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PT -SYMMETRIC COUPLINGS OF DUAL PAIRS

VOLODYMYR DERKACH AND CARSTEN TRUNK

Abstract. We apply the boundary triple technique to construct a coupling (A,B) of
two dual pairs (A+, B+) and (A−, B−) relative to some boundary triples. The notion
of a real dual pair with respect to the time reversal operator T is introduced and it is
shown that the coupling of two real dual pairs corresponding to real boundary triples is
also real. If the operator PT intertwines the dual pairs (A+, B+) and (A−, B−) for some
parity operator P, then it is shown that there exists a coupling (A,B) of two dual pairs
(A+, B+) and (A−, B−) such that the operator A is PT -symmetric and P-symmetric
in the Krein space (H, 〈 ·, ·〉) with the fundamental symmetry P. As the main result we
describe proper extensions of A which are PT -symmetric and P-selfadjoint.

We apply this result to interpret the PT -symmetric Hamiltonian considered in Ben-
der & Boettcher (1998) as a member of a family of PT -symmetric and P-selfadjoint
extensions of the corresponding minimal operator.

Keywords : dual pair; boundary triple; coupling; PT -symmetric operator; non-Hermitian
Hamiltonian

1. Introduction

In the seminal paper by Bender and Boettcher [6] a new view at Quantum Mechanics
was proposed which adopts all its axioms except the one that restricts the Hamiltonian
to be Hermitian, relaxing it to the assumption that the Hamiltonian is PT -symmetric.
Here, P is parity and T is time reversal. Since 1998, PT -symmetric Hamiltonians have
been analyzed intensively by many authors. In [24] PT -symmetry was embedded into
a more general mathematical framework: pseudo-Hermiticity or, what is the same, self-
adjoint operators in Krein spaces, ([20], [4], [17], [21]) For a general introduction into
PT -symmetric Quantum Mechanics we refer to the overview paper of Mostafazadeh [26]
and to the books of Moiseyev [23] and Bender [5].

A prominent class consists of the PT -symmetric Hamiltonians

H :=
1

2
p2 − (iz)N+2,

where N is a positive integer [8]. The associated eigenvalue problem is defined on a
contour Γ in the complex plane which is contained in a specific area in the complex plane,
the so-called Stokes wedges, see [6],

(1.1) − y′′(z)− (iz)N+2y(z) = λy(z), z ∈ Γ,

where λ ∈ C is the eigenvalue parameter. Recall ([7]) that a Stokes wedge Sk, k =
0, . . . , N + 3, is an open sector in the plane with vertex zero,

Sk : =

{
z ∈ C

∣∣∣∣− N + 2

2N + 8
π +

2k − 2

4 +N
π < arg(z) < − N + 2

2N + 8
π +

2k

4 +N
π

}
.
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The boundary of Sk is called Stokes lines and consists of two rays through the origin.
PT -symmetry forces Γ to lie in two Stokes wedges, which are symmetric with respect to
the imaginary axis.

In [25] the problem was mapped back to the real axis using a real parametrization. In
[7] and in [18] this approach was extended to different parameterizations and contours.
For simplicity, we choose here Γ to be a wedge-shaped contour,

(1.2) Γ := {xeiφsgnx| x ∈ R},
for some angle φ ∈ (−π/2, π/2). Let z : R→ C parameterize Γ via z(x) := xeiφsgnx. Then
y solves (1.1) for z 6= 0 if and only if the pair of functions u+, u− given by u±(x) := y(z(x)),
x ∈ R±, solve

a−[u−] = λu−, x ∈ R−, a+[u+] = λu+, x ∈ R+,(1.3)

where the differential expressions a± are given by

a±[u±] = −e∓2iφu′′± − (ix)N+2e±i(N+2)φu±.(1.4)

In what follows we assume that Γ lies in Stokes wedges and then by Leben & Trunk
[21] the differential expressions a± are in the limit-point cases at ±∞ according to the
classification in Brown et al. [11] (which is a refinement of the classification in Sims [27]).
We mention, that the limit-circle case can be treated in a similar way as in [3],[4].

The theory of PT -symmetry claims that the main object, the Hamiltonian, commutes
under the joint action of the parity P and the time reversal T ,

(1.5) (Pf)(x) := f(−x), (T f)(x) := f(x).

The time reversal T applied to a± gives rise to new differential expressions b± = T a±T
defined on R± of the form

b±[v±] = −e±2iφv′′± − (−ix)N+2e∓i(N+2)φv±.(1.6)

In Section 7 we introduce the minimal operators A± and B± associated with a± and b±
in L2(R±). Due to their (in general) non-real coefficients, the operators A± and B± are
neither selfadjoint nor symmetric. But they satisfy

〈A±f, g〉± = 〈f,B±g〉±(1.7)

for all f ∈ domA± and g ∈ domB±. Here 〈., .〉± stands for the usual inner products in
the Hilbert spaces L2(R±). Condition (1.7) shows that the pairs (A+, B+) and (A−, B−)
form dual pairs (see Section 2 for details). An extension theory for dual pairs based on
the boundary triples technique was developed by Malamud and Mogilevskii in [22]. This
is a generalization of the boundary triple approach to the extension theory of symmetric
operators which was elaborated by Kochubei [19], M. & V. Gorbachuk [16], Derkach &
Malamud [14] and others.

Following this approach we construct in Theorem 7.1 boundary triples for dual pairs
(A+, B+) and (A−, B−). As our interest is focused on the Hamiltonian in L2(R) and not
on the differential expressions a±, b±, which are defined on the semi-axes, we extend the
coupling method for symmetric operators from [13] to the case of dual pairs and create
a new dual pair (A,B) of operators defined on R. This dual pair (A,B) is called the
coupling of the dual pairs (A+, B+) and (A−, B−) (see Theorem 3.1 below).



PT -SYMMETRIC COUPLINGS OF DUAL PAIRS 3

We show that the operator PT intertwines the dual pairs (A+, B+), and (A−, B−), i.e.

PT A+ = A−PT , PT B+ = B−PT .

Due to our construction of the coupling these relations imply that the operator A is
PT -symmetric, i.e.

PT A = APT .

Moreover, the operator A turns out to be P-symmetric in the Krein space (H, [·, ·]) with
the fundamental symmetry P in H = L2(R). In Trunk & Leben [21] it was shown that
the extension H0 of A defined as a restriction of the adjoint A+ to the domain

domH0 =
{
u+ ⊕ u− ∈ domA+ | u+(0)− u−(0) = e−2iφu′+(0)− e2iφu′−(0) = 0

}
is a PT -symmetric and P-selfadjoint operator in the Krein space (H, [·, ·]). Here A+

stands for the adjoint with respect to the Krein space inner product [., .]. In Theorem 7.2
we find a one-parameter family {Hα}α∈R of PT -symmetric and P-selfadjoint extensions
of A in the Krein space (H, [·, ·]). with domain

domHα =
{
u+ ⊕ u− ∈ domA+ | u+(0)− u−(0) = 0, e−2iφu′+(0)− e2iφu′−(0) = αu+(0)

}
.

The result of Theorem 7.2 is based on the abstract construction of the coupling (A,B)
of two dual pairs (A+, B+) and (A−, B−) in Theorem 3.1 and the description of all PT -
symmetric and P-selfadjoint extensions of A given in Theorem 5.5.

Summing up, the results presented here promote the use of boundary triple techniques
for dual pairs and techniques from Sturm–Liouville theory for complex potentials in the
study of PT -symmetric Quantum Mechanics. This is in a line with [21]. The here
presented approach via dual pairs is the tool to deal with the various symmetries P , T
and PT . It is the aim of this paper to recall those techniques and, hence, provide a
mathematically sound setting of the (nowadays) classical Bender–Boettcher-theory.

Notation. By R+ (resp. R−) we denote the set of all positive (resp. negative) reals.
For z ∈ C, z denotes the complex conjugate of z and for a subset U ⊂ C we set U :=
{z| z ∈ U}.

All operators in this paper are densely defined linear operators in some Hilbert spaces.
For such an operator T , we use the common notation dom T , ranT and kerT for the
domain, the range and the null-space, respectively, of T . Moreover, as usual, ρ(T ), σ(T )
and σp(T ) stands for the resolvent set, the spectrum and the point spectrum, respectively,
of T . The inner product in a Hilbert space is usually denoted by 〈., .〉 and the adjoint
of the operator T by T ∗. The set of all bounded and everywhere defined operators in a
Hilbert space H is denoted by L(H).

2. Preliminaries: Dual pairs of linear operators and Weyl functions

In this section we remind known facts about dual pairs of linear operators, their bound-
ary triples and the corresponding Weyl functions from [22].

Definition 2.1. A pair (A,B) of densely defined closed linear operators A and B in a
Hilbert space H with inner product 〈 ·, ·〉 is called a dual pair, if

(2.1) 〈Af, g〉 − 〈 f,Bg〉 = 0 for all f ∈ domA, g ∈ domB.
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The equality (2.1) means that

(2.2) A ⊆ B∗, B ⊆ A∗.

Clearly, if (A,B) is a dual pair, then (B,A) is also a dual pair.

