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Abstract
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Compact Binary Merger Simulations in Numerical Relativity

by Francesco Maria Fabbri (M.Sc.)

The era of Gravitational Waves Astronomy was launched after the success of the first
observation run of the LIGO Scientific Collaboration and the VIRGO Collaboration.
The large laser interferometers incredible achievement prompted the need of extensive
studies in the field of compact astrophysical objects, such as Black Holes and Neutron
Stars. Today, seven years after this event, the field of study underwent a notable
expansion, corroborated by the detection of a signal coming from a Binary Neutron
Star merger, together with its electro-magnetic counterpart, and, more recently, by
the first detections of signals coming from mixed compact binaries, i.e. Black Hole-
Neutron Star binaries.
In this thesis work we span our attention across different aspects of compact objects
mergers, including the inclusion of new physics into the already performing numerical
relativity code BAM and the study of specific systems of compact objects.
We first explore the treatment of neutrinos in case of Binary Neutron Star mergers and
a tool to identify and further analyze regions containing trapped neutrinos, in the hot
remnant of such mergers. Neutrinos, play in fact a key role into the rapid processes
that characterize the formation of elements in the dynamical ejecta expelled during
these catastrophic events.
In the following we explore a variety of configurations of mixed compact binary sys-
tems. After the development of the new ID code Elliptica, and the steps taken to
verify its accuracy, we make use of its capability to evolve sets of physical system with
various properties. Exploring the space of parameters we study different spin config-
urations and magnitudes of single objects and their effects on the merger dynamics.
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Abbreviations and Notation

We employ the Geometric units, c = G = M⊙ = 1, unless specified otherwise. In
several cases we write c, and M⊙ explicitly for clarity. Classical units satisfy the
relations

1cm → 1.476625× 10−5M⊙ (1)

1g → 1.98847× 10−33M⊙ (2)

1s → 4.92569× 106M⊙ (3)

For the indices we are adopting Greek indices like α, β = 0, 1, 2, 3 as 4D or spacetime
indices, while Latin indices like i, j = 1, 2, 3 as 3D or spatial indices. For general
indices, spanning from 1 to an arbitrary n, we employ a, b, c, · · · = 1, 2, . . . , n. We are
also adopting Einstein summation’s rule for which a contraction of indices α

α (unless
otherwise stated) implies a summation over the indices themselves

∑
α.

In the following, when we refer to a tensor we usually indicate the full set of covari-
ant/contravariant indices (e.g. the Riemann curvature tensor (4)Rαβγδ). However, for
the sake of readability, we might abstain to indicate the full list of indices in the text
outside of the equations (e.g. (4)Rαβγδ → (4)R). We hope that such simplifications
won’t confuse the reader, leading to mix scalar quantities with tensors of similar nota-
tion, and that the context will be clear enough to interpret the symbols in the correct
way.
The following abbreviations are used (they are also introduced in the text at their first
appearance):

ADM Arnowitt, Deser and Misner
AH Apparent Horizon
BH Black Hole
BAM Bifunctional Adaptive Mesh
bamps Bifunctional Adaptive Mesh Pseudo-Spectral
BBH Binary Black Hole
BNS Binary Neutron Star
CCSN Core-Collapse Supernova
CT Constrained Transport



xii

CTS Conformal Thin Sandwich
EFE Einstein’s Field Equations
EH Event Horizon
EOS Equation Of State
EOB Effective-One-Body
FFT Fast Fourier Transform
GHG Generalized Harmonic Gauge
GR General Relativity
GRB Gamma-Ray Burst
GRHD General-Relativistic Hydrodynamics
GRMHD General-Relativistic Magnetohydrodynamics
GW Gravitational Wave
HD HydroDynamics
HMNS Hyper-Massive Neutron Star
IMHD Ideal MagnetoHydroDynamics
ID Initial Data
ISCO Innnermost Stable Circular Orbit
IVP Initial Value Problem
LHS Left Hand Side
LIGO Laser Interferometer Gravitational-Wave Observatory
MHD MagnetoHyroDynamics
NR Numerical Relativity
NS Neutron Star
ODE Ordinary Differential Equation
PDE Partial Differential Equation
PN Post-Newtonian
RHS Right Hand Side
RHD Relativistic HydroDynamics
SGRB Short Gamma-Ray Burst
SMNS Supra-Massive Neutron Star
SN Supernova
TOV Tolman-Oppenheimer-Volkoff
XCTS eXtended Conformal Thin Sandwich
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Chapter 1

Introduction

Compact objects have been investigated and studied more and more in recent years.
The first detection of Gravitational Waves (GW) from the merger of Binary Black
Holes (BBH), made by the LIGO Scientific Collaboration and the VIRGO Collaboration
announced in Abbott et al., 2016 (GW150914), and the consequential assignment to
Rainer Weiss, Kip Thorne, and Barry Barish of the Nobel Prize in physics for directly
detecting Gravitational Waves (see Nobel Prize in Physics 2017 n.d.), proved the ef-
fectiveness of the large laser interferometers and opened up the era of Gravitational
Waves Astronomy. Suddenly theoretical models and numerical simulations of Com-
pact Objects, as well as other impactful astrophysical phenomena, were granted an
experimental counterpart to rule out and discern the correctness of their results. On
top of that, the aim to improve the sensibility and the accuracy of the detections re-
quired (and still does) efforts in different fields, from statistical analysis and parameter
estimation to numerical simulations.
Simulating compact objects mergers is then important from the point of view of ac-
curate GW signals, for the description of Electro-Magnetic (EM) phenomena and to
shed light on the behavior of exotic nuclear matter (i.e. matter in extreme conditions).
In fact, no more than two years after the first GW detection, the first signal from a
Binary Neutron Star (BNS) merger was detected (see Abbott et al., 2017a), together
with a follow-up detection of an EM signal that has been proven to be associated with
the BNS merger itself (see Abbott et al., 2017b). The importance of this detection
lies in the fact that NSs are the densest astrophysical objects in the Universe, with
BHs being the only known denser objects. Contrary to BH though, NS matter is not
constrained in space and time by the presence of an event horizon and can be stripped
out of the system and/or ejected on the occasion of such cataclysmic event. A close
encounter of two such objects can significantly, or completely, disrupt the NS, releas-
ing large amounts of matter and energy that can power the observed Electromagnetic
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(EM) and the predicted neutrino signature.
Furthermore, in 2020, the first signals from two compact binary inspirals that are
consistent with Black Hole-Neutron Star (BHNS) binaries were detected (see Collab-
oration et al., 2021). These represent the first confident observations to date of BHNS
binaries via any observational means. Mixed binary detections add an ulterior level
of complexity into the mix, representing a bridging case with respect to BNS and
BBH systems. More work is, in fact, needed into defining a way to establish clear-cut
thresholds for parameters related to these astrophysical setups and it can be candidly
stated that, due to their complexity and the timeline of the detections, BHNS are the
most interesting compact object systems to be studied as of this moment.
Summing up, the world surrounding Gravitational Wave detections is expanding at a
phenomenal speed. Physical aspects of different nature are continuously put on the
plate and the horizon of possible studies is expanding. The interest in extreme astro-
physical phenomena is at an all-time peak and our eyes are now pointed to the sky.
The first GW detection proved to the community that experiments often marked as
impossible in the past decades are achievable and the payoff of this incredible research
effort is enormous. Now the number of collaboration experiments is rising, promising
new exceptional discoveries in the years to come.

This thesis work spans different aspects of compact objects merger, from the strictly
computational point of view to the analysis of compact object merger of different
kinds.
The first part of this thesis work is dedicated to reporting, in a compact and effective
way, the concepts and ideas which compose the foundations of Numerical Relativity
(NR) i.e., the numerical evolution of astrophysical objects in the context of General
Relativity (GR). In particular, we go through the relevant formulas and formulations
of NR in Chap. 2 and present the formulations adopted to transpose the relevant GR
formulas into code in Chap. 3, discussing the vastly studied General Relativistic Hy-
droDynamics (GRHD) with some of the relevant addition and developments of the
recent years.
In Chap. 4 we briefly describe the numerical codes which this work is based on, and
their key features, which play an important role in the result obtained.
The second part of this thesis work is solely dedicated to the results obtained, which
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have been condensed in Chap. 5, for better readability. In particular, the different as-
pects of compact objects simulations here developed are presented separately, first pre-
senting the work on the Neutrinospheres published in Endrizzi et al., 2020 in Sec. 5.1,
the work on magnetic field augmentation of the BAM code (described in Sec. 4.2.1) with
the introduction of General Relativistic MagnetoHydroDynamics (GRMHD) formula-
tion in Sec. 5.2 and, lastly, the main work on mixed binaries, composed by a Black
Hole and a Neutron Star (BHNS), following the developments of the Elliptica code
(presented in Rashti et al., 2022) in Sec. 5.3.
Finally, we present the conclusive remarks of this work in Chap. 6.
The thesis work presented in the main chapters is supported by additional discussions
in the Appendices. For the sake of brevity, being limited by a word count, we added
these further discussions at the end of the manuscript. More extensively, we cover
the key concepts of Partial Differential Equations (PDE) in Appendix A; we explicitly
show the most important formulations related to 3+1 decomposition in Appendix B;
we explain the characteristics and the importance of Conservative Formulations in Ap-
pendix C and give a brief introduction about Equations of States (EOS) to describe
nuclear interactions inside a Neutron Star (NS) in Appendix D. Finally, leaning on the
computational side, we outline the importance of the Recovery of Primitive Variables
in Appendix E.
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Chapter 2

Numerical Relativity

2.1 Einstein Equations

In this chapter, we present the expression for the so-called Einstein’s Field Equations
(EFE) and the fundamental properties and consequences derived from them.
Making use of the key concepts of Differential Geometry (see, for example, Spivak,
1975 for a brief overview of the subject), we can define the Riemann curvature
tensor as a map:

R(−,−)− : V(M)× V(M)× V(M) → V(M), (2.1)

with
R(V,W )Z = D(V,D(W,Z))−D(W,D(V, Z))−D([V,W ], Z), (2.2)

where [V,W ](f) = V (W (f))−W (V (f)) are the Lie brackets or commutators . With
the appropriate choice of coordinate basis, the Riemann curvature tensor on a 4D-
Riemaniann manifold can be expressed as

Rα
βγδ = ∂γΓ

α
δβ − ∂δΓ

α
γβ + Γα

γτΓ
τ
δβ − Γα

δτΓ
τ
γβ, (2.3)

with properties

Rα
βγδ = −Rα

βδγ, (2.4)

Rα
βγδ +Rα

γδβ +Rα
δβγ = 0, (2.5)

∇µR
α
βγδ +∇γR

α
βδµ +∇δR

α
βµγ = 0, (2.6)
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where Eq. (2.6) are called Bianchi identities.
We can define then the Ricci tensor as

Rµν = Rτ
µτν . (2.7)

Now putting ourselves on a Riemaniann manifold we can consider the unique symmet-
ric compatible connection derived by the metric, in terms of which we can write

Rαβγδ = gµαR
µ
βγδ, (2.8)

with properties:

Rαβγδ = −Rβαγδ, (2.9)

Rαβγδ = Rγδαβ
, (2.10)

Rµν = Rνµ. (2.11)

We can finally define the Ricci scalar as

R = Rµ
µ, (2.12)

and the Einstein tensor as

Gµν = Rµν −
1

2
gµνR, (2.13)

which, as a consequence of the Bianchi identities in Eq. (2.6), is divergence-less

∇νG
µν = 0. (2.14)

Lastly, we need to derive the Einstein field equations, the fundamental block of
the theory on which this thesis is based. For simplicity, we start from the Einstein
equation in vacuum. We first assume a Lagrangian theory for a description of the
gravitational field

L(g, ∂g) = R = gµνRµν , (2.15)

where we use g to indicate the metric to distinguish from the determinant g = det(g).
We can then write the action in the form

SG[g] =

∫
M

L(g, ∂g)
√
−gd4x =

∫
M
R
√
−gd4x, (2.16)
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and applying the variational principle we obtain

δSG[g] =

∫
M
d4x[

√
−ggµνδR +

√
−g(δgµν)Rµν + gµνRµνδ(

√
−g)]. (2.17)

Since listing all the calculations is beyond the scope of this work, we can directly jump
to

Rµν −
1

2
gµνR = 0, (2.18)

or
Gµν = 0, (2.19)

which are the Einstein field equations in vacuum. We can split this set of equa-
tions into two subsets, namely

Ri
j −

1

2
δijR = 0, (2.20)

which are 6 equations containing second derivatives with respect to x0 of gij and first
derivatives of g0µ and

R0
j = 0, (2.21)

R0
0 −

1

2
R = 0, (2.22)

which only contains first derivatives with respect to x0 of gij. Eq. (2.21) and (2.22)
are also referred to as the constraints of the system, since they put restrictions on the
choice of the initial conditions. They represent the arbitrariness in the choice of the
reference system, resulting from the principle of general covariance.
The Einstein equations in vacuum (2.20) have another important consequence: they
describe the propagation of the gravitational field in empty space and, analogously to
electromagnetism, predict the existence of gravitational waves, i.e. perturbations in
the gravitational field that propagate at the speed of light c (see Eq. (2.32)). To get
the complete set of equations we then need to add the source terms to Eq. (2.20). We
first need to define the Stress-Energy tensor T µν . To do so, we consider a Field
Theory with N fields ϕa, a = 1, . . . , N that admits a Lagrangian formulation so that

T µ
ν =

∂L
∂
(
∂µϕa

)(∂νϕi
)
− δµνL (2.23)
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is the stress-energy tensor, which is divergence-less, i.e.

∂µT
µ
ν = 0, (2.24)

if L doesn’t depend explicitly on the coordinates. This tensor, as the name suggests,
is related to the energy/matter distributions and properties (as we will see in Ch. 3),
hence it poses as the source term in Einstein equations.
Now applying again the variational principle to

S =

∫
M
d4x

√
−gL(ϕ, ∂ϕ,g, ∂g), (2.25)

we end up with the complete set of Einstein equations

Gµν = Rµν −
1

2
gµνR = 8πTµν . (2.26)

These equations are the building block of General Relativity and represent a general-
ization of the relativistic Newton’s field equation

∇ϕ = 4πρ. (2.27)

Gravitational Waves To extract the equations that describe gravitational waves
we begin by assuming a small perturbation of the flat Minkowski metric ηµν :

ηµν =


−1 0 0 0

0 +1 0 0

0 0 +1 0

0 0 0 +1

 ,

which we can write as
gµν = ηµν + hµν , (2.28)

with |hµν | ≪ 1. With this linear expansion we can also write

Rαβγδ =
1

2

(
∂β∂γhαδ + ∂α∂δhβγ − ∂β∂δhαγ − ∂α∂γhβδ

)
. (2.29)

To quickly show the relevant solution we first define the trace reversed field tensor

hµν ≡ hµν − ηµν
h

2
, (2.30)
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and the gauge choice that we associate with this transformation

∂µh
µν

= 0, (2.31)

which is called the Lorentz Gauge and is of the same type of the which used in elec-
tromagnetism.
With these choices, we finally obtain the field equation

□hµν = −16πTµν , (2.32)

where □ = gµν∂µ∂ν is the d’Alambertian operator in flat space.
As stated before, Eq. (2.32) represents a wave equation for the gravitational field.
To find a solution we start with the trivial ansatz of a plane wave solution

hµν = ĥµνe
ikµxµ

, (2.33)

where ĥµν is the amplitude tensor and kµ the wave vector. Making use of Eq. (2.32)
we have that

ηµνkµkν = kνk
ν = 0, (2.34)

so kµ is a null vector and using the Lorentz gauge

ĥµνkν = 0, (2.35)

we can see how the amplitude vector is orthogonal to the wave vector.
Having still freedom within the choice of the Lorentz gauge, we put ourselves in the
so-called transverse-traceless gauge (TT)

□ξµ = 0, (2.36)

which for our case reads as
ĥµµ = 0 and ĥµνuν = 0 (2.37)
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for an arbitrary constant 4-velocity uν (i.e. an arbitrary timelike unit vector).
In particular, we can assume a propagation along z−axis and write, in matrix form,

ĥTT
µν =


0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0

 ,

where h+ and h× are the remaining degrees of freedom and are commonly referred
to as the two polarizations of gravitational waves. To visualize the effect of the two
different polarizations refer to Fig. 2.1

Figure 2.1: Effect of a monochromatic gravitational wave of pulsation ω = 2π/T propa-
gating along the z direction. The lower panel shows the effects of + and × polarizations on
a ring of freely falling particles, in a local inertial frame. These effects show why the two

polarizations are labeled as such.
From Le Tiec et al., 2016
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2.2 3 + 1 decomposition

2.2.1 Foliation

In section Sec. 2.1 we wrote Einstein’s field equation, in a manifold M, in a fully
covariant way. In this form, directly derived from differential geometry, all dimensions
are treated in a similar way. From now on we localize ourselves on a 4D-spacetime.
All the equations derived before remain valid, only we assume the manifold to be 4D.
In order to computationally evolve the 4D-spacetime, we employ a technique called
3+1 decomposition, in which the 4D-spacetime domain of the simulation is divided
into a 3D slice and a 1D time evolution axis. We assume that the manifold M (space-
time) in exam is globally hyperbolic, i.e. that there exists a set C that is spacelike and
if chronologically extended in the past and future it covers the entire manifold. More
loosely speaking, a globally hyperbolic manifold is such that we can define a concept
of causality for every point contained. For the sake of our discussion, a globally hy-
perbolic spacetime can be completely foliated, i.e. fully decomposed into 3D spacelike
hypersurfaces Σ. To identify different hypersurfaces we can define a global parameter
t that can be considered as a universal time function. Passing from a hypersurface at
time Σt to a hypersurface at time Σt+dt we can define two key functions:

• Lapse function (α): describes the change in proper time dτ between the two
hypersurfaces along the normal or Eulerian direction as in

dτ = α(t, xi)dt. (2.38)

• Shift vector (βi): describes the change in spatial coordinates moving from
a hypersurface (Σt) to the following (Σt+dt) moving along normal or Eulerian
direction as in

xit+dt = xit − βi(t, xj)dt. (2.39)

In terms of α and βi the metric is split as

ds2 = (−α2 + βiβ
i)dt2 + 2βidtdx

i + γijdx
idxj, (2.40)

so the metric tensor is

gµν =

(
−α2 + βkβ

k βi

βj γij

)
,
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gµν =

(
−1/α2 βi/α2

βj/α2 γij − βiβj/α2

)
.

Now we can differentiate between the 4-metric gµν and the 3-metric γij. In the same
way, we can establish a relation for the determinants:

√
−g = α

√
γ. (2.41)

In addition, we can specify the coordinates of the unit normal vector to the hypersur-
face n with these two variables

nµ =
1

α
(1,−βi), nµ = −α(1, 0), (2.42)

which has properties nµnµ = −1, i.e. it is timelike. We can then define the time vector
tµ in terms of βµ = (0, βi) as

tµ = αnµ + βµ. (2.43)

This 4-vector is basically the tangent vector to lines of constant spatial coordinates.
We have that tµnµ = −α, thus tµ∇µt = 1.
Finally, we express the spatial metric as a full 4-tensor as

γµν = gµν + nµnν , (2.44)

where nνγµν = 0.

2.2.2 Intrinsic and Extrinsic Curvature

As a key feature of this decomposition, we need to distinguish between the properties
of the 3D hypersurface and its behavior in the full 4D spacetime. In particular, as we
have seen in Sec. 2.1, we need to adapt the concept of curvature, usually described by
the Riemann tensor, to our foliated spacetime. In practice, we are going to replicate
the decomposition of the metric to the rest of the relevant physical quantities.
From this point on, we are going to fix a clear distinction between vectors/tensors
defined on the 3D-hypersurface and the full 4D-spacetime. Hence we will indicate
with (4) the full 4D quantities and with (3) the local ones (to the hypersurface). Now
the curvature of the manifold can be seen as divided into an intrinsic curvature i.e.
the Riemann curvature tensor of the 3D-hypersurface (3)R and an extrinsic curvature
K, defined by the parallel transport of the normal vector on the hypersurface and that
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describes the relation by the 3D hypersurfaces and the whole 4D-spacetime. For the
sake of our decomposition we define

P µ
ν ≡ δµν + nµnν (2.45)

as the projection operator, which projects all tensorial quantities onto the hypersurface.
In our decomposition, we use the definition

Pµν ≡ γµν . (2.46)

Using the projector operator we define the extrinsic curvature as

Kµν = −P σ
µ∇σnν (2.47)

= −(∇µnν + nµn
σ∇σnν) (2.48)

= −Pα
µ P

β
ν ∇αnβ, (2.49)

which is symmetric and purely spatial, so we have

Kµν = Kνµ, (2.50)

nµKµν = nνKµν = 0, (2.51)

where n is the direction of the normal vector nµ.
It is important to notice that in terms of the Lie Derivative, we can write the extrinsic
curvature as

Kµν = −1

2
£nγµν . (2.52)

The extrinsic curvature, as a result of the decomposition, describes the relationship
between the hypersurfaces and the 4D-spacetime around them. In fact, as we see from
Eq. (2.49) the extrinsic curvature represents the variation of the normal vector nµ to
the hypersurface, calculated along the hypersurface itself.
For the following, is useful to define Dij, which is simply the 3D covariant derivative,
i.e. the one associated with the hypersurface metric γij. With more generality, we can
write

Dµ ≡ Pα
µ∇α, (2.53)

which also satisfies the metric compatibility condition

Dαγµν = 0. (2.54)
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Now working out calculations and knowing that in the foliation’s coordinates we can
write

£t = ∂t, (2.55)

we get
∂tγij = −2αKij +Diβj +Djβi, (2.56)

where we restricted directly to spatial components because all other vanish.

