sky! in C. glabrata. While both CgSky1 and CaSky1
appear to have similar functions to the sole SRPK in S. cerevisiae ScSkyl, CaSky2 has both expanded
and diverged repertoire of target proteins, such as proteins involved in nutrient utilization.

While both model yeasts S. cerevisiae and S. pombe have a single SR protein kinase 1 homolog, gene
expansions of SRPK kinases have been reported for filamentous fungi like Aspergillus nidulans (seven
paralogous genes), Neurospora crassa (five), and several dermatophytes (18 to 34) (Martinez et al.,
2012; De Souza et al., 2013). It is speculated that the response to a broad range of environmental
conditions and the higher number of introns per gene in filamentous fungi has led to an increased
importance of RNA processing resulted in such expansion (De Souza et al., 2013). Pathogenic Candida
spp. are also confronted with rapidly changing and diverse host environments. However, alternative
splicing in Candida spp. likely plays only a minor role in host adaptation, well reflected by the low
frequency of introns in Candida spp. genomes compared to other pathogenic fungi (Sieber et al., 2018).
Furthermore, the duplication of SRPK genes seems to have occurred independently at different time
points in the evolution of different taxa, since SRPKs lack a prominent one-to-one correspondence
between the sequences, as proposed by Giannakouros et al. (Giannakouros et al., 2011). The same
authors reported the observation concerning the ‘spacer region’ that is characteristic for the SRPK
subfamily. This ‘spacer region’ is highly diverse in sequence length, and possibly in function, as the
spacer seems to be unique for each SRPK family member. As illustrated in Figure 1, there is certain
sequence diversity in the middle part of the kinase domain between the different homologs. However,
CaSky2 shows a unique extension of the N-terminus of the kinase domain, indicative of possible
functional differentiation. Indeed, C. albicans and C. glabrata SKYI deletion strains shared the
resistance to high salt and toxic polyamine concentrations to the S. cerevisiae skylA mutant. A
subsequent high-throughput phenotypic screen confirmed the substantial phenotypic differences
between CaSkyl and CaSky2, supporting the notion of their divergent cellular functions. Whether
these differences are due to the expanded °‘spacer region’ of CaSky2 would require further
investigations.

The main feature of human SRPKs is that they catalyze the phosphorylation of proteins enriched in
serine/arginine recognition motifs, which earned them the name SR proteins (Zahler et al., 1992). In
S. cerevisiae the confirmed protein targets of the SRPK1 homolog Skyl also have multiple SR/RS
sites, but those typically are randomly distributed throughout the protein and therefore referred to as
SR-like. For example, ScSkyl phosphorylates the SR-like RNA-binding protein Npl3, which
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possesses eight SR/RS sites dispersed within the C-terminus of the protein (Siebel et al., 1999; Gilbert
etal., 2001). Similarly, many of the direct or indirect target proteins of CaSky1 and CaSky?2 identified
in this study contain multiple randomly dispersed SR/RS sites. For example, the two proteins
orf19.2459 or orf19.5051, which are among the 19 common potential substrates of CaSkyl and
CaSky2, contain 20 and 16 SR/RS sites, respectively. Interestingly, the C. albicans ortholog of the S.
cerevisiae Sky1 direct target ScNpl3, CaNpl3, was not among the potential phosphorylation targets of
either CaSky1 or CaSky?2. This is likely due to the substantially shorter protein length and the presence
of only three SR/RS sites of CaNpl3 compared to the longer ScNpl3 protein that contains eight SR/RS
sites. Thus, although direct evidence that CaSkyl and CaSky2 can phosphorylate proteins is still
lacking, our data suggests that both are functional SR-like protein kinases.

Of the potential phosphorylation targets for both CaSkyl and CaSky2, we examined Hrk1, a protein
kinase with a predicted role in cellular ion homeostasis. Deletion of HRKI resulted in the same
resistance to LiCl and spermine as the deletion of CaSKY /. The functional relationship between Hrk1
and CaSky1 requires further investigation. In addition to its role in regulation of ion homeostasis,
CaSkyl, similar to ScSky1, is potentially involved in RNA metabolism, as the putative mRNA export
protein Elf1 was one of the most promising phosphorylation targets of CaSky1. Although we have not
examined this in great details, C. glabrata Sky1 also seems to exert similar cellular functions as ScSky1
and CaSkyl. Thus, at least in these three species, Skyl appears to regulate ion and possibly mRNA
homeostasis.

Our analysis revealed substantial functional differences between CaSkyl and CaSky2, with CaSky?2
having multiple distinct potential targets and phenotypes. Among the most potential targets for CaSky2
were the SR/RS-enriched transcription factors Ferl, a zinc cluster transcription factor and negative
regulator of fluconazole, ketoconazole and brefeldin A resistance, and Sfl1, which is involved in the
negative regulation of morphogenesis, flocculation, and virulence (Bauer and Wendland, 2007; Li et
al., 2007; Shen et al., 2007). In addition, phosphorylation at specific phosphorylation sites of multiple
protein kinases could not be identified in the Casky2A mutant compared to the SC5314 control strain,
including Cst20, Gin4, Hsl1, Kicl, Ptk2, Sak1, Sat4, Swel and orf19.846. The Snfl-activating protein
kinase Sakl is a key regulator of metabolic adaptation and in vivo fitness in C. albicans (Ramirez-
Zavala et al., 2017). Furthermore, we identified other potential direct or indirect CaSky?2 target proteins
that are involved in metabolic processes, such as nutrient uptake, e.g. the dipeptide/tripeptide
transporter Ptr22 with no detected phosphorylation at S2, T3 and S39 in the Casky2A mutant compared
to the wild type. Based on this, we speculate that CaSky?2 plays an important role in signalling pathways
that coordinate metabolism, morphogenesis and virulence. In this context, we were able to verify the
functional relationship between Sky2 and Ptr22.

In C. albicans utilization of di- and tripeptides is mediated by Ptr2 and Ptr22, and partially by the
oligopeptide transporter Optl, while uptake of oligopeptides is mediated by the oligopeptide
transporters Opt1-5 (Reuss and Morschhéuser, 2006; Dunkel et al., 2013). During growth on dipeptides
as the sole nitrogen source, the transcript levels of PTR22 remained unaltered, whereas PTR2 and
OPTI-5 genes were differentially expressed in a substrate-specific manner in the absence of CaSky?2.
Thus, compensatory mechanisms might be in effect, which could explain the observed intermediate
growth of the Casky2A mutant on dipeptides compared to the inhibited growth of the p#r22A mutant
strain. Furthermore, our phosphoproteomics data suggest that Ptr22 is regulated on post-transcriptional
level (e.g. by phosphorylation). Since overexpression of PTR22 in the C. albicans sky2A mutant
completely reversed the growth defect on dipeptides as the sole nitrogen source, we hypothesize that
Ptr22 phosphorylation is required either for protein processing and/or its function.

Deletion of SKY2 in C. albicans rendered the cells more resistant to the nucleoside antibiotics
Nikkomycin Z and Polyoxin D, both of which are most likely taken up via peptide transporter(s) and
which inhibit chitin biosynthesis in fungi (Yadan et al., 1984; Payne and Shallow, 1985). Consistently,
strains lacking the dipeptide transporter Ptr22 were not susceptible to these antibiotics, while wild type
growth was completely inhibited. The Casky2A mutants exhibited resistance to Nikkomycin Z and
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Polyoxin D, but not as much as the ptr22A mutants. Although both antibiotics are relatively similar in
structure, they have different levels of effectiveness, e.g. in S. cerevisiae Polyoxin D inhibits the chitin
synthetases 1 and 2 more effectively than Nikkomycin Z (Cabib, 1991). While both antibiotics have
been investigated for their potential use in treatment of mycoses in plants, only Nikkoymcin Z was
tested on animal mycoses. For example, in a murine model the promising effect of Nikkomycin Z to
treat coccidioidomycosis, histoplasmosis, and blastomycosis has been shown (Hector et al., 1990).
Currently, Nikkomycin Z is in phase 2 clinical trial for treatment of coccidioidomycosis in humans
(Nix et al., 2009). As the Ptr22 dipeptide transporter is required for Nikkomycin Z uptake in C.
albicans, stimulation of dipeptide uptake should increase the efficacy of this antibiotic.

In conclusion, our results clearly demonstrate that the two C. albicans SR-like kinases Sky1 and Sky2
regulate distinct cellular processes. Skyl regulates ion homeostasis as its S. cerevisiae Sky1 ortholog,
whereas CaSky?2 is important for utilization of dipeptides.
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Figure legends

Figure 1. Protein alignment of SRPK homologs: H. sapiens SR protein kinase 1, S. cerevisiae, C.
glabrata and C. albicans. The annotation of the protein features (the bars above the corresponding
alignment section) is based on the annotation of the human SRPK 1 (NP_003128.3). (A) Overview
alignment of the entire protein, where the kinase domains are indicated by the grey bars above. (B)
Detailed alignment of the kinase domain (grey bar above) intercepted by the ‘spacer’ region. The
protein kinase domain contains ATP binding sites (turquoise), activation loop (magenta) and kinase-
docking sites (yellow). All regions required for SRPK1 function are highly conserved among the
fungal species. The conserved alignment sites are highlighted within the alignment applying Clustal X
default coloring.

Figure 2. Growth of §. cerevisiae and C. glabrata skylA mutants, and of C. albicans skyIA and
sky2A mutants on high salt and toxic spermine levels. YPD overnight cultures of the strains were
adjusted to an optical density (ODeoo) of 1.0. For C. albicans and C. glabrata two independently
generated mutants were tested. Serial 10-fold dilutions were spotted on YPD agar plates containing
the indicated stressor and incubated for 2-3 days at 30°C (S. cerevisiae) or 37°C (C. albicans and C.
glabrata). S. cerevisiae/C. glabrata/C. albicans plates contained NaCl (1 M/1.7 M/1.8 M), LiCl (0.3
M/0.18 M/0.5 M) or spermine (2 mM/8 mM/12.8 mM).

Figure 3. C. albicans Sky2 is required for growth on various dipeptides as the sole nitrogen
source. The metabolic activities of the C. albicans SC5314 wild type, CaskyIA and Casky2A mutant
strains were measured kinetically every 15 minutes for 24 h at 30°C by utilizing Biolog™ phenotypic
microarray plates for fungi. Upper panel: Each growth signal was categorized as active (purple) or
non-active (yellow) growth Lower panel: ANOVA and Tukey’s test were applied to detect
significantly differences in growth (log2 fold change) between the strains.

Figure 4. CaSky?2 is important for utilization of selected dipeptides as the sole nitrogen source.
YPD overnight cultures were adjusted to an optical density (ODsoo) 0of 0.01 in YCB medium containing
10 mM of the indicated dipeptide as a nitrogen source and incubated at 37°C. The ODgoo was measured
after 24 h and 48 h. Both the A strain and the B strain of the mutant strains are displayed. The values
shown are the calculated mean and standard deviation of 3 biological replicates. For statistical analysis,
a two-way ANOVA was performed (*, p < 0.05; **, p < 0.01; *** p < 0.001; **** p < 0.0001;
compared to SC5314).
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Figure 5. Phosphoproteome analysis revealed a distinct set of putative substrates for C. albicans
Skyl and Sky2. YPD overnight cultures were adjusted to an optical density (ODsgoo) of 0.1 in YPD
medium and incubated at 37°C for 4 h. Cells were harvested, lysed and proteins were tryptically
digested, followed by phosphopeptide enrichment based on TiO2/ZrO2 resin (a non-enriched fraction
served as reference). Three biological replicates were used per strain. (A) Overview of the identified
proteins, phosphoproteins and phosphosites. (B) Phosphoprotein abundance of sky/A vs. WT and
sky2A vs WT. The values represent all identified phosphoproteins with an abundance ratio of >log4
and p<0.05.

Figure 6. PTR22 overexpression rescued the sky2A mutant phenotype. YPD overnight cultures
were adjusted to an optical density (ODeoo) 0f 0.01 in YCB medium containing 10 mM of the indicated
dipeptide as a nitrogen source and incubated at 37°C. The ODgoo was measured after 24 h and 48 h.
The values shown are the calculated mean and standard deviation of 3 biological replicates. For
statistical analysis, a two-way ANOVA was performed (*, p <0.05; **, p <0.01; *** p <0.001; ****,
p <0.0001; compared to SC5314). (A) The growth of the wild type and the A mutant strains is shown.
(B) The growth of the wild type and the B mutant strains is shown.

Figure 7. Strains lacking SKY2 showed resistance to the antibiotics Nikkomycin Z and Polyoxin
D. Growth of the wild type strain SC5314 and mutant strains in SD medium and SD medium
supplement with either 140 pg/ml Nikkomycin Z or 130 pg/ml Polyoxin D. YPD overnight cultures
were adjusted to an optical density (ODeoo) of 0.02 in the respective media and incubated at 37°C for
24 h. The growth (ODsoo) was determined every 20 min at an optical density of 600 nm. Shown is the
mean of each strain calculated from 3 technical replicates. For a better overview, the standard deviation
is not shown. (A) The growth of the wild type and the A mutant strains is shown. (B) The growth of
the wild type and the B mutant strains is shown.

Figure 8. Transcript levels of the dipeptide/tripeptide and oligopeptide transporter genes
following growth on dipeptides as the sole nitrogen source. YPD overnight cultures of the wild type
strain and the sky2A mutant strains were adjusted to an optical density (ODsoo) of 0.1 in YCB medium
containing 10 mM of (A) Ala-Phe, (B) Phe-Ser or (C) Met-Gly and incubated at 37°C for 4 h. Cells
were harvest and used for preparation of total RNA. The transcript levels of the dipeptide/tripeptide
transporter genes PTR2 and PTR22, and the oligopeptide transporter genes OPT1, OPT2, OPT3, OPT4
and OPTS5 were assessed in biological and technical triplicates by qRT-PCR. Each bar represents the
mRNA level of the indicated gene expressed as means + SEM relative to the MEDI5 expression. A
two-way ANOVA was used to calculate the statistical relevance: (*, p < 0.05; **, p <0.01; *** p <
0.001; **** p<0.0001).

Supplementary Figure 1. BLASTp of the human SRPK1 protein (NCBI Reference Sequence:
NP_003128.3). Except for C. glabrata the most common pathogenic Candida spp. possess two SRPK
homologs, all having a high level of homology to S. cerevisiae Skyl protein kinase. [species |strain
|GenBank number [model name on CGD]

Supplementary Figure 2: Deletion of HRK1 confers resistance to high salt and toxic spermine
levels. YPD overnight cultures of the strains were adjusted to an optical density (ODseoo) of 1.0. For
hrkIA two independently generated mutants were tested. Serial 10-fold dilutions were spotted on YPD
agar plates containing the indicated stressor and incubated for 2 days at 37°C. Plates contained 1.8M
NaCl, 0.3 M LiCl or 12.8 mM spermine.
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4. ABSTRACT

Intestinal microbiota dysbiosis can initiate overgrowth of commensal Candida species — a major
predisposing factor for disseminated candidiasis. Normally, commensal bacteria such as
Lactobacillus rhamnosus can antagonize C. albicans pathogenicity. To uncover the molecular
mechanisms of bacterial antagonism, we investigated the interplay between C. albicans,

L. rhamnosus, and intestinal epithelial cells (IECs) by integrating transcriptional and metabolic
profiling, and reverse genetics.

Untargeted metabolomics and in silico modelling suggested that IECs foster bacterial growth
metabolically, leading to production of antivirulence compounds. The bacterial growth on IECs also
modified the metabolic environment, which included the removal of C. albicans’ favoured nutrient
sources. Consequently, C. albicans was forced to transcriptionally rewire its metabolism and cell
biology, this was associated with the reprogramming of defined virulence-related genes.

This suggests that intestinal colonization with bacteria can antagonize C. albicans by reshaping the
metabolic environment forcing metabolic adaptations that reduce fungal pathogenicity.
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5. INTRODUCTION

The yeast Candida albicans is a common commensal of the intestinal mycobiota'?. However, certain
predisposing conditions, such as a dysbalanced microbiota and a compromised immune system can
favour its shift from a commensal to a pathogenic stage®. Consequently, C. albicans can translocate
through the intestinal epithelium into the bloodstream*>, resulting in disseminated candidiasis
associated with high mortality rates®. Specifically, an intact epithelial barrier, the immune system,
and the commensal intestinal microbiota play crucial roles in maintaining C. albicans commensalism
by suppressing overgrowth and pathogenicity™’”8. Bacteria belonging to different genera, such as
Bifidobacterium, Streptococcus and, more extensively, Lactobacillus, have been studied with regard
to their antagonistic effects against C. albicans®'°.

Lactobacillus species have been discussed as oral probiotics to prevent candidemia in premature
newborns'!*!? and are also being explored as potential therapies against vulvovaginal candidiasis
In vitro studies have demonstrated that lactobacilli can antagonize proliferation’, hypha formation'®"
21 biofilm formation'®2%23, or even kill C. albicans****. However, these studies often do not
recapitulate the role of the host or its epithelial barriers as active partners in the interaction.
Previously, we demonstrated that the antagonistic effects of L. rhamnosus on intestinal epithelial
cells (IECs) are associated with reduced C. albicans invasion, and damage?®. L. rhamnosus
colonization of IECs prevented fungal outgrowth and reduced the number of host cell-associated

C. albicans cells through shedding?®. Similarly, L. rhamnosus colonization in an intestine-on-chip-
model reduced the fungal burden, epithelial damage, and fungal translocation into a surrogate
bloodstream compartment?’.

However, the molecular mechanisms underlying the antagonistic effects of L. rhamnosus
colonization against C. albicans pathogenicity remain, to a large extent, unresolved. Several
antagonistic mechanisms of lactobacilli have been described using models excluding host cells, such
as peroxide production?® or lactic and acetic acid production®>*. However, these antagonistic
mechanisms did not play a role in the protection of host cells*®. More complex in vitro models are
required to dissect the interactions between the host, lactobacilli, and C. albicans in a physiologically
relevant manner to understand the principles of the observed protective activities.

We took a systems-biology approach involving multi-omics (transcriptome/metabolome) profiling,
in silico metabolic modelling, and in vitro infection biology to uncover how L. rhamnosus
colonization of IECs mediates protection against C. albicans infection. This included dissection of
the metabolic crosstalk between epithelial cells, L. rhamnosus, and C. albicans. Using this approach,
we elucidated how multifactorial changes in the metabolic environment force C. albicans
transcriptional adaptation, resulting in a reduced capacity to damage epithelial cells.

13-15
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6. RESULTS
L. rhamnosus suppresses C. albicans pathogenicity

We recently showed that L. rhamnosus reduced the number of C. albicans cells in contact with
IECs?$, which may reduce invasion and damage of the tissue. Infections with a lower number of

C. albicans cells also resulted in a reduced fungal burden in the tissue after infection (Fig. 1A).
Interestingly, this reduced fungal burden in the absence of L. rhamnosus still induced more damage
than when lactobacilli were present (Fig. 1B), demonstrating that reduced numbers of host-cell
associated C. albicans alone are insufficient to mediate protection.

We previously showed that killed L. rhamnosus failed to protect IECs against C. albicans induced
damage®®. To confirm that colonization is only protective when lactobacilli are metabolically active
and proliferating, the bacteria were killed using antibiotics four hours post infection (hpi). Killing
L. rhamnosus after colonization still abolished their protective effect (Fig. 1C). However, physical
separation of L. rhamnosus from IECs and C. albicans did not impair the protection (Fig. 1D),
suggesting that the environment plays a key role.

Host-bacterial-fungal metabolic crosstalk

A detailed insight into the metabolic interactions between C. albicans, L. rhamnosus, and IECs was
obtained using untargeted metabolomics. In the supernatants, 235 metabolites were identified, and
their relative abundances were quantified. From these metabolites, 89 were present in the culture
media, suggesting that the remaining metabolites are derived from metabolic activity of IECs, C.
albicans, and L. rhamnosus.

The metabolic environment slightly differed between uninfected IECs and C. albicans-infected IECs
(Fig. 2A I). However, at 6 and 12 hpi L. rhamnosus colonization of IECs removed 53 and 46
metabolites and resulted in the appearance of 73 and 74 metabolites, compared to uninfected IECs,
respectively (Fig. 2A II, Fig. 2B). Interestingly, during C. albicans infection of L. rhamnosus-
colonized IECs only 12 metabolites were altered. (Fig. 2A III1, Fig. 2B). Unsupervised hierarchical
clustering of the metabolome revealed distinct clusters of metabolites in the model at 6 hpi (Fig. 2C,
Tab. S1) and 12 hpi (Fig. S1, Tab. S2), which are associated with specific dynamics. At 6 hpi,
cluster 2 and 3 (Fig. 2C) represent metabolites produced by IECs. The metabolites in cluster 3,
however, are no longer present following L. rhamnosus colonization, suggesting that they are
consumed by L. rhamnosus. Metabolites in cluster 1 were only present when L. rhamnosus colonized
IECs, and thus may be involved in their protective effect. Similar clusters were identified at 12 hpi
(Fig. S1). Enrichment analysis showed that at both 6 and 12 hpi, cluster 1 was enriched in
metabolites involved in pyrimidine metabolites. At 12 hpi, cluster 4 (cluster 3 at 6 hpi) was enriched
in metabolites for valine, leucine and isoleucine biosynthesis (Fig. S2).

Intestinal epithelial cells foster L. rhamnosus growth

L. rhamnosus cannot grow in KBM unless IECs are present, yet active growth is essential for their
antagonistic potential (Fig. 1C)*°. Physical separation of L. rhamnosus from the epithelial cells did
not compromise protection (Fig. 1D) nor bacterial growth (Fig. 2D). Likewise, IEC-spent medium
supported L. rhamnosus growth (Fig. 2D), validating that epithelial-secreted metabolites foster
bacterial growth. By simulating L. rhamnosus biomass formation in silico with flux balance analysis
(FBA)*°, IEC supernatants were predicted to sustain an increased bacterial biomass, while the culture
medium (KBM) did not (Fig. 2E, supplementary data 2). Thus, the [EC-derived metabolites, which
disappear upon colonization (Fig. 2C cluster 3, Tab.S1), are likely those that foster L. rhamnosus
growth. From the different metabolite types in this cluster at least one representative was tested in
vitro for its capacity to foster L. rhamnosus growth. Supplementation with fructose, xanthine,
nicotinamide, nicotinic acid, 3-methyl-2-oxobutyrate, 3-methyl-2-oxovalerate, N-
acetylgalactosamine, carnosine, and amino acids did not promote growth individually (Fig. 2F).
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Carnitine and citric acid supplementation slightly supported L. rhamnosus growth (Fig. 2F), whereas
combinations of citric acid with gamma-glutamylalanine or carnitine, and especially all three in
combination, supported L. rhamnosus growth to rates similar as on IECs (Fig. 2F).

Additionally, reconstructed genome-scale metabolic models (GEMs) were simulated for IECs,

C. albicans, or L. rhamnosus>'*?, monitoring both biomass production and feasible reaction fluxes
by again applying FBA and also flux variability*® analysis (FVA, supplementary data 2). Since
IECs are persistently present in the infection model, GEMs were parametrized with supernatant-
specific metabolites. We investigated the GEMs used for IECs, C. albicans, and L. rhamnosus to
uncover reaction flux shifts in individual metabolic pathways across different nutritional conditions
including blank media and supernatants of IECs, L. rhamnosus or C. albicans (Fig. 2G; Fig. S3).
The in silico simulation using FVA revealed markedly altered L. rhamnosus metabolic pathway
activities on [EC supernatants vs. culture medium, including nucleotide, Nicotinamide adenine
dinucleotide (NAD), lipid-related metabolism, and Coenzyme A (CoA) synthesis. In addition,
diverse amino acid metabolic pathways showed differing feasible flux ranges in response to IEC-
derived metabolite profiles (Fig. 2G). In comparison, changes in metabolic pathway activity were
less prevalent in IECs (Fig. S3A). Here, only a few amino acids (including tyrosine and
phenylalanine), ubiquinone and taurine pathways next to the generic protein assembly/degradation
metabolic subsystem showed shifts in pathway activity of at least 40% upon L. rhamnosus affected
supernatants. These simulation results suggest that L. rhamnosus utilizes IEC-secreted metabolites
without inducing drastic metabolic changes in the host. These results did not change upon varying
thresholds for required flux activity changes in the compared conditions (supplementary data 3).
L. rhamnosus-derived metabolites antagonize C. albicans

L. rhamnosus-mediated protection against C. albicans cytotoxicity is contact-independent (Fig. 1D),
suggesting that soluble molecules mediate the antagonistic effects. To test this hypothesis, L.
rhamnosus was grown independent of host cells in the supplemented KBM and C. albicans was
grown in the conditioned supernatants. The L. rhamnosus conditioned supernatants, reduced C.
albicans filamentation and even induced a transition from hyphae to yeast (Fig. S4A). Metabolites
specifically secreted when L. rhamnosus colonized IECs (cluster 1, Fig. 2C, cluster 1 Fig. S1B, Tab.
S2) were investigated for their effects against C. albicans. Literature searches revealed that several of
these metabolites, including phenyllactic acid**, mevalonolactone®®, 2-hydroxyisocaproic acid
(HICA)*** and 3-hydroxyoctanoate®®, have previously been reported to have antifungal potential.
We validated the effects of phenyllactic acid and 2-hydroxyisocaproic acid, and observed that these
metabolites changed the pH of the medium. Nevertheless, compared to pH-adjusted medium, an
impact on C. albicans filamentation was still observed. Further screening of the L. rhamnosus
colonization-derived metabolites revealed several additional metabolites that differentially
influenced C. albicans filamentous growth (Fig. S4B, Fig. 3A). Notably, cytosine induced a hypha-
to-yeast transition, characterized by a complete halt of hyphal growth at approximately 8 h, after
which cells continued to proliferate in the yeast morphology (Fig. 3A, supplementary videos 1 and
2). The metabolites identified also reduced filamentation and induced a subtle shift towards yeast
growth when administered at lower concentrations and in combination with each other (Fig. 3B).
After 4 h, hyphae were significantly shorter when the combination of metabolites was present (Fig.
3C). In line with the impaired filamentation, C. albicans-induced damage of IECs at 24 hpi was
reduced (Fig. 3D). Causing the most striking phenotype, cytosine on its own was evaluated for its
potential to inhibit C. albicans-induced damage and translocation. Both host cell damage as well as
C. albicans translocation were reduced (Fig. 3E, F).

L. rhamnosus induces a hostile environment for C. albicans

The reduced C. albicans growth observed when infecting L. rhamnosus-colonized IECs?® was also
reflected by in silico FBA® of the genome-scale metabolic model of C. albicans. By using our
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established metabolome data-driven genome-scale metabolic models of IECs and L. rhamnosus>'-?

we predicted potential metabolite secretion or uptake (supplementary data 2 and 3). These
predictions were cross-checked with phenotypic growth data of C. albicans®® and metabolomics fold
changes for different conditions (Fig. S5).

Glucose, fructose, mannose, and N-acetylglucosamine/N-acetylgalactosamine support efficient

C. albicans growth®®. However, these metabolites were depleted upon L. rhamnosus colonization
(Fig. 3G, Fig. S5). Instead, alternative carbon sources, like 3-4-hydroxyphenyllactate, lactate, N-
acetylglutamate, and malate showed approximately 5-fold higher concentrations, but these supported
C. albicans growth to a lesser degree’.

Amino acids are favourable nitrogen sources to sustain C. albicans growth®® as well as carbon
sources when glucose is consumed, yet L. rhamnosus colonization reduced the availability of most
favoured amino acids (Fig. 3G) and increased N-acetylated amino acids. /n silico GEM based
analyses predicted that amino acids are taken up by IECs and L. rhamnosus in the majority of cases
(Fig. S5). The relative decrease of amino acids upon C. albicans infection suggests that C. albicans
uses them as an alternative, but less favoured carbon source. This was accompanied by a depletion of
the favoured phosphorus source choline phosphate during L. rhamnosus colonization (Fig. 3G).
Collectively, in silico and metabolomics analyses revealed that L. rhamnosus colonization depleted
favoured carbon, nitrogen, and phosphorus sources of C. albicans, which were replaced by
alternative carbon or nitrogen sources forcing C. albicans into a suboptimal growth milieu. This
could explain the 3-fold growth reduction when C. albicans infects L. rhamnosus-colonized
epithelium (Fig. 1A).

Further in silico GEM simulations provided clues on activity of individual pathways in both

C. albicans and 1ECs (Fig. S3). Reaction flux ranges of C. albicans glycolysis, TCA cycle, or
pyruvate metabolic pathways changed by 20-40% when simulated on colonized vs. uncolonized
IECs supernatant (Fig. S3B). This suggests shifts in C. albicans metabolism due to the altered
metabolic environment. C. albicans oxidative phosphorylation was predicted to substantially alter in
IECs supernatants, and even further change in the presence of L. rhamnosus, adding evidence that its
energy maintenance might be affected (Fig. S3B). Additional changes were predicted in lipid, sulfur,
and nucleotide related metabolic pathways, including biotin, butanoate, purine, and pyrimidine
metabolism, suggesting a comprehensive metabolic shift in C. albicans, which begins to utilize
alternative carbon sources.

L. rhamnosus forces fungal transcriptional metabolic adaptation

In silico simulations suggested that C. albicans adapts to cope with the changed metabolic
environment. We hypothesized that these metabolic adaptations require transcriptional
reprogramming. Differential gene expression of C. albicans during infection of L. rhamnosus-
colonized IECs was investigated by transcriptional profiling. Unsupervised hierarchical clustering
(Fig. S6A) and principal component analysis (PCA) (Fig. 4A) revealed a distinct gene expression
pattern upon L. rhamnosus colonization, but only 1.3% of the up-regulated and 1.6% of the down-
regulated genes overlapped across time points (Fig. 4B, C).

L. rhamnosus killed with antibiotics at 4 hpi did not induce noticeable transcriptional reprogramming
of C. albicans, as exemplified by missing shifts in the first two PCA-defining principal components
and gene expression profiles, (Fig. 4D, S6B), underlining that only live L. rhamnosus enforces
transcriptional adaptation.

Next, we explored the transcriptional changes for hints pointing towards fungal metabolic adaptation.
Gene Ontology (GO) enrichment analysis revealed that a variety of metabolic processes were down-
regulated at 6 hpi, while the opposite was observed at 24 hpi (Fig. SA). As the GO terms did not
yield very specific insights into the transcriptional metabolic adaptation, we analysed the expression
of transcription factors regulating metabolic adaptation as well as key metabolic processes.
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Consistent with the limited favoured carbohydrate availability (Fig. 3G, Fig. S5), the transcription
factor genes MIG1 and TYE7 were significantly up-regulated at 6 hpi, possibly to compete for any
remaining favoured carbohydrates. Nevertheless, at 24 hpi MIG1 and TYE7 as well as GAL4, SUCI,
HMOI, and STD1 were significantly down-regulated. Despite increased expression of MIG/ and
TYE7 early during infection, genes encoding major glycolysis enzymes such as PFKI were down-
regulated during the entire infection (Fig. SB). Instead, the transcription factor gene S7P2, regulator
of amino-acid metabolism, showed increased expression early during infection. Consequently,
expression of the amino-acid permease gene GAP2 was increased throughout infection. In line with
this, specific TCA cycle genes (CIT1, ACOI, and MDH]), genes in the glyoxylate shunt (/CL1,
MLS]1), and genes in the gluconeogenesis pathway (PCK 1, FBPI) were up-regulated at 6 hpi (Fig.
5B).

To contextualize C. albicans metabolic reprogramming across multiple analysis levels, we overlaid
our metabolome-driven in silico modelling predictions (Fig. S3B, supplementary data 2) with our
transcriptome and metabolome data (Fig. 6, Tab. S3). In silico analysis based on the metabolite
availability at 12 hpi predicted reduced C. albicans glycolytic activity upon L. rhamnosus
colonization, consistent with the down-regulation of transcription factors regulating carbon
metabolism at 24 hpi, and key glycolysis genes at 6 and 24 hpi (Fig. 5B). In silico prediction also
reflected most parts of the available transcriptional and metabolic data concerning the TCA cycle
(Fig. 6). Both our metabolome and transcriptome data suggested relevance for the glyoxylate shunt,
which C. albicans likely uses early during infection to bypass a full TCA cycle to use available
amino acids as carbon sources to compensate for the absence of favoured nutrients. At 24 hpi

C. albicans transcriptomic data suggested that the bias towards the glyoxylate shunt was lost and

C. albicans tried to compensate by re-establishing a full TCA cycle and thus energy metabolism. In
silico metabolic flux predictions at 12 hpi supported this notion and suggested decreased flux rates in
citrate synthase and in succinate dehydrogenase opposed to increased flux in succinyl-CoA
synthetase. Finally, several parts of the oxidative phosphorylation pathway were predicted to be less
active in the presence of L. rhamnosus. XTT assays, which assess mitochondrial dehydrogenase
activity, suggested a reduced mitochondrial metabolic activity when C. albicans is cultured in
supernatants of L. rhamnosus-colonized IECs (Fig. S7A) or in L. rhamnosus-conditioned medium
independent of host cells (Fig. S7B). In addition, two of the metabolites observed after L. rhamnosus
colonization reduced mitochondrial dehydrogenase activity (Fig. S7C).