Definition 2.2. Let H1, H2 be auxiliary Hilbert spaces with inner products 〈 ·, ·〉H1 and
〈 ·, ·〉H2, respectively. Let

(2.3) ΓB =

(
ΓB1
ΓB2

)
: domB∗ →

(
H1

H2

)
, ΓA =

(
ΓA1
ΓA2

)
: domA∗ →

(
H1

H2

)
be linear operators. The triple (H1 ×H2,Γ

A,ΓB) is called a boundary triple for the dual
pair (A,B), if:

(1) the mappings ΓB and ΓA in (2.3) are surjective;
(2) the following identity holds for every f ∈ domB∗, g ∈ domA∗

(2.4) 〈B∗f, g〉 − 〈 f, A∗g〉 = 〈ΓB1 f,ΓA1 g〉H1 − 〈ΓB2 f,ΓA2 g〉H2 ,

It is easily seen that if a triple (H1 × H2,Γ
A,ΓB) is a boundary triple for a dual pair

(A,B), then the following identity holds

〈A∗g, f〉 − 〈 g,B∗f〉 = 〈ΓA2 g,ΓB2 f〉H2 − 〈ΓA1 g,ΓB1 f〉H1 , f ∈ domB∗, g ∈ domA∗

and hence the triple

(2.5) (H2 ×H1, (Γ
B)T , (ΓA)T ) :=

(
H2 ×H1,

(
ΓB2
ΓB1

)(
ΓA2
ΓA1

))
is a boundary triple for the dual pair (B,A). The boundary triple (2.5) is called transposed
with respect to the boundary triple (H1 × H2,Γ

A,ΓB). Moreover, it follows from (2.4),
A∗∗ = A and B∗∗ = B that

domA = {f ∈ domB∗|ΓBf = 0} and domB = {f ∈ domA∗|ΓAf = 0}.

A linear operator Ã is called a proper extension of A and is written Ã ∈ Ext(A,B), if

(2.6) A ⊂ Ã ⊂ B∗ and A 6= Ã.

Define the proper extensions A1, A2 ∈ Ext(A,B) of A as restrictions of B∗ to the sets

(2.7) domA1 = {f ∈ domB∗|ΓB1 f = 0}, and domA2 = {f ∈ domB∗|ΓB2 f = 0}.
Similarly, the proper extensions B1, B2 ∈ Ext(B,A) of B are defined as restrictions of A∗,

(2.8) domB1 = {g ∈ domA∗|ΓA1 g = 0} and domB2 = {g ∈ domA∗|ΓA2 g = 0}.
In the following lemma we collect some statements from [22] and provide short proofs

in the present notations for the convenience of the reader.

Lemma 2.3. Let us consider domA∗ and domB∗ as Hilbert spaces with the graph norms

(‖g‖2 + ‖A∗g‖2)1/2, (‖f‖2 + ‖B∗f‖2)1/2, g ∈ domA∗, f ∈ domB∗

and let (H1 ×H2,Γ
A,ΓB) be a boundary triple for the dual pair (A,B). Then

(i) The operators ΓA : domA∗ → H1×H2 and ΓB : domB∗ → H1×H2 are bounded.

(ii) B1 = A∗2. Hence ρ(B1) = ρ(A2) and (A2, B1) is a dual pair.

(iii) B2 = A∗1. Hence ρ(B2) = ρ(A1) and (A1, B2) is a dual pair.
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(iv) For every z ∈ ρ(Aj), j = 1, 2, the following direct decomposition holds

(2.9) domB∗ = domAj uNz(B
∗), where Nz(B

∗) = ker (B∗ − zI),

and the mapping ΓBj |Nz(B∗) : Nz(B
∗)→ Hj, j = 1, 2, is boundedly invertible.

(v) For every z ∈ ρ(Bj), j = 1, 2, the following direct decomposition holds

(2.10) domA∗ = domBj uNz(A
∗), where Nz(A

∗) = ker (A∗ − zI),

and the mapping ΓAj |Nz(A∗) : Nz(A
∗)→ Hj, j = 1, 2, is boundedly invertible.

Proof. (i) Notice first that the operator ΓA : domA∗ → H1 × H2 is closable. Indeed,
assume that

gn ∈ domA∗, gn → 0, A∗gn → 0, ΓAgn →
(
h1

h2

)
.

Since ran ΓB = H1 × H2 there exists f ∈ domB∗ such that ΓBf =

(
h1

−h2

)
. Consider-

ing (2.4) with g := gn and taking the limit as n→∞ we obtain

0 = ‖h1‖2 + ‖h2‖2 ⇒ h1 = h2 = 0.

Hence the operator ΓA : domA∗ → H1×H2 is closable and by the Closed Graph Theorem
it is bounded.

(ii) The inclusion B1 ⊆ A∗2 follows from (2.4). Let g ∈ domA∗2. Then for every
f ∈ domA2 one obtains from (2.4)

0 = 〈A∗2g, f〉 − 〈 g, A2f〉 = 〈ΓA1 g,ΓB1 f〉

Since ΓB1 (domA2) = H1 this implies ΓA1 g = 0 and hence g ∈ domB1. This proves (ii).
The proof of (iii) is similar.
(iv) Let z ∈ ρ(Aj), j = 1, 2. Then for every f ∈ domB∗ there exists fj ∈ domAj such

that

(B∗ − zI)f = (Aj − zI)fj ⇒ fz := f − fj ∈ Nz(B
∗)

and f admits the decomposition f = fj + fz. Clearly, the decomposition (2.9) is direct,
since domAj ∩Nz(B

∗) = {0} for z ∈ ρ(Aj). It follows from (2.9) and Definition 2.2 that
for z ∈ ρ(Aj) the mapping ΓBj |Nz(B∗) : Nz(B

∗) → Hj is surjective and hence boundedly
invertible.

The proof of (v) is similar. �

Definition 2.4. The operator functions

(2.11) γ(z) = (ΓB2 |Nz(B∗))
−1 and M(z) := ΓB1 (ΓB2 |Nz(B∗))

−1, z ∈ ρ(A2)

are called the γ-field and the Weyl function, respectively, of the dual pair (A,B), corre-
sponding to the boundary triple (H1 ×H2,Γ

A,ΓB).

Clearly, the operator functions

(2.12) γT (z) = (ΓA1 |Nz(A∗))
−1 and MT (z) := ΓA2 (ΓA1 |Nz(A∗))

−1, z ∈ ρ(B1)

are the γ−field and the Weyl function, respectively, of the dual pair (B,A), corresponding
to the transposed boundary triple (H2 ×H1, (Γ

B)T , (ΓA)T ).
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Lemma 2.5. Let (H1 ×H2,Γ
A,ΓB) be a boundary triple for the dual pair (A,B) and let

M , MT , γ and γT be defined by (2.11) and (2.12). Then the following statements hold

(i) The Weyl functions M and MT satisfy the relations

(2.13) MT (z̄) = M(z)∗, z ∈ ρ(A2) = ρ(B1).

(2.14) M(z)−MT (ζ)∗ = (z − ζ)γT (ζ)∗γ(z), z ∈ ρ(A2), ζ ∈ ρ(B1).

(ii) The following identities hold

(2.15) ΓB1 (A2 − zI)−1 = γT (z)∗, z ∈ ρ(A2);

(2.16) ΓA2 (B1 − zI)−1 = γ(z)∗, z ∈ ρ(B1).

Proof. (i) It follows from (2.4) with f = γ(z)u ∈ Nz(B
∗), z ∈ ρ(A2), u ∈ H2 and

g = γT (ζ)v ∈ Nζ(A
∗), ζ ∈ ρ(B1), v ∈ H1 that

(z − ζ̄) 〈 γ(z)u, γT (ζ)v〉 = 〈M(z)u, v〉H1 − 〈 u,MT (ζ)v〉H2 = 〈(M(z)−MT (ζ)∗)u, v〉H1 .

This proves (2.14) and (2.13) when setting ζ = z̄.
(ii) Let us set in (2.4)

f = (A2 − zI)−1h, g = γT (z̄)v ∈ Nz̄(A
∗), h ∈ H, v ∈ H1, z ∈ ρ(A2).

Since ΓB2 f = 0 one obtains from (2.4)

〈A2(A2 − zI)−1h, γT (z̄)v〉 − 〈(A2 − zI)−1h, z̄γT (z̄)v〉 = 〈ΓB1 (A2 − zI)−1h, v〉H1

and hence
〈ΓB1 (A2 − zI)−1h, v〉H1 = 〈 γT (z̄)∗h, v〉H1 .

This proves (2.15). The proof of (2.16) is similar. �

In order to describe all proper extension Ã ∈ Ext(A,B) of a dual pair (A,B), we are
using the notion of a linear relation. Recall [1] that a linear relation Θ from H1 to H2

is understood as a linear subspace Θ ⊂ H1 × H2. For a linear relation Θ the symbols
dom Θ, ker Θ, ran Θ and ρ(Θ) stand for the domain, kernel, range and the resolvent set,
respectively, [1]. The adjoint Θ∗ is the closed linear relation from H2 to H1 defined by

(2.17) Θ∗ =

{(
v2

v1

)
∈ H2 × H1 | (v1, u1)H1 = (v2, u2)H2 ,

(
u1

u2

)
∈ Θ

}
.

If H1 = H2 then the linear relation Θ is called selfadjoint if Θ = Θ∗.
In what follows we suppose that H1 = H2 = H := Cd, d ∈ N. Every linear relation in
H of rank d can be defined by the equality (see [13])

(2.18) Θ = ker
(
C D

)
=

{(
u1

u2

)
|Cu1 +Du2 = 0

}
.

where C,D ∈ Cd×d are two d× d-matrices, such that

(2.19) det(CC∗ +DD∗) 6= 0.