To finally obtain the full decomposition of the 4D-Riemann tensor, i.e.(4)Rαβγδ we
simply apply the projection operator multiple times. Skipping here the long calcula-
tions, we can report directly the final result, which is expressed respectively by the
Gauss-Codazzi equations (2.57) and, for the first contracted form of, by the Codazzi-
Mainardi equations (2.58)

Pα
µ P

β
ν P

γ
σP

δ
τ
(4)Rαβγδ =

(3)Rµνστ +KµσKντ −KµτKνσ, (2.57)

Pα
µ P

β
ν P

γ
σ n

δ(4)Rαβγδ = DνKµσ −DµKνσ. (2.58)

2.2.3 Evolution equations

All the definitions above are necessary to write down a set of evolution equations which
can be employed to numerically evolve different spacetime configurations. For the sake
of the page-limit for this manuscript we direct the reader to Appendix B, where we
describe the most important 3+ 1 formulations, in terms of evolution equations, both
from a historical point of view and for the relevance in numerical schemes and codes,
like the ones used for this work. In particular, we illustrate the following formalisms

• ADM formalism in Sec. B.1, the most important from a historical point of view,
first introduced in Arnowitt et al., 1959 and then improved in York, 1979;

• BSSNOK formalism in Sec. B.2, collectively perfected by the work in Nakamura
et al., 1987; Shibata et al., 1995; Baumgarte et al., 1998a;

• Z4 formulation in Sec. B.3, first proposed in Bona et al., 2003; Bona et al.,
2004, and a relevant subsequent extension of the original formulation, i.e. Z4c
(see Bernuzzi et al., 2010);
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2.3 Gauge conditions

So far with our treatment of 3+1 decomposition, we are left to deal with four degrees of
freedom, which do not have an effect on the value of physical observables and therefore
are referred to as Gauge conditions. We in fact have to specify two conditions: one
for the lapse function α, called slicing condition and one for the shift vector βi, called
shift condition. The basic rules in the choice of these conditions are the following:

• singularities of the spacetime should be avoided and any coordinate distortion
that could arise should be counteracted;

• conditions should be expressed in a 3-covariant form, to be spatial-coordinates
invariants;

• conditions should be well-behaved (mathematically) and should be computation-
ally simple and cheap.

2.3.1 Slicing condition

Following the principles stated above, we want to choose a condition that allows us to
deal with singularities smoothly. Examples of the most used slicing conditions are:

• Geodesic slicing condition from Hahn et al., 1964, i.e. α = 1. The proper
acceleration of the Eulerian observers vanishes but if the gravitational field is non-
uniform, it allows different Eulerian observers to focus (i.e. crossing of paths).
Our coordinate system loses then its bijection and a singularity arises.

• Maximal slicing condition from Lichnerowicz, 1944, i.e. K = 0 and ∂tK =

0. For K = 0 the volume of the hypersurfaces is maximal with respect to
small variations. It prevents the hypersurfaces from coming arbitrarily close to
singularities and ensures that Eulerian observers will not focus.

• Bona-Massò family of slicing conditions from Bona et al., 1995, i.e.

d

dt
α = ∂tα−£β⃗α = −f(α)α2(K −K(t = 0)), (2.59)

with f(α) > 0, α = h(xi) + ln(γk/2) and h(xi) is a positive, arbitrary time-
independent function. Setting different values for f we obtain various types of
slicings:
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– f = 1, Harmonic slicing

– f = k/α. 1+log slicing

2.3.2 Shift conditions

To take care of the shift vector βi now, we have to specify appropriate gauge conditions.
As for slicing conditions, some of the most used shift conditions are the following:

• βi = 0, one of the more simple and used conditions but which causes BH horizons
to grow rapidly in coordinate space leading to the computational domains to fall
inside the BH.

• Minimal Distortion shift condition, i.e.

∆Lβ
i = 2Dj(αB

ij), (2.60)

where
∆Lβ

i ≡ Dj(Lβ)
ij = DiD

iβi +
1

3
DiDjβ

j +Ri
jβ

j (2.61)

is an elliptical shift condition that minimizes the integral of the distortion tensor
over the spatial hypersurface with respect to the shift

• Gamma-freezing shift condition, i.e. ∂tΓ̂i = 0 (where Γ is defined in Eq. (B.16))
proposed as a natural shift condition in context of BSSNOK formulation de-
scribed in Sec. B.2, as it freezes three of the independent degrees of freedom.

• Gamma driver shift condition from Alcubierre et al., 2001, which is a refor-
mulation of the Gamma-freezing shift condition for Γ̂i and is expressed by:

∂tβ
i − βj∂jβ

i =
3

4
Bi, (2.62)

∂tB
i − βj∂jB

i =∂tΓ̂
i − βj∂jΓ̂

i − ηBi, (2.63)

where Bi is an auxiliary variable and η is a damping term to avoid oscillations
in the shift due to large variations of the gauges. They are extremely robust in
BH simulations with puncture initial data (see Sec. 4.2.1), controlling both the
slice stretching and the shear due to the rotation of the BH.
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Chapter 3

General Relativistic Hydrodynamics

In chapter Ch. 2 we discussed how to decompose the spacetime in 3+1 dimensions and
especially showed how this applies to the Einstein equations (2.26). In this chapter
we continue the procedure to specify the source term in the previously mentioned
equations, specifying the matter/energy contribution and to obtain a complete set of
equations to evolve matter in a relativistic context.
The starting point is to specify an expression for the stress-energy tensor T µν . First we
need to expand the definition given in Eq. (2.23) of the stress-energy tensor itself. This
tensor, as we see, is deeply related to the matter description. In fact considering a 4D-
spacetime we can define the stress-energy tensor T µν (also called energy-momentum
tensor) and interpret specific components in a physical way

T 00 = energy density, (3.1)

T 0i = momentum density, (3.2)

T i0 = energy flux, (3.3)

T ij = flux of i momentum in direction j. (3.4)

From Eq. (2.24) we can also write our usual conservation laws for energy and momen-
tum as:

∇νT
µν = 0. (3.5)

In fact, with µ = 0 we get the energy conservation law, while for µ = i we get the
momentum conservation law. In general these conservation laws only hold locally,
since the gravitational field modifies the energy and momentum of the system.
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3.1 General Relativistic HydroDynamics Equations

(GRHD)

To specify the matter (or in general the energy content) of the spacetime, we need to
specify the Lagrangian energy density L in Eq. (2.23). We start from what we consider
a good basic approximation, namely a perfect fluid approximation, for which, skipping
the calculations, we obtain

T µν = (ρ(1 + ϵ) + p)uµuν − pgµν = ρhuµuν − pgµν , (3.6)

where h is the specific enthalpy, expressed by

h = 1 + ϵ+
p

ρ
, (3.7)

and where we simply assumed T 00 = ρ, T ii = p and T µν which describes a fluid with
rest mass energy density ρ, specific internal energy ϵ, pressure p, no heat conduction
T 0i = 0 in the frame co-moving with the fluid whose 4-velocity is represented by uµ,
with the property uµuµ.
It is helpful to define the rest-mass density current Jµ

(ρ) as

Jµ
(ρ) = ρuµ. (3.8)

Next step is to specify a set of conservation equations for the matter evolution. We are
again using Eq. (3.5) for the conservation of energy and momentum and the continuity
equation in the following, Eq. (3.10):

∇νT
µν = 0, (3.9)

∇µJ
µ
(ρ) = ∇µ(ρu

µ) = 0. (3.10)

In the following we will describe the principal approaches to the numerical solution of
these equations to obtain a complete description of matter evolution.



3.1. General Relativistic HydroDynamics Equations
(GRHD)

19

3.1.1 Wilson formulation

In the 1970s J.R. Wilson published an Eulerian formulation in Wilson., 1972, based
on the introduction of the dynamical variables

D ≡ ρu0, (3.11)

Sµ ≡ ρhu0uµ, (3.12)

E ≡ ρu0ϵ, (3.13)

that, as seen before, represent the rest mass density, the covariant momentum and the
generalized internal energy density in the Eulerian frame (and for this are referred as
dynamical variables).
Using these variables we can expand the set of Eq. (3.9) and Eq. (3.10) to obtain

1√
−g

∂t(
√
−gD) +

1√
−g

∂i(
√
−gDV i) = 0, (3.14)

1√
−g

∂t(
√
−gSµ) +

1√
−g

∂i(
√
−gSµV

i) + ∂µp+
1

2
(∂µg

αβ)(
SαSβ

S0
) = 0, (3.15)

∂t(
√
−gE) + ∂i(

√
−gEV i) + p∂µ(

√
−gu0V µ) = 0, (3.16)

with
V µ ≡ uµ

u0
, (3.17)

that is the 4-velocity measured by an Eulerian observer or transport velocity.
The previous set of equations represents the Wilson formulation of relativistic hy-
drodynamics. To complete the system of equations we need to specify an equation of
state of the type

P = ρϵ(γ − 1), (3.18)

with γ = const.
It can be easily shown that these equations are not written in a conservative form (see
Appendix C), fundamental for numerical simulations, and hence require the use of a
term of artificial viscosity which is added to the pressure and which acts in the same
way as a physical bulk viscosity.
This method is proven effective if we are able to deal with the divergences that could
arise with ultra-relativistic flows due to the nonlinear coupling between the artificial
viscosity and the fluid velocity.
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3.1.2 Valencia Formulation

In the 1990s a new Eulerian formulation of Relativistic HydroDynamics (RHD) was
developed by the Spanish team of Martí, Ibáñez and Miralles and for that took the
name of Valencia formulation (see Martí et al., 1991). Contrary to Wilson’s for-
mulation, the one described in the following can be proven to be conservative. In the
following we show the equations written directly in general relativistic form (GRHD)
employing a 3 + 1-decomposition.
Using the same procedure as in Sec. 3.1.1 we first define the conserved variables as

D ≡ ρW, (3.19)

Sµ ≡ ρhW 2vµ, (3.20)

Sµν ≡ ρhW 2vµvν + Pγµν , (3.21)

E ≡ ρhW 2 − P, (3.22)

where we defined the Lorentz factor

W ≡ −nµu
µ = αu0 =

1√
1− V iVi

, (3.23)

using the relations in Eq. (2.41), (2.42) and (3.17) and vµ is part of the decomposition
of the fluid 4-velocity uµ in Eq. (3.26). With these definitions we can write the stress-
energy tensor as

T µν = ρhuµuν + pgµν = Enµnν + Sµnν + Sνnµ = (3.24)

= ρhW (nµ + vµ)(nν + vν) + p(γµν + nµnν), (3.25)

where we used the fact that
uµ = W (nµ + V µ). (3.26)

We can now take, for example, Eq. (3.10) and write it as

∇µ(ρu
µ) =

1√
−g

∂µ(
√
−gρuµ) =

=
1√
−g

[∂t(
√
−gρu0) + ∂i(

√
−gρui)] = 0.

(3.27)
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Using the definitions in Eq. (3.19), (3.17) and relation (2.41) we get the expression

∂t

(
√
γD

)
+ ∂i

[
√
γD(αV i − βi)

]
= 0. (3.28)

In the same way we obtain

∂t
(√

γSj

)
+ ∂i

[
√
γ
(
αSi

j − βiSj

)]
=

1

2

√
−gT µν∂jgµν , (3.29)

and
∂t
(√

γE
)
+ ∂i

[
√
γ
(
αSi − βiE

)]
= −1

2

√
−gT µν∇µnν . (3.30)

We can now glue together the previous expressions in a more compact form

∂t

(
√
γU⃗

)
+ ∂i

(
√
γ(F⃗ )i

)
= S⃗, (3.31)

where we have defined the vectors

U⃗ = (D;Sj;E)
T = (ρW ; ρhW 2Vj; ρhW

2 − P )T , (3.32)

(F⃗ )i = (αV iD − βiD;αSi
j − βiSj;αS

i − βiE)T , (3.33)

S⃗ =
√
γ

(
0;

1

2
αSik∂jγik + Si∂jβ

i − E∂jα;αS
ijKij − Sj∂jα

)T

. (3.34)

Eq. (3.31) represents the set of PDE’s describing GRHD in the Valencia formulation.
Eq. (3.32)- (3.34) are valid in any curved spacetime written in any coordinate systems
with ds of the form in Eq.(2.40).
Because linear combinations of conserved variables are still solutions to the equations
in conservative form, the original formulation in Banyuls et al., 1997 used as conserved
energy the quantity

τ ≡ ρW (hW − 1)− p = E −D, (3.35)

which represents conserved energy. This choice has purely numerical motivations, i.e.,
the conservation of τ as a combination of two conserved quantities is more accurate
than that of E only. Because of this it is the one employed in most numerical codes
(see Baiotti et al., 2005).
Looking now at the source terms in Eq. (3.34) we can see that if we choose a set of
Cartesian coordinates for a flat spacetime they vanish, leaving us with a set of homo-
geneous equations, since they do not contain derivatives of the fluid variables and are
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therefore finite even in the presence of physical shocks. Finally the main procedure to
be implemented in the code for the Valencia formulation is schematized this way:

Primitive var. =⇒ Conserved var. =⇒ Evolution =⇒ Primitive var.

Why are all these steps needed? The recovery of the primitive variables is not math-
ematically necessary, but it is fundamental in order to get a physical interpretation
of the results and to interface the evolution equations with the microphysical descrip-
tion coming from the EoS (see Appendix D), which is naturally expressed in terms
of the primitive variables. The conserved variables can be expressed in terms of the
primitive variables in a straightforward manner but the opposite is not true and a
root-finding procedure is needed to obtain the primitive variables from the conserved
ones that have been evolved in time. This procedure is usually computationally expen-
sive, and represents a source of numerical errors. For more details refer to Appendix E.

For the sake of completeness we analyze the eigenvalues of

(A⃗)i =
∂
√
γ(F⃗ )i

∂
√
γU⃗

=
∂(F⃗ )i

∂U⃗
, (3.36)

in relation to the expression in Eq. (3.31), needed for the treatment of fluxes in NR
(to expand on this topic we refer to more extensive treatments of High Resolution
Shock Capturing methods). in Shibata, 2015; Rezzolla et al., 2013) Taking i = x the
eigenvalues are

λ0 = αvx − βx, (3.37)

λ± =
α

1− v2c2s
−
[
vx(1− c2s)±

√
(1− v2)[γxx(1− v2c2s)− vxvx(1− c2s)]

]
βx. (3.38)

We note that the λ0 eigenvalue is triple-degenerate.
From the eigenvalues λ0, λ± we can derive the right and left eigenvectors R⃗0, R⃗±, L⃗0, L⃗±.
λ± measure the propagation speed of the so called acoustic waves while λ0 measure
the propagation speed of the so called matter waves or entropy waves.
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3.2 General Relativistic

Magneto-HydroDynamics Equations (GRMHD)

With the formalism described up to now we haven’t taken into account magnetic and
electric fields. In the following we will describe a formalism which allows us to evolve
hydrodynamics equations and Maxwell’s equations. For this treatment we refer to
Anton et al., 2006 and Giacomazzo et al., 2007. GRMHD formulation is widely known
so one may refer to other works like Koide et al., 1999; Komissarov, 1999; McKinney
et al., 2004; Duez et al., 2005; Shibata et al., 2005.
We first introduce the 4-vectors Eµ and Bµ, which represent respectively the electric
field and the magnetic field which satisfy the relation

Eµnµ = Bµnµ = 0, (3.39)

that implies that they are purely spatial vectors (E0 = B0 = 0). In terms of these
newly introduced vectors we can write F µν , the ElectroMagnetic (EM) anti-symmetric
tensor field or Faraday tensor, as

F µν = nµEν − nνEµ + εµντBτ , (3.40)

with
εαβγ = nδεδαβγ, (3.41)

that is the 3D Levi-Civita pseudo-tensor, defined from the contraction of the 4D one.
We remind that

εijk =
√
γeijk, (3.42)

where eijk is the Levi-Civita pseudo-tensor in a flat spacetime.
We can also specify the relations

F µνFµν = 2
(
B2 + E2

)
, (3.43)

∗FµνF
µν = 4EµBµ, (3.44)

where ∗Fµν is Fµν ’s dual.
Since we are adding another field to the domain we need to modify the source term of
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Einstein equations (2.26), i.e. the stress-energy tensor, which can be written as

Tµν = THD
µν + TEM

µν , (3.45)

where THD
µν is the hydrodynamic stress-energy tensor in Eq. (3.6)

TEM
µν = F µσF ν

σ − 1

4
gµνF στFστ . (3.46)

To proceed we have to rewrite Maxwell’s equations in terms of the quantities previously
defined:

∇ν
∗F µν = ∇ν(

1

2
εµνστFστ ) = 0, (3.47)

∇νF
µν = 4πJµ, (3.48)

with Jµ the charge-current 4-vector which can be expressed as

Jµ = quµ + σF µνuν , (3.49)

where q is the proper charge density, σ is the conductivity and uµ the 4-velocity of the
fluid.
If we assume that the fluid is a perfect conductor, i.e. σ → ∞, and F µνuν = 0 (elec-
tric field measured by co-moving observers) we are in the ideal magnetohydrodynamic
regime (IMHD). In this limit we can write the EM tensor in terms of magnetic field
only as

F µν = ηµνστbσuτ , (3.50)
∗F µν = bµuν − bνuµ, (3.51)

and Maxwell equations as

∇ν
∗F µν =

1√
−g

∂ν [
√
−g(bµuν − bνuµ)] = 0, (3.52)

where bµ is the magnetic field with respect to a co-moving observer, while, in the
following, Bµ is the magnetic field with respect to an Eulerian observer. The relations
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between bµ and Bµ are

b0 =
WBiVi
α

, (3.53)

bi =
Bi + αb0ui

W
, (3.54)

b2 = bµbµ =
B2 + α2(b0)2

W 2
, (3.55)

where
B2 = BiBi. (3.56)

If we define
B̂k =

√
γBk, (3.57)

we can divide Eq. (3.52) into components to get

∂iB̂
i = ∂i

√
γBi = 0, (3.58)

∂tB̂
i = ∂j[(αV

i − βi)B̂j − (αV j − βj)B̂i], (3.59)

where Eq. (3.58) define the divergence-free constraint and Eq. (3.59) describe the
evolution of the magnetic field.
Now passing to matter evolution we have to rewrite the stress-energy tensor to include
magnetic energy density and pressure as

T µν = (ρh+ b2)uµuν +

(
p+

b2

2

)
gµν − bµbν . (3.60)

With this expression of T µν it is possible to write the GRMHD equation as in Eq. (3.31),
given that we redefine F⃗ , U⃗ , S⃗ and the conserved variables as

(F⃗ )i =

(
DṼ i

α
;
SjṼ

i

α
+

(
p+

b2

2

)
δij −

bjB
i

W
;
τ Ṽ i

α
+

+

(
P +

b2

2

)
V i − αb0Bi

W
;
BkṼ i

α
− BiṼ k

α

)T

,

(3.61)

U⃗ =(D;Sj; τ ;B
k)T , (3.62)

S⃗ =

(
0;T µν(∂µgνj − Γδ

νµ)γδj;α(T
µ0∂µln(α)− T µνΓ0

νµ); 0; 0; 0

)T

, (3.63)
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with the definitions

D =ρW, (3.64)

Sj =(ρh+ b2)W 2Vj − αb0bj, (3.65)

τ =(ρh+ b2)W 2 −
(
P +

b2

2

)
− α(b0)2 −D. (3.66)

In the expressions before we made use of the definition

Ṽ i = αV i − βi. (3.67)

In ideal magnetohydrodynamics, there are in general seven independent characteristic
speeds, if no degeneracy is present. This is in contrast to pure hydrodynamics, in
which there are only three characteristic modes. Here we are presenting the eigen-
values modes. The eigenvectors can be derived by the same procedure as in the pure
hydrodynamics case after an extremely lengthy calculation Anile, 1990; Komissarov,
1999; Anton et al., 2006. Showing details of this calculation is beyond the scope of
this work.
Here we summarize the eigenvalues, first writing

λe = αvx − βx, (3.68)

λk± =
bk ± uk

√
4πρh+ b2

b0 ± u0
√

4πρh+ b2
, (3.69)

which represent three different wave-speeds corresponding to the entropy wave (as in
Eq. (3.37)) and the Alfven waves.
The remaining four solutions, which correspond to the slow and fast modes of mag-
netohydrodynamics waves, can be obtained by solving a fourth-order equation written
as

(u0)4(λk − vk)4(1− ζ)+
[
c2s
(bk − λkb0)2

4πρh+ b2
− (u0)2(λk − vk)2ζ

]
×

×
[
γxx − (βk + λk)2

α2

]
= 0,

(3.70)
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where vA is the Alfven velocity defined as

ζ ≡ 4πρhc2s + b2

4πρh+ b2
= v2A + c2s − v2Ac

2
s, (3.71)

v2A ≡ b2

4πρh+ b2
. (3.72)

Let us note that the entropy waves and the Alfven waves appear as double roots.
These superfluous eigenvalues appear associated with nonphysical waves and are the
result of working with the unconstrained, 10×10 system of equations. Any attempt to
develop a numerical procedure based on the wave structure of the GRMHD equations
must remove these nonphysical waves (and the corresponding eigenvectors) from the
wave decomposition.
This is necessary since degenerate states in which two or more wave speeds coincide,
will break the strict hyperbolicity of the system. In the fluid rest frame, the degeneracy
in both classical and relativistic MHD are the same: either the slow and Alfven waves
have the same speed as the entropy wave when propagating perpendicularly to the
magnetic field or the slow wave, the fast wave, or both have the same speed as the
Alfven wave when propagating in a direction aligned with the magnetic field.
More details about the treatment of these eigenvalues can be found in BAM’s GRMHD
implementation discussed in Sec. 5.2. To summarize we can visualize the complete set
of seven different speeds related to the eigenvalues in Fig. 3.1.