This was supported by the transcriptional data suggesting a trend towards an overall down-regulation
of genes in complex 1 and 4 of the oxidative phosphorylation pathway (Fig. S7D, Fig. 6).

Our metabolome and transcriptome data combined with in silico metabolic flux predictions (Fig. 3G,
Fig. SS) suggest that C. albicans undergoes drastic metabolic adaptations in response to the
suboptimal nutritional environment induced by L. rhamnosus colonization.

Dysregulation of C. albicans virulence-relevant genes

Changes in fungal energy metabolism could be linked to reduced pathogenicity. Decreased

C. albicans damage potential in the presence of L. rhamnosus could be mediated by the differential
regulation of genes required for metabolic adaptation when these are linked to virulence. Therefore,
70 C. albicans mutants from a gene deletion mutant library*’ (Tab. S4), corresponding to a range of
differentially regulated genes, were tested for their damage potential. The mutants kreSA/A, ptp3A/A,
orf19.4292A/A, ahrIA/A, and ace2A/A were attenuated in IEC damage potential (Fig. 7A). The
ptp3A/A mutant additionally showed reduced growth (Fig. 7B) and impaired filamentation (Fig. 7C).
In addition, ypt7A/A, orf19.4459A/A, hyri A/IA, opt7AIA, rbel AIA, pdk2A/IA, orf19.7328A/A,
zcf27A/A, and rgs2A/A showed a hyper-damaging phenotype (Fig. 7A). Comparison of expression
and mutant damage potential revealed a correlation between down-regulation and a reduced damage
capacity of mutants of the corresponding genes with the exception of kre5SA/A. Except ypt7A/A and
orf19.7328A/A, genes corresponding to the hyper-damaging mutants were significantly up-regulated
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by L. rhamnosus at 6 or 12 hpi, suggesting that these represent potential antivirulence genes®!.
Collectively, this supports the hypothesis that the transcriptionally-regulated metabolic adaptions to
L. rhamnosus-colonized IECs compromises the expression of virulence and antivirulence genes,
thereby reducing the pathogenic potential of C. albicans.
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7. DISCUSSION

Here, we investigated metabolic and molecular aspects of L. rhamnosus-mediated protection against
C. albicans pathogenicity. While colonization with L. rhamnosus reduced the number of C. albicans
in contact with the epithelium?®, reduced inocula still cause significant damage, hinting at additional
mechanisms mediating the protection. We discovered that this contact-independent protection was
associated with Lactobacillus-induced changes in the metabolic environment. These metabolic
changes forced C. albicans to transcriptionally reprogram its metabolism, and these transcriptional
changes were intertwined with genes required for pathogenicity.

Lactobacillus species shape the intestinal environment by consuming and releasing metabolites
Antibiotic treatment reduced short chain fatty acid and secondary bile salt levels, while increasing
carbohydrates and sugar alcohols, which enhanced C. albicans filamentation and colonization rates
in mice***. We demonstrate that L. rhamnosus colonization not only creates an antagonistic
environment, but also maintains it over time. Consistent with the rapid changes in the environment
upon disturbances of the microbiota in vivo*, a loss of the protective effect was observed upon
killing the bacteria with antibiotics even after infection.

Metabolically active, proliferating L. rhamnosus cells are required for the antagonistic effect towards
C. albicans®, but the cell culture medium alone does not support L. rhamnosus growth. Combined in
silico genome-scale metabolic simulations and in vifro experiments have been used before to shed
light on the role of gut microbiota towards host metabolic disease®*>°. Here, analysing both in
conjunction revealed that epithelium-derived metabolites foster L. rhamnosus growth by providing
nutritional support in specific pathways. This underscores that the host metabolic activity is required
to support L. rhamnosus growth and its antagonistic effects in our model. The interplay of
consumption of IEC-derived metabolites and subsequent metabolic activity of L. rhamnosus,
highlights that L. rhamnosus may be metabolically specialized to survive in the presence of epithelial
cells. Such interactions have been described to play a key role in the human gut, where the intestinal
epithelium provides metabolites that selectively sustain beneficial members of the microbiota’!.

L. rhamnosus colonization of epithelial cells drastically changed the metabolic environment, an
observation that can also be made in L. rhamnosus-colonized gnotobiotic mice*’. We observed that
specific antifungal and antivirulence compounds were secreted. Lactobacillus species are well
known for their production of antimicrobial metabolites, which have been extensively studied
outside the context of the host. Several metabolites that we detected upon L. rhamnosus colonization
were previously characterized for their antifungal and antivirulence potential including: phenyllactic
acid, mevalonolactone, 2-hydroxyisocaproic acid and 3-hydroxyoctanoate® %, However, the
recently characterized filamentation inhibiting metabolite B-carboline®!, was not detected in our
metabolome, yet this may be attributable to the culture conditions or its degradation by host cells.
We further identified several metabolites that affect C. albicans filamentous growth alone and in
combination. The metabolite cytosine, which was observed to induce a hyphae-to-yeast transition,
was validated for its antivirulence properties, in terms of reducing epithelial damage and
translocation. Although the underlying mechanisms of the effects caused by the individual
metabolites are not yet understood, it underscores that metabolic interplay between C. albicans and
antagonistic bacteria contributes to promoting C. albicans commensalism.

In addition, L. rhamnosus colonization changed nutrient availability. Comparative analysis of
metabolite availability from this study with previously published metabolic phenotyping of

C. albicans™ revealed a depletion of preferred carbon and nitrogen sources, such as amino acids or
glucose, and an enrichment of less-favoured carbon sources, such as lactate or malate. The utilization
of different carbon sources can drastically influence C. albicans fitness and pathogenicity>2.

Even though single metabolites can potently inhibit C. albicans pathogenicity mechanisms such as
filamentation, we believe that the promotion of commensalism by the bacterial microbiota is
multifactorial. Both the production of antivirulence metabolites as well as alterations in the metabolic
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environment may equally promote commensalism and even depend on each other. Moreover, L.
rhamnosus has been described to produce chitin degrading proteins'® and exopolysaccharides!” that
can inhibit hyphal morphogenesis. Likely a combination of metabolic antagonism and specific
effector functions underly the potent pathogenicity inhibiting effects of L. rhamnosus.

While our study only includes a single bacterial member of the microbiota, we believe that similar
metabolic interactions and competition by additional antagonistic bacteria underly the strong
association between a healthy microbiota and commensalism. Moreover, multiple antagonistic
bacterial species may act synergistically in promoting C. albicans commensalism.

Although we followed a one-model-at-a-time simulation approach, our in silico analysis revealed
changes in key metabolic pathways and regulator genes of C. albicans, which we also found in our
C. albicans transcriptome data. Further, more sophisticated community modelling simulating all
three GEMs simultaneously were largely in agreement with our single GEM simulations, but may be
investigated in more depth in future work.

Several studies suggest that C. albicans metabolism and virulence are interconnecte , similarly
to other fungal pathogens®’>%. A variety of proteins regulate metabolism as well as virulence,
including Yck2°%%, Tye7%%¢! Gal4®®, Mig1%?, Mig2%?, and Ace2%>%4,

Supporting our hypothesis that alternative carbon sources reduce C. albicans pathogenicity, several
down-regulated genes, especially in the late phase of infection, were associated with carbohydrate
metabolism®. Migl, an essential regulator in the glucose repression pathway®?, was up-regulated
early during infection of L. rhamnosus-colonized IECs, but down-regulated later, when only
alternative carbon sources were available. However, existing studies demonstrated that a mig/A/A
deletion mutant only showed attenuated virulence when MIG2 was simultaneously deleted®.
Similarly, the deletion of the glycolysis-regulating genes 7YE7 and GAL4, only showed attenuated
virulence in a Galleria melonella infection model when a corresponding double deletion mutant
(gal4A/A/tye7A/A) was investigated®®. Both genes were down-regulated at later time points in our
model.

Based on this, we believe that individual deletion or down-regulation of these metabolic transcription
factors can be compensated by redundancy, which secures a high level of metabolic flexibility for

C. albicans. However, when more than one of these genes are not expressed C. albicans loses its
metabolic flexibility, which is associated with reduced pathogenicity. In line with this, a closer look
at the carbohydrate catabolism revealed the down-regulation of glycolysis-relevant genes and an up-
regulation of several TCA cycle and glyoxylate shunt genes starting at 6 h. Interestingly, this
matches the metabolic phenotype of ace2A/A%. However, the ace2A/A mutant has a large cell
morphology defect®, which is associated with attenuated virulence®. Nevertheless, the phenotype of
this mutant suggests that transcription factors like Ace2 affect both virulence as well as metabolism.
Several genes of the oxidative phosphorylation pathway were supressed upon L. rhamnosus
colonization, such as ADHI or COX2. Impaired oxidative phosphorylation could limit ATP
production, which may reduce fungal growth, filamentation, and virulence. A link between
respiration and fungal pathogenesis has been described® and specific correlations between

C. albicans oxidative phosphorylation and pathogenicity mediated by ADH1 have been observed®®.
The impact of transcriptional changes on C. albicans virulence was validated using deletion mutants.
Deletion mutants of the genes PTP3, AHRI, ACE?2, and orf19.4292, which are down-regulated
during infection of L. rhamnosus-colonized IECs, exhibited an attenuated damage potential.
Moreover, ptp3A/A was compromised in growth and filamentation. PTP3 encodes a protein tyrosine
phosphatase required for hyphal maintenance®’. The transcription factor Ahrl regulates the virulence
genes ALS3 and ECE1, but can also repress the white-to-opaque switch®. Orf19.4292 encodes the
prevacuolar trafficking protein Pep12, which is essential for virulence in mice’®. The transcriptional
regulator Ace2 regulates glycostress metabolism® and its role in virulence is discussed above. Our
data underscores that down-regulation of each of these genes could be sufficient to reduce
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pathogenicity. This supports the notion that C. albicans metabolic and transcriptional adaptations
upon infection of L. rhamnosus-colonized IECs are intertwined with pathogenic potential.

Other studies also observed changes in the C. albicans gene expression induced by lactobacilli.
During oral epithelium infection, C. albicans induced expression of genes associated with diverse
metabolic pathways’!. L. plantarum, L. helveticus, and L. crispatus also down-regulated hypha-
associated genes (HAGs)’>73. As the majority of HAGs were not affected in our dataset, we
hypothesize that niche-specific modes of action exist for the diverse Lactobacillus species.
Collectively, our results demonstrate that protection by L. rhamnosus colonization is a multifactorial
process that synergistically affects C. albicans growth and pathogenicity. Different aspects of this
complex interaction have been individually assessed in the past. Here we provide a multilevel
comprehensive picture of the interplay between C. albicans and its antagonist L. rhamnosus in a
human, gut-like experimental setup. The metabolic and transcriptional insights into the antagonistic
potential of a single member of the microbiota underline the importance and complexity of a
balanced intestinal microbiota that keeps C. albicans in its commensal state.

Our combined metabolome data, in silico metabolic modelling, transcriptome and mutant screening,
as well as in vitro validations, provide fundamental, contextualized insights into how C. albicans
pathogenicity can be controlled or prevented.
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9. MATERIALS AND METHODS
In vitro model and infection

An in vitro intestinal C. albicans-infection model was used to perform the experiments as previously
described?®. C2BBel (ATCC®CRL2102) and HT29-MTX (ATCC HTB-38; CLS, Lot No. 13B021)
cells were seeded in collagen I coated (10 pg/ml, 2 h at room temperature [RT]; Thermo Scientific)
6-well, 24-well or 96-well plates at a ratio of 70:30 with a total cell density of 4x10° cells/well (6-
well), 1x10° cells/well (24-well) and 2x10* cells/well (96-well, transwell). Cells were used for
experiments after 14 days of differentiation in Dulbecco's Modified Eagle's Medium (DMEM;
Gibco, Thermo Scientific) supplemented with 10% foetal calf serum (FCS; Bio & Sell), 10 pg/ml
Holotransferrin (Calbiochem, Merck), and 1% non-essential amino acids (Gibco, Thermo Scientific)
with medium exchange three times per week. Cell lines have been authenticated via commercial STR
profiling (Eurofins Genomic) and checked for mycoplasma contaminations using a PCR
mycoplasma test kit (PromoKine) according to the manufacturer's instructions.

For colonization, DMEM was exchanged for 1.3 ml (6-well) or 50 ul (96-well) serum-free
Keratinocyte Basal Medium (KBM) (Lonza, Basel, Switzerland) and monolayers were colonized
with 1.3 ml (6-well), 250 ul (24-well) or 50 ul (96-well) Lactobacillus rhamnosus ATCC 7469 (OD
0.2 in KBM) for 18 h prior to infection. For contact-independent colonization, DMEM was
exchanged for 600 pl in the bottom of a 24-well plate and a transwell insert with 125 pul

L. rhamnosus (OD 0.4 in KBM) was placed on top.

Fungal infection was performed with 1.3 ml (6-well), 250 pul (24-well) or 50 ul (96-well) C. albicans
WT SC5314 (4x10° cells/ml in KBM). For the samples with antibiotic treatment, 500 pg/ml
Gentamicin (Merck) and 1x PenStrep (Gibco, Thermo Scientific) were added 4 hpi. For infection in
presence of metabolites, a solution of each metabolite in KBM was prepared fresh and sterile filtered.
Then, concentration was adjusted and 50 pl (96-well, transwells) of this solution with C. albicans
(MOI 1) were used to infect the cells for 24 h. Wells with only medium, L. rhamnosus, or

C. albicans in the presence or absence of the host cells served as controls. Infected cells and controls
were incubated at 37°C with 5% COaz. Data from in vitro damage, fungal burden, and translocation
assays were analysed using GraphPad prism version 8. Data from at least 3 biological replicates were
analysed for statistical significance using a t-test or a one-way ANOVA with multiple comparisons.
Statistical significance is depicted in the figures: * =p < 0.05, ** =p < 0.01, or *** =p <0.001.

C. albicans CFU quantification

To determine how many C. albicans cells were present 24 hpi, CFU quantification was performed in
96-well plates. Supernatants were collected and IECs were treated for 5 min with 0.2% Triton-X-100
(Sigma-Aldrich) to lyse the host cells and release adherent fungal cells. After detaching adherent host
cells via scraping with a pipette tip, the lysate was added to the respective supernatant. Wells were
washed twice with PBS. The final samples were diluted appropriately with PBS and plated on YPD
agar with 1x PenStrep (Gibco, Thermo Fisher Scientific) and incubated at 30°C until adequate
growth for CFU counting was reached (24 h).

Quantification of cytotoxicity (LDH)

The host cell damage was determined by measuring the activity of cytoplasmic LDH"* (Fig. S8).
LDH activity was quantified in the supernatant of infected IEC monolayers in 96-well plates 24 hpi
using the Cytotoxicity Detection Kit (Roche) according to the manufacturer's instructions. LDH from
rabbit muscle (5 mg/ml, Roche) was used to generate a standard curve for the determination of LDH
concentrations. The background LDH activity control level of uninfected IECs was subtracted from
the test conditions.

Metabolome analysis
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Supernatants for untargeted metabolomics were collected 6 and 12 h after C. albicans infection (Fig.
S8). 500 pl of the supernatant was collected from 6-well plates, centrifuged, snap-frozen in liquid
nitrogen, and stored at -80°C until analysis. Samples were analysed and interpreted by Metabolon
(Morrisville, US). Experiments included three technical replicates and five independent experiments
were performed in total.

Raw metabolome data was rescaled to set the median equal to 1, and the missing values imputed
with the minimum. Data were loaded in R version 1.2.50197°, rows were normalized and Euclidian
distances were calculated. The heatmap was generated with the “pHeatmap” package v1.0.127¢ and
used to manually obtain the optimal number of clusters. The distance matrix was subjected to
hierarchical cluster analysis using the complete linkage agglomeration method and metabolites were
classified according to their cluster. Colour bars indicating cluster or condition were added to the
dendrograms using the R package “dendextend”’’. Metabolite enrichment analysis were conducted in
MetaboAnalyst 5.0 across KEGG pathways using overrepresentation analysis (ORA) analysis. All
results across all mentioned clusters are presented and significant hits are indicated. FDR correction
was done per cluster and time point, and FDR < 0.1 was considered. Proportional Euler diagrams
were done using the R package “eulerr””’.

L. rhamnosus growth

L. rhamnosus was cultured in MRS Broth for 48 h at 37°C with 5% CO; and 1% O5. Afterwards,
cells were washed, and 3000 cells/ml were inoculated in the different media and IECs were
colonized. At 0, 24, and 48 h independent wells were resuspended, and the content was appropriately
diluted and plated on MRS agar. Plates were incubated for 48 h at 37°C with 5% CO; and 1% O»
until CFU quantification. Tested metabolites are shown in Tab.1.

Live-cell imaging

C. albicans (1x10* cell/ml) in KBM with or without supplementation of individual metabolites or in
combination was incubated for 24 h at 37°C with 5% CO; inside the Cell Discoverer 7 microscope
(Zeiss), in which a bright field picture was taken every hour.

Translocation assay

To determine translocation through the epithelial barrier, infections were performed in transwell
inserts (Sarstedt) with a pore size of 5 um. 24 hpi, zymolyase (260 U/ml) was added to the bottom
compartment and incubated for 2 h at 37°C with 5% CO». Afterwards, samples were diluted in PBS,
plated on YPD agar, and incubated at 30°C for 24 h.

Transcriptional profiling

After 6 and 24 h of C. albicans infection in 6-well plates, RNA isolation of C. albicans was
performed (Fig. S8). At the appropriate time points, 650 ul RLT buffer was added to the wells and
the plates were frozen in liquid nitrogen immediately. After thawing, fungal and host cells were
collected via scraping. The collected material was centrifuged and fungal RNA isolation was
performed on the pellet according to a previously described protocol®’. RNA quantities were
determined with a NanoDrop 1000 Spectrophotometer (Thermo Fisher Scientific) and RNA quality
was verified with an Agilent 2100 Bioanalyzer (Agilent Technologies). RNA was subsequently
converted into Cy5-labeled cRNA (Cy5 CTP; GE Healthcare, United Kingdom) using a QuickAmp
labelling kit (Agilent). Samples were co-hybridized with a common Cy3-labeled reference (RNA
from mid-log-phase-grown C. albicans SC5314%) on Agilent arrays (C.a.: AMADID 026869),
scanned in a GenePix 4200AL with GenePix Pro 6.1 (Auto PMT; pixel size, 5 um). Differentially
expressed genes (DEGs) (p-value: 0.05; Log> fold change) were analysed with GeneSpring 14.9
(Agilent) and the Candida Genome Database (CGD; http://www.candidagenome.org). Out of the
6130 C. albicans genes, 5125 genes were used for the analysis after filtering on the minimal
fluorescent signal and subtraction of the background signal. Genes were considered differentially
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regulated when they had a Bonferroni-corrected p-value of < 0.05 and a Log» fold change of more
than 1 or less than -1.

Gene expression data were exported from GeneSpring and loaded in R version 3.6.27°, rows were
normalized and Euclidian distances were calculated. The heatmap was generated with the
“pHeatmap” package v1.0.127¢ and the distance matrix was subjected to hierarchical cluster analysis
using the complete linkage agglomeration method. Colour bars indicating condition were added to
the dendrograms using the R package “dendextend”’’. The PCA was calculated using the R function
“prcomp”. Graphs were generated using the “ggbiplot” package v 0.55%2. A proportional Venn
diagram of the DEGs was drawn using the “eulerAPE” application v2.0.3%.

GO term enrichment of differentially expressed genes was analysed using the GO-Term Finder on
the Candida genome database®®, which uses a hypergeometric distribution with Multiple Hypothesis
Correction (Bonferroni Correction) to calculate p-values. Subsequently, the significantly enriched
GO-terms were processed using REVIGO® (similarity: Tiny (0.4); database: whole Uniprot;
semantic similarity measure: SimRel) to remove overlapping and redundant GO-terms.
Bioinformatics

GEMs for C. albicans, human, and L. rhamnosus metabolism were used to simulate and analyse
different growth scenarios in silico. Specifically, the recently published model for C. albicans® was
downloaded from the supplementary material of the publication. The GEMs for Lactobacillus
rhamnosus LMS2-1 for L. rhamnosus®?, and Recon3D 3.01°!, a comprehensive generic GEM of
human metabolism used to simulate human intestinal epithelial cells, were downloaded from
www.vmbh.life. Metabolomics data were used to modulate feasible nutrition uptake for each model
via respective exchange reactions as defined by each GEM. Feasible uptake rates for available
metabolites were adapted from the metabolome measurements across all investigated conditions.
Feasible uptake flux ranges for each metabolite in our GEMs were kept in the range [0, 1000]
mmol/g(DW)h. The metabolite concentrations for each sample were transformed into this range
based on the metabolite glutamine showing the highest concentration in the 12 hpi L. rhamnosus
supernatant compared to all measured metabolites and all samples. The uptake rate of glutamine was
set to 1000 mmol/g(DW)h accordingly, whereas all others were set to the respective proportion to the
maximum glutamine value. The biomass function of each GEM was used as objective function for
all metabolic modelling simulations. To obtain objective function values mimicking an anaerobic
environment (oxygen influx prohibited) as well as feasible reaction flux ranges supporting at least
90% of the objective function flux, we applied flux balance analysis (FBA) and flux variability
analysis (FVA) across all tested conditions for all tested GEMs**3*. All GEM analyses were done in
COBRApy®® using Python 3.6.4 and the IBM ILOG CPLEX Optimizer (version 12.8).

Mitochondrial activity assessment with XTT

To obtain the L. rhamnosus-conditioned supernatants, a culture of L. rhamnosus was washed and
adjusted to an ODgoo of 0.2 in KBM, and 1ml was used to colonize a confluent layer of differentiated
intestinal epithelial cells (C2BBel:HT29-MTX, 70:30) for 24 h (37°C, 5% CO3). L. rhamnosus was
also adjusted to an ODgoo of 0.2 in KBM+ (KBM supplemented with 5 mM citric acid, 5 mM
carnitine and 5 mM gamma-glutamyl-alanine) and incubated in a 24-well plate independently of host
cells for 24 h (37°C, 5% COz). After 24 h, conditioned media was filtered. C. albicans was washed
and adjusted to a concentration of 1x10° or 1x10° cell/ml in the different media and incubated in a
96-well plate for 1h (37°C, 5% CO,). After that time, the plate was centrifuged and supernatants
were exchanged with XTT reagent (PBS with 0.2 mg/ml XTT, VWR Life Sciences and 1.1 pg/ml
menadione sodium bisulfite, Roth). The plate was then incubated for 2h at 37°C. Afterwards, 100 pul
of the supernatants were transferred to a new plate and absorbance at 492 nm measured.

To compare XTT absorbance to biomass, a crystal violet assay was performed afterwards. The
supernatant from each well was removed and the plate was left to air dry. Afterwards, 150 pl crystal
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violet 1% (Sigma) was added. After 45 minutes incubation at room temperature, crystal violet was
removed, and the wells were washed three times with distilled water. Crystal violet was then
solubilized with 200 pl ethanol 99% for 45 min. Afterwards, 100 pl of the supernatants were
transferred to a new plate and absorbance was measured at 550 nm.

The same procedure was used to assess the effect of the metabolites in the mitochondrial activity,
except the preincubation with the metabolite was done for 24 h prior to the XTT assay and the initial
C. albicans concentration was 1x10* cell/ml.

Deletion mutant screening

C. albicans mutants from the deletion mutant library*® (Tab. S4) were cultivated in YPD broth in 96-
well plates and incubated overnight at 30°C with shaking at 180 rpm. The overnight cultures were
adjusted to an ODgoo of 0.0025 in KBM. Then, the diluted overnight cultures were diluted 1:2 in
KBM in 96-well plates with a confluent layer of differentiated intestinal epithelial cells
(C2BBel:HT29-MTX, 70:30). Damage was measured via the LDH activity assay (see Quantification
of cytotoxicity (LDH)). Positive hits were validated with additional damage experiments where the
mutants were cultivated in YPD broth in 25 ml Erlenmeyer flasks overnight at 30°C with shaking at
180 rpm. Fungal cells where then washed in PBS, counted, and adjusted to a concentration of 4x10°
cells/ml in KBM. The epithelial cell monolayer was infected with 50 pl (96-well, transwell) or 250
pl (24-well). For growth curves, the diluted overnight cultures were diluted 1:2 in KBM in 96 well
plates and incubated for 24 h at 37°C with 5% CO- in a microplate reader (Tecan Infinite M200; i-
control software). Growth was monitored with ODsoo measurements every 30 min over 24 h. Data
was analysed using Graphpad prism version 8. Data from at least 3 biological replicates was
analysed for statistical significance using a one-way ANOVA with multiple comparisons.

Data and code availability

Untargeted metabolomics data is available as supplementary data 1. Biomass objective function
values and associated flux ranges for all reactions for all simulations and investigated media
conditions are available as supplementary data 2. Simulation sets over different fractions of required
objective function values are available as supplementary data 3. Transcriptomics data is available in
the ArrayExpress database under accession code: E-MTAB-11090. The python code for the
metabolic models and simulations is available at:
https://github.com/mohammadmirhakkak/Calbicans_[.Rhamnosus_EpithelialCells_Interaction
Source data are provided with this manuscript.
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10. FIGURE LEGENDS

Fig. 1: Reduced C. albicans inocula cause significant damage compared to C. albicans in the presence of live
L. rhamnosus that reduces pathogenicity contact-independently

(A) Fungal burden assessed by quantification of C. albicans CFUs and (B) the necrotic cell damage
of IECs quantified by LDH activity at 24 hours post infection (hpi). Cells were infected with a

C. albicans infection inoculum (4x10°/ml) in the presence and absence of L. rhamnosus, or with a
reduced infection inoculum (1x10%ml) in the absence of L. rhamnosus. (C, D) Necrotic cell damage
of IECs quantified by LDH activity at 24 hpi, (C) in the presence and absence of L. rhamnosus
colonization and antibiotic treatment with Gentamicin and Penicillin/Streptomycin at 4 hpi, or (D) in
the presence and absence of L. rhamnosus colonization where L. rhamnosus was in direct contact
with the cells or physically separated using a transwell insert with a 0.4 pm pore size. Bars represent
the mean and standard deviation (SD) of n=3 independent experiments, dot plots show the mean of
the technical replicates of the individual experiments, data were compared for significance using an
unpaired t-test (two-tailed, one-sample), * = p < 0.05, ** =p <0.01, *** = p <0.001.

Fig. 2: IECs metabolically foster L. rhamnosus growth

(A) Principal component analysis of metabolite composition assessed by untargeted metabolomics in
supernatants collected at 6 and 12 hpi. (B) Differentially increased or decreased metabolites in
comparison of the different conditions shown in proportional Venn diagrams. Data summarized from
n=>5 at 6 and 12 hpi. (C) Hierarchical clustering based on Euclidean distance of relative metabolite
abundance in the supernatants at 6 hpi. (D) Growth of L. rhamnosus in KBM, on IECs, in transwells
physically separated from IECs, or in supernatants of IECs (spent) assessed by counting CFUs on
MRS agar. Data is shown as the mean and SD. (E) In silico prediction of L. rhamnosus biomass
formation in KBM or supernatants of IECs. (F) Growth of L. rhamnosus assessed by CFUs after 48 h
incubation in KBM supplemented with single metabolites or combinations of metabolites. Data of
n=3 biological replicates are shown as the mean and standard deviation (SD). Data were tested for
significance using a t-test (two tailed, one-sample) against growth in KBM, * =p < 0.05, ** =p <
0.01, *** = p <0.001. (G) Comparison of metabolic pathway activity levels between different
conditions as indicated. Relative pathway change was determined by identifying the number of
pathway-specific reactions for which feasible flux ranges differ according to flux variability analysis.
Fig. 3: L. rhamnosus induces an unfavourable environment for C. albicans

(A,B) Representative images of C. albicans morphology following growth in presence of (A)
different metabolites at 50 mM, at neutral or acidic pH, for 20 h at 37°C with 5% CO2 (n=2
biological replicates) or (B) a combination of selected metabolites each at SmM (cytosine,
phenylpyruvate, 2-hydroxy-4-(methylthio)-butyric acid, 3-phenyllactic acid, 2-Hydroxyisocaproic
acid and D-indole-3-lactic acid) and lactic acid at 15 mM, for 20 h at 37°C with 5% CO, (n=4
biological replicates). Yeast morphology is indicated with arrowheads. (C) Hyphal length of C.
albicans grown for 4 h in KBM in the presence or absence of the combination of selected
metabolites at 37°C with 5% CO; (n=4 biological replicates). (D) Necrotic damage of IECs measured
by the LDH activity in the supernatant at 24 hpi with C. albicans in the presence or absence of the
combination of selected metabolites. (E) C. albicans-induced necrotic damage of IECs measured by
the LDH activity in the supernatant and (F) C. albicans translocation across the epithelial barrier
assessed in the presence or absence of cytosine at 50 mM at 24 hpi. Bars represent the mean and SD
of n=4 independent experiments, dot plots show the mean of the technical replicates of the individual
experiments, boxplots represent the distribution of the total measurements (center line, median; box
limits, upper and lower quartiles; whiskers, range). Data were compared for significance using paired
t-tests (two-tailed, one-sample), * = p < 0.05, ** = p < 0.01. (G) Phenotypic microarray growth
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experiments for wild-type C. albicans in presence of each metabolite as a carbon, nitrogen, or
phosphorous source (left), metabolome data measured at 6 and 12 h and metabolic modelling
predictions (right) are indicated for selected metabolites. For metabolic modelling, media was
adapted from metabolome data derived from supernatants of IECs. Uptake or secretion was
determined by identifying feasible flux ranges for metabolite-specific exchange reactions alongside
optimization for biomass. Asterisks show statistical significance (ANOVA for phenotypic
microarrays, Wilcoxon test for metabolomics, FDR adjusted p < 0.05). For the entire panel of
metabolites see Fig. S5.

Fig. 4: C. albicans undergoes transcriptional changes during infection of L. rhamnosus-colonized IECs

(A) Principal component analysis of C. albicans gene expression at 6 and 24 h during in vitro
infection of IECs in the presence and absence of L. rhamnosus colonization. (B) Volcano plots
showing differentially regulated C. albicans genes at 6 and 24 hpi as a result of L. rhamnosus
colonization prior to infection based on the criteria of a Log> fold change of > 1 or <-1 and a
Bonferroni corrected p-value of < 0.05 (dark blue and dark red) and < 0.1 (light blue and light red).
(C) Venn diagram analysis of the overlap in differentially expressed genes at 6 and 24 hpi. Data
summarized from n=3 and n=4 independent experiments at 6 and 24 hpi respectively. (D) PCA of
C. albicans gene expression at 24 hpi during in vitro infection of IECs in the presence and absence of
L. rhamnosus colonization and in the presence and absence of antibiotics.

Fig. 5: C. albicans undergoes transcriptional metabolic adaptations when infecting L. rhamnosus colonized
epithelium

(A) GO-term enrichment analysis of differentially regulated genes (Log> fold change > 1 or <-1 and
p <0.1) analysed with the GO-term finder on the Candida Genome Database website and reduced
with the Revigo program (http://revigo.irb.hr/) (similarity: Tiny (0.4)). Significantly enriched GO-
terms are plotted based on the —Logio p-value. Data summarized from n=3 at 24 hpi. (B) Heatmap
highlighting the transcriptional regulation of C. albicans metabolic genes as a result of L. rhamnosus
colonization at 6 and 24 hpi. Legend colour represents the Log> fold change of the regulation in
presence vs. absence of L. rhamnosus. The asterisks (*) represent significance, based on the criteria
of a Logy fold change of > 1 or < -1 and a Bonferroni corrected p-value of < 0.05.

Fig. 6: Central metabolism of C. albicans is altered by L. rhamnosus colonization.

Reactions associated to glycolysis, TCA cycle, oxidative phosphorylation are indicated, as well as
relationships with additional metabolic pathways (pentose phosphate pathway, nitrogenated bases,
sulfur metabolism, butanoate, propanoate, and panthenoate, CoA, B-Alanine and glutathione
metabolism). Information on metabolome (12 h) and transcriptomic (24 h) data are combined with in
silico genome-wide metabolic flux predictions (12 h). Dotted arrows represent several combined
reactions. For the reaction abbreviations see Tab. S3.

Fig. 7: Screening of C. albicans deletion mutants

(A) Ability of deletion mutants to induce necrotic cell damage of IECs assessed by LDH activity in
the supernatant at 24 hpi. Data is shown as the mean and SD with dots showing the individual
replicates. Deletion mutants were compared to the wild-type control using a one-way ANOVA and
Dunnett’s Multiple Comparison post-hoc analysis. Mutants with a significantly increased or
decreased damage potential (dark blue, p-value < 0.05; light blue, p-value < 0.1) are labelled.
Horizontal lines correspond to the mean of the damage induced by the wild-type = SD. (B) Growth
rates of the pip3A/A mutant with significantly reduced growth (blue line) compared to the parental
strain (black line) in KBM. Lines represent the mean and SD of n=3 independent experiments and
were compared for significance using an ANOVA with Bonferroni-adjusted post-hoc analysis, * = p
<0.05. (C) Representative images of the ptp3A/A deletion mutant and the parental strain
morphologies, after 24 h incubation in KBM at 37°C with 5% COx.