The adjoint linear relation Θ∗ takes the form

(2.20) Θ∗ = ran

(
D∗

−C∗
)

=

{(
D∗v
−C∗v

) ∣∣ v ∈ Cd

}
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and therefore the linear relation Θ is self-adjoint if and only if

(2.21) CD∗ −DC∗ = 0.

For a linear relation Θ in H denote by AΘ the proper extension of A defined on

(2.22) domAΘ = {f ∈ domB∗
∣∣ΓBf ∈ Θ}

as the restriction of B∗: AΘ = B∗ �domAΘ
∈ Ext(A,B). The following statement describes

spectral properties of AΘ, cf. [22, Proposition 5.2 and Theorem 5.5].

Lemma 2.6. Let (A,B) be a dual pair in a Hilbert space H, let (H2,ΓA,ΓB) be a boundary
triple for the dual pair (A,B), H = Cd, let M be the corresponding Weyl function, let
Θ be a linear relation in H defined by (2.18), (2.19) and z ∈ ρ(A2). Then the following
statements hold.

(i) A∗Θ ∈ Ext(B,A) is the restriction of A∗ to

(2.23) domA∗Θ = {g ∈ domA∗
∣∣ (ΓA)T g ∈ Θ∗}.

(ii) z ∈ σp(AΘ)⇐⇒ 0 ∈ σp(CM(z) +D) and for such z

ker (AΘ − zI) = γ(z)ker (CM(z) +D).

(iii) z ∈ ρ(AΘ)⇐⇒ 0 ∈ ρ(CM(z) +D) and for such z the resolvent (AΘ− zI)−1 takes
the form

(2.24) (AΘ − zI)−1 = (A2 − zI)−1 − γ(z)(CM(z) +D)−1CγT (z̄)∗, z ∈ ρ(AΘ) ∩ ρ(A2).

The formula (2.24) is obtained by comparing [22, (5.14),(5.20)] with (2.18).

3. Coupling of dual pairs

Here we recall and extend some results for the coupling of two dual pairs and operators.
Items (i)–(iii) in the following theorem are from [15]. For the sake of completeness, we
also give a proof here.

Theorem 3.1. Let (A+, B+) and (A−, B−) be dual pairs in Hilbert spaces H+ and H−,
respectively, let (H2,ΓA± ,ΓB±) be a boundary triple for the dual pair (A±, B±), H = Cd

and let M± be the corresponding Weyl function. Denote by A∗ and B∗ the restrictions of
the operators A∗+ ⊕ A∗− and B∗+ ⊕ B∗−, respectively, to the domains

(3.1) domA∗ = {g+ ⊕ g−|g± ∈ domA∗±, Γ
A+

1 g+ = Γ
A−
1 g−};

(3.2) domB∗ = {f+ ⊕ f−|f± ∈ domB∗±, Γ
B+

2 f+ = Γ
B−
2 f−}.

Then the following statements hold.

(i) The operators A := (A∗)∗ and B := (B∗)∗ are restrictions of the operators B∗ and
A∗, respectively, to the domains

(3.3) domA = {f+ ⊕ f−|f± ∈ domB∗±, Γ
B+

2 f+ = Γ
B−
2 f− = Γ

B+

1 f+ + Γ
B−
1 f− = 0};

(3.4) domB = {g+ ⊕ g−|g± ∈ domA∗±, Γ
A+

1 g+ = Γ
A−
1 g− = Γ

A+

2 g+ + Γ
A−
2 g− = 0},

and (A,B) is a dual pair in H+ ⊕ H−.
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(ii) The triple (H2,ΓA,ΓB) with ΓA and ΓB defined on g ∈ domA∗ and f ∈ domB∗

by the equalities

(3.5) ΓAg =

(
ΓA1 g
ΓA2 g

)
:=

(
Γ
A+

1 g+

Γ
A+

2 g+ + Γ
A−
2 g−

)
, ΓBf =

(
ΓB1 f
ΓB2 f

)
:=

(
Γ
B+

1 f+ + Γ
B−
1 f−

Γ
B+

2 f+

)
,

is a boundary triple for (A,B).
(iii) The operators A2, A+,2, A−,2 and B1, B+,1 and B−,1 defined by (2.7) and (2.8),

respectively, are related by

(3.6) A2 = A+,2 ⊕ A−,2, and B1 = B+,1 ⊕ B−,1.

The Weyl function M and the γ-field corresponding to the boundary triple (H2,ΓA,ΓB)
are given by

(3.7) M(z) = M+(z) +M−(z), γ(z) =

(
γ+(z)
γ−(z)

)
, z ∈ ρ(A2).

(iv) The restrictions A1 of B∗ and B2 of A∗ defined in (2.7) and (2.8) have the domains

(3.8) domA1 = {f+ ⊕ f−|f± ∈ domB∗±, Γ
B+

2 f+ − Γ
B−
2 f− = Γ

B+

1 f+ + Γ
B−
1 f− = 0}

(3.9) domB2 = {f+ ⊕ f−|f± ∈ domA∗±, Γ
A+

1 f+ − Γ
A−
1 f− = Γ

A+

2 f+ + Γ
A−
2 f− = 0}.

They are proper extensions of A and B, respectively, i.e. A1 ∈ Ext(A,B), B2 ∈
Ext(B,A), and fulfill A1 = B∗2 .

(v) If z ∈ ρ(A2), then

(3.10) z ∈ ρ(A1)⇔ 0 ∈ ρ(M+(z) +M−(z))

and

(3.11) (A1− zI)−1 = (A2− zI)−1− γ(z)(M+(z) +M−(z))−1γT (z̄)∗, z ∈ ρ(A1)∩ ρ(A2).

Proof. (i)&(ii) Let f = f+ ⊕ f− ∈ dom (B∗+ ⊕ B∗−), g = g+ ⊕ g− ∈ dom (A∗+ ⊕ A∗−). Then
it follows from the equalities

〈B∗+f+, g+〉 − 〈 f+, A
∗
+g+〉 = 〈ΓB+

1 f+,Γ
A+

1 g+〉H1 − 〈Γ
B+

2 f+,Γ
A+

2 g+〉H2 ,

〈B∗−f−, g−〉 − 〈 f−, A∗−g−〉 = 〈ΓB−
1 f−,Γ

A−
1 g−〉H1 − 〈Γ

B−
2 f−,Γ

A−
2 g−〉H2 .

that

〈(B∗+ ⊕ B∗−)f, g〉 − 〈 f, (A∗+ ⊕ A∗−)g〉 = 〈ΓB+

1 f+,Γ
A+

1 g+〉H − 〈ΓB+

2 f+,Γ
A+

2 g+〉H
+ 〈ΓB−

1 f−,Γ
A−
1 g−〉H − 〈ΓB−

2 f−,Γ
A−
2 g−〉H.

(3.12)

The equality (3.3) follows from (3.12) since the mappings ΓA± : domA∗± → H2 are
surjective. Similarly, (3.4) follows from (3.12) since the mappings ΓB± : domB∗± → H2

are surjective. Next, for f ∈ domB∗, g ∈ domA∗ the equation (3.12) takes the form

(3.13) 〈B∗f, g〉 − 〈 f, A∗g〉 = 〈ΓB+

1 f+ + Γ
B−
1 f−,Γ

A+

1 g+〉H − 〈ΓB+

2 f+,Γ
A+

2 g+ + Γ
A−
2 g−〉H.

This proves that (A,B) is a dual pair in H+ ⊕ H− and that (ii) holds.
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(iii) From (3.5) we obtain domA2 = ker ΓB2 = ker Γ
B+

2 and, as A2 ⊂ B∗, by (3.2) formula
(3.6) follows. Moreover, (3.2) and (3.5) imply that the γ−field of (A,B) corresponding
to the boundary triple (H2,ΓA,ΓB) takes the form

(3.14) γ(z) =

(
γ+(z)
γ−(z)

)
where γ±(z) are the γ−fields of (A±, B±) corresponding to the boundary triples (H2,ΓA± ,ΓB±).
Now formula (3.7) follows from the definition of the Weyl function, see Definition 2.4.

(iv)&(v) The extension A1 of A given by (3.8) coincides with the extension AΘ of A
defined by (2.22) with Θ = ker

(
C D

)
= ker

(
IH 0

)
. Then the equivalence (3.10)

follows from Lemma 2.6 (iii) and formula (3.11) follows from (2.24). �

Definition 3.2. (1) The dual pair (A,B) given by (3.3), (3.4) is called the coupling
of the dual pairs (A+, B+) and (A−, B−) relative to the triples (H2,ΓA+ ,ΓB+) and
(H2,ΓA− ,ΓB−).

(2) The operator A1 from (3.8) is called the coupling of the operators A+ and A−
relative to the triples (H2,ΓA+ ,ΓB+), (H2,ΓA− ,ΓB−) and the operator A2 = A+,2⊕
A−,2 from (3.6) is called the decoupled operator.

According to this definition the operator B2 from (3.9) is the coupling of the operators
B+ and B− relative to the triples (H2, (ΓB+)T , (ΓA+)T ), (H2, (ΓB−)T , (ΓA−)T ), see also
(2.5). Since the operators A1 and B2 are connected by the formula A1 = B∗2 , in what
follows we will be interested only in the coupling A1.