3.3 Radiative Transport and Microphysics

One of the aspects of simulations involving non-singular compact objects, is the addi-
tional complexity added by the matter treatment: simply put, when working with BHs
we can treat them as stand-alone objects, basically neglecting whatever content may
lie inside the EH (or, from a computational perspective, inside the AH). To the first
degree of approximation, a simple but nonphysical treatment of the matter evolved in
simulations, especially in the case of NSs, still allows substantial and meaningful re-
sults to be obtained (e.g. from the point of view of the gravitational signal and the GW
emission). However, a rising interest in the past years has pushed simulations towards
better and better descriptions of matter, allowing different properties to be accounted
for, like the magnetic fields (MFs) treatment described in the previous sections. When
focusing on systems like Core-Collapse Supernovae (CCSN) or the simulation of ejecta,
in binary mergers we stress the importance of a better physical description in order to
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Figure 3.1: Complete set of eigenspeeds for the GRMHD formulation. The labels refer to,
respectively, f = fast magneto-sonic waves, a = Alfven waves, s = slow magneto-sonic waves,

e = entropy or matter wave. For each set of waves the ± propagation is shown.
From presentation Towards relativistic magneto-rotational core collapse simulations by T.Font

obtain results that align with currently available or future observations. Concretely,
these phenomena derive from systems with high densities, ρ ≳ 1014 g/cm3, and high
temperatures, T ≳ 10 MeV. Generally in states with ρ ≳ 1011 g/cm3, the electron de-
generacy pressure plays a major role in determining the total pressure and the neutron
richness. In addition, with high-temperature T ≳ a few MeV, the neutrino emission
and neutrino transfer lead an important role, not only in cooling and heating, but
also in determining the electron number density, thanks to electron and positron cap-
tures on nucleons and heavy nuclei. We then need to account for the evolution of the
electron number density and the neutrino transfer processes for physically modeling
high-density and high-temperature phenomena. Therefore, in addition to the continu-
ity, Euler, and energy equations, we need to add to the system the radiation transfer
equation for neutrinos and the evolution equation for lepton number density. More-
over, we need to provide a suitable EOS, that includes an appropriate microphysics
description. Equations of state for high-density and high-temperature matter, which
have been derived aiming primarily at the use for core-collapse supernova simulations,
are usually constructed in a tabulated form (see Appendix D). Usually in tabulated
EOS, the relevant thermodynamical quantities (i.e. pressure, internal energy, entropy,
temperature, fractions of protons, neutrons, light nuclei, and heavy nuclei) are written
as functions of the rest-mass density ρ, the temperature T and the electron fraction



3.3. Radiative Transport and Microphysics 29

per nucleon Ye. In GRHD simulations, it is easy to derive the first two quantities from
the simulation (assuming a correct choice of EOS), while we need to establish a way
to calculate Ye. Different methods can be used here. A simple way out is to assume,
for example, β−equilibrium such as p + e− ↔ n + νe and n + e+ ↔ p + ν̄e but such
conditions usually represents nonphysical scenarios. In general, we aim to write a set
of evolution equations to solve numerically. We write, in the fluid rest frame

ua∇aYe = −γe, (3.73)

where here γe is defined by the local capture rate of electrons by nuclei minus the local
capture rate of positrons by nuclei. By some reworking, we get to the continuity-type
equation

∂t(ρ
∗Ye) + ∂k(ρ

∗Yev
k) = −ρ

√
−gγe. (3.74)

If we add to the system the fractions of neutrinos and total leptons, Yν and Yl, we also
have to solve their equivalent continuity-type equations of the type of Eq. (3.74).
We refer to more extensive works for ways to solve for Ye, like Sekiguchi, 2010.

If we now address the radiation transfer equation for neutrinos νi the main approaches
are the following:

1. Boltzmann equation;

2. Leakage schemes;

3. Moment formalisms.

For strictly handling radiation transfer effects, it is necessary to solve Boltzmann’s
equation numerically, taking into account absorption, emission, and scattering terms.
This equation has a 3+3+1 dimensional form (3+1-spacetime dimensions + 3-momentum
dimensions) so the computational domain has to cover a six-dimensional phase space.
It is an extremely challenging task to perform a well-resolved numerical simulation
with a sufficient grid resolution for this equation, unless a high spatial symmetry
such as spherical symmetry is imposed. For this reason, adding such complexity to
already computations-heavy simulations, could possibly increase n-fold the time re-
quired for a single run. Not to be carried away by the description we refer the reader
to Mezzacappa et al., 1989; Liebendörfer et al., 2001; Liebendorfer et al., 2004 for
basic formulations, Liebendörfer et al., 2001; Sumiyoshi et al., 2005 for results in
spherically symmetric and general relativistic simulations and to Cardall et al., 2003;
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Cardall et al., 2013; Shibata et al., 2014 for examples of attempts at including the full
treatment on GRHD simulations.
It is now clear how approximate treatments are computationally favored in NR simula-
tions, in the context of transport equation and neutrino treatment. A straightforward
choice are Leakage schemes. In these schemes, equations for the radiation transfer
are not essentially solved, but cooling (and heating in some cases) effects are phe-
nomenologically taken into account. A leakage scheme uses the local properties of the
fluid and an estimate of the neutrino optical depth to determine the amount of energy
lost locally to neutrino-matter interactions, and the associated change in the compo-
sition of the fluid. Computational costs for a solution of radiation hydrodynamics by
this scheme are less expensive than those by solving Boltzmann’s equation or moment
equations mentioned later. On top of this, it can still yield a semi-quantitative nu-
merical result for radiation hydrodynamics that captures the essence of the radiation
effects. We refer to van Riper et al., 1981; Epstein et al., 1981; Van Riper, 1982; Baron
et al., 1985; Cooperstein, 1988; Ruffert et al., 1995; Rosswog et al., 2003; Sekiguchi,
2010; Sekiguchi, 2010 for first implementations of the scheme, as well as examples of
applications for CCSN and BNS.
A more detailed approach is represented by Thorne’s Moment formalism, first de-
scribed in Thorne, 1981, and to a more modern version called Truncated Moment
Formalism presented in Shibata et al., 2011. The formalism is based on the introduc-
tion of hierarchical equations for unprojected moments of massless particles associated
with a moving medium. As pointed out in the original implementation, it is possible
to choose any fiducial frame in the moment formalism. However, we have to keep in
mind that for deriving a truncated moment formalism in a closed form, it is necessary
to assume a closure relation that is determined by a physically reasonable assumption.
This requires us to choose a good fiducial observer for deriving a useful truncated for-
malism from the moment formalism. In the dense medium, any radiation is strongly
coupled to a fluid. This implies that in the 0th order, the radiation is in equilibrium
with the medium, and radiation flow (measured by an observer co-moving with the
fluid) is a small correction. The difficulty of this approach stands in describing the
different behaviors in the optically thick region, the optically thin region, and in be-
tween these two (gray regimes). We can assume that the degree of anisotropy of the
distribution function in the local rest frame is weak and that the distribution function
is approximated by lower-order harmonics in the optically thick region. The radiation
should propagate with the speed of light, while the radiation flow at each spacetime
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point should be pointed primarily to a particular null direction (which is automatic in
regions distant from sources). For optically grey regions, these two closure relations
adopted for the two limiting cases are linked via the so-called Eddington factor (in-
troduced in Levermore, 1984). On top of momentum formulations, other closures can
be used like a Monte-Carlo method as in Foucart et al., 2018a.
For more details regarding neutrino transports, we refer to general reviews, like in Shi-
bata, 2015.
An extended treatment of the subject of microphysics is beyond the scope of this work,
but we refer to Appendix D for more details.
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Chapter 4

Numerical Codes

The evolution of binary systems requires the design of ad hoc numerical codes that take
care of designing the physical system and the subsequent evolution. These two aspects
are treated separately with the employment of stand-alone codes for the computation
of Initial Data (ID) and the actual evolution of binary systems and single stars. The
theoretical basis on which the computation of Initial Data and the evolution of compact
systems is based represent very complex aspects of NR and an accurate description
of the topic would swerve from the aim of this work. For an in-depth take on these
topics we point the reader to, for example, Alcubierre, 2008; Gourgoulhon, 2012 for
an extensive description of the basis of Initial Data computation and to Tichy, 2016
for a review specific to the aforementioned topic. On the topic of the evolution of
compact objects we recommend texts as Shibata, 2015; Rezzolla et al., 2013 for a
general outlook on the methods employed by numerical codes.
In the following we are going to describe the numerical code used for computation
of ID, used during this work (in Sec. 4.1) while in Sec. 4.2 we then describe BAM, the
main evolution code used for this work, with its implementation and the developments
added as a separate project (in Sec. 5.2).

4.1 Initial Data Codes

In the following we are going to briefly describe Initial Data codes relevant for the
description of this project, i.e. SGRID in Sec. 4.1.1 and Elliptica in Sec. 4.1.2. Note
that many different ID codes, both public and private, are available in the scientific
panorama at the time of writing. Different codes employ different approaches and/or
allow different settings for physical parameters. For the sake of completeness we men-
tion some of the main codes used in numerical relativity: the COCAL code (Uryu et al.,
2012; Tsokaros et al., 2015) for BBH and BNS initial data; the publicly available FUKA
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code (Papenfort et al., 2021) for BBH, BNS, and BHNS binaries with aligned or anti-
aligned spins; the public code LORENE (Lorene, n.d.; Grandclement, 2006; Taniguchi
et al., 2006; Taniguchi et al., 2007; Taniguchi et al., 2008) for BBH, BHNS, and
BNS, where only black holes can have spins that are aligned or anti-aligned; the
NRPyElliptic code (Assumpcao et al., 2021) for BBHs; SpECTRE’s elliptic solver (Fis-
cher et al., 2021a; Fischer et al., 2021b) for computing BBHs initial data; the private
code Spells (Pfeiffer et al., 2003a; Foucart et al., 2008; Tacik et al., 2015; Tacik et al.,
2016) for BBH, BNS, and BHNS binaries with arbitrary spin and asymmetric masses;
and TwoPunctures (Ansorg et al., 2004; Ansorg, 2005; Khamesra et al., 2021) for
BBHs and non-spinning BHNSs.

4.1.1 SGRID

We start presenting the SGRID code, a numerical code for NS initial data (in isolation
or as binaries), used in particular to provide ID for the BAM code (see Sec. 4.2.1). The
code was developed by W. Tichy in Tichy, 2009, Tichy, 2012 and Tichy et al., 2019 and
has been upgraded over the years to include high arbitrary spins, high compactness,
and high mass-ratios.
Here we described the main points of the formulations of the code and the numerical
structure of the code itself. SGRID makes use of the eXtended Conformal Thin
Sandwich method (XCTS) Pfeiffer et al., 2003b; York, 1999 which is an extension of
the CTS method described in York, 1999. For a more extensive take on the subject
refer again the reader to more extensive works as Cook, 2000, Tichy, 2016, Alcubierre,
2008, Gourgoulhon, 2012, and Baumgarte et al., 1998b.
We start by the choice of metric conformal decomposition. We then assume the binary
to be in quasi-circular orbit and that the stars composing it are co-rotating. This
implies the existence of an approximate helical Killing vector that in turn lets us
assume that the time derivative of the conformal metric ∂tγij and the time derivative
of the trace of the extrinsic curvature ∂tK vanish. We then choose maximal slicing
and the conformal metric to be flat, i.e.

K = 0, (4.1)

γij = δij. (4.2)

We can then write
Kij =

1

2ψ4α

(
LB
)ij
. (4.3)
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We express the fluid 4-velocity uµ in terms of the 3-velocity as

(3)ui = hγiµu
µ, (4.4)

that can be split in
(3)ui = ∇iϕ+ ωi, (4.5)

with ∇iϕ the irrotational part and ωi the rotational part. This brings us to the set of
equations

D
2
ψ +

ψ5

32α2

(
LB
)ij(

LB
)
ij
+ 2πψ5E = 0, (4.6)

Dj

(
LB
)ij − (LB)ijDj ln(αψ

−6)− 16παψ4Si = 0, (4.7)

D
2
(αψ)− αψ

[ 7ψ4

32α2

(
LB
)ij(

LB
)
ij
+ 2πψ4(E + 2S)

]
= 0, (4.8)

∇i

[
ρ0α

h
(∇iϕ+ ωi)− ραu0(βi + ξi)

]
= 0, (4.9)

h =
√
L2 − (∇iϕ+ ωi)(∇iϕ+ ωi), (4.10)

where we used the relations

(
LB
)ij

= D
i
Bj +D

j
Bi − 2

3
δijDkB

k, (4.11)

Di = ∂i, (4.12)

Bi = βi + Ωεij3(xj − xjCM), (4.13)

u0 =

√
h2 + (∇iϕ+ ωi)(∇iϕ+ ωi)

αh
, (4.14)

L2 =
b+

√
b2 − 4α4

[
(∇iϕ+ ωi)ωi

]2
2α2

, (4.15)

b =
[
(ξi + βi)∇iϕ− C

]2]
+ 2α2(∇iϕ+ ωi)ω

i, (4.16)

and where C is a constant of integration that, in general, can have a different value
inside each star, Ω is the angular velocity, and xiCM is the position of the center of
mass.
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The Boundary Conditions (BC)

lim
r→∞

ψ = 1, (4.17)

lim
r→∞

Bi = 0, (4.18)

lim
r→∞

αψ = 1, (4.19)

at the spatial infinity, and

(
∇iψ

)(
∇iρ

)
+ ωi∇iρ = hu0(βi + ξi)∇i, ρ0, (4.20)

are imposed to close the system on the NS surface.

We now describe the numerical method used to solve the set of elliptic equations
Eq. (4.6) - (4.9), together with the algebraic constraint Eq. (4.10). The motivation for
the last constraint derives from the fact that the NS surface is not known a priori so
we need a constraint to solve for its location.
There are two main ingredients of the code: its specific grid structure and the pseudo-
spectral method used in the code.
The grid structure is shaped to take full advantage of the pseudo-spectral method, i.e.
in such a way that the star surfaces are domain boundaries. However, when updating
the matter distribution given by h within the iterative approach, the stars change
shape; hence the domain boundaries have to be adjusted as well. In order to address
this problem, the foliated hypersurface is covered by multiple domains, each described
by its own coordinates. For the star domains, these coordinates depend on a freely
specifiable function which will allow us to adapt the domain boundaries to the star
surface. In the latest version of the code, surface fitting cubed sphere coordinates that
have no singularities are used.
In Fig. 4.1 is shown how, in the case of a BNS, the stars are covered by a central cube
surrounded by several cubed sphere wedges. The space around the stars is covered by
additional domains. All domains together cover two cubes containing the stars and
their surroundings. The cubes put next to each other are surrounded by wedges so as
to cover a large sphere. This sphere can in turn be surrounded by additional shells.

As for the pseudo-spectral character, we use Chebyshev expansions and introduce grid
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points at the Chebyshev extrema. Once the number of grid points is chosen, all deriva-
tives are approximated by a linear combination of the field values at the grid points.
Such a pseudo-spectral method is similar in spirit to finite differences, but it uses all
grid points in one direction to approximate the corresponding derivative and is more
accurate for smooth fields. Once all derivatives have been discretized in this way, we
end up with a set of non-linear equations for all fields at all grid points.
The conformal factor ψ has to satisfy Eq. (4.6), but unfortunately, using the maximum
principle in the Laplace equation for the NS mass, this equation is not guaranteed to
have unique solutions. When this happens, the linear solver fails and one cannot find
initial data. To solve this problem we modify it by introducing

E ≡ ψ8E, (4.21)

so that we get

D
2
ψ +

ψ5

32α2

(
LB
)ij(

LB
)
ij
+ 2πψ−3E = 0. (4.22)

For challenging cases with high spins or high masses we find numerical problems close
to the star surface arising from this equation. In these cases the first derivatives of
ϕ can develop visible kinks just inside the star surface. We have found that we can
smooth out these kinks by replacing Eq. (4.9) with

c(ρ0)α

h
ϕ−4∂2ϕ+2

ρ0α

h
ψ−5(∂iψ)(∂

iϕ) +
(
∇i
ρ0α

h

)
(∇iϕ)+

+∇i

[ρ0α
h
ωi − ραu0(βi − ξi)

]
= 0,

(4.23)

where we used the relation

c(ρ0) = ρ0 + ϵρ0c

(ρ0c − ρ0
ρ0c

)4
, (4.24)

which depends on ρ0c, set to ρ0 at the star center, and the free parameter ϵ.
It is helpful to specify, as an approximation, the formula for the irrotational velocity
potential

ϕ = Ω(x1C∗ − x1CM)x2, (4.25)

where x1C∗ is the position of the star center and x1CM is the position of the center of
mass.

We can now summarize the procedure for the solution of the relevant elliptic equations:
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1. Find an initial guess for h within each star → Tolman-Oppenheimer-Volkoff
(TOV) solution.

2. Choose ϕ as in Eq. (4.25).

3. If residual of Eq. (4.23) >residual of Eq. (4.22) + Eq. (4.7) + Eq. (4.8) → solve
for ϕ.

4. Solve Eq. (4.22), Eq. (4.7) and Eq. (4.8) for (ψ,Bi, α) and update the old solu-
tion, using a relaxation scheme.

5. Solve Eq. (4.10) imposing ∂1h|x1
C∗
1,2

= 0 and employ a root finder for Ω and x1CM

→ Force Balance method.

6. Update h for each star and star boundaries.

7. Evaluate residual of left-hand side of Eq. (4.22), Eq. (4.7) and Eq. (4.8).

8. Keep star centers fixed by root finder for ∂ih = 0 and translating h and other
matter quantities.

9. Go back to step 3.

4.1.2 Elliptica

We now describe the Elliptica code, developed by A. Rashti and W. Tichy in Rashti
et al., 2022. The code shares some key properties with the SGRID code, previously
described, and extends its capabilities to mixed binaries of compact objects, i.e. Black
Hole - Neutron Star binaries (BHNS). This ID code represents the basis for the setups
used in this work.
Elliptica, much like SGRID, is a pseudo-spectral code that makes use of the coordinate
sphere domain. The spectral decomposition is again done using Chebychev polyno-
mials. In a similar way, the grid structure is based on Cartesian and cubed spherical
coordinate systems (better illustrated in Fig. 4.2, for a BHNS system). Compared
to SGRID, the grid structure shows additional splits in the outermost patches that
increase the angular resolution at larger radii and result in avoiding interpolation for
interface BCs. Novelties of the approach used to design this code span from the spec-
tral decomposition of the Jacobian for a linearized set of elliptic PDEs to the use of a
decomposition method on the domain just described.
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Figure 4.1: The domains in and around both stars in a BNS system. The result is a large
sphere that covers both stars and the outside domain.

From Tichy et al., 2019

We start from a general decomposition in Chebychev polynomials of the problem
Fi(u⃗) = 0, where we have discretized a PDE over N grid points, turning it into an
algebraic equation for the field u = u(x) → u⃗ = (u0, . . . , uN−1)

T . In this case we define
the Jacobian matrix as

Jij ≡
δFi(u⃗)

δuj
(4.26)

Now we decompose using
Ti(X) = cos(i arccos(X)) (4.27)

where X = 2x−(a+b)
a−b

and i = 0, 1, . . . , N − 1, so that we can expand the fields as

ui =
N−1∑
n=0

ηncnTn(Xi), (4.28)

with

ηn =

1, if n = 0 or n = N − 1

2, otherwise
(4.29)
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Figure 4.2: Example of a computational grid for a mixed binary system BHNS using cubed
spherical coordinates. Shown is the intersection of the domains with the xy-plane

and

cn =
1

2(N − 1)

N−1∑
k=0

ηkukTk(Xn) (4.30)

working out the calculations we obtain the full expansion of the Jacobian matrix:

Jij =
ηj

2(N − 1)

(
dX

dx

)2

×
{ ∂2

∂X2
i

(
sin((N − 1

2
)(θi + θj))

2 sin(
θi+θj

2
)

)
+

∂2

∂X2
i

(
sin((N − 1

2
)(θi − θj))

2 sin(
θi−θj

2
)

)
− (−1)j

d2

dX2
TN−1(X)|X=Xi

}
, (4.31)

with Xi = cos(θi). The advantage point of this expansion is that it only depends on
the number of grid points, so the part of the matrix derived from derivative operators
unchanged at each resolution. This permits to perform the calculation of the Jacobian
only once per different resolution. Since Elliptica is based on an iterative scheme that
gradually increases the resolution, although spending many iterations per resolution,
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the use of such decomposition greatly speeds up the code’s computations.
A Newton-Raphson root finder (see Burden, 2011; Taylor et al., 1987) is here employed
to solve the equation

Jũ = F (4.32)

with u→ u+ ũ.