143



144

11. BIBLIOGRAPHY

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Neville, B. A., D’Enfert, C. & Bougnoux, M.-E. Candida albicans commensalism in the
gastrointestinal tract. FEMS Yeast Res. 15, fov081 (2015).

Nash, A. K. et al. The gut mycobiome of the Human Microbiome Project healthy cohort.
Microbiome 5, 153 (2017).

Kumamoto, C. A,, Gresnigt, M. S. & Hube, B. The gut, the bad and the harmless: Candida
albicans as a commensal and opportunistic pathogen in the intestine. Curr. Opin. Microbiol.
56, 7-15 (2020).

Zhai, B. et al. High-resolution mycobiota analysis reveals dynamic intestinal translocation
preceding invasive candidiasis. Nat. Med. 26, 59-64 (2020).

Miranda, L. N. et al. Candida colonisation as a source for candidaemia. J. Hosp. Infect. 72, 9—
16 (2009).

Schroeder, M. et al. Epidemiology, clinical characteristics, and outcome of candidemia in
critically ill patients in Germany: a single-center retrospective 10-year analysis. Ann. Intensive
Care 10, 142 (2020).

Koh, A.Y., Kbhler, J. R., Coggshall, K. T., Van Rooijen, N. & Pier, G. B. Mucosal Damage and
Neutropenia Are Required for Candida albicans Dissemination. PLoS Pathog. 4, e35 (2008).
Ost, K. S. et al. Adaptive immunity induces mutualism between commensal eukaryotes.
Nature (2021) doi:10.1038/s41586-021-03722-w.

Matsubara, V. H., Bandara, H. M. H. N., Mayer, M. P. A. & Samaranayake, L. P. Probiotics as
Antifungals in Mucosal Candidiasis. Clin. Infect. Dis. 62, 1143-1153 (2016).

Forster, T. M. et al. Enemies and brothers in arms: Candida albicans and gram-positive
bacteria. Cell. Microbiol. 18, 1709-1715 (2016).

Millar, M. R., Bacon, C., Smith, S. L., Walker, V. & Hall, M. A. Enteral feeding of premature
infants with Lactobacillus GG. Arch. Dis. Child. 69, 483—-487 (1993).

d’Enfert, C. et al. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans
infections: current knowledge and new perspectives. FEMS Microbiol. Rev. 45, (2021).

De Gregorio, P. R,, Silva, J. A., Marchesi, A. & Nader-Macias, M. E. F. Anti- Candida activity of
beneficial vaginal lactobacilli in in vitro assays and in a murine experimental model. FEMS
Yeast Res. 19, (2019).

Jang, S. ), Lee, K., Kwon, B., You, H. J. & Ko, G. Vaginal lactobacilli inhibit growth and hyphae
formation of Candida albicans. Sci. Rep. 9, 8121 (2019).

Parolin, C. et al. Isolation of Vaginal Lactobacilli and Characterization of Anti-Candida Activity.
PLoS One 10, e0131220 (2015).

Allonsius, C. N. et al. Inhibition of Candida albicans morphogenesis by chitinase from
Lactobacillus rhamnosus GG. Sci. Rep. 9, 2900 (2019).

Allonsius, C. N. et al. Interplay between Lactobacillus rhamnosus GG and Candida and the
involvement of exopolysaccharides. Microb. Biotechnol. 10, 1753-1763 (2017).

Rossoni, R. D. et al. Clinical strains of Lactobacillus reduce the filamentation of Candida
albicans and protect Galleria mellonella against experimental candidiasis. Folia Microbiol.
(Praha). 63, 307-314 (2018).

de Barros, P. P. et al. Lactobacillus paracasei 28.4 reduces in vitro hyphae formation of
Candida albicans and prevents the filamentation in an experimental model of Caenorhabditis
elegans. Microb. Pathog. 117, 80-87 (2018).

Oliveira, V. M. C,, Santos, S. S. F., Silva, C. R. G., Jorge, A. O. C. & Ledo, M. V. P. Lactobacillus is
able to alter the virulence and the sensitivity profile of Candida albicans. J. Appl. Microbiol.



21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

145

121, 1737-1744 (2016).

MacAlpine, J. et al. A small molecule produced by Lactobacillus species blocks Candida
albicans filamentation by inhibiting a DYRK1-family kinase. Nat. Commun. 12, 6151 (2021).
Matsubara, V. H., Wang, Y., Bandara, H. M. H. N., Mayer, M. P. A. & Samaranayake, L. P.
Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing
their growth, cell adhesion, and filamentation. Appl. Microbiol. Biotechnol. 100, 6415-6426
(2016).

Matsuda, Y., Cho, O., Sugita, T., Ogishima, D. & Takeda, S. Culture Supernatants of
Lactobacillus gasseri and L. crispatus Inhibit Candida albicans Biofilm Formation and
Adhesion to Hela Cells. Mycopathologia 183, 691—-700 (2018).

Kang, C.-H. et al. In vitro probiotic properties of vaginal Lactobacillus fermentum MG901 and
Lactobacillus plantarum MG989 against Candida albicans. Eur. J. Obstet. Gynecol. Reprod.
Biol. 228, 232-237 (2018).

Kohler, G. A., Assefa, S. & Reid, G. Probiotic Interference of Lactobacillus rhamnosus GR-1
and Lactobacillus reuteri RC-14 with the Opportunistic Fungal Pathogen Candida albicans.
Infect. Dis. Obstet. Gynecol. 2012, 1-14 (2012).

Graf, K. et al. Keeping Candida commensal : how lactobacilli antagonize pathogenicity of
Candida albicans in an in vitro gut model. (2019) doi:10.1242/dmm.039719.

Maurer, M. et al. A three-dimensional immunocompetent intestine-on-chip model as in vitro
platform for functional and microbial interaction studies. Biomaterials 119396 (2019)
doi:10.1016/j.biomaterials.2019.119396.

Fitzsimmons, N. & Berry, D. R. Inhibition of Candida albicans by Lactobacillus acidophilus:
evidence for the involvement of a peroxidase system. Microbios 80, 125-33 (1994).
Lourengo, A., Pedro, N. A,, Salazar, S. B. & Mira, N. P. Effect of Acetic Acid and Lactic Acid at
Low pH in Growth and Azole Resistance of Candida albicans and Candida glabrata. Front.
Microbiol. 9, (2019).

Orth, J. D., Thiele, I. & Palsson, B. @. What is flux balance analysis? Nat. Biotechnol. 28, 245—
248 (2010).

Brunk, E. et al. Recon3D enables a three-dimensional view of gene variation in human
metabolism. Nat. Biotechnol. 36, 272-281 (2018).

Magnusddttir, S. et al. Generation of genome-scale metabolic reconstructions for 773
members of the human gut microbiota. Nat. Biotechnol. 35, 81-89 (2017).

Mahadevan, R. & Schilling, C. H. The effects of alternate optimal solutions in constraint-based
genome-scale metabolic models. Metab. Eng. 5, 264—276 (2003).

Lipinska-Zubrycka, L. et al. Anticandidal activity of Lactobacillus spp. in the presence of
galactosyl polyols. Microbiol. Res. 240, 126540 (2020).

Niku-Paavola, M.-L., Laitila, A., Mattila-Sandholm, T. & Haikara, A. New types of antimicrobial
compounds produced by Lactobacillus plantarum. J. Appl. Microbiol. 86, 29—-35 (1999).
Nieminen, M. T. et al. A Novel Antifungal Is Active against Candida albicans Biofilms and
Inhibits Mutagenic Acetaldehyde Production In Vitro. PLoS One 9, e97864 (2014).

Sakko, M. et al. 2-hydroxyisocaproic acid is fungicidal for Candida and Aspergillus species.
Mycoses 57, 214-221 (2014).

Radivojevic, J. et al. Polyhydroxyalkanoate-based 3-hydroxyoctanoic acid and its derivatives
as a platform of bioactive compounds. Appl. Microbiol. Biotechnol. 100, 161-172 (2016).
Mirhakkak, M. H. et al. Metabolic modeling predicts specific gut bacteria as key determinants
for Candida albicans colonization levels. ISME J. 15, 1257-1270 (2021).

Noble, S. M., French, S., Kohn, L. A, Chen, V. & Johnson, A. D. Systematic screens of a



41.

42.

43,

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

146

Candida albicans homozygous deletion library decouple morphogenetic switching and
pathogenicity. Nat. Genet. 42, 590-598 (2010).

Siscar-Lewin, S., Hube, B. & Brunke, S. Antivirulence and avirulence genes in human
pathogenic fungi. Virulence 10, 935-947 (2019).

Oliphant, K. & Allen-Vercoe, E. Macronutrient metabolism by the human gut microbiome:
major fermentation by-products and their impact on host health. Microbiome 7, 91 (2019).
Markowiak-Kope¢, P. & Slizewska, K. The Effect of Probiotics on the Production of Short-
Chain Fatty Acids by Human Intestinal Microbiome. Nutrients 12, 1107 (2020).

Prete, R. et al. Beneficial bile acid metabolism from Lactobacillus plantarum of food origin.
Sci. Rep. 10, 1165 (2020).

Kim, J. et al. Lactobacillus rhamnosus GG modifies the metabolome of pathobionts in
gnotobiotic mice. BMC Microbiol. 21, 165 (2021).

Gutierrez, D. et al. Antibiotic-induced gut metabolome and microbiome alterations increase
the susceptibility to Candida albicans colonization in the gastrointestinal tract. 1-15 (2019)
doi:10.1093/femsec/fiz187.

Guinan, J. & Thangamani, S. Antibiotic-induced alterations in taurocholic acid levels promote
gastrointestinal colonization of Candida albicans. FEMS Microbiol. Lett. 365, (2018).

Guinan, J., Wang, S., Hazbun, T. R,, Yadav, H. & Thangamani, S. Antibiotic-induced decreases
in the levels of microbial-derived short-chain fatty acids correlate with increased
gastrointestinal colonization of Candida albicans. Sci. Rep. 9, 8872 (2019).

Guinan, J., Villa, P. & Thangamani, S. Secondary bile acids inhibit Candida albicans growth and
morphogenesis. doi:10.1093/femspd/fty038.

Mardinoglu, A. et al. An Integrated Understanding of the Rapid Metabolic Benefits of a
Carbohydrate-Restricted Diet on Hepatic Steatosis in Humans. Cell Metab. 27, 559-571.e5
(2018).

Schluter, J. & Foster, K. R. The Evolution of Mutualism in Gut Microbiota Via Host Epithelial
Selection. PLoS Biol. 10, e1001424 (2012).

Lok, B. et al. The assimilation of different carbon sources in Candida albicans : Fitness and
pathogenicity. Med. Mycol. 59, 115-125 (2021).

Williams, R. B. & Lorenz, M. C. Multiple Alternative Carbon Pathways Combine To Promote
Candida albicans Stress Resistance, Immune Interactions, and Virulence. MBio 11, (2020).
Lindsay, A. K. et al. Analysis of Candida albicans Mutants Defective in the Cdk8 Module of
Mediator Reveal Links between Metabolism and Biofilm Formation. PLoS Genet. 10,
1004567 (2014).

Munoz, J. F. et al. Coordinated host-pathogen transcriptional dynamics revealed using sorted
subpopulations and single macrophages infected with Candida albicans. Nat. Commun. 10,
1607 (2019).

Burgain, A. et al. A novel genetic circuitry governing hypoxic metabolic flexibility,
commensalism and virulence in the fungal pathogen Candida albicans. PLOS Pathog. 15,
1007823 (2019).

Sasse, A., Hamer, S. N., Amich, J., Binder, J. & Krappmann, S. Mutant characterization and in
vivo conditional repression identify aromatic amino acid biosynthesis to be essential for
Aspergillus fumigatus virulence. Virulence 7, 56—62 (2016).

Scott, J. et al. Targeting Methionine Synthase in a Fungal Pathogen Causes a Metabolic
Imbalance That Impacts Cell Energetics, Growth, and Virulence. MBio 11, (2020).

Liboro, K. et al. Transcriptomic and Metabolomic Analysis Revealed Roles of Yck2 in Carbon
Metabolism and Morphogenesis of Candida albicans. Front. Cell. Infect. Microbiol. 11, (2021).



60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.
77.

78.

79.

80.

81.

147

Askew, C. et al. Transcriptional Regulation of Carbohydrate Metabolism in the Human
Pathogen Candida albicans. PLoS Pathog. 5, e1000612 (2009).

Tucey, T. M. et al. Glucose Homeostasis Is Important for Immune Cell Viability during Candida
Challenge and Host Survival of Systemic Fungal Infection. Cell Metab. 27, 988-1006.e7 (2018).
Lagree, K. et al. Roles of Candida albicans Migl and Mig2 in glucose repression, pathogenicity
traits, and SNF1 essentiality. PLOS Genet. 16, 1008582 (2020).

MacCallum, D. M. et al. Different Consequences of ACE2 and SWI5 Gene Disruptions for
Virulence of Pathogenic and Nonpathogenic Yeasts. Infect. Immun. 74, 5244-5248 (2006).
Mulhern, S. M., Logue, M. E. & Butler, G. Candida albicans Transcription Factor Ace2
Regulates Metabolism and Is Required for Filamentation in Hypoxic Conditions. Eukaryot. Cell
5,2001-2013 (2006).

Black, B., Lee, C., Horianopoulos, L. C., Jung, W. H. & Kronstad, J. W. Respiring to infect:
Emerging links between mitochondria, the electron transport chain, and fungal pathogenesis.
PLOS Pathog. 17, e1009661 (2021).

Song, Y. et al. ADH1 promotes Candida albicans pathogenicity by stimulating oxidative
phosphorylation. Int. J. Med. Microbiol. 309, 151330 (2019).

Su, C., Lu, Y. & Liu, H. Reduced TOR signaling sustains hyphal development in Candida
albicans by lowering Hog1 basal activity. Mol. Biol. Cell 24, 385-397 (2013).

Ruben, S. et al. Ahrl and Tupl Contribute to the Transcriptional Control of Virulence-
Associated Genes in Candida albicans. MBio 11, (2020).

Wang, H. et al. Candida albicans Zcf37, a zinc finger protein, is required for stabilization of
the white state. FEBS Lett. 585, 797—-802 (2011).

Palanisamy, S. K. A., Ramirez, M. A,, Lorenz, M. & Lee, S. A. Candida albicans PEP12 Is
Required for Biofilm Integrity and In Vivo Virulence. Eukaryot. Cell 9, 266—277 (2010).
Mailander-Sanchez, D. et al. Antifungal defense of probiotic Lactobacillus rhamnosus GG is
mediated by blocking adhesion and nutrient depletion. PLoS One 12, e0184438 (2017).
James, K. M., MacDonald, K. W., Chanyi, R. M., Cadieux, P. A. & Burton, J. P. Inhibition of
Candida albicans biofilm formation and modulation of gene expression by probiotic cells and
supernatant. J. Med. Microbiol. 65, 328-336 (2016).

Wang, S. et al. Antimicrobial Compounds Produced by Vaginal Lactobacillus crispatus Are
Able to Strongly Inhibit Candida albicans Growth, Hyphal Formation and Regulate Virulence-
related Gene Expressions. Front. Microbiol. 08, (2017).

Chan, F. K.-M., Moriwaki, K. & De Rosa, M. J. Detection of Necrosis by Release of Lactate
Dehydrogenase Activity. in 65—70 (2013). do0i:10.1007/978-1-62703-290-2_7.

R Core Team (2020). R Foundation for Statistical Computing, Vienna, A. U. R: A language and
environment for statistical computing. (2020).

Kolde, R. pheatmap: Pretty Heatmaps. R package version 1.0.12. (2019).

Galili, T. dendextend: an R package for visualizing, adjusting, and comparing trees of
hierarchical clustering. (2015) doi:DOI: 10.1093/bioinformatics/btv428.

Pang, Z. et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional
insights. Nucleic Acids Res. 49, W388—W396 (2021).

Larsson, J. eulerr: Area-Proportional Euler and Venn Diagrams with Ellipses. R package
version 6.1.0 (2020).

Lattich, A., Brunke, S. & Hube, B. Isolation and Amplification of Fungal RNA for Microarray
Analysis from Host Samples. in 411-421 (2012). doi:10.1007/978-1-61779-539-8 28.

Naglik, J. R., Moyes, D. L., Wachtler, B. & Hube, B. Candida albicans interactions with
epithelial cells and mucosal immunity. Microbes Infect. 13, 963-976 (2011).



82.
83.

84.

85.

86.

148

Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (2016).

Micallef, L. & P., R. Application for Drawing 3 Set Area-Proportional Venn Diagrams.
doi:http://www.eulerdiagrams.org/eulerAPE/.

Skrzypek, M. S. et al. The Candida Genome Database (CGD): incorporation of Assembly 22,
systematic identifiers and visualization of high throughput sequencing data. Nucleic Acids
Res. 45, D592—-D596 (2017).

Supek, F., Bo$njak, M., Skunca, N. & Smuc, T. REVIGO Summarizes and Visualizes Long Lists of
Gene Ontology Terms. PLoS One 6, €21800 (2011).

Ebrahim, A., Lerman, J. A, Palsson, B. O. & Hyduke, D. R. COBRApy: COnstraints-Based
Reconstruction and Analysis for Python. BMC Syst. Biol. 7, 74 (2013).



CFUs

2.5x10%

2x105-

1.5x105-

1x10°-

5x104%-

0-

B C s D

* * * %k
= 500 ,—| 200+ R 5004 _F**
*
400
£ E £
= = =, 300
g g g
T -
o a Z 200
- -l -l
100+
4 0.1 4 4 0.1 4 - + - + Antibiotics
} . . . In contact
C. albicans inoculum C. albicans inoculum
(x10%/ml) (x10%/ml)

! C. albicans infection alone

. L. rhamnosus colonized

Figure 1

Separated

149



C

Conditions
4~ Blank
= % Ca
©
: Lr
@ i
-
% & EC
a #- EC+Ca
3
F 3 EC+Lr
& % EC+Lr+Ca
22
o~
g -10 Time
® 6h =
8 12n E
[} e
14
10 0 10 =
PC1 (385% explained var.) =
=3
=
=
E
CasEC CaslreEC
[3 TieEC
G Up 12h
. vp1n
Up 12m
1 ¥ ‘E
- Oowen 6 Downizh | =
d K €
— o sh Down 128 -
d
i
g
D 103 & Transwells E 067 Time
1019 * Spent ,‘ 6h
100] + ECs / 2 @@zn
® KBM S5
£% 04
Eg ™
13
3 5
7] -4
o ©
&5 o024
g
&
0.0-
KBM EC EC+Ca
Time (h) Simulation input
F N-acetylglucosamine (NAG)-| =] [ Single compound
Aminoacids ', 3 Two compounds
: [ Three compounds
Fructose- &
3-methyl-2-oxobutyrate (OB)- :
3-methyl-2-oxovalerate (OV)- . F—
Nicotinamide- I
CARN+OV- * +—
Gamma-Glutammyl-Alanine (GGA)- o o [f—»
Carnosine (CAR)- . 3._,
Xanthine-] 13
CARN-+OB-] N —
CA+NAG . }—0
GGA+CARN- i
Carnitine (CARN)-
CA+OV-
Citric acid (CA)
CA+0B-|
CA+GGA-
CA+CARN+
CA+GGA+CARN+ %
KBM+
IEC spent-| } .
T T T T T 1
0.1 1 10 100 1000 10000 100000

Growth rate (48h/0h)

Figure 2

L 2
= - - -—
- — —— e 4

Cluster
Ciuster 1
Cluster 2
Cluster 3
Cluster 4

er 5

Cluster 8

Cluster 7

Cluster 8

Condition

EC
EC+Ca
o ECelr

EC+Lr+Ca
KBM (blank)

|

relative pathway change pathway size

G 0 4-10

0<x<=02
02<x=<=04
Bod<x<=06
06<x<=08
08<x<=1

11-50
51 -100
>100

L. rhamnosus
| B
In

stidine metabolism

Pyrimidine catat

Vitamin B2 metabolism

xylate metabolism

Glyoxylate and dic

cine, serine, alanine and threonine metabolism
y metabolism

qgar matabolism

\d Proline Metabolism

Alanine and aspartate metabolism

stabolism

Glutamate

ph hway

B
Pyrimidine synthe:
Pyruvate metabalism

e — —~ = —~ @

= L < =

C BN B NG

X = - =

C x — — >

oS T x 8 o @

2 8 ¢ = 5 2

w B 8 o = £

> n 8 > o =

c > w o 2 a

N o 7w O

Ld e 3T Y

£ T W g 3

= o8

o

150



151

bl Metabolites not affecting pH

acidifying the
A KBM (pH 4.2) B A DL-Indole-3-lactic acid

Phenyllactic acid

C D = =
E
2 =
£ £ 10004
= T
2 8 5001
5
T
D-
& vo\\"’g
&
E i
1000~ * F 2.5x105 *
8001 e 2x105 []
E
5 600 w 1.5x10%
>
£ T
I 4001 i O k108 u
a
2004 5x10%
0- 0
& & R
& o
) &

N-acetylglucosamine/N-acetylgalactosamine

et o
glucose (substrate/
xanthine nogﬂve control)
tyrosine 1
asparagine ?1
serine ' 2
lysine log2FC
phenylalanine (5,10]
leucine {(‘]ﬂ
isoleucine [-1,0)
 choline phosphate M [-5-1)
phosphoethanolamine a {;g.%)
-(4-hydroxyphenyl)lactate <-20
lactate prediction
N-acetylglutamate B uptake/secretion
" none
uptake
secretion

Figure 3



152

A Ca 6h Ca 24h Ca+Lr 6h Ca+lr 24h B

50
_ =
>
1. :
e 2
8
5 -25 _.'
o
o
a
~50
T - - T T 1
-T8 6 -4 -2 0 2 4 6 6 -4 -2 0 2 4 6
0 50 Log, (fold change) Log, (fold change)
PC1 (31.2% explained var.)
D Ca CaABX Caslr CasLr ABX

PC2 (23.1% explained var.)
e

&

50

L. -50 0
o PC1 (26.7% explained var.)

Figure 4



Up-regulated processes at 6 hpi

ition of transcription by RNA polymerase Il
xternal stimulus

rowth

Up-regulated processes at 24 hpi

jen compound metabolic process
tic compound metabolic process
etabolic process

ic compound metabolic process
ogen compound metabolic process

terocycle catabolic process

Enriched GO terms processes.

cromolecule metabolic process
imary metabolic process

rganic substance metabolic process

llular component organization o biogenesis

° » L4 L4 ©
-LOGyg p-value

Down-regulated processes at 6 hpi

ic process

=3

tabolic process
process
\etabolic process

jen compound metabolic process

Enriched GO terms processes

»
-LOGyg pvalue

Down-regulated processes at 24 hpi

tophagic mechanism

catabolic process

ubstance transport

Enriched GO terms processes

 6-phosphate metabolic process

ation

hydrate metabolic process

° L% ~ © ®
- LOGy p-value

Genes related to carbon metabolism

3 Time

?
24h

1 pathway

0 TFs carbon metabolism
Glycolisis
| TCA cycle

Glyoxylate shunt

[ Gluconeogenesis
-3

Figure 5

1 [ Alternative carbon source utilization

153



:'Glycolysis G1P Transcriptomics C.a. 24h
. PGM o= = = = = o= o o -y Metabolomics C.a. 12h
: KH ; i Pentose phosphate in silico flux C.a., 12h ‘
« ®GLC GBEP - |
' : I pathway Sedoheptulose = |
: GPll o wm mm ow o :— - owm wm we
: FOP, = = = = = Y e m - IEC+L.r.<IEC +—> o H
: -FBPlp‘FK { Purine/Pyrimidine m.y . . . .
' ' Adenine ®  Guanine 1 ISuEfur m.!
| FDP L Cytosine Thymine ' St I suce
| 1 sen sam  san  mee  me mas e e mmw | P
‘ A *
: B FBAN, . TR S4HPLAC
1 DHAP —=3 Gap « ' SERCYS } oGy HPER
. ™PIH wGLY THRe/ 34HPPYR*
- e A
: IGAPDHl . : PLACY
. - LAC HPPR
] 3PG¢— BPG . LDH PPYR
. Glycerate GKW ALPL A
| lPGAMl | et LEU § i
. ENOM PK PDH :
‘ 2PG«—»PEP = PYR oLvs :
' Ay ® PHE * |
et s ettt ®TYR -
TRP TRP
PCK
© PHE @t " MAL VD OAAY lanoate m.
e TYR o
Foo FUM
v .
FUM CiTe .
MS :
SDH ACO
.' L(I:A °y|°|te &h ¢ GLX , Pantothenate &!
1 yoxylate shun J . 1
'+ SUCC ACON®. 1 CoA Biosyn. /
. ISL ' iR-Alam./ i
ACO I Glutathione m. ,
* MET pUT*
e |LE K ,
*THR‘ """""" -»SUCCOA ICITe .’ A
VAL i AKGDH IDH 7 ORN
AKG‘ o CAR2
mre GL R0t © meroz ©

Oxidative phoSphOI’ylatiéh‘ e T..<.._..,.

Nicotinamide ®

o

NADH + HT NAD*
nuoAE

f—\fbcH

SUCC FUM Ficytc Focytc
SDH

LAC PYR

DLD

Figure 6

02 H20
ccoN &
ADP ATP

AMP & PMA [ |

154



A 1000-

155

e llHl i ﬂf,]sﬂﬂ;ﬁﬁ mhllllﬁ'HﬂH
S P R — .t.l..l_...%...f ______ LT e
1 gL

0.0 T r
0 6 12
Time (h)

Figure 7




Table 1: Metabolites tested to for their support of L. rhamnosus growth
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Compound name Experimental concentration Company
Citric acid 5mM Roth
Carnitine 5mM Sigma
Gamma-glutamyl-alanine 5mM Sigma
Xanthine 0.05 mM Sigma
3-methyl-2-oxovalerate 5 mM Sigma
3-methyl-2-oxobutyrate 5 mM Sigma
Non-Essential Amino Acids + L-Glutamine 1 mM Gibco
Fructose 1 mM Sigma
Nicotinamide 0.001 mM Fluka
N-acetyl-glucosamine 1 mM Sigma
Carnosine 5mM Sigma
Table 2: Tested metabolites to impair C. albicans filamentation
Compound name Experimental concentration Company

alone —in combination_

2-deoxyinosine 50mM - Sigma
Allantoine 50mM - Roth
Alpha hydroxycaproate (HICA) 50mM SmM Sigma
Cytosine 50mM SmM Sigma
Histidine 50mM - Roth
Hydroxymethylbutyrate 50mM SmM Sigma
Indolelactate 50mM SmM Sigma
Sodium lactate 50mM I15mM Sigma
Phenyllactic acid 50mM SmM Sigma
Phenylpyruvate 50mM SmM Sigma
Pipecolate 50mM - Sigma
Thymine 50mM - Sigma
Uridine 50mM - Roth
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Supplementary Fig. 1: Untargeted metabolomics of in vitro intestinal epithelial L. rhamnosus colonization
and C. albicans infection

Hierarchical clustering of the presence and absence of metabolites in the in vitro model at 12 hours
post infection (hpi).
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Overview of the top 25 enriched metabolic sets in the supernatants in the clusters of (A) metabolites

produced by IECs and L. rhamnosus in synergy at 6h and (B) 12h; and (C) produced by IECs and

consumed by L. rhamnosus at 6h and (D) 12h. Dot size represents enrichment ratio and colour of the

dots represents p-value.



Intestinal epithelial cells

Androgen and estrogen synthesis and metabolism
Cholesterol metabolism
Tetrahydrobiopterin metabolism
Aminoacyl-tRNA biosynthesis
Miscellaneous

Pentose phosphate pathway
Eicosanoid metabolism
Glycerophospholipid metabolism
Urea cycle

Leukotriene metabalism

Folate metabolism

Nucleotide interconversion
Sphingolipid metabolism

Alanine and aspartate metabolism
Glutathione metabolism

Glycine, serine, alanine and threonine metabolism
Fatty acid oxidation

Purine catabolism

Lipoate metabolism

Propanoate metabolism

Pyrimidine catabolism

CoA synthesis

Lysine metabolism

Pyrimidine synthesis

Butanoate metabolism

Vitamin B6 metabolism

Methionine and cysteine metabolism
Valine, leucine, and isoleucine metabolism
CoA catabolism

Taurine and hypotaurine metabolism
Peptide metabolism

Phenylalanine metabolism

Tyrosine metabolism

Protein degradation

Bile acid synthesis

Steroid metabolism

Protein assembly

Ubiquinane synthesis

pathway size BN HOUE HEES

160

C. albicans

I Riboflavin metabolism
beta—-Alanine metabolism

Ascorbate and aldarate metabolism
Fatty acid metabolism
Alanine, aspartate, asparagine, glutamate and glutamine metabolism
Amino sugar and nucleotide sugar metabolism
Conversion
Glutathione metabolism
Arginine and proline metabolism
Cysteine and methionine metabolism
D-Alanine metabolism
Polysaccharide metabolism (Starch, Cellulose, Chitin, and Xylan)
Phenylalanine, tyrosine and tryptophan metabolism
Propanoate metabolism
Selenocompound metabolism
Metabolism of terpenoids and polyketides
Phenylpropanoid biosynthesis
Ubiquinone and other terpenoid-quinone biosynthesis
Xenobiotics biodegradation and metabolism
Other
Arachidonic acid metabolism
Taurine and hypotaurine metabolism
Cyanoamino acid metabolism
Vitamin B8 metabolism
Steroid biosynthesis
Glycerophospholipid metabolism
Glycerolipid metabolism
Glyoxylate and dicarboxylate metabolism
Lysine metabolism
Pyruvate metabolism
Histidine metabalism
Nucleotide salvage pathway
Citrate cycle (TCA cycle)
Sulfur metabolism
Valine, leucine and isoleucine metabolism
Mannose/Mannitol, Fructose and Sorbose/Sorbitol metabolism
Glycine, serine and threonine metabolism
Purine metabolism
Oxidative phospharylation
Nitrogen metabolism
Nicotinate and nicotinamide metabolism
One carbon pool by folate
Butanoate metabolism
Glycolysis / Gluconeogenesis
Pentose phesphate pathway
Biotin metabolism
Pantothenate and CoA biosynthesis
Methane metabolism
Pyrimidine metabolism

T T T T & <= = E T EFE Q@
686 & 68864 68868 4§
£ 7T E 7O T O = == 6 T =
f§rsflglg E:zBg@
D 8 5 8 o = » — s 8 , Y E
n 2 o 2 > v > v s 2, s
> 0 > 00 2o [ 2 d
> > o O =%
@] @] U Qo Q O > mo
O wo 3T W3 W O T W
= o — w = w + =
* = + = 5 8 % = w5 F
5 F o© % 50 % = <4 5
5 O ® (6] -1
o

relative p: y change p: y size

Ho 4-10

Wo<x<=02 M 11-50

Wo2<x<=04 W51 -100

W04<x<=06 HW-=100

06<x<=08

Supplementary Fig. 3: Pathway flux activity of IECs and C. albicans

Simulation of pathway activity levels in IECs (A) and in C. albicans (B) compared between different
setups as indicated. Relative pathway change was determined by identifying the number of pathway-
specific reactions for which feasible flux ranges differ according to flux variability analysis.
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Supplementary Fig. 4: Impact of L. rhamnosus-colonization derived metabolites on C. albicans
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(A) Representative images of C. albicans morphology changes grown in L. rhamnosus-conditioned
or unconditioned media, after 20 h at 37°C with 5% CO2 (n=3 biological replicates). (B)
Representative images of C. albicans morphology grown in presence of all the metabolites tested, at
neutral or acidic pH, after 20 h at 37°C with 5% CO2 (n=2 biological replicates).
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Supplementary Fig. 5: L. rhamnosus colonization creates an unfavourable metabolic environment for C.
albicans

Phenotypic microarray growth experiments for wild-type C. albicans on a carbon, nitrogen or
phosphorous source (left). Metabolome data measured at 6 and 12 h as well as metabolic modelling
predictions (right) are indicated for the whole panel of metabolites. For metabolic modelling, media
was adapted from metabolome data derived from IECs spent media or blank. Uptake or secretion
was determined by identifying feasible flux ranges for metabolite-specific exchange reactions
alongside optimization for biomass. * = puq; < 0.05.