4. Real dual pairs and real boundary triples

Let T be a conjugation (time reversal) operator in H, i.e. T is antilinear, T 2 = IH and

(4.1) (T f, T g)H = (g, f)H for all f, g ∈ H.

In what follows, besides the conjugation T in H, we will also consider a conjugation in
H, which will be denoted by jH.

Definition 4.1. A dual pair (A,B) in H is called T -real, if

(4.2) T domA = domB and T A = BT .

A boundary triple (H2,ΓA,ΓB) for a T -real pair (A,B) is called (H, T )-real, if

(4.3) jHΓB1 = ΓA2 T , jHΓB2 = ΓA1 T .

Observe that the conditions (4.2) are clearly equivalent to

(4.4) T domA∗ = domB∗ and T A∗ = B∗T .

Lemma 4.2. Let (A,B) be a T -real dual pair and let (H2,ΓA,ΓB) be a (H, T )-real
boundary triple for (A,B). Then the corresponding Weyl function M(z) satisfies the
condition

(4.5) M(z) = jHM(z)∗jH, z ∈ ρ(A2).
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Proof. Notice that for fz̄ ∈ Nz̄(A
∗) one has

T fz̄ ∈ Nz(B
∗).

Indeed, for every h ∈ domB one gets by (4.2) T h ∈ domA and hence

〈 T fz̄, (B − z̄)h〉 = 〈 T (B − z̄)h, fz̄〉 = 〈(A− z)T h, fz̄〉 = 0.

Moreover, by a similar argument, we have also T Nz(B
∗) ⊆ Nz̄(A

∗) and therefore

T Nz̄(A
∗) = Nz(B

∗).

Next by (4.3), (2.11) and by (2.12) one obtains for z ∈ ρ(A2)

M(z)ΓB2 T fz̄ = ΓB1 T fz̄ = jHΓA2 fz̄

= jHM
T (z̄)ΓA1 fz̄ = jHM

T (z̄)jHΓB2 T fz̄
(4.6)

Since ΓB2 T Nz(A
∗) = H for z ∈ ρ(A2) = ρ(B1), this implies

M(z) = jHM
T (z̄)jH.

By (2.13) one obtains (4.5). �

In what follows we consider a Hilbert space H decomposed into an orthogonal sum

(4.7) H = H+ ⊕ H−

of two subspaces H± with conjugations T± ∈ L(H±). Then the orthogonal sum

(4.8) T = T+ ⊕ T−
is a conjugation in H.

Theorem 4.3. Let H be a Hilbert space with a conjugation T such that (4.7) and (4.8)
hold. Moreover, let (A±, B±) be T±-real dual pairs in Hilbert spaces H±. Finally, with jH
a conjugation in H, let (H2,ΓA± ,ΓB±) be (jH, T±)-real boundary triples for (A±, B±), and
let

(4.9) A0 := A+ ⊕ A−, B0 := B+ ⊕ B−.

Then the following statements hold.

(i) The dual pair (A0, B0) is T -real and the boundary triple ((H⊕H)2,ΓA0 ,ΓB0) with

(4.10) ΓA0 :=

(
ΓA0

1

ΓA0
2

)
:=

(
Γ
A+

1 ⊕ Γ
A−
1

Γ
A+

2 ⊕ Γ
A−
2

)
, ΓB0 :=

(
ΓB0

1

ΓB0
2

)
:=

(
Γ
B+

1 ⊕ Γ
B−
1

Γ
B+

2 ⊕ Γ
B−
2

)
is (jH⊕H, T )-real, where jH⊕H := jH ⊕ jH.

(ii) The coupling (A,B) of the dual pairs (A+, B+) and (A−, B−) constructed in (3.3),
(3.4) is T -real.

(iii) The boundary triple (H2,ΓA,ΓB) from Theorem 3.1 is (jH, T )-real.
(iv) The dual pairs (A1, B2) and (A2, B1) are T -real.

Proof. Since the dual pairs (A±, B±) are T±-real one has

(4.11) T+A+ = B+T+, T−A− = B−T−.
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Since the boundary triples (H⊕H,ΓB± ,ΓA±) are (jH, T )-real one has

(4.12)
jHΓ

B+

1 f+ = Γ
A+

2 T+f+,

jHΓ
B+

2 f+ = Γ
A+

1 T+f+,

jHΓ
B−
1 f− = Γ

A−
2 T−f−,

jHΓ
B−
2 f− = Γ

A−
1 T−f−,

f± ∈ domB∗±.

(i) From (4.12) we see jH⊕HΓB0
1 = ΓA0

2 T and jH⊕HΓB0
2 = ΓA0

1 T . This shows the
T -realness of the dual pair (A0, B0) and the (jH⊕H, T )-realness of the boundary triple
((H⊕H)2,ΓA0 ,ΓB0) follows from (4.11) and (4.12).

(ii) It follows from (4.11) and (4.4) that

(4.13) T±domB∗± = domA∗± and A∗+T+ = T+B
∗
+, A∗−T− = T−B∗−

Hence

(A∗+ ⊕ A∗−)T = T (B∗+ ⊕ B∗−).

Let f = f+ ⊕ f− ∈ domB∗, f± ∈ domB∗±. Then, by (3.2),

(4.14) Γ
B+

2 f+ = Γ
B−
2 f−.

In view of (4.12) the condition (4.14) takes the form

HΓ
A+

1 T+f+ = Γ
B+

2 f+ = Γ
B−
2 f− = HΓ

A−
1 T−f−

and, by (3.1), T f = T+f+ ⊕ T−f− ∈ domA∗. Therefore,

A∗T f = (A∗+T+f+)⊕ (A∗−T−f−) = T (B∗+f+ ⊕ B∗−f−) = T B∗f

and thus (A,B) is a T -real dual pair in H.
(iii) Because of (ii) for f ∈ domB∗ we have T f ∈ domA∗. It follows from (3.5)

and (4.12) that

ΓA1 T f = Γ
A+

1 T+f+ = HΓ
B+

2 f+ = HΓB2 f,

and

ΓA2 T f = Γ
A+

2 T+f+ + Γ
A−
2 T−f− = H(Γ

B+

1 f+ + Γ
B−
1 f−) = HΓB1 f.

Thus the boundary triple (H2,ΓA,ΓB) is real.
(iv) Assume that f ∈ domA1 = {f ∈ domB∗|ΓB1 f = 0}. Then, due to (4.3), ΓA2 T f =

jHΓB1 f = 0 and hence T f ∈ domB2. By (4.4),

(4.15) T domA1 = domB2 and T B2 = A1T .

Similarly, is shown that

(4.16) T domA2 = domB1 and T B1 = A2T .

�

5. Parity and PT -symmetric operators

Definition 5.1. Let H± be Hilbert spaces and H = H+⊕H−. A linear operator P ∈ L(H)
will be called an abstract parity operator, if

(5.1) P = P∗, P2 = IH and PH± = H∓.
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Now consider a Hilbert space H = H+⊕H− with a parity operator P and a conjugation
T ∈ L(H), such that

(5.2) T P = PT and T H± = H±.

The conditions (5.2) mean that the operator T admits the representation as an orthogonal
sum T = T+ ⊕ T− of two conjugations T+ and T− in the Hilbert spaces H+ and H−,
respectively. In what follows we identify the spaces H+ and H− with the subspaces H+⊕{0}
and {0} ⊕ H− of H, and hence we will set

T f+ := T
(
f+

0

)
=

(
T+f+

0

)
, T f− := T

(
0
f−

)
=

(
0
T−f−

)
for all f± ∈ H±.

Similarly, we set

(5.3) Pf+ := P
(
f+

0

)
, Pf− := P

(
0
f−

)
for all f± ∈ H±

The operator P maps the subspace H+ onto H−, and vice versa. It acts by the formula

(5.4) P
(
f+

f−

)
=

(
Pf−
Pf+

)
, f± ∈ H±.

We will say that the parity P intertwines two given dual pairs (A±, B±) in two Hilbert
spaces H±, if

(5.5) PA+ = B−P , PB+ = A−P .

Lemma 5.2. Let P be a parity operator in H = H+⊕H− and let T be a conjugation in H,
such that (5.2) holds. Let (A±, B±) be T±-real dual pairs in Hilbert spaces H± intertwined
by the parity P. With H a conjugation in H let (H2,ΓA± ,ΓB±) be (jH, T )-real boundary
triples for (A±, B±), such that

(5.6)

(
Γ
B+

1

Γ
B+

2

)
f+ =

(
Γ
A−
2

Γ
A−
1

)
Pf+,

(
Γ
B−
1

Γ
B−
2

)
f− =

(
Γ
A+

2

Γ
A+

1

)
Pf−, f± ∈ domB∗±,

let M± be the Weyl functions of the operators A± corresponding to the boundary triples
(H2,ΓA± ,ΓB±) and let A±,j be the restrictions of B∗± to the sets (cf. (2.7))

(5.7) domA±,j = ker Γ
B±
j , j = 1, 2.

Then the following statements hold.