Another key feature of the code is the use of Schur Complement Domain De-
composition (SCDD) described in Saad, 2003. This method represents a divide and
conquer approach for sparse matrices that fits the need of solving the elliptic equation
on a domain subdivided into different patches. We recall from Appendix A that el-
liptic equations have a unique solution if appropriate boundary conditions (BCs) are
imposed. Thus, attempting to solve these equations separately on each subdomain
would lead to an under-determination of the system. Let’s take the case in Fig. 4.3
as an example: to solve the equations in the two patches Ω1 and Ω2 we first need the
boundary condition on Γ as well as for ∂Ω. If we imagine extending this picture to the

Figure 4.3: An example of a 2-dimensional grid Ω that is covered by two subdomains Ω1

and Ω2 with a common interface Γ.
From Rashti et al., 2022

full grid covering the domain we can see how, unless we are at the outer boundaries
or at the innermost boundary, ∂Ω represent again different intra-patches borders like
Γ. Following this idea, the elliptic PDEs are decoupled on all the patches covering the
domain and the equations need to be solved first on every edge Γ between patches. In
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light of this we write Eq. (4.32)

B1 E1

B2 E2

. . . . . .

Bs Es

F11 F12 . . . F1s C11 C12 . . . C1s

F21 F22 . . . F2s C21 C22 . . . C2s

...
...

...
...

...
...

...
...

Fs1 Fs2 . . . Fss Cs1 Cs2 . . . Css





ṽ1

ṽ2
...
ṽs

w̃1

w̃2

...
w̃s


=



f1

f2
...
fs

g1

g2
...
gs


, (4.33)

where empty entries are zero. We can rewrite this matrix as(
B E

F C

)(
ṽ

w̃

)
=

(
f

g

)
. (4.34)

where now all the coupled and unknown values are in w̃. To solve for w̃ we can obtain
from Eq. (4.34) the system of equations for each subdomain p (no summation is implied
on the repeated indices), as in Saad, 2003:

Bpṽp + Epw̃p = fp, (4.35)
s∑

q=1

(Cpq − FpqE
′
q)w̃q = gp −

s∑
q=1

(Fpqf
′
q), (4.36)

where

E ′
p = B−1

p Ep,

f ′
p = B−1

p fp. (4.37)

This system can be summarized as:

Sw̃ = g′, (4.38)

where S is called Schur complement matrix. A summary of the algorithm’s steps can
be seen in Algorithm 1. A few comments are in order:

• Many columns in the Fpq and Cpq matrices are zero because each subdomain p

is linked only to its neighbors, i.e. has a small number of interfaces with other



4.1. Initial Data Codes 43

Algorithm 1 Schur complement domain decomposition method.
1: Solve BE ′ = E for E ′;
2: Solve Bf ′ = f for f ′;
3: Compute g′ = g − Ff ′;
4: Compute S = (C − FE ′);
5: Solve Sw̃ = g′ for w̃;
6: Compute ṽ = f ′ − E ′w̃;

subdomains.

• The Schur complement matrix consists of just couplings from the interfaces, thus
its dimension is as big as the total number of points on all interfaces. From the
comment before we see that such a matrix is sparse, hence the use of an efficient
sparse solver is prompted.

• To invert Bp matrices and solve Eq. (4.38) the open-source Unsymmetric Multi-
Frontal direct solver UMFPACK Davis, 2004 is used.

The general formalism of Elliptica includes the use of the eXtended Conformal Thin
Sandwich method (XCTS) for the Einstein’s equations (together with the ADM 3 + 1

formalism, see Sec. B.1), the same treatment of the fluid equations as in SGRID (see
Sec. 4.1.1 and Tichy, 2012). On top of that, to treat the BH singularity, the excision
approach described in Cook et al., 2004 is used: the BH singularity is excised from
the computational domain, together with the spacetime included inside the Apparent
Horizon (AH) of the BH, and suitable BCs are applied around the BH. The AH de-
pends on the BCs chosen for the system.

It is worth mentioning that when an NS is present we introduced, in order to solve
the fluid equations for an arbitrary spin, a purely spatial vector spin (to encapsulate
the rotational part of the fluid) as in Tichy, 2012. In this manner we can decompose
the rotational part of the fluid velocity ωi from Eq. (4.5) as:

ωi = ϵijkΩ
j
NS(x

k − x̄kNS), (4.39)





4.2. Evolution Codes 45

8. Extrapolate matter fields to the outside of the NS.

9. Shift the matter to keep the NS’s center fixed.

10. Find the new location of NS surface.

11. If needed, create a new grid and interpolate the values of the fields.

4.2 Evolution Codes

After finalizing the description of how ID are produced we are ready to evolve the
physical system we have designed, simulating the behavior of the compact objects at
exam. The evolution of spacetime domains, containing compact objects, has been
studied extensively in the past fifty years. Many different numerical codes have been
developed through the years to address this problem, each of them addressing or
including different aspects of the matter at hand and/or different physical properties.
For reference we list some of the most important evolution code in the literature: the
Einstein Toolkit (see Brandt et al., 2021), a public modular code for the evolution
of complex spacetimes; the Spritz code (see Cipolletta et al., 2020), successor of the
Whisky code (see Giacomazzo et al., 2007), a public fully GRMHD code based on
the Einstein Toolkit; the Spectral Einstein Code (SpEC), a flexible infrastructure for
solving partial differential equations using multi-domain spectral methods (see Kidder
et al., 2000); WhiskyTHC, a high-order finite-difference code for GRHD (see Radice
et al., 2012). In the following we will focus on the description of the BAM code, listing
the key feature of its implementation.

4.2.1 BAM

The main code on which this work is based in the numerical code Bifunctional Adaptive
Mesh BAM developed in Jena by B. Brügmann and later refined also by collaborators
in Brügmann, 1996; Brügmann, 1999; Brügmann et al., 2004; Brügmann et al., 2008;
Thierfelder et al., 2011a; Dietrich et al., 2015. Originally the code was designed to
simulate Binary Black Hole systems (BBH) but has evolved to include BNS and BHNS
as well as single compact objects. The modular implementation allows different users
to add their personal modules without affecting the general structure of the code, and
to make use of a different combination of modules for a single run.
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Grid Structure

The basic structure of the code employs a multi-grid box-in-box structure, together
with a pseudo-adaptive mesh refinement functionality: the innermost boxes can be
separated into smaller boxes that move together with the objects they contain. Con-
trary to a fully adaptive approach, the number of moving boxes and their resolutions
are fixed at the beginning of the run. Cartesian coordinates map the whole domain
and the grid is equispaced. A ratio r = 2 is imposed between spacings of consequent
nested grids: starting from the coarsest box we half the spacing going to the first nested
box while keeping the number of points constant. In general the spacing on level l,
dxl = dxl−1/2. The time synchronization between levels is done using of Berger-Oliger
time-stepping from Berger et al., 1984.

Puncture methods

One of the methods for handling BH singularities in evolution codes is the one of
punctures. This method is widely used in BBH simulations and also simulations
involving matter (like BNS and BHNS). It has been shown in fact in Baiotti et al., 2006;
Thierfelder et al., 2011b that singularities produced by collapsing matter are naturally
handled by the puncture gauge without particular treatment beyond standard artificial
dissipation for the metric variables.
To define the concept we begin by imagining having to model N black-hole initial data.
We adopt the Brill-Lindquist wormhole topology (described in Brill et al., 1963) with
N + 1 asymptotically flat ends. The asymptotically flat ends are compactified and
identified with points ri on R3. The coordinate singularities at the points ri resulting
from compactification are referred to as punctures.
Punctures have been developed in the context of initial data, as a treatment of the
singularity in the constraint equations as in Dain, 2002. From a physical point of view,
the puncture representation of BH ID is particularly appealing because it provides a
simple prescription for associating masses, momenta, and spins with any number of
black holes. More details about this method can be found in Eichler et al., 1997;
Alcubierre et al., 2003; Baker et al., 2006; Campanelli et al., 2006; Gundlach et al.,
2006; Battat et al., 2007.
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AH finder

The natural choice for the surface of a BH would be to find the Event Horizon EH
of the BH itself, which is defined as the boundary of the past of future null infinity
(boundary of points from which a light ray can escape to infinity). From the definition,
it is evident that we would need to integrate for the entirety of the simulation time to
get the exact solution. This, of course contrasts with the idea of numerical evolution.
It is then preferred numerically to instead look for an Apparent Horizon (AH). To
define the latter, we first need to introduce marginally outer trapped surfaces (MOTS),
i.e. smooth closed 2-surfacse whose future-pointing outgoing null geodesics have zero
expansion. An apparent horizon is then defined as a MOTS not contained in any other
MOTS. An AH is defined locally in time, in a spacelike slice, and depends only on data
in that slice. Hence it can be (and usually is) found during the numerical computation.
The apparent horizon finder implemented in BAM follows mainly the route of Gundlach,
1998 and Alcubierre et al., 2000.

Overview

Thanks to the definitions in the previous chapters we can summarize BAM’s different
aspects by pointing to the specific sections:

• Metric: BAM allows for either BSSNOK (see Sec. B.2) or Z4c (evolution of the
Z4 formulation described in Sec. B.3 introduced in Bernuzzi et al., 2010 and
then developed. in Ruiz et al., 2011; Weyhausen et al., 2012; Cao et al., 2012;
Hilditch et al., 2013) metric formulations to be used in simulations.

• Gauges: different gauge choices are allowed as described in Sec. 2.3.

• Hydro: matter treatment follows Valencia formulation of GRHD in Sec. 3.1.2.

• EOS: ideal gas EOS, polytropes and piecewise-polytropes (see Appendix D) can
be adopted by fixing the needed parameters, as well as tabulated EOS.

• Time Evolution: different types of Runge-Kutta schemes can be used. (see Runge,
1895; Kutta, 1901 for the original formulation or Shu et al., 1988 for a modern,
high-order formulation) as well as the classic Euler time-step.

• HRSC scheme: a hand-full of High Resolution Shock Capturing schemes are
available in the code (see Shibata, 2015; Rezzolla et al., 2013 for more details),
depending on the problem at hand.
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• Con2Prim: recovery of primitive variables follows the procedure described in
Appendix E.

• Black Hole: BH are approximated via the puncture treatment described before
in Sec. 4.2.1 together with the AH finder described in 4.2.1.

• ID: BAM is capable of evolving ID constructed with different ID codes (mainly
SGRID in Sec. 4.1.1 and Elliptica in Sec. 4.1.2). Since different approaches and
formulations are used in ID codes with respect to general evolution codes we
need to interface ID with BAM’s infrastructure (see Sec. 4.2.1).

• Atmosphere: an atmosphere treatment is implemented, following Font et al.,
2002; Baiotti et al., 2005. A vacuum implementation has also been developed
but is still under study (see Poudel et al., 2020).

ID interface

As mentioned before it is necessary to adapt the ID calculated in any ID code to the
structure of BAM. Depending on the different ID codes the strategy and the require-
ments to prepare the data for evolution may vary. In the following, we summarize the
procedure used to initialize ID computed with Elliptica.

1. in Elliptica fields are the same as variables in BAM.

2. Elliptica uses a co-rotating frame, so we need a map to obtain a frame that
asymptotically behaves like an inertial frame.

3. BH in Elliptica are excised while BAM adopts the moving puncture formalism
detailed before: we need to fill the interior of the BH accordingly.

4. As for point 3. we need to specify the gauge choices for α and β so that the
previously excised region of the BH morphs into a puncture in the first few
iterations of the evolution code.
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Chapter 5

Results

This chapter is dedicated to describing the results in the context of this thesis work.
The different sections of the chapter, although not always related, outline the different
projects and contributions of the author. Each individual section point to the respec-
tive theoretical description in the preceding chapters. More specifically in Sec. 5.1,
we describe the study of the thermodynamics conditions leading to the decoupling of
different neutrino species νi in BNS merger remnants, from Endrizzi et al., 2020; in
Sec. 5.2 we outline the efforts done into implementing the first version of a GRMHD
formulation in the BAM code. Finally, in Sec. 5.3 we go through the work in the context
of mixed binary systems (BHNS), following the development of the Elliptica code,
and that contributed to Rashti et al., 2022, and the most recent results of a follow-up
project on the subject.

5.1 Neutrinospheres

A rising interest in the context of NR simulations is put into the study of elements
formation and ejecta during the inspiral phase, but mainly in the post-merger phase
and the subsequent remnant evolution. In general, the remnant is composed of a
central dense object surrounded by a massive disk. While simulating BNS or BHNS
system we can point out that irrespective of the nature of the central object, matter
description plays a key role in the resolution of the physical phenomena that follow
the merger. In particular, the neutron-richness of the ejecta allows for the rapid syn-
thesis of heavy elements via neutron capture (the so-called r-processes, where r stands
for rapid) whose following radioactive decay creates the peculiar signal, spanning dif-
ferent EM bands, that has been called Kilonova signal (for more details refer to Li
et al., 1998; Kulkarni, 2005; Metzger, 2017). This connects to the early theory re-
garding BNS mergers being candidates for the emission of fast and bright gamma-ray
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bursts, called Short Gamma-ray Bursts (SGRB), recently confirmed by the detection
of GW170817 (see Abbott et al., 2017a). The Kilonova emission is characterized by
an early UV+visible emission, moving to the Near Infra-Red (NIR) as time passes.
The early emission could be linked to low photon opacity in specific matter regions
which, in turn, could depend on the prominent contribution by neutrino radiation.
Also if the effect is such that the electron fraction Ye ≥ 0.25 we can have suppression
of some r-process’ peaks. Neutrinos are, in fact, produced in large numbers, thanks to
the high temperatures reached by matter during the merger (∼ 100 MeV Perego et al.,
2019) and the high densities ρ ≥ 1012 g/cm3 contributes to the formation of trapped
neutrino regions, in equilibrium with the plasma. When densities decrease to ρ ∼ 1011

g/cm3 or lower, the radiation decouples from the matter and streams out.
Even if free streaming neutrinos are still able to transfer energy to a low-density re-
gion of the expanding ejecta’s matter it is still important to identify the regions where
this decoupling occurs (usually called Neutrinospheres). We can also define another
type of neutrinosphere which describes the region in which neutrino radiation decou-
ples from the background medium, i.e. weak and thermal equilibrium freezes out, due
to the gradual decrease of the effectiveness of absorption and inelastic scattering. We
label these surfaces as diffusion surfaces (the former) and equilibrium surfaces
(the latter). Between these two surfaces, neutrinos are still able to diffuse, thanks to
the quasi-elastic scattering of baryons. The location of these surfaces strongly depends
on the neutrino species and their energy.
In this work, we present a quantitative post-processing method to identify different
types of neutrinospheres in the post-merger phase of BNS simulations. A key fea-
ture of the analysis is the evaluation of the optical depth of neutrinos at any point of
the domain. The optical depth τ represents the average number of interactions that
radiation particles experience along a given path γ. In formulas, we can write

τγ:A→B =

∫
γ:A→B

κ(s)ds, (5.1)

where κ(s) is the opacity (which corresponds to the inverse of the local mean free
path) and ds = gijdx

idxj is an infinitesimal displacement along the chosen path.
To evaluate this integral we need to think about the behavior of radiation, in particular
neutrino radiation, passing from high-density to low-density regions. Although radia-
tion is often produced isotropically, interaction with matter can affect its propagation,
especially in regions where the mean free path is shorter.
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To study the global behavior of neutrino radiation we adopt a more statistical ap-
proach. We also identify any point of the domain as the starting point A of the
path γ, while B represents now all the points lying on the domain’s outer boundaries.
Among all the possible paths connecting A to the boundary B, the most likely ways
for radiation to escape are the paths that minimize the optical depth, i.e.

τ(x) = min
γ|γ:x→ xb

∫
γ

κ(s)ds, (5.2)

where x is any point inside the domain and xb is any point of the boundary from which
radiation escapes freely. The surface where radiation decouples from matter is defined
as the region where τ ∼ 1 and it is referred to as the neutrino surface. If its curvature
is not very pronounced, the Eddington approximation applies and a neutrino surface
is often referred to as the surface where τ = 2/3.
The best practice to calculate the optical depths in Eq. (5.2) numerically would be to
evaluate the discretized path that minimized the summation of the opacities towards
the boundary. Clearly, such a path depends on the physical characteristic of the region
traversed at a given time and will not be a straight line. A post-processing code like
MODA, described in Perego et al., 2014b, makes use of this exact approach, evaluating
all the possible paths possible for the evaluation of the optical depth. As expected,
this approach, although more precise, is computationally expensive. The scheme we
developed instead, being focused on a faster evaluation of the neutrinospheres, chooses
17 directions, corresponding to 5 on-axis directions

x+, x−, y+, y−, z+,

(we disregard all z - directions since all simulations considered in this work are per-
formed using a reflection symmetry along the z-axis), 8 planar diagonals

x+y+, x+y−, x−y+, x−y−, x+z+, x−z+, y+z+, y−z+,

and 4 full diagonals

x+y+z+, x+y−z+, x−y+z+, x−y−z+.

A representation of the directions in a Cartesian grid is given by Fig. 5.1. This com-
mon approach to effectively evaluate the optical depth, selecting a certain number of
directions moving away from the point has been already used in the past for Newtonian
simulations, using cylindrical coordinates and from 3 to 7 directions (see e.g., Rosswog
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Figure 5.1: Visual representation of the 17 direction chosen for the evaluation of the optical
depth, relative to any domain inner points, here a the center of the representation.

From Endrizzi et al., 2020

et al., 2003; Perego et al., 2014a). Our method represents an extension of this ap-
proach (making, in total, more directions per single point) although maintaining a low
computational cost. This is done by reducing the analyzed region to a smaller volume
centered around the remnant, where we expect to find the neutrino surfaces. This is
supported by the fact that the contribution to the optical depth given by very low-
density matter, usually found further away from the remnant, is negligible. In order to
select this region, we define the characteristic length of the system lC as lC = 5r11,with
r11 being the average radius of a density isosurface at ρth = 2 × 1011g/cm3. In the
simulations presented in this work r11 ∼ 30km. To test our approximation, we have
computed τ with lC = 5 r11, 6 r11, 8 r11 for a few selected cases, without finding sig-
nificant differences in the thermodynamic properties of the decoupling region.
To calculate neutrino opacities it is necessary to account for the neutrino flavors (in
this work we consider only 3 species, i.e. electron neutrinos νe, electron antineu-
trinos ν̄e and a collection of the remaining flavors, muon (anti)neutrinos ∇µ and tau
(anti)neutrinos ντ in a single species νx), the matter properties (described by the EOS)
and neutrino energies. The relevant neutrino-matter reactions considered in this work
are listed in Table 5.1. Since we aim to identify two different types of neutrinospheres,
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Table 5.1: Weak reactions providing the neutrino opacities used in this work and references
for their implementation. ν ∈ {νe, ν̄e, νx} denotes a neutrino species with νx referring to any
heavy-lepton neutrino species. N ∈ {n, p} denotes a nucleon, A a generic nucleus (including

α particles), e± electrons and positrons.

Reaction Ref.
νe + n→ p+ e− Burrows et al., 2006; Horowitz, 2002
ν̄e + p→ n+ e+ Burrows et al., 2006; Horowitz, 2002
ν + ν̄ → e+ + e− Bruenn, 1985; Mezzacappa et al., 1993
N +N + ν + ν̄ → N +N Hannestad et al., 1998
ν +N → ν +N Burrows et al., 2006
ν + A→ ν + A Burrows et al., 2006

we divide the calculation of opacities in κdiff and κeq, using the formulas

κdiff =
∑
r

κab,r +
∑
r

κsc,s, (5.3)

κeq =

√(∑
r

κab,r

)
κdiff, (5.4)

where the indices r and s run over all the considered absorption ab and scattering sc
reactions, respectively. Since only a subset of reactions are effective in keeping the
neutrino field in thermal and weak equilibrium with the plasma, we defined the equi-
librium opacity as the geometrical mean between the diffusion opacity and the opacity
only due to absorption processes (see Shapiro et al., 1983; Raffelt, 2001 for analogous
expressions).
Since to calculate κeq we use a subset of the interaction described in Table 5.1, it is
always true that κdiff ≥ κeq so equilibrium surfaces are inside of diffusion ones.