I\IIIIII I III %
|

|

Condition

Time

3 Condition
Ca
2 Ca+lr

1 Time

o Men

24h

164

I Trcatment
Condition

— 3 Treatment
M cornrl

2 7 aex

1 Condition

Ca
Ca+lr

— ]

Supplementary Fig. 6: Changes in C. albicans gene expression upon infection of L. rhamnosus colonized IECs

(A) Hierarchical clustering based on Euclidean distance of C. albicans gene expression at 6 and 24 h
during in vitro infection of IECs in the presence and absence of L. rhamnosus colonization. Data
summarized from n=3 and n=4 independent experiments at 6 and 24 hpi respectively. (B)
Hierarchical clustering based on Euclidean distance of C. albicans gene expression during in vitro
infection of IECs in the presence and absence of L. rhamnosus colonization and in the presence and
absence of antibiotics. Data summarized from n=3 at 24 hpi.
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Supplementary Fig. S7 L. rhamnosus modulates activity of C. albicans mitochondrial dehydrogenases

(A) Mitochondrial activity, represented as conversion of XTT by mitochondrial dehydrogenases
(XTT absorbance) normalized with biomass (crystal violet (CV) absorbance, of C. albicans
incubated in supernatants of L. rhamnosus-colonized or uncolonized IECS (1h, 37°C, 5% CO,), or
(B) in L. rhamnosus-conditioned or unconditioned KBM or KBM+ medium independently of host
cells (1h, 37°C, 5% CO,), or (C) in presence or absence of 50 mM uridine or 2-deoxyinosine (24h,
37°C, 5% COz). (D) Heatmap showing the transcriptional regulation of C. albicans OXPHOS genes
as a result of L. rhamnosus colonization prior to infection at 6 and 24 hpi. Legend colour represents
the Logy fold change of the regulation in presence vs. absence of L. rhamnosus. The asterisks (*)
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represent significance, based on the criteria of a Log» fold change of > 1 or < -1 and a Bonferroni
corrected p-value of < 0.05.



167

KBM medium
C. albicans

L. rhamnosus
IECs

IECs + L.r.
IECs + C.a.

00199929,

IECs + C.a. + L.r.

IECs + C.a. + ABX

e | L O
gl dl gl 4l <

IECs + C.a. + L.r. + ABX

Time - ' 4 AN
6 hpi 12 hpi 24 hpi
O Supernatant metabolomics D Fungal transcriptomics A Cytotoxicity (LDH)

Supplementary Fig. 8: Study design

Overview of the samples, taken at different time points for transcriptional, metabolic, and
cytotoxicity analysis in the in vitro model, in the presence of intestinal epithelial cells (IECs),
L. rhamnosus (L.r.), C. albicans (C.a.) and antibiotics (ABX).
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Supplementary Table 1: Metabolites of the clusters 1-8 shown in Fig. 2B (6 hpi).

Cluster 1 Cluster 2 Cluster 2 Cluster 5
“Secreted by L. rhamnosus “Secreted by IECs” “Secreted by IECs” “Secreted by C. albicans™
colonized IECs” Continued Continued

(N(1) + N(8))-acetylspermidine 3-hydroxyisobutyrate succinate 2,3-dihydroxyisovalerate
1-carboxyethyltyrosine 4-acetamidobutanoate sulfate 4-hydroxyphenylpyruvate
1-palmitoyl-2-linoleoyl-GPC (16:0/18:2) 4-imidazoleacetate taurine folate
2'-deoxycytidine 7-methylguanine thiamin (Vitamin B1) glutarate (C5-DC)
2'-deoxyinosine alanine threonate glycerol
2-hydroxy-3-methylvalerate Allantoin trans-4-hydroxyproline kynurenate
2-hydroxy-4-(methylthio)butanoic acid alpha-ketoglutarate Urate
2-hydro>'<ybutyrate/2- sl Tesic . Cluster§ .
hydroxyisobutyrate Inconclusive
2-hydroxyglutarate arabonate/xylonate Cluster 3 2-oxoarginine

2R,3R-dihydroxybutyrate
3-(4-hydroxyphenyl)lactate
3-formylindole
3-hydroxyoctanoate
3-indoleglyoxylic acid
4-methylthio-2-oxobutanoate
5-methyluridine (ribothymidine)
allantoin
alpha-hydroxyisocaproate
alpha-hydroxyisovalerate
benzoate

cysteine

cytidine

cytosine

dihydroorotate

glycerate
glycerophosphoglycerol
histidine

hypoxanthine

imidazole lactate
indolelactate

lactate

N-acetylglutamate
N-acetylproline
N-acetylthreonine

N-acetyltryptophan

N-acetyltyrosine
N-carbamoylaspartate
N-formylmethionine
nicotinamide riboside
nicotinate ribonucleoside
orotate

phenyllactate (PLA)
phenylpyruvate
phosphate

pipecolate

p-toluic acid
sedoheptulose
thioproline

thymine
trimethylamine N-oxide
uracil

uridine

Cluster 2
“Secreted by IECs”

1-carboxyethylisoleucine
1-carboxyethylleucine
1-carboxyethylphenylalanine
1-carboxyethylvaline
1-methylnicotinamide
1-palmitoyl-2-oleoyl-GPC (16:0/18:1)
1-stearoyl-2-oleoyl-GPC (18:0/18:1)
2'-deoxycytidine

2'-deoxyuridine
2'-0-methylcytidine
3-hydroxy-3-methylglutarate
3-hydroxybutyrate (BHBA)

argininosuccinate

Benzoate

beta-alanine

Betaine

cholesterol

choline phosphate

creatine

creatinine

cystathionine
dimethylarginine (SDMA + ADMA)
erythritol

erythronate

ethylmalonate

fumarate
gamma-glutamyl-alpha-lysine
gamma-glutamylthreonine
glucuronate

glycerol 3-phosphate
glycerophosphoethanolamine
glycerophosphoglycerol
glycerophosphoinositol
glycerophosphorylcholine (GPC)
glycerophosphoserine

glycine

guanine

gulonate

homoarginine
hypotaurine
hypoxanthine
kynurenine

Lactate

malate
mannitol/sorbitol
methionine sulfone
N1-methyladenosine
N1-methylinosine
N6,N6,N6-trimethyllysine
N-acetylalanine
N-acetyl-isoputreanine
N-acetylleucine
N-acetylneuraminate
nicotinamide ribonucleotide (NMN)
nicotinamide riboside
N-monomethylarginine
ornithine

palmitoyl sphingomyelin (d18:1/16:0)
pantothenate

p-cresol sulfate

phenol red

phenol sulfate
phenylacetylglycine
proline

pseudouridine
pyridoxal
pyridoxamine
pyridoxate

pyridoxine (Vitamin B6)
ribonate

“Secreted by IECs consumed by
L. rhamnosus”

1-ribosyl-imidazoleacetate
2'-0-methyluridine
3-methyl-2-oxobutyrate
3-ureidopropionate
4-methyl-2-oxopentanoate
5-methylthioadenosine (MTA)
acetylcarnitine (C2)
aconitate [cis or trans]
carnitine

carnosine

citrate

cysteinylglycine disulfide
deoxycarnitine

fructose

gamma-glutamylalanine
gamma-glutamylglutamine
gamma-glutamylhistidine
gamma-glutamylisoleucine
gamma-glutamylleucine
gamma-glutamylmethionine
gamma-glutamylserine
Hippurate

Isocitrate
N-acetylglucosamine/N-

3-hydroxybutyroylglycine
5-oxoproline

adenosine 5'-monophosphate (AMP)
biotin

choline

cytidine 5'-monophosphate (5'-CMP)
myo-inositol

N-acetylasparagine
N-acetylaspartate (NAA)
N-acetylhistidine

pyroglutamine

tryptophan
cluster 7
“Consumed by L. rhamnosus colonized
IECs”
adenine
arabitol/xylitol
asparagine

cysteine-glutathione disulfide
fructosyllysine
gamma-glutamylvaline
Glucose

Lysine

phenylalanine

. Ribitol
acetylgalactosamine
N-acetylmethionine riboflavin (Vitamin B2)
nicotinamide threonine
S-1-pyrroline-5-carboxylate thymidine
Xanthine Tyrosine
Cluster 4 Cluster 8
“Consumed by IECs” “Secreted by L. rhamnosus alone”

2'-deoxyadenosine
3-sulfo-L-alanine
Adenosine
alpha-lipoate
Arginine

Aspartate

cysteine s-sulfate
cysteine sulfinic acid
Cystine

Gluconate
Glutamate
Glutamine

Inosine

Isoleucine

Leucine

mannonate
methionine
methionine sulfoxide
N-acetylarginine
N-acetylglutamine
phenylalanylhydroxyproline
phosphoethanolamine
phosphothreonine
Serine

Valine

alpha-ketoglutaramate
argininate
diacetylspermidine
glutamine conjugate of C6H1002 (2)
malonate
methylsuccinate
mevalonate
mevalonolactone
N-acetylleucine
N-acetylisoleucine
N-acetylphenylalanine
N-acetylputrescine
N-acetylserine

pyruvate

Supplementary Table 2: Metabolites of the clusters 1-8 shown in Fig. S1 (12 hpi).
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Cluster 1 Cluster 2 Cluster 4 cluster 7
“Secreted by L. rhamnosus “Secreted by IECs” “Secreted by IECs and consumed “Consumed by L. rhamnosus
colonized IECs” continued by L. rhamnosus” colonized IECs”
(N(1) + N(8))-acetylspermidine cholesterol 1-ribosyl-imidazoleacetate adenine
1-carboxyethyltyrosine choline phosphate 3-methyl-2-oxobutyrate arginine
2'-deoxyinosine creatine 3-methyl-2-oxovalerate asparagine
2-hydroxy-3-methylvalerate creatinine 4-methyl-2-oxopentanoate biotin
2-hydroxy-4-(methylthio)butanoic acid  cystathionine 5-methylthioadenosine (MTA) cystine
E;Zti;z?!:;:gf;zz_ dimethylarginine (SDMA + ADMA) acetylcarnitine (C2) fructosyllysine
2-hydroxyglutarate erythritol aconitate [cis or trans] glucose
2R,3R-dihydroxybutyrate erythronate carnitine glutamine
3-(4-hydroxyphenyl)lactate ethylmalonate carnosine HEPES
3-formylindole fumarate citrate isoleucine
3-hydroxyoctanoate gamma-glutamylthreonine deoxycarnitine leucine
3-indoleglyoxylic acid glucuronate fructose lysine
3-ureidopropionate glycerol 3-phosphate gamma-glutamylalanine mannitol/sorbitol
5-methyluridine (ribothymidine) glycerophosphoethanolamine gamma-glutamylglutamine mannose
alpha-hydroxyisocaproate Glycerophosphoglycerol gamma-glutamylhistidine methionine
alpha-hydroxyisovalerate Glycerophosphoinositol gamma-glutamylisoleucine phenylalanine
cytidine glycerophosphorylcholine (GPC) gamma-glutamylleucine serine
cytosine Glycerophosphoserine gamma-glutamylmethionine Threonine
dihydroorotate Gulonate gamma-glutamylserine tryptophan
glycerate Homoarginine gamma-glutamylvaline valine
indolelactate Hypotaurine hippurate
mevalonate Hypoxanthine isocitrate Cluster 8
N-acetylglucosamine/N- “Secreted by C. albicans infected
mevalonolactone Lactate ) IECs”
acetylgalactosamine
N-acetylglutamate malate N-acetylmethionine cysteine-glutathione disulfide

N-acetylthreonine
N-acetyltryptophan
N-acetyltyrosine
N-carbamoylaspartate
nicotinate ribonucleoside
phenyllactate (PLA)
pipecolate
sedoheptulose
thymine

uracil

uridine

Cluster 2
“Secreted by IECs”

1-carboxyethylisoleucine
1-carboxyethylleucine
1-carboxyethylphenylalanine
1-carboxyethylvaline
1-methylnicotinamide
1-palmitoyl-2-oleoyl-GPC (16:0/18:1)
1-stearoyl-2-oleoyl-GPC (18:0/18:1)
2'-deoxycytidine

2'-deoxyuridine
2'-0-methylcytidine
3-hydroxy-3-methylglutarate
3-hydroxybutyrate (BHBA)
3-hydroxyisobutyrate
4-imidazoleacetate

7-methylguanine

Alanine

Allantoin
alpha-ketoglutarate
arabonate/xylonate
argininosuccinate
Benzoate
beta-alanine
betaine

mannitol/sorbitol
methionine sulfone
N1-methyladenosine
N1-methylinosine
N6,N6,N6-trimethyllysine
N-acetylalanine
N-acetyl-isoputreanine
N-acetylleucine
N-acetylneuraminate
nicotinamide riboside
N-monomethylarginine
ornithine

Palmitoyl sphingomyelin (d18:1/16:0)
pantothenate

p-cresol sulfate

phenol sulfate
pseudouridine
pyridoxal
pyridoxamine
pyridoxate

ribonate

Sulfate

taurine
trans-4-hydroxyproline
Urate

nicotinamide
S-1-pyrroline-5-carboxylate
xanthine

Cluster 5
“Secreted by C. albicans”

2,3-dihydroxyisovalerate
2'-deoxyadenosine
3-sulfo-L-alanine
4-methylthio-2-oxobutanoate
adenosine

alpha-lipoate

arabitol/xylitol

aspartate

benzoate

cysteine s-sulfate

glycerol

imidazole lactate
kynurenate

N-acetylleucine
N-acetylputrescine
phenylalanylhydroxyproline
ribitol

Cluster 3
“Inconclusive”

1-palmitoyl-2-linoleoyl-GPC
(16:0/18:2)
3-hydroxybutyroylglycine
benzoate

cholesterol

imidazole lactate
methylsuccinate
N-acetylaspartate (NAA)
N-acetylproline

Cluster 6
“Secreted by L. rhamnosus alone”
adenosine
argininate

diacetylspermidine

gluconate

glutamine conjugate of C6H1002 (2)

Inosine

malonate
N-acetylisoleucine
N-acetylphenylalanine
N-acetylserine
phosphothreonine

indoleacetate
isovalerate (i5:0)
nicotinamide ribonucleotide (NMN)

Supplementary Table 3: Abbreviations used in Fig.6

Abbreviation Full name

Reactions

ACO Aconitate Hydratase

AKGDH alpha-Ketoglutarate Dehydrogenase
ALPL 2-Acetolactate Pyruvate-Lyase
CAR2 Ornithine Aminotransferase

ccoN Cytochrome ¢ Oxidase



CS Citrate Synthase

DLD D-lactate Dehydrogenase

ENO Enolase

FBA Fructose-Bisphosphate Aldolase
fbcH Ubiquinol-Cytochrome ¢ Reductase
FBP Fructose-1,6-Bisphosphatase

FUM Fumarate Hydratase

G6PD Glucose-6-phosphate 1-Dehydrogenase
GAPDH Glyceraldehyde 3-Phosphate Dehydrogenase
GPI Glucose-6-Phosphate Isomerase

HK Hexokinase

HPPR Hydroxyphenylpyruvate Reductase
IDH Isocitrate Dehydrogenase

ISL Isocitrate Lyase

LDH L-Lactate Dehydrogenase

MDH Malate Dehydrogenase

MS Malate Synthase

nuoA NADH-Quinone Oxidoreductase
PCK Phosphoenolpyruvate Carboxykinase
PDH Pyruvate Dehydrogenase

PFK 6-Phosphofructokinase

PGAM Phosphoglycerate Mutase

PGD 6-Phosphogluconate Dehydrogenase
PGK Phosphoglycerate Kinase

PGL 6-Phosphogluconolactonase

PGM Phosphoglucomutase

PK Pyruvate Kinase

PMA Plasma Membrane ATPase

PRO1 gamma-glutamyl kinase

PRO2 gamma-glutamyl phosphate reductase
RPE Ribulose-Phosphate 3-Epimerase
RPI Ribose 5-Phosphate Isomerase

SDH Succinate Dehydrogenase

SUCD Succinyl-CoA Synthetase

TAL Transaldolase

TK Transketolase

TPI Triosephosphate Isomerase
Metabolites

2PG 2-Phospho-D-glycerate

34HPLAC* 3,4-Dihydroxyphenylpyruvate (mapped to Phenylpyruvate measurements)
34HPPYR* 3,4-Dihydroxyphenyllactate (mapped to Phenyllactate measurements)
3PG 3-Phospho-D-glycerate

ACAC Acetoacetate

ACCOA Acetyl-CoA

ADP Adenosine 5'-diphosphate

ALA Alanine

ALAC 2-Acetolactate

AMP Adenosine 5'-monophosphate

ATP Adenosine 5'-triphosphate

BPG D-Glycerate 1,3-diphosphate

DHAP Dihydroxyacetone phosphate

F6P beta-D-Fructose 6-phosphate

FDP beta-D-Fructose 1,6-bisphosphate
Ficytc Ferricytochrome ¢

Focyt c

Ferrocytochrome ¢
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G1P
G3P
Go6P

GLC
GLU

H20
H+
ILE
LAC
LEU
LYS
MET
NADH
NAD+
02
ORN
PEP

PHE
PLAC
PPYR

PRCOA
PRPP
PUT*
PYR

St
SUCC
THR
TRP
TYR
VAL

alpha-D-Glucose 1-phosphate
D-Glycerate 3-phosphate
alpha-D-Glucose 6-phosphate

Glucose
Glutamate

Water
Hydrogen
Isoleucine
Lactate
Leucin
Lysine
Methionine

Nicotinamide adenine dinucleotide (reduced)

Nicotinamide adenine dinucleotide
Oxygen

Ornithine

Phosphoenolpyruvate
Phenylalanine

Phenyllactate

Phenylpyruvate

Propanoyl-CoA

5-Phosphoribosyl diphosphate
Putrescine (mapped to N-acetylputrescine)
Pyruvate

Sulfate

Succinate

Threonine

Tryptophan

Tyrosine

Valine
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Supplementary Table 4: Overview of screened deletion mutants for damage potential
Damage phenotype of deletion mutants from the Noble collection (Noble et al. 2010 Nat Genetics)
corresponding to differentially regulated genes during infection of L. rhamnosus colonized IECs.
Mutant phenotype is classified as hypovirulent or hypervirulent when the damage caused to IECs
was significantly lower or higher than the wild type, respectively, and non-significant (ns) when it

was not.
KO gene Mutant phenotype KO gene Mutant phenotype
ace2 Hypovirulent orf19.5565 ns
ahrl Hypovirulent orf19.6874 ns
aox1 ns orf19.7328 Hypervirulent
aro80 ns orf19.7370 ns
asm3 ns orf19.7516 ns
cfl2 ns orf19.7554 ns
cht2 ns pdk2 Hypervirulent
cipl ns pex4 ns
cyb5 ns pgal3 ns
ferl ns pga45 ns
gald ns pga7 ns
gis2 ns pral ns
hetl ns prkl ns
hgt6 ns prn2 ns
hyrl Hypervirulent prn4 ns
kre5 Hypovirulent ptp3 Hypovirulent
mal2 ns pwpl ns
mec3 ns rbel Hypervirulent
mid1 ns rbt4 ns
nik1 ns rgs2 Hypervirulent
optd ns rim13 ns
opt7 Hypervirulent sefl ns
orf19.1314 ns snqg2 ns
orf19.173 ns sod6 ns
orf19.215 ns swid ns
orf19.3156 ns tye7 ns
orf19.3395 ns uga32 ns
orf19.3720 ns vid27 ns
orf19.3982 ns wor2 ns
orf19.4014 ns ycp4 ns
orf19.4292 Hypovirulent vhbl ns
orf19.4445 ns ypt7 Hypervirulent
orf19.4459 Hypervirulent ywpl ns
orf19.449 ns zcf27 Hypervirulent
orf19.4843 ns
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No 6. Candida expansion in the human gut is
associated with an ecological signature that
supports growth under dysbiotic conditions
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12. Abstract

The overgrowth of Candida species in the human gut is considered a prerequisite for invasive
candidiasis [1]. However, the reason that many individuals with high levels of gastrointestinal
Candida do not develop systemic candidiasis is unclear. Positive and negative interactions have been
observed between individual Candida species and gut bacteria. These observations are from studies
that were mainly conducted in mice or in vitro. Few large-scale human studies aimed to identify
intestinal ecological signatures associated with Candida genus expansion in the gut. We integrated
mycobiome and shotgun metagenomics data from 75 patients with lung cancer to determine the role
of gut bacteria in shaping mycobiome composition. In addition, we developed machine learning
models that used only bacterial taxa or functional relative abundances to predict the levels of
Candida genus in an external validation cohort with an area under the curve of 78.6-81.1%. Last, we
proposed an intriguing mechanism for Candida species overgrowth based on a decrease in short-
chain fatty acid producing-bacteria resulting from increased oxygen levels. These conditions favour
the growth of oxygen-tolerant lactic acid-producing bacteria, creating a metabolic niche for Candida
species to use lactate as a carbon source and overtake their fungal competitors (especially
Saccharomyces) in the human gut. We experimentally demonstrate that lactate supports the
overgrowth of Candida species and show that lactate producing-bacteria also have a positive impact
on gut barrier integrity. These observations emphasise the complex ecological interaction between
multiple microbiome-gut epithelium factors that are involved in Candida species overgrowth and
dissemination.
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13. Introduction

Candida species, predominantly C. albicans, C. glabrata, C. tropicalis, and C. parapsilosis, are
among the most common causes of bloodstream infections. These infections result in high rates of
mortality for patients in intensive care units or who have a dysfunctional epithelial barrier or
compromised immunity [2,3]. Although the pathogenicity of different Candida species has been
extensively studied [4-9], only a handful of studies focused on understanding the commensal
lifestyle of the fungus in the human gut. We recently performed a systematic evaluation of the
interactions between human gut bacteria and C. albicans using genome-scale modelling and pairwise
growth simulations [10]. We showed that 81% of C. albicans interactions with approximately 900
gut bacteria species were mutualistic (positive growth effects for both C. albicans and bacteria) or
parasitic (negative growth effect on C. albicans, positive growth effect on bacteria), with only a few
examples of parasitism, in which C. albicans exerted negative effects on gut bacteria. C. albicans is a
common gut member in the majority of the human population. Therefore, our findings support the
hypothesis that the colonisation success of C. albicans is the result of adapting to life in the intestine
and avoiding competitive interactions with other gut microbes.

Most attempts to identify specific species of gut bacteria that inhibit or promote the growth of
Candida species were conducted in murine models. However, in contrast to human gut communities,
adult murine gut communities naturally prevent Candida species colonisation [11], showing
substantial differences with humans in immune system regulation [12] and microbial composition
[13—15], and challenging the translatability of the findings to humans. Gnotobiotic mouse models
overcome some of these challenges [16] and were applied to study colonisation by Candida species
[17]. Yet, limitations persist. A recent study demonstrated that colonisation is still incomplete, and
some key bacteria genera (Faecalibacterium, Bifidobacterium) did not engraft at all [18].
Nevertheless, the realisation that the gastrointestinal tract is a major source of systemic candidiasis
[1] has propelled efforts beyond animal models to identify predisposing factors that may lead to
microbiome engineering strategies aimed at preventing candidiasis. This shift in focus has been
further supported by evidence from human studies that gut bacterial dysbiosis triggered by broad-
spectrum antibiotics is associated with increased colonisation of Candida species in the gut by [19].
However, antibiotics are not the only drugs associated with an elevated risk of Candida species
overgrowth. Initial findings in animal models and humans suggest that chemotherapeutic agents lead
to a reduced total number of gut bacteria and alterations in gut microbiota composition [20-22],
which may contribute to the increased risk of systemic candidiasis in cancer patients. While most
studies on systemic candidiasis and cancer have focused on haematological malignancies, recent
epidemiological studies suggest that the risk for patients with solid tumours, such as head and neck
and lung cancer, is equally high [23].

Recently, an analysis of a small cohort of allogeneic haematopoietic cell transplantation patients that
included 11 candidiasis patients and 7 controls indicated that an expansion of Candida species in the
gut occurs before bloodstream infection [24]. However, gut mycobiome analyses of both healthy
individuals [25] and individuals with a variety of diseases [10,26] revealed that Candida species can
also be the dominant fungi of the mycobiome without the host showing any signs of systemic
infection. Therefore, overgrowth and systemic infection may be independent processes. Elucidating
the role of Candida species as commensals and revealing the intestinal ecological context that leads
to their expansion in the human gut is critical to designing prophylactic strategies for life-threatening
systemic candidiasis. Therefore, we performed an integrative analysis of the mycobiome,
microbiome, and phageome of 75 lung cancer patients to determine an intestinal ecological signature
associated with Candida species overgrowth (Figure 1a), which we confirmed in an independent
cohort of 11 individuals. We further provided experimental evidence for a competitive advantage of
Candida over Saccharomyces species, the other main fungal residents in the human gut, while
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exploring alternative carbon sources under dysbiotic conditions characterised by increased oxygen
availability.

14. Results
High variability of Candida levels among infection-free lung cancer patients

We recruited 75 patients at the National Koranyi Institute of Pulmonology (Budapest, Hungary) and
County Hospital of Pulmonology (Torokbalint, Hungary) with advanced-stage lung cancer (Table 1;
adenocarcinoma n=40, squamous cell carcinoma n=28, others n=7). No patients had any signs of
fungal infection during the recruitment period. Faecal samples were collected for analysis of fungal,
bacterial, and viral biomes after the initiation of single-agent anti-PD-1 antibody immunotherapy
(nivolumab, n=44; pembrolizumab, n=31). The majority of patients received chemotherapy prior to
immunotherapy (n=59). We built ribosomal DNA internal transcribed spacer 2 (ITS2) libraries for
estimating fungal genera and species relative abundance in all 75 patients. On average, we generated
78,332 (mean absolute deviation [MAD] 43,056) high-quality, non-chimeric reads per sample.
Amplicon sequencing variants (ASVs) were estimated using DADA?2 [27] resulting in 76 fungal
genera (18 £ 10 per sample) and 113 fungal species (25 £ 15 per sample) (Figure 1a). Investigating
genus-level fungal profiles showed that Candida and Saccharomyces were the highest contributing
genera in 17 and 44 samples, respectively (Figure 1b). Fungal co-abundance networks revealed a
strong, significant negative correlation between Candida and Saccharomyces at the genus
(Spearman's coefficient; P<0.05; |r[>0.25; Figure S1) and species level (Spearman's; P<0.05;
|r>0.25; Figure S2).

We subsequently investigated the fungal genera that were the main drivers of variation in
composition-aware mycobiome beta diversity (Aitchison distance; Figure 1c-e). Stepwise distance-
based redundancy analysis (bRDA) revealed that a large fraction (robust R?=18.5%) of non-
redundant fungal species diversity was explained by the two dominating fungal genera,
Saccharomyces and Candida (Figure 1¢), while other fungal genera explain an additional 20%. We
subsequently examined anthropometric and lifestyle characteristics among the patients for significant
correlation to ordination axes, including age, gender, body mass index (BMI,) diet, and antibiotic use
(P<0.05; Figure le). Interestingly, ‘antibiotic use’ prior to anti-cancer treatment (3-6 months before
stool sampling) correlated significantly with ordination results (P<0.05; Figure 1e), consistent with
our previous findings in healthy individuals that antibiotic use can have a longer-lasting impact on
the mycobiome compared to the microbiome [25]. Antibiotic use was also weakly correlated with
higher levels of the Candida genus, similar to our previous observation [26].

We compared different mycobiome normalisation methods and observed high correlations between
the normalised abundance estimates of the Candida genus (Pearson r > 0.87; P<0.001; Figure S3).
To properly account for compositional data, all downstream analyses used fungal abundances
normalised by the centred log-ratio (CLR) [28-30]. For Candida CLR abundances, the median
separated Candida abundance symmetrically (Figure S3). Therefore, we grouped patients in two
clusters: high-Candida (HC, n=38) and low-Candida (LLC, n=37) for above or below the median
Candida CLR normalised abundance (Figure S3). This grouping correlated significantly with high
and low Candida ITS reads (Rfit P<0.001; Figure 1f), but not with the number of total ITS copies
(Rfit P>0.05; Figure 1g) indicating that the sequencing depth did not affect the grouping. We further
confirmed the grouping by testing for significant differences in fungal relative abundance between
the two groups (Table S2). As expected, Candida genus abundance was increased in the HC group
(log> fold change [log2FC]=5.1; g=2E-12), whereas at the species level, C. albicans (log2FC=5.5;
g=1E-7) and C. tropicalis (log2FC=2.1; ¢=0.04) drove the observed genus abundance differences.
Although the beta diversity was significantly different between the HC and LC groups
(PERMANOVA P=0.001; R?>=5.7%; Figure 1h), we did not find significant differences in the fungal
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genera and species alpha diversities (by Shannon, Simpson, Pilou’s Evenness indices; P>0.05;
Table S1). We further examined if the classification of patients into HC and L.C groups was
explained by differences in basic patient characteristics such as gender, age, BMI, antibiotic use,
alcohol consumption, tumour histology, chronic obstructive pulmonary disease, or anti-cancer
treatment drug. None of these factors except for BMI was significantly different between the groups.
Despite recent findings in mice and humans that Candida species may promote weight gain [31,32],
we found BMI significantly decreased in our cohort in the HC group (Table 1; U-Test P=0.006).
Therefore, in subsequent statistical comparisons between the HC and LC groups, we adjusted for
differences in BML

—Table 1 Anthropometric, clinical and lifestyle data for High (N=39) and Low (N=37) Candida groups. —

High Low > High Low

Variable N p-value” Variable N p-value®

N=38 N=37' N=38' N=37'
Gender 75 0.7 Alcohol 75 0.5
Female 17 (45%) 14 (38%) Never 19 (50%) 16 (43%)
Male 21 (55%) 23 (62%) Current 3 (7.9%) 6 (16%)
Age 75 69 (64, 74) 65 (63, 69) 0.2 Former 2(5.3%) 4 (11%)
Body Mass Index 75 24.1(21.4,28.3) 28.7(25.9,32.8) 0.006 Occasionally 14 (37%) 11 (30%)
Antibiotic Use 74 0.3 Histology 75 0.7
Before therapy
No 34 (92%) 30 (81%) Adenocarcinoma 22 (58%) 18 (49%)
Yes 3(8.1%) 7 (19%) Squamous 13 (34%) 15 (41%)
Unknown 1 0 Other 3(7.9%) 4 (11%)
Antibiotic Use 72 0.14 Immunotherapy 75 0.7
After therapy Drug
No 28 (76%) 32 (91%) nivolumab 21 (55%) 23 (62%)
Yes 9 (24%) 3 (8.6%) pembrolizumab 17 (45%) 14 (38%)
Unknown 1 2 Responder 75 0.3
Line of Treatment 75 0.8 Yes 33 (87%) 28 (76%)
1 9 (24%) 7 (19%) No 5 (13%) 9 (24%)
2 19 (50%) 23 (62%) COPD 75 0.7
3 9 (24%) 6 (16%) Without 16 (42%) 18 (49%)
4 1(2.6%) 1(2.7%) With 22 (58%) 19 (51%)

'Statistics presented: n (%); Median (IQR)

*Statistical tests performed: chi-square test of independence; Wilcoxon rank-sum test; Fisher's exact test

Distinct microbiome signature associated with the high Candida group

We then shifted our focus on the gut bacterial community, specifically taxonomic and functional
properties that might be pivotal in supporting the growth of Candida species in the human gut. We
performed whole-metagenomic sequencing on the same stool samples used for the mycobiome
analysis, generating an average of 26,106,952 (MAD 3,876,437) reads per sample. We used
HUMAnNN?2 [33] to compute bacterial species and function abundance profiles. After applying a 10%
prevalence filter, we estimated the relative abundance of 234 bacterial species (98 & 18 per sample),
84 bacterial genera (46 + 7), 394 MetaCyc pathways (339 + 21), 1688 Enzyme Commission (EC)
numbers (1361 £ 83), 5120 KEGG orthology (KO) terms (3943 + 340), and 155 KEGG pathways
(120 £ 3) (Figure 1a). To ensure that only bacterial information was used in further analyses, we
removed features with unknown or non-bacterial origin from functional abundance profiles using the
species-stratified output of HUMAnN2.

Procrustes analysis revealed a significant correlation between beta diversity for fungal and bacterial
species (P=0.046, r=0.53; Table S1). Bacterial species explained around 13% of fungal species beta
diversity and dbRDA using bacterial species suggested Clostridium, Lactobacillus, Eubacterium, and
Citrobacter species had the highest explanatory power for mycobiome variation (Figure 1d).
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Interestingly, a biplot of bacteria species abundances onto fungal species diversity indicated positive
correlations between higher Candida genus abundance and several Lactobacillus species (Figure 1e),
which was further confirmed in a crosskingdom network of fungal genera and bacterial species
(Spearman's P<0.05; r <-0.25; Figure S2). In contrast, Citrobacter and Eubacterium species
correlated negatively with Candida abundance.

We also observed significant separation between the HC and LC groups in bacterial species and
functional beta diversity (Figure 2a-c; PERMANOVA; P<0.05; Table S1). For explaining variance,
the functional properties of the bacteria community (MetaCyc, KOs, and ECs) showed the largest
between-group differences (Figure S1, R?=2.5%+0.5%). Bacterial species alpha diversity (by
Shannon, Simpson, Pilou’s Evenness, and Chaol indices) was not significantly different between the
HC and LC groups (Rfit P>0.05; Table S1). Surprisingly, functional alpha diversity (by MetaCyc
pathways) showed higher diversity in the HC than the LC group (Figure 2e; P=0.02). In contrast, the
contributional diversity of bacterial species to pathways (contributional alpha diversity) was
significantly lower in many HC enriched pathways (Rfit; n=23; P<0.05; Figure 2f) and significantly
lower overall (Rfit; P<0.05; Figure 2g). Together, these findings implied that the bacterial
community in the HC group had greater metabolic potential, but the LC group had greater functional
redundancy, a property exhibited by robust microbiota [34].