(i) PdomA∗+ = domB∗−, PdomB∗+ = domA∗− and

(5.8) PA∗+ = B∗−P , PB∗+ = A∗−P .
(ii) PT domA+ = domA−, PT domB+ = domB− and

(5.9) PT A+ = A−PT , PT B+ = B−PT .
(iii) PT domA∗+ = domA∗−, PT domB∗+ = domB∗− and

(5.10) PT A∗+ = A∗−PT , PT B∗+ = B∗−PT , PT A+,j = A−,jPT , j = 1, 2.

(iv) The Weyl functions M+ and M− of the operators A+ and A− are related by

(5.11) M+(z) = M−(z̄)∗, z ∈ ρ(A+,2) = ρ(A−,2).
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Proof. (i) Applying P to the left and right hand sides of the equalities in (5.5) and using
the identity P2 = I yields that A+P = PB− and B+P = PA−. From these identities the
statement (i) is immediate.

(ii) Since the dual pairs (A±, B±) are real with respect to T± one has (4.11). Let
f+ ∈ domA+. Then by (4.11) T+f+ ∈ domB+ and B+T+f+ = T+A+f+. By (5.5)

PT+f+ ∈ domA− and A−PT+f+ = PB+T+f+ = PT+A+f+.

The proofs of the inclusion domA− ⊆ PT domA+ and of the second equality in (5.9) are
similar.

(iii) The equalities PT A∗+ = A∗−PT , PT B∗+ = B∗−PT follow from (4.13) and item (i).
These equalities imply (5.10) since by (5.6) and (4.12) we have for f+ ∈ domB∗+, g+ ∈
domA∗+

Γ
B−
1 (PT f+) = Γ

A+

2 T f+ = HΓ
B+

1 f+, Γ
A−
1 (PT g+) = Γ

B+

2 T g+ = HΓ
A+

1 g+,

Γ
B−
2 (PT f+) = Γ

A+

1 T f+ = HΓ
B+

2 f+, Γ
A−
2 (PT g+) = Γ

B+

1 T g+ = HΓ
A+

2 g+.
(5.12)

(iv) In particular, we obtain due to (iii) that

(5.13) ρ(A+,1) = ρ(A−,1), ρ(A+,2) = ρ(A−,2).

For every z ∈ ρ(A+,2) and f+
z ∈ Nz(B

∗
+) we get from (iii) f−z̄ := PT f+

z ∈ Nz̄(B
∗
−), where

we used PT zf+
z = z̄PT f+

z which follows from (4.1). By Definition 2.4 the Weyl functions
M+ and M− satisfy the equalities

M+(z)Γ
B+

2 f+
z = Γ

B+

1 f+
z , M−(z̄)Γ

B−
2 f−z̄ = Γ

B−
1 f−z̄ .

By (5.12)

Γ
B−
2 f−z̄ = Γ

B−
2 (PT f+

z ) = Γ
A+

1 T f+
z = HΓ

B+

2 f+
z ,

Γ
B−
1 f−z̄ = Γ

B−
1 (PT f+

z ) = Γ
A+

2 T f+
z = HΓ

B+

1 f+
z .

Hence

M−(z̄)(HΓ
B+

2 f+
z ) = M−(z̄)(Γ

B−
2 f−z̄ ) = Γ

B−
1 f−z̄ = HΓ

B+

1 f+
z = HM+(z)Γ

B+

2 f+
z

and thus M−(z̄) = HM+(z)H. In view of (4.5) this proves (iv). �

Definition 5.3. A closed linear operator A in H is said to be PT -symmetric if for all
f ∈ domA we have

PT f ∈ domA and PT Af = APT f.
A dual pair (A,B) is said to be PT -symmetric, if both A and B are PT -symmetric.

Theorem 5.4. Let P be a parity operator in H = H+ ⊕ H−, let T be a conjugation in
H, such that (5.2) holds and let (A±, B±) be T±-real dual pairs in the Hilbert spaces H±
intertwined by the parity P. With H a conjugation in H = Cd let (H2,ΓA± ,ΓB±) be a
(jH, T )-real boundary triples for (A±, B±), such that (5.6) holds. Moreover, let the dual
pair (A0, B0) as in (4.9) and let (A,B) be the coupling of the dual pairs (A+, B+) and
(A−, B−) relative to the triples (H2,ΓA+ ,ΓB+) and (H2,ΓA− ,ΓB−), cf. (3.3), (3.4). Then
the following holds.

(i) The dual pair (A0, B0) is PT -symmetric. Moreover, the operators A∗0, B∗0 are
PT -symmetric.
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(ii) The dual pair (A,B) is PT -symmetric. Moreover, the operators A∗, B∗ are PT -
symmetric.

(iii) The dual pair (A1, B2) is PT -symmetric.

Proof. (i) Notice first that by Lemma 5.2 (i)

(5.14) PdomB∗0 = Pdom (B∗+ ⊕ B∗−) = dom (A∗− ⊕ A∗+) = domA∗0.

We obtain by (5.4) and by (5.8) for f =
(
f+ f−

)T
, f± ∈ domB∗±

(5.15) A∗0Pf =

(
A∗+ 0
0 A∗−

)
P
(
f+

f−

)
=

(
A∗+Pf−
A∗−Pf+

)
=

(
PB∗−f−
PB∗+f+

)
= PB∗0f.

It follows that

(5.16) PdomB∗0 = domA∗0 and A∗0P = PB∗0 .
Next, by (4.13) PT domA∗0 = domA∗0 and

(5.17) A∗0(PT )f = A∗0P
(
T+f+

T−f−

)
= PB∗0

(
T+f+

T−f−

)
= (PT )A∗0f

and the operator A∗0 is PT -symmetric. By (5.9), A0(PT ) = (PT )A0, i.e. the operator
A0 is PT -symmetric. The proofs of the equalities B0(PT ) = (PT )B0 and B∗0(PT ) =
(PT )B∗0 are similar.

(ii) Due to (3.1) for g = g+ ⊕ g− ∈ domA∗ we have Γ
A+

1 g+ = Γ
A−
1 g− and hence, by

(5.12), the following equalities holds

(5.18) Γ
A+

1 (PT )g− = HΓ
A−
1 g− = HΓ

A+

1 g+ = Γ
A−
1 (PT )g+.

Therefore, (PT )g = (PT )g− ⊕ (PT )g+ ∈ domA∗ and, by (5.17),

(5.19) A∗(PT )g = A∗0(PT )g = (PT )A∗0g = (PT )A∗g.

Since the operator PT : H → H is a bijection, we have PT domA∗ = domA∗ and

(5.20) A∗(PT ) = (PT )A∗.

By straightforward calculations we derive from (5.20) that A(PT ) = (PT )A, i.e. the
operator A is PT -symmetric. Similarly, we can show that

(5.21) PT domB∗ = domB∗ and B∗(PT )f = (PT )B∗f for all f ∈ domB∗.

This implies the equality B(PT ) = (PT )B and hence B and B∗ are PT -symmetric.
(iii) In view of (3.2), (3.3), (3.4) and (5.6) for f = f+ ⊕ f− ∈ domB∗ the following

equivalences hold

f ∈ domA1 ⇔ Γ
B+

1 f+ = −Γ
B−
1 f− ⇔ Γ

A−
2 Pf+ = −Γ

A+

2 Pf− ⇔ Pf ∈ domB2.

Therefore, by (5.19) B2P = PA1 and hence, by Theorem 4.3

B2(PT )f = PA1T f = PT B2f

for all f ∈ domB2. Since A1 = B∗2 this proves also that

A1(PT ) = PT A1.

�
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In the following theorem we consider a dual pair (A,B) from Theorem 5.4 and charac-

terize PT -symmetric proper extensions Ã ∈ Ext(A,B) of A. Notice, that every proper

extension Ã of A of rank d, (i.e. factor space dom Ã/domA has dimension d) can be

represented in the form (2.22): Ã = AΘ := B∗ � domAΘ, where Θ is a linear relation in
Cd with the kernel representation

(5.22) Θ = ker
(
C D

)
, C,D ∈ Cd×d, and (2.19) holds.

Substitutions of (5.22) in (2.22) shows that domAΘ has the form

(5.23) domAΘ = {f ∈ domB∗|CΓB1 f +DΓB2 f = 0}.

Theorem 5.5. Let in the assumptions of Theorem 5.4 the dual pair (A,B) and the
boundary triple (Cd × Cd,ΓA,ΓB) be given by (3.3)–(3.5) and let C,D ∈ Cd×d and let
AΘ ∈ Ext(A,B) be the proper extension of A defined by (5.23). Then AΘ is PT -symmetric
if and only if Θ = HΘH, i.e. ker

(
CH DH

)
= ker

(
C D

)
.

Proof. By Theorems 4.3 and 5.4 the dual pair (A,B) is T -real and PT -symmetric. It
follows from (5.21) that PT domB∗ = domB∗. By (5.12) and (3.2), we obtain for f ∈
domB∗(

ΓB1 (PT f)
ΓB2 (PT f)

)
=

(
Γ
B−
1 PT f+ + Γ

B+

1 PT f−
Γ
B+

2 PT f−

)
=

(
HΓ

B+

1 f+ + HΓ
B−
1 f−

HΓ
B+

2 f+

)
=

(
HΓB1 f
HΓB2 f

)
Therefore,

(5.24) ΓBPT f ∈ Θ = ker
(
C D

)
⇐⇒ ΓBf ∈ ker HΘH = ker

(
CH DH

)
.