For the simulations performed in this work we made use of the WhiskyTHC code
described in Radice et al., 2012 complemented by a leakage scheme to account for
compositional and energy changes in the matter due to weak reactions involving νe ,
ν̄e, and νx. Free-streaming neutrinos are emitted at average energy and then evolved
according to the M0 scheme introduced in Radice et al., 2016; Radice et al., 2018. The
post-processing tool developed here is also effective for simulations performed with an
energy integrated (gray) M1 scheme, as in Foucart et al., 2016; Foucart et al., 2015.
For a brief introduction about the schemes for the radiative transport of neutrinos
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mentioned before, we point the reader to Sec. 3.3.
The initial data were computed with the LORENE code and evolved using two different
EOS, i.e. DD2 introduced in Typel et al., 2010; Hempel et al., 2010 and SLy, intro-
duced in Schneider et al., 2017. Neutrino opacities have a significant dependence on
the energy of the incoming neutrino. Numerical simulations of BNS mergers including
neutrino radiation provide values for the average energies of the neutrinos escaping to
infinity. Despite the large variety of approximated schemes employed in these analyses,
reported values usually agree within 10 − 20% as in e.g. Foucart et al., 2015; Perego
et al., 2016; Foucart et al., 2016.
The approaches followed in this work are then the following. We determine the ther-
modynamic conditions of matter (density, temperature, and electron fraction) at the
neutrino surfaces and use them to characterize the typical conditions at which the
largest fraction of neutrinos decouples from matter. In our discretized domain, we
identify the neutrino surface as the region where 0.5 ≤ τ ≤ 0.85. For each extracted
quantity q we compute the volumetric mean qmean and to give an estimate of its dis-
tribution around the mean value we compute the corresponding standard deviation
as:

• we fix the neutrino energies to the following set of values compatible with the
cited results, with the assumption that neutrino spectrum at infinity is mainly
determined by the spectrum emerging from the neutrino surfaces: ⟨Eνe⟩ ≈ 9.34

MeV, ⟨Eν̄e⟩ ≈ 15.16 MeV, and ⟨Eνx⟩ ≈ 23.98 MeV;

• we compute optical depths and neutrino surfaces for a large set of neutrino
energies spanning in the range 3− 88.67 MeV;

• we compute optical depths using energy integrated opacities, assuming the dis-
tribution of neutrinos coupled to matter in weak and thermal equilibrium follows

fν
(
Eν

)
=

(
e(Eν−µν)/kbT

)
, (5.5)

which is a Fermi-Dirac distribution with Eν the neutrino energy, µν the neutrino
chemical potential, kb the Boltzmann constant and T the temperature of the fluid
at the absorption/scattering point. Chemical potentials at equilibrium are taken
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as

µνe = µp + µe − µn, (5.6)

µν̄e = −µνe , (5.7)

µνx = 0, (5.8)

where µp, µe and µn are the relativistic proton, electron and neutron chemical
potentials. Finally the spectrum averaged opacity is defined as:

κ̃ν =

∫∞
0
fν(E)κν(E)E

2dE∫∞
0
fν(E)E2dE

, (5.9)

which accounts for neutrinos at equilibrium, diffusing from optically thick to
optically thin regions, so more in line for the calculation of τeq.

In the following we summarize the results obtained showing as examples the diffusion
and equilibrium surfaces calculated for the DD2 EOS model in Fig. 5.2 and Fig. 5.3, as
well as the equilibrium and diffusion optical depths in Fig. 5.4 and Fig. 5.5. In short,
we observed that the rest mass density and the neutrino energies are the most relevant
quantities in determining the location of the decoupling surfaces and, consequently,
the relevant thermodynamical conditions at decoupling for νe and ν̄e, thanks to the
dominant role of quasi-elastic scattering and charged-current absorption reactions on
free nucleons. For heavy-flavor neutrinos, weak and thermal equilibrium is guaranteed
by pair processes, like inverse nucleon-nucleon bremsstrahlung and ν− ν̄ annihilation.
Due to the strong dependence of the target and incident particle densities on matter
temperature, the latter becomes a relevant thermodynamic quantity as well.
The diffusion decoupling surfaces of mean energy neutrinos are characterized by simi-
lar conditions among the different neutrino species in all the models, as a consequence
of a compensation effect between the larger mean energy associated with heavy-flavor
neutrinos (kscat ∝ E2

ν) and the larger abundance of absorbing neutrons relevant for νe.
Temperatures can significantly differ based on the properties of the underlying nuclear
EOS: softer EOSs, like SLy4, produce hotter remnants than stiffer ones, like DD2. For
SLy the transition from diffusion to free-streaming regimes for mean energy neutrinos
happens between 4 and 5 MeV, while for DD2 it happens between 3 and 4 MeV.
For equilibrium surfaces for mean energy neutrinos, we have, on the one hand, that
thermodynamics conditions at the equilibrium and diffusion surfaces are very close
for the νe. On the other hand, the relatively less favorable proton-absorption moves



56 Chapter 5. Results

Figure 5.2: Evolution of diffusion neutrino surfaces for the mean neutrino energies at
different stages of the post-merger of the DD2 model. The color map represents rest mass
density (left side) and temperature (right side) in logarithmic scale in both meridional (top
row) and equatorial (bottom row) plane. The three snapshots are taken at the closest iteration
to, respectively, 1 (left column), 10 (middle column) and 20 (right column) ms after merger.
Diffusion surfaces for neutrinos of the three considered species are highlighted by solid blue

(νe), dashed magenta (ν̄e) and dotted black (νx) contours.
From Endrizzi et al., 2020

Figure 5.3: Same as Fig. 5.2 for the equilibrium neutrino surfaces for the mean neutrino
energies at different stages of the post-merger of the DD2 model. From Endrizzi et al., 2020
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the equilibrium surfaces of the ν̄e deeper inside the remnant. Consequently, the ν̄e
equilibrium decoupling temperature increases to 5 MeV in the DD2 case and to 6 MeV
in the SLy4 case. For heavy-flavor neutrinos, matter temperature becomes the most
relevant quantity and the equilibrium decoupling happens around 10 MeV.
Our results for the equilibrium decoupling temperatures broadly satisfy the expected
blackbody emission relation, i.e. Eν ∼ 3.15T , with a closing agreement in the case of
the stiff EOS model DD2. Deviations from it largely depend on the neutrino emission
coming from the volume outside the neutrino surfaces (which is in fact more relevant
for hotter remnants). We also notice that in the case of softer EOS differences between
νe and ν̄e equilibrium decoupling temperatures reduce (as reported in Sekiguchi et al.,
2016).

While considering neutrinos with energies between 3 and 88 MeV (i.e. covering the
most relevant part of the emitted spectrum), we found that due to the strong de-
pendence on Eν of all cross-sections, such a large energy range translates into broad
ranges of decoupling radii and thermodynamic conditions. The corresponding decou-
pling temperatures cover one order of magnitude, moving from ∼ 2 to ∼ 10 MeV.
Similar trends are observed also for electron (anti)neutrinos in the case of equilib-
rium surfaces, just for densities and temperatures larger by a factor of a few and
10−15%, respectively. Qualitatively different behavior is observed for the equilibrium
decoupling of heavy-flavor neutrinos νx, for which temperatures in the range 5 − 12

MeV are observed, usually increasing the equilibrium decoupling density by one or-
der of magnitude. All the results of this work are robust with respect to the optical
depth calculation algorithm and to the grid resolution but depend strongly on the
approximate neutrino transport scheme used for the simulations. While the present
leakage+M0 treatment is expected to capture the dominant cooling features of neu-
trino emission, the lack of explicit modeling of trapped neutrinos and uncertainties in
the challenging radiation transport can more significantly affect the electron fraction
inside the remnant. Thus, we expect the values of the density and temperature at the
decoupling surfaces to be more robust than the ones of the electron fraction. Improv-
ing the treatment of neutrino transport would reflect in an increase in the robustness
of the results for Ye.

For a more detailed presentation of the results, we refer the reader directly to the
paper Endrizzi et al., 2020.
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Figure 5.4: Equilibrium optical depth for the DD2 model at 20 ms after merger, evaluated
with energy-dependent (left side) and energy-integrated (right side) opacities for each neu-
trino species (νe, top; ν̄e, middle; νx, bottom) on the equatorial plane. The energy-dependent
opacities are evaluated at the mean neutrino energies at infinity. The solid blue contours rep-
resent the surface where τeq (τ̄eq) = 2/3, while the black dashed lines are the boundaries of

the regions where 0.5 < τeq(τ̄eq) < 0.85.
From Endrizzi et al., 2020

5.2 BAM GRMHD implementation

As a separate project, led by our collaborator Prof. Tim Dietrich, we implemented a
new module in BAM capable of evolving the classical hydrodynamics system with the
addition of magnetic fields in full GRMHD fashion. For this project we make use of
all the definitions in Sec. 3.2 and in general we follow the implementations in the work
of Anton et al., 2006; Giacomazzo et al., 2007; Liebling et al., 2010; Penner, 2011.
The aim of this work is to extend the capabilities of the BAM code to include more
and more aspects of the physical treatments of compact objects’ evolution, extending
the potentialities of the code towards simulations of ejecta and element production.
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Figure 5.5: Same as Fig. 5.4 for the diffusion optical depths τdiff (left side) and τ̄diff (right
side).

From Endrizzi et al., 2020

As already mentioned in the previous section, a rising interest in the analysis of post-
merger compact binary objects remnants has developed in recent years. The reasons
for this are multiple but the driving arguments follow the detectability of EM signals,
to corroborate the detection of GWs from the advanced LIGO and advanced Virgo

interferometers. In particular, the possibility of SGRBs being prompted by a specific
configuration of the magnetic field in the remnant has been extensively discussed (e.g.
see Price et al., 2006; Kiuchi et al., 2015 for magnetic field amplifications and Rez-
zolla et al., 2011; Paschalidis et al., 2015; Sun et al., 2022 for the launch of a jet)
but as of today the mechanism to prompt the emission of such ejecta has not yet
been proven, although the follow-up EM detections to GW170817 have confirmed the
relation between BNS and SGRB. The importance of adding improved matter and hy-
drodynamics treatments to our code is then clear: despite the state-of-the-art results
of the code in the field of BNS we want to be able to further explore the parameter
space of BNS properties.
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In the following, we are going to describe the basic aspects of the GRMHD implemen-
tation used in Sec. 5.2.1 and the results obtained in Sec. 5.2.2.

5.2.1 Implementation

As stated before we follow the work of Anton et al., 2006; Giacomazzo et al., 2007;
Liebling et al., 2010; Penner, 2011 and we are going to outline the main choices done
in this context in the following. The main challenge in the choice of implementation
is to adapt the new module to the underlying BAM infrastructure.

Divergence Cleaning

One of the major problems in the implementation of GRMHD equations in a numerical
code is the treatment of the divergence-free condition ∇ · B = 0 also expressed in
Eq. (3.58). For this work we use the divergence cleaning approach first described
in Dedner et al., 2002 for MHD and better developed for GR in Liebling et al., 2010;
Penner, 2011. Divergence cleaning enforces the divergence-free constraint by adding an
additional field ψ and an appropriate evolution equation which serves the purpose of
imposing the constraint and damping possible violations arising during the evolution.
Although divergence cleaning is known not to be the better performing method in
GRMHD codes we deemed it to be best suited to BAM to produce a first working
implementation. We are not going to discuss other possible method to enforce the
divergence-free constraint here but we refer to other works for the so-called Constrained
Transport (CT) method first described in Evans et al., 1988 and later developments
in Balsara et al., 1999; Tóth, 2000 and the Vector Potential evolution, first introduced
in Etienne et al., 2012; Etienne et al., 2010 and used, for example, in the WhiskyMHD

code (as in Giacomazzo et al., 2007) and the Spritz code in Cipolletta et al., 2020. As
a last comment, these more modern methods rely on a staggered grid implementation
(see Fig. 5.6), and would had required a modification of the grid structure of BAM (see
Sec. 4.2.1) that we are leaving for future developments. We can rewrite Eq. (3.31)
for the case of GRMHD specifically in integral form using Eq. (3.61), Eq. (3.62) and
Eq. (3.63).
We have then to introduce an evolution equation for ψ, which represents an auxiliary
field, introduced precisely for the divergence-free condition

∇µ (
∗F µν + gµνψ) = κnνψ, (5.10)
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Figure 5.6: Schematic diagram of the staggered grid and relative position of the data needed
for the CT scheme. The evolution of Bx

i+1/2,j,k is determined by the values of the electric

field E⃗ at the edges of the surface Σ located at (i+ 1/2, j, k).
From Giacomazzo et al., 2007

which just comes from Eq. (3.47).
The parameter κ is there as a damping parameter to drive to 0 any violations to the
divergence-free constraint.
From this, we arrive at:

∂tψ + ∂i

(
αBi

√
γ

− ψβi

)
= ψ(−κα− ∂iβ

i) +Bi∂i

(
α
√
γ

)
. (5.11)

This leads to a modification of the evolution equation for B̃i first expressed in Eq. (3.59)

∂tB̃
j + ∂i

[
(αvi − βi)B̃j − αvjB̃i + α

√
γγijζ

]
= (5.12)

= −B̃i∂iβ
j + ζ∂i(α

√
γγij) = (5.13)

= −B̃i∂iβ
j + ζ

√
γγij∂iα + ζα

√
γ

(
1

2
γijγkl∂iγkl − γjkγil∂iγkl

)
. (5.14)
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Energy Momentum Tensor

The energy momentum tensor is defined as in Eq.(3.60):

T µν =
(
ρh+ b2

)
uµuν +

(
p+

b2

2

)
gµν − bµbν . (5.15)

For the implementation in BAM we make use of the definition already introduced in
Eq. (3.67) together with an additional definition for η:

Ṽ i = vi − βi/α, (5.16)

η = W 2(ρ+ ρϵ+ p+ b2) =
W 2

ρ
(1 + ϵ+

(p+ b2)

ρ
), (5.17)

and we also have defined new extended quantities in the context of GRMHD, for the
sake of compactness of the equations

p∗ = p+ pmag = p+ b2/2, (5.18)

h∗ = 1 + ϵ+ (p+ b2)/ρ, (5.19)

that leads to a rewriting of the energy-momentum tensor as

T µν = h∗uµuν + p∗gµν − bµbν , (5.20)

the components of which can be now written as

T 00 = (η − p− 1

2
b2)/α2 − (b0)2, (5.21)

T 0i = η
Ṽ i

α
+ p∗

βi

α2
, (5.22)

T ij = ηṼ iṼ j + p∗(gij − βiβj/α2)− bibj, (5.23)

where now η = W 2h∗

ρ
.

Con2Prim Routine

The importance of converting conservative variables back to their relative primitive
counterparts has been already stressed in Sec. 3.1.2 but for more details, we point
the reader to Appendix E. In the context of GRMHD, the additional magnetic field
variables increase the complexity of the reconstruction of primitive variables. For this
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reason, for the implementation of such a routine, we referred to the work by Siegel
et al., 2018, focused specifically on the analysis of different reconstruction schemes
in GRMHD, of which we implemented a 1D conservative-to-primitive reconstruction
scheme from Neilsen et al., 2014; Palenzuela et al., 2015 described in the following.
We begin by defining the variable x = hW and write the equation

f(x) = x− ĥŴ = (1 + ϵ̂+
p̂

ρ̂
)Ŵ . (5.24)

Here we solve for x using the Newton-Raphson root finder. We know that x is bound
within 1 + q − s < x < 2 + 2q − s.
We then define the additional quantities:

q =
τ

D
, r =

S2

D2
, (5.25)

s =
B2

D
, t =

BiS
i

D3/2
. (5.26)

The quantities labeled withˆare obtained at every iteration step from x. We can derive
the Lorentz factor W from

W−2 = 1− x2r + (2x+ s)t2

x2(x+ s)2.
. (5.27)

Additionally, we can write

ϵ = −1 +
x

W

(
1−W 2

)
+W

(
1 + q − s+

1

2

(
t2

x2
+

s

W 2

))
. (5.28)

Finally, we do get the density from ρ = D/W , the pressure p from the EOS and we
can compute the velocity from:

vi =
γijSj

z +B2
+

(BjSj)B
i

z(z +B2)
, (5.29)

with z = xρW .
We have also started testing different schemes described in Siegel et al., 2018 like the
2D scheme from Noble et al., 2006 but these implementations did not yield substantial
results to prompt further investigations.
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Eigenvalues

For the calculation of the eigenvalues needed by the HRSCS we refer to Gammie et
al., 2003 and Anton et al., 2006. Computing the eigenvalues used in the Flux formula
is more difficult than in the pure GRHD case and also computationally much more
expensive since it involves the solution of a quartic equation as described at the end
of Sec. 3.2. There are in general two possible approaches: an exact solution for the
eigenvalues and an approximate one, described in the following.
Depending on the type of HRSCS we employ we might only rely on the highest prop-
agation speed among the ones coming from the wave decomposition. Thus, we remind
the relation between the eigenvalues coming from the GRMHD system, already de-
scribed in Fig. 3.1:

λif− ≤ λia− ≤ λis− ≤ λie ≤ λis+ ≤ λia+ ≤ λif+, (5.30)

where again the labels refer to, respectively, f = fast magnetosonic waves, a = Alfven
waves, s = slow magnetosonic waves, e = entropy or matter wave.

Exact Eigenvalues To compute the exact solution for the eigenvalues we employ a
Newton-Raphson scheme, where we first evaluate the known expressions of the eigen-
values corresponding to the entropy wave and the Alfven waves, as in Eq. (3.68) and
Eq. (3.69).
As in Sec. 3.2 we know that there four additional (two fast λif±, two slow λis±) mag-
netosonic waves which come from the solution of the quartic equation Eq. (3.70). To
solve the quartic equation we approach the problem numerically and use a Newton-
Raphson solver to obtain the solutions.
On top of this, we have 2 eigenvalues coming from the divergence cleaning approach
whose values are equal to the speed of light c, so the full decomposition looks like

λdc− = c ≤ λif− ≤ λia− ≤ λis− ≤ λie ≤ λis+ ≤ λia+ ≤ λif+ ≤ λdc+ = c. (5.31)

Once we have obtained the full decomposition, in the case of an HLL-type solver,
we want to consider the highest propagation speeds. We can then use, for a generic
direction i

λi+ = max(0, λif+,L, λ
i
f+,R), (5.32)

λi− = max(0, λif−,L, λ
i
f−,R), (5.33)
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where L,R refer to the left and right state of a given interface and −,+ to the wave
propagating towards, respectively, the left and right direction.
Since the divergence cleaning eigenspace is equal to c, we could also simply pass to
the HLL solver the latter, skipping the calculation of the eigenvalues. This approach
has not proven effective in our tests.

Approximate Eigenvalues Since the exact computation of the eigenvalues could
significantly slow down numerical runs, we also introduced an approximate eigenvalues
solver, following Gammie et al., 2003. In the approximate case, we instead use the
entropy wave as in the exact case, an approximate Alfven wave solution as

λA =
√
b2/(ρh∗). (5.34)

We further define

V ≡ λ2A + c2s(1− λ2A), (5.35)

Ṽ ≡ λe/α, (5.36)

where λe is defined in (3.68), and

a = W 2(V − 1)V, (5.37)

b = αW 2Ṽ (V − 1) + V βi, (5.38)

c = (αWṼ )2(V − 1) + V (α2gii − βiβi), (5.39)

again without summation over repeated indices. The final eigenvalues are then:

λ+ =
(
b+

√
b2 − ac

)
/a, (5.40)

λ− =
(
b−

√
b2 − ac

)
/a. (5.41)

Additionally, we could also use the analytically given Alfven wave results from the
exact solution.

Initial Data

The initial data (ID) problem for GRMHD represents a peculiar case in the imple-
mentation of numerical codes: solving the constraint equations for ID incorporating
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magnetic field represents a complex problem that still hasn’t been solved. As a solu-
tion, we compute the ID for NS systems (BHNS and BNS or single stars), since the
magnetic fields are tied to matter, and then we “attach” the selected magnetic field
configuration to the system during the initialization of the ID. At the time t = 0 a
magnetic field is then superimposed to the star/stars together with appropriate gauge
and boundary conditions to limit the constraint violation.
In our treatment, we decided to express the ID as a poloidal field, in terms of the
4-potential Aµ. This is defined in relativistic electrodynamics as

Aµ =
(
ϕ, A⃗

)
, (5.42)

where ϕ is the electric potential and A⃗ is the 3D magnetic vector potential, that is
defined so that its curl is equal to the magnetic field B⃗, ∇× A⃗ = B⃗.
We put ourselves in cylindrical coordinates so that we only have to provide the com-
ponent Aϕ:

Aµ = (0, A⃗) = (0, Aρ, Aϕ, Az) = (0, 0, Aϕ, 0), (5.43)

where
Aϕ = Abρ

2max(P − Pcut, 0)
nb . (5.44)

Here nb is the order of differentiability of the pressure (nb = 2), Pcut is a cutoff to limit
the B field inside the star (1% of Pmax), Ab is a scalar determining the strength of the
B field.
Now we need to calculate Bi in Cartesian coordinates:

Bi = ϵijk∇jAk = (
∂Az

∂y
− ∂Ay

∂z
)x̂+ (

∂Ax

∂z
− ∂Az

∂x
)ŷ + (

∂Ay

∂x
− ∂Ax

∂y
)x̂

= (−∂Ay

∂z
)x̂+ (

∂Ax

∂z
)ŷ + (

∂Ay

∂x
− ∂Ax

∂y
)x̂,

(5.45)

Az = 0. (5.46)
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We need now to express Aϕ in Cartesian coordinates:

Āi =
∂xj

∂x̄i
Aj, (5.47)

Ai = (
∂ϕ

∂x
δxi +

∂ϕ

∂y
δyi )Aϕ = (

∂arctg( y
x
)

∂x
δxi +

∂arctg( y
x

∂y
δyi )Aϕ

= (
−y
x2

1√
1 + y2

x2

δxi +
1

x
√
1 + y2

x2

δyi )Aϕ

= (− y

ρ2
δxi +

x

ρ2
δyi )Aϕ.