We then stratified bacteria based on their metabolic tolerance to oxygen. Species capable of growing
under low oxygen level, including facultative anaerobes, were labelled 'aerobes'. We found
significantly fewer obligate anaerobes in HC compared to LC (Figure 2h; AR?>=8%, P=0.017) and a
trend for an increased aerobe/anaerobe ratio in the HC group (Figure 2i; AR?>=5%, P=0.058). This
result was consistent with a comparison of 8 patients with candidemia and 7 controls where the
expansion of Candida species was associated with a substantial loss of anaerobes diversity [24] as
well as a previous study in mice in which antibiotic treatment with sufficient depletion of anaerobic
bacteria was related to increased Candida species colonisation [11]. An increase in aerobes in the
HC group, with their aerobic respiration, might explain the observed increase in metabolic diversity.
To complement our study on the ecological context associated with Candida species expansion in the
human gut, we also quantified phage abundance using the recent release of the Metagenomic Gut
Virus (MGV) catalogue. We used quasi-mapping for fast estimation of phage contig and viral
operational taxonomic unit (vOTU) relative abundance using Salmon in metagenomic mode
[35,36]). On average, 2.4% of metagenomic reads were assigned to prevalent viral contigs, with
some samples reaching 4.7% (Figure S5). We did not observe a significant difference in the
percentage of assigned phage reads between the HC and LC groups (Figure S5) or vOTU beta
diversity (Figure 2e; P>0.10). However, a closer look into diversity-generating retroelements
(DGRs) [37,38] revealed a substantial, significant reduction in DGRs phage genes in the HC group
(two-sided Fisher test; P=7e-5; odds ratio=0.3; Figure 2j). DGR elements use error-prone reverse
transcriptase to induce random mutations into the genomes of their host at specific target genes,
creating population-wide hypervariability [39,40]. Since DGRs have beneficial effects (e.g., adaption
advantage) on their targeted host [39,40], the enrichment in these phages may imply a more robust
microbiome in LC.

Abundance of lactic acid bacteria and SCFA producers accurately predicted Candida levels

We performed supervised machine learning (ML) to investigate if members of our cohort could be
classified as HC or LC solely based on bacterial taxonomic or functional relative abundances. We
applied STAMCAT for model training and evaluation [41] but adopted data augmentation training to
the default algorithm [42]. We tested our models in an additional validation cohort of 11
immunotherapy-treated lung cancer patients. In the validation cohort, HC and LC were defined
using the same abundance thresholds used for the main cohort. Bacterial species abundance
classified patients as HC or LC with high accuracy in both our main cohort (Figure 3a;
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crossvalidation area under the receiver operating characteristic [CV auROC]=77.9%) and validation
cohort (Figure 3a; auROC=78.6%). With bacterial functional abundances (by EC), we achieve
slightly higher accuracy (Figure 3a; CV auROC=80.4%; additional auROC=82.1%). We further
investigated if we could predict high vs. low abundance levels for the species C. albicans, C. sake,
and C. glabrata, which were the most prevalent and abundant species in our cohort. High and low
abundance groups for each of the species were formed based on mean species CLR abundances and
ML models were built analogous to the HC vs. LC genus models. The identified microbiome
signatures classified patients as having high or low abundance well for C. albicans, C. glabrata, and
C. sake and in both, our main cohort (Figure 3a; CV auROC: C. albicans=77.5%, C. sake: 77.0%,

C. glabrata: 73.9%) and test cohorts (Figure 3a; Test auROC: C. albicans=86.7%, C. sake: 86.7%,
C. glabrata: 79.2%). Interestingly, phage vOTU abundance showed a potential to predict Candida
genus and species levels in the main cohort (Figure 3b; CV auROC: 73%=+1%) but had less potential
for the independent cohort (Figure 3b; Test auROC: 53%-75%). C. albicans levels were predicted
robustly in both the main and validation cohorts (auROC=73%) using solely phage composition.
This result was interesting considering recent evidence of inhibition of C. albicans by bacteriophages
[43].

We then inspected bacterial species predictive of Candida genus levels and crosschecked those
species with results from differential abundance analysis (by Maaslin2). We found that many of the
bacterial species predictive of LC with high robustness (at least 80%; P<0.05; false discovery rate
[FDR]<0.2; Figure 3c) were short-chain fatty acid (SCFA) producers [44—49], including
Actinomyces odontolyticus, Bifidobacterium adolescentis, Eubacterium rectale, Anaerotruncus
colihominis, Alistipes ihumii AP11, several Lachnospiraceae species, Pseudoflavonifractor
capillosus, and Odoribacter splanchnicus. We retrieved genome-scale metabolic models of the
bacteria species enriched in the LC group from the AGORA repository [50] and simulated growth on
different diets using flux balance analysis (FBA; Table S3). We monitored the potential to produce
SCFAs and confirmed that many of the bacterial species enriched in the LC group can secrete at
least one of acetate, propionate, or butyrate at varying levels (see Methods and Table S3). The
importance of SCFAs in suppressing C. albicans colonisation has been reported by us [25,26] and
others [11]. However, the suppressive function of SCFAs appears to be towards all Candida species
in general. Several mechanisms by which propionate and butyrate suppress Candida species
colonisation have been suggested, including regulation of the immune system [51] and direct
inhibition [52,53]. However, SCFAs also have a major impact on oxygen availability [54,55].
Therefore, a decrease in SCFA producers in the HC group should be accompanied by an expansion
of facultative aerobes. Incidentally, we noticed an increase in oxygen-tolerant bacteria in the HC
group (Figure 3c¢). Interestingly, several lactic acid bacteria were significantly higher in the HC
group and consistently selected as top features in the ML models (for example, Lactobacillus gasseri
and Lactococcus lactis) (Figure 3c). We also observed an increased abundance of
Enterobacteriaceae species (Escherichia species, Klebsiella pneumoniae). A crossdomain
correlation analysis between fungal genera and bacterial species abundance confirmed positive
correlations between Candida genus, Lactobacillus, Lactococcus, Klebsiella and Escherichia species
in our study cohort (Figure S2). Similar to the LC-enriched species, FBA analysis suggested that in
addition to the lactic acid bacteria enriched in the HC group, K. pneumoniae and E. coli also secrete
lactate (Table S3).

Microbial set enrichment analysis (MSEA) [56] revealed that bacterial genera that were significantly
increased in the HC group (P<0.05; Lactobacillus, Lactococcus, Streptococcus, Bacteroides and
Odoribacter; Table S4) were associated with multiple human disease genes (n=280) suggesting a
dysbiotic microbiome. In contrast, bacteria highly abundant in the LC patients showed no
enrichment in disease genes despite covering more genera (n=12). These results were also
qualitatively the same at P<0.10. Further functional enrichment analysis of the 280 human disease
genes based on the KEGG pathway database, indirectly linked HC-associated bacterial species to
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cytokine and chemokine responses (Figure S6; Table S4). IL-17 signalling was of special interest
because it is associated with gut inflammation and Candida species colonisation [57]. IL-17 also has
a role in immune cell recruitment after bacterial invasion [58] and is a key role in stimulating host
immunity upon Candida infection [58].

We then examined bacterial metabolic functions by analysing MetaCyc pathway abundance (Figure
3d; Table S2). In total, 78 pathways were more abundant in HC compared to only 11 in LC (P<0.05;
¢<0.15), matching the observation of increased functional alpha diversity in HC. One of the
abundant pathways in the HC group produces lactate from hexitols (P461-PWY). In agreement with
the observation of decreased anaerobes, aerobic respiration (fatty acid and beta oxidation pathways,
TCA-bypass, TCA cycle II) and synthesis pathways for compounds in cell membranes of aerobic
bacteria (menaquinol and ubiquinone synthesis) increased in the HC group. Notably, bby slightly
relaxing the P-value to 0.07, we obtained 5 additional TCA cycle pathways with higher abundance in
the HC group (TCA cycle I, IV, V, VII and partial TCA cycle in obligate autotrophs), effectively
covering 6 of 9 TCA pathways in the MetaCyc database (Figure 3d; Table S2). Gene-set enrichment
analysis confirmed the elevated levels of aerobic respiration in the HC group (¢<0.05; Table S2).
Based on the increased abundance of lactate producers, we examined functions related to lactate
utilisation. We found D-lactate dehydrogenase (D-LDH) was significantly increased in the HC group
by gene family (UniRef90; P=0.029; Figure 3¢) and EC levels (EC:1.1.1.28; logoFC=1.09; P=0.053;
q=0.23; Table S2). We also found a significant increase in (S)-2-hydroxy-acid oxidase (EC:1.1.3.15;
log2FC=0.99; P=0.048; ¢g=0.23) which reduces aliphatic hydroxy acids, including lactate, using
flavin mononucleotide and oxygen. In contrast, L-LDH genes and enzymes did not show significant
changes (P>0.10). We used the Metabolic Analysis of Metagenomes using fBA and Optimization
(MAMBO) algorithm [59] to predict the metabolic flux of the complete bacterial community and
found a significant increase in D-lactate secretion in the HC compared to the LC group (P=0.051;
Figure 3f).

In summary, we identified a distinct gut microbial signature predictive of high Candida genus
abundance in infection-free lung cancer patients. This signature describes a dysbiotic gut microbiome
state characterized by a systematic decrease in SCFA producers, which results in increased oxygen-
tolerant microbes, including certain lactic acid-producing bacteria.

C. albicans has a competitive advantage using lactate under microaerobic conditions

Our data suggested a possible link between microbial lactate production, higher availability of
molecular oxygen and increased Candida species abundance in the gut. To test the hypothesis that
Candida species may outgrow other fungi, specifically the Saccharomyces species that are their main
competitors in our study cohort, we selected C. albicans and S. cerevisiae var. boulardii for further
experiments. Since our ITS2 data could not reliably separate species from the Saccharomyces in situ
stricto group [60], we selected S. boulardii as the best proxy. A fluorescently labelled strain available
in our laboratory facilitated competition experiments with C. albicans. We used two strains of C.
albicans (BWP17, RM1000) that showed significant alterations in morphology, drug resistance, and
host-cell stimulation depending on the main carbon source [58]. In individual in vitro growth assays
with C. albicans BWP17 and RM 1000 and S. boulardii-GFP on different carbon sources (lactate,
glucose, or lactate + glucose) with varying oxygen levels (anaerobic, microaerobic, or aerobic)
(Figure 4a-b; Table S5) only C. albicans was able to use lactate as a sole carbon source in aerobic
and microaerobic conditions. All three yeast were unable to grow on lactate under fully anaerobic
conditions (Figure 4b). The most significant growth of C. albicans compared to other oxygen levels
and carbon sources was on lactate as the sole carbon source in microaerobic conditions (t-test;
P<0.05; Figure 4a-b). In fully aerobic conditions, growth on solely lactate was strain dependent but
generally lower than in combined media (Figure 4a-b). These observed differences in growth on
lactate were more pronounced for BWP17 than RM1000. In microaerobic conditions, all species
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showed significant reductions in growth rate in glucose+lactate compared to growth on at least one
sole carbon source (t-test; P<0.05). When glucose was present, S. boulardii growth was unaffected
by additional lactate in microaerobic and aerobic conditions (t-test; P<0.05; Figure 4a-b). However,
both C. albicans strains showed a slight growth reduction in glucose+lactate (t-test; P<0.05; Figure
4a).

Together, these findings demonstrate the importance of oxygen for C. albicans growth in lactate as a
carbon source. To evaluate a direct competition between Candida and Saccharomyces species, we
co-cultured them under the same conditions as individual growth assays (Figure 4c). The growth of
both C. albicans strains was consistently higher than S. boulardii-GFP on lactate as the sole carbon
source in microaerobic or aerobic conditions. Since oxygen levels in the lower gastrointestinal tract
are unlikely to be normoxic (aerobic), the results in microaerobic conditions are more representative
of the true competitive landscape in the human gut for the two yeasts, at least during gut
inflammation.

Last, we evaluated if the main lactic acid producing-bacteria identified in our study could be
involved in the translocation of Candida species through intestinal walls. We focused on the impact
of Lactobacillus and Lactococcus species on gut integrity, which is a critical factor in systemic
candidiasis [61]. We evaluated the impact of L. gasseri and L. lactis by measuring transepithelial
electrical resistance (TEER; Figure 4d). As positive controls, we used L. rhamnosus (LGG®) a well-
known probiotic, and B. adolescentis and O. splanchnicus, which were enriched in the LC group. B.
adolescentis had the largest negative fold-change when comparing LC vs. HC groups (Figure 3c). It
is an important microbe associated with health [62], and enhances gut barrier function [63]. O.
splanchnicus produces an array of diverse SCFAs [64] and its absence is associated with various
inflammatory diseases [46,65]. Both L. gasseri and L. lactis showed protective effects (as increased
area under the curve in TEER), comparable to LGG®, higher than O. splanchnicus but lower than B.
adolescentis (Figure 4d).

We found strong evidence that C. albicans strains have growth advantages compared to
Saccharomyces species in utilizing lactate, and this effect is dependent on the levels of molecular
oxygen available in the environment. However, although the lactate producers supported Candida
species growth by creating a metabolic niche, they might also contribute positively to the integrity of
the gut barrier. These findings align with our initial hypothesis that microbiome factors that support
overgrowth are not necessarily involved in the dissemination of Candida.

15. Discussion

Colonisation resistance is a crucial function of the gut microbiota in infectious disease. In addition to
protecting the host from external pathogens, local microbiota also prevent expansion and invasion of
intestinal pathobionts [66]. Microbial resistance in gastrointestinal infections have both direct and
indirect mechanisms. Infections can be limited directly via metabolic by-products (bacteriocins,
acids, peptides) of the gut microbiota [67], or by outcompeting pathogens for space, metabolites, and
nutrients [68]. Intestinal pathogens can also be inhibited indirectly when the local microbiota
calibrate host immune responses to them [69] or induce the formation of a protective mucin layer
that covers the gut epithelium. Perturbation of the resident microbiota is thus a risk for infection by a
pathobiont infection that is ordinarily held at bay by these mechanisms. Candida species are gut
symbionts that can become an aggressive pathogen under specific circumstances. Despite Candida
species being the fourth most common cause of nosocomial bloodstream infections [70] the number
of human studies investigating their interplay with the gut microbiota is surprisingly low compared
to studies on bacterial pathogens such as Clostridium, Enterococcus, Salmonella and
Enterobacteriaceae [71].

Most of the work to identify specific bacterial promoters or inhibitors of Candida species
colonisation has been performed in mouse models. Fan et al. [11] demonstrated how Bacteroides
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thetaiotamicron can protect mice from C. albicans colonisation by activating innate immune
effectors and the antimicrobial peptide LL-37. The bacteria taxonomic annotation was based on 16S
rRNA, therefore the changes in the metabolic capacity of the gut microbiome associated with the C.
albicans colonisation remained unclear. Tan ef al. [7] used mice to show that several gram-positive
bacteria, including Staphylococcus aureus, shed peptidoglycan units that trigger hyphae formation of
C. albicans. The only human study to concomitantly examine the mycobiome and microbiome to
find common colonisation patterns between Candida species and the gut microbiome was presented
recently by Zhai et al. [24]. The authors concluded that systemic candidiasis begins with expansion
of Candida species in the human gut. Using 16S rRNA, they observed a reduction in the levels of
anaerobes in patients with systemic candidiasis compared to non-infected cohorts. However, the
small number of patients (8) in this study and the lack of functional characterisation of the
microbiome left many questions unanswered.

Using shotgun metagenomics of stool samples from 75 lung cancer patients combined with ITS
sequencing, we substantially expanded our knowledge on the ecology of Candida species inhibition
and overgrowth. Some studies suggest that immunotherapy limits Candida overgrowth. Although all
lung cancer patients in our study received immunotherapy, we observed high variation in Candida
genus levels. The mycobiome of several patients was completely dominated by Candida species. In
some other samples, these fungi were virtually absent. No patients, including those with extremely
high levels of the Candida in the gut, showed any sign of infection. However, we do not know if any
of those patients were diagnosed with systemic candidiasis after the completion of our study.

Our relatively large study cohort allowed us to develop a machine learning model based solely on
bacterial taxa or functional abundance. The model had high accuracy in classifying patients from an
external cohort into groups with high abundance or low gut abundance of the Candida genus. Some
bacterial species or functions are suggested to affect the growth of individual Candida species
[11,72]. We mostly focused on C. albicans and demonstrated general properties of the gut
microbiome that are associated with the successful colonisation of Candida species. We also
developed ML models to predict the levels of individual Candida species. These models showed
high accuracy but did not significantly improve classification over the genus-based model. A phage-
based machine learning model showed a high predictive power for C. albicans and requires further
attention in the future in light of recent evidence [43].

What we found particularly intriguing in our human study was the enrichment of several potential
lactic-acid producing bacteria in the HC group. Lactobacillus species such as L. gasseri are
particularly interesting as recent in vitro experiments show they prevent hyphae formation without
reducing the growth of C. albicans [73]. The exact role of lactate on Candida species growth is
unclear. For C. albicans, the change from glucose to lactate as the main carbon source is tightly
linked to changes in cell wall composition. Ene ef al., and Ballou ef al., independently demonstrated
in vitro that a lactate-rich environment assists C. albicans in hiding from the innate immune system
by stimulating interleukins [58] or by beta-glucan masking [74]. In contrast, Gutierrez et al. found
lactate inhibited the growth of C. albicans at higher concentrations [75], while MacAlpine et al.
reported no impact on growth at physiological levels of lactate [73]. Notably, the oxygen status of
the experiments is unclear and C. albicans was grown at 30°C or 42°C, which are not physiologically
relevant in the gut. However, the ecology of the human gut is more complex. The growth response of
Candida species to increased levels of lactate depends on both the growth of other fungi and on
environmental conditions. We used human metagenomics data and in vitro competition experiments
to demonstrate that under low oxygen conditions, induced by a reduction of SCFA producers [55],
Candida species may gain a competitive advantage due to growth on lactate as the primary carbon
source in the gut. Our observations bring to light another possible mechanism by which SCFA
producers inhibit Candida overgrowth in addition to mechanisms in the literature such as direct
inhibition [52] and immune regulation [51,66,76]. However, although lactate producers may promote
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Candida species growth in the human gut under microaerobic conditions, they also increase
protection of the human host from systemic candidiasis by increasing gut barrier integrity.
Limitations of our study are that we did not monitor oxygen levels in the gut of patients and provide
only indirect evidence in the form of signs of dysbiosis, increased ratios of aerobes to anaerobes and
microbial functional pathways related to aerobic respiration in the HC group. No patient in this
group developed systemic candidiasis during our study. However, a longer follow up would be
necessary to delineate the ecological context associated with overgrowth and dissemination of
Candida species. Nevertheless, human studies with many participants like ours are needed to
evaluate which findings from in vitro experimentation are relevant to the human gut and to design
prophylactic, microbiome-driven strategies for patients at high risk of candidiasis.

Acknowledgements

We would like to thank the patients and their families for participating in the stool collection studies.
We would also like to thank Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) CRC/Transregio 124 ‘Pathogenic fungi and their human host: Networks of interaction’,
subproject INF and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
Germany’s Excellence Strategy - EXC 2051 — Project-ID 390713860 for financial support. R.V.U
and M.O.A.S acknowledge support from The Novo Nordisk Foundation, Challenge programme,
CAMIT under grant agreement: NNF17C00028232 and grant number: NNF20CC0035580. We also
thank Dr S. Brunke for sharing the C. albicans strains, Dr T. Zheng for her initial work on phage
annotation, and Dr R. Santhanam for pilot work on the mycobiome of cancer samples.

Author contributions

Conceptualisations: B.S., Z.L., R.V.U,, M.O.A.S., and G.P. Funding acquisitions: G.P., M.O.A.S.
Investigations: R.V.U., Z.L., GJ.W., X.C., MM, A.W., S.L., and B.S. Methodology: B.S., Z.L.,
GJ. W, MM, X.C,, and R.V.U. Project administration: G.P. Resources: G.P., M.O.A.S.
Supervision: G.P., M.O.A.S. Validation: all authors. Visualisation: B.S., R.V.U. Writing—
original draft: B.S. and G.P. Writing—review and editing: all authors.

Competing interests

GJW is an employee of SOTIO Biotech Inc., a former employee of Unum Therapeutics; reports
personal fees from Spring Bank Pharmaceuticals, Imaging Endpoints II, MiRanostics Consulting,
Gossamer Bio, Paradigm, International Genomics Consortium, Angiex, IBEX Medical Analytics,
GLG Council, Guidepoint Global, Genomic Health, Oncacare, Rafael Pharmaceuticals, and SPARC-
all outside this submitted work; has ownership interest in Unum Therapeutics (now Cogent
Biosciences), MiRanostics Consulting, Exact Sciences, Moderna, Agenus, Aurinia Pharmaceuticals,
and Circulogene-outside the submitted work; and has issued patents: PCT/US2008/072787,
PCT/US2010/043777, PCT/US2011/020612, and PCT/US2011/037616-all outside the submitted
work.

The remaining authors declare they have no competing interests.

Data availability statement

Fungal internal transcript spacer (ITS) and whole metagenomic sequencing (WMS) data generated in

this study were uploaded to the NCBI sequence read archive (SRA) under Bio Project
PRJNAS811494.

16. Tables

Table S1. Test results for significant differences in alpha and beta diversity between groups.



187

Table S2. Differential abundance test results of bacteria, fungal, MetaCyc pathways, Enzyme
commission (EC) and viral operational taxonomic unit (vOTU) abundances.

Table S3. Genome-scale metabolic modelling results for short-chain fatty acids from different diets
and oxygen levels.

Table S4. Microbial set enrichment results (MSEA).

Table S5. Growth rates, colony-forming units (CFU) and competition experiments.

17. Figures



188

PD-L1 e o
Inhibitor Metagenome ‘ Statistical Analysis -
Bacterial Species: 234 (98 = 18)
8 Bacterial Genera : 84 (46 + 7) o .7
= MetaCyc pathways : 394 (339 = 21) . . =
EC numbers : 1688 (1361 + 83) Correlation Analysis ., e
“ KEGG orthology 1 5120 (3943 + 340) @

KEGG pathways : 155 (120 = 3)
o]
W Machine Learnin
Mycobiome EK 9 %&o

%

Fungal Genera 176 (
Fungal Species : 113 (

e

Genus

B canvioa

I saccraromyces

. Dipodascus

Yarrowia

EE

Alternaria

Fusarium

Debaryomyces
. Cladosporium
B Penicitium
. Aspergillus

Other

TSS Abundance

T o
Effect size (%)
Type

:

Univariate Adj. R2

NI
e Samples et s7e (09 h
T
; o " -
] source @ p=0eR04 Candida R? f 5 36:/2
. B 1eros AR2 =15.0% =5.
0 & Fungi 3 High p=0001
| « dispersion p = 0.78
H ¢ Bacteria E Low ispersion p = 0.
Bacteroides, 5 levos Exp. Var =24.4%
Nt a» Basic g
s Ruminocdcels %
£ ez
g =
5 - g
= g High Low S
-~ o
S ot Petweivnwatgan P e T T o) - mmmm oo < .
2 s
< p=0.091 oo
Candida 16406 AR2 = 0.037
igpotic U ] l 12 4
: §
.
5 . o o 9 <
A ;J”uﬁ \:wrh\‘am\m: . £ 1es05 EE
. i . K|
' o
. 3 =
+
-5 o 5 Hl h -10 o 10
Axis 1 (10.523%) 9 Low PCOAL - 14%

Figure 1. Explanatory factors of mycobiome diversity. (a) Study design. Indicated are the total number of
taxonomic and functional features annotated in our study and in parentheses, their average per sample.

(b) Fungal genus relative abundance profile (by total-sum scaling, TSS). The top 10 genera by highest median
abundance are indicated by colour, with grey indicating abundance of the remaining fungi. (c-d) Distance-
based redundancy analysis (dlbRDA) of fungal species beta diversity (Aitchison distance). Explanatory factors
are (c) fungal genera and (d) bacterial species relative abundance. Only significant terms are shown (P<0.05).
Displayed are cumulative explained variances of full, non-redundant models (black) and single-term statistics
(grey). Important fungal and bacterial taxa are coloured red or green, respectively. (e) Principal coordinate
analysis (PCoA) biplot of fungal species beta diversity (Aitchison). Samples are coloured by Candida centre
log ratio-normalised abundance. Top features by ordination correlation (t-test; P<0.05) are bacterial (green),
fungal (red) and patient characteristic (blue) arrows indicating the direction of covariance between feature
abundances and the first two ordination axes. Samples are in a gradient from high (red) to low (green)
Candida abundance. Axes show explained variance. (f-g) Notched boxplots showing (f) total number of
Candida internal transcribed spacer (ITS) reads and (g) the total number of ITS reads. Significance was
assessed using non-parametric generalized linear models (Rfit) controlled for body mass index and gender.
(h) PCoA of fungal genera beta diversity. Candida grouping (High vs. Low) shows significant separation
(P=0.001; PERMANOVA). Within-group diversity differences were insignificant (dispersion P>0.05). Circles
indicate 95% confidence interval of within-group diversity.



189

A Bacteria Species b MetaCyc Pathways
Candida f =180
High R*=2.41%
10 10 S p=0.057
Low dispersion.p = 0.59
Exp. Var =\36.9%
.
2 2 S 2
g 3 B <
& « & o
< o g o0 < Ps
3 3 3 3
O o O O
c g c c
-10 -10
To [ Ry EC) R 20 0 10 To L] R
PCOAL - 6% PCOAL - 31% PCOAL - 24% PCOAL - 6%
e f Contributional Diversity g h | J Phage DGRs
100 p=0022 Candida p=0017 vl P=00%8 Fisher Tes
AR2 =0.071 " 1.3e-05 AR2 = 8% AR2 = 5%
[a— High [ — — ——
- 0.75 100 .
2 - Low
g « T o 100
E 23
& 099 d g o =
- g 8
g b s | \§/ 3
g 50 8 g
5 i 5 3 = - hasDGRS
z g g g
g 098 £ € 9 s B i ocrs
g O- . without
® n
0
0.97
* -200 o
High Low High Low High Low High Low High Low

Figure 2. Microbiome contribution to high and low Candida groups. (a-d) Principal coordinate analysis
(PCoA) of beta diversity (Aitchison distance) using (a) bacterial species, (b) bacterial metabolic pathways, (c)
bacterial enzyme functions (EC, Enzyme Commission) or (d) viral orthologous taxonomic unit (vOTU)
abundance profiles. Bacterial function profiles were stratified for bacteria-only abundances. Diversity was
significantly different between Candida groups (High vs. Low; p<0.05; PERMANOVA; betadisper P>0.05).
(e) Notched boxplots of bacterial function (MetaCyc pathway) alpha diversity (Simpson). (f) MetaCyc
pathways with significant contributional Simpson diversity (Rfit drop-test; P<0.05). Centre lines indicate the
median Simpson diversity (y-axis) of a pathway (x-axis). Ribbons indicate the 25% and 75% quantiles.
Colours indicate High or Low Candida group. (g) Notched boxplots show the median contributional diversity
per pathway (P=1e-5; paired Wilcoxon test). For each pathway (point), grey lines indicate change in diversity
from High to Low group. (h-i) Notched boxplots summarizing the abundance of bacterial taxa stratified by
tolerance to molecular oxygen. Only strict and obligate anaerobes were considered anaerobes. Significance
was assessed using non-parametric generalised linear models (Rfit) controlled for body mass index and
gender. Effect sizes are indicated as AR, (j) Number of phages contigs with (blue) or without (red) diversity-
generating retro-elements (DGRs). DGRs were significantly enriched in samples of the low Candida group
(P<0.05; two-sided Fisher test).
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Figure 3. Gut bacterial signatures predictive of Candida levels. (a-b) Machine learning performance for
predicting High and Low levels of all Candida genus and species (C. albicans, C. sake, C. glabrata).
Performance is shown as area under the receiver operator characteristic (auROC) using (a) bacterial feature
abundance or (b) viral operational taxonomic unit abundance (vOTU). auROC in the main cohort (train) was
assessed using prediction on hold-out samples during 10-fold cross validations. The resulting model was used
to predict Candida High vs. Low in an independent set of patients (test; n=11). For Candida genus, three
models are shown (red, brown, orange). (¢) Differential abundance of bacterial species. Significance was
assessed using MaasLin2 (default) controlled for body mass index and gender. Significance is indicated as
*P<0.10, *P<0.05, **P<0.01, ***P<0.001 and *FDR(p)<0.2, ¥FDR(p)<0.1 (FDR, false-discovery rate).
Right, species tolerance to oxygen (O2), machine learning importance (Imp) and robustness (Freq).
Importance indicates the contribution of a species towards predicting High (positive; yellow) or Low
(negative; blue) Candida. Robustness is the number of times a feature was included in a model during cross
validation. (d) Significantly enriched functional classes of significant MetaCyc pathways (Gene Set
Enrichment test). Metabolic functions related to aecrobe metabolism are red. (e-f) Boxplots summarising (e)
centre log ratio-normalized gene family abundance (UniRef90) of D-lactate dehydrogenase (D-LDH) and (f)
metabolite (D-lactate) flux predicted by MAMBO from bacterial profiles. Significance was assessed using
non-parametric generalised linear models (Rfit) controlled for body mass index and gender.
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Figure 4. Bacterial transepithelial electrical resistance and yeast growth under varying levels of oxygen
and carbon sources. (a-d) Histograms showing means and standard deviations. Significance was assessed
using two-sided t-tests and indicated as *P<0.10, *P<0.05, **P<0.01, ***P<0.001. (a) Growth rates of yeast
(Candida albicans BWP17, C. albicans RM 1000, Saccharomyces boulardii) under carbon sources (glucose,
lactate, or both) and oxygen levels (0%, 1%, and 21%). (b) Colony-forming units (CFU)-ml! were determined
at the end of growth experiments. (¢) Co-culture competition of C. albicans against S. boulardii. Species were
added 1:1 and growth tracked for 24 hours. Green fluorescent protein (GFP)-labelled S. boulardii were used to
differentiate S. boulardii from C. albicans cells. The ratio of final optical density (OD) to GFP (S. boulardii)
indicates C. albicans abundance. Higher values indicate more C. albicans. (d) Transepithelial electrical
resistance (TEER) to assess protective effects of bacteria. Results are area under the curve (AUC) of TEER
curves over time. Values greater than 0 imply protection compared to control (no bacteria).
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Figure S1. Crosskingdom co-abundance networks of bacterial species and fungal genera abundances.
Correlations were assessed using Spearman's coefficients on centre log ratio (CLR)-normalized (left) or total-
sum scaled (TSS)-normalized abundance data (right). Only significant correlations with P<0.05 and |7>10%
are shown. Red, solid edges show positive correlations; blue-dashed edges show negative correlations. Colour
strength indicates estimated correlation strength. (a) CLR-based networks capture microbial abundance
correlations better, especially when comparing features between distinct compositions. However, strong
changes in observed relative abundance (TSS) were lost. (b) TSS networks revealed correlations between
dominant species but were less reliable for low-abundance species. (a-b) Lactobacillus species such as L.
gasseri and L. lactis and Escherichia species correlated positively with Candida regardless of normalization,
and short-chain fatty acid producers like Lachnospiraceae and Actinomyces odontolyticus were found to
correlate negatively.

Figure S2. Candida albicans correlated negatively with Yarrowia lipolytica and Saccharomyces
paradoxus abundance. (a) Fungal co-abundance networks of significant correlations (P<0.05; |»>0.10;
Spearman's coefficient) with C. albicans. Solid, red lines indicate positive correlations. Dashed, blue lines
indicate negative correlations. (b) Fungal species abundance profile indicating the top 10 most abundant
fungal species based on total-sum scaling. Species are shown in colours. Other fungi are grey.

Figure S3. Normalised Candida abundance correlates across methods. In normalised space (a), all
methods except rarefaction showed acceptable linear correlation (cumulative sum scaling [CSS]; centralized
log-ratio [CLR]; balance-based CLR [bal-CLR]). Rarefaction differs were resolved using a simple rank
transformation (b), implying at least a non-linear relationship among all methods. The strongest agreement
was seen for CSS and CLR. Rarefaction was a poor normalisation choice, as it accounted only for differences
in sequencing depth and not for compositionality effects in relative abundance data. (¢) Candida CLR-
normalised abundance (y-axis) per sample (x-axis). Samples are ordered from low to high CLR abundance.
Dashed lines indicate median sample and median abundance thresholds.

Figure S4. Principal coordinate analysis (PCoA) of beta diversity for bacterial species and functional,
fungal genus and species, and viral operational taxonomic unit abundances (vOTU). R? describes
estimated explained variance by Candida High vs. Low grouping (Adonis2; PERMANOVA). MetaCyc and
KEGG Orthology had the largest effect sizes.

Figure S5. Metagenomic gut virus (MGYV) Pphage mapping rate. (a) Percentage of reads per sample that
passed (blue) or did not pass (red) a 10% prevalence filter. More than 30% of reads were assigned to low
prevalence contigs in a few samples. (b) Percentage of reads assigned to phage contigs by Candida High or
Low abundance. Statistical significance was assessed by unpaired Wilcoxon rank-sum tests. The median 2.5%
of reads were assigned to prevalent viral contigs.