Now it follows from (5.21) that for f ∈ domAΘ

AΘ(PT )f = B∗(PT )f = (PT )B∗f = (PT )AΘf.

This proves the claim. �

Remark 5.6. In the special case of Theorem 5.5 when d = 1 and H is the standard
complex conjugation in C, the set of all PT -symmetric extensions of A other than the
decoupled operator A+,2 ⊕ A−,2 is parameterized by a real parameter α ∈ R via

(5.25) Aα = B∗ �domAα , domAα =
{
u ∈ domB∗|ΓB1 u = αΓB2 u

}
.

Note that the decoupled operator A+,2 ⊕ A−,2 is also PT -symmetric which follows from
Theorem 5.5 with C = 0 and D = 1.

Next we present a description of PT -symmetric proper extensions of the PT -symmetric
operator A0 = A+ ⊕ A−, see Theorem 4.3.

Theorem 5.7. Let in the assumptions of Theorem 5.4 the dual pair (A0, B0) and the

boundary triple (C2d×C2d,ΓA0 ,ΓB0) be given by (4.9), (4.10) let Ĉ, D̂ be 2d× 2d-matrices

such that (2.19) holds, and let Θ̂ be a linear relation in H2, H := C2d with the kernel rep-

resentation Θ̂ = ker
(
Ĉ D̂

)
. Then the extension (A0)Θ̂ = B∗0 � dom (A0)Θ̂ ∈ Ext(A,B)

of A0 with

(5.26) dom (A0)Θ̂ = {f ∈ domB∗0 | ĈΓB0
1 f + D̂ΓB0

2 f = 0}
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is PT -symmetric if and only if Θ̂ = ̂HΘ̂̂H, i.e.

(5.27) ker
(
Ĉ̂H D̂̂H

)
= ker

(
Ĉ D̂

)
where ̂H :=

(
0 H
H 0

)
.

Proof. Recall that ΓB0
1 and ΓB0

2 are given by formulas (4.10).
The invariance of domB∗0 with respect to PT is shown in Theorem 5.4 (i). By (5.12)

we obtain for f = f+ ⊕ f−, g = g+ ⊕ g− ∈ domB∗0

ΓB0
1 (PT f) =

(
Γ
B+

1 PT f−
Γ
B−
1 PT f+

)
=

(
HΓ

B−
1 f−

HΓ
B+

1 f+

)
= ̂H

(
Γ
B+

1 f+

Γ
B−
1 f−

)
= ̂HΓB0

1 f

and

ΓB0
2 (PT f) =

(
Γ
B+

2 PT f−
Γ
B−
2 PT f+

)
=

(
HΓ

B−
2 f−

HΓ
B+

2 f+

)
= ̂H

(
Γ
B+

2 f+

Γ
B−
2 f−

)
= ̂HΓB0

2 f.

Therefore, the condition PT f ∈ dom (A0)Θ̂ is equivalent to

(5.28)
(
Ĉ̂H D̂̂H

)(Γ0
1f+

Γ0
2f−

)
= 0.

Comparison of (5.26) and (5.28) yields (5.27). �

6. P-symmetric and P-selfadjoint extensions of the operator A0

6.1. Boundary triples for P-symmetric operators. In this section we describe P-
symmetric and P-selfadjoint extensions of the operators A0 and A and compare them
with the descriptions of PT -symmetric extensions of A0 and A from the previous section.

In order to define P-symmetry it is convenient to consider the abstract parity P from
Section 5 as a Gramian which leads to the theory of Krein spaces. Krein spaces are
Hilbert spaces equipped with an additional inner product. This additional inner product
is a symmetric, non-degenerated sesquilinear form, which is in general not definite. Or,
what is the same, the additional inner form is given via a selfadjoint, boundedly invertible
Gramian, see [2, 10]. Here, P will be used as the Gramian. More precisely, let (H±, 〈 ·, ·〉H±)
be two Hilbert spaces and let P be the abstract parity in H = H+ ⊕ H−. As usual, we
define the Hilbert space scalar product in H as the sum of the two scalar products in H±,

〈 f, g〉H := 〈 f+, g+〉H+ + 〈 f−, g−〉H− for f = f+ ⊕ f−, g = g+ ⊕ g− ∈ H+ ⊕ H−.

Then the pair (H, [·, ·]) with the inner product given by

(6.1) [f, g] := 〈 Pf, g〉H
forms a Krein space. Recall, that a densely defined linear operator A in (a Krein space)
(H, [·, ·]) is called P-symmetric, if it is symmetric with respect to the new (Krein space)
inner product, namely

[Af, g] = [f, Ag] for all f, g ∈ domA.

Denote by A+ the adjoint operator in (H, [·, ·]), i.e. A+ = PA∗P . For a P-symmetric
operator A one has A ⊆ A+. The operator A is called P-selfadjoint if A = A+.

In what follows we will apply the two notions of P-symmetry and PT -symmetry to
extensions of the operators A and A0, defined in Theorem 3.1 and in Theorem 4.3, respec-
tively. The coupling A1 and the decoupled A2, cf. Definition 3.2, are examples of operators
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which are simultaneously P-selfadjoint and PT -symmetric. We have the following chain
of operators

A0 = A+ ⊕ A− ⊂ A ⊂ Aj ⊂ B∗ ⊂ B∗0 = B∗+ ⊕ B∗− j = 1, 2.

Note that Definition 2.1 of boundary triples is made for dual pairs. The following definition
of a boundary triple for a single operator is from [12]. In the case of a Hilbert space
symmetric operator it was introduced in [19], see also [16]. We will use it to describe the
extensions of the P-symmetric operators A and A0.

Definition 6.1. Let H be an auxiliary Hilbert space and let Γ1,Γ2 be linear operators
from domA+ to H. The triple (H,Γ1,Γ2) is called a boundary triple for the P-symmetric
operator A, if:

(1) the mapping Γ :=

(
Γ1

Γ2

)
from domA+ to H2 is surjective;

(2) the following identity holds for every f, g ∈ domA+

[A+f, g]− [f, A+g] = 〈Γ1f,Γ2g〉H − 〈Γ2f,Γ1g〉H.

Remind [12], that given a boundary triple (H,Γ1,Γ2) for the P-symmetric operator A,

the set of all P-selfadjoint extensions Â of A can be parametrized by the formula

(6.2) Â = A+ �dom Â, dom Â = {f ∈ domA+|Γf ∈ Φ},

where Φ ranges over the set of all selfadjoint relations in H.

In the following theorem we characterize P-selfadjoint extensions Â of the operator A0

of the form (5.26).

Theorem 6.2. Let in the assumptions of Theorem 5.4 (A0, B0) be a PT -symmetric dual

pair, let Ĉ, D̂ be 2d× 2d-matrices such that (2.19) holds, and let Θ̂ = ker
(
Ĉ D̂

)
be a

linear relation in H2, H := Cd and let (A0)Θ̂ be an extension of A0 given by (5.26). Then
the following hold.

(i) The operator A0 is P-symmetric and a boundary triple (C2d,Γ0
1,Γ

0
2) for A0 can be

chosen as

(6.3) Γ0
1f = ΓB0

1 , Γ0
2f = JdΓ

B0
2 , where Jd :=

(
Od Id
Id Od

)
.

(ii) The extension (A0)Θ̂ of the operator A0 given by (5.26) is P−selfadjoint if and

only if the linear relation Φ := JdΘ̂ = ker
(
Ĉ D̂Jd

)
is selfadjoint, i.e.

(6.4) ĈJdD̂
∗ − D̂JdĈ∗ = 0.

Proof. (i) The P-symmetry of A0 follows from (5.16) and the fact that (A0, B0) forms a
dual pair which imply

A+
0 = PA∗0P = B∗0 ⊃ A0.
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For f = f+ ⊕ f−, g = g+ ⊕ g− ∈ domB∗0 we obtain with the help of (5.16), (3.12) and
(5.6)

[A+
0 f, g]− [f, A+

0 g] = 〈B∗0f,Pg〉 − 〈 f,PB∗0g〉 = 〈B∗0f,Pg〉 − 〈 f, A∗0Pg〉

= 〈ΓB+

1 f+,Γ
A+

1 Pg−〉H − 〈Γ
B+

2 f+,Γ
A+

2 Pg−〉H
+ 〈ΓB−

1 f−,Γ
A−
1 Pg+〉H − 〈ΓB−

2 f−,Γ
A−
2 Pg+〉H

= 〈ΓB+

1 f+,Γ
B−
2 g−〉H − 〈ΓB+

2 f+,Γ
B−
1 g−〉H

+ 〈ΓB−
1 f−,Γ

B+

2 g+〉H − 〈ΓB−
2 f−,Γ

B+

1 g+〉H
= 〈Γ0

1f,Γ
0
2g〉H2 − 〈Γ0

2f,Γ
0
1g〉H2 .

(6.5)

So the triple (H,Γ0
1,Γ

0
2) is a boundary triple for the P-symmetric operator A0.

(ii) The equivalence
(A0)Θ̂ = (A0)+

Θ̂
⇐⇒ Φ = Φ∗

is a general fact from [12]. The equivalence of the equality Φ = Φ∗ to (6.4) follows
from (2.21). �

Remark 6.3. It follows from (5.19), that A ⊆ B∗ = A+, and hence the operator A is
P-symmetric. A boundary triple (H,Γ1,Γ2) for A+ can be chosen as

H = Cd, Γ1f = ΓB1 f := Γ
B+

1 f+ + Γ
B−
1 f−, Γ2f = ΓB2 f := Γ

B+

2 f+

for f = f+ ⊕ f− ∈ domB∗. For a linear relation Θ in Cd with the kernel representation
Θ = ker

(
C D

)
, C,D ∈ Cd×d, the extension AΘ of A of the form (5.23) is P-selfadjoint

if and only if Θ = Θ∗, i.e. (2.21) holds.
In the special case when d = 1 the set of all P-selfadjoint extensions of A different from

the decoupled operator A−,2 ⊕ A+,2 is parametrized by a real parameter α ∈ R via

(6.6) Aα = B∗ � domAα, domAα =
{
u ∈ domB∗|ΓB1 u = αΓB2 u

}
.

Moreover, the set of PT -symmetric extensions of A coincides with the set of its P-
selfadjoint extensions.

According to [9] boundary condition (5.26) can be rewritten in the following form.

Theorem 6.4. Let in the assumptions of Theorem 6.2 Θ be a linear relation in C2d such
that (A0)Θ̂ is a P-selfadjoint and PT -symmetric extensions of A0. Then

(i) There exist orthogonal projectors PD and PR = I − PD in C2d and a selfadjoint
matrix Λ in C2d such that

(6.7) ker Λ = PDH, ran Λ ⊆ PRH
and dom (A0)Θ̂ is characterized as the set of f ∈ domB∗− ⊕ B∗+ such that

PDΓ0
2f = 0,(6.8)

PRΓ0
1f = ΛPRΓ0

2f.(6.9)

(ii) The extension (A0)Θ̂ is PT -symmetric, if and only if the matrices PD and Λ
commute with ̂H:

(6.10) PD ̂H = ̂HPD, Λ̂H = ̂HΛ.
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The condition (6.8) gives the Dirichlet part and the condition (6.9) gives the Robin
part of the boundary conditions. As distinct from (5.26) the conditions (6.8)–(6.9) are

uniquely defined by the selfadjoint linear relation Φ := JdΘ̂.

Proof. (i) By Theorem 6.2, the extension (A0)Θ̂ of the operator A0 is P−selfadjoint if

and only if the linear relation Φ = ker
(
Ĉ D̂Jd

)
is selfadjoint. Let PD be the orthogonal

projector onto ker Φ = kerC and let PR := I2d−PD. As it is known (see e.g. [9, Theorem
1.4.4]), the selfadjoint linear relation Φ−1 admits the representation

(6.11) Φ−1 = graph Λu

(
0

PDH

)
=

{(
x2

Λx2 + x1

)
:
x1 ∈ PDH
x2 ∈ PRH

}
,

where Λ is a selfadjoint matrix Λ in C2d such that (6.7) holds. For every f ∈ dom (A0)Θ̂

we have the inclusion

(
Γ0

1f
Γ0

2f

)
∈ Φ. In view of (6.11) and (6.3) there exist x1 ∈ PDH and

x2 ∈ PRH such that

(6.12)

(
Γ0

2f
Γ0

1f

)
=

(
x2

Λx2 + x1

)
.

This yields the equations (6.8), (6.9).

(ii) If the extension (A0)Θ̂ is PT -symmetric, then, by Theorem 6.2, Θ̂ is ̂H-invariant

and hence the linear relation Φ = JdΘ̂ is also ̂H-invariant. Therefore, the subspaces

PDH = ker Φ = ker Θ̂ and PRH = ran Φ are ̂H-invariant and hence the orthoprojectors
PD and PR commute with ̂H:

(6.13) PD ̂H = ̂HPD, PR̂H = ̂HPR.

Moreover, in this case for every f ∈ dom (A0)Θ̂ we obtain, by (6.9),(
Γ0

1f
Γ0

2f

)
∈ Φ =⇒

(
̂HΓ0

1f
̂HΓ0

2f

)
∈ Φ =⇒ PR̂HΓ0

1f = ΛPR̂HΓ0
2f.

By (6.13), we obtain

̂HPRΓ0
1f = Λ̂HPRΓ0

2f.

Comparing this equality with (6.9), we obtain the equality

(6.14) ̂HΛ = Λ̂H.

Conversely, if (6.13) and (6.14) hold, then similar reasonings show that Θ̂ is ̂H-invariant.
�

7. Non-Hermitian PT -invariant Hamiltonians

7.1. Dual pairs associated with the Bender-Boettcher Hamiltonian. Here we
return to the investigation of the non-Hermitian PT -invariant Hamiltonians presented in
the introduction, that is, we study equation (1.1) on the wedge shaped contour Γ, cf. (1.2).
By substitution z(x) := xeiφsgnx one obtains the two differential expressions given by (1.3)
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and (1.4). Assume that a± in (1.4) are in the limit point case at ±∞. As presented in
Section 1, this is the case if and only if the angle φ of the wedge satisfies

(7.1) φ 6= − N + 2

2N + 8
π +

2k

4 +N
π for k = 0, . . . ,

[
N + 3

2

]
.

Then by [21, Lemma 1] the differential expressions b± in (1.6) are also in the limit point
case at ±∞. Define the operators A± and B± associated with a± and b± in L2(R±) as

A±f± := a±[f±], B±g± := b±[g±] for f± ∈ domA±, g± ∈ domB±,

respectively, with the domains

domA± := {u± ∈ L2(R±)|a±[u±] ∈ L2(R±), u′± ∈ ACloc(R±), u±(0±) = u′±(0±) = 0},

domB± := {v± ∈ L2(R±)|b±[v±] ∈ L2(R±), v′± ∈ ACloc(R±), v±(0±) = v′±(0±) = 0}.
These operators are called the minimal operators. It follows from [21, Proposition 1
and Theorem 3] that the (maximal) operators A∗± and B∗± are generated by differential
expressions in L2(R±) where the roles of a± and b± are switched in the sense that the
differential expressions a± are now related to B∗± and the differential expressions b± are
related to A∗±. More precisely,

B∗±f± := a±[f±], A∗±g± := b±[g±] for f± ∈ domB∗±, g± ∈ domA∗±,

with

domB∗± := {u± ∈ L2(R±)|a±[u±] ∈ L2(R±), u′± ∈ ACloc(R±)},

domA∗± := {v± ∈ L2(R±)|b±[v±] ∈ L2(R±), v′± ∈ ACloc(R±)}.

Lemma 7.1. The pairs (A−, B−) and (A+, B+) are dual pairs. The triple (C2,ΓA+ ,ΓB+),

(7.2) ΓB+u+ =

(
e−2iφu′+(0)
u+(0)

)
, ΓA+v+ =

(
v+(0)

e2iφv′+(0)

)
,

u+ ∈ domB∗+,
v+ ∈ domA∗+,

is a boundary triple for the dual pair (A+, B+). The triple (C2,ΓA− ,ΓB−),

(7.3) ΓB−u− =

(
−e2iφu′−(0)
u−(0)

)
, ΓA−v− =

(
v−(0)

−e−2iφv′−(0)

)
,

u− ∈ domB∗−,
v− ∈ domA∗−,

is a boundary triple for the dual pair (A−, B−).

Proof. Integration by parts and [21, Proposition 1] show

〈A±u±, v±〉 = 〈 u±, B±v±〉, u± ∈ domA±, v± ∈ domB±.

This proves the first statement. It follows from [21, Proposition 1] that for u+ ∈ domB∗+
and v+ ∈ domA∗+

〈B∗+u+, v+〉 − 〈 u+, A
∗
+v+〉 = −e−2iφ

∫ ∞
0

u′′+(x)v+(x)dx+ e−2iφ

∫ ∞
0

u+(x)v′′+(x)dx

= e−2iφ(u′+(0)v+(0)− u+(0)v′+(0)).

Hence, (C2,ΓA+ ,ΓB+) is a boundary triple for the dual pair (A+, B+). The statement for
the triple (A−, B−) is shown in the same way. �
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7.2. PT -symmetric extensions of the operator A. The coupling (A,B) of the dual
pairs (A±, B±) relative to the boundary triples (C2,ΓA± ,ΓB±) consists of two operators
A = (B∗+ ⊕ B∗−)|domA, B = (A∗+ ⊕ A∗−)|domB with the domains

(7.4) domA = {u+ ⊕ u−| u± ∈ domB∗±, u+(0) = u−(0) = e−2iφu′+(0)− e2iφu′−(0) = 0 },

(7.5) domB = {u+ ⊕ u−| u± ∈ domA∗±, u+(0) = u−(0) = e2iφu′+(0)− e−2iφu′−(0) = 0 },
see Theorem 3.1. Then the adjoints A∗ and B∗ are the restrictions of the operators
A∗+ ⊕ A∗− and B∗+ ⊕ B∗−, respectively, to the domains

(7.6) domA∗ = {u+ ⊕ u−|u± ∈ domA∗±, u+(0) = u−(0)};

(7.7) domB∗ = {u+ ⊕ u−|u± ∈ domB∗±, u+(0) = u−(0)}.
A boundary triple for (A,B) can be defined on v ∈ domA∗ and u ∈ domB∗ by

(7.8) ΓAv =

(
ΓA1 v
ΓA2 v

)
:=

(
Γ
A+

1 v+

Γ
A+

2 v+ + Γ
A−
2 v−

)
, ΓBu =

(
ΓB1 u
ΓB2 u

)
:=

(
Γ
B+

1 u+ + Γ
B−
1 u−

Γ
B+

2 u+

)
,

We define the parity P and the time reversal T as in (1.5). It is easy to see that the
parity P and the time reversal T satisfy (5.2). Due to Theorem 5.5 the operator A is
PT -symmetric and P-symmetric in the Krein space (L2(R) = L2(R−) ⊕ L2(R+), [·, ·])
with the inner product

[·, ·] = 〈P·, ·〉.
The (Krein space) adjoint A+ of A coincides with the operator B∗ = (B∗+ ⊕ B∗−)|domB∗ .