(5.48)

Now using
Pmax ≡ max(P − Pcut, 0), (5.49)

we then get

Bx = −∂Ay

∂z
=

∂

∂z

(
x

ρ2
Aϕ

)
= −2AbxPmax

∂Pmax

∂z
, (5.50)

By =
∂Ax

∂z
=

∂

∂z

(
− y

ρ2
Aϕ

)
= −2AbyPmax

∂Pmax

∂z
, (5.51)

Bz =
∂Ay

∂z
=
∂Ay

∂x
− ∂Ax

∂y
= Aϕ

∂

∂x

(
x

ρ2

)
+ Aϕ

∂

∂y

(
y

ρ2

)
+
x

ρ2
∂Aϕ

∂x
+

y

ρ2
∂Aϕ

∂y

= Aϕ

[
2

ρ2
− 2x

ρ4
− 2y

ρ4

]
+
x

ρ2
Ab

(
2xPmax + 2ρ2P 2

max

∂Pmax

∂x

)
+
x

ρ2
Ab

(
2yPmax + 2ρ2P 2

max

∂Pmax

∂x

)
=

(
2x2

ρ2
+

2y2

ρ2

)
AbP

2
max + 2AbPmax

(
x
∂Pmax

∂x
+ y

∂Pmax

∂y

)
= 2AbPmax

[
Pmax +

(
x
∂Pmax

∂x
+ y

∂Pmax

∂y

)]
,

(5.52)

that can be written in a more readable way as

Bx = −2AbxPmax
∂Pmax

∂z
, (5.53)

By = −2AbyPmax
∂Pmax

∂z
, (5.54)

Bz = +2AbPmax[Pmax +

(
x
∂Pmax

∂x
+ y

∂Pmax

∂y

)
]. (5.55)
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As a comparison, we report here a different implementation of magnetic ID, com-
monly used in the Whisky code (Giacomazzo et al., 2007) and in its successor, the
Spritz code (Cipolletta et al., 2020), which instead relies on a first-order in pressure
implementation.

Bx = −xAbρ
2∂Pmax

∂z
, (5.56)

By = −yAbρ
2∂Pmax

∂z
, (5.57)

Bz = +Abρ
2(4Pmax + x

∂Pmax

∂x
+ y

∂Pmax

∂y
). (5.58)

An example of ID produced in with this implementation can be seen in Fig. 5.7.

Figure 5.7: Examples of TOV simulations with poloidal magnetic field computed with
the GRMHD code Spritz introduced in Cipolletta et al., 2020. Black lines represent
isocontours of the ϕ-component of the vector potential, while the red line corresponds to

ρ ∼ 3× 1012g/cm3.
From Cipolletta et al., 2021.

5.2.2 Results

In this section, we present the results of the different tests done to verify the correctness
of the implementation. To date, the implementation is not yet complete and more
effort is needed in order to produce a stable release of the module. Nevertheless, we
can produce and show the meaningful results obtained so far in this context.
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Table 5.2: Initial values of the density ρ, the pressure p, the velocity vi and the magnetic
field Bi components, i = x, y, z for the five Balsara tests described in Balsara, 2008 along
the x direction. For each test we present the Left (L) and Right (R) states with respect to a

shock front initially set in X = 0.

Test ρ p vx vy vz By Bz Bx

1,L 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.5
1,R 0.125 0.1 0.0 0.0 0.0 -1.0 0.0 0.5
2,L 1.0 30.0 0.0 0.0 0.0 6.0 6.0 5.0
2,R 1.0 1.0 0.0 0.0 0.0 0.7 0.7 5.0
3,L 1.0 1000 0.0 0.0 0.0 7.0 7.0 10.0
3,R 1.0 0.1 0.0 0.0 0.0 0.7 0.7 10.0
4,L 1.0 0.1 0.999 0.0 0.0 7.0 7.0 10.0
4,R 1.0 0.1 -0.999 0.0 0.0 -7.0 -7.0 10.0
5,L 1.08 0.95 0.4 0.3 0.2 0.3 0.3 2.0
5,R 1.0 1.0 -0.45 -0.2 0.2 -0.7 0.5 2.0

1D

As standard 1D tests, we performed the Balsara shock-tube tests described in Balsara,
2008 and whose exact solutions were computed in Giacomazzo et al., 2006. The five
different shock-tube tests each stress different aspects of a GRMHD code, such as high
velocities (close to c, speed of light), high pressure, or high magnetic fields.
In Fig. 5.8, Fig. 5.9, Fig. 5.10 and Fig. 5.11 we present the Balsara tests performed
with our implementation. The initial values of the physical quantities of the fluid per
each test are listed in Table. 5.2 We found consistency between our results and the
exact solution for Balsara Test 1, employing also different limiters like the LINTVD
limiter, based on minmod and monotonized centered slope limiters (see Toro, 2013;
Harten, 1997), the third-order convex-essentially-non-oscillatory (CENO3) algorithm
(see Liu et al., 1998; Zanna et al., 2002), and the fifth-order weighted-essentially-non-
oscillatory finite difference schemes (WENOZ) (see Borges et al., 2008), as can be
seen in Fig. 5.8 and Fig. 5.9. For more robustness, we used the low order scheme
LINTVD as default for our tests. Balsara Test 2 was conclusive in the same way,
showing how increasing resolution would result in a profile closer to the exact solution
(see Fig. 5.10). From these tests, we saw how moderate discontinuities in the pressure
p, the density ρ, and the magnetic field components Bi are well handled by the code.
Balsara Tests 3 and 4 proved not to be conclusive, with the first one not able to produce
meaningful results and the second one showing curves which are detached from the
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Figure 5.12: Magnetic field B configuration for a NS with Poloidal magnetic field initial
data. View along the xy-plane. The colorbar shows the magnetic field B in code’s units

(= 1020 Gauss)

Figure 5.13: Magnetic field B configuration for a NS with Poloidal magnetic field initial
data. View along the xz-plane. The colorbar shows the magnetic field B in code’s units

(= 1020 Gauss)
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Figure 5.14: Density fluctuation ρ, magnetic field variable b2 and Hamiltonian constraint
H for a magnetized TOV. The initial spike in the Hamiltonian constraint is due to the

superimposition of the magnetic field to the star.

hundreds ofM⊙ of evolution, showing a misplacement of the magnetic field with respect
to the NS matter in both stars. More efforts are needed in order to tackle the root of
the problem, also reflected in previous tests.

5.3 Mixed Binaries

The first detection of a mixed binary merged dated January 2020, by the LIGO–VIRGO

detector network was confirmed with the release of Collaboration et al., 2021. These
represent the first confident detections to date of BHNS binaries via any observa-
tional means. The two events, carrying the full designations GW200105_162426 and
GW200115_042309 and abbreviated henceforth as GW200105 and GW200115, were
detected on 2020 January 5 at 16:24:26 UTC and 2020 January 15 at 04:23:10 UTC,
respectively. Mixed binaries stand as the system with the highest uncertainty among
binary compact systems.
The complexity is represented by uncertainties in their formation channels and in
the distribution of the mass ratio of the system (in this work we adopt the conven-
tion q = MBH/MNS). While there have been predictions of black hole-neutron star
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(BHNS) systems before, accounting for their non-detection as well as future possi-
bilities of detection in, e.g., Sigurdsson, 2003; Clausen et al., 2014; Chattopadhyay
et al., 2021; Broekgaarden et al., 2021, the two events previously mentioned provide
the perfect opportunity to test the global understanding about such mergers. The two
BHNS gravitational-wave observations also inspire some fundamental questions about
their formation scenario. In Broekgaarden et al., 2021 for example, it has been shown
that the masses and merger rates inferred from GW200105 and GW200115 are consis-
tent with formation through isolated binary evolution. In particular, after exploring
a large set of binary evolution models, it has been found that low kick velocities or
relatively high common envelope efficiencies are preferred to simultaneously match the
properties of double NS and double BH systems. To further study this system, more
detections and observational data are needed, and, in turn, more accurate simulations.
In light of this, we decided to investigate such systems, testing different configurations
and exploring the parameter space, specifically for spin, mass ratio, EOS, and orien-
tations.
The first step that needs to be taken for the simulation of compact objects, as already
stressed out in Sec. 4.1, is the construction of ID. In light of the great results obtained
with the ID code SGRID, already described in Sec. 4.1.1, in the context of BNS, the
multipurpose ID code Elliptica (see Sec. 4.1.2) was developed by Alireza Rashti and
Prof. Wolfgang Tichy. The code, even if capable to compute ID for single objects
and BNS is intended to add the functionality of computing BHNS ID. Thanks to this
great effort we have now in our hands a powerful tool that opens up the possibility
of evolving mixed binary systems, with arbitrary spin orientations. It is important to
mention that BAM has already been proven capable of evolving BHNS ID computed via
the LORENE code, and produced the results shown in Chaurasia et al., 2021. However,
Elliptica further extends the capabilities of the LORENE codes, for example by al-
lowing arbitrary spin direction, and therefore, widens the part of the parameter space
that we are able to explore.
In order to fully present the capability of the code, we performed various tests, centered
on bench-marking and stress-testing the main functionalities. We began by showing
the self-convergence of the code by showing the decrease in the Hamiltonian and Mo-
mentum (defined in Eq. (B.1) and Eq. (B.2)) constraints with increasing resolution
in Fig. 5.15. The data reported in the cited plots are summarized in Tab. 5.3 and
will be used later for the evolution runs via the BAM code. As a second test, we per-
formed a separate batch of ID runs, accounting for the effect of different BH spins
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where we have a lower mass ratio with respect to the previous test and a fully mis-
aligned spin configuration for both objects, i.e. χ⃗BH = (−0.46,−0.46,−0.46) and
χ⃗NS = (0., 0.32, 0.32). The high spin, in magnitude, of the two objects, together with
the arbitrary direction, represents a challenge in terms of ID construction. The BH
has spin of magnitude χBH = 0.8 which is close to the maximum obtainable spin via
Elliptica, and the NS has relatively high spin (χNS = 0.45), since the break-up spin
for NS is χNS ∼ 0.7. This system would theoretically lead to precessing orbits, where
we would see the inclination of the orbital plane during the inspiral. In Fig. 5.24 we
show the inspiral of the system in 2 and 3 dimensions to better visualize the pre-
cession, as well as the precessing cone, described by the precession motion (plus the
nutation motion on top of that) of the orbital angular momentum L, perpendicular to
the orbital plane. As expected, the run shows a precession motion of the orbital plane,
due to the high spin of the two components. In general, we expect the BH spin to be
the leading cause of the precession, due to the difference in mass between the objects,
but the choice of a lower mass ratio, with respect to the SXS1 test, grants that the
contribution of the NS spin is not negligible.

The results shown above confirm the capability of the newly developed ID code on
computing highly spinning compact objects with arbitrary orientations. The interest
in similar systems is well known for BBH systems, due to the impact of precession
on the GW signal (see, for example, Babak et al., 2017). Lately, this study has been
extended to BNS mergers, exploring the parameter space in terms of different orien-
tations, alignment with the orbital angular momentum, the magnitude of the spins,
and the specific characteristics of the stars. With respect to BBH, the presence of de-
tectable matter in NS poses an additional degree of freedom and opens up discussion
about the effect of the NS composition on the two objects’ interaction. Additionally,
the fact that the NS mass distribution leads to a restricted range of possible mass
ratios for the BNS system, ensures that in the case of two highly spinning components
the effect of the two spins is considered co-dominant, and the orientation of the spins
themselves plays a major role in the final outcome.
In light of this, we collaborated in the work of Chaurasia et al., 2020 about precessing
the BNS system. In this work we simulated 7 different configurations, using multiple
resolutions, stressing out the role of different orientations of NS spins. Due to the
particular choice of the setups, five configurations have shown precession effects, de-
veloping, in particular, specific motions of two different types: a precession (wobbling)
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of the orbital plane and a bobbing motion, i.e., no precession of the orbital angular
momentum, while the orbital plane moves along the orbital angular momentum axis.
This could be better visualized in Fig. 5.25, where the orbital dynamics and the GW
emissions of the evolved setups are shown.
On the subject of the ejection of mass, we found that precessing systems can have
an anisotropic mass ejection, which could lead to a final remnant kick of ∼ 40km/s

(velocity that could be also due to GW emission) for the studied systems. Further-
more, for the chosen configurations, antialigned spins lead to larger mass ejecta than
aligned spins, so brighter electromagnetic counterparts could be expected for these
configurations. The effect on the ejecta poses a big question at the moment, and fur-
ther studies on this topic might establish a distinct connection of the two phenomena,
especially if and when supported by a joint detection of GW and EM counterparts.
As a natural follow-up, extending this study now to BHNS systems is possible via the
use of Elliptica for ID. As hinted already, BHNS systems differ from BNS systems,
having a wide range of available mass ratios. Bounding systems to the low-end of the
range allows the study of systems with properties similar to BNS systems. From the
point of view of GW signal detection it is, in fact, already difficult to discern between
the two systems in case of a low mass ratio BHNS: the behavior during the inspiral
is comparable up to a certain precision, to the one of BNSs and a clear distinction
is possible only after more detailed studies. We plan, for the near future, to further
expand on the topic with more on-point results, possibly proposing a similar study
to Chaurasia et al., 2020 for BHNS systems and expanding on the effects on the post-
merger remnant.

As a next step into the analysis of compact binary mergers, we decided to make
use of the resources developed so far to investigate the phenomenon of Tidal Dis-
ruption. Depending on the mass ratio of the binary components, BNS systems could
present an extreme tidal deformation of the lighter of the two components, leading
to the break-up of its structure and to a gradual accretion onto the more massive
component. This phenomenon, known as tidal disruption, is much more common in
BHNS binaries, where the variety of mass ratios is wider and the BH is the natural
candidate for the disruption of the secondary. The onset of this phenomenon is rep-
resented by the mass-shedding limit, namely when the tidal force exerted by the BH
overcomes the self-gravity of the NS at the inner edge of the stellar surface and mass
starts to be accreted onto the BH (see for example Kyutoku et al., 2021 for more
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details on the subject). To date, no clear-cut way of defining the tidal disruption limit
has been found. Looking into different characteristics of the merger, it is possible to
define a tidal disruption limit from the point of view of the GW signal: tidal modes
are excited during the post-merger phase and are visible in the extracted GW strain.
Another approach instead relies on Newtonian estimations and compares two critical
scales of the BHNS system, i.e. the tidal separation or radius rtidal and the radius of
the Innermost Stable Circular Orbit (ISCO) around the BH risco (and dependent only
on the properties of the latter). We then claim that a NS undergoes tidal disruption
during the inspiral of a BHNS system if

rtidal ≳ risco, (5.60)

i.e. we have the onset of the disruption before entering the ISCO. This approach,
developed in Foucart, 2012, can be also applied to GW signals by deriving the tidal
frequency ftidal from rtidal and comparing it with fisco, as in Pannarale et al., 2015
The expression for rtidal can be derived from Newtonian’s estimates of the mass shed-
ding limit as

MNS

R2
NS

∼ 3MBH

r3tidal
RNS, (5.61)

from which we simply get

rtidal ∼ RNS

(3MBH

MNS

)1/3
= RNS

(
3q
)1/3 (5.62)

where q =MBH/MNS is the mass ratio of the BHNS system.
Looking at the formulas so introduced, it is straightforward to deduce that disruption
will be favored in the BHNS system with

1. low-mass BHs MBH ;

2. BH spin aligned with the total orbital angular momentum;

3. large NS radii RNS.
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The ISCO radius risco can be calculated as in Bardeen et al., 1972, using

Z1 = 1 + (1− χ2
BH)

1/3
[
(1 + χBH)

1/3 + (1− χBH)
1/3
]
, (5.63)

Z2 =
√
3χ2

BH + Z1, (5.64)

risco =MBH

(
3 + Z2 − sign(χBH)

√
(3− Z1)(3 + Z1 + 2Z2)

)
. (5.65)

We also define the normalized ISCO radius r̂isco and the normalized tidal radius r̂tidal

as
r̂isco =

risco
MBH

, r̂tidal =
rtidal

RNS

, (5.66)

that will be helpful in the following.
From the formula introduced before a model for the mass left gravitating around the
BH in the form of a disk after the merger M̂rem has been developed in Foucart, 2012,
and later modified and improved in Foucart et al., 2018b and in Foucart, 2020:

M̂rem =
Mrem

M b
NS

=

[
max

(
α
1− 2CNS

η1/3
− βr̂isco

CNS

η
+ γ, 0

)]δ
, (5.67)

where M b
NS is the baryon mass of the NS and CNS =MNS/RNS is the compactness of

the NS, which depends on the internal structure of the star determined by the EOS.
The first term in Eq. (5.67) is proportional to the normalized tidal radius, defined in
Eq. (5.66), multiplied by (1−2CNS) to account for the fact that a BH cannot be tidally
disrupted, i.e. has CBH = 1/2. The second term in Eq. (5.67) scales as risco/RNS as
the mass ratio q → ∞. Lastly, in Eq. (5.67), (α, β, γ, δ) are free parameters determined
by a global fit whose estimated values are

α = 0.406, β = 0.139, γ = 0.255, δ = 1.761 (5.68)

(see Foucart et al., 2018b).
By imposing M̂rem ≤ 0 we ask for the remnant BH to have no disk around it, i.e.
implying a direct plunge of the NS inside the BH. A M̂rem ≳ 0 would instead imply a
tidal disruption.
In all the formulas introduced the variables at play are CNS and r̂isco so, in turn, all
the dependence is on χBH and MBH , for the BH, and CNS, which is dependent solely
on the EOS for the NS.
To expand our knowledge on the topic, we decided to study the effect of NS spin χNS
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on the system. In particular, we use Eq. (5.67) as a discriminant to study the effect
of the NS spin on the tidal disruption, designing a set of runs whose parameters fulfill
the relation M̂rem = 0, i.e. at the limit between tidal disruption and direct plunge, and
then add aligned or anti-aligned spin to the NS to evaluate its effect. More concretely,
we expect to see a deviation from the system lying on the line of constant mass ratio
in Fig. 5.26, induced by the addition of NS spin to the system. In general, we know
the spin of the NS to be a subdominant component in the characteristic of a BHNS
system, in particular, because of the BH being the more massive component (apart
from very extreme mass ratios, i.e. q ≲ 1) and having a dominant role in terms of
spin. The new tool developed for us will however allow more accurate studies, pushing
the NS spin to the break-up limit, and evaluating the effect in case of zero spinning
BH and/or low mass ratio. The effect of NS spin has only been partially studied in
the literature, limited to a few cases of misaligned spin and a very low number of
simulations, in general, exploring this part of the parameter space (see, e.g., Taniguchi
et al., 2005; Ruiz et al., 2020).
We expect that the addition of even a small NS spin to a threshold case of BHNS
inspiral will push the system distinctively towards one of the two types of mergers.
To verify this we have computed different ID configurations with Elliptica, listed in
Tab. 5.4, all respecting the condition M̂rem ≈ 0. Each set of ID is characterized by a
fixed EOS and then three cases, where the NS is either spinless, with aligned spin, or
anti-aligned spin. We then evolved these systems with BAM and study the moment of
merger for the different configurations. In Fig. 5.27 we show the trajectories for each
of the runs in Tab. 5.4 up to the merger. We can see how the addition of spin already
modifies the trajectory of the objects and the number of orbits during the inspiral. In
particular, how anti-aligned spin relates to faster inspiral with respect to the spinless
and aligned case.
A key feature of this work is to establish a way to distinguish between a tidal disruption
and a direct plunge, even for threshold cases. In light of this, we studied the transfer
of mass between the NS and BH at the latest stages of the merger. In particular, in
Fig. 5.28 we show the baryon mass content Mb inside spheres of different radii, centered
on the center of the NS (identified by the minimum of the lapse). As expected, the
smaller the radius of the sphere, the smaller the fraction of the total NS mass contained
inside of it. We can then observe how mass is transferred to the BH during the final
stages of the merger, depending on how/when the mass contained inside spheres of
different radius changes. For example, if the mass transfer is abrupt we can rule in
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Table 5.4: Different systems evolved in the context of this project. For each run we fixed the
irreducible BH mass MBH = 4.05 and the irrotational NS gravitational mass to MNS = 1.35,
so that the mass ratio is q = 3. In order we have the BH dimensionless spin χBH , the NS
dimensionless spin χNS , the NS spin parameter ΩNS , the NS baryonic mass M b

NS in M⊙
units, and the initial separation d in M⊙ units

EOS χBH χNS ΩNS M b
NS d

Alf2 −0.0466 0.0 0.0 1.48768 50

Alf2 −0.0466 +0.189 +0.01 1.48768 50

Alf2 −0.0466 −0.192 −0.01 1.48768 50

H4 −0.3 +0.0 +0.0 1.46868 45

H4 −0.3 +0.211 +0.01 1.46868 45

H4 −0.3 −0.215 −0.01 1.46868 45

MS1b −0.4 +0.0 +0.0 1.4675 50

MS1b −0.4 +0.113 +0.005 1.4675 50

MS1b −0.4 −0.117 −0.005 1.4675 50

SLy +0.128 +0.0 +0.0 1.4946 35

SLy +0.128 +0.156 +0.01 1.4946 35

SLy +0.128 −0.161 −0.01 1.4946 35

favor of a direct plunge.