Figure S6. Species enriched in the High Candida (HC) group were related to human-disease genes.
Microbial Set Enrichment Analysis revealed that bacterial genera with significant differential abundance in
the HC group (bottom) were frequently associated with human disease genes (n=280) in contrast to the low
Candida (LC) group (n=0). Green nodes indicate human disease-associated genes that were tested for
significant enrichment in KEGG pathways (red nodes). Grey edges indicate an association between either (1)
bacteria and host genes or (2) host genes and pathways. Red edges indicate associations with interleukins and
chemokines. IL-17 signalling is of interest because of strong roles in immune cell recruitment after bacterial
invasion and in tumour response.

18. Materials and methods

Ethics statement

This study was conducted according to the guidelines of the Helsinki Declaration of the World Medical Association. The
national-level ethics committee (Hungarian Scientific and Research Ethics Committee of the Medical Research Council,
ETTTUKEB/EKU) approved the study. Patients gave consent to participate in this study. After clinical information was

collected, patient identifiers were removed so patients cannot be identified directly or indirectly.

Study participants and faecal collection

Faecal samples from 75 lung cancer patients were collected for analysis of fungal, viral, and bacterial microbiomes. All
faecal samples were collected at the National Koranyi Institute of Pulmonology, Budapest, Hungary, and the County
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Hospital of Pulmonology, Torokbalint, Hungary. Patients received a combination therapy of chemotherapy and
immunotherapy. An additional cohort of 11 patients from the same hospital was recruited to provide stool samples for
validation of the machine learning models. These patients were treated with immunotherapy drugs only.

Faecal DNA extraction

Stool samples were kept frozen at —80°C before being sent to Novogene (UK) for DNA extraction and sequencing. Stool
samples were thoroughly mixed with 900 uL. CTAB lysis buffer. All samples were incubated at 65°C for 60 min before
being centrifuged at 12 000 g for 5 min at 4°C. Supernatants were transferred to fresh 2 mL microcentrifuge tubes and
900 pL phenol: chloroform: isoamyl alcohol (25:24:1, pH = 6.7; Sigma-Aldrich) was added for extraction. Samples were
mixed thoroughly before incubation at room temperature for 10 min. Phase separation occurred by centrifugation at 12
000 g for 15 min at 4°C, and the upper aqueous phase was re-extracted with 900 uL phenol:chloroform:isoamyl alcohol.
Samples were then centrifuged at 12 000 g for 10 min at 4°C, and the upper aqueous phases were transferred to 2 mL
microcentrifuge tubes. Final extraction was with 900 pL chloroform: isoamyl alcohol (24:1) and centrifugation at 12 000
g for 15 min at 4°C. DNA was precipitated by adding the upper phase to 450 pL isopropanol (Sigma-Aldrich) containing
50 puL 7.5 M ammonium acetate (Fisher). Samples were incubated at —20°C overnight. Shorter incubations (1 h)
produced lower DNA yields. Samples were centrifuged at 7500 g for 10 min at 4°C, and DNA pellets were washed three
times in 1 mL 70% (v/v) ethanol (Fisher). Pellets were air-dried and re-suspended in 200 pL. 75 mM TE buffer (pH = 8.0;
Sigma-Aldrich).

Fungal ITS2 sequencing
The concentration of extracted genomic DNA was determined by Qubit 2.0 and DNA quality was checked using gel
electrophoresis. PCR reactions used 200 ng DNA with primer sets specific to hypervariable regions (ITS3-2024F, ITS4-
2409R). Primer sets had unique barcodes. PCR products was separated on gels and fragment with the proper
amplification size were extracted and purified. Purified PCR product was used as a template for library preparation. PCR
products were pooled in equal amounts and then end polished, A-tailed, and ligated with adapters. Fragments were
filtered with beads. After 1 PCR cycle (to make the library double-stranded), libraries were analysed for size distribution
and quantified using real-time PCR. Paired-end sequencing of the library was performed on an Illumina Hiseq2500
(2x2500bp).

Fungal ITS2 annotation
ITS2 raw reads were quality controlled, merged and filtered for chimeric reads using DADA?2 in R 4.1, BioConductor
3.13 [77]. The median, high-quality, non-chimeric 78,332 ITS2 reads were extracted. From these, amplicon sequencing
variants (ASVs) were estimated. Representative sequences of ASVs were aligned to the fungal UNITE database (2017-
12-01) [78,79] using the Mothur classifier [80] to improve classification accuracy. ASV counts were summed at species
and genus levels and a 10% prevalence filter applied. Normalisation was by applying Bayesian zero-replacement and
subsequent centred log ratio (CLR) transformation.

Whole metagenomics sequencing

After DNA extraction, a sequencing library was generated based on Illumina technology and following manufacturers’
recommendations. Index codes were added to each sample. Briefly, genomic DNA was randomly fragmented to 350 bp
and fragments narrow-size-selected with sample purification beads. Fragments were polished, A-tailed, and ligated to
adapters, filtered with beads, and amplified by PCR. Libraries were analysed for size distribution and quantified using
real-time PCR. Paired-end sequencing of the library was on an Illumina HiSeq2500 (2x150bp).

Bacterial taxonomic and functional profiling
Quality control of raw reads was performed using Sunbeam [81], including removal of low-quality reads (Phred score >
25 over 10 nucleotides), adaptors, and human-host related reads. Bacterial taxonomic profiling was performed using
MetaPhlAn2 [82] with default parameters. For bacterial functional annotation, the HUMAnN?2 pipeline was employed
[33] with default parameters. Since HUMAnN2 does not directly support paired-end reads, paired-end sample mates
were merged as suggested by the HUMAnNN2 authors. HUMANN?2 assigns pathways and gene families based on
MetaCyc [83] and UniRef90 [84] databases, respectively. Abundances of gene families in each sample were reported in
reads per kilobase (RPK) and further normalised by copies per million (CPM), effectively yielding transcript per kilobase
million (TPKM). To remove fungi-related abundances, we kept only functional abundances that were directly assigned to
bacterial taxa (i.e., excluding other kingdoms and unclassified abundances). The resulting bacteria-only abundances were
summed for each feature category (MetaCyc pathways, Enzyme Commission (EC), KEGG orthology terms (KO), KEGG
pathways). A 10% prevalence filter was applied to bacterial species, bacterial genera, MetaCyc pathways, EC, KO, and
KEGG pathways. Summaries are reported as the median = median absolute deviation (MAD).

Co-abundance networks

Spearman's correlation analyses of microbial abundances within and between kingdoms were performed by abundance
profiles normalized (TSS or CLR) for each kingdom separately. Only significant correlations were considered further
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(P<0.05; |7>0.10). Networks were transformed and analysed using the R package TidyGraph [85] and visualised using
GGraph [86].
Statistical analysis

To assess the significance of univariate measurements while correcting for confounders such as body mass index (BMI)
and gender, we used a rank-based generalised linear model (GLM) as implemented in Rfit [87,88]. In contrast to simple
linear models or GLMs, the rank-based GLMs assess unspecific, non-linear trends in data. This test was applied to
taxonomic and functional alpha diversity, and contributional alpha diversity. To test for significant differences in
bacterial and functional abundances, we used Maaslin2 [89]. In addition to the default settings (total-sum scaling, log-
transform, GLM), we set a minimum prevalence filter of 20% (15 samples) with 1e-6 minimum abundance. Tests are
corrected for differences in BMI and gender. P-values were adjusted for multiple testing using false discovery rate
(FDR).

Cohort stratification

Samples were stratified into two groups (High and Low Candida) based on median CLR-normalised Candida genus
abundance. CLR normalisation was performed by (i) removing features with less than 10% sample prevalence but
summing counts of low prevalence taxa into a new ‘LOW_PREV’ feature to preserve the proportions of the remaining
features, (i1) Bayesian zero replacement to maintain log-ratios [90,91] and (iii) applying CLR transform as suggested for
compositional data [30,90-92]. Samples higher than median Candida levels were classified as the High group; others as
the Low group.

Diversity analysis

Diversity calculations were performed using the R package vegan [93]. The alpha diversity indices of bacterial and
fungal communities were calculated using Shannon, Simpson, observed amplicon sequencing variants, and Pilou’s
evenness index [93]. For beta diversity, analyses were performed using the Aitchison index and Bayesian-zero
replacement as suggested [28,29,91,94] to overcome compositionally related biases. Between-group significance was
estimated using PERMANOVA as implemented in the Adonis (vegan [95]) using 1000 permutations. Beta-dispersion
(within-group diversity) was assessed using betadisper (vegan).

Aerobe and anaerobe annotation

Culture conditions of bacterial species annotated with MetaPhlAn2 were manually searched in DSMZ
(https://www.dsmz.de/collection/catalogue/microorganisms/catalogue/bacteria) and ATTC bacterial collection
(https://www.lgcstandards-atcc.org/Products/Cells_and Microorganisms/Bacteria). Strict or obligate anaerobes were
annotated as anaerobes. Facultative anaerobes and obligate acrobes were classified as acrobes. Uncultured bacteria were
not annotated.

Machine learning

We performed logistic regression based on GLMnet models as implemented in the R package SIAMCAT [41]. We
screened several model normalisations (rank-unit, log-unit, CLR), feature selection (receiver operating curve (ROC)-
based with n=20-100) and model (elastic Net, Lasso, Ridge, Lasso-LL, Ridge-LL) settings. Zeros were imputed by
dividing the smallest non-zero abundances value by 10. Models were trained with feature abundances from only one
category at a time (bacterial taxa, MetaCyc pathways, KEGG orthology terms, KEGG pathways). A 30% prevalence
filter was applied in the main cohort of this study. The test cohort was filtered for features prevalent in the main cohort.
BMI and gender were included as additional, fixed covariates in the models.

Data augmentation was applied to each training slot of the SIAMCAT model analogous to previous work [42].
Specifically, train-test splits were initiated in the SIAMCAT model object. For each fold, new samples were generated
from the training samples per class so that any class imbalance was removed after adding augmented samples. Therefore,
training samples were used to fit a negative binomial distribution and the fitted distribution used to sample a fixed
number of samples (between 10 and 40). The resulting training cohort had both original and generated samples; test
samples remained unchanged. Class labels of generated samples were never used for performance evaluation (i.e.,
prediction performance) and were relevant only for feature selection and model fitting.

Transepithelial electrical Resistance (TEER)

Bacterial growth conditions
The following strains were assessed: probiotic strain Lactocaseibacillus rhamnosus GG (DSM 33156, formerly known as
Lactobacillus rhamnosus GG, referred to by use of the trademark LGG®), provided by Chr. Hansen A/S, Denmark and
four type strains; Lactobacillus gasseri (DSM20243), Lactococcus lactis subsp. lactis (DSM20481), Bifidobacterium
adolescentis (DSM20083) and Odoribacter splanchnicus (DSM20712). LGG® (DSM33156), L. gasseri (DSM20243)
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and B. adolescentis (DSM20083) were inoculated from frozen stock and cultured overnight at 37°C in De Man, Rogosa
and Sharpe broth (MRS) broth, pH 6.5 (Difco™, 288110) with 0.05% cysteine hydrochloride monohydrate under
anaerobic conditions in 7L anaerobic boxes with 2 sachets of 3.5L. AnaeroGen™ Sachets (Thermo Scientific™
ANO0035). L. lactis (DSM20481) was grown in M 17 broth (Biokar BKO88HA) supplemented with 0.5% lactose
aerobically at 30°C. Ten-fold dilution series were prepared from the overnight cultures of these 4 strains and incubated
under the same conditions as mentioned above. Late exponential/early stationary phase were selected based on measures
of optical density at 600nm (ODeoonm). O. splanchnicus (DSM20712) was inoculated from freeze-dried stocks and
cultured overnight at 37°C in Gifu Anaerobic Medium broth (GAM; HyServe Code 05422) anaerobically using sealed
N,-gas flushed Hungate tubes (Glasgeritebau Ochs Laborfachhandel, Art. No. 1020471). O. splanchnicus (DSM20712)
was off-gassed twice per day as the strain is a gas producer. Overnight cultures were subcultured once, and the overnight
culture was used for the experiment.

Caco-2 cell Culture
The human colon adenocarcinoma Caco-2 cell line (DSMZ ACC 169, Leibniz-Institut DSMZ-Deutsche Sammlung von
Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany) was cultured in T75 Nunc™ EasYFlask™
(ThermoFisher 156499) in Dulbecco’s Modified Eagle’s Medium (DMEM; Gibco™ 21885-025) supplemented with 20%
Fetal Bovine Serum (FBS; Gibco™ 10270) and 1% MEM Non-essential amino acids (Biowest; X0557-100), and 1%
Pen-Strep-Amp B (Biological Industries, Israel, 03-033-1B) in 5% CO; at 37°C.

Transepithelial electrical resistance (TEER)
When the cells were approximately 80% confluent the medium was removed and cells were washed twice in Hanks
balanced salt solution (HBSS; Gibco, 14175). Cells (passage no.22) were dissociated by adding 2mL of TrypLE Express
Enzyme (Gibco, 12604) and left for 4 min in the incubator at 37°C. Approximately 10 mL of medium was added to
dissociated cells and 10° cells/well were seeded onto 12-well, 12 mm Transwell® inserts with 0.4 pm pore polyester
membrane insert (Corning; 3460). Growth media was renewed twice per week and cells were cultured for 21 days to
obtain a monolayer. The day prior to the TEER experiment, transwells were transferred to the CellZscope2
(Nanoanalytics, Munster, Germany) and the medium was changed to antibiotic-free medium (DMEM supplemented with
20% FBS and 1% MEM non-essential amino acids). The CellZscope2 was maintained in a humidified atmosphere at
37°C with 5% CO; and in order to stabilize electrical resistance, overnight measurements of TEER before Caco-2 cells
stimulation allowed determination of a baseline and served as a quality control.
Each of the bacterial cultures was washed twice in Phosphate Buffered Saline pH 7.4 (PBS; Sigma 806552) before
adjusting the ODgoonm to 4.0 in antibiotic-free medium. When adding the bacterial solutions to the transwells the bacterial
suspensions were diluted 8-fold resulting in a final ODsoonm 0f 0.5. To stimulate the Caco-2 cells with bacteria, TEER
measurements were paused, the CellZscope2 was removed from the CO; incubator, and 100 uL of apical medium was
replaced by bacterial suspension or controls. LGG® and DMEM medium served as positive and negative control,
respectively. The CellZscope2 was transferred back to the CO; incubator, and the TEER measurements were resumed
and continued overnight for a total of 18 hours. Changes in TEER during bacterial stimulation were calculated relative to
the latest value recorded immediately prior to the stimulation (baseline measurement, set to 100%) and mean area under
curve (AUC) was calculated for each condition.

Genome-scale metabolic modelling

We detected and downloaded matched bacterial Genome-scale metabolic models (GEMs) from the AGORA
(https://vmh.life) [50] and CarveMe collections (https://github.com/cdanielmachado/embl gems/tree/master/models) [96].
As participants were not restricted to a specific diet, we downloaded 12 different diets (https://vmh.life/#nutrition) for
simulations. These were DACH (a healthy diet for people between 19 and 51 years old), EU average, gluten-free, high-
protein, ketogenic, low-carbohydrate, Mediterranean (with abundant fresh plant foods, minimally processed food, and
olive oil as the principal fat source), type 2 diabetes, unhealthy (very low amounts of fibers and very high sugars and
fats), vegan, vegetarian, and high fiber diets.

All analyses were done in COBRApy (v0.17.1) using Python (v3.6.8) and optimisation solvers provided by IBM CPLEX
(v12.8.0.0). To make models viable for each diet, essential metabolite concentrations were determined by running
COBRApy’s minimum_medium function. Simulations were done in the presence of very limited oxygen (1 unit) to
mimic the gut environment. Flux variability analysis (FVA) for short-chain fatty acids and lactic acid exchange reactions
supporting growth were determined by running flux variability analysis functions. These functions were run in loopless
mode (loopless=True), allowing 10% deviation from the optimal objective function value (biomass) and minimum
overall flux (fraction_of optimum=0.9, pfba factor=1.1).

The Metabolic Analysis of Metagenomes using FBA and Optimization (MAMBO) algorithm was used to associate the
most likely metabolite abundance profile with our metagenomic samples [97]. MAMBO is based on semi-Markov chains
that optimize for a high correlation between a metagenomic relative abundance profile and a predicted metabolic profile.
Prediction was based on bacterial GEMs associated with the given metagenomic sample. IBM ILOG CPLEX [98] was
used as a solver and run in a Python environment (v3.7).



https://vmh.life/
https://github.com/cdanielmachado/embl%20gems/tree/master/models
https://vmh.life/#nutrition

196

Fungal co-culture and in vitro assays

Candida albicans-RM 1000, C. albicans-BWP17, and Saccharomyces boulardii-GFP were cultured in yeast extract-
peptone-dextrose (YPD) agar plates containing 10 g-L"! yeast extract, 20 g-L*! casein peptone and 20 g-L! glucose at
37°C in aerobic conditions. Overnight liquid cultures were prepared by picking a single colony from a YPD agar plate
and inoculating synthetic complete (SC) minimal media containing 6.7 g-L™! yeast nitrogen base supplemented with 1%
glucose. For aerobic growth conditions, overnight liquid cultures were incubated at 37°C and 200 RPM for ~16 hours.
For microaerobic (1% oxygen, 94% N2 and 5% H>) or anaerobic (95% N2 and 5% H2) growth conditions, liquid broth
was prereduced in anaerobic conditions 24 hours before inoculation. Next, strains were inoculated from YPD agar plates
into prereduced SC minimal media supplemented with glucose, and cultures were incubated at 37°C in microaerobic or
anaerobic conditions for ~16 hours without shaking.

Growth and competition experiments of C. albicans and S. boulardii in different carbon sources and

oxygen availability

To determine the effect of L-lactate and glucose on C. albicans and S. boulardii growth, overnight cultures were diluted
to optical density (OD),, of 0.1 in 100 pL fresh SC medium supplemented with 1% carbon source (1% glucose, 1% L-

lactate, or glucose plus L-lactate each at 0.5%), and incubated in aerobic, microaerobic, or anaerobic conditions,
respectively. Cultures were performed in flat-bottom, 96-well plates, sealed to prevent evaporation using BreathEasy film
(Sigma-Aldrich). Plates were incubated for 24 hours at 37°C, with continuous orbital shaking at 900 rpm. The
ttemperatures used (37°C) did not induce notable hyphae formation in growth assays and therefore did not perturb growth
measurements. Cell densities were measured every 10 min at ODgoo using a microtiter plate reader (BioTek Synergy H1).
Growth rates were calculated by plotting log of ODgo in log phase and calculating the slope of time points where r? was
closest to 1, using at least 24 time points over a 4-hour log phase period. The plate reader could not be adapted to strict
anaerobic conditions; therefore, determining growth rates of anaerobic experiments was not possible and only final time
points were determined for these experiments.

Competition growth experiments were performed by diluting overnight cultures to OD, of 0.1 and inoculating both at

1:1 in a final volume of 100 pL fresh SC medium supplemented with the corresponding 1% carbon source. Cultures were
incubated for 24 hours in 96-well plates using the same growth conditions as described for the single-strain cultures.
ODy,, and GFP signals (excitation A 485, emission A 510) were measured at intervals of 10 minutes. Since GFP requires

oxygen to emit a fluorescent signal, anaerobic samples were incubated aerobically for 1 hour on ice before measuring the
final OD,, and GFP. GFP signal from anaerobic samples was measured as a single time point after 24 hours.

Colony-forming units (CFU)-ml"! were determined at the end of growth experiments. Cultures were serially diluted 10-
fold in an 8-step dilution series and 5 pL of the dilution series were spotted on YPD agar plates and incubated aerobically
for 48 hours at 37°C. To determine CFUs-ml"!, single colonies were counted from the highest dilutions, divided by spot
volume (5 pL) and multiplied by the dilution factor. Technical replicates were made of all experiments.
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Figure S1. Cross-kingdom co-abundance networks of bacterial species and fungal genera abundances.
Correlation was assessed using Spearman on CLR-normalized (left) or TSS-normalized (right) abundance
data. Only significant correlations with p<0.05 and |r|>10% are shown. Red, solid edges show positive
correlation; blue-dashed edges show negative correlation. Colour strength indicates estimated correlation
strength. (a) CLR-based networks capture microbial abundance differences changes better, especially when
comparing features between distinct compositions. However, strong changes in abundance were lost. (b) TSS
networks can reveal correlations between dominant species but are less reliable for low-abundance species. (a-
b) Lactobacillus spp. such as L. gasseri and L. lactis, and Escherichia spp. were found to correlate positively
with Candida regardless of normalization, and SCFA producers like Lachnospiraceae and Actinomyces
odontolyticus were found to correlate negatively.
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Figure S2. Candida albicans correlated negatively with Yarrowia lipolytica and Saccharomyces
paradoxus abundance. (a) Fungal co-abundance networks of significant correlations (P<0.05; |r{>0.10;
Spearman) with C. albicans. Solid, red lines indicate positive correlations. Dashed, blue lines indicate
negative correlations. (b) Fungal species abundance profile indicating the top 10 most abundant fungal species
based on total-sum scaling. Species are shown in colours. Other fungi are shown in Gray.
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Figure S3. Normalized Candida abundance correlates across different methods. In normalized space (a),
we see decent linear correlation between all methods (cumulative sum scaling [CSS]; centralized log-ratio
[CLR]; Balance-based CLR [bal-CLR]) except for rarefaction. The latter can be resolved using a simple rank
transformation (b), implying, at least, a non-linear relationship between all methods. The strongest agreement
can be observed between CSS and CLR. Notably, rarefaction would be a poor choice of normalization here, as
it only accounts for differences in sequencing depth but not for compositionality effects in relative abundance
data. (¢) Candida CLR normalized abundance (y-axis) per samples (x-axis). Samples were ordered from low
to high CLR abundance. Dashed lines indicate the median sample and median abundance thresholds.
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Figure S4. Principal Coordinate Analysis (PCoA) of beta-diversity for bacterial species and functional,
fungal genus and species, and viral OTU abundances. R? describes the estimated explained variance by
Candida High vs Low grouping (Adonis2; PERMANOVA). MetaCyc has the strongest effect size (together

with KEGG Orthology).
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Figure S5. MGV Phage mapping rate. (a) Percentage of reads per sample that passed a 10% prevalence
filter (blue) or not (red). More than 30% of reads were assigned to low prevalence contigs in a few samples.
(b) Percentage of reads assigned to phage contigs by Candida High or Low abundance. Statistical significance
was assessed by unpaired Wilcoxon rank-sum tests. On median, 2.5% of reads were assigned to prevalent
viral contigs.
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Figure S6. Species enriched in HC group were related to human-disease genes. Microbial Set Enrichment
Analysis (MSEA) revealed that bacterial genera with significant differential abundance in the HC group
(bottom) were frequently associated with human disease genes (n=280) in stark contrast to LC (n=0). Green
nodes indicate human disease-associated genes, which in turn were tested for significant enrichment in KEGG
pathways (red nodes). Grey edges indicate an association between either (1) bacteria and host genes or (2)
host genes and pathways. Red edges indicate associations with interleukins and chemokines. Especially IL-17
signalling is of interest because it has strong roles in immune cell recruitment after bacterial invasion and in
tumour response.
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Abstract

The saprotrophic fungus Aspergillus fumigatus is an opportunistic human fungal pathogen
and one of the most common causes of infectious death in immunocompromised patients.
Here, we present a collection of 252 strain-specific, genome-scale metabolic models (GEMs)
of this important fungal pathogen to study and better understand the metabolic component of
its pathogenic versatility. Metabolism showed a notable accessory reactome of 22.7%, which
was mainly associated to amino acid, but also nucleotide, and nitrogen metabolism. Presence
of reactions and feasible reaction fluxes supporting fungal growth were sufficient to
differentiate environmental from clinical strain origin. In addition, shotgun metagenomics of
sputum from 40 cystic fibrosis patients before and after they were diagnosed with an
A. fumigatus infection suggests that the fungus shapes the lung microbiome towards a more
beneficial fungal growth environment associated with glycine/serine biosynthesis and the
shikimate pathway. Taken together, the here presented first collection of A. fumigatus strain-
GEMs highlights metabolic differences between different strains of environmental and clinical
origin and improves our understanding of fungal survival in the non-native environment of the
human lung. These may serve as starting points for the development of alternative clinical
intervention strategies targeting the fungal metabolic needs for survival and colonization by

diet modification or microbiome intervention..
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Introduction

Fungal infections are an emerging public concern for both human health care and economics
(71, 2). Aspergillus fumigatus is a globally occurring environmental saprotrophic mold that
poses a serious threat to hospitalized, particularly immunocompromised patients (3). It affects
more than 1 million people annually with invasive aspergillosis (I1A) and 3 million with chronic
pulmonary aspergillosis, both of which show high mortality rates especially in vulnerable

cohorts, while diagnostics remain challenging (https://gaffi.org/why/fungal-disease-

frequency/, April 2022). On top, the prevalence of chronic obstructive pulmonary disease
(COPD) appears to be much higher than estimated with |A contributing substantially to fatal
disease progression (4), while A. fumigatus is related to as many as half of the worldwide
cystic fibrosis cases (5).

It remains largely unknown to which extent environmental and clinical A. fumigatus
isolates possess distinct characteristics to cope with external stresses or accessible nutrient
profiles in challenging environments such as the human lung. Recently, we explored the
genetic diversity of A. fumigatus to reveal a remarkably low fraction of core genes shared by
all members of the species (69% of the total genes identified) (6). However, how the genetic
diversity of A. fumigatus influences phenotypic and metabolic heterogeneity, particularly in
their ability to thrive in the non-native niche of the human lung, has not been addressed yet.

One promising approach to study metabolic capabilities and growth dependencies of
pathogens is the application of genome-scale metabolic model (GEM) reconstruction and
analysis(7). We have previously applied GEM analysis to reveal gut microbiome species that
influence colonization levels of the opportunistic fungal pathogen Candida albicans (8). Given
the exponentially increasing number of available genome sequences, the reconstruction of
multi-strain genome-scale metabolic models is now possible. The first multi-strain-GEM
collection of Escherichia coli enabled the definition of strain-specific adaptation to nutrition
availability and the prediction of nutritional auxotrophies in some strains (9). Protocols and
databases were consequently updated to allow for bacterial GEM reconstruction at strain
resolution (70, 717), while reconstructions of multi-strain-GEMs remain to be explored in
eukaryotes.

In this study we provide the first non-bacterial, multi-strain-GEM reconstruction using
A. fumigatus as a fungal model organism. Defining metabolic differences between 252
environmental and clinical strain-specific GEMs allowed us to identify metabolic reactions
that differ between the two populations. Subsequently, we performed shotgun metagenomics

on sputum from 40 cystic fibrosis patients before and after they were diagnosed with
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A. fumigatus infection. By computationally defining the metabolic output of the lung
microbiome, we propose that the presence of A. fumigatus shapes the metabolic landscape
of the lung microbiome in a manner favorable for fungal growth. Resolving the impact of
genetic diversity on A. fumigatus metabolism appears important to extend our understanding
of adaptation mechanisms particularly with respect to aromatic amino acid metabolism
involving the Shikimate pathway that can ultimately guide the development of new antifungal

therapies.

Results

Reconstruction of a most comprehensive Aspergillus fumigatus pan-GEM
To create a template for subsequent strain-specific GEM design, we first derived a
comprehensive pan-GEM for A. fumigatus metabolism (Fig. 1A). To start, we combined
available draft reconstructions for A. fumigatus with seven automatically derived draft
reconstructions for different Aspergillus spp. (see Methods for details) (72, 13). This approach
allowed us to acquire as many as possible Aspergillus-associated reactions in the core
metabolism of A. fumigatus (i.e. metabolic reactions present in all strains). It also allowed us
to acquire a more comprehensive catalogue of optional accessory metabolic reactions by
defining strain subset diversity enabling the subsequent strain-specific gap filling curation
steps (Fig. 1A). In total, this first draft model was comprised of 7,606 reactions (of which 3,233
are responsible for metabolite exchange with simulated environment) and 3,578 metabolites.

Next, we adapted 62 metabolic components based on fungal and particularly
A. fumigatus specific literature information to create the biomass objective function essential
to simulate A. fumigatus growth rates (see Methods) (74). The largest fractions of the derived
biomass function included carbohydrates and proteins (42.8% and 30%, respectively).
Additional essential components included lipids, DNA, and energetic co-factors (Fig. 1B,
Supplementary Table S1).

Subsequently, we screened available A. fumigatus gene information relevant for
metabolism and added 1,453 genes and 2,003 corresponding gene to reaction rules for

metabolic reactions, as defined by KEGG (https://www.kegg.ip/) or MetaCyc

(https://metacyc.org/, Methods). The remaining 2,370 metabolic reactions (excluding

exchange reactions) could not be mapped to any gene in our pan-GEM draft model and were

removed from the generic pan-GEM accordingly. However, these reactions were retained for
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subsequent strain-specific refinement steps, which require accessory information including
gap-filling of fragmented metabolic pathways (Fig. 1A). Concurrently, we incorporated
reaction-to-pathway association information from both KEGG and MetaCyc. The broadest
pathway categories included amino acids and carbohydrates (Fig. 1C). For the 2,003
metabolic reactions with gene annotation, we predicted nine compartments in our pan-GEM
using WoLF PSORT (Fig. 1D, see Methods) (75). In parallel, we identified and resolved
erroneous energy-generating cycles (76) by correcting or removing thermodynamically
implausible reactions, such as cases where free energy dissipation was diminished.

For the final curation of our pan-GEM, we generated phenotypic growth data for
A. fumigatus wild type (Af293 strain) and five mutant strains affecting nitrogen or carbon
metabolic components, and considered publicly available gene essentiality information (77)
(Supplementary Table S2). The initial agreement of our pan-GEM to our metabolite specific
growth data was already good (Fig. 1E). To optimize the simulation accuracy of our pan-
GEM, we manually resolved any incompatibility between our growth data, available gene
essentiality data, and our in silico model predictions. These curation efforts improved growth
simulation accuracy from 58% to 84% for all tested carbon sources and improved nitrogen
growth simulation accuracy from 55% to 85% (Fig. 1E). The pan-GEM achieved 79% and
65% compatibility for the tested phosphorus and sulfur sources respectively and reached
83% if we neglected sulfur source growth data for AniaD and AlysF (Fig. 1E) (see Methods).
This final model also reached 75% agreement with the available gene essentiality data (Fig.
1F). Altogether, our final pan-GEM of A. fumigatus was comprised of 1,453 genes, 3,882
reactions and 4,170 metabolites distributed across 9 compartments. Of these, 3,051

metabolic reactions and 1,957 metabolites were unique across all compartments.

A. fumigatus strains show notable accessory reaction content

Using a genomic dataset of 252 A. fumigatus strains from Germany (203 environmental and
49 clinical strains) that we generated previously (6), we mapped strain-specific gene profiles
to the reference pan-GEM and subsequently derived strain-specific GEMs (Supplementary
Table S3). For all strain-specific GEMs, we ensured viable growth was predicted in minimal
media with glucose as the carbon source by identifying and resolving minimal sets of

essential reactions (78) and crosschecking against blocked reactions with FASTCC (see
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Methods) (79). Model size varied in the different A. fumigatus strains from 1,366 to 1,455
reactions (mean 1,413).

Although all strain-specific GEMs are derived from A. fumigatus, we found a strikingly
low number of core metabolic components shared by all GEMs. In line with the considerably
high genome diversity of this organism (6), only 984 metabolic genes (69.8%) and 1,150
metabolic reactions (77.3%) were shared by all strain-specific GEMs, resulting in a large
degree of metabolic variation across all GEMs (426 accessory genes and 338 accessory
reactions). Most accessory content was involved in nucleotide, energy (including oxidative
phosphorylation and nitrogen metabolism) and amino acid metabolic pathways (Fig. 2A).
Only 56%, 63% and 68% of all reactions included in the strain-GEMs for these pathways,
respectively, were conserved across all strain models, demonstrating considerable metabolic
pathway variation between strains (Fig. 2A). The majority of the accessory content (70% of
accessory genes, 77% of accessory reactions, Table 1, Fig. 2B) was shared by more than
80% of all strain-GEMs. We previously observed that one genetic lineage of A. fumigatus
possessed significantly fewer accessory genes than the other lineages, including notably
fewer metabolic accessory genes (6) (Supplementary Fig. S1). In contrast, metabolic reaction
content in the strain-GEMs did not show a reduced number of metabolic reactions in this
lineage, demonstrating the presence of redundancy among metabolic accessory genes
(Fig. 2B). Finally, a small, but notable amount of reactions appeared in at most 40% of all
strain-GEMs (Table 1, Fig. 2A) comprising mostly reactions of amino acid metabolism, but
also of lipid and energy metabolism including but not limited to nitrogen dependent
chorismate pyruvate-lyase or nicotinamidase and acyl-CoA dependent acyltransferases.

Taken together, our generated 252 strains showed notable accessory content and
therefore potential metabolic diversity among the strains as well as metabolic robustness

despite reduced accessory metabolically relevant genes.

Metabolic activity of 25 reactions allows differentiation between environmental and
clinical strain-GEMs

When calculating the pairwise Jaccard distance, we found that strain-specific GEMs differed
by at most 15% (Fig. 2C). Neither accessory reaction information nor Jaccard distance
allowed discriminating metabolic capabilities between environmental and clinical strains (Fig.
2B, C). However, we identified eight metabolic reactions present primarily in either

environmental or clinical strain-GEMs that, when taken together, were able to significantly
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differentiate the two populations (exact Fisher-test, p<0.05, Fig. 2D). In agreement with the
statistical significance of these eight reactions, decision tree machine learning (ML) using the
presence or absence of these metabolic reactions, as well as the capability of the strains to
grow on different minimal media compositions required only a few steps to correctly
categorize 216 out of 252 strains (86%, Fig. 2E). Four of these reactions were chorismate
dependent and involved chorismate lyase activity that generates 4-hydroxybenzoate and
pyruvate from chorismate. Chorismate lyase activity is linked to differential activity in the
shikimate pathway, which has been associated with virulence in A. fumigatus (20, 21).
Interestingly, the ability to convert chorismate and glutamine to anthranilate, pyruvate and
glutamate, as well as, of utilizing carbon metabolites including methionine, acetate, succinate
and also thioredoxin was sufficient for the strain origin classification and yielded
complementary metabolic discriminators to the sole presence/absence statistical analysis of
metabolic reactions in our strain-GEM collection (Fig. 2C, D).

Given that only a few metabolic reactions were sufficient to differentiate strains from
clinical and environmental origin by statistical and decision tree analysis, we further explored
whether reaction fluxes between strain-GEMs could be used to further improve differentiation
of strain origin. We analyzed feasible reaction flux ranges for all strain-GEMs by simulating
each on minimal media including glucose as a carbon source and calculating growth
supporting flux ranges using flux variability analysis (FVA) (22). The derived flux ranges were
subsequently used as the input for ML-based classification (see Methods). Classifying
environmental from clinical strains achieved an accuracy of 0.80 (AUC = 0.72) with
information from only 25 reactions (Fig. 2F, Supplementary Table S4). In addition to
previously highlighted chorismate-associated reactions, the ML-model also selected features
associated with amino acid reactions, such as homoserine succinate-lyase or L-
methionine:oxidized-thioredoxin ~ S-oxidoreductase or cystathionine gamma-lyase,
suggesting aromatic amino acid metabolism as a differentiating factor of clinical and
environmental A. fumigatus strains.

Taken together, we did not observe major differences in strain origin given the strain’s
accessory gene or reaction content (Fig. 2B, Supplementary Fig. S1) or complete metabolic
reaction presence (Fig. 2C). In contrast, we identified a small defined set of reactions that
mainly associate to amino acid and chorismate metabolic acitivity which are sufficient to

differentiate clinical from environmental origin to a large extend (Fig. 2D-F).
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The structure of the lung microbiome changes upon A. fumigatus colonization To
investigate the applicability of the GEMs from clinical origin for the prediction of metabolic
components supporting A. fumigatus growth in the human lung, we analyzed sputum samples
from 40 cystic fibrosis patients in Germany (cf. Methods for cohort description). For all
patients, we had an initially culture-negative sample and a subsequent sample that was
positive for A. fumigatus growth. To investigate the changes to the lung microbiota after
A. fumigatus colonization, we performed shotgun metagenomic sequencing for all 80 sputum
samples (A. fumigatus-negative and positive), generating an average of 5.59 Gbp of
sequencing data per sample (s.d. 0.80 Gbp). Using Kraken for taxonomic profiling, we
identified 228 genera and 598 species from all samples using a relative abundance cut-off of
0.1%. Despite the differences in patient cohort, starting biomaterial, and sequencing method,
the taxonomic annotation of the top 10 most abundant genera (Supplementary Table S5)
showed striking similarities to two recent studies, where the lung microbiome of A. fumigatus
infected and control patients was investigated using either sputum samples and or
bronchoalveolar lavage and 16S rRNA sequencing (23, 24).

The prevalence of the top abundant genera was consistently high (Fig. 3A). Notably,
from the top 10 abundant genera, Sphingomonas, Burkholderia, Stenotrophomonas and
Pseudomonas were detected as highly abundant (within the 10 most abundant genera) in 8,
12, 17 and 36 out of 80 samples, (10%, 15%, 21%, and 45%, respectively) showing an
uneven distribution in the population (Supplementary Table S5). Similarly, the most prevalent
species, making up between 2.5% and 51.3% relative abundance were present in most
samples (70%) with the exception of Burkholderia multivorans and Sphingomonas sp.
FARSPH, which had a prevalence of 38.8% and 41.3%, respectively (Supplementary Table
S5). Intriguingly, Pseudomonas aeruginosa was among the top10 most abundant species in
16 samples before and only 11 samples after A. fumigatus infection in the same patients,
although this species has been described to commonly outgrow in cystic fibrosis patients and
co-occur frequently with A. fumigatus colonization (25).

Since we did not find statistically different alpha- and beta-diversity (Supplementary
Fig. 2A, B), we analyzed species co-abundance networks to further examine the
compositional changes of the lung microbiome following A. fumigatus colonization. Using
differential gene correlation analysis (DGCA), we generated networks from differentially
correlated microbial pairs in A. fumigatus negative versus A. fumigatus positive patients’
paired samples (Fig. 3B). We then analyzed the resulting networks using MEGENA (26) and

identified two notable modules in the global network that contained four differentially



215

abundant species (Metagenomseq, zero-inflated gaussian mixture model p<0.05) between
the A. fumigatus negative and subsequently positive patients’ samples. The interactions of
these six species — Schaalia meyeri, Abiotrophia defectiva, Pseudomonas fulva,
Pseudomonas resinovorans, Pseudomonas sp. S1-A32-2, and Haemophilus
parahaemolyticus — were highlighted to emphasize discussion (Fig. 3B). Existing edges
(class +/0 in Fig. 3B) of Pseudomonas sp. S1-A32-2, Abiotrophia defectiva and Haemophilus
parainfluenzae with Clostridium intestinale, Actinomyces sp. Oral taxon 171 and
Streptococcus sp. oral taxon 431 in A. fumigatus-negative samples were lost upon
colonization with A. fumigatus. Similar patterns were observed in the negative association (-
/0) between Schaalia meyeri with Clostridium intestinale, Rhizobium leguminosarum and
Pseudomonas sp. DY-1, and also for Pseudomonas resinovorans, Pseudomonas fulva and
Pseudomonas sp. S1-A32-2 with Haemophilus influenzae, Streptococcus sp. Oral taxon 064
and Streptococcus sp. Oral taxon 431 (magenta edges, Fig. 3E). The associations of
Pseudomonas resinovorans with Streptococcus salivarius, and Schaalia odontolytica,
Schaalia meyeri, Haemophilus parainfluenzae, Streptococcus intermedius with
Capnocytophaga endodontalis, Streptococcus sp. oral taxon 064, Veillonella dispar and
Schaalia meyeri, respectively, also changed direction in the presence of A. fumigatus (0/-, -
/0, respectively).

To evaluate the functional implications of microbiome restructuring following
A. fumigatus colonization, we performed KEGG orthology (KO) enrichment analysis in the
identified four modules in our co-abundance networks (see details in Methods). Interestingly,
both module 1 and 2 were enriched in amino acid metabolism (e.g. phenylalanine, tyrosine,
and tryptophan, but also valine and (iso-)leucine). Further enrichments included propanoate
and butanoate metabolism (module 1), folate biosynthesis (module 2), glycan biosynthesis
and fatty acid metabolism (module 3) and cyanoamino acid metabolism (module 4,
Supplementary Table S5).

In summary, albeit not significantly different with alpha or beta diversity we identified
a distinct set of co-abundance differences in the lung microbiome upon A. fumigatus
colonization. The associated enriched metabolic functions pinpointed again towards amino
acid, particularly aromatic amino acid pathways, but also fatty acid, nitrogen and sulfur
metabolic pathways, suggesting that lung microbiome metabolic activity is reshaped in the
presence of A. fumigatus.
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A. fumigatus is predicted to contribute to the shaping of the lung microbiome and its
metabolic activity to support its own growth

We subsequently investigated whether the changes in the lung microbial community triggered
by the presence of A. fumigatus were accompanied by changes in the metabolic output of
the microbiome. To integrate not only the metabolic output of the microbiome, but also the
host’s, the pathogen’s, as well as additional factors such as dietary molecules, we opted for
in silico prediction. Towards this aim we derived the most likely lung microbiome metabolic
profile supporting the relative abundances of our metagenomics species by growth rate using
the MAMBO algorithm (27). Briefly, MAMBO iteratively calculates growth rates of bacterial
models corresponding to a samples’ metagenomic profile and infers a metabolome profile.
We found significant differences in the beta-diversity of derived metabolite profiles between
patient samples before and after A. fumigatus infection (Euclidean distance; PERMANOVA,
p=0.03, Fig. 4A, Supplementary Table S6).

We next quantified how the changes in the metabolic output of the lung microbiome
following A. fumigatus colonization might alter the predicted growth of the A. fumigatus
clinical strain-GEMs. Using the MAMBO-derived metabolite profiles present after
A. fumigatus colonization, we observed that the GEMs of the 49 clinical strains showed a
significant increase in the predicted growth rate compared to GEMs simulated on the
metabolic outputs from before A. fumigatus colonization (14% increase, Wilcoxon signed
rank test, p=3.55e-15, Fig. 4B) suggesting that the changes induced by A. fumigatus in the
lung microbiome led to a nutritional profile supporting its own growth.

To explore next whether we can identify a connection between the altered lung
microbiome and the metabolic capacity of A. fumigatus we analyzed feasible flux ranges of
reactions that were associated to enriched metabolic subsystems, which we identified before
in the A. fumigatus affected CF lung microbiome (Fig. 3B, Supplementary Table S4). We
identified 54 metabolic reactions across all A. fumigatus clinical GEMs that showed
significantly altered lower or upper flux ranges to support fungal growth simulated with FVA
on MAMBO derived media before compared to after A. fumigatus confirmed colonization
(FDR corrected paired Wilcoxon test, p<0.05, Fig. 4C, Supplementary Table S6). Most
filtered reactions showed significant differences in the upper range, which suggests increased
metabolic activity of A. fumigatus (Fig. 4C). Affected pathways mainly included (aromatic)
amino acid metabolism, but also nitrogen, sulfur, butanoate or steroid metabolic pathways
(Supplementary Table S6). Although predicted flux ranges overlapped between A. fumigatus

negative and positive samples, the change of direction is mostly consistent on a per-strain-
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GEM level (Fig. 4D). Interestingly, the reactions Tryptamine:oxygen oxidoreductase (EC
1.4.3.4) and Chorismate pyruvate-lyase (EC 4.1.3.27) were identified before as major
discriminators between environmental and clinical strains simulated on minimal media
(Fig. 2E). Only 17 reactions like showed significant differences in both, lower and upper flux
bounds (Supplementary Table S6) with NADPH:oxidized-thioredoxin oxidoreductase (EC
1.8.1.9) showing notably constrained flux bound variability across all simulated strain GEMs.

Finally, reinvestigating our phenotypic microarray data for the clinical strain Af293 wild
type we found also a positive growth effect of most amino acids tested as carbon source
including the aromatic amino acids phenylalanine, tyrosine and tryptophan (Supplementary
Table S2). Intermediates such as chorismate, anthralinate and cholines are not part of
commercial microarray platforms, but appeared in multiple minimal media based and cystic
fibrosis associated ML classification models. These metabolites pinpoint to an elevated role

of the Shikimate pathway and warrant further investigation.

Discussion
In this study, we built the first suite of A. fumigatus genome-scale strain-specific metabolic
reconstructions originating from 252 environmental and clinical isolates from Germany (6).
We (i) reconstructed a comprehensive pan-GEM of A. fumigatus metabolism in a data-driven
manner, which we validated against phenotypic microarray and gene essentiality data; (ii)
derived 252 strain-specific GEM models by considering respective genome assemblies and
manually curating the strain-specific GEMs towards growth feasibility and minimal fractioned
network topologies; and (iii) determined metabolic differences differentiating clinical from
environmental strains, such as metabolic reactions involving several amino acids, particularly
aromatic amino acids as well as chorismate or thioredoxin. Chorismate is an important
precursor for aromatic amino acids and formed in the Shikimate pathway. This seven step
pathway is not present in animals and enables the synthesis of aromatic amino acids tyrosine,
phenylalanine and tryptophan. Thioredoxin is an important factor for DNA synthase
metabolism and was associated to A. fumigatus virulence before (28, 29).
Multi-strain-GEMs have been utilized previously to elucidate the metabolic diversity of
human-pathogenic bacteria. For example, they have defined the pan metabolic capabilities
of Pseudomonas putida (30), loss of fitness relevant pathways for survival in the
gastrointestinal environment in extraintestinal Salmonella spp. (31), and strain-specific
metabolic capabilities in Staphylococcus aureus linked to pathogenic traits and virulence

acquisitions (32). Here we bring this strategy to exploring metabolic diversity in a eukaryotic
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fungal pathogen for the first time. This strain-specific A. fumigatus GEMs platform is publicly
available ( Biomodels repository) as a platform for investigating the metabolic diversity
influencing growth rate capabilities, metabolic adaptation and pathogenicity in this important
human fungal pathogen. As a proof-of-concept for the applicability of our fungal GEM
collection, we investigated sputum samples from a cohort of 40 cystic fibrosis patients for
which samples from before and after confirmed A. fumigatus infection were collected. Clinical
isolate specific simulations and analysis interestingly showed significantly increased growth
rates in the patient samples after a confirmed A. fumigatus infection suggesting that the
fungus influences the lung microbiome composition towards a more favorable fungal growth.
Given these findings, our analyses of strain-resolution GEMs showed that we can recapitulate
metabolic cues important for A. fumigatus growth that were reported before. Here, we
showed that particularly fungal metabolic activity associated to aromatic amino acid
metabolism and the Shikimate pathway are not only also important for discriminating
environmental from clinical strains, but also to differentiate metabolic activity in clinical
A. fumigatus strains given metabolite profiles shaped by the lung microbiome in cystic fibrosis
patients. Our data-driven analysis highlighted 54 metabolic reactions, for which we predicted
significant different flux ranges after A. fumigatus colonization of the lung. Our insights
suggest that A. fumigatus influences its microbiome environment towards a more favorable
growth environment. In addition, these reactions do not only appear in aromatic amino acid
metabolism, but also sulfur, nitrogen and lipid metabolic pathways, highlighting the advantage
of including topological pathway information when analyzing metabolic activity. Together with
the 25 metabolic reactions, which we identified as important features of our ML driven
classification to differentiate environmental from clinical strains, these reactions represent
primarily novel metabolic targets for A. fumigatus growth modulation, which need to be
investigated further to confirm their potential as biomarker, diagnostic or treatment target with
respect to A. fumigatus colonization.

As a potential caveat to our study, there may be genomic differences between the
clinical strain collection used to build the strain-specific GEMs and the clinical strains present
in the cystic fibrosis patients. Though both datasets originate from Germany, the majority of
the clinical strains in our GEM collection were from a different patient cohort (invasive
aspergillosis). Although genetic diversity differs between strains from invasive and chronic
A. fumigatus associated disease, we have also shown in our previous study that genomic
similarities of clinical strains are relatively high even when the strains originate from different

countries (6). We used the Af293 A. fumigatus genome annotation as a reference, which
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precludes potentially metabolically relevant genes present in further A. fumigatus annotation.
In lack of an existing model system we used MAMBO, which relies on taxonomic species
annotation to infer the contribution of the lung microbiome to the most likely nutritional profile
in the human lung.

Altogether, the presented analyses demonstrated that strain level fungal genome-
scale metabolic modeling is feasible and contributes towards our mechanistic understanding
of the genome diversity impact on phenotype of A. fumigatus. Moreover we could show a
pronounced impact of the lung microbiome profile on available nutrition, which appeared to
foster A. fumigatus colonization levels. Targeting towards patient stewardships involving
diets with particularly suboptimal fungal growth compositions and drugging against fungal
specific metabolic routes in the context of (aromatic) amino acid biosynthesis and also the
Shikimate pathway (33), which is unavailable to the human host, appear promising targets
that warrant further analyses in patients suffering from pulmonary diseases involving

A. fumigatus colonization.
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Methods

Biomass formulation

We adapted a specific A. fumigatus biomass composition according to several literature
sources. First, we assigned proportions of main biomass components as described before
(34) to 38.8% carbohydrates, 9.9% lipids, 30% proteins as well as 0.6% DNA and 3.7% RNA.
Since this resource neglected polyols we added 4% polyols as were reported before for
Aspergillus oryzae (35) to a total of 42.8% carbohydrates. After adding a fraction of 6.6% co-
factors these main components made up the total biomass composition together with
reported 6.4% ash fraction (34). Next, we screened the literature to further specify fractions
of subcategories for carbohydrates, e.g. glucans or trehalose (36-38), lipids, including
sterols, phospholipid, neutral lipid and free fatty acid compositions (39, 40), amino acid
composition of the protein content (47, 42) and co-factor content including energy carriers,
such as NADH or vitamins like riboflavin (43, 44). After calculating the mmol/g content for
each fraction, we added the ATP demand according to prior developed models from
Saccharomyces cerevisae and Asperqillus niger (45, 46) as well as added the non-growth
associated ATP maintenance value as reported for the curated Saccharomyces cerevisae
GEM (Supplementary Table S1)(46). Finally, we modified the proportion of all components
to resemble 1g dry weight (Supplementary Table S1).

Pan-GEM reconstruction
All reconstruction and analysis efforts were done with COBRApy (v0.17.1)(47) in python 3.6.8
and the academic version of the IBM CPLEX solver (v12.8.0.0).

We gathered and combined information from automatically generated draft
reconstructions based on the CoRoCo pipeline (72). We downloaded the Aspergillus
CoReCo model for A. fumigatus (Biomodels ID MODEL1604280029) and further Aspergillus
models from the CoReCo repository including Aspergillus oryzae (Biomodels ID
MODEL1604280012), Aspergillus nidulans (Biomodels ID MODEL1604280008), Aspergillus
niger (Biomodels ID MODEL1604280021), Aspergillus clavatus (Biomodels ID
MODEL1604280016), Aspergillus terreus (Biomodels ID MODEL1604280019), and
Aspergillus gossypii (Biomodels ID MODEL1604280044) from the BioModels repository
(https://www.ebi.ac.uk/biomodels/). In addition we adapted metabolite and reaction
information from a recently published A. fumigatus central metabolism model (73). Combined

together, this yielded a base model consisting of 7,606 reactions of which 3,233 were
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exchange reactions and 3,578 metabolites. All subsequent curation efforts were tailored
towards keeping only reactions, for which annotation information was available or which were
necessary to keep the model feasible. By filtering duplicate reactions and metabolites we
reduced the model by 73 reactions and 201 metabolites. The biomass formation was modified
to given literature on Aspergillus fumigatus metabolism and enriched with information from
closely related species when we did not find A. fumigatus specific information as described
in the Biomass formulation section. Next, we screened the KEGG (https://www.kegg.jp/) and
MetaCyc (https://metacyc.org/) database for gene annotation to A. fumigatus metabolism and
added 1,453 genes to the model. Whenever available we adopted AND and OR relationships
of the genes for metabolic reaction encoding and cross-checked with gene to reaction
encoding in the yeast consensus model (46). During this step 2,370 reactions could not be
mapped to any annotated gene and were therefore removed from the template model.
Instead these reactions were kept aside for subsequent gap-filling procedures. Further
curation efforts were run in parallel, since any modification influenced different aspects of the
curation efforts. This step included compartmentalization, resolving erroneous energy
generating cycles (EGCs) (76) and gene essentiality information (77) as well as adaptation
to phenotypic growth assays (cf. Methods section Biolog phenotypic microarray,
Supplementary Table S2). To add compartment information for all reactions we applied WoLF
PSORT subcellular localization prediction (75). A reaction was allocated to a particular
compartment if more than 50% of the associated genes are predicted to be located in that
compartment with more than 50% probability. Reactions, including exchange reaction, were
associated to nine compartments accordingly. These included cytoplasm, mitochondrion,
nucleus, peroxisome, endoplasmic reticulum, lipid particles, vacuole, golgi and extracellular
space. In cases where the prediction was ambiguous or precluded a viable model as
measured by biomass production based on defined minimal media we adapted concurrent
alternative compartment localization as either predicted by WoLF PSORT or included in the
curated S. cerevisae GEM (46). Compartment-connecting transport reactions were adapted
from the yeast consensus model (46). A minimal set of additional necessary transport
reactions were added by using gap-filling functionality as provided by COBRApy in order to
allow biomass precursor production based on minimal media with glucose.

In parallel we resolved again (EGCs)(76) and adapted our GEM model to publicly
available gene essentiality data (77). EGCs are metabolic reactions running in a potentially
non-trivial circle without a net-flux except for generating energy carriers. ATP, CTP, GTP,
UTP, ITP, NADH, NADPH, FADH2, FMNH2, Acetyl-CoA, L-Glutamate, ubiquinol-8,
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demethylmenaquinol-8, menaquinol-8 were part in at least one EGC (Supplementary Table
S7). The directions of 44 reactions were refined considering the reaction directionality
according to the BiGG (48) and BRENDA (49) databases and Gibbs free energy of the
reactions stated in the MetaCyc database (50). Incompatible gene essentiality information,
were resolved by either correcting feasible thermodynamically reaction direction or removal
of erroneously present reactions without gene annotation.

Finally, we ran several phenotypic microarrays with the A. fumigatus reference strain
Af293 and five mutant strains (detailed out in the next section) and identified essential carbon,
nitrogen, sulfur and phosphorus components (Supplementary Table S2). This step included
again plausible correction of thermodynamically feasible reaction directions and removal of
present reactions without gene annotation. In case incompatibilities could not be resolved in
this way we screened our catalogue of initially removed reactions without gene annotation
using gap-filling procedures using the COBRApy gap-fill functionality. Resolving growth
compatibility for two of our mutants (AniaD and AlysF, cf. Biolog phenotypic microarray) on
sulfur would have caused a notable performance drop in the overall growth prediction for all
investigated growth media and gene essentiality performance. Since growth accuracy on
sulfur was very good for the remaining wild type and two mutant strains and because
optimizing growth on carbon and nitrogen sources was very good over all mutant data, we

refrained from resolving AniaD and AlysF sulfur growth accuracy (Fig. 1B).

Strain-GEM reconstruction and curation

Recently, the pan-genome of A. fumigatus was derived for 300 environmental and clinical
strains from a global distribution (6). Mapping the genomes for 252 of these strains to the
Af293 A. fumigatus reference genome annotation, we identified metabolically relevant genes
by requiring at least 95% sequence identity (small deviations from that threshold did not
change the results) under the rational that high sequence identity preserves metabolic
function. To ensure that all strain-specific GEMs were showing non-zero growth capabilities
based on minimal media with glucose as carbon source we identified and resolved minimal
sets of essential reactions that needed to operate in adaptation to the minimal cut set concept
(78). Finally, we guaranteed a consistent network property by identifying and discarding
blocked reactions per isolate with FASTCC (79).

Biolog phenotypic microarray
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Fungal strains were grown at 25°C for 7 days prior to experimental assay on Malt agar
supplemented with 5 mM uracil. Mature conidia were harvested by rubbing plates with sterile
distilled water and the resulting solution filtered through a 30 ym cell strainer to remove
mycelial fragments. The spore solutions were then adjusted to a transmittance of 75%.
Phenotypic microarrays were performed using Biolog Phenotypic Microarray plates PM1,
PM2, PM3, and PM4 and plates prepared following the manufacture’s protocol for
filamentous fungi with the modification of 0.16 ml of Biolog Redox Dye D added to the master
mix of each plate for the quantification of metabolic activity. The plates were incubated at
37°C for three days and the metabolic activity measured colorimetrically using an OmniLog
microplate reader with readings taken every 15 minutes. Experiments were performed in
biological duplicates or triplicates (Supplementary Table S2). The phenotypic microarray
results were analyzed in R, and statistical comparison was done using Dunnett-type
comparison of growth signals of negative control against all the other wells in one plate. All
the wells with greater signals than the negative control and p-value < 0.05 were considered

as growth cases.

Cystic Fibrosis sample acquisition

This study was approved by the ethics committee of the University of Heidelberg and written
informed consent was obtained from all patients or their parents/legal guardians (S-
370/2011). Patients were treated according to standard of care (57). The diagnosis of cystic
fibrosis was verified by established diagnostic criteria (52, 63). Spontaneously expectorated
sputum was collected during visits at the Cystic Fibrosis Center at the University Hospital
Heidelberg and frozen in liquid nitrogen on the day of visit. Pulmonary function testing was
performed on the same day of sputum collection according to ATS/ERS (European
Respiratory Society) guidelines (54, 55) and FEV1 (Forced expiratory value in 1s) values

were normalized according to the global lung function initiative (56).

Metagenomics and subsequent MAMBO analysis
Sputum samples of 40 cystic fibrosis patients were collected before and after they had
positive A. fumigatus colonization. The cohort comprised 15 females and 25 males (80
samples in total) with age=23.614.96 (meanzstandard deviation) before A. fumigatus
infection.

Trimmomatic was wused to clip adapter and low-quality bases (v0.36,
ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10:1: TRUE, LEADING:3, TRAILING:3,
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SLIDINGWINDOW:4:15, MINLEN:30). Remaining reads with less than 30 base pairs length
were discarded. BWA (v07.17) was used to align quality filtered reads to the human reference
genome (hg38). From originally 1.9e+07+2.7e+06 (meantstandard deviation) metagenomic
reads 7.8e+05+8.9e+05 remained after preprocessing per sample. To estimate the
taxonomic composition of the non-human reads, Kraken2 (v2.0.7,, default parameters) was
used with its standard database as reference. Low abundance species were removed at a
cut-off=0.1% (Supplementary Table S5). For the functional composition annotation, the MG-
RAST (v4.0.3) pipeline was used to assign non-human reads to KEGG pathways. R
packages vegan (v2.5) and picante (v1.8.2) were used to calculate alpha diversity with
Shannon and Phylogenetic diversity index for each samples on the read counts of species,
Statistical differences between samples before (A. fumigatus -) and after (A. fumigatus -)
infection with A. fumigatus were obtained by Wilcoxon signed rank test. For beta diversity, R
package coda.base (v0.3.1) was used to calculate the pairwise Aitchison distance for
samples on the relative abundance of species. Statistical difference between samples before
(A. fumigatus -) and after (A. fumigatus -) infection with A. fumigatus was calculated by
PERMANOVA.

The abundance network was constructed based on relative abundance values of all
detected species (prevalence filter: 10%, abundance filter: 0.1%). DGCA (v2.0.0) was applied
to construct the network from differentially correlated microbial pairs in paired cystic fibrosis
samples before compared to after A.fumigatus infection (empirical p value<0.05).
Subsequently, MEGENA (v1.3.7) was used to identify co-expressed modules in the
constructed network using significant differing microbial pairs (module p value<0.05). To
identify molecular functions, we investigated enrichment of KEGG pathway information

(https://www.genome.jp/kegg/pathway.html) by permutation testing to determine whether

correlations between modules and KOs were possible by chance or not (567). Firstly, for a
given module all correlation values and p values between a particular KEGG Orthology and
all species in this module were obtained using the spearman correlation methodThe sum of
absolute correlation values in this module was then calculated. Following that, the same
number of species in the module were chosen at random 1000 times from all species, and
the sum of absolute values of every correlation was calculated for each set. Finally, the sum
of significant correlation values in a given module was evaluated whether it was higher than
in 95% of the sums of significant correlation values in the repeated random selected species.

To associate the most likely metabolite abundance profile to our metagenomic

samples we applied the MAMBO algorithm (27). In brief, MAMBO optimizes a high correlating
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metabolic profile to a given metagenomic relative abundance profile based on bacterial
GEMs associated to a given metagenomic sample. We opted for using only GEMs
associated to species from the metagenomics profile at an abundance threshold of 0.5% to
ensure that the abstracted media is associated to dominant species in the lung. 53 bacteria
species were present beyond this more rigid threshold for which we found and downloaded
51 matching bacterial GEMs from the AGORA (https://vmh.life)(58) and CarveMe collection

(https://github.com/cdanielmachado/embl_gems/tree/master/models) (59). Optimizations

were run in a python environment (v3.7) using a HPC (192 cores, 1TB RAM). After removing
metabolites that appeared in less than 80% of the samples, missing metabolite abundance
values in any remaining sample were imputed with MICE (miceRanger, v1.4.0 with m=1 and
maxiter = 50) resulting in a final list of 357 metabolites (Supplementary Table S6). Metabolites
differing significantly in the MAMBO associated media for samples before compared to after
A. fumigatus infected were identified in three steps. Firstly, candidate metabolites were
selected using p<0.2 as cut-off from a Wilcoxon signed rank test (60). Secondly, the identified
metabolites in the first step were investigated with an adaptive Lasso statistical design using
R package glmnet (v4.1) to identify important metabolites for group differentiation
(family="binomial", type.measure="class")(67). Finally, we used a fixed Lasso design using
R package selectivelnference (v1.2.5) as post-selection inference method to identify

significance for each of the important metabolites (p<0.05) (62).

Machine learning approach

Unless otherwise noted we used the following machine learning methodology. In cases where
the group sizes were unbalanced (e.g. environmental and clinical origin labels) we randomly
sampled 50% of the majority group and oversampled samples of the minority group using
ADASYN implemented in R package imbalance (v1.0.2.1). Subsequently, feature selection
was performed using Boruta (v7.0.0), VSURF (v1.1.0), MUVR (v0.0.973) and sPLS-DA
(mixOmics, v6.16.0). These steps were repeated 50 times and selected features as well as
their selection frequency recorded. Finally, the Extra Trees algorithm from PyCaret (v2.3.2)
was run for different feature sets scanning different frequency cut-offs to optimize the best
cut-off value for ML performance. The best hyperparameters of the Extra Trees model was

automatically selected by scikit-optimize (v0.8.1, bayesian optimization).
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Figure captions

Figure 1: General reconstruction workflow and A. fumigatus pan-genome-scale
metabolic model (GEM) statistics. (A) Workflow towards A. fumigatus strain-specific GEM
reconstructions. Colors indicate different strains and associated metabolic models. (B-F)
Characteristics of pan-GEM reconstruction for A. fumigatus.  (B) Contribution of
macromolecules in comprising one unit of biomass (Supplementary Table S1). (C)
Distribution of pan-GEM reactions across major pathway categories (Supplementary Table
S7). (D) Distribution of pan-GEM reactions across nine compartments (Supplementary Table
S7). (E) Growth prediction accuracy of pan-GEM for A. fumigatus wild-type (Af293) and five
mutant strains using phenotypic microarray data. Growth accuracy for phenotypic
microarrays on sulfur (S) are also indicated for neglecting AniaD and AlysF mutants (see
Results for details, Supplementary Table S2). C: carbon, N: nitrogen, P: phosphor, S: sulfur.
(F) Confusion matrix of pan-GEM accuracy in predicting the essentiality of 20 genes

according to the literature (see Results and Methods).

Figure 2: Core and accessory metabolic capabilities of all A. fumigatus strain-specific
genome-scale metabolic models (GEMs). The core and accessory metabolic content
was determined for 252 unique A. fumigatus strains with environmental and clinical
origin. (A) Summary of the core and accessory reactome across higher level metabolic
pathway categories. Pathway categories are according to the KEGG pathway definition
(https://www.kegg.jp/kegg/pathway.html). (B) The distribution of the accessory reactome
across all isolate models. Indicated percentage ranges correspond to accessory reaction
presence across all strain-GEMs. (C) Heatmap with pairwise Jaccard distance values for
isolate GEM pairs based on presence or absence of metabolic reactions. (D) Fisher-test
based most statistically significant reactions enriched in the indicated isolate subsets.
Presence frequency indicates the fraction of reaction presence over all investigated models
(color associates to sample origin). (E) Decision tree optimized towards showing best
separation into clinical and environmental isolate origin. The decision tree is based on
absence/presence of metabolic reactions and growth capability on different nutrients across
all isolate GEMs. (F) Machine learning mean AUC performance based on FVA derived flux
ranges for all reactions (objective function: biomass) of strain models with clinical vs.

environmental origin.
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Figure 3: Metagenomics sequencing of 80 paired sputum samples from cystic fibrosis
(N=40) patients before (A. fumigatus -) and after A. fumigatus infection (A. fumigatus
+). (A) Relative abundances of the top 10 genera and species over all 80 samples. X axis is
ordered by patient sample. (B) Differential correlation analysis of species in A. fumigatus+
relative to A. fumigatus- to reveal changes in the interactome of the lung microbiome upon
A. fumigatus colonization. Edge colors and different class information indicate direction of
correlation in A. fumigatus-/A. fumigatus+. The associated count indicates the number of
species pairs in the network exhibiting this pattern of change. Only species pairs with
significant differential correlations were included (permutation test, p<0.05), Species with
orange background indicate significant differentially abundant species between A. fumigatus-
vs A. fumigatus+ samples (metagenomeSeq, zero inflated gaussian mixture model, p<0.05).

Labels: A. fumigatus-: samples before infection; A. fumigatus+: samples after infection.

Figure 4: Statistics for MAMBO-derived metabolite profiles in cystic fibrosis patient
samples. (A) Beta diversity (Euclidean distance) of MAMBO derived media. PERMANOVA
was used to assess the statistical significance of beta diversity comparisons. (B) Growth rate
differences of genome-scale metabolic models corresponding to clinical A. fumigatus strains
based on MAMBO derived media compositions associated to cystic fibrosis samples before
and after A. fumigatus infection. (C) Significantly different flux ranges (either in lower or upper
bound) of clinical strain models simulated with FVA on MAMBO derived media before and
after A. fumigatus infection. Significance was tested according to paired Wilcoxon signed
rank test and adjusted by FDR. (D) Three selected enzymatic reactions with significant flux
bound differences in either lower or upper bound as displayed in (C). Both bounds are
indicated. EC1.4.3.4: Tryptamine:oxygen oxidoreductase; EC4.1.3.27: Chorismate pyruvate-
lyase; EC1.8.1.9: NADPH:oxidized-thioredoxin oxidoreductase. A.f.-/+: A. fumigatus positive

and negative samples, respectively.
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Tables
Table 1: Number of accessory genes and reactions across all isolate GEMs. The occurrence
column refers to the number of reactions occurring in a certain fraction range of isolate

specific GEMs based on 338 accessory reactions in total.

Genes Reactions
Occurrence | Mean | Standard | Mean | Standard
(in %) deviation deviation
[1,20] 1.9 1.8 4.7 7.7
[21,40] 6.9 2.5 1.3 1.2
[41,60] 16.7 3.2 17.4 6.0
[61,80] 17.8 2.4 20.2 6.3
[81,99] 296.9 8.1 219.3 6.8

Supplementary material

Supplementary Table S1 — Biomass composition

Supplementary Table S2 — Phenotypic growth information

Supplementary Table S3 — A. fumigatus strain metadata

Supplementary Table S4 — ML model using minimal media

Supplementary Table S5 — Metagenomics

Supplementary Table S6 — Metabolite analysis

Supplementary Table S7 — Detailed GEM information

Supplementary Figure S1 — Accessory genome conservation among 252 Aspergillus
fumigatus strains. Indicated percentage ranges denote accessory gene presence across
the genomes of all strain-GEMs. Cluster with gray background denotes genetic lineage of
A. fumigatus with significantly fewer accessory genes than other lineages as previously
published (6). Associates to Fig. 2B.

Supplementary Figure S2 — Alpha and beta diversity of CF lung microbiome. (A) Statistical
significance according to Shannon and Chao diversity index for alpha diversity). (B) Beta
diversity (Aitchison distance) based on Kraken derived taxonomic profiles. Wilcoxon signed
rank test was used for alpha diversity comparisons; PERMANOVA was used to assess the

statistical significance of beta diversity comparisons.
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Human fungal pathogens cause a serious problem in medical health care. The increasing
number of immunocompromised patients and high mortality rate indicates an underestimation
of the problem by the medical health authorities. The opportunistic pathogen
Candida albicans and the airborne fungus Aspergillus fumigatus are the most prevalent
fungal pathogens causing infectious diseases. This cumulative dissertation includes six
manuscripts (Table 1) applying computational systems biology and bioinformatics
approaches. They indicated the advantage of using computational approaches to study the
phenotypes involved in infection and revealed the role of metabolism in developing the
infection by C. albicans and A. fumigatus. As a promising approach to predict the phenotypes
of fungal pathogens in the microbial community and their metabolic interactions, GEMs
appeared vital. Therefore, major efforts went into the reconstruction and analysis of fungal
GEMs around C. albicans and A. fumigatus. The manuscripts belong to two topics: (i) role of
computational systems biology for studying the phenotypes involved in infection, (ii)
metabolic systems biology of fungal infection.

The first topic was addressed by two publications representing two case studies where
the applicability of computational systems biology approaches to uncover phenotypes
involved in infection was shown. The first one (Table 1) compares the host response against
Rhinovirus and influenza through a systematic transcriptomics analysis. Gene set enrichment
analysis was used to identify perturbed pathways by the viral infection using identified
differentially expressed genes as input. The study revealed that Rhinovirus induced a more
delayed and blunted host response than influenza virus infection. The network pathway
enrichment analysis showed that steroid-related pathways are specifically enriched for
Rhinovirus. Interferon response and other innate immune response predominated for both
Rhinovirus and influenza virus infection.

The prerequisite for performing the gene set enrichment analysis is generation of
transcriptomics data which may not truthfully reflect the metabolic activity as it does not
necessarily correlate with protein concentration and enzyme activity (Maier et al., 2009). On
the contrary, genome-scale metabolic modeling predicts the metabolic phenotype of the
target organism as the endpoint of biological processes in a quantitative manner and without
any requirement for producing large-scale transcriptomics data. Hence, GEM analysis is a
way powerful approach than gene set enrichment analysis to reflect the metabolic behavior
of the cell. For the future studies, a joint GEM of human and virus can be reconstructed and
analyzed to obtain in-depth insights into the phenotypes involved in infection. It can be further
enhanced by preparing metabolomics data and integrating it into the GEM analysis. Such
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analysis can assist to identify anti-viral targets as recently shown for the SARS-CoV-2 (Renz
et al., 2021).

Table 2. Overview of the manuscripts.

Title Journal Status Topic
1 | Comparative Transcriptomic Analysis of Rhinovirus Frontiers in Published i
and Influenza Virus Infection (co-author) Microbiology
2 | An integrative understanding of the large metabolic Gut Microbes Published i
shifts induced by antibiotics in critical illness (co-
author)
3 | Metabolic modeling predicts specific gut bacteria as The ISME Journal Published ii

key determinants for Candida albicans colonization
levels (first author)

4 | Candida albicans SR-like protein kinases regulate Frontiers in Cellular Accepted for | ii
different cellular processes: Sky1 is involved in control | and Infection publication
of ion homeostasis, while Sky2 is important for Microbiology
dipeptide utilization (co-author)

5 | Lactobacillus rhamnosus colonisation antagonizes Nature Revised ii
Candida albicans by forcing metabolic adaptations Communications version
that compromise pathogenicity (co-author) submitted

6 | Candida expansion in the human gut is associated In preparation | i

with an ecological signature that supports growth
under dysbiotic conditions (co-author)

7 | A pan-genome resembling genome-scale metabolic In preparation | ii
platform of 252 Asperqillus fumigatus strains reveals
growth dependencies from the lung microbiome (first
author)

The second publication (Table 1) addresses the applicability of the GEM analysis by
investigating the impact of antibiotic consumption on the metabolic and compositional state
of the microbiome of ICU patients. It takes advantage of genome-scale metabolic modeling
to confirm the findings from the metagenomics and metabolomics analysis. According to what
statistical and correlation analysis suggested, bacterial species seemingly responsible for
SCFA production were simulated using flux variability analysis (FVA). The predictions
confirmed the contribution of bacterial species such as Alistipes putredinis to SCFA
production. In conclusion, the study suggested that the loss of a handful of species, that are
highly connected with the production of SCFAs and BAs, during antibiotic administration in
the ICU allows the expansion of pathogenic species, which exhibit the potential to cause
direct hindrance to host homeostasis.

In the FVA analysis, it was assumed that each bacterial species is growing
independently of the metabolic effect of other bacterial species. In order to gain a more

realistic flux analysis, a universal GEM out of the microbial community members can be
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generated (Chan et al., 2017). This incorporates relative abundance values of bacterial
species in each sample by which each bacterial species is enforced to grow proportionally
and takes into account the possible crosstalk among microbiome members.

The diet fed to the ICU patients was retrieved and used in the GEM analysis. The
additional compounds potentially secreted from the host were identified by FVA using the
Recon 3D GEM (Brunk et al., 2018). Yet, this GEM is a generic reconstruction of human
metabolism. Generating a context-specific GEM for the relevant human cells such as
Intestinal epithelial cells can enhance the predictions for identifying the potential secretions
by the host. Furthermore, selecting a proper objective function for the human cells is a
challenge that needs to be addressed by an in-depth investigation of the cell phenotypes in
accordance with the specific biological condition of the human cells in the study. For instance,
the generation of metabolomics data in in vitro cultured human cells can reveal metabolic
secretions that are potentially be considered an objective function.

Given the applicability of GEM analysis in microbiome studies, the second topic
discusses metabolic systems biology of fungal infection by developing and applying genome-
scale metabolic models of fungal pathogens, C. albicans, and A. fumigatus. The second topic
involves five manuscripts (Table 1) addressing promoting and inhibiting factors on the growth
of the aforementioned fungal pathogens from different aspects. To this aim, it emphasizes
generating and analyzing GEMs and phenotypic microarray data analysis as an additional
layer of analysis. It allowed identifying functional interactions in the human gut impacting the
colonization of C. albicans (third manuscript), uncovering functions of protein kinases having
a critical role in colonizing the C. albicans (fourth manuscript), revealing the role of Intestinal
epithelial cells as the host effect on a C. albicans — Lactobacillus rhamnosus interaction (fifth
manuscript), and, as a complementary analysis, revealing ecological signature of Candida
expansion (sixth manuscript). Lastly, in the seventh manuscript, the phenotypic diversity of
252 A. fumigatus strains isolated from hospitals and agricultural lands in Germany was
investigated. In this study, 252 genome-scale metabolic reconstructions were generated and
analyzed to address the diversity in the metabolic capability of A. fumigatus strains. The
clinical GEMs were further analyzed to explain how the fungus contributes to the shaping of
the lung microbiome in a favorable manner to colonize better in the lung.

The next section discusses the main results and outlines perspectives on experimental
validation, clinical relevance, and future model development in metabolic systems biology of

fungal infection.
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Metabolic systems biology of fungal infection

The opportunistic fungal pathogen, C. albicans, can overgrow in the human gut and develop
infection upon given opportunity. From this point of view, it is crucial to identify functional
interactions of the fungus with the bacterial community leading to inhibition or promotion of
growth. In the third manuscript (Table 1), a GEM for the C. albicans was generated, validated,
and used to simulate the interaction of the fungus with individual bacterial species in case of
GEM availability in the literature. In total, simulation of over 900 pairwise interactions
suggested bacterial species impacting C. albicans growth positively, negatively, or neutrally
in three different media. Selected metabolite experiments and shotgun metagenomics
sequencing supported the in-silico modeling concept based on pairwise metabolic interaction
simulations.

Further studies of the predictions for major metabolic pathways, for example for carbon
compounds and amino acids, may elucidate the specific mechanisms of these influences.
Selected metabolite measurements in defined media could be used further for accurate
predictions of potential metabolite candidates that are preferentially used by e.g., gut
microbes over C. albicans and can hint towards bacterial species that specifically
secrete C. albicans-inhibiting metabolites. Taken together, the findings of this publication
support that specific gut bacteria influence gut colonization by C. albicans. Moreover, the
analysis indicates that it may be possible to design synthetic communities with only a few
bacterial species that could then influence essential metabolic activities of C. albicans and
prevent fungal overgrowth.

The C. albicans GEM generation started from a draft reconstruction generated by an
automated comparative pipeline called CoReCo for constructing the gapless metabolic
networks for fungal species (Pitkanen et al., 2014). This comparative approach is particularly
useful in scenarios where the quality of available sequence data is lacking. The pipeline
employs a greedy algorithm to identify the missing reactions that can connect the nutrients
to the end products, fulfilling the connectivity of carbon atoms in the network. Evaluating the
draft reconstruction using the phenotypic microarray data demonstrated the high ability of the
GEM to resemble true positive cases of growth prediction for consuming the carbon sources
by the wild-type C. albicans. However, further assessment of the metabolic network revealed
that this greedy gap-filling algorithm derives false positive cases for growth predictions of the
GEM using carbon sources. On the other hand, relatively fewer true positives were identified
for the non-carbon nutrient sources as the network connectivity through other atoms such as
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nitrogen is overlooked in the original publication. Also, overestimation of reaction presence
in the network resulted in Erroneous Energy-Generating Cycles (EGCs). The quality of the
reconstruction for predicting the phenotypes was considerably increased by resolving such
artifacts in the network.

Phenotypic microarray data played an important role in increasing the quality of the
metabolic network by testing and correcting through classical iterative systems biology cycle
for the GEM development. The data obtained from wild-type and mutant strains was analyzed
to identify growth/no-growth conditions. Given the applicability of this technology, it was also
used to reveal the phenotypes of Sky1 and Sky2 protein kinases of C. albicans in the fourth
manuscript (Table 1). Adequate data analysis of phenotypic microarray data revealed the
functions of Sky1 and Sky2 protein kinases. For future studies, metabolomics data of the two
knocked-out genes can be generated to obtain specific metabolic cues linked to their
functionality. Integration of metabolomics data into the C. albicans GEM can add another
layer to uncovering the detailed phenotypes of the genes under different growth conditions.

The predictions by the current C. albicans GEM can be further improved by further
refinements in order to generate the second version. For instance, allocating the metabolites
and reactions in separate compartments (subcellular locations) can avoid unrealistic
interconversion of metabolites by reactions supposed not to occur in the same compartment.
Besides, a comprehensive single-knockout study can show the accuracy of the GEM for gene
essentiality predictions and accordingly be used to eliminate errors from it. The biomass
reaction in this model was adapted from the iIMM904 GEM (Mo et al., 2009) of
Saccharomyces cerevisiae. This adaptation is acceptable due to the closeness of two
species in the phylogenetic tree of the fungi kingdom (Choi & Kim, 2017). Yet, adjusting the
biomass reaction and corresponding pathways of biomass precursor production based on
experimentally measured biomass composition of the fungus can considerably enhance the
accuracy of predictions. In particular, it would be more accurate to include specific biomass
reactions for different morphologies of the fungus to predict its metabolic behavior while
developing in different formats such as yeast, pseudohyphae, and hyphae cells. This is
especially important for pairwise interactions. They mimic the gut environment possessing a
specific temperature and pH value which are the key determinants of C. albicans morphology
during growth and development (Berman, 2006).

The current GEM was built based on available genome information in the databases
which mainly belong to the SC5314 wild-type strain. Yet, the generation of specific GEMs at
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strain resolution can capture the phenotypic diversity of C. albicans leading to a better
understanding of fungal infection development through metabolism.

Additional diets and growth media compositions beyond the three used in this study
may be tested, since e.g., GAM compositions may vary, therefore influence in silico
predictions and in general, might not reflect in vivo conditions as well as high fiber, western,
or other common human diets. Pairwise simulations showed different interaction distribution
when using different diet compositions, e.g., GAM media vs. western or high fiber diets. This
indicates that diet intervention might shape the microbial composition beneficial or
detrimental for the infection development. A systematic study of diet effect on microbial
composition may open the doors for designing personalized diets that can hamper
predisposition to infection by the fungus. To this end, computational approaches
incorporating GEMs, e.g., the recently published CODY framework (Geng et al., 2021), can
be applied. Besides, additional in silico simulations of multiple interactions need to be
addressed, to potentially extend our understanding of the intricate relationship
between C. albicans and the gut microbiota and its effect on C. albicans levels (This is of
major interest for A. fumigatus addressed later). Finally, tools that incorporate spatial
information (Bauer et al., 2017; Biggs & Papin, 2013) could determine the impact of niche
colonization by gut fungal and bacterial species.

In order to avoid biologically implausible solutions, coupling constraints were applied
to pairwise simulations. They associate the fluxes through network reactions of one model to
its biomass formation flux, inhibiting the benefit of one microbe from the paired one without
producing any biomass. Thus, the biomass formations in both GEMs become dependent on
each other. A Pareto optimality analysis can illustrate this dependency, in which one biomass
formation value is fixed at different values and the other one is minimized and maximized to
obtain the possible flux interval, and vice versa. This analysis can give an in-depth insight
into the trade-off between two microbes. In this project, it was assumed that maximum
summation of the growth rates is achieved when two microbes are paired.

This publication specifically focused on the intricate relationship between (gut) bacteria
and C. albicans to elucidate their relationship independent of host factors in order to keep
free parameters in a feasible range. Host factors are key modulators of fungal-bacterial or
fungal-bacterial-host interactions as could be shown in other studies (Fan et al., 2015;
Lakhani et al., 2017). Though adding considerable complexity to the setup, an extension of
this conceptual approach to study specifically metabolic modes of fungal—bacterial interaction
with host factors might play an important complementary role as long as the predictive
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capacity can be supported by sufficient data around the triangle host, bacteria and fungus.
To this end, the triangle of intestinal epithelial cells (host), C. albicans, and
Lactobacillus rhamnosus as a special antagonizing case against the fungus was studied in
the fifth manuscript (Table 1).

In this study, metabolic and molecular aspects of L. rhamnosus-mediated protection
against C. albicans pathogenicity supported by omics data were investigated. Alternations of
the metabolic environment due to the presence of L. rhamnosus forced C. albicans to
transcriptionally reprogram its metabolism. Transcriptome and in silico analysis revealed
changes in key metabolic pathways and regulator genes of C. albicans. In summary, the
combined metabolome data, in silico metabolic modeling, transcriptome and mutant
screening, as well as in vitro validations, provide fundamental contextualized insights into
how C. albicans pathogenicity can be controlled or prevented.

Availability of the metabolomics of the shared media among the cells at different time
points facilitated the tuning of the GEMSs. In fact, it simplified the in silico simulations without
further demand for performing pairwise or triplewise simulations. The network flux ranges
obtained from metabolome-calibrated GEMs through flux variability analysis (FVA) predicted
the metabolic pathways regulations when three species are interacting with each other.
Maximization of growth rate was the objective function for each GEM. This reflects the flux
changes towards maximization of the biomass which might not be necessarily the objective
of the cells over time due to the intricate relationship among them. Hence, an in-depth
investigation for selecting the proper objective function individually for each cell can be done
for future studies.

The human Recon 3D GEM (Brunk et al., 2018) was used for simulating the metabolic
behavior of the human epithelial cells. This is a generalized reconstruction containing all
possible metabolic genes and reactions in humans. A contextualized GEM specific for
epithelial cells can be made to increase the accuracy of the predictions. To this end, the
challenge is to gain knowledge about the reactions certainly occurring in the desired tissue,
epithelial cells in this case, or the availability of consistent omics data in replicates (Cho et
al., 2019). The tissue-specific network can considerably increase the accuracy of the
predictions through the GEM analysis.

In summary, the strategy of studying fungal-bacterial relationships in the gut using an
in silico, a metabolism-driven approach already yielded promising results. The use of in silico
predictions added another useful layer that can contribute to stratifying the identification of
potentially clinically relevant gut bacteria in face of the steadily growing amount of high
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throughput data. Ultimately, including metabolic in silico analysis could promote additional
systems-biology and systems-medicine studies that focus on fungal infections and their often
lethal implications to humans.

In the sixth manuscript, the overgrowth of Candida species was explained by
integrating mycobiome and shotgun metagenomics data from 75 lung cancer patients. It
demonstrated the critical role of gut bacteria in shaping microbiome composition. The
adequate metagenomics and statistical analysis divided the samples into Low- and High-
Candida groups. Many bacterial SCFA producers were found in the Low-Candida group. As
a complementary analysis to confirm the findings, GEM analysis was performed to inspect
whether the bacterial species enriched in the Low-Candida group can produce SCFAs.

To this end, FVA of exchange reactions for SCFAs such as acetic acid and propionic
acid was performed alongside maximization of growth under 12 different diets. The same
analysis investigated whether the bacterial species enriched in the High-Candida group can
produce lactate. The analysis was done in microaerobic conditions to mimic the gut
environment. In the simulations, oxygen was allowed to be consumed not more than one
mmol/gDW/hour. As it is an arbitrary choice, a comprehensive sensitivity analysis can be
performed to identify an oxygen uptake interval where the growth of all the GEMs is oxygen-
dependent and inspect how metabolite secretions are altered.

The analysis was done without considering the role of Candida metabolism in
interaction with the microbiome. Recent advances in GEM analysis of microbiome have
allowed simulating a microbial community where the individual members are considered
different compartments of the system (Chan et al., 2017; Koch et al., 2019). Individual
community reconstructions for Candida and bacterial species can be generated using the
available GEMs. A pairwise interaction simulation between these two communities might
provide a high-resolution understanding of the role of individual bacterial species in secreting
the related metabolites as the interspecies communications are considered in this type of
analysis.

In the last manuscript (Table 1), the first suite of A. fumigatus genome-scale strain-
specific metabolic reconstructions originating from 252 different isolates spanning different
locations in Germany (Barber et al.,, 2021) was built. This platform was built upon
comprehensive genome information of the Af293 strain as a reference genome. Yet despite
the comprehensiveness of genome information for this specific strain, complementary
genome information specific to the other A. fumigatus strains (Garcia-Rubio et al., 2018) can
add more resolution to generated strain-specific GEMs.
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Multi-strain GEMs were used before to elucidate the metabolic diversity in human
health-relevant bacterial strains and revealed e.g. pan metabolic capabilities of
Pseudomonas putida (Nogales et al., 2020), loss of fithess relevant pathways for survival in
the gastrointestinal environment in extraintestinal Salmonella spp. (Seif et al., 2018), and
Staphylococcus aureus strain-specific metabolic capabilities linked to pathogenic traits and
virulence acquisitions (Bosi et al., 2016). The developed strain-specific A. fumigatus GEMs
can be served as a platform for investigating the metabolic diversity influencing growth rate
capabilities, metabolic adaptation, and pathogenicity in this important fungal pathogen for the
human host.

Compared to the C. albicans GEM reconstruction described in the third manuscript
(Table 1), more curations were carried out for A. fumigatus pan-GEM generation, which led
to high accuracy in predicting both growth capabilities and gene essentiality of the fungus.
Yet, the gene essentiality data was very limited. A bigger collection of gene knock-out
experiments can be carried out for future GEM development to evaluate the accuracy more
extensively. Additionally, the capability of the GEM to produce known secretion products, the
presence of blocked reactions, known incapabilities of the A. fumigatus, and predicted growth
speeds in different growth conditions can be tested, and the pan-GEM can be refined
accordingly.

There may be genomic differences between the clinical strain collection that was used
to build the strain-specific GEMs and the clinical strains present in the cystic fibrosis patients
even though both were isolated in hospitals in Germany. However, as has been shown in the
previous study the genomic similarities of clinical strains are relatively high even when the
isolates originate from different countries (Barber et al., 2021). This study can be expanded
to include isolates from different continents to obtain a better understanding of the phenotype
diversity of the fungus at the global level.

One of the goals of this study was to identify the metabolic differences between clinical
and environmental strains using machine learning approaches. However, the number of A.
fumigatus strains isolated from hospitals is around one-fourth of the ones isolated from farms.
The imbalance dataset typically poses a challenge for classification using machine learning
approaches since they are usually designed to deal with an equal number of samples in each
group. The classification was done considering down- and up-sampling to cope with the
negative effect of the imbalance dataset to some extent. Yet, including more A. fumigatus
isolates from hospitals can increase the resolution to reveal how the fungus probably adjusts
the phenotypes through genetic mutations to colonize better in the host body.
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It is acknowledged that the MAMBO-derived metabolic output of the lung microbiome
is an approximation relying merely on the taxonomic annotation of species. The effect of the
host factors on the microbiome and metabolome composition of the lung is not neglectable.
Therefore, a more precise assessment of the contribution of the lung microbiome to the
nutritional profile in the human lung can be done in case a model system capable of that is
available. Integrating such data into the reconstructed strain GEMs can expand our
understanding of how the fungus regulates its metabolism in response to both the microbiome
and the human factors to colonize better in the lung. Additionally, the study can be further
expanded to reveal the contribution of the fungus to development of the other lung
microbiome diseases such as allergic bronchopulmonary aspergillosis (ABPA), chronic
obstructive pulmonary disease (COPD), and invasive pulmonary aspergillosis (IPA) (Kolwijck
& van de Veerdonk, 2014).
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SUMMARY

In an ever-growing world-wide population, human infectious diseases are an
increasingly serious problem for public health. In recent decades, advances in medical
sciences and hygiene improvement within social communities have been improving
respective diagnostics and treatments. However, global reports indicate that the infection rate
and the consequent morbidity and mortality rates are still considerably high, showing that the
problem remains challenging to address. Drug-resistance development of human pathogens
through evolutionary stages and emerging new pathogenic species and strains (as the recent
pandemic triggered by SARS-CoV-2 resulting in COVID-19 dramatically revealed) are the
main obstacles to efficient treatments. Hence, developing new efficient therapeutic
approaches is a serious challenge that requires more effective research.

In particular, more than a million deaths and millions of infectious diseases cases per
year caused by fungal pathogens have been reported globally in recent years. It indicates
that the infection threat caused by human fungal pathogens has been underestimated.
Hence, more investments must be put into fungal research to overcome the problem. The
opportunistic pathogen Candida albicans and the airborne Aspergillus fumigatus are the two
most prevalent fungal pathogens causing serious issues in medical care units. C. albicans is
a commensal fungus in human microbiota and does not cause diseases in healthy individuals.
However, upon a given opportunity, it can switch from commensal to pathogenic state in
immunocompromised patients and overgrow in some organs such as skin and mucosal
surfaces of e. g. the gut and cause infection ranging from superficial to severe systematic
candidiasis. Unlike C. albicans, the original niche of A. fumigatus is soil. However, it
distributes its conidia into the air, which humans and animals daily inhale. Similar to
C. albicans, it does not cause serious issues in healthy individuals. However, in
immunocompromised patients, it can initiate or intensify lung diseases such as chronic
asthma and cystic fibrosis.

Despite the recent advances in fungal research, there is a little knowledge about the role
of fungal metabolism in developing the infection when coexisting within the human body with
microbial community members in different organs. This dissertation applied computational
tools and implemented systems biology approaches to uncover key factors in the colonization
of the pathogens, especially C. albicans and A. fumigatus, from a systems biology
perspective and unseen by wet-lab experiments alone. Next to multi-omics data analysis, a
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major effort was put into genome-scale metabolic models (GEMs) generation and analysis
as a promising approach to shed light on the role of metabolism to develop the infection.

As a proof of principle, the thesis starts with two studies showing the computational
approaches' applicability to understand better or confirm findings obtained by analyzing omics
data. It includes using GEMs analysis to study the role of metabolism to predispose infection
in the human microbiome. Next, metabolic systems biology approaches using GEMs
reconstruction and analysis of human fungal pathogens were employed to study the role of
metabolism in developing fungal infections. In this regard, four manuscripts shed light on key
factors leading to the inhibition or promotion of C. albicans growth. This especially includes
the first available GEM reconstruction of this fungus to theoretically study the intricate
interaction of the fungus with the human host and the microbial community members. Lastly,
a platform of 252 A. fumigatus GEMs at the strain resolution was generated. It revealed the
phenotypic diversity of A. fumigatus strains isolated from different hospitals and farms in
Germany and explained the contribution of the fungus to the shaping of the metabolic
landscape of the lung microbiome in a favorable manner for the fungal growth.

In summary, in this thesis | demonstrated that computational approaches and analyses
can extend our understanding of fungal pathogenicity and might proof pivotal for development

of future early diagnostics and therapies of fungal infectious diseases.
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ZUSAMMENFASSUNG

In einer stets wachsenden Weltbevolkerung stellen Infektionskrankheiten ein
zunehmend ernstes Problem fur die offentliche Gesundheit dar. In den letzten Jahrzehnten
haben Fortschritte in den medizinischen Wissenschaften und die Verbesserung der Hygiene
in verschiedenen Lebensgemeinschaften zu einer Verbesserung von Diagnostik und
Behandlung gefuhrt. Weltweite Berichte zeigen jedoch, dass die Infektionsrate und die
daraus resultierenden Morbiditats- und Mortalitatsraten immer noch betrachtlich sind, was
darauf hindeutet, dass es nach wie vor schwierig ist, dieses Problem zu l6sen. Die
Entwicklung von Arzneimittelresistenzen bei humanen Krankheitserregern im Laufe der
Evolution und das Auftreten neuer pathogener Arten und Stdmme (wie die durch SARS-CoV-
2 ausgeldste Pandemie resultierend in COVID-19 kirzlich dramatisch offenbarte) sind die
gréliten Hindernisse flr eine wirksame Behandlung. Daher ist die Entwicklung neuer
wirksamer therapeutischer Ansatze eine ernsthafte Herausforderung und erfordert eine
effektivere und gezielte Forschung.

Insbesondere wurden Uber die letzten Jahren weltweit mehr als eine Million Todesfalle
und Millionen Falle durch Pilzerreger verursachte Infektionskrankheiten pro Jahr gemeldet.
Dies deutet darauf hin, dass die von Pilzerregern ausgehende Infektionsgefahr flr den
Menschen bisher unterschatzt wurde. Daher missen mehr Investitionen in die Pilzforschung
getatigt werden, um das Problem zu |6sen. Der opportunistische Erreger Candida albicans
und der Uber die Luft Ubertragene Aspergillus fumigatus sind die beiden haufigsten
Pilzerreger, die in ernsthafte Probleme in medizinischen Einrichtungen verursachen.
C. albicans ist ein kommensaler Pilz in der menschlichen Mikrobiota und verursacht bei
gesunden Menschen keine Krankheiten. Bei immungeschwachten Patienten kann er jedoch
vom kommensalen in den pathogenen Zustand Ubergehen und in einigen Organen wie der
Haut oder auf den Schleimhautoberflachen z. B. des Darms Uberwuchern und Infektionen
verursachen. Diese kdnnen von oberflachlicher bis zu schwerer systematischer Candidose
reichen. Im Gegensatz zu C. albicans ist die urspringliche Nische von A. fumigatus der
Boden. Er verbreitet jedoch seine Konidien Uber die Luft, die Menschen und Tiere taglich
einatmen. Ahnlich zu C. albicans verursacht er bei gesunden Menschen keine ernsthaften
Probleme. Bei immungeschwachten Patienten kann es jedoch Lungenkrankheiten wie
invasive Aspergillose, chronisches Asthma oder Mukoviszidose ausldsen oder verstarken.

Trotz der jungsten Fortschritte in der Pilzforschung gibt es nur wenige Erkenntnisse tUber
die Rolle des Pilzstoffwechsels in der Entwicklung einer Infektion, wenn er im menschlichen
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Koérper mit Mitgliedern des Mikrobioms verschiedener Organe koexistiert. In dieser
Dissertation wurden computergestutzte und systembiologische Ansatze implementiert, um
SchlUsselfaktoren bei der Besiedlung von Krankheitserregern, insbesondere von C. albicans
und A. fumigatus, aus einer systembiologischen Perspektive aufzudecken, welche durch
Wet-lab Experimente allein nicht studierbar sind. Neben der Analyse von Multi-OMICS-
Daten, wurde viel Arbeit in die Rekonstruktion und Analyse von genomskaligen
Stoffwechselmodellen (GEMs) aufgewendet. Die Untersuchung von GEMs stellt einen
vielversprechenden Ansatz dar, um die Rolle des Stoffwechsels bei der Entwicklung der
Infektion zu beleuchten.

Zur Demonstration des Prinzips beginnt die Arbeit mit zwei Studien, die die Eignung von
Berechnungsansatzen um wissenschaftliche Erkenntnisse, die durch die Analyse von
OMICS-Daten gewonnen wurden, besser zu verstehen oder zu bestatigen. Dazu gehoért die
Verwendung der GEM-Analyse zur Untersuchung der Rolle des Stoffwechsels bei der
Pradisposition fur Infektionen im menschlichen Mikrobiom. Als Nachstes wurden
metabolische systembiologische Ansatze unter Verwendung der GEM-Rekonstruktion und -
Analyse menschlicher Pilzerreger eingesetzt, um die Rolle des Stoffwechsels bei der
Entstehung von Pilzinfektionen zu untersuchen. In diesem Zusammenhang beleuchten vier
Manuskripte die Schlisselfaktoren, die zur Hemmung oder Férderung des Wachstums von
C. albicans fiihren. Dazu gehdrt insbesondere die erste verfugbare GEM-Rekonstruktion
dieses Pilzes, um die komplizierte Interaktion des Pilzes mit dem menschlichen Wirt und den
Mitgliedern der mikrobiellen Gemeinschaft theoretisch zu untersuchen. Schlieldlich wurde
eine Plattform mit 252 verschiedener A. fumigatus-GEMs erstellt. Diese offenbarte die
phanotypische Vielfalt von A. fumigatus-Stammen, die aus verschiedenen Krankenhausern
und landwirtschaftlichen Betrieben in Deutschland isoliert wurden und beleuchtete den
Beitrag des Pilzes zur Manipulation der metabolischen Landschaft des Lungenmikrobioms
zugunsten des eigenen Wachstums.

Zusammenfassend habe ich in dieser Arbeit gezeigt, dass computergestitzte Ansatze
und Analysen unser Verstandnis der Pathogenitat von Pilzen erweitern kdnnen. Diese
Ansatze mogen sich als entscheidend fur die Entwicklung kinftiger Frihdiagnosen und

Therapien von Pilzerkrankungen erweisen.
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