Application of Theorem 5.5 gives a one-parameter family {Hα}α∈R of PT -symmetric
and P-selfadjoint extensions of A in the Krein space (L2(R), [·, ·]).
Theorem 7.2. Let the angle φ satisfies (7.1) and let A be the coupling operator con-
structed in (7.4). Then the following statements are true.

(i) A boundary triple (C,Γ1,Γ2) for the P-symmetric operator A is given by

Γ1u = e−2iφu′+(0)− e2iφu′−(0), Γ2u = u+(0), u = u+ ⊕ u− ∈ domB∗.

(ii) The extension Hα of the operator A defined as a restriction of B∗ to the domain

(7.9) domHα =
{
u+ ⊕ u− ∈ domB∗ : e−2iφu′+(0)− e2iφu′−(0) = αu+(0)

}
is P-selfadjoint if and only if α ∈ R.

(iii) Hα is PT -symmetric if and only if α ∈ R.

Proof. By construction, the dual pairs (A+, B+) and (A−, B−) are T±-real and the parity
operator P intertwines the operators A+, B− and A−, B+, that is, (5.5) holds. Moreover,
the boundary triples (C2,ΓA+ ,ΓB+) and (C2,ΓA− ,ΓB−) are also (jC, T )-real and satisfy
the condition (5.6). Here jC stands for the usual complex conjugation in C. Hence,
all assumptions in Theorem 5.5 are satisfied and the statements (i)-(iii) in Theorem 7.2
follows directly from Theorem 5.5. �

The boundary conditions in (7.9) are called ”δ-type conditions” in the literature, see [9].
In [21] the extension Hα for the parameter value α = 0 was considered, which is specified
by ”weighted Kirchhoff conditions”:

domH0 =
{
u+ ⊕ u−|u± ∈ domB∗±, u+(0)− u−(0) = e−2iφu′+(0)− e2iφu′−(0) = 0

}
.
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7.3. PT -symmetric extensions of A0. The family (Hα)α∈R, of extensions of A can be
also treated via Theorem 6.2 as a family of extensions of the operator A0 = A− ⊕A+. A
boundary triple for the P-symmetric operator A0 can be defined on u ∈ domB∗0 by the
equalities, see (6.3)

Γ0
1u =

(
Γ
B+

1 u+

Γ
B−
1 u−

)
=

(
e−2iφu′+(0)
−e2iφu′−(0)

)
, Γ0

2u =

(
Γ
B−
2 u−

Γ
B+

2 u+

)
=

(
u−(0)
u+(0)

)
, u =

(
u+

u−

)
∈ domB∗0 .

By Theorem 6.4, the set of P-selfadjoint and PT -symmetric extensions of A0 is parametrized
via (6.8)–(6.9) by pairs (PD,Λ) where PD is an orthogonal projector onto a subspace in
C2d and Λ is a 2× 2-matrix which satisfy (6.7) and (6.10).

Let us discuss this formulas in our case when the boundary space is 2-dimensional.

Case 1. Let PD be the projector on the whole C2, i.e. PD = IC2 . Then Λ = 0 and boundary
conditions (6.8)–(6.9) take the form of ”Dirichlet boundary conditions”:

u+(0) = u−(0) = 0.

The corresponding extension of A0 is the decoupled operator A+,2 ⊕ A−,2.
Case 2. Let PD be an 1-dimensional projector onto a ̂-invariant subspace of C2. Every

̂-invariant subspace L of C2 has the form L = span

(
1
eiθ

)
, θ ∈ [0, 2π). In

particular, for θ = π we have PD = 1
2

(
1 −1
−1 1

)
, PR = 1

2

(
1 1
1 1

)
. Condition (6.7)

implies that Λ can be chosen as Λ = 1
4

(
α α
α α

)
, α ∈ R, and boundary conditions

(6.8)–(6.9) yield ”δ-type conditions”:

u−(0) = u+(0), e−2iφu′+(0)− e2iφu′−(0) = αu+(0), α ∈ R.

Case 3. Let the Dirichlet part in boundary conditions is missing, i.e. PD = O. Then (6.7) is

fulfilled automatically and Λ =

(
λ11 λ12

λ21 λ22

)
is an arbitrary selfadjoint 2×2-matrix

commuting with ̂ =

(
0 j
j 0

)
. This leads to conditions

(7.10) λ11 = λ22 ∈ R, λ21 = λ12.

In particular, for Λ = 0 we obtain the ”Neumann boundary conditions”:

u′+(0) = u′−(0) = 0.

Setting Λ = 1
β

(
1 −1
−1 1

)
, β ∈ R\{0}, we obtain the following family {Tβ}β∈R\{0}

of PT -symmetric extensions of extension of A0 specified by the boundary condi-
tions

e−2iφu′+(0) = e2iφu′−(0) =
1

β
(u+(0)− u−(0)), β ∈ R \ {0},

which are analogues of ”δ′-type conditions”.



PT -SYMMETRIC COUPLINGS OF DUAL PAIRS 23

Acknowledgements
The research of Volodymyr Derkach was supported by the Ministry of Education and
Science of Ukraine (project # 0121U109525) the German Research Foundation (DFG),
grant TR 903/22-1 and a grant of the Volkswagen Foundation.

References

[1] Arens, R. (1961). Operational calculus of linear relations, Pacific J. Math. 11, 9–23.
[2] Azizov, T.Ya. & Iokhvidov, I.S. (1989). Linear Operators in Spaces with an Indefinite Metric,

John Wiley & Sons, Chichester.
[3] Azizov, T.Ya. & Trunk, C. (2010). On domains of PT symmetric operators related to −y′′(x)+

(−1)nx2ny(x), J. Phys. A: Math. Theor. 43, 175303.
[4] Azizov, T.Ya. & Trunk, C. (2012). PT symmetric, Hermitian and P-self-adjoint operators

related to potentials in PT quantum mechanics J. Math. Phys. 53, 012109.
[5] Bender, C.M. (2019). PT Symmetry: in Quantum and Classical Physics, with contributions

from P.E. Dorey, C. Dunning, A. Fring, D.W. Hook, H.F. Jones, S. Kuzhel, G. Levai, and R.
Tateo, World Scientific.

[6] Bender, C.M. & Boettcher, S. (1998). Real spectra in non-Hermitian Hamiltonians having PT
symmetry, Phys. Rev. Lett. 80, 5243–5246.

[7] Bender, C.M., Brody, D.C., Chen, J.-H., Jones, H.F., Milton, K.A. & Ogilvie, M.C. (2006).
Equivalence of a complex PT -symmetric quartic Hamiltonian and a Hermitian quartic Hamil-
tonian with an anomaly, Phys. Rev. D 74, 025016.

[8] Bender, C.M., Brody, D.C. & Jones, H.F. (2002). Complex extension of quantum mechanics
Phys. Rev. Lett. 89, 270401.

[9] Berkolaiko G. & Kuchment P. (2013) Introduction to quantum graphs, AMS, Providence RI.
[10] Bognar, J. (1974). Indefinite Inner Product Spaces, Springer, Berlin.
[11] Brown, B.M., McCormack, D.K.R., Evans, W.D. & Plum, M. (1999). On the spectrum of

second-order differential operators with complex coefficients, Proc. R. Soc. A 455, 1235–1257.
[12] Derkach, V. (1995). On Weyl function and gerneralized resolvents of a Hermitian operator in

a Krein space, Integr. Equ. Oper. Theory 23, 387–415.
[13] Derkach,V., Hassi, S., Malamud, M.M. & de Snoo, H. (2000). Generalized resolvents of sym-

metric operators and admissibility, Methods of Functional Analysis and Topology 6, 24–55.
[14] Derkach, V. & Malamud, M.M. (1991). Generalized resolvents and the boundary value problems

for Hermitian operators with gaps, J. Funct. Anal. 95, 1–95.
[15] Derkach,V., Schmitz, P. & Trunk, C. (2000). PT -Symmetric Hamiltonians as Couplings of

Dual Pairs Contributions to Mathematics and Statistics, ACTA WASAENSIA 462, 55–68.
[16] Gorbachuk, V.I. & Gorbachuk, M.L. (1991). Boundary Value Problems for Operator Differen-

tial Equations, Kluwer Academic Publishers Group, Dordrecht.
[17] Hassi, S. & Kuzhel, S. (2013). On J-self-adjoint operators with stable C-symmetries, Proc. R.

Soc. A 143, 141–167.
[18] Jones, H.F. & Mateo, J. (2006). Equivalent Hermitian Hamiltonian for the non-Hermitian

−x4 potential, Phys. Rev. D 73, 085002.
[19] Kochubei, A.N. (1975). On extentions of symmetric operators and symmetric binary relations,

Matem. Zametki 17, 41–48.
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