These results are parts of a work still in progress. We hope to more details about
the topic at hand soon, possibly expanding the set of runs or studying more extreme
cases.
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Figure 5.25: Orbital dynamics and GW emission for various NS spin configurations in BNS
systems. Column 1: coordinate tracks of each NS in the binary. Column 2: precession
cones of each binary. The spin evolution of the individual stars, in Blue and in Green, and
the orbital angular momentum of the system, in Red are shown here. Column 3: (2,2)- and

(2,1)-modes of the GW strain rh.
From Chaurasia et al., 2020
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Figure 5.26: Maximum value of the mass ratio MBH/MNS for which a BHNS system will
disrupt as a function of the NS radius RNS and aligned component of the dimensionless BH

spin χBH , assuming MNS = 1.35M⊙ (from the study in Foucart et al., 2018b).
From Foucart, 2020
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Chapter 6

Conclusions

In this thesis work, we have described different aspects of compact object simulations,
from the effect of different physical aspects to the actual simulation of complex mixed
binaries. We began by studying how to model the propagation of neutrinos, ejected
during the merger of BNS systems. We developed a post-analysis tool able to evaluate
the different properties of neutrino propagation from a hot remnant starting, in par-
ticular, from the temperature T of the matter in/around the remnant and the electron
fraction Ye, dependent on the matter properties described by the EOS.
We distinguished between two different optical depths, i.e. diffusion opacity κdiff and
equilibrium opacity κeq, each characterizing regions with different neutrino properties.
By choosing 17 directions for each point of the domain outside the remnant (after
filtering out the lowest density regions), we performed an approximate calculation of
the opacities along the different paths from each point to the outer boundary. This
way, we are able to set appropriate thresholds on the optical depth, to define two
separate surfaces i.e. the diffusion surface and the equilibrium surface. Neutrinos
enter the free-streaming regime after leaving the diffusion surfaces as they decouple
from the background medium while leaving the equilibrium surfaces. By defining these
different surfaces we are able to describe the behavior of neutrinos in the dynamical
regions so obtained and infer the possible influence on the matter surrounding the
remnant. Since the matter and EM ejecta are deeply influenced by weak interactions
and r-processes, estimating the effect of neutrinos plays a key role in quantitative es-
timates of the emissions. Via the use of two different EOS, we were able to see how
the neutrinospheres form and evolve, depending on the properties of the remnants.
By distinguishing between three neutrino species (light neutrinos νe,ν̄e and heavy neu-
trinos νx) we were able to determine the impact regions of different reactions around
the remnant and the relative evolution of the latter. As a trend, we saw how diffusion
surface relative to heavy neutrinos νx encapsulate the others. This relation is reversed
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in the case of equilibrium surfaces. In general, diffusion surfaces form outside of equi-
librium surfaces (when they are not approximately coincident), marking in-between
regions where neutrinos diffuse for non-elastic scattering. For better visualization of
the results and of the relative position of the regions described before, we point the
reader to the plots in Sec 5.1. A clear dependency of the results on the choice of the
energy estimate for the neutrinos and of the temperature T on the EOS is shown.

From a strictly computational point of view, we then worked on the backend of the BAM
code, with the aim of extending its functionality to the inclusion of the treatment of
magnetic fields. The final objective was to add a separate module, capable of handling
the evolution of the full set of Ideal MagnetoHydroDynamic equations (i.e. GRMHD),
which represent the extension of Maxwell’s law for EM fields to GR with the ideal
assumption of infinite conductivity σ → ∞. In this approximation we can express the
electric field E⃗ in terms of the magnetic field B⃗, using it as the only EM variable.
The key to implementation is the choice of the formulation to assure the vanishing
of the divergence of the magnetic field ∇ · B. We decided to adopt the divergence
cleaning approach, a standard formulation that does not require modifications in the
already present computational grid of BAM. Even if not considered the most performing
approach, divergence cleaning grants results in simulating systems of single stars and
binaries.
The results obtained in the context of this work are promising in the sense of the
capability of integrating the equations with the already present BAM infrastructure and
producing some standard example runs and tests. More work is needed to perfect the
module and solve the computational problems still present in the code.

Lastly, we dived into the topic of mixed binary mergers, i.e. BHNS. These binary
systems represent the latest addition to the list of GW detections by the LIGO–VIRGO

Collaborations and raise interest in their peculiar physical properties. We discuss here
the newly introduced Elliptica code, a multi-purpose pseudo-spectral code for the
computation of compact objects ID. Great effort has been put into the development
of the latter by our collaborators Alireza Rashti and Prof. Wolfgang Tichy. We de-
veloped a series of tests to evaluate all the different capabilities of the code, giving
specific attention to the computation of mixed binary ID, BHNS, and notable ex-
tension of the code with respect to its predecessor (the SGRID code). We have then
verified the convergence of the code itself across different resolutions and evolved sets
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of ID with extreme configurations in terms of spin and orientations of the objects. In
particular, we have pushed the runs up to the code’s maximum capabilities in terms
of spin, obtaining values close to the break-up spin for the NS, and relatively high
values for the BH. To validate the spin treatment we have compared the data from
the ID with 3.5 post-Newtonian (PN) approximation plus the next-to-next-to-leading
order correction of spin-orbit (SO), finding good agreement. Before evolving the ID
produced, we have also tested the compatibility of Elliptica on different machines
and its adaptability to different architectures. Evolving then specific sets of ID, we
compared the results obtained for a long inspiral with the SXS:BHNS:0001 example
from the SXS collaboration’s catalog, showing nice agreement in the GW signal of the
inspiral+merger. In a separate test, we instead designed a system with a misaligned
spin for both components, obtaining a precessing evolution of the binary as a priori
expected.
As a follow-up project, based on the ID produced with Elliptica for BAM we decided
to investigate the limit between tidal disruption and direct plunge in BHNS merger. In
particular, we can see that from the literature a clear-cut way to discriminate between
these two cases has yet to be found. Approximate formulas, based on parameters fit
on catalogs of BHNS runs, have been developed but the quantities at play are only
the (dimensionless) spin χBH , the BH mass MBH and the compactness of the NS CNS.
We decided to investigate the effect of the NS spin on such formulas, studying any
modification on the disruption/plunge behavior of the system after the addition of
aligned/anti-aligned NS spin.
This project is a work in progress but promising results are presented in the text for
the different sets of ID evolved.

Future Prospects

The results of the different works on the compact merger will benefit from further
studies on the topic. In particular, we expect future efforts to address the following
topics:

• BAM’s GRMHD implementation: the first priority is going to be the resolution
of the present problems, possibly adopting a different con2prim routine. With
that closure in mind, additional 1D and 2D stress tests can be implemented. The
possibility of a different grid configuration, i.e. a staggered grid as in Giacomazzo
et al., 2007, has already been discussed and could present an improvement in
future stability and performance. Once the module has seen its completion,
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reproducing BNS and BHNS merger runs already present in the literature will
represent the needed step before exploring new physics.

• Neutrinospheres: to further test the capability of the code, an extended anal-
ysis of BNS runs, using a wider variety of EOSs and initial setups should be
considered. Ejecta analysis codes can be linked to the post-analysis tools devel-
oped and further assess the impact of neutrinos on the post-merger matter/EM
emissions.

• Elliptica: future works on the code will be directed into improving the spin
treatment of compact objects, increasing the parallelization and overall reducing
the runtime of the code, and the addition of the Kerr-Schild metric, better suited
for spinning objects. With the latter, we hope to push the limits of the achievable
BH spin to χ ∼ 0.99.

• Mixed binaries - precession: as described in Sec. 5.3 the development of the
Elliptica code allows for expanded studies for BHNS precessing binaries. In
particular, applying methods of study already conducted on BNS systems to
BHNS systems seems a natural next step. Further exploring the parameter space,
in terms of mass ratio and spin orientation will help understand the processes
around the merger of such dense objects and the possible ejecta emissions.

• Mixed binaries - tidal disruption: although this work is still ongoing we are
confident in the quality of the results already obtained and the oncoming ones.
A future extension to the project would include the addition of different EOSs
and, in general, the study of different setups, in terms of the BH dimensionless
spin χBH and the mass ratio q. Pursuing a more in depth study of tidal disruption
represents an interesting topic too. Deepening the understanding of this aspect
via NS deformation’s and NS mass distribution’s study during the inspiral could
enlarge our view on this complicated and debated point.
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Appendix A

General notions about PDEs

A.1 Well-posedness

The concept of well-posedness was first introduced by Jacques Hadamard in Hadamard,
1902 and then largely applied for systems of PDEs. In general, considering an Initial-
Value Problem (IVP) or Cauchy problem for which we have a PDE and appropriate
boundary conditions (BCs), we say that the problem is well-posed if

1. A solution exists.

2. That solution exists.

3. The solution changes continuously with changes in data.

If we assume the first two conditions for a given IVP we can concentrate on the third
requirements and its implications. For example if we take a system of PDEs of the
form

∂tu = Pu, (A.1)

with u n−dimensional vector and P an n×n matrix then if we can define a norm ||.||
for which

||u(t, x)|| ≤ AeBt||u(0, x)||, (A.2)

with A and B constant independent from initial data, then we show a limit in the
growth of the solution itself and ensure well-posedness.

A.2 Character of PDEs

Establishing the character of a system of PDEs is important to get a quick under-
standing of its basic properties. To define such character we resort to the analysis
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of the principal symbol of a PDE i.e. the highest order partial derivative terms of a
polynomial form of the differential operator (symbol).
More rigorously let’s take a linear differential operator of order m

P (x,D) =
∑
|α|≤m

aα(x)D
α, (A.3)

with Dj = 1
i
∂xj , X, Y = Rn, n ∈ Z+, aα(x) ∈ C∞(X), α, β multi-indices and P

diffeomorfism of order m on X. It is easy to extend this definition to a Riemaniann
manifolds defining similar concepts in local coordinates and check that the definitions
are coordinate invariant.
We define the symbol of P as

σ(P )(x, ξ) ≡
∑
|α|≤m

aα(x)ξ
α. (A.4)

This is a bijective mapping from differential operators to the polynomials of ξ with
smooth coefficients. The principal symbol is now

σm(P )(x, ξ) ≡
∑
|α|=m

aα(x)D
α, (A.5)

so it corresponds to the higher order terms of σ(P ).
Thanks to this definition we can move on and describe the character of a system of
PDEs as:

1. The system is Elliptic if σ(P ) is positive-definite i.e. the eigenvalues of σ(P )
are all non-zero and of same sign.

2. The system is Parabolic if σ(P ) is positive semi-definite i.e. the eigenvalues of
σ(P ) are all non-zero but one and of same sign. In addition the rank of sigma(P )
is equal to n.

3. The system is Hyperbolic if σ(P ) has all non-zero eigenvalues and n− 1 of the
same sign.
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For a simplified take on the problem, we can cast a general in-homogeneous second-
order PDEs in the form

A(x, y)uxx + 2B(x, y)uxy + C(x, y)uyy +D(x, y)ux + E(x, y)uy + F (x, y) = G(x, y),

(A.6)
that is written in a form analogous to a quadratic formula. We can then study the
character of the PDEs simply looking at the determinant:

B2 − AC < 0 Elliptic → e.g. Laplace equation,

B2 − AC = 0 Parabolic → e.g. Wave equation,

B2 − AC > 0 Hyperbolic → e.g. Heat equation.

These classifications greatly helps to visualize the behavior of complex PDEs systems:
once the character is known we can model the key properties of the system comparing
it with simpler examples of PDEs of the same character (like the one in the example
before). In a more descriptive way we can say that Elliptic equations generally arise
from a physical problem that involves a diffusion process that has reached equilib-
rium. Hyperbolic equations arise in connection with mechanical oscillators, such as a
vibrating string, or in convection-driven transport problems and are able to support
solutions with discontinuities like shock waves. Parabolic PDEs serve as a transition
from the hyperbolic PDEs to the elliptic PDEs: they tend to arise in time-dependent
diffusion problems, such as the transient flow of heat.

A.2.1 Hyperbolicity

Since the formulation in exam in this work are mainly of the hyperbolic character we
are expanding on this notion. We can define additional properties of an hyperbolic
system of PDEs P simply looking at the set of eigenvalues/eigenvectors of its principal
symbol σm(P ). In particular the system P is said to be

1. Weakly Hyperbolic if σm(P ) has real eigenvalues but not a complete set of
eigenvectors.

2. Strongly Hyperbolic if if σm(P ) has real eigenvalues and a complete set of
eigenvectors:

σm(P )ei = λiei, (A.7)
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with i = 1, . . . , n, ei complete set of eigenvalues and λi the corresponding eigen-
vectors.
Additionally, we can distinguish two sub-classifications of strongly hyperbolic
systems:

(a) Strictly Hyperbolic: the eigenvalues of the principal symbol σm are not
only real but are also distinct.

(b) Symmetric Hyperbolic: if all the coefficient matrix aα of σm are sym-
metric.

Both sub-cases imply strong hyperbolicity but not vice versa.

An important property of a strongly hyperbolic system that we are not demonstrating
here, is that strong hyperbolic systems of PDEs are all also well-posed. This feature
will prove important in our discussion on different formulations.
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3+1 Evolution Equations

B.1 ADM Formalism

The first formalism historically developed is the ADM formalism (named after the
authors R. Arnowitt, S.Deser, C.W. Misner) Arnowitt et al., 2008. The evolution
equations that we will show in the following, and that were historically used more for
simulations are the non-trivial rewriting of J. W. York York, 1979. The original ADM
formulation comes in fact from the Hamiltonian formulation of general relativity and
started from the field equations written in terms of the Einstein tensor Gµν instead of
Rµν .
From Eq. (2.57) and Eq. (2.58) we can derive the decomposition of Einstein equa-
tions (2.26) that represent the ADM formulation of General Relativity: skipping the
calculations we obtain the set of equations

(3)R +K2 −KijK
ij = 16πE, (B.1)

Dj(K
ij − γijK) = 8πSi, (B.2)

∂tγij = −2αKij +Diβj +Djβi, (B.3)

∂tKij = −DiDjα + βk∂kKij +Kik∂jβ
k +Kjk∂iβ

k+

+ α((3)Rij +KKij − 2KikK
k
j ) + 4πα(γij(S − E)− 2Sij),

(B.4)

with

Sµν = Pα
µ P

β
ν Tαβ, (B.5)

Sµ = −Pα
µ n

βTαβ, (B.6)

S = γµνSµν , (B.7)

E = nµnνTµν , (B.8)
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where Sµν is the spatial stress tensor, Sµ is the momentum density, and E is the local
energy density as measured by an Eulerian observer.
Let’s briefly confront this set of equations with the original Einstein equations: Eq. (2.26)
are a set of 10 equations for the components of gµν . It is meaningful to split this set
into two different parts. The first part is composed by Eq. (B.1) and Eq. (B.2). These
4 equations are called constraints because they do not contain time derivatives. Specif-
ically we call Eq. (B.1) the Hamiltonian constraint and Eq. (B.2) the Momentum
constraint.
The second part is instead composed by 6 equations, Eq. (B.4), and describes the
evolution of the extrinsic curvature Kij with a first-order expression, thanks to the
relation in Eq. (B.3) between the first time derivative of the metric and the extrinsic
curvature itself. It is important to notice that the time derivative of the lapse function
α and shift functions βa do not appear in the equations and for this reason, they’re
not dynamical variables but what is commonly called as gauge variables, associated
with the choice of coordinates.

Although substantially important as a first result in terms of decomposition of the
Einstein equations and the first simulations of Black Holes spacetimes, the ADM for-
malism has proven not to be stable nor robust for more long or complex simulations.
It has been seen that oscillations of increasing amplitude start developing during the
simulations. This behavior is due to the fact that ADM formulation is only weakly
hyperbolic in terms of PDEs systems and in general ill-posed. For more details about
well-posedness and hyperbolicity refer to Appendix A and in particular Sec. A.2.1.
Depending on the choice of Gauge conditions the ADM formulation is written as well-
posed. We refer to Sec. 2.3 for the possible Gauge choices. In the following, we are
going to describe alternative 3+1 formulations which show better properties in terms
of numerical simulations and are used up to the present day.

B.2 BSSNOK Formalism

From the difference between the original ADM formalism and the successive York
formulation, it is clear that the 3 + 1 foliation of the spacetime is not unique but can
be expressed by varying the form of the evolution equations by the addition of multiples
of the constraint, without losing validity. The idea of this formalism was introduced
first by Nakamura, Oohara, and Kojima (Nakamura et al., 1987) while the most used
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version is based on the work of Shibata and Nakamura (Shibata et al., 1995), after
being re-analyzed later by Baumgarte and Shapiro (Baumgarte et al., 1998a). The full
name of the formulation is taken from the name of all the authors that contributed
to it during the years but was initially referred to as "BSSN" or "conformal ADM"
(more on this later). The aim was to develop a 3 + 1 decomposition that was more
robust in terms of numerical computation (in fact is the most widely used formalism
for Numerical Relativity). To do so new degrees of freedom were introduced, together
with their evolution equations, to ensure stability to the new system of equations.
The main idea in this formulation (used also for other formulations like Bona-Maso
or NOR) is to introduce three new independent quantities related to contractions of
the connection or Christoffel symbols and then to modify the evolution equations for
these quantities using the momentum constraints (B.2). The first thing we consider is
a conformal rescaling of the spatial metric of the form

γ̂ij = ψ−4γij, (B.9)

where ψ is the conformal factor that can be chosen in a number of different ways (like
puncture method for black holes or the introduction of an evolution equation for the
scalar function that represents ψ initially).
Imposing now that the conformal metric has a unit determinant

det(γ̂ij) = γ̂ = 1, (B.10)

we get
γ̂ = (ψ−4)3γ = 1, (B.11)

from which
⇒ ψ = γ

1
12 . (B.12)

We can also introduce ϕ as

ϕ = ln(ψ) =
1

12
ln(γ). (B.13)

Then I have to separate the extrinsic curvature in a traceless part K and its trace

Aij = Kij −
1

3
γijK, (B.14)
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and its conformal rescaling

Bij = ψ−4Aij = e−4ϕAij. (B.15)

The crucial point is now to introduce three new variables called conformal connec-
tion functions

Γ̂i = γ̂jkΓi
jk = −∂j γ̂ij, (B.16)

where Γ̂i
jk are the Christoffel symbols expressed in terms of γ̂ij.

At this point, we can underline that

ADM =⇒ γ,Kij =⇒ 12 variables

BSSNOK =⇒ ϕ, Γ̂, K, γ̂, Bij =⇒ 17 variables

Generally, in numerical computations the constraint

B = 0 (B.17)

is used to ensure more stability for simulations but here we present the full formulation
with all 17 variables.
Now making use of the quantities that we redefined from the ADM formulation we get
for the evolution equations

d

dt
γ̂ij = −2αBij, (B.18)

d

dt
ϕ = −1

6
αK, (B.19)

d

dt
K = −DiD

iα + α(BijB
ij +

1

3
K2) + 4πα(S + E), (B.20)

d

dt
Bij = e−4ϕ

[
−DiDjα + α(3)Rij + 4πα[γij(S − E)− 2Sij]

]TF

+ α(KBij − 2BikB
k
j ),

(B.21)

d

dt
Γ̂i = γ̂jk∂j∂kβ

i +
1

3
γ̂ij∂j∂kβ

k − 2Bij∂jα+

+ 2α(Γ̂i
jkB

jk + 6Bij∂jϕ− 2

3
γ̂ij∂jK − 8πe4ϕSi),

(B.22)

that compose the BSSNOK formulation. Here TF stands for the Trace-Free part
and we used the notation

d

dt
≡ ∂t −£β⃗. (B.23)
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The key element to obtain Eq. (B.22) is the use of momentum constraints to modify
the evolution equations for Γ̂i. To complete the set of equations of BSSNOK we have
to add the set of constraints of the ADM formulation (B.1) and (B.2).
We need to express the Ricci tensor associated with the new choice of metric as

(3)Rij =
(3)R̂ij +

(3)Rϕ
ij, (B.24)

where R̂ij is the part of the Ricci tensor associated with the conformal metric γ̂ij and
Rϕ

ij the additional terms of R that depend on ϕ, both expressed in the following

(3)R̂ij = −1

2
γ̂lm∂l∂mγ̂ij +

1

2
(γ̂ki∂jΓ̂

k + γ̂kj∂iΓ̂
k)

+
1

2
(Γ̂kΓ̂ijk + Γ̂kΓ̂jik) + +γ̂lm

(
Γ̂k
liΓ̂jkm + Γ̂k

ljΓ̂ikm + Γ̂k
imΓ̂klj

)
,

(B.25)

(3)Rϕ
ij = −2D̂iD̂jϕ− 2γ̂ijD̂

kD̂kϕ+ 4D̂iϕD̂jϕ− 4γ̂ijD̂
kϕD̂kϕ, (B.26)

where D̂i is the covariant derivative associated with the conformal metric.
It is important to point out that the Lie derivatives in Eq. (B.23), computed along
β⃗, are used on so-called tensor densities i.e. tensors multiplied by powers of the
determinant of the metric γ.
If we multiply a tensor for γn/2 we obtain what we define as a tensor density of weight
n. The Lie derivative of such object is given by

£β⃗T = £β⃗T |n=0 + nT∂iβ
i. (B.27)

In our formulation we have

ψ =⇒ n = 1/6,

γ̂ij =⇒ n = −2/3,

Bij =⇒ n = −2/3,

and

£β⃗ϕ = βk∂kϕ+
1

6
∂kβ

k, (B.28)

£β⃗γ̂ = βk∂kγ̂ij + γ̂ik∂jβ
k + γ̂jk∂iβ

k − 2

3
γ̂ij∂kβ

k. (B.29)
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Finally, we need to mention that we can add a parametric term in the momentum
constraints to develop different versions of the BSSNOK formulation (the one pre-
sented here is just the standard formulation) but we must be careful to not lose the
strong hyperbolicity character of the equation. BSSNOK formulation has in fact the
advantage, with respect to ADM, to be strongly hyperbolic (refer to Appendix A for
a definition), properties that ensure stability during long evolution.
Regardless of its early introduction, the BSSNOK formulations pertains its importance
in the community, being one of the mostly used formalisms employed. The BAM code,
used for this work and described in Sec. 4.2.1 is employing this formalism.

