

Modulhandbuch

Master Fahrzeugtechnik

Studienordnungsversion: 2022

gültig für das Wintersemester 2022/23

Erstellt am: 20. Dezember 2022

aus der POS Datenbank der TU Ilmenau

Herausgeber: Der Präsident der Technischen Universität Ilmenau

URN: urn:nbn:de:gbv:ilm1-mhb-28155

Inhaltsverzeichnis

Bildverarbeitung für die Qualitätssicherung	Name des Moduls/Fachs			3.FS 4					Ab- schluss	LP
Bildverarbeitung für die Qualitätssicherung 2 0 2	GRUNDLAGENMODULE									60
Höhere Festigkeitslehre und Finite Elemente Methoden		202			П				PL	5
Methodon 2 2 0 PL 5 Alternative Fahrzeugantriebe 2 1 1 PL 5 Fahrdynamikregelung und Fahrassistenzsysteme 2 1 1 PL 5 Maschinendynamik 2 2 0 PL 5 Fahrwerktechnik 2 2 1 1 PL 5 Fahrwerktechnik 2 2 1 1 PL 5 Virtuelle Produktentwicklung 2 2 0 PL 5 Projektseminar mit Kolloquium 2 2 0 PL 15 WAHLKATALOG zur Wahl eines Studienschwerpunktes FP 30 Ansteurautomaten (FPGAs in der 2 1 Leistungselektronik FP 30 Ausführungsdormen elektrischer Maschinen 2 1 0 PL 30min 5 Elektromagnetische Verträglichkeit in der IKT 2 0 2 PL 30min 5 Faserverbundtechnologie 2 1 1 PL 5 PL 30min 5 Faserverbundtechnologie 2 1 1 PL 5 Gurtlebetechnik 2 2 2 0 PL 30min 5 Gurtlebetechnik 2 2 2 0 PL 30min 5 Gurtlebetechnik 2 PL 30	Fahrwerktechnik 1	2 1 1						ļ	PL	5
Alternative Fahrzeugantriebe		211						I	PL	5
Fahrdynamikregelung und Fahrassistenzsysteme	Verbrennungsmotoren	220						1	PL	5
Maschinendynamik 2 2 0 PL 5 Fahrwerktechnik 2 2 1 1 PL 5 Virtuelle Produktentwicklung 2 2 0 PL 5 Projektseminar mit Kolloquium 7500 PPL 15 WAHLKATALOG zur Wahl eines Studienschwerpunktes FP 30 Ansteuerautomaten (FPGAs in der Leistungselektronik) 2 2 1 PL 30min 5 Ausführungsformen elektrischer Maschinen 2 1 0 PL 20min 5 Eingebettete Systeme 2 2 0 PL 30min 5 Flaserverbundtechnologie 2 1 1 PL 90min 5 Funksysteme 3 1 0 PL 30min 5 Getriebetechnik 2 2 2 0 PL 5 Gundlagen der Technischen Akustik 2 2 0 PL 5 Getriebetechnik 2 2 1 1 PL 5 Kommunikationsnetze 2 1 1 PL 5 Gundlagen der Technischen Akustik 2 2 0 PL 5 Angewandte Wärmeübertragung 2 2 1 PL 5	Alternative Fahrzeugantriebe		2 1 1					ļ	PL	5
Fahrwerktechnik 2	Fahrdynamikregelung und Fahrassistenzsysteme		2 1 1					1	PL	5
Virtuelle Produktentwicklung 2 2 0 PL 5 Projektseminar mit Kolloqulum 22 1 22 h 15 WAHLKATALOG zur Wahl eines Studienschwerpunktes FP 30 Ansteuerautomaten (FPGAs in der Leistungselektronik) 2 2 1 PL 30min 5 Ausführungsformen elektrischer Maschinen 2 1 0 PL 20min 5 Eliektromagnetische Verträglichkeit in der IKT 2 0 2 PL 30min 5 Faserverbundtechnologie 2 1 1 PL 30min 5 Getriebetechnik 2 2 2 0 PL 30min 5 Getriebetechnik 2 2 2 0 PL 5 5 Grundlagen der Technischen Akustik 2 2 0 PL 5 9 Grundlagen der Technischen Akustik 2 2 0 PL 5 9 Leistungselektronik 1 - Grundlagen 2 2 1 PL 5 9 Angewan	Maschinendynamik		2 2 0					1	PL	5
Projektseminar mit Kolloquium	Fahrwerktechnik 2			2 1 1				l	PL	5
WAHLKATALOG zur Wahl eines Studienschwerpunktes FP 30 Ansteuerautomaten (FPGAs in der Leistungselektronik) 2 2 1 PL 30min 5 Leistungselektronik of Leistungselektronik of Eingebettete Systeme 2 1 0 PL 90min 5 Eilektromagnetische Verträglichkeit in der IKT 2 0 2 PL 90min 5 Eilektromagnetische Verträglichkeit in der IKT 2 0 2 PL 30min 5 Faserverbundtechnologie 2 1 1 PL 5 6 Funksysteme 3 1 0 PL 30min 5 Getriebetechnik 2 2 2 0 PL 30min 5 Getriebetechnik 2 2 1 1 PL 5 5 Grundlagen der Technischen Akustik 2 2 0 PL 30min 5 Kommunikätionsnetze 2 1 1 PL 5 5 Kommunikätionsnetze 2 1 1 PL 5 5 Angewandte Wärmeüberträgung 2 2 1 PL 5 5 Batterien und Brennstoffzeilen 2 1 1 PL 5 5 Digitale Regelungssysteme 2 1 1 PL 5 5 Kunststoffverfahrenstechn	Virtuelle Produktentwicklung			220					PL	5
Ansteuerautomaten (FPGAs in der Leistungselektronik)	Projektseminar mit Kolloquium		225 h	225 h					PL	15
Leistungselektronik	WAHLKATALOG zur Wahl eines Studiensch	werp	unkte	es					FP	30
Eingebettete Systeme	`	2 2 1						I	PL 30min	5
Elektromagnetische Verträglichkeit in der IKT 2 0 2 PL 30min 5 Faserverbundtechnologie 2 1 1 PL 5 Funksysteme 3 1 0 PL 30min 5 Getriebetechnik 2 2 2 0 PL 5 Grundlagen der Technischen Akustik 2 2 0 PL 30min 5 Kommunikationsnetze 2 1 1 PL 5 Leistungselektronik 1 - Grundlagen 2 2 1 PL 5 Angewandte Wärmeübertragung 2 2 1 PL 5 Angewandte Wärmeübertragung 2 1 1 PL 5 Batterien und Brennstoffzellen 2 1 1 PL 5 Digitale Regelungssysteme 2 1 1 PL 5 Dynamische Prozessoptimierung 2 1 1 PL 5 Kunststoffverfahrenstechnologien 3 1 1 PL 5 Leistungselektronik 2 - Theorie 2 2 1 PL 30min 5 Lichttechnik 1 und Technische Optik 1 2 3 0 PL 90min 5 Maschinenelemente 3 2 3 0 PL 90min 5 Mikrocontroller- und Signalprozessortechnik 1 2 2 1 PL 45min 5 System Identification 2 1 1	Ausführungsformen elektrischer Maschinen	2 1 0							PL 20min	5
Faserverbundtechnologie 2 1 1 PL 5 Funksysteme 3 1 0 PL 30min 5 Getriebetechnik 2 2 2 0 PL 5 Grundlagen der Technischen Akustik 2 2 0 PL 30min 5 Kommunikationsnetze 2 1 1 PL 5 Leistungselektronik 1 - Grundlagen 2 2 1 PL 5 Angewandte Wärmeübertragung 2 2 0 PL 5 Batterien und Brennstoffzellen 2 1 1 PL 5 Digitale Regelungssysteme 2 1 1 PL 5 Dynamische Prozessoptimierung 2 1 1 PL 5 Kunststoffverfahrenstechnologien 3 1 1 PL 5 Leistungselektronik 2 - Theorie 2 2 1 PL 30min 5 Lichttechnik 1 und Technische Optik 1 2 3 0 PL 90min 5 Maschinenelemente 3 2 3 0 PL 90min 5 Mikrocontroller- und Signalprozessortechnik 1 2 2 1 PL 45min 5 System Identification 2 1 1 PL 5 Werkstofftechnologie der Metalle 4 0 0 PL 30min 5 Data Science für industrielle Anwendungen 2 2 0 PL 60min 5	Eingebettete Systeme	220						1	PL 90min	5
Funksysteme 3 1 0 PL 30min 5 Getriebetechnik 2 2 2 0 PL 5 Grundlagen der Technischen Akustik 2 2 0 PL 5 Grundlagen der Technischen Akustik 2 2 0 PL 5 Leistungselektronik 1 - Grundlagen 2 2 1 Angewandte Wärmeübertragung 2 2 0 PL 5 Batterien und Brennstoffzellen 2 1 1 PL 5 Digitale Regelungssysteme 2 1 1 PL 5 Dynamische Prozessoptimierung 2 1 1 PL 5 Kunststoffverfahrenstechnologien 3 1 1 PL 5 Leistungselektronik 2 - Theorie 2 2 1 PL 30min 5 Leistungselektronik 2 - Theorie 2 2 1 PL 30min 5 Maschinenelemente 3 2 3 0 PL 5 Mikrocontroller- und Signalprozessortechnik 1 2 2 1 PL 45min 5 Strömungsmesstechnik 2 2 1 PL 5 Werkstofftechnologie der Metalle 4 0 0 PL 30min 5 Data Science für industrielle Anwendungen 2 2 0 PL 60min 5 Deep Learning 2 2 0 PL 5 Leistungselektronik 2 2 2 1 PL 50min 5 Mikrocontroller- und Signalprozessortechnik 2 2 2 0 PL 5 Regenerative Energien und Speichertechnik 2 2 1 PL 50 Mikrocontroller- und Signalprozessortechnik 2 2 2 1 PL 50 Mikrocontroller- und Signalprozessortechnik 2 2 2 0 PL 5 Regenerative Energien und Speichertechnik 2 2 1 PL 5 Schaltnetzteile / Stromversorgungstechnik 2 2 1 PL 5 Schaltnetzteile / Stromversorgungstechnik 2 2 1 PL 5 Schaltnetzteile / Stromversorgungstechnik 2 2 1 PL 5 Zuverlässigkeit von Schaltungen und Systemen 2 2 0 PL 5	Elektromagnetische Verträglichkeit in der IKT	202						l	PL 30min	5
Getriebetechnik 2 2 2 0 PL 5 Grundlagen der Technischen Akustik 2 2 0 PL 30min 5 Kommunikationsnetze 2 1 1 PL 5 Leistungselektronik 1 - Grundlagen 2 2 1 PL 5 Angewandte Wärmeübertragung 2 2 0 PL 5 Batterien und Brennstoffzellen 2 1 1 PL 5 Digitale Regelungssysteme 2 1 1 PL 5 Dynamische Prozessoptimierung 2 1 1 PL 5 Kunststoffverfahrenstechnologien 3 1 1 PL 5 Leistungselektronik 2 - Theorie 2 2 1 PL 30min 5 Lichttechnik 1 und Technische Optik 1 2 3 0 PL 90min 5 Maschinenelemente 3 2 3 0 PL 5 Mikrocontroller- und Signalprozessortechnik 1 2 2 1 PL 45min 5 System Identification 2 1 1 PL 5 Werkstofftechnologie der Metalle 4 0 0 PL 30min 5 Data Science für industrielle Anwendungen 2 2 0 PL 60min 5 Deep Learning 2 2 0 PL 60min 5 Leichtbautechnologie 2 1 1 PL 5 <td< td=""><td>Faserverbundtechnologie</td><td>2 1 1</td><td></td><td></td><td></td><td></td><td></td><td>I</td><td>PL</td><td>5</td></td<>	Faserverbundtechnologie	2 1 1						I	PL	5
Grundlagen der Technischen Akustik 2 2 0 PL 30min 5 Kommunikationsnetze 2 1 1 PL 5 Leistungselektronik 1 - Grundlagen 2 2 0 PL 5 Angewandte Wärmeübertragung 2 2 0 PL 5 Batterien und Brennstoffzellen 2 1 1 PL 5 Digitale Regelungssysteme 2 1 1 PL 5 Dynamische Prozessoptimierung 2 1 1 PL 5 Kunststoffverfahrenstechnologien 3 1 1 PL 5 Leistungselektronik 2 - Theorie 2 2 1 PL 30min 5 Lichttechnik 1 und Technische Optik 1 2 3 0 PL 90min 5 Maschinenelemente 3 2 3 0 PL 90min 5 Mikrocontroller- und Signalprozessortechnik 1 2 2 1 PL 45min 5 Strömungsmesstechnik 2 0 2 PL 5 System Identification 2 1 1 PL 5 Werkstofftechnologie der Metalle 4 0 0 PL 30min 5 Data Science für industrielle Anwendungen 2 2 0 PL 60min 5 Deep Learning 2 2 0 PL 5 Lasermaterialbearbeitung und innovative Fügetechnologien 2 1 1 P	Funksysteme	3 1 0						ا	PL 30min	5
Kommunikationsnetze 2 1 1 PL 5 Leistungselektronik 1 - Grundlagen 2 2 1 PL 5 Angewandte Wärmeübertragung 2 2 0 PL 5 Batterien und Brennstoffzellen 2 1 1 PL 5 Digitale Regelungssysteme 2 1 1 PL 5 Dynamische Prozessoptimierung 2 1 1 PL 5 Kunststoffverfahrenstechnologien 3 1 1 PL 5 Kunststoffverfahrenstechnologien 3 1 1 PL 5 Leistungselektronik 2 - Theorie 2 2 1 PL 30min 5 Lichttechnik 1 und Technische Optik 1 2 3 0 PL 90min 5 Maschinenelemente 3 2 3 0 PL 5 Mikrocontroller- und Signalprozessortechnik 1 2 2 1 PL 45min 5 Strömungsmesstechnik 2 0 2 PL 5 System Identification 2 1 1 PL 5 Werkstofftechnologie der Metalle 4 0 0 PL 30min 5 Data Science für industrielle Anwendungen 2 2 0 <td< td=""><td>Getriebetechnik 2</td><td>220</td><td></td><td></td><td></td><td></td><td></td><td>l</td><td>PL</td><td>5</td></td<>	Getriebetechnik 2	220						l	PL	5
Leistungselektronik 1 - Grundlagen 2 2 1 PL 5 Angewandte Wärmeübertragung 2 2 0 PL 5 Batterien und Brennstoffzellen 2 1 1 PL 5 Digitale Regelungssysteme 2 1 1 PL 5 Dynamische Prozessoptimierung 2 1 1 PL 5 Kunststoffverfahrenstechnologien 3 1 1 PL 5 Leistungselektronik 2 - Theorie 2 2 1 PL 30min 5 Leistungselektronik 2 - Theorie 2 2 1 PL 30min 5 Lichttechnik 1 und Technische Optik 1 2 3 0 PL 90min 5 Maschinenelemente 3 2 3 0 PL 90min 5 Mikrocontroller- und Signalprozessortechnik 1 2 2 1 PL 45min 5 Strömungsmesstechnik 2 0 2 PL 5 5 Werkstofftechnologie der Metalle 4 0 0 PL 30min 5 Deta Science für industrielle Anwendungen 2 2 0 PL 60min 5 Deep Learning 2 2 0 PL 5 5 Lasermaterialbearbeitung und innovative	Grundlagen der Technischen Akustik	220							PL 30min	5
Angewandte Wärmeübertragung Batterien und Brennstoffzellen Digitale Regelungssysteme Dynamische Prozessoptimierung Leistungselektronik 2 - Theorie Lichttechnik 1 und Technische Optik 1 Digitale Regelungssysteme 2 1 1 Dynamische Prozessoptimierung 2 1 1 Leistungselektronik 2 - Theorie Lichttechnik 1 und Technische Optik 1 Data Science für industrielle Anwendungen Deep Learning Lasermaterialbearbeitung und innovative Fügetechnologie Leichtbautechnologie Leichtbautechno	Kommunikationsnetze	2 1 1						ļ	PL	5
Batterien und Brennstoffzellen 2 1 1 PL 5 Digitale Regelungssysteme 2 1 1 PL 5 Dynamische Prozessoptimierung 2 1 1 PL 5 Kunststoffverfahrenstechnologien 3 1 1 PL 5 Leistungselektronik 2 - Theorie 2 2 1 PL 30min 5 Lichttechnik 1 und Technische Optik 1 2 3 0 PL 90min 5 Maschinenelemente 3 2 3 0 PL 5 Mikrocontroller- und Signalprozessortechnik 1 2 2 1 PL 45min 5 Strömungsmesstechnik 2 0 2 PL 5 System Identification 2 1 1 PL 5 Werkstofftechnologie der Metalle 4 0 0 PL 30min 5 Data Science für industrielle Anwendungen 2 2 0 PL 60min 5 Deep Learning 2 2 0 PL 5 Lasermaterialbearbeitung und innovative Fügetechnologien 2 1 1 PL 90min 5 Leichtbautechnologie 2 1 1 PL 5 Mikrocontroller- und Signalprozessortechnik 2 2 2 1 PL 5 Regenerative Energien und Speichertechnik 2 1 1 PL 5 Schaltnetzteile / Stromversorgungstechnik <	Leistungselektronik 1 - Grundlagen	2 2 1						1	PL	5
Digitale Regelungssysteme 2 1 1 PL 5 Dynamische Prozessoptimierung 2 1 1 PL 5 Kunststoffverfahrenstechnologien 3 1 1 PL 5 Leistungselektronik 2 - Theorie 2 2 1 PL 30min 5 Lichttechnik 1 und Technische Optik 1 2 3 0 PL 90min 5 Maschinenelemente 3 2 3 0 PL 5 Mikrocontroller- und Signalprozessortechnik 1 2 2 1 PL 45min 5 Strömungsmesstechnik 2 0 2 PL 5 System Identification 2 1 1 PL 5 Werkstofftechnologie der Metalle 4 0 0 PL 30min 5 Data Science für industrielle Anwendungen 2 2 0 PL 60min 5 Deep Learning 2 2 0 PL 90min 5 Lasermaterialbearbeitung und innovative Fügetechnologien 2 1 1 PL 90min 5 Leichtbautechnologie 2 1 1 PL 5 Mikrocontroller- und Signalprozessortechnik 2 2 2 1 PL 5 Regenerative Energien und Speichertechnik 2 1 1 PL 5 Schaltnetzteile / Stromversorgungstechnik 2 1 1 PL 45min 5 Software Safety	Angewandte Wärmeübertragung		2 2 0					1	PL	5
Dynamische Prozessoptimierung Kunststoffverfahrenstechnologien Leistungselektronik 2 - Theorie Lichttechnik 1 und Technische Optik 1 Maschinenelemente 3 Mikrocontroller- und Signalprozessortechnik 1 Strömungsmesstechnik 2 2 2 1 Merkstofftechnologie der Metalle Data Science für industrielle Anwendungen Deep Learning Lasermaterialbearbeitung und innovative Fügetechnologien Leichtbautechnologie Deithologien Leichtbautechnologie Deithologien Leichtbautechnologie Despender indestrielle Anwendungen Despender indestri	Batterien und Brennstoffzellen		2 1 1					1	PL	5
Kunststoffverfahrenstechnologien Leistungselektronik 2 - Theorie Lichttechnik 1 und Technische Optik 1 Maschinenelemente 3 Mikrocontroller- und Signalprozessortechnik 1 Strömungsmesstechnik 202 System Identification Data Science für industrielle Anwendungen Deep Learning Lasermaterialbearbeitung und innovative Fügetechnologien Leichtbautechnologie Leichtbautechnologie Mikrocontroller- und Signalprozessortechnik 2 211 PL 55 Werkstofftechnologien Leichtbautechnologien Leichtbautechnologie PL 55 Mikrocontroller- und Signalprozessortechnik 2 Regenerative Energien und Speichertechnik Schaltnetzteile / Stromversorgungstechnik 211 PL 5 Schaltnetzteile / Stromversorgungstechnik 220 PL 5 Schaltnetzteile / Stromversorgungstechnik 211 PL 55 PL 45min 5	Digitale Regelungssysteme		2 1 1					1	PL	5
Leistungselektronik 2 - Theorie Lichttechnik 1 und Technische Optik 1 Maschinenelemente 3 Mikrocontroller- und Signalprozessortechnik 1 Strömungsmesstechnik System Identification Werkstofftechnologie der Metalle Data Science für industrielle Anwendungen Deep Learning Lasermaterialbearbeitung und innovative Fügetechnologien Leichtbautechnologie Mikrocontroller- und Signalprozessortechnik 2 Regenerative Energien und Speichertechnik Schaltnetzteile / Stromversorgungstechnik Software Safety Zuverlässigkeit von Schaltungen und Systemen 2 2 1 PL 30min 5 PL 30min 5	Dynamische Prozessoptimierung		2 1 1						PL	5
Lichttechnik 1 und Technische Optik 1 Maschinenelemente 3 Mikrocontroller- und Signalprozessortechnik 1 Strömungsmesstechnik System Identification Verkstofftechnologie der Metalle Data Science für industrielle Anwendungen Deep Learning Lasermaterialbearbeitung und innovative Fügetechnologien Leichtbautechnologie Leichtbautechnologie Mikrocontroller- und Signalprozessortechnik 2 Regenerative Energien und Speichertechnik Schaltnetzteile / Stromversorgungstechnik Software Safety Zuverlässigkeit von Schaltungen und Systemen 2 3 0 PL 90min 5 PL 45min 5 PL 90min 5 PL 50 PL 50 PL 51 PL 55 PL 56 PL 56	Kunststoffverfahrenstechnologien		3 1 1					1	PL	5
Maschinenelemente 3 Mikrocontroller- und Signalprozessortechnik 1 Strömungsmesstechnik 2 0 2 System Identification PL 5 Werkstofftechnologie der Metalle Data Science für industrielle Anwendungen Deep Learning Lasermaterialbearbeitung und innovative Fügetechnologien Leichtbautechnologie Deichtbautechnologie Leichtbautechnologie PL 5 Regenerative Energien und Speichertechnik Schaltnetzteile / Stromversorgungstechnik Software Safety Zuverlässigkeit von Schaltungen und Systemen	Leistungselektronik 2 - Theorie		2 2 1					ļ	PL 30min	5
Mikrocontroller- und Signalprozessortechnik 1 Strömungsmesstechnik System Identification Werkstofftechnologie der Metalle Data Science für industrielle Anwendungen Deep Learning Lasermaterialbearbeitung und innovative Fügetechnologien Leichtbautechnologie Leichtbautechnologie Leichtbautechnologie Mikrocontroller- und Signalprozessortechnik 2 Regenerative Energien und Speichertechnik Schaltnetzteile / Stromversorgungstechnik Software Safety Zuverlässigkeit von Schaltungen und Systemen PL 45min 5 PL 45min 5 PL 45min 5 PL 45min 5	Lichttechnik 1 und Technische Optik 1		2 3 0					ļ	PL 90min	5
Strömungsmesstechnik System Identification Werkstofftechnologie der Metalle Data Science für industrielle Anwendungen Deep Learning Lasermaterialbearbeitung und innovative Fügetechnologien Leichtbautechnologie Leichtbautechnologie Leichtbautechnologie Deep Learning Leichtbautechnologie Leichtbautechnologie Deep Learning Leichtbautechnologie Leichtbautechnolo	Maschinenelemente 3		2 3 0					1	PL	5
System Identification 2 1 1 PL 5 Werkstofftechnologie der Metalle 4 0 0 PL 30min 5 Data Science für industrielle Anwendungen 2 2 0 PL 60min 5 Deep Learning 2 2 0 PL 5 Lasermaterialbearbeitung und innovative Fügetechnologien Leichtbautechnologie 2 1 1 PL 5 Mikrocontroller- und Signalprozessortechnik 2 2 2 1 PL 5 Regenerative Energien und Speichertechnik 2 1 1 PL 5 Schaltnetzteile / Stromversorgungstechnik 2 1 1 PL 5 Software Safety 2 2 0 PL 5 Zuverlässigkeit von Schaltungen und Systemen 2 2 0 PL 30min 5	Mikrocontroller- und Signalprozessortechnik 1		2 2 1					1	PL 45min	5
Werkstofftechnologie der Metalle Data Science für industrielle Anwendungen Deep Learning Lasermaterialbearbeitung und innovative Fügetechnologien Leichtbautechnologie Leichtbautechnologie Mikrocontroller- und Signalprozessortechnik 2 Regenerative Energien und Speichertechnik Schaltnetzteile / Stromversorgungstechnik Software Safety Zuverlässigkeit von Schaltungen und Systemen PL 30min 5 PL 60min 5 PL 90min 5 PL 90min 5 PL 45min 5 PL 45min 5	Strömungsmesstechnik		202					1	PL	5
Data Science für industrielle Anwendungen Deep Learning Lasermaterialbearbeitung und innovative Fügetechnologien Leichtbautechnologie Leichtbautechnologie Al 10 PL 90min 5 PL 90min 5 PL 90min 5 PL 90min 5 PL 5 Mikrocontroller- und Signalprozessortechnik 2 Regenerative Energien und Speichertechnik Al 10 PL 5 PL 5 PL 45min 5 PL 45min 5 PL 30min 5	System Identification		2 1 1					1	PL	5
Data Science für industrielle Anwendungen Deep Learning Lasermaterialbearbeitung und innovative Fügetechnologien Leichtbautechnologie Leichtbautechnologie Alt 10 PL 90min 5 PL 90min 5 Mikrocontroller- und Signalprozessortechnik 2 Regenerative Energien und Speichertechnik Schaltnetzteile / Stromversorgungstechnik Software Safety Zuverlässigkeit von Schaltungen und Systemen PL 60min 5 PL 5 PL 90min 5 PL 5 PL 5 PL 5 PL 5 PL 5 PL 45min 5 PL 30min 5	Werkstofftechnologie der Metalle		4 0 0						PL 30min	5
Deep Learning Lasermaterialbearbeitung und innovative Fügetechnologien Leichtbautechnologie Leichtbautechnologie Mikrocontroller- und Signalprozessortechnik 2 Regenerative Energien und Speichertechnik Schaltnetzteile / Stromversorgungstechnik Software Safety Zuverlässigkeit von Schaltungen und Systemen 2 2 0 PL 5 PL 90min 5 PL 5 PL 5 PL 5 PL 5 PL 45min 5 PL 45min 5				220					PL 60min	5
Lasermaterialbearbeitung und innovative Fügetechnologien Leichtbautechnologie Mikrocontroller- und Signalprozessortechnik 2 Regenerative Energien und Speichertechnik Schaltnetzteile / Stromversorgungstechnik Software Safety Zuverlässigkeit von Schaltungen und Systemen PL 90min 5 PL 5 PL 5 PL 5 PL 5 PL 45min 5 PL 45min 5 PL 5 PL 5 PL 5 PL 5 PL 55 PL 30min 5				220				ı	PL	5
Mikrocontroller- und Signalprozessortechnik 2 Regenerative Energien und Speichertechnik Schaltnetzteile / Stromversorgungstechnik Software Safety Zuverlässigkeit von Schaltungen und Systemen 2 2 1 PL 5 PL 5 PL 45min 5 PL 5 PL 5 PL 5	S S S S S S S S S S S S S S S S S S S			4 1 0				1	PL 90min	5
Regenerative Energien und Speichertechnik Schaltnetzteile / Stromversorgungstechnik Software Safety Zuverlässigkeit von Schaltungen und Systemen 2 1 1 PL 5 PL 45min 5 PL 5 PL 5 PL 5				2 1 1					PL	5
Schaltnetzteile / Stromversorgungstechnik 2 1 1 PL 45min 5 Software Safety 2 2 0 PL 5 Zuverlässigkeit von Schaltungen und Systemen 2 2 0 PL 30min 5	Mikrocontroller- und Signalprozessortechnik 2			221					PL	5
Schaltnetzteile / Stromversorgungstechnik2 1 1PL 45min 5Software Safety2 2 0PL 5Zuverlässigkeit von Schaltungen und Systemen2 2 0PL 30min 5				2 1 1					PL	5
Software Safety 2 2 0 PL 5 Zuverlässigkeit von Schaltungen und Systemen 2 2 0 PL 30min 5				2 1 1				ļ	PL 45min	5
Zuverlässigkeit von Schaltungen und Systemen 2 2 0 PL 30min 5				220				ļ	PL	5
,	•			220				ļ	PL 30min	5
									FP	30

Masterarbeit mit Kolloquium

PL 30
PL 20min 0
MA 5
Monate

Modul: Bildverarbeitung für die Qualitätssicherung

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Pflichtkennz.: Pflichtmodul Turnus: Wintersemester

Modulnummer: 200240 Prüfungsnummer:230481

Modulverantwortlich: Prof. Dr. Gunther Notni

Leistungspu	nkte	e: 5				W	ork	load	d (h):15	50		A	ntei	l Se	elbs	ststı	udiu	m (h):′	105			S	WS	:4.0)			
Fakultät für I	Mas	schi	inen	bau	ı																	F	ac	hge	biet	:23	62			
SWS nach	1	l.F	S	2	:F	S	3	3.F	S	4	l.F	<u> </u>	5	5.FS	3	6	3.F	S	7	'.F	3	8	3.F	S	Q).F	S	1	0.F	S
Fach-	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р
semester	2	0	2																											

Lernergebnisse / Kompetenzen

Fachkompetenz:

Der Hörer hat einen umfassenden Überblick zu technischen Verfahren der Bildverarbeitung und deren Einsatz in der Qualitätssicherung. Er kennt sowohl die systemtechnischen Aspekte unterschiedlicher Bildverarbeitungstechnologien als auch die Methoden / Verfahren zur Ermittlung von Qualitätsparametern (insbesondere Geometrie- und Oberflächenparametern). Die Studierenden beherrschen die Grundbegriffe der Bildverarbeitung, können Kamerasysteme für den industriellen Einsatz bewerten und sind fähig die technische und wirtschaftliche Machbarkeit von Lösungen der industriellen Bildverarbeitung zu beurteilen. Sie sind in der Lage Aufgaben der Qualitätssicherung von Werkstücken und Erzeugnissen auf der Grundlage der industriellen Bildverarbeitung zu lösen. Durch zahlreiche Praxisbeispiele, die in Vorlesung und Übungen diskutiert wurden, haben die Studierenden sich grundlegendes Wissen angeeignet.

Methodenkompetenz:

Im Ergebnis ist der Hörer in der Lage, Probleme der industriellen Bildverarbeitung zu analysieren und zu klassifizieren sowie wichtige Schritte der Problemlösung abzuleiten. Mit den vermittelten Kompetenzen ist der Hörer befähigt, in konkreten Anwendungen der industriellen Bildverarbeitung entwickelnd tätig zu werden. Sozialkompetenz:

Sie haben gelernt, Aufgaben der industriellen Bildverarbeitung im Team im Rahmen von Praktikumsgruppen (3-4 Studenten zu lösen, die Leistungen ihrer Mitkommilitonen anzuerkennen und Meinungen anderer zu berücksichtigen.

Vorkenntnisse

Naturwissenschaftliche und ingenieurwissenschaftliche Fächer des Grundstudiums

Inhalt

Bildverarbeitung für die Qualitätssicherung

Im Modul werden grundlegende Aspekte des Aufbaus von Bildverarbeitungssystemen für Anwendungen in der industriellen Qualitätssicherung vermittelt. Inhaltliche Schwerpunkte bilden:

- 1. Grundbegriffe der Bildverarbeitung und Gewinnung digitaler Bildsignale
- 2. Grundprinzipien von CCD / CMOS-Kameras
- 3. Bildsensoren / Kamerasysteme in unterschiedlichen Spektralbereichen (Röntgen- , UV- , VIS- , IR- , Farb- und Multispektralkameras)
 - 4. Systemkomponenten der Bildverarbeitung
 - 5. Optische Komponenten der Bildverarbeitung Abbildung, Beleuchtung
 - 6. Digitale Bildsignalverarbeitung
 - 7. Messverfahren Ein- / Zweidimensional
 - 8. 3D-Messverfahren
 - 9. Weitere Bildgebende Messverfahren Computertomographie, Wärmebildmessung

- 10. Anwendung zur Mustererkennung
- 11. Integration von Bildverarbeitungssystemen in Fertigungsprozesse
- 12. Lasten- und Pflichtenheft eines industriellen Bildverarbeitungssystems

Die Vorlesung wird durch Praktikumsversuche unterstützt und gibt den Studierenden die Möglichkeit einer praktischen Erprobung der vermittelten Inhalte.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Beamer (Bilder, Grafiken, Animationen und Live-Vorführung von Algorithmen), elektronisches Vorlesungsskript

pandemiebedingt:

Webex (browserbasiert) oder Webex (Applikation),

technische Anforderungen: Kamera für Videoübertragung (720p/HD), Mikrofon, Internetverbindung (geeignet ist für HD-Audio und -Video-Übertragung: 4 MBit/s),

Endgerät, welches die technischen Hardware/Software-Voraussetzungen der benötigten Software (Webbrowser Internet Explorer, Mozilla Firefox, Safari oder Chrome bzw. Webex-Meeting-Applikation) erfüllt Bitte für das Fach unter folgendem Link einschreiben:

Einschreibung der Fächer für das Fachgebiet Qualitätssicherung und industrielle Bildverarbeitung

Literatur

J. Beyerer, F. Puente Leon, Ch. Frese "Automatische Sichtprüfung"; Springer Verlag 2012 Th. Luhmann "Nahbereichsfotogrammetrie" 4.Auflage Wichmann Verlag 2019

B. Jähne "Digitale Bildverarbeitung"; Springer Verlag 2012

A. Erhardt "Einführung in die digitale Bildverarbeitung"; Vieweg und Teuber (2008)

Das Handbuch der Bildverarbeitung, Stemmer Imaging 2019

M. Sackewitz (Hsg.) "Handbuch zur Industriellen Bildverarbeitung" (2017) Fraunhofer IRB Verlag

Ch. Demant, B. Streicher-Abel, A. Springhoff "Industrielle Bildverarbeitung", Springer Verlag (2011)

R. D. Fiete "Modelling the Imaging Chain of Digital Cameras", SPIE Press (2010)

G.C.Holst, T.S. Lomheim "CMOS/CCD Sensors and camera systems" SPIE Press 2011

Brückner, P.: Handbuch Bildverarbeitung, TU Ilmenau 2017

Detailangaben zum Abschluss

Das Modul Bildverarbeitung für die Qualitätssicherung mit der Prüfungsnummer 230481 schließt mit folgenden Leistungen ab:

- schriftliche Prüfungsleistung über 90 Minuten mit einer Wichtung von 100% (Prüfungsnummer: 2300672)
- Studienleistung mit einer Wichtung von 0% (Prüfungsnummer: 2300673)

Details zum Abschluss Teilleistung 2:

Praktika gemäß Testatkarte in der Vorlesungszeit

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

schriftliche Aufsichtsarbeit (Präsenz-Klausur) in Distanz entsprechend § 6a PStO-AB

verwendet in folgenden Studiengängen:

Master Fahrzeugtechnik 2014

Master Fahrzeugtechnik 2022

Master Maschinenbau 2017

Master Maschinenbau 2022

Master Mathematik und Wirtschaftsmathematik 2022

Master Mechatronik 2017

Master Mechatronik 2022

Master Optische Systemtechnik/Optronik 2022

Master Wirtschaftsingenieurwesen 2021 Vertiefung MB

Modul: Fahrwerktechnik 1

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Pflichtkennz.: Pflichtmodul Turnus: Wintersemester

Modulnummer: 201061 Prüfungsnummer:230530

Modulverantwortlich: Prof. Dr. Thomas Bachmann

Leistungspu	nkte: 5			W	orklo	ad (h	1):15	50		Α	nte	il Se	elbs	tstı	ıdiu	m (h):10)5			SW	/S:4	0			
Fakultät für I	Masch	inen	ıbau																Fa	achg	jebi	et:2	324			
SWS nach	1.F	S	2.F	S	3.F	S	4	l.FS	3	5	5.F	S	6	6.F	3	7	.FS		8.	FS		9.F	S	10).F	3
Fach-	v s	Р	V S	Р	VS	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V	S F	۰ ۱	/ s	Р	V	s	Р
semester	2 1	1																								

Lernergebnisse / Kompetenzen

Den Studierenden sind die Grundlagen zum Aufbau und zur Funktion von Fahrwerksystemen, im Besonderen von Reifen, Bremsen, Lenkung und Radaufhängung, bekannt. Dazu zählen einerseits die konstruktiven und konzeptionellen Besonderheiten. Nach der Vorlesung und dem Praktikum sind die Studierenden in der Lage, verschiedene Brems- und Lenksysteme sowie Radaufhängung nach verschiedenen Kriterien selbst auszulegen. Sie beherrschen verschiedene Methoden zur Lösungsfindung.

Vorkenntnisse

Grundlagen der FahrdynamikGrundlagen der Fahrwerksysteme

Inhalt

Konstruktive Auslegung moderner Fahrwerktechnik Geometrische und konzeptionelle Grundlagen zu Bremsbelägen+Bremsscheiben sowie ReifenGrundlagen zu Reibung und VerschleißGrundlagen zu NVH-Aspekten der FahrwerkssystemeReifenmodelleDynamische Prozesse in LenksystemDynamische Prozesse in Radaufhängung

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Folien, Lehrblätter, Powerpoint-Präsentationen (über die Homepage des FG KFT abrufbar)

Literatur

Day: Braking of Road Vehicles, 2014.

Dixon: Shock Absorber Handbook, 2007.

Dixon: Suspension Geometry and Computation, 2009.

Harrer, Pfeffer: Steering Handbook, 2017. Ersoy, Gieß: Fahrwerkhandbuch, 2017.

Gent, Walter: The Pneumatic Tire, 2006.

Liu, Huston: Principles of Vibration Analysis with Applications in Automotive Engineering, 2011.

Scharmm u.a.: Fahrzeugtechnik: Technische Grundlagen aktueller und zukünftiger Kraftfahrzeuge, 2017.

Wang: Automotive Tire Noise and Vibrations, 2020.

Detailangaben zum Abschluss

Das Modul Fahrwerktechnik 1 mit der Prüfungsnummer 230530 schließt mit folgenden Leistungen ab:

- schriftliche Prüfungsleistung über 90 Minuten mit einer Wichtung von 80% (Prüfungsnummer: 2300825)
- Studienleistung mit einer Wichtung von 20% (Prüfungsnummer: 2300826)

Details zum Abschluss Teilleistung 2:

Praktika gemäß Testatkarte in der Vorlesungszeit

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Master Fahrzeugtechnik 2022

Modul: Höhere Festigkeitslehre und Finite Elemente Methoden

Modulabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Pflichtmodul Turnus: Wintersemester

Modulnummer: 200259 Prüfungsnummer:2300702

Modulverantwortlich: Prof. Dr. Lena Zentner

Leistungspu	nkte	∋: 5				W	ork	load	d (h):15	50		Α	ntei	il Se	elbs	ststu	ıdiu	m (h):′	105			S	WS	:4.0)			
Fakultät für I	Mas	schi	iner	ıbaı	u																	F	acl	hge	biet	:23	44			
SWS nach	1	l.F	S	2	2.F	S	3	3.F	S	4	l.F	S	5	5.FS	S	6	3.F	S	7	'.FS	3	8	3.F	S	ç).F	S	10).F	S
Fach-	٧	s	Р	٧	S	Р	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	s	Р	٧	S	Р
semester	2	1	1																											

Lernergebnisse / Kompetenzen

Die Studierenden besitzen das methodische Rüstzeug, um den Abstraktionsprozess vom realen technischen System über das mechanische Modell zur mathematischen Lösung mittels der Finiten-Elemente-Methode selbstständig realisieren zu können.

Sie können als wesentlichen Ausgangspunkt des Lösungsprozesses das technische Problem klassifizieren. Die Studierenden können neben den, im Mechanik-Grundkurs betonten analytischen Methoden, basierend auf der meist geschlossenen Lösung von Differentialgleichungen, die Effizienz numerischer Methoden verstehen. Durch eine Vielzahl von selbständig bzw. im Seminar gemeinsam gelöster Aufgaben und insbesondere durch praktische Übungen am Rechner sind die Studierenden in der Lage aus dem technischen Problem heraus über eine geeignete Modellbildung eine Lösung rechnergestützt numerisch zu finden. Insbesondere haben sie gelernt, die oftmals sehr umfangreichen numerischen Resultate qualitativ aber ganz besonders qualitativ zu bewerten und Fehler in der Numerik zu erkennen.

Im Ergebnis der Wissensvermittlung im Modul sind die Lernenden fähig, selbständig mit einer FEM-Software zu arbeiten und die Deutung und Auswertung der Ergebnisse einer FEM-Analyse vorzunehmen.

Vorkenntnisse

Mathematik (Grundlagenstudium), Grundlagen der Technischen Mechanik

Inhalt

- 1. Mathematische Grundlagen
- Tensoren
- Transformation von Tensoren bei Drehung des Koordinatensystems
- 2. Grundlagen der Höheren Festigkeitslehre
- Ein- und mehrdimensionale Spannungszustände
- Gleichgewichtsbedingungen für Spannungen
- 3. Elastizitätstheorie
- analytische Betrachtung des Spannungstensors
- Mohrscher Spannungskreis
- 4. Stoffgesetz Zusammenhang zwischen Spannungs- und Verformungszustand
- 5. Ebener Spannungszustand, ebener Verformungszustand
- 6. Ausgewählte Probleme der Höheren Festigkeitslehre
- KIRCHHOFFsche Plattentheorie
- Nichtlinearitäten große Verformungen bei der Biegung eines Stabes
- Vergleich der kleinen und großen Verformungen
- 7. Energiemethoden in der Elastizitätstheorie
- Prinzip des Minimums der totalen potentiellen Energie
- Berechnung potentieller Energien
- 8. Verfahren nach Ritz
- 9. Einführung in die Finite Elemente Methode
- Beschreibung der FEM, Idealisierung, Diskretisierung
- Betrachtung von einen eindimensionalen Element, Normierung
- Ausführliches Beispiel zur FEM

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel (ergänzt mit Overhead-Folien), vorlesungsbegleitendes Material teilweise Online-Vorlesung

technische Anforderungen: https://intranet.tu-ilmenau.de/site/vpsl-pand/SitePages/Handreichungen_Arbeitshilfen.aspx

Literatur

Hahn, H. G.: Elastizitätstheorie, B. G. Teubner, Stuttgart

Issler, L.; Roß, H.; Häfele, P.: Festigkeitslehre Grundlagen; Berlin u.a.

Bathe, K.-J.: Finite-Elemente-Methoden

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Schriftliche Abschlussarbeit (Klausur) in Distanz entsprechend § 6a PStO-AB technische Voraussetzungen siehe https://intranet.tu-ilmenau.de/site/vpsl-pand/SitePages/Handreichungen Arbeitshilfen.aspx

verwendet in folgenden Studiengängen:

Master Fahrzeugtechnik 2022 Master Maschinenbau 2017 Master Maschinenbau 2022

Master Mathematik und Wirtschaftsmathematik 2022

Modul: Verbrennungsmotoren

Modulabschluss: Prüfungsleistung schriftlich 180 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Pflichtmodul Turnus: Wintersemester

Modulnummer: 201064 Prüfungsnummer:2300831

Modulverantwortlich: Prof. Dr. Thomas Bachmann

Leistungspu	nkte	: 5				W	orkl	oad	d (h):15	50		Α	ntei	l Se	elbs	tstu	ıdiu	ım (l	h):1	05			SW	/S:4	.0			
Fakultät für I	Mas	chi	nen	bau	ı																	Fa	achg	gebi	et:2	324			
SWS nach	1	.FS	S	2	.FS	3	3	3.FS	3	4	l.F	3	5	5.FS	3	6	S.FS	3	7	.FS		8	FS		9.F	S	10).F	S
Fach-	٧	S	Р	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	SF	۰ ۱	/ S	Р	V	S	Р
semester	2	2	0																										

Lernergebnisse / Kompetenzen

Die Studierenden haben fundierte Kenntnisse zur Entwicklung und Prüfung der Verbrennungsmotoren und ihrer Systeme. Sie kennen zahlreiche Beispiele aus der Praxis. Die Studierenden können komplexe Zusammenhänge erkennen und bewerten.

Vorkenntnisse

Grundlagen der Fahrzeugantriebe

Inhalt

Übersicht und Eigenschaften motorischer KraftstoffeGemischbildung und RohemissionsentstehungSensorische und modellbasierte Erfassung von Luft- und KraftstoffmassenstromAbgasnachbehandlung für gasförmige und feste EmissionskomponentenNieder- und Hochdruckerzeugung in KraftstoffsystemenNiederdruckeinspritzung/einblasung für flüssige und gasförmige KraftstoffeHochdruckeinspritzung/-einblasung für flüssige und gasförmige KraftstoffeBesondere Phänomene und zugehörige Optimierungsmaßnahmen bei motorischer VerbrennungKonzeption von KraftstoffsystemenBesondere Eigenschaften nachhaltiger KraftstoffeNachhaltige Kraftstoffe und ihre Auswahl als Bindeglied verschiedener MobilitätssektorenZukunftspotentiale hinsichtlich Wirkungsgrad und Emissionen durch gezielte Wahl/Design eines Kraftstoffs

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Folien, Lehrblätter, Powerpoint-Präsentationen (über die Homepage des FG KFT abrufbar)

Literatur

Basshuysen, Schäfer: Handbuch Verbrennungsmotor. Grundlagen, Komponenten, Systeme, Perspektiven, 2015

Schreiner: Basiswissen Verbrennungsmotor, 2020.

Merker, Teichmann, Haußmann: Grundlagen Verbrennungsmotoren, Funktionsweise und alternative Antriebssysteme, 2018.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Master Fahrzeugtechnik 2022

Modul: Alternative Fahrzeugantriebe

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Pflichtkennz.: Pflichtmodul Turnus: Sommersemester

Modulnummer: 201059 Prüfungsnummer:230528

Modulverantwortlich: Prof. Dr. Thomas Bachmann

Leistungspu	nkte: 5	W	orkload (h):150	Anteil Se	elbststudiu	ım (h):105	S	WS:4.0	
Fakultät für I	Maschine	nbau						Fachge	biet:2324	
SWS nach	1.FS	2.FS	3.FS	4.FS	5.FS	6.FS	7.FS	8.FS	9.FS	10.FS
Fach-	V S F	V S P	V S P	V S P	V S P	V S P	V S P	V S P	V S P	V S P
semester		2 1 1								

Lernergebnisse / Kompetenzen

Die Studierenden haben einen sehr breitgefächerten Überblick zu den Antrieben der Hybridfahrzeuge und voll elektrischen Fahrzeuge, Brennstoffzellenfahrzeuge, und Wasserstoff-Fahrzeuge. Nach der Vorlesung und dem Praktikum sind die Studierenden in der Lage, den Antriebsstrang eines Elektrofahrzeugs nach verschiedenen Kriterien selbst auszulegen. Sie beherrschen verschiedene Methoden zur Lösungsfindung.

Vorkenntnisse

Grundlagen der Fahrzeugantriebe Allgemeine Elektrotechnik 1, 2 Regelungs- und Systemtechnik

Inhalt

Alternative Fahrzege und AntriebeHybridfahrzeugeVoll elektrische FahrzeugeBrennstoffzellenfahrzeugeWasserstoff-FahrzeugeElektromotoren für elektrische FahrzeugeBatterienLeistungselektronik

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Folien, Lehrblätter, Powerpoint-Präsentationen (über die Homepage des FG KFT abrufbar)

Literatur

Babiel: Elektrische Antriebe in der Fahrzeugtechnik, 2014. Guzzella, Sciaretta: Vehicle Propulsion Systems, 2013.

Husain: Electric and Hybrid Vehicles, 2010.

Larminie, Lowry: Electric Vehicle Technology Explained, 2012. Stan: Alternative Antriebe für Automobile, 2020.

Wallentowitz, Freialdenhoven: Strategien zur Elektrifizierung des Antriebsstranges, 2011.

Detailangaben zum Abschluss

Das Modul Alternative Fahrzeugantriebe mit der Prüfungsnummer 230528 schließt mit folgenden Leistungen ab:

- schriftliche Prüfungsleistung über 90 Minuten mit einer Wichtung von 80% (Prüfungsnummer: 2300821)
- Studienleistung mit einer Wichtung von 20% (Prüfungsnummer: 2300822)

Details zum Abschluss Teilleistung 2: Praktika gemäß Testatkarte in der Vorlesungszeit.

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Master Fahrzeugtechnik 2022

Modul: Fahrdynamikregelung und Fahrassistenzsysteme

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten

Sprache:Deutsch Pflichtkennz.:Pflichtmodul Turnus:Sommersemester

Modulnummer: 201060 Prüfungsnummer:230529

Modulverantwortlich: Prof. Dr. Thomas Bachmann

Leistungspu	nkte: 5	W	orkload (h):150	Anteil Se	elbststudiu	ım (h):105	S	WS:4.0	
Fakultät für I	Maschine	nbau						Fachge	biet:2324	
SWS nach	1.FS	2.FS	3.FS	4.FS	5.FS	6.FS	7.FS	8.FS	9.FS	10.FS
Fach-	V S F	V S P	V S P	V S P	V S P	V S P	V S P	V S P	V S P	V S P
semester		2 1 1								

Lernergebnisse / Kompetenzen

Die Studierenden haben einen sehr breitgefächerten Überblick zu den aktiven Fahrsicherheitssystemen, der Fahdynamikregelung und der Fahrerassitenz. Nach der Vorlesung und dem Praktikum sind die Studierenden in der Lage, verschiedene Fahrdynamik-Regelsysteme wie ABS und ESP nach verschiedenen Kriterien selbst auszulegen. Sie beherrschen verschiedene Methoden zur Lösungsfindung.

Vorkenntnisse

Grundlagen der FahrdynamikGrundlagen der FahrwerksystemeRegelungs- und Systemtechnik

Inhalt

AntiblockiersystemeAntriebsschlupfregelungFahrstabilitätsregelungAktive RadaufhängungTorque VectoringAktive FahrwerksystemeFahrzustand-SchätzungFahrassistenzsystemePath PlanningPath Following

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Folien, Lehrblätter, Powerpoint-Präsentationen (über die Homepage des FG KFT abrufbar)

Literatur

Isermann: Fahrdynamik-Regelung, 2006.

Kiencke, Nielsen: Automotive Control Systems, 2005. Rajamani: Vehicle Dynamics and Control, 2012.

Detailangaben zum Abschluss

Das Modul Fahrdynamikregelung und Fahrassistenzsysteme mit der Prüfungsnummer 230529 schließt mit folgenden Leistungen ab:

- schriftliche Prüfungsleistung über 90 Minuten mit einer Wichtung von 80% (Prüfungsnummer: 2300823)
- Studienleistung mit einer Wichtung von 20% (Prüfungsnummer: 2300824)

Details zum Abschluss Teilleistung 2: Praktika gemäß Testatkarte in der Vorlesungszeit

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Master Fahrzeugtechnik 2022

Modul: Maschinendynamik

Modulabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Pflic

Modulnummer: 200257 Prüfungsnummer:2300700

Modulverantwortlich: Prof. Dr. Lena Zentner

Leistungspu	nkte: 5			W	orkl	oac	d (h):15	50		Α	ntei	l Se	elbs	tstı	ıdiu	m (n):10	5		S	WS	:4.0)		
Fakultät für I	Maschi	Ischinenbau Fachgebiet:2344 1.FS 2.FS 3.FS 4.FS 5.FS 6.FS 7.FS 8.FS 9.FS															44									
SWS nach	1.F	S	2.F	S	3	3.FS	3	4	l.F	S	5	5.FS	3	6	6.F	S	7	.FS		8.F	S	ç).F	S	10.	FS
Fach-	v s	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	SF	V	S	Р	٧	S	Р	v s	Р
semester			2 2	0																						

Lernergebnisse / Kompetenzen

Die Studierenden haben den Kenntnisstand, um aus methodischer Sicht den Abstraktionsprozess vom realen technischen System über das mechanische Modell zur mathematischen Lösung selbstständig realisieren zu können.

Sie können als wesentlichen Ausgangspunkt des Lösungsprozesses das technische Problem klassifizieren, das betrifft insbesondere die Einteilung in lineare und nichtlineare Probleme. Die Studierenden können daraufhin beurteilen, welches Werkzeug aus der Technischen Mechanik für den Anwendungsfall das effizienteste Werkzeug darstellt. Mit den Lagrangeschen Gleichungen und ihrer Anwendung in Mechanik und Elektrotechnik haben sie außerdem ein weiteres effizientes Werkzeug erlernt und seine Anwendung trainiert. Durch selbständig bzw. im Seminar gemeinsam gelöste Aufgaben sind die Studierenden in der Lage aus dem technischen Problem heraus über eine geeignete Modellbildung eine Lösung analytisch oder auch rechnergestützt numerisch zu finden. Am Beispiel der Thematik "Unwucht/Auswuchten" haben Sie gelernt, ausgehend von einem quasi Alltagsproblem, das Modell zu erstellen und eine Lösungsstrategie zu entwickeln.

Im Ergebnis der Wissensvermittlung im Modul sind die Lernenden fähig, selbständig bzw. bei komplexen Aufgaben im Team die Problemlösung aus Sicht der Mechanik in ein maschinendynamisches Gesamtkonzept einzuordnen.

Vorkenntnisse

Grundlagen der Technischen Mechanik; Mathematik (Differentialrechnung)

Inhalt

- 1. Schwingungen von Balken und Platten (Ableiten der partiellen Differentialgleichungen, Rand-/Übergangsbedingungen, Lösung der Differentialgleichung mittels Separationsansatz, Eigenformen)
- 2. Rayleigh-Verfahren für Balken und Platten (Rayleigh-Formeln, Ansatzfunktionen, Randbedingungen)
- 3. Auswuchten (Statische und dynamische Unwucht, Normen, Arten der Auswuchtmaschinen)
- 4. Lagrangesche Gleichungen 2. Art (Ableitung, Anwendung auf elektromechanische Systeme in der Maschinendynamik)
- 5. Schwingungsminderung (Tilgung, Isolierung, Dämpfung, Normen)

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel; Computersimulationen; Videos

Literatur

Holzweisig/Dresig: Lehrbuch der Maschinendynamik

Schulz: Maschinendynamik Jürgeler: Maschinendynamik Krause: Gerätekonstruktion

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Schriftliche Abschlussarbeit (Klausur) in Distanz entsprechend § 6a PStO-AB https://intranet.tu-ilmenau.de/site/vpsl-pand/SitePages/Handreichungen_Arbeitshilfen.aspx

verwendet in folgenden Studiengängen:

Bachelor Technische Kybernetik und Systemtheorie 2021

Master Fahrzeugtechnik 2022 Master Maschinenbau 2022

Modul: Fahrwerktechnik 2

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Pflichtkennz.: Pflichtmodul Turnus: Wintersemester

Modulnummer: 201062 Prüfungsnummer:230531

Modulverantwortlich: Prof. Dr. Thomas Bachmann

Leistungspu	nkte: 5			W	orkl	oad	(h):15	0		Α	nte	il Se	elbs	tstu	ıdiu	m (l	h):1	05			S١	NS	:4.0)			
Fakultät für I	Maschir	ien	bau																	F	ach	gek	oiet	:23	24			
SWS nach	1.FS	;	2.F	S	3	.FS	;	4	.FS	3	5	5.F	S	6	6.F	3	7	.FS	;	8	.FS		9	.FS	3	10).F	S
Fach-	v s	Р	v s	Р	٧	s	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	V	s	Р	٧	S	Р	٧	s	Р
semester					2	1	1																					

Lernergebnisse / Kompetenzen

Die Studierenden haben einen Überblick über Entwicklungstendenzen in Fahrwerksystemen, mit besonderem Fokus auf Bremse, Lenkung, Radaufhängung und Reifen. Sie können die grundlegenden Mechanismen zur Bildung von partikelförmigem Abrieb, die relevanten Einflussgrößen sowie zweckdienliche Charakterisierungsmethoden beschreiben. Darüber hinaus sind den Studierenden Maßnahmen zur Abrieb- und Emissionsreduktion bekannt. Außerdem sind die konstruktiven Auslegungen der Fahrwerksysteme für elektrifizierte und automatisierte Fahrzeuge nach der Vorlesung und dem Praktikum den Studierenden bekannt. Nach dem Praktikum sind die Studierenden in der Lage, verschiedene Testverfahren in der Fahrwerksentwicklung selbst anzuwenden.

Vorkenntnisse

Fahrwerktechik 1

Inhalt

BremsenabriebReifenabriebMess- und AnalysemethodenMinderung und Simulation der Non-Exhaust-EmissionenX-by-wire FahrwerksystemeSicherstellung und Evaluierung des FahrkomfortsFunktionale Sicherheit der FahrwerksystemeTestverfahren bei der Entwicklung der FahrwerktechnikMensch-Maschine-Schnittstelle in Fahrwerksystemen

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Folien, Lehrblätter, Powerpoint-Präsentationen (über die Homepage des FG KFT abrufbar)

Literatur

Dodson, Schwab: Accelerated Testing, 2006.

Eastwood: Particulate Emissions from vehicles, 2007. Ribbens: Understanding Automotive Electronics, 2017.

Ross: Funktionale Sicherheit im Automobil: Die Herausforderung für Elektromobilität und automatisiertes Fahren,

2019.

Thompson: Brake NVH: Testing and Measurements, 2011.

Detailangaben zum Abschluss

Das Modul Fahrwerktechnik 2 mit der Prüfungsnummer 230531 schließt mit folgenden Leistungen ab:

- schriftliche Prüfungsleistung über 90 Minuten mit einer Wichtung von 80% (Prüfungsnummer: 2300827)
- Studienleistung mit einer Wichtung von 20% (Prüfungsnummer: 2300828)

Details zum Abschluss Teilleistung 2:

Praktika gemäß Testatkarte in der Vorlesungszeit

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Master Fahrzeugtechnik 2022

Modul: Virtuelle Produktentwicklung

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Pflichtmodul Turnus: Wintersemester

Modulnummer: 200295 Prüfungsnummer:230510

Modulverantwortlich: Prof. Dr. Stephan Husung

Leistungspu	nkt	e: 5				W	ork	loa	d (h):15	50		Α	nte	il Se	elbs	tstu	ıdiu	m (h):1	105			S	WS	:4.0)			
Fakultät für I	VIa:	schi	inen	ba	u																	F	acl	nge	biet	:23	12			
SWS nach		1.F	S	2	2.F	S	3	3.F	S	4	l.F	S	5	5.F	S	6	6.F	S	7	'.F	S	8	3.F	S	ć).F	S	10).F	S
Fach-	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р
semester							2	2	0																					

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage,

- · Aufgabenstellungen aus der Integrierten Virtuellen Produktentwicklung zu analysieren,
- aufgabengerecht geeignete Software-Systeme für die Produktentwicklung ("CAx-Systeme") auszuwählen,
- · diese zu verbinden und
- · auf diesem Wege typische Aufgabenstellungen selbstständig zu lösen.

Sie kennen

- · Grundlagen, Stand und Anwendungsperspektiven fortgeschrit-tener CAx-Konzepte und -Techniken und
- die aktuellen Herausforderungen und Lösungen der Integrierten Virtuellen Produktentwicklung in Industriepraxis und Forschung.

Der Nachweis der fachlichen Kompetenzen erfordert es, dass die Studierenden selbst einer praxisgerechten Entwicklungssituation ausgesetzt werden - daher die Bearbeitung des (unbenoteten) Beleges, in dem ausgewählte Teile des Integrierten Virtuellen Entwicklungsprozesses (typischerweise: Entwurf mit CAD, Berechnung/Simulation mit CAE) zu durchlaufen sind. Der Beleg wird, wie in der späteren Berufspraxis, als Teamarbeit durchgeführt.

Vorkenntnisse

- Grundkenntnisse Produktentwicklung/Konstruktion
- mindestens ein (dreidimensionales) CAD-System als grundlegendes Werkzeug der rechnerunterstützten Produktentwicklung sollte vorher bekannt und angewendet worden sein
 - · Technische Mechanik
 - Maschinenelemente
 - · Werkstofftechnik
 - Fertigungstechnik

Inhalt

- 1. Einführung: Übersicht über die Unterstützungssysteme für die Pro-dukt-entstehung (CAx-Systeme)
- 2. Theoretische Basis: Modellieren von Produkten und Produktent-wick-lungsprozessen auf der Basis von Produktmerkmalen und -eigenschaf-ten (CPM/PDD)
- 3. CAD-Systeme:
- Grundlagen
- Anwenderspezifische Erweiterungen
- 4. Grundlagen der Berechnung/Simulation mit der Finite-Elemente-Methode (FEM) und/oder Werkzeugen der Mehrkörperdynamik (MKS)
- 5. Weitere Unterstützungssysteme für die Produktentwicklung

- · Optimieren mittels CAO
- Rapid Prototyping/Tooling/Manufacturing (RP/RT/RM)
- · Produktdatenmanagement (PDM, PLM)
- Nutzung von Techniken der Virtuellen Realität (VR)
- 6. CAx-Systemintegration, Datenaustausch, Schnittstellen

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Power-Point-Präsentation; Arbeitsblätter; Foliensammlung; Entwicklung von Beispielen auf dem Presenter oder auf der Tafel

Literatur

- Vajna, S.; Weber, C.; Zeman, K.; Hehenberger, P.; Gerhard, D.; Wartzack, S.: CAx für Ingenieure (3. Aufl.). Springer, Berlin-Heidelberg, 2018
 - Spur, G.; Krause, F.-L.: Das virtuelle Produkt. Hanser-Verlag, München 1998
 - Steinke, P.: Finite-Elemente-Methode, Springer. Heidelberg 2010
 - · Woernle, C.: Mehrkörpersysteme. Springer, Heidelberg 2011
 - VDI-Richtlinien 2209, 2218, 2219, 5610 Blatt 2
 - · Vorlesungsfolien und Lehr-/Arbeitsblätter auf der Homepage des Fachgebietes Konstruktionstechnik

Detailangaben zum Abschluss

Das Modul Virtuelle Produktentwicklung mit der Prüfungsnummer 230510 schließt mit folgenden Leistungen ab:

- schriftliche Prüfungsleistung über 90 Minuten mit einer Wichtung von 100% (Prüfungsnummer: 2300756)
- alternative semesterbegleitende Studienleistung mit einer Wichtung von 0% (Pr

 üfungsnummer: 2300757)

Details zum Abschluss Teilleistung 2:

SL Beleg (Hausbeleg mit Präsentation), Bearbeitungsgruppen von maximal 3 Studierenden

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Schriftliche Abschlussarbeit (Klausur) in Distanz entsprechend § 6a PStO-AB und/oder

alternative Abschlussleistung in Distanz entsprechend § 6a PStO-AB

verwendet in folgenden Studiengängen:

Bachelor Medientechnologie 2021

Master Fahrzeugtechnik 2022

Master Maschinenbau 2017

Master Maschinenbau 2022

Master Mechatronik 2022

Master Wirtschaftsingenieurwesen 2021 Vertiefung MB

Modul: Projektseminar mit Kolloquium

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten

Sprache:Deutsch/Englisch Pflichtkennz.:Pflichtmodul Turnus:ganzjährig

Modulnummer: 201090 Prüfungsnummer: 230533

Modulverantwortlich: Jana Buchheim

Leistungspu	nkte: 1	5		W	ork	load	d (h):45	50		Α	ntei	l Se	elbs	tstu	ıdiu	m (h):4	50		S	WS	:0.0)		
Fakultät für N	Maschi	aschinenbau Fachgebiet:23 1.FS 2.FS 3.FS 4.FS 5.FS 6.FS 7.FS 8.FS 9.FS 10.																								
SWS nach	1.F	S	2.F	S	3	3.FS	3	4	l.F	S	5	5.FS	3	6	6.F	S	7	.FS		8.8	S	ć).F	S	10.	FS
Fach-	V S	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	>	V S	P	٧	S	Р	VS	S P
semester	·		225 h	1		225 h																				

Lernergebnisse / Kompetenzen

Im Rahmen des Projektseminars mit einer definierten Aufgabe und Zielsetzung sind die Studierenden in der Lage ihre erworbenen Kenntnisse und Fähigkeiten einzusetzen um neue Lösungen in den verschiedenen ingenieurwissenschaftlichen und technischen Anwendungsfeldern zu entwickeln. Sie sind in der Lage zielorientiert im Team zu arbeiten, komplexe Zusammenhänge zu analysieren, diese zu bewerten, in einzelne Paketen zu separieren und zum Schluss wieder zusammenzuführen. Darüber hinaus sind Studierende fähig, die erzielten Ergebnisse zu dokumentieren, vorzustellen und zu diskutieren. Durch die Arbeit in (interdisziplinären) Teams sind sie in der Lage, ihre Lösungen kritisch zu bewerten, konstruktive Kritik zu äußern und anzunehmen und Hinweise zu beachten.

Vorkenntnisse

Erfolgreich abgeschlossenes Bachelorstudium

Inhalt

- # Bearbeitung eines wissenschaftlich-technischen Projektes in Gruppen von 2 bis 4 Studierenden unter Betreuung
- # Dokumentation der Arbeit (Konzeption eines Arbeitsplanes, Literaturrecherche, Stand der Technik, des Lösungswegs und der Ergebnisse)
- # Wissenschaftliche Tätigkeiten (z. B. Analyse, Synthese, Modellierung, Simulationen, Entwurf und Aufbau, Vermessung)
- # Auswertung und Diskussion der Ergebnisse
- # Verfassen einer schriftlichen Projektarbeit
- # Vorstellung der Ergebnisse mit anschließender Diskussion

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Schriftliche Dokumentation und Vortrag mit digitaler Präsentation

Literatur

Themenspezifischen Literatur wird zu Beginn der Arbeit vom Betreuer benannt bzw. ist selbstständig zu recherchieren.

- Ebeling, P.: Rhetorik, Wiesbaden, 1990.
- Hartmann, M., Funk, R. & Niemann, H.: Präsentieren. Präsentationen: zielgerichtet und adressatenorientiert, 4. Auflage, Beltz, Weinheim, 1998.
 - Knill, M.: Natürlich, zuhörerorientiert, aussagenzentriert reden, 1991.
- Motamedi, Susanne: Präsentationen. Ziele, Konzeption, Durchführung, 2. Auflage, Sauer-Verlag, Heidelberg, 1998.
 - · Schilling, Gert: Angewandte Rhetorik und Präsentationstechnik, Gert Schilling Verlag, Berlin, 1998.

Detailangaben zum Abschluss

Das Modul Projektseminar mit Kolloquium mit der Prüfungsnummer 230533 schließt mit folgenden Leistungen ab:

- alternative Prüfungsleistung (= selbstständige schriftliche Arbeit als Gruppenarbeit von 2 bis 4 Studierenden, Umgang von 360 Stunden, Bearbeitungsdauer 2 Semester) mit einer Wichtung von 80% (Prüfungsnummer: 2300833)
 - mündliche Prüfungsleistung (= Kolloquium, 20 Minuten) mit einer Wichtung von 20% (Prüfungsnummer:

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Master Fahrzeugtechnik 2022 Master Maschinenbau 2022 Master Mechatronik 2022

Master Optische Systemtechnik/Optronik 2022

Modul: Ansteuerautomaten (FPGAs in der Leistungselektronik)

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache:Deutsch Pflichtkennz.:Wahlmodul Turnus:Wintersemester

Modulnummer: 200662 Prüfungsnummer:2101041

Modulverantwortlich: Prof. Dr. Albrecht Gensior

Leistungspu	nkte	5				W	orkl	oad	d (h):15	0		Aı	nteil	Se	elbs	tstı	ıdiu	ım (l	า):9	4			S	WS	:5.0)		
Fakultät für l	Elekt	rote	ech	nik	un	d In	ıforı	mat	ion	ste	chni	ik										F	ach	igel	biet	:21	61		
SWS nach	1.	FS		2	.FS	3	3	3.FS	3	4	.FS	3	5	.FS	;	6	6.F	3	7	.FS		8	.FS	3	ć).F	3	10	.FS
Fach-	V	S	Р	٧	s	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	V	S	Р	٧	s	Р	٧	S	Р	V	SP
semester	2	2	1																										

Lernergebnisse / Kompetenzen

Die Studierenden sind nach der Vorlesung und dazu gehörigen Übungen in der Lage, Ansteuerschaltungen für verschiedene leistungselektronische Schaltungen zu projektieren, zu dimensionieren und umzusetzen.

Sie können das für den geforderten Einsatzfall am besten geeignete Verfahren auswählen und umsetzen.

Sie sind befähigt, analoge und digitale Ansteuerverfahren und deren Realisierung umzusetzen.

Sie mit einsetzbaren typischen Softwareentwurfswerkzeugen vertraut, können diese für programmierbare Logikschaltkreise und für ausgewählte Mikrorechner praktisch anwenden.

Sie können spezielle Ansteuerschaltkreise auswählen und die notwendigen Beschaltungen für die Applikation umsetzen und in Betrieb nehmen.

Vorkenntni<u>sse</u>

Inhalt

Vorlesungsinhalte:

- . Einführung FPGA
- Aufbau
- Anwendung
- Floating Point
- Integer
- Erstellen Sin-Tabellen
- . Einführung in VHDL
- . Blockorientierte Programmierung
- HDL-Coder
- XILINX-Blockset
- . Softcore (Microblaze)
- . FPGA basierte Ansteuerungen für DC-DC-Steller
- . Steuersätze mit FPGAs für Pulswechselrichter
- Unterschwingungsverfahren
- Raumvektormodulation
- . Messwertfilter

Seminarinhalte:

- . Einführung in VHDL
- . Schaltungsdesign/Logikentwurf
- . Blockorientierte VHDL basierte Beschreibung
- Anwendungsbeispiel, DC-DC-Steller, Pulswechselrichter, Vollbrücke
- PLL
- . PLL-Umsetzung in VHDL
- . Zweigverriegelung
- . Sigma-Delta-Wandler
- . Umsetzung von Filterstrukturen in FPGA
- . Debuggen

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Arbeitsblätter Programmierung von Controllern und Logigschaltkreisen, Projektarbeit, Simulationen

Literatur

wird in der Lehrveranstaltung bekannt gegeben

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Diplom Elektrotechnik und Informationstechnik 2021

Master Electrical Power and Control Engineering 2013

Master Electric Power and Control Systems Engineering 2021

Master Elektrotechnik und Informationstechnik 2014 Vertiefung EET

Master Elektrotechnik und Informationstechnik 2021

Master Fahrzeugtechnik 2014 Master Fahrzeugtechnik 2022

Modul: Ausführungsformen elektrischer Maschinen

Modulabschluss: Prüfungsleistung mündlich 20 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200551 Prüfungsnummer:2100893

Modulverantwortlich: Dr. Andreas Möckel

Leistungspu	nkte	: 5				W	ork	load	d (h):15	50		A	ntei	l Se	elbs	tstu	ıdiu	ım (l	า):1	16		S	WS	:3.0)		
Fakultät für I	Fakultät für Elektrotechnik und Informationstechni																					Fa	chge	biet	:21	65		
SWS nach	nach 1.FS 2.FS 3.FS 4.FS											3	5	5.FS	3	6	S.FS	3	7	.FS		8.F	S	Ĝ).F	S	10	.FS
Fach-										S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V S	P	٧	S	Р	V :	S P	
semester	2 1 0																											

Lernergebnisse / Kompetenzen

Nach der Lehrveranstaltung "Ausführungsformen elektrischer Maschinen", bestehend aus Vorlesung und dazu gehörigen Übungen, können die Studenten ihre Kenntnisse über die Elektrotechnik, des Maschinenbaus und der Werkstoffe anwenden. Sie haben umfassende Kenntnisse über den Aufbau und die Wirkungsweise der vielfältigen elektromechanischen Energiewandler kleiner Leistung und verstehen mit den komplexen Besonderheiten dieser Motorengruppe umzugehen. Auf dieser Basis sind sie in der Lage, die Problematik elektromotorisch betriebener Geräte zu erfassen und die Anforderungen gerätespezifisch umzusetzen. Ihre Kenntnisse über die Zusammenhänge des elektromechanischen Energieumsatzes und der thermischen Verhältnisse ermöglichen es ihnen, Schwächen des Motors zu erkennen und an der Weiterentwicklung zu arbeiten. Die Fähigkeiten im Zusammenhang mit der Analyse des Anwendungsfalls und mit der Anpassung des Motors an konstruktive Gegebenheiten des Einbauortes versetzen die Studenten in die Lage, konstruktiv und theoretisch wirksam zu werden.

Vorkenntnisse

Vorausgesetzt werden die im Grundstudium erworbenen Kenntnisse der Mathematik, Experimentalphysik, Mechanik, der Grundlagen der Elektrotechnik und der Elektrischen Maschinen.

Eine Übersicht der Maschinenelemente und darüber hinaus Fertigkeiten im technischen Zeichnen und Konstruieren von Maschinenbauteilen erleichtern das Verständnis für die Ausführung realer Energiewandler und die zu erfüllenden die Anforderungen.

Inhali

- Systematisierung der Ausführungsformen
- Klauenpolmotoren / Generatoren
- · Schrittantriebe
- Wechselspannungsmotoren
- Elektronikmotoren (BLDC, BLAC)
- Kommutatormoten (Reihenschlussmotoren, Permanentmagnetmotoren)

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Foliensatz, Ausarbeitungen zu speziellen Themen, Anschauungsobjekte, Simulations- und Animationsmodelle Weitere Informationen

Moodle

weitere Informationen

technische Ausstattung für Lehre in elektronischer Form: aktueller PC/Notebook/Laptop mit

- · aktuelles Betriebssystem mit aktuellem Virenschutz,
- aktuelles Office-Programm mit Möglichkeit der Nutzung von PDF-Dateien,
- stabile Internetverbindung für störungsfreie Kommunikation (Video- und Audiostream),
- · aktueller Webbrowser.
- · Videokamera mit ausreichender Erkennbarkeit
- · Audiosystem mit ausreichender Sprachverständlichkeit.
- ggf. VPN für Dienste der Universität

Literatur

Stölting, Kallenbach: Handbuch Elektrische Kleinantriebe, Hanser Verlag; Stölting, H.-D., Beisse, A.: Elektrische Kleinmaschinen, Teubner Studienbücher;

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Pandemiebedingte Prüfungsform:

Prüfungsgespräch (mündliche Abschlussleistung) gemäß §11(3) PStO-AB in Distanz entsprechend §6a PStO-AB"

https://www.tu-ilmenau.de/fileadmin/Bereiche/Universitaet/Dokumente/Satzungen_und_Ordnungen/PStO-

AB_2019_idF_3aend_web.pdf

technischen Voraussetzungen:

https://intranet.tu-ilmenau.de/site/vpsl-pand/SitePages/Handreichungen_Arbeitshilfen.aspx

verwendet in folgenden Studiengängen:

Bachelor Elektrotechnik und Informationstechnik 2013

Diplom Elektrotechnik und Informationstechnik 2017

Master Electrical Power and Control Engineering 2013

Master Electric Power and Control Systems Engineering 2021

Master Elektrotechnik und Informationstechnik 2014 Vertiefung EET

Master Elektrotechnik und Informationstechnik 2021

Master Fahrzeugtechnik 2014

Master Fahrzeugtechnik 2022

Modul: Eingebettete Systeme

Modulabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200136 Prüfungsnummer:2200831

Modulverantwortlich: Prof. Daniel Ziener

Leistungspu	nkte: 5			W	orkl	oad	l (h):15	50		A	ntei	l Se	elbs	tstu	ıdiu	m (l	h):10	5		S	WS	:4.0)		
Fakultät für I	Fakultät für Informatik und Automatisierung																		I	Fac	hge	biet	:22	31		
SWS nach	WS nach 1.FS 2.FS 3.FS 4.FS										5	5.FS	3	6	S.FS	3	7	.FS	1	8.F	S	ç).FS	S	10.	FS
Fach-	V S P V S P V S								S	Р	٧	S	Р	٧	S	Р	٧	S P	٧	S	Р	٧	S	Р	V S	Р
semester	2 2 0																									

Lernergebnisse / Kompetenzen

Fachkompetenz:

Die Studierenden verstehen detailliert Aufbau und Funktionsweise der Architekturelemente, die in eingebetteten Systemen benutzt werden. Sie können spezialisierte Prozessorarchitekturen, wie μ C, DSP und GPU, in diesem Zusammenhang einordnen und beurteilen. Sie besitzen detailliertes Wissen über verschiedenartige Kommunikationssysteme, die in diesem Kontext relevant sind. Sie besitzen detailliertes Wissen über rekonfigurierbare Systeme (insbesondere FPGA) und deren Anwendung bei der Realisierung eingebettetter Systeme. Die Studierenden haben umfassende Kenntnisse über den Entwurfsbegriff und über Entwurfsverfahren für eingebettete Systeme. Sie können den modellbasierten Entwurf und das HW/SW-Co-Design einordnen und beurteilen. Im Ergebnis der Übung können sie dieses Wissen an praktisch relevanten Beispielarchitekturen anwenden.

Methodenkompetenz:

Die Studierenden sind in der Lage, eingebettete Systeme auf der Grundlage der behandelten Architekturelemente zu planen und zu entwickeln. Sie können rekonfigurierbare Architekturelemente in einer Hardwarebeschreibungssprache (VHDL) zu entwerfen. Sie beherrschen die Anwendung modellbasierter Entwurfsverfahren für den Entwurf eingebetteter Systeme. Im Ergebnis der Übung haben sie Erfahrungen mit dem konkreten Entwurf praktisch relevanter Beispielsysteme.

Systemkompetenz:

Die Studierenden verstehen das Zusammenwirken der Architekturelemente eingebetteter Systeme im Zusammenhang mit deren weiteren Elementen und mit dem Verhalten des einbettenden Systems. Sie begreifen die fundamentale Bedeutung durchgängiger Entwurfsverfahren und sind mit den dazugehörigen Vorgehensmodellen vertraut.

Sozialkompetenz:

Die Studierenden sind in der Lage, grundlegende Problemstellungen bei Planung und Entwurf eingebetter Systeme allein und in der Gruppe zu lösen. Die Studierenden diskutieren praktische Problemlösungen gemeinsam im Kontext von Übungen und können Kritik und Anmerkungn würdigen.

Vorkenntnisse

Grundlegende Kompetenzen auf den Gebieten der Rechnerorganisation und Rechnerarchitektur

Inhalt

Einführung und Begriffsbestimmung "Eingebettetes System" Architekturen:

- Mikrocontroller, DSP, GPU
- Bussysteme und Interfacestandards
- Netzwerke für eingebettete Systeme (aka Feldbusse)
- Rekonfigurierbare Systeme, VHDL
- System-on-a-Chip

Fntwurf

- Begriffsklärungen zum Entwurf
- modellbasierter Entwurf
- HW/SW-Co-Design
- Test- und Inbetriebnahmeverfahren

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Folien, Anschriebe, Aufgabensammlung, Programmierbeispiele Diese Lehrveranstaltung wird im Wintersemester 2023/24 starten.

Technische Anforderungen bei alternativen Lehrleistungen in elektronischer Form: Internetzugang, Mikrofon+Lautsprecher oder Headset, Webex Meeting

Literatur

Peter Marwedel, Embedded System Design: Embedded Systems Foundations of Cyber-Physical Systems, and the Internet of Things. 3rd Edition, Springer, 2017.

Jürgen Teich, Christian Haubelt, Digitale Hardware/Software-Systeme: Synthese und Optimierung. 2. Auflage, Springer 2007.

M. Wolf, Computers as Components: Principles of Embedded Computing System Design. Morgan Kaufmann 2017

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

_

verwendet in folgenden Studiengängen:

Bachelor Informatik 2021 Bachelor Ingenieurinformatik 2021 Master Fahrzeugtechnik 2014 Master Fahrzeugtechnik 2022

Modul: Elektromagnetische Verträglichkeit in der IKT

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200505 Prüfungsnummer:2100839

Modulverantwortlich: Prof. Dr. Matthias Hein

Leistungspu	nkte:	5		W	orkl	oad	l (h):15	50		A	ntei	Se	elbs	tstu	ıdiu	m (h):10	5		S	WS	:4.0)		
Fakultät für B	Fakultät für Elektrotechnik und Informationstechni																			Fac	hge	biet	:21	13		
SWS nach	WS nach 1.FS 2.FS 3.FS 4.FS											5.FS	3	6	S.FS	3	7	.FS		8.F	S	ξ).F	S	10.	FS
Fach-									S	Р	٧	S	Р	٧	S	Р	٧	SF	۱ د	/ S	Р	٧	S	Р	V S	Р
semester	2 0																									

Lernergebnisse / Kompetenzen

Die Studierenden haben ein Verständnis für die Problematik der EMV, kennen die vorgeschriebenen Prüfverfahren sowie die zugrundeliegenden Störphänomene und können grundlegende Entstörtechniken für elektrische und elektronische Geräte anwenden.

- Fachkompetenzen: Die Studierenden kennen nach der Vorlesung Natur- und ingenieurwissenschaftliche Grundlagen und können Entwicklungstendenzen frühzeitig einbinden. Sie sind mit neuesten Techniken und Methoden vertraut und können das angewandte Grundlagenwissen der Informationsverarbeitung gezielt einbinden.
- Methodenkompetenz: Die Studierenden können sich Fachwissens gezielt erschließen und nutzen und sind in der Lage ihre Arbeitsergebnisse zu dokumentieren. Sie können nach dem Praktikum ihr Fachwissen zur Modellbildung, Planung, Simulation und Bewertung komplexer Systeme nutzen und anwenden.
- Systemkompetenzen: Die Studierenden haben Überblickwissen über angrenzende Fachgebiete, die für die Gestaltung von Systemen wichtig sind. Sie besitzen zudem fachübergreifendes, systemorientiertes Denken.
- Sozialkompetenzen: Die Studierenden sind zur aktiven Kommunikation, Teamwork befähigt. Sie sind in der Lage, ihre Ergebnisse zu präsentieren, können gesellschaftliche Bedürfnisse erkennen, analysieren, präsentieren und somit Schnittstellen technischer Problemstellungen zur Gesellschaft herstellen.

Vorkenntnisse

Allgemeine Elektrotechnik, Theoretische Elektrotechnik

Inhalt

Teil 1: Was versteht man unter EMV?

- · CE-Zeichen, gesetzliche Bestimmungen, regulatorische Rahmenbedingungen
- · Die "zwei Seiten" der EMV
- · Beeinflussungsmodell, Koppelmechanismen

Teil 2: Welche Prüfungen muss mein Gerät bestehen?

- · Prüfverfahren, Grenzwerte, Störgrößen, Normen
- Messempfänger/Spektrumanalysator, Detektortypen
- Messeinrichtungen

Teil 3: Wie kann ich mein Gerät EMV-gerecht entwickeln?

· Designgrundsätze und Entstörmittel

Teil 4: Spezielle EMV-Probleme bei Kommunikationstechnik

• Mobilfunk und Medizingeräte / Mobilfunk und Implantate

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

- . Tafelbild, interaktive Entwicklung der Stoffinhalte
- . Beamer: Illustrationen zur Vorlesung (in elektronischer Form verfügbar)
- . Spektrumanalysator: Livemessungen per Anschluss an Beamer
- . Hinweise zur persönlichen Vertiefung
- . Identifikation vorlesungsübergreifender Zusammenhänge

Literatur

- . Schwab, Kürner: Elektromagnetische Verträglichkeit. 5. Auflage, Springer, 2007.
- . Habiger: Elektromagnetische Verträglichkeit. Grundzüge ihrer Sicherstellung in der Geräte- und Anlagentechnik. 3. Auflage, Hüthig, 1998.
- . Durcansky: EMV-gerechtes Gerätedesign. Grundlagen der Gestaltung störungsar-mer Elektronik. 4. Auflage, Franzis, 1999.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Diplom Elektrotechnik und Informationstechnik 2017

Master Elektrotechnik und Informationstechnik 2014 Vertiefung IKT

Master Elektrotechnik und Informationstechnik 2021

Master Fahrzeugtechnik 2014 Master Fahrzeugtechnik 2022

Modul: Faserverbundtechnologie

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200247 Prüfungsnummer:230484

Modulverantwortlich: Dr. Prof. Florian Puch

Leistungspu	nkte: 5			W	orkloa	ıd (h	1):15	0		A	ntei	l Se	elbs	tstı	ıdiu	m (h):10	05			SV	VS:	1.0			
Fakultät für I	Fakultät für Maschinenbau																		F	acho	geb	oiet:2	235	3		
SWS nach	1.F	S	2.F	S	3.F	S	4	.FS	3	5	5.F	3	6	6.F	3	7	.FS		8	.FS		9.	FS		10	FS
Fach-	V S P V S F				V S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	s	Р	V :	s	Р	V	S P
semester	2 1																									

Lernergebnisse / Kompetenzen

Die Studierenden beherrschen das Gebiet der Verarbeitungstechnik und die Auslegung von Bauteilen aus faserverstärkten Kunststoffen auf der Basis von Duroplasten soweit, dass Sie ein Bauteil dimensionieren, auslegen und für ein geeignetes Fertigungsverfahren die notwendigen Vorgaben angeben können. Sie können die bekannten Fertigungsverfahren für die gesamten Wertschöpfungsstufen anwenden. Neben theoretischen Grundlagen kennen die Studierenden auch die notwendigen anwendungstechnischen Prozessparameter und Ausgangsmaterialien.

Vorkenntnisse

Werkstoffkunde und Verarbeitung von Kunststoffen, Leichtbautechnologie

Inhalt

- 1. Einführung in die duroplastischen Faserverbunde
- 2. Ausgangswerkstoffe
- 2.1. Duroplastische Harzsysteme als Matrixmaterial
- 2.2. Verstärkungsfasern und textile Halbzeuge
- 2.3. Füllstoffe und Additive & Hilfsmaterialien
- 3. Grundlegende Verarbeitungsgesichtspunkte und deren Simulation
- 3.1. Werkstoff und Prozess
- 3.2. Fließvorgang und Imprägnierung
- 3.3. Reaktionsverlauf
- 3.4. Faser- und Gewerbedrapierung
- 4. Verarbeitungsverfahren
- 4.1. Manuelle Techniken: Handlaminieren, Faserspritzen
- 4.2. Infusionsverfahren
- 4.3. Verfahren für Halbzeuge: Wickelverfahren/Pultrusion
- 4.4. Thermoplastische Halbzeuge, Organoblechverfahren
- 4.5. Prepreg-Autoklavtechnik und Pressverfahren
- 4.6. PUR Verfahren: RIM Technik
- 4.7. RTM Verfahren und seine Varianten
- 4.8. Nachbearbeitung von Faserverbundkomponenten
- 5. Werkstoffmodelle, Mechanik und Auslegung von Faserverbunden
- 5.1. Leichtbaukennzahlen und Materialmodelle
- 5.2. Faseranisotropie und Sondereffekte
- 5.3. Laminatmodelle und Mikromechanik
- 5.4. Klassische Laminattheorie und Abweichungen
- 5.5. Verfahrensabhängige Werkstoffmodelle
- 5.6. Auslegung mit Versagenskriterien
- Übung 1: Faser-Matrix-Kombination
- Übung 2: RTM-Verfahrensberechnung
- Übung 3: Laminatmechanik
- Übung 4: Festigkeits- und Schadensanalyse
- Übung 5: Bauteilauslegung

Praktikum 1: Handlaminieren Praktikum 2: Herstellungsresultate

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Vorlesungsunterlagen sind von der Website des FG herunterzuladen, bzw. werden semesterspezifisch bekanntgegeben. Dazu ergänzend Tafelbilder.

Literatur

Raju, D., Loos, A.: Processing of Composites, Carl Hanser Verlag, 2000

M. Neitzel, P. Mitschang: Handbuch Verbundwerkstoffe, Carl Hanser Verlag, München 2004

G. Ehrenstein: Faserverbundkunststoffe, Carl Hanser Verlag, München 2006

AVK, Kleinholz, R.: Handbuch Faserverbundkunststoffe Michaeli, W., Wegener, M.: Einführung in der

Verarbeitung von Faserverbundwerkstoffen, Carl Hanser Verlag, 1989

Flemming, M., Ziegmann, G., Roth, S.: Faserverbundbauweisen - Fertigungsverfahren mit duroplastischer Matrix. Springer Verlag 1995

Krenkel, W.: Verbundwerkstoffe, Wiley VCH, 2009

Flemming, M., Ziegmann, G.; Roth, S.: Faserverbundbauweisen - Halbzeuge und Bauweisen Springer Verlag 1996

Detailangaben zum Abschluss

Das Modul Faserverbundtechnologie mit der Prüfungsnummer 230484 schließt mit folgenden Leistungen ab:

- schriftliche Prüfungsleistung über 90 Minuten mit einer Wichtung von 100% (Prüfungsnummer: 2300682)
- Studienleistung mit einer Wichtung von 0% (Prüfungsnummer: 2300683)

Details zum Abschluss Teilleistung 2:

Praktika gemäß Testatkarte in der Vorlesungszeit

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

E-Exam (virtueller Raum) - es wird keine Technik bereitgestellt

verwendet in folgenden Studiengängen:

Master Fahrzeugtechnik 2014

Master Fahrzeugtechnik 2022

Master Maschinenbau 2017

Master Maschinenbau 2022

Master Werkstoffwissenschaft 2013

Master Werkstoffwissenschaft 2021

Modul: Funksysteme

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200508 Prüfungsnummer:2100842

Modulverantwortlich: Prof. Dr. Matthias Hein

Leistungspu	nkte: 5		١	Voi	rkload	d (h):15	0		Aı	ntei	l Se	elbs	tstu	diu	ım (l	າ):105	5		S	WS	:4.0)		
Fakultät für I	akultät für Elektrotechnik und Informationstechn																	F	ach	gel	biet	:21	13		
SWS nach	1.FS 2.FS 3.FS 4.FS									5	.FS	3	6	S.FS	3	7	.FS	8	3.FS	3	9	.FS	3	10.	FS
Fach-	v s	Р	V S F	, ,	/ S	Р	V	S	Р	٧	S	Р	٧	s	Р	V	S P	٧	S	Р	٧	S	Р	V S	Р
semester	3 1 0																								

Lernergebnisse / Kompetenzen

Die Studierenden können nach den Vorlesungen und Übungen die für verschiedene Fre-quenzbereiche relevanten Ausbreitungsbedingungen drahtloser Übertragungssysteme klassifizieren und vergleichen. Sie sind in der Lage deren Auswirkungen auf die systembezogene Konzeption von Funksystemen und Übertragungsverfahren zu bewerten. Die Studierenden erkennen darüber hinaus fachübergreifende Zusammenhänge funktechnischer Systeme mit Antennen, Schaltungen und Bausteinen der HF- und Mikrowellentechnik, sowie der Nachrichtentechnik und vermögen diese anwendungsspezifisch zu bewerten.

- Fachkompetenzen: Die Studierenden kennen nach Vorlesung Natur- und ingenieurwissenschaftliche Grundlagen und können Entwicklungstendenzen frühzeitig einbinden. Sie sind mit neuesten Techniken und Methoden vertraut und können, das angewandten Grundlagenwissens der Informationsverarbeitung gezielt einbinden.
- Methodenkompetenz: Die Studierenden können sich Fachwissens gezielt erschließen und nutzen und sind in der Lage ihre Arbeitsergebnisse zu dokumentieren. Sie können nach dem Praktikum ihr Fachwissen zur Modellbildung, Planung, Simulation und Bewertung komplexer Systeme nutzen, können es anwenden.
- Systemkompetenzen: Die Studierenden haben Überblickwissen über angrenzende Fachgebiete, die für die Gestaltung von Systemen wichtig sind. Sie besitzen zudem fachübergreifendes, systemorientiertes Denken.
- Sozialkompetenzen: Die Studierenden sind zur aktiven Kommunikation und zu Teamwork befähigt. Sie sind in der Lage, ihre Ergebnisse zu präsentieren, können gesellschaftliche Bedürfnisse erkennen, analysieren und präsentieren und somit, Präsentation, Schnittstellen technischer Problemstellungen zur Gesellschaft herstellen.

Vorkenntnisse

Allgemeine Elektrotechnik, Grundlagen der Schaltungstechnik und der Hochfrequenztechnik, elektromagnetische Wellen

Inhalt

Teil I - Wellenausbreitung

- 11. Einführung: Inhalt, Motivation, Frequenzbereichszuordnung, Grundlagen
- I2. Freiraumausbreitung und Bodenwellen: Ausbreitung in unbegrenzten verlustlosen und homogen verlustbehafteten Medien, Ausbreitung an der Grenzfläche zweier Medien (Erde-Luft)
- 13. Wellenausbreitung in der Atmosphäre: Schichtstruktur der Ionosphäre, Wellenausbreitung, Echolotung, troposphärische Brechung, Streuung und Absorption
- 14. Ausbreitung ultrakurzer Wellen: Kirchhoff'sche Beugung, Hindernisse, Reflexion, Mehrwegeausbreitung

Teil II - Systeme der Funktechnik

- II1. Grundkonzeption von Funkempfängern: Geradeausempfänger, Heterodynempfänger, Zero-IF-Konzept, Empfängerkennwerte
- II.2. Mischerschaltungen: Eintakt-, Gegentakt- und Ringmischer, Gilbertzelle
- II.3. Technische Antennenausführung: Stabantennen, Kompaktantennen; Symmetrierglieder mit Ferriten und

Leitungen

- II.4. Grundlagen der Satellitenfunktechnik: Technik von geostationären und LEO-Satelliten
- II.5. Informationsübertragung mit Richtfunk: Systemkonzept, Beispiel
- II.6. Grundlagen der Radioastronomie: Natürliche Strahlungsquellen, Beobachtungsmöglichkeiten

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafelbild, interaktive Entwicklung der Stoffinhalte

Illustrationen zur Vorlesung (in elektronischer Form verfügbar)

Hinweise zur persönlichen Vertiefung

Identifikation vorlesungsübergreifender Zusammenhänge

Vorlesungsbegleitende Aufgabensammlung zur selbständigen Nacharbeitung (in elektronischer Form verfügbar)

Literatur

- K.D. Becker, "Ausbreitung elektromagnetischer Wellen", Springer, 1974.
- P. Beckmann, "Die Ausbreitung der ultrakurzen Wellen", Akad. Verlagsgesellschaft Geest und Pontig, Leipzig 1963.
- V.L. Ginsburg, "The propagation of electromagnetic waves in plasmas", Pergamon Press, 1970.
- J. Großkopf, "Wellenausbreitung", BI Hochschultaschenbücher, Bd. 141/141a, Mannheim 1970.
- G. Klawitter: "Langwellen- und Längstwellenfunk", Siebel-Verlag Meckenheim 1991.
- T.S.M. Maclean and Z. Wu, "Radiowave propagation over ground", Chapman and Hall, 1993.
- N. Geng und W. Wiesbeck, "Planungsmethoden für die Mobilkommunikation: Funknetzplanung unter realen physikalischen Ausbreitungsbedingungen", Springer 1998.

Meinke/Gundlach, "Taschenbuch der Hochfrequenztechnik", Band 1: Grundlagen, Kapitel B, H; Springer Verlag, 1992.

Zinke, Brunswig: Hochfrequenztechnik 1 und 2, Springer-Verlag 1992

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Diplom Elektrotechnik und Informationstechnik 2017

Master Elektrotechnik und Informationstechnik 2021

Master Fahrzeugtechnik 2014

Master Fahrzeugtechnik 2022

Master Ingenieurinformatik 2021

Master Mathematik und Wirtschaftsmathematik 2022

Master Wirtschaftsingenieurwesen 2021 Vertiefung ET

Modul: Getriebetechnik 2

Modulabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200203 Prüfungsnummer:2300613

Modulverantwortlich: Prof. Dr. Lena Zentner

Leistungspu	nkte:	5		W	ork/	load	d (h):15	50		Α	ntei	l Se	elbs	tstı	ıdiu	m (h):10)5		S	SWS	3:4.0)		
Fakultät für I	akultät für Maschinenbau																			Fa	chge	biet	t:23	44		
SWS nach	SWS nach 1.FS 2.FS 3.FS 4.FS											5.FS	3	6	3.F	S	7	.FS		8.1	FS	().F	S	10.	FS
Fach-	V	S P	V S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	٧	S	Р	VS	S P	٧	s	Р	V S	P
semester	er 2 2 0																	-			•					-

Lernergebnisse / Kompetenzen

Die Studierenden können nach der Vorlesung Verfahren zur Synthese von Koppelmechanismen erläutern. Sie können anhand der geforderten Bewegungsaufgabe ein geeignetes Syntheseverfahren auswählen, dieses selbständig anwenden und Lösungen für neue Mechanismen generieren. Die Studierenden sind in der Lage, die ermittelte Lösung hinsichtlich der Bewegungseigenschaften zu analysieren und zu beurteilen.

Die Studierenden sind fähig, die kinematischen Abmessungen von Schrittgetrieben sowie die Geometrie von Kurvenscheiben zu bestimmen. Sie beherrschen die kinematische Analyse komplexer Mechanismen.

Die Studierenden kennen Werkzeuge zur computergestützten Synthese und Analyse von Mechanismen und können diese grundlegend anwenden.

Durch die erworbenen Kenntnisse und Methodenkompetenzen sind die Studierenden in der Lage, grundsätzliche Problemstellungen im Bereich der Getriebetechnik mit Fachexperten zu diskutieren, vorhandene Ergebnisse/Lösungen zu überprüfen und kritisch zu beurteilen sowie eigene Ergebnisse sicher zu belegen. Darüber hinaus sind die Studierenden nach den Übungen auch in der Lage, komplexe Lösungen eigenständig zu entwickeln. Sie sind fähig, diese Lösungen kritisch zu analysieren und zu beurteilen. Der erfolgreiche

Vorkenntnisse

abgeschlossenes Bachelorstudium (technische Fachrichtung), Kenntnisse der Getriebetechnik-Grundlagen

Inhalt

Überblick über Synthese-Verfahren für Übertragungs- und Führungsmechanismen; Synthese einfacher Koppelgetriebe für Übertragungsaufgaben (Koppelmechanismen für vorgeschriebene Übertragungsfunktionen, Koppelmechanismen für vorgeschriebenen Bewegungsbereich); Kinematische Synthese von Kurvengetrieben (Ermittlung der geometrischen Parameter und der Geometrie von der Kurvenkontur); Kinematische Auslegung von Schrittgetrieben (Malteserkreuzgetriebe, Sternradgetriebe, Klinkenschrittgetriebe); Lagensynthese einfacher Koppelgetriebe für Führungsaufgaben; Überblick über computergestützte Synthese- und Analyse-Methoden; Kinematische Analyse komplexer Koppelgetriebe

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Beamer/Laptop/Präsentationssoftware, Tafel und Kreide, Vorlesungsbegleitendes Lehrmaterial, Animationen und Modelle von Getrieben, E-Learning-Angebote in Moodle

Moodle-Kurs: Getriebetechnik 2

Literatur

[1] Volmer, J. (Hsqb.):

Getriebetechnik Grundlagen. Verlag Technik Berlin/ München 1995, ISBN: 3-341-01137-4

Getriebetechnik Lehrbuch. Verlag Technik Berlin 1987, ISBN: 3-341-00270-7

Getriebetechnik Koppelgetriebe. Verlag Technik Berlin 1979

Studierende ist somit in der Lage, als Fachexperte aufzutreten.

Getriebetechnik Kurvengetriebe. Verlag Technik Berlin 1989, ISBN: 3-341-00474-2

Getriebetechnik Umlaufrädergetriebe. Verlag Technik Berlin 1987, ISBN: 3-341-00801-2

[2] Lichtenheldt, W./Luck, K.: Konstruktionslehre der Getriebe. Akademie-Verlag Berlin 1979

[3] Bögelsack, G./ Christen, G.: Mechanismentechnik, Lehrbriefe 1-3. Verlag Technik Berlin 1977

[4] Luck, K./Modler, K.-H.: Getriebetechnik: Analyse-Synthese-Optimierung. Akademie-Verlag Berlin 1990 u.

Springer-Verlag Berlin, Heidelberg, New York 1995, ISBN: 3-540-57001-2

[5] Dittrich, G./Braune, R.: Getriebetechnik in Beispielen. Oldenburg-Verlag München, Wien 1987, ISBN: 3-486-

20614-1

[6] Hagedorn, L.: Konstruktive Getriebelehre. Springer-Verlag Berlin 2009, ISBN: 978-3-642-01613-4

[7] Kerle, H./Corves, B./Hüsing, M.: Getriebetechnik: Grundlagen, Entwicklung und Anwendung ungleichmäßig übersetzender Getriebe. Springer Fachmedien Wiesbaden 2015, ISBN: 978-3-658-10057-5

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Hausarbeit in Distanz entsprechend § 6a PStO-AB

Voraussetzung: Onlinezugang und Abgabe einer (auch handschriftlich erstellten) Leistung in digitaler Form; siehe auch:

https://intranet.tu-ilmenau.de/site/vpsl-pand/SitePages/Handreichungen_Arbeitshilfen.aspx

verwendet in folgenden Studiengängen:

Master Fahrzeugtechnik 2014 Master Fahrzeugtechnik 2022 Master Maschinenbau 2017 Master Maschinenbau 2022

Modul: Grundlagen der Technischen Akustik

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 201065 Prüfungsnummer:2300832

Modulverantwortlich: Prof. Dr. Joachim Bös

Leistungspu	nkte	∋: 5				W	ork	load	d (h):15	50		Α	ntei	il Se	elbs	ststu	ıdiu	m (h):′	105			S	WS	:4.0)		
Fakultät für I	akultät für Maschinenbau																					F	acl	hge	biet	:23	27		
SWS nach	SWS nach												5	5.FS	S	6	3.F	S	7	'.F	3	8	3.F	S	ć).F	S	10	.FS
Fach-	V S P V S P V S F									٧	s	Р	٧	S	Р	٧	S	Р	/	S	Р	<	S	Р	٧	s	Р	V	S P
semester	2																												·

Lernergebnisse / Kompetenzen

Die Studierenden beherrschen nach den Lehrveranstaltungen

- die Grundbegriffe und Grundkonzepte der Technischen Akustik
- die Grundzüge der Pegelrechnung
- die Grundzüge der Frequenzanalyse und der Geräuschbewertung
- eine erste Einschätzung der akustischen Ist-Situation und möglicher Ansatzpunkte zur Geräuschbeeinflussung

Sie sind nach den Lehrveranstaltungen in der Lage,

- verschiedene Phänome der technischen Akustik einzuschätzen und zu beurteilen
- sich mit Akustikingenieuren zu Messergebnissen und deren Darstellung und Interpretation auszutauschen
- zwischen luftschall- und körperschallinduzierter Geräuschentstehung zu unterscheiden
- Messungen und Maßnahmen zur Geräuschbeeinflussung zielgerichtet einzusetzen

Sie kennen

- die typischen Fachbegriffe der technischen Akustik und ihre Bedeutung und Interpretation
- die Anwendungsbereiche und Grenzen akustischer Messverfahren
- die Mechanismen der Geräuschentstehung
- Ansätze und Möglichkeiten zur Geräuschbeeinflussung

Vorkenntnisse

Mathematik, Physik, Technische Mechanik, insbesondere Technische Mechanik 3.3

Inhalt

- Einführung (inkl. Grundzüge der physiologischen und Psychoakustik)
- Schallfeldgrößen
- Pegel und Pegelrechnung
- Frequenzanalyse (Spektren, Spektrogramme usw.)
- akustische Filter und Bewertungskurven
- physikalische Mechanismen der Geräuschentstehung
- akustische Messverfahren
- Körperschall
- aktuelle Themen aus Forschung und Praxis

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

PowerPoint-Präsentationen, Übungsblätter, ggf. Zusatzmaterial auf Moodle

Literatur

Sinambari, Sentpali: "Ingenieurakustik"; Möser: "Technische Akustik"; Lerch, Sessler, Wolf: "Technische Akustik"; Müller, Möser (Hrsg.): "Taschenbuch der Technischen Akustik"; Kollmann: "Maschinenakustik"; Kollmann, Schösser, Angert: "Praktische Maschinenakustik"; Cremer, Heckl: "Körperschall"

Detailangaben zum Abschluss

alternativ zur mPL: sPL 90 min

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Master Fahrzeugtechnik 2014 Master Fahrzeugtechnik 2022

Modul: Kommunikationsnetze

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200482 Prüfungsnummer:210474

Modulverantwortlich: Prof. Dr. Jochen Seitz

Leistungspu	nkte: 5			W	orkl	oad	l (h):15	50		Α	ntei	l Se	elbs	tstu	ıdiu	m (h):10	5		S	WS	:4.0)		
Fakultät für B	Elektro	tech	chn	ik									I	Fac	hge	biet	:21	15								
SWS nach	1.F	S	2.F	S	3	3.FS	3	4	l.F	S	5	5.FS	3	6	S.FS	3	7	.FS		8.F	S	ç).F	S	10.	FS
Fach-	V S	Р	V S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	٧	SP	V	S	Р	٧	S	Р	V S	Р
semester	2 1	1																								

Lernergebnisse / Kompetenzen

Studierende kennen nach der Vorlesung und den dazu gehörigen Übungen die Grundlagen der Kommunikationsnetze. Sie erkennen die grundlegenden Unterschiede von leitungsvermittelten und speichervermittelten Netzen, sind in der Lage, deren Leistungsfähigkeit zu beurteilen und können so aktuelle Kommunikationsnetze kategorisieren und differenzieren. Darüber hinaus sind sie in der Lage, Kommunikationsdienste und -protokolle zu definieren, sodass Sie bestehende Protokolle analysieren und (anhand gegebener Anforderungen) neue spezifizieren können. Nach der Vorlesung haben die Studierenden eine solide Wissensgrundlage für weiterführende Veranstaltungen, in denen die hier vermittelten Kenntnisse vertieft werden können.

Die Studierenden sind nach dem Praktikum zur Vorlesung "Kommunikationsnetze" mit drei unterschiedlichen Netztechnologien vertraut und können ihr in der Vorlesung erlerntes theoretisches Wissen praktisch anwenden. Sie sind dadurch in der Lage, bestimmte Eigenschaften von Kommunikationsnetzen zu erfassen und zu bewerten.

Vorkenntnisse

Mathematik, Signalverarbeitung

Inhalt

- 1. Einführung
- 2. Kommunikationsdienst und -protokoll
- 3. Geschichtete Kommunikationssysteme
- 4. Spezifikation von Kommunikationsdiensten und -protokollen
- 5. Medienzugang
- 6. Netzkopplung und Vermittlung
- 7. Das Internet
- 8. Lokale Netze
- 9. Mobilfunknetze
- 10. Netzzugang
- 11. Netzbackbone
- 12. Aktuelle Trends

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

PowerPoint-Folien

Übungsblätter zu den Seminaren

Praktikumsunterlagen

Kontrollfragen zur Prüfungsvorbereitung

Buch zur Vorlesung

Literatur

Seitz, Jochen und Maik Debes (2016). Kommunikationsnetze. Eine umfassende Einf•uhrung. Anwendungen -- Dienste -- Protokolle. Unicopy Campus Edition: Ilmenau.

Comer, Douglas E. (2003). TCP/IP - Konzepte, Protokolle und Architekturen. 4. Auflage, Bonn: mitp-Verlag.

Halsall, Fred (1996). Data Communications, Computer Networks, and Open Systems. 4th edition. Addison-Wesley: Harlow, England; Reading, Massachusetts; Menlo Park, California.

Kr•üger, Gerhard und Dietrich Reschke (2004). Lehr- und • Übungsbuch Telematik. Netze -- Dienste --

Protokolle. 3., aktualiserte Auflