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Abstract: Background: Fear of falling (FOF) is common in Parkinson’s disease (PD) and associated
with distinct gait changes. Here, we aimed to answer, how quantitative gait assessment can improve
our understanding of FOF-related gait in hospitalized geriatric patients with PD. Methods: In this
cross-sectional study of 79 patients with advanced PD, FOF was assessed with the Falls Efficacy
Scale International (FES-I), and spatiotemporal gait parameters were recorded with a mobile gait
analysis system with inertial measurement units at each foot while normal walking. In addition,
demographic parameters, disease-specific motor (MDS-revised version of the Unified Parkinson’s
Disease Rating Scale, Hoehn & Yahr), and non-motor (Non-motor Symptoms Questionnaire, Montreal
Cognitive Assessment) scores were assessed. Results: According to the FES-I, 22.5% reported low,
28.7% moderate, and 47.5% high concerns about falling. Most concerns were reported when walking
on a slippery surface, on an uneven surface, or up or down a slope. In the final regression model,
previous falls, more depressive symptoms, use of walking aids, presence of freezing of gait, and
lower walking speed explained 42% of the FES-I variance. Conclusion: Our study suggests that FOF
is closely related to gait changes in hospitalized PD patients. Therefore, FOF needs special attention
in the rehabilitation of these patients, and targeting distinct gait parameters under varying walking
conditions might be a promising part of a multimodal treatment program in PD patients with FOF.
The effect of these targeted interventions should be investigated in future trials.
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1. Introduction

Falls, and fear of falling (FOF), are common and serious problems in people with
Parkinson’s disease (PD) [1,2]. FOF has been defined as ongoing concerns about falling,
low fall-related self-efficacy, fearful anticipation of falling, and activity avoidance [3,4]. FOF
restricts mobility, social participation, and quality of life [5,6]. FOF predicts future falls and
therefore is relevant to consider FOF for fall risk assessment [7–11].

PD gait is often characterized by reduced step length, reduced gait speed, delayed
gait initiation, shuffling, and freezing of gait (FOG) [12]. Gait changes can be assessed
by clinical observation, standardized assessments, and with objective quantitative gait
analysis. Given the complexity of gait, subtle changes can be difficult to capture with
clinical observation. Therefore, sensor-based technologies often including accelerometers
and gyroscopes are promising tools to quantify gait patterns [13]. Objective gait analyses
can improve our understanding of gait. Another advantage of wearable sensor-based
gait analysis is that it does not require a gait laboratory. In the last years, several studies
demonstrated how objective gait analyses aid in the diagnosis, symptom monitoring,
therapy management, rehabilitation, fall risk assessment, and prevention in PD [14–16]. For
example, gait parameters including gait speed may be altered years before PD diagnosis [17].
Findings from gait analysis can help to distinguish PD subtypes, predict the risk of falling
and increase the sensitivity of classical clinical fall risk factors to discriminate fallers from
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non-fallers in PD [18–20]. In addition, wearables can also detect changes in PD symptoms
due to treatment adaptation and rehabilitation [21,22].

Of note, PD gait patterns can be influenced by non-motor symptoms [23,24]. This
is especially true for FOF. FOF in PD was found to be associated with impaired postural
control, one-leg stance time, timed-up-and-go, Berg balance scale, 6-min walking, and the
motor score of the Unified PD Rating Scale (UPDRS) [8,10,25–27]. However, these findings
are restricted to clinical or semi-quantitative ratings. In contrast, objective quantitative gait
analysis can provide additional and reliable insights into gait characteristics that are related
to PD or PD symptoms [28,29] and might therefore improve our understanding of FOF-
related gait changes in PD. For example, Bryant et al. analyzed 79 patients with PD from a
specialized outpatient clinic and found that gait speed and stride lengths were poorer in
people with a high level of FOF [8]. Moreover, FOF influences turn-to-sit transition [7] and
turning metrics in PD [30]. In de novo PD, FOF influences backward gait speed, but not the
forward gait or dual-task gait speed [31]. However, studies using objective gait analyses
were only performed in younger, community-dwelling PD patients or outpatients [8,30,31].
Less is known about older and acutely hospitalized PD patients. It is important to close
this gap, as the proportion of hospitalized PD patients is growing in Germany [32–34].

Therefore, this study aims to investigate the relationship between FOF and PD gait
characteristics in acutely hospitalized neurogeriatric PD patients, in order to gain a deeper
understanding of FOF-related gait in this vulnerable patient cohort. In particular, we aim
to 1) describe patterns of FOF in people with PD admitted to the hospital for specialized
treatment, and 2) to study the association between distinct gait parameters, clinical pa-
rameters, and FOF in this cohort. This can help to propose gait parameters that may be
studied further in interventional trials, because gait difficulties may be promising targets
for the effective treatment of FOF in advanced PD [26]. These findings could then be used
in further studies, for example, to treat and monitor anxiety-associated gait disorders in
PD patients.

2. Materials and Methods
2.1. Subjects and Clinical Assessment

This cross-sectional study recruited 79 participants with PD from the ward of the
Department of Neurology, Jena University Hospital, Jena, Germany. All patients gave
written informed consent. The study was approved by the local Ethics Committee and has
been performed in compliance with the Declaration of Helsinki.

Inclusion criteria: PD diagnosis according to Movement Disorder Society’s (MDS)
diagnosis criteria, admission to hospital for PD multimodal complex treatment [33], and
the ability to walk 50 m without personal assistance.

Exclusion criteria: non-PD-related gait impairment, spasticity, cerebrovascular disor-
ders, neuropathy, deep brain stimulation, levodopa/carbidopa enteral infusion, apomor-
phine infusion.

In Germany, many people with PD are treated in a multidisciplinary PD inpatient
treatment concept called PD multimodal complex treatment [33,34]. In addition to pharma-
cological adjustments, multimodal complex treatment includes inter-professional treatment
by physiotherapists, occupational therapists, speech and language therapists, and psy-
chologists. PD multimodal complex treatment is an integrated part of the German health
insurance system and takes place in accordance with the requirements of the Operation
and Procedure Classification System as an official coding system for medical procedures.

2.2. Assessments

All assessments were conducted during the medication ON phase and at the beginning
of multimodal complex treatment (first or second day after admission to the hospital). The
following explanatory parameters were collected:

Age (metric, years), sex (nominal, male/female). PD-related parameters: disease-
duration (metric, years); motor and non-motor symptoms: MDS-sponsored revision of the
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UPDRS III (MDS-UPDRS III, metric) [35], the revised non-motor symptoms questionnaire
(NMS-Quest, metric) [36], Hoehn & Yahr stage (multi-nominal, stage I to V), timed-up-and-
go test (metric, sec) [37], history of falls within the previous 6 months (nominal, yes or no),
freezing of gait (nominal, present or absent), and use of walking aid (nominal, yes or no).
In addition, cognition (Montreal cognitive assessment; MoCa, metric) [38] and depressive
symptoms (Beck’s depression inventory; BDI II, metric) were assessed.

FOF was assessed using the Falls Efficacy Scale International (FES-I, metric) (α = 0.94) [39].
The FES-I is a self-report questionnaire with a four-point scale, where the respondents
answer how concerned they are about the possibility of falling in relation to 16 different
activities (1 = not at all concerned to 4 = very concerned). The total FES-I ranges from 16
to 64, with higher values indicating more concerns about falling. FES-I total scores were
categorized into three groups: low (16–19 points), moderate (20–27), and high concerns
about falling (28–64), according to previous works [40,41].

2.3. Gait Assessment and Test Protocol

Participants were instructed to walk at their preferred speed on a straight and flat
50 m-long hallway at the ward of the Department of Neurology and were asked to turn
at the respective end of the hallway without stopping. All participants were guarded
by the author M.U. to prevent falls (M.U. walked behind the patient). Spatiotemporal
gait parameters were automatically recorded by a validated mobile gait analysis system
(RehaGait®, HASOMED GmbH, Magdeburg, Germany) [42,43]. RehaGait® consists of two
inertial sensors attached to the shoes and streams raw data to a smart device application
for real-time gait parameter calculation. A rule- and threshold-based pattern recognition
algorithm was used to detect gait events (heel strike, full contact, heel off, toe off, etc.) [44]
and a zero velocity assumption at full contact was used to minimize sensors integration
drifts [45]. For the analysis, the initial stride, and all turning strides, including the stride
before and after every turn, were excluded. The first 25 strides not excluded by the
algorithm were used for this analysis. The following spatiotemporal gait parameters
were recorded:

• Stride duration (s)
• Stride length (m)
• Speed (m/s)
• Cadence (steps/min)
• Toe clearance (m)
• Variability spatial (%)
• Variability temporal (%)

2.4. Statistical Analysis

The SPSS statistical computer package (version 25.0; IBM Corporation, Armonk, NY,
USA) and JASP (version 0.16) were used for all statistical analyses. Prior to statistical analy-
sis, data were checked for outliers and normality using the Shapiro-Wilk’s Test (p < 0.05).
Descriptive analyses were used to describe clinical and gait characteristics. Correlations
between FES-I, clinical variables, and gait variables were tested using Spearman correlation.
To determine factors associated with FES-I we used stepwise multiple linear regression
(Akaike information criterion as selection criterion). The explanatory variables entered
in the model were the variables that significantly correlated with the FES-I in the univari-
ate analyses. Multicollinearity was observed for several gait parameters as indicated by
a variance inflation factor above 10; correlations are given in Table 1. Thus, only tem-
poral variability, spatial variability, toe clearance, cadence, and speed were used as gait
parameters in the regression analyses.
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Table 1. Correlation Matrix: Spearman correlations between gait parameters.

1 2 3 4 5 6

1 Stride duration (s) —
2 Stride length (m) −0.3677 *** —
3 Speed (m/s) −0.6329 *** 0.9413 *** —
4 Cadence (steps/min) −0.9993 *** 0.3666 *** 0.6315 *** —
5 Toe clearance (m) −0.1284 0.7531 *** 0.6535 *** 0.1310 —
6 Variability spatial (%) 0.0369 −0.6053 *** −0.4811 *** −0.0356 −0.5238 *** —
7 Variability temporal (%) −0.2139 0.2605 * 0.2949 ** 0.2086 0.1039 0.1227

* p < 0.05, ** p < 0.01, *** p < 0.001.

3. Results
Descriptives

Detailed clinical characteristics and gait parameters of participants are given in Table 2.

Table 2. Demographical and clinical characteristics of the entire cohort (N = 79).

Median Mean SD IQR

Age (years) 74 72.76 7.33 8
Disease duration (years) 9 9.46 6.45 7
MDS-UPDRS III (0–132) 27 32.25 16.16 20
Montreal Cognitive Assessment (MoCA) (0–30) 22 21.86 4.20 7
Beck’s depression inventory II (BDI) (0–63) 11 12.20 8.63 10
Timed-up-go-test (s) 12.60 15.52 10.46 10.78
Falls Efficacy Scale International (FES-I) (16–64) 26 30.10 11.87 19
Stride duration (s) 1.120 1.168 0.135 0.165
Stride length (m) 0.930 0.953 0.241 0.335
Speed (m/s) 0.790 0.835 0.256 0.355
Cadence (steps/min) 106.780 103.924 11.084 14.930
Toe clearance (m) 0.115 0.111 0.027 0.040
Variability spatial (%) 10.720 11.790 6.666 7.940
Variability temporal (%) 5.080 5.554 2.600 2.775

n %

Sex female 30 38.0
male 49 62.0

Hoehn and Yahr stage

1
2
3
4

7
16
37
19

8.9
20.2
46.8
24.1

Presence of freezing of gait (FOG) no FOG
FOG

52
27

65.8
34.2

Use of a walking aid noyes 63
16

79.7
20.3

Fall(s) within the last 6 months no
yes

39
40

49.4
50.6

During testing, 63 participants walked without any assistive device, 13 walked with
a wheeled walker (in German called “Rollator”), and 3 walked with a cane. Overall,
40 (50.6%) of the participants reported at least one fall in the last 6 months. According to
the FES-I, 18 persons (22.5%) reported low concerns, 23 (28.7%) reported moderate concerns,
and 38 (47.5%) reported high concerns about falling.

On the FES-I item level, most people reported FOF when walking on a slippery surface
(e.g., wet or icy), on an uneven surface, or up or down a slope (Figure 1).

In the univariate analyses, the FES-I correlated with different clinical variables and gait
parameters (Table 3). Higher FOF was associated with female sex, higher Hoehn & Yahr
stage, poorer motor function (higher MDS-UPDRS III), presence of FOG, depressive symp-
toms (higher BDI), use of a walking aid, and falls in the past 6 months.
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   Beck ś depression inventory II (BDI) 0.482 <0.001 

   Use of a walking aid 0.317 0.004 

   Fall(s) within the last 6 months 0.476 <0.001 

Gait parameters   

   Stride duration (s) 0.162 0.153 

   Stride length (m) −0.441 <0.001 

   Speed (m/s) −0.437 <0.001 

   Cadence (steps/min) −0.160 0.160 
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Table 3. Spearman correlation with fear of falling (FES-I).

Clinical Characteristics r p

Age (years) 0.034 0.769
Sex, male −0.247 0.028
Disease duration (years) 0.100 0.382
Hoehn and Yahr Scale 0.445 <0.001
Freezing of gait present 0.425 <0.001
MDS-UPDRS III 0.365 0.001
Montreal Cognitive Assessment (MoCA) −0.184 0.104
Beck’s depression inventory II (BDI) 0.482 <0.001
Use of a walking aid 0.317 0.004
Fall(s) within the last 6 months 0.476 <0.001

Gait parameters

Stride duration (s) 0.162 0.153
Stride length (m) −0.441 <0.001
Speed (m/s) −0.437 <0.001
Cadence (steps/min) −0.160 0.160
Toe clearance (m) −0.336 0.002
Variability spatial (%) 0.125 0.274
Variability temporal (%) −0.261 0.020

Significant correlation in bold.

Among the gait parameters, stride length, speed, toe clearance, and temporal gait
cycle variability correlated with the FES-I (Table 3).

We then calculated two regression models. In the first model, when only the gait pa-
rameters were entered as independent variables (i.e., temporal variability, spatial variability,
toe clearance, cadence, speed), after stepwise regression only speed remained in the final
model and explained 18% of FES-I variance (corrected R2 = 0.18, F(1, 77) = 18.3, p < 0.001).
In the second model, we adjusted for clinical and demographic covariates and entered the
independent variables that significantly correlated with the FES-I in the univariate analyses
(see Table 3). Here, previous falls, BDI, use of walking aids, speed, and FOG explained 42%
of the FES-I variance (Table 4).
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Table 4. Multiple linear regression.

Variable Coefficient SE p beta

No falls −6.949 2.226 0.003 0.343
BDI 0.458 0.157 0.005 0.297
No walking aid −5.624 2.831 0.051 0.139
Speed −9.144 4.707 0.056 0.133
No freezing of gait (FOG) −3.780 2.385 0.117 0.088

The entered variables correlated significantly with Falls Efficacy Scale International (FES-I) in the Spearman
correlation: gender, Hoehn & Yahr stage, Freezing of gait (no/yes), MDS-UPDRS III, Beck’s Depression Inventory
II (BDI), gait speed, toe clearance, temporal gait variability, walking aids (no/yes), falls in the last 6 months
(no/yes). The stepwise procedure with Akaike information criterion. Overall model p < 0.001, corrected R2 = 0.42.

A post hoc power analysis revealed that with a coefficient of determination of R2 = 0.42,
a statistical power of 0.9, and a significance level of α = 0.05, one would need a sample size
of n = 39 for a significant overall model with 10 predictors. Therefore, our sample size was
sufficient for the performed analyses.

4. Discussion

In this study, we investigated which gait parameters derived from objective quantita-
tive gait analysis, are associated with FOF in hospitalized geriatric PD patients. In summary,
FOF was related to previous falls, depressive symptoms, and the use of walking aids; we
found that among the gait parameters, only speed was found to be associated with FOG.

This is in line with a former study where both lower gait speed and stride length were
associated with FOF in PD patients with a mean age of 69 years and a disease duration
of 8.7 years [8]. However, due to multicollinearity, only speed (and not stride duration,
stride length, or cadence) was entered into our model. In addition to speed, previous falls,
depressive symptoms, walking aids, and FOG were found to be associated with FOF in
our study.

How can poorer gait performance in PD be related to FOF? It seems possible that
these patients change their walking behavior after falls and due to FOF. Fall events within
the last six months were the strongest independent variable for FOF in our study. This
is consistent with studies showing that fall events in PD increase FOF [46,47]. FOF can
lead to avoidance behaviors and restricts mobility [48,49] by a decrease in confidence in
performing daily activities [46,50]. Every third fall increases the fear of walking in PD [51].
This fear, combined with less confidence in one’s abilities in everyday activities, could
lead to or aggravate cautious walking. Gait speed in patients who had fallen was slower
than in non-fallers [52]. Reduced gait speed in PD after falls as part of more cautious gait
and FOF are significantly associated with previous falls [2,10,47,52]. A more cautious gait,
which can also be observed in healthy older adults in general [53], is characterized by
reduced gait speed, reduced step length, and lower toe clearance in order to be as “close
as possible” in contact with the floor. This may be of greater concern due to the common
postural instability in PD [54]. These interdependent factors may partially explain our
results of walking more cautiously at slower speeds, reduced stride length, and reduced
toe clearance.

In addition, our study also showed that several clinical parameters are associated with
FOF. The association between FOG and previous falls is in line with earlier studies [8,55].
Furthermore, the associations between FOF, FOG, and depression are in agreement with
earlier studies in other PD cohorts. In a previous study of 130 participants with PD [56], it
was shown that those who experienced FOG while walking reported more falls in the past
compared to PD patients without FOG. The same study also reported the occurrence of
more intense depressive symptoms in PD with FOG compared to PD without FOG. A study
by Franzén et al. [57] supports our findings on the influence of depressive symptoms on FOF.
Finally, our study demonstrated the connection between the use of a walking aid and FOF
in PD. The subjects in our study mostly used a cane or a wheeled walker. An association
between FOF and walking aids is also known in older people not having PD [58].
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Since FOF has been reported to be a significant predictor of future falls and reduced
quality of life in PD [5,7,46,48,49], a better understanding of gait parameters associated
with FOF may help to design effective treatment strategies for this vulnerable cohort [8–11].
However, reflecting critically on the results of our study, quantitative gait analysis has,
in our opinion, little added value for understanding FOF in the cohort studied. Thus, no
specific abnormalities were shown in relation to FOF, except for reduced gait speed (and
consecutively reduced stride length), so that no new specific therapeutic options can be
derived from this. Certainly, it seems reasonable for this vulnerable cohort of hospitalized
PD patients to use a multimodal therapy regimen that targets both walking speed increase
and clinical parameters (depression, FOG). The magnitude of the effect of an intervention
that increases gait speed on FOF needs to be tested in future randomized trials. Regarding
the therapy of people at risk of falling with PD and FOF, the results of the FESI item analysis
are also interesting. Here, most people reported fear when walking on a slippery surface
(e.g., wet or icy), on an uneven surface or up or down a slope. This can be a basis for
tailored interventions with a special focus on these walking conditions (e.g., by forced
training on uneven surface instead of walking on ground floor) within a multiprofessional
and multimodal treatment.

Our study has limitations. First, we focused on straight walking on a flat corridor [30].
It may be promising to evaluate gait in more complex settings and movement behaviors
such as turning and transfers or at home. Second, this study focused on gait parameters
that are relevant for current rehabilitation approaches for PD [59,60]. There are more
potentially independent gait parameters extractable with such an inertial measurement unit-
based technique [61] and it is possible that a more refined analysis approach could unveil
additional associations between specific gait impairments and FOF. We do acknowledge
that there may still be other influential factors for FOF that deserve consideration, such as
the level of physical activity and physical environmental barriers. Another limitation is
that we cannot make causal statements with a cross-sectional dataset.

In conclusion, the successful use of wearable devices for assessing mobility can be
advantageous for both practitioners and scientists [62]. Gait characteristics obtained
by wearables can be used to support tailored intervention rehabilitation and therapy
plans [19,21,29,63]. However, one has to keep in mind that distinct motor- and non-motor
features have to be considered when investigating gait and factors associated with gait
disturbances in PD. With this study, we provided data about FOF and gait for an underrep-
resented cohort of acutely hospitalized PD patients. Our study suggests that FOF is closely
related to gait changes in hospitalized PD patients, and thus, FOF needs special attention
in the rehabilitation of these patients.
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