B.3 Z4 Formalism

Previous formulations of 3+1 decomposition were based on ADM and used momentum
constraint to modify evolution equations of new independent quantities. They were
introduced using the spatial metric γij or its time derivatives.
The Z4 approach was proposed in Bona et al., 2003; Bona et al., 2004 and is based on
the introduction of a 4-vector to rewrite Einstein equations like:

Rµν +∇µZν +∇νZµ = 8π

(
Tµν −

1

2
gµνT

)
, (B.30)

obtained from (2.26) using the relation between traces:

R = −8πT. (B.31)

To be coherent with the physical formulation we have to assume that Zµ vanishes for
every physical solution i.e. we add the constraint:

Zµ = 0. (B.32)
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Einstein’s equations can be written as:

d

dt
γij = −2αKij, (B.33)

d

dt
Kij = −Diβj + α[(3)Rij +DiZj +DjZi − 2KimK

m
j + (K − 2Θ)Kij], (B.34)

d

dt
Θ =

α

2
[(3)R + (K − 2Θ)K −KmnK

mn + 2DmZ
m − 2Zm∂m lnα], (B.35)

d

dt
Zi = α[DmK

m
i −DiK + ∂iΘ− 2Km

i Zm −Θ∂i lnα], (B.36)

where we used the notation in (B.23) and we introduced the scalar Θ as the projection
of the 4-vector Zµ along the normal to the hypersurface nµ

Θ ≡ nµZ
µ = αZ0, (B.37)

Looking at Eq. (B.33) - (B.36) we see that they compose a set of 10 dynamical equa-
tions, with no constraints relation. As a consequence we have the conservation of
general covariance in numerical simulations, due to the fact that we need to use all
the sets for the evolution of spacetime, leaving no space for free relations.
As constraint, we have the four algebraic relations given by:

Zµ = 0 −→

Θ = 0

Zi = 0
. (B.38)

Taking the trace of (B.30) we have

∇µZ
µ = −1

2
R− 4πT, (B.39)

while taking now the 4-divergence of Eq. (B.30) and using conservation of stress-energy
and Einstein tensor we can derive the relation

∇ν∇νZ
µ +RµνZ

ν = □Zµ +RµνZ
ν = 0, (B.40)

which describe the deviation of Eq. (B.30) from (2.26): in particular it shows that any
discrepancy propagates through light-cones and puts constraints on the evolution of



112 Appendix B. 3+1 Evolution Equations

the set of initial data:

Zµ(0, x
i) = 0, (B.41a)

∂tZµ(0, x
i) = 0. (B.41b)

Here Eq. (B.41b), together with Eq. (B.35) and (B.36) represent momentum/energy
constraints of the previous formulations. To complete the evolution system is manda-
tory to provide a coordinate condition to fix the kinematic degree of freedom.

The Z4 equation can be reformulated in damped form, in such a way that the general
solutions are driven towards Einstein solutions. Introducing the parameters κ1 κ2 as
free coefficients we have

Rµν+∇µZν+∇νZµ+κ1[nµZν+nνZµ−(1+κ2)gµνnσZ
σ] = 8π

(
Tµν−

1

2
gµνT

)
, (B.42)

with the constraint-propagation system

∇ν∇νZ
µ +RµνZ

ν = −κ1∇ν [nµZν + nνZµ + κ2gµνnσZ
σ], (B.43)

provided with the conditions for damping

κ1 > 0, (B.44)

κ2 > −1. (B.45)
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In this way Eq. (B.33) - (B.36) can be rewritten as

d

dt
γij =− 2αKij (B.46)

,
d

dt
Kij =−Diβj + α[(3)Rij +DiZj +DjZi − 2KimK

m
j +

+ (K − 2Θ)Kij − κ1(1 + κ2)Θγij]−

− 8πα[Sij −
1

2
(S − E)γij],

(B.47)

d

dt
Θ =

α

2
[(3)R + (K − 2Θ)K −KmnK

mn+

+ 2DmZ
m − 2Zm∂m lnα− 2κ1(2 + κ2)Θ− 16πE],

(B.48)

d

dt
Zi =α[DmK

m
i −DiK + ∂iΘ− 2Km

i Zm−

−Θ∂i lnα− κ1Zi − 8πSi].
(B.49)
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Conservative Formulations

To give an insight into the concept of conservative formulations we first point the
reader to the equations introduced in Ch. 3. Let’s start by expressing Eq. 3.9 and
Eq. 3.10 in a compact matrix-form:

∂tU⃗ + A⃗ · ∇⃗U⃗ = S⃗. (C.1)

Moreover A⃗ is a function of U⃗ , A⃗ = A⃗(U⃗), and S⃗ represents the source terms.
If the system of equations matches the conditions required for hyperbolicity, described
in Sec. A.2.1, it represents a suitable set for numerical simulations. Moreover if A⃗(U⃗)
is the Jacobian of the flux-vector F⃗ (U⃗) with respect to U⃗ i.e.

A⃗(U⃗) =
∂F⃗

∂U⃗
, (C.2)

then the homogeneous version of Eq. (C.1) can be written in what is defined as a
conservative form

∂tU⃗ + ∇⃗F (U⃗) = 0, (C.3)

where U⃗ takes now the name of state vector of conserved variables.
What are the advantages of using a conservative form?
The answer to this question is simply given by the Lax-Wendroff Theorem (see Lax
et al., 1960) which states that:
A hyperbolic system of conservation laws, approximated by a numerical scheme, if
convergent, do converge to a weak solution of the system.
Weak solutions are particularly important dealing with Riemann Problems and
discontinuities. Such discontinuities are often due to the formation of shocks, in the
context of numerical simulations.
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To define a weak solution we take the 1D form of Eq. (C.3)

∂tU⃗ + ∂xF⃗ = 0, (C.4)

and then, by multiplying it for a test function ϕ with a compact support, we can pass
to the integral form ∫ ∞

0

∫ +∞

−∞
(ϕ∂tU⃗ + ϕ∂xF⃗ )dxdt = 0. (C.5)

Integrating by part the first term in time and the second in space we get∫ ∞

0

∫
−∞

+∞(U⃗∂tϕ+ F⃗ ∂xϕ)dxdt = −
∫
−∞

+∞ϕ(x, 0)U⃗(x, 0)dx, (C.6)

that is called what is referred to as a weak formulation. Now if a function U⃗ satisfy
the relation in Eq. (C.6) for every function ϕ is called a weak solution.
In practice, we obtained an alternative integral formulation in order to rewrite a dif-
ferential equation in a form that would admit also non-smooth “solutions”, i.e. shocks
and discontinuities.
To conclude, the theorem states that if a conservative formulation is used, then we
are guaranteed that the numerical solution will converge to the correct one, while if
a conservative formulation is not used, we are guaranteed to converge to the incor-
rect solution in the likely event in which the flow develops a discontinuity (for the
latter see Hou et al., 1994). The concept of convergence mentioned before can be
more extensively expressed. However before getting to conservation we have to define
consistency and stability.
For a generic system of Partial Differential Equation in the form

P⃗ (U⃗) = F⃗ , (C.7)

described by a given grid-scheme (∆t, ∆x), such that the system in Eq. (C.7) becomes

Pk(U
n
i ) = Fk, (C.8)

we can say that the scheme is consistent if

ϵk = P⃗ (U⃗)− Pk(U
n
i ) −→ 0, for ∆t,∆x→ 0 (C.9)
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where ϵk is called a truncation error. So basically if the truncation error goes to zero in
the limit of vanishing grid-spacing the scheme is said to be consistent and the solutions
of the scheme’s equation approach the true PDE’s solutions.
Using the definition of discretized norm, we get

||f(x, t)||p =
(

1

b− a

∫ a

b

|f(x, t)|pdx
) 1

p

(C.10)

for a smooth function f(x, t) in the interval (a, b).
Now for the scheme Pk(U

n
i ) = 0, if a constant C exists such as

||Un||2 ≤ C||U0||2, (C.11)

for 0 ≤ n∆t ≤ T , with ∆x,∆t → 0 then the scheme is said to be stable. Stability
then ensures that the errors decade during evolution from one time step to the other
(if time is the referring dimension).
Finally, we have that if

lim
∆x,∆t→0

U⃗(xi, t
n)− Un

i = lim
∆x,∆t→0

C(∆x,∆t)p = 0, (C.12)

then the system is said to be convergent which ensures the convergence to the true
solution of the PDE and p is the convergence order. By making use of the concept of
stability and consistency we have the Lax-Richtmyer Theorem that can be simply
expressed by the relation:

consistency + stability ⇐⇒ convergence .
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Appendix D

Equations of State

Equations of State (EoS) represent a very complex matter in hydrodynamics and,
especially, in compact object simulations. In fact, unless we are studying BH, for
which we are prevented from modeling the inner part by the presence of an Event
Horizon (EH), objects like white dwarfs or neutron stars pose a challenge to nuclear
physicists in terms of descriptions of their internal structure (see Fig. D.1). Apart from
its fundamental role in describing the matter property of the fluid in exam, we need
to specify an equation of state of the form p = p(ρ0, ϵ) in order to close the system of
hydrodynamic equations.
The simplest choice we can make for an equation of state is to say that the pressure
vanishes, i.e. p = 0 which represents a dust fluid. This is a strong approximation
but it becomes helpful in some special cases. This fluid doesn’t correspond exactly to
the common concept of dust from everyday life. In particular, dust can be used to
model a collection of cold collision-less particles, such as a uniform matter distribution
in cosmology, the structure of rotating rings or disks of particles, or the collapse of a
shell of matter initially at rest. A more precise but still intuitive approximation is the
one of an ideal gas. It is important to mention that the terms perfect fluid and ideal
gas, though similar, refer in fact to different things. A perfect fluid is defined as one
with no viscosity and no heat conduction, but the equation of state can still be very
general. An ideal gas, on the other hand, refers to a specific equation of state of the
type

p = (γ − 1)ρ0, (D.1)

where γ is a constant known as the adiabatic index (not to be confused with the de-
terminant of the spatial metric in the text).

pV = nkT (D.2)
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Figure D.1: Graphical design describing the interior of a NS and its matter content. The
different layers show the change in behavior of the NS matter passing from the better known

crust to still unclear composition of the inner core. Art made by Dany Page

where V is the volume, n the number of particles, T the temperature and k the
Boltzmann constant. From the definitions of specific heat of a fluid

cp =
1

M

(dQ
dt

)
p
, (D.3)

cV =
1

M

(dQ
dt

)
V
, (D.4)

we get the definition of γ as
γ ≡ cp

cV
. (D.5)

Another very common choice that is closely related to the ideal gas case is the so-called
Polytropic Equation of State that has the form

p = KρΓ0 ≡ Kρ
1+1/N
0 , (D.6)

where K is a constant and N is called the polytropic index and the parameter Γ ≡
1 + 1/N is called the adiabatic index of the polytrope. However, we must remember
that Γ and γ represent the same quantity only in the case of an adiabatic process in-
volving an ideal gas. Nevertheless, polytropic EOS or polytropes are used even when
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there is heat exchange, so the two indices are not entirely equivalent and in the general
case, Γ will not correspond to the true adiabatic index.
As an example, in the particular case of cold compact objects such as white dwarfs
and neutron stars, we can not use the ideal gas equation of state discussed above since
it only applies to classical gases and does not describe correctly a highly degenerate
Fermi gas. However, we can derive an equation of state for an ideal Fermi gas at
zero temperature that reduces to a polytropic form both in the non-relativistic and
extremely relativistic limits, with γ = 5/3 and 4/3 respectively. More generally, poly-
tropic equations of state with an adiabatic index in the range 1 < γ < 3 can be used
as very simple models of NS made of non-ideal Fermi gases. High values of γ result
in stiff equations of state, and low values in soft equations of state. In fact, it can be
shown that for a fixed ratio of pressure to density p/ρ0, large values of the adiabatic
index γ correspond to a large speed of sound (i.e. a stiff fluid), while low values of γ
correspond to a low speed of sound (i.e. a soft fluid). We can picture a NS with a stiff
EOS to be harder to squeeze so its radius will be higher than a NS of the same mass
but a soft EOS, where the internal structure permits the star to be more compressed.
A way to improve the polytropic treatment of the matter is to adopt the so-called
Piecewise-Polytropes EOS: we split the internal structure inside the NS into dif-
ferent N pieces, each of which has different parameters (Ki,Γi). This allows a more
precise approximation of the interior of the neutron star: usually, 3 pieces are used for
the split to represent the crust, the mantle, and the core of the NS (see Fig. D.1). In-
creasing N we also increase the precision of the treatment. We can write the expression
of p(ρ) as

p(ρ) = Kiρ
Γi , (D.7)

with i = 0, . . . , N .
The true equation of state for neutron stars is still largely unknown owing to our lack
of knowledge of the interactions of nuclear matter at very high densities.
The NS internal structure represents a great unknown in the field. Several studies
are refining models to describe the effect of such high densities on the matter (often
called exotic matter for having properties going beyond the usually studied systems,
see Fig. D.2), accounting for quantum effect and strong force. Deriving more and
more reliable approximation for the inner structure is a complex subject and we are
not going to enter the details of the matter here. For the sake of complicity we point
the reader to results obtained in the context of nuclear physics and the theoretical
constraints to the determination of NS’s EOS in Fig. D.3 (e.g. Lattimer et al., 1991;
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Shen et al., 1998a; Shen et al., 1998b; Shen et al., 2011b; Shen et al., 2011a; Shen
et al., 2011c; Hempel et al., 2012; Furusawa et al., 2013).

Figure D.2: Nuclear pasta configurations produced in molecular dynamic simulations in Ca-
plan et al., 2017 representing the inner composition of a NS.

From Caplan et al., 2017

Figure D.3: The mass-radius (M-R) plane for NSs including different relations. M-R
trajectories for typical EOSs are shown as black curves. Green curves are self-bound quark
stars. Orange lines are contours of radiation radius, R∞ = R/

√
1− 2GM/Rc2 . The dark

blue region is excluded by the GR constraint R > 2GM/c2 , the light blue region is excluded
by the finite pressure constraint R > (9/4)GM/c2 , and the light green region is excluded
by causality, R > 2.9GM/c2. The green region in the right-hand corner shows the region

R > Rmax excluded by the 716 Hz pulsar J1748-2446ad.
From Paerels et al., 2009
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Appendix E

Recovery of Primitive Variables

While the conversion from primitive to conservative variables can be done analytically
the opposite conversion is not possible analytically and a numerical solution is needed
to obtain the primitive variables from the conserved ones.
In this appendix, we summarize the procedure and the equations to recover the prim-
itive variables from the conservative ones used in BAM (see Sec. 4.2.1). The specific
algorithm adopted has been developed in a number of previous publications: Font et
al., 2000; Pons et al., 1999; Baiotti et al., 2005; Dimmelmeier et al., 2002; Martí et al.,
1991.
Specific procedures can be designed once a specific form of EoS is given. The procedure
we adopt in the case of cold EoSs is based on an iterative algorithm for ρ. Finally,
we describe the modifications introduced to handle the presence of the artificial atmo-
sphere. Following Pons et al., 1999 we start from the definition of conserved variables
in Sec. 3.1.2

vi(p) =
Si

τ +D + p
, (E.1)

W (p) =
τ +D + p√

(τ +D + p)2 − S2
, (E.2)

ϵ(p) =
1

D

√√
(τ +D + p)2 − S2 −Wp−D. (E.3)

Since we have expressed everything in terms of the pressure p we can calculate the
latter from the EOS as

f(p) ≡ p− P (ρ(p), ϵ(p)) = 0, (E.4)
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that we solve using a Newton-Raphson method of the type

pnew = pold − f(p)

f ′(p)
, (E.5)

f ′(p) = 1− χ
∂ρ

∂p
− κ

∂ϵ

∂p
. (E.6)

In the case of a one-parameter EOS we have

p = p(ρ), (E.7)

h = h(ρ, ) (E.8)

ϵ = ϵ(ρ), (E.9)

and

W =

√
1 +

S2

(Dh)2
, (E.10)

In this case, we solve with a Newton-Raphson the equation

g(p) = W (ρ)ρ−D, (E.11)

with

g′(ρ) = W (ρ)− ρ
S2h′(ρ)

WD2h3
, (E.12)

h′(ρ) = ϵ′(ρ)− p

ρ2
+
χ

ρ
. (E.13)

The recovery procedure for a general EoS can fail at low densities, e.g. in presence of
the atmosphere. A reason for this is simply machine accuracy: since typically p≪ D,
for very low densities the Newton-Raphson algorithm does not converge. A further
complication is the spuriously high value of the velocity generated by the artificial
atmosphere treatment. To handle these problems both algorithms described above are
combined and a set of hierarchic prescriptions are enforced. Specifically

1. when a point reaches a density below the atmosphere threshold density ρth the
code sets atmosphere values both in primitives and conservatives and continues
to the next point;

2. if the general EoS algorithm does not converge because the pressure is too low,
then atmosphere values are set;
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3. if it returns unphysical values for ϵ, ρ or p then the code tries the inversion with
the algorithm for the cold EoS;

4. if it returns unphysical values of v2 then atmosphere values are set;

5. if the algorithm for the cold EoS does not converge or returns unphysical values
not cured in finer grid levels, then the code halts.
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Zusammenfassung
Die Ära der Gravitationswellenastronomie begann mit dem Erfolg des ersten Beobach-
tungslaufs der LIGO-Kollaberation und der VIRGO-Kollaboration. Die unglaubliche
Leistung der großen Laserinterferometer machte umfangreiche Studien auf dem Gebiet
der kompakten astrophysikalischen Objekte wie Schwarze Löcher und Neutronensterne
erforderlich. Heute, sieben Jahre nach diesem Ereignis, erfährt das Forschungsgebiet
eine bemerkenswerte Erweiterung, bekräftigt durch die Entdeckung eines Signals, das
von der Verschmelzung eines binären Neutronensterns ausgeht, zusammen mit seinem
elektromagnetischen Gegenstück, und in jüngerer Zeit durch die ersten Entdeckungen
von Signalen, die von gemischten kompakten Doppelsternen stammen, d.h. von Dop-
pelsternen aus Schwarzen Löchern und Neutronensternen.
In dieser Dissertation befassen wir uns mit verschiedenen Aspekten der Verschmelzung
kompakter Objekte, einschließlich der Einbeziehung neuer physikalischer Aspekte in
den bereits leistungsstarken numerischen Relativitätscode BAM und der Untersuchung
spezifischer Systeme kompakter Objekte.
Wir untersuchen zunächst die Behandlung von Neutrinos im Fall von Verschmelzun-
gen von Binären Neutronensternen und ein Werkzeug zur Identifizierung und weiteren
Analyse von Regionen, die gefangene Neutrinos enthalten, im heißen Überrest solcher
Verschmelzungen. Neutrinos spielen in der Tat eine Schlüsselrolle bei den schnellen
Prozessen, die die Bildung von Elementen in den dynamischen Ejekta, die während
diesen katastrophalen Ereignissen ausgestoßen werden, charakterisieren.
Im Folgenden untersuchen wir eine Vielzahl von Konfigurationen gemischter kom-
pakter Doppelsternsysteme. Nach der Entwicklung des neuen ID-Codes Elliptica

und den zur Überprüfung seiner Genauigkeit unternommenen Schritten, nutzen wir
seine Fähigkeit, Sätze von physikalischen Systemen mit verschiedenen Eigenschaften
zu entwickeln. Bei der Erkundung des Parameterraums untersuchen wir verschiedene
Spin-Konfigurationen und Größen von Einzelobjekten und deren Auswirkungen auf
die Fusionsdynamik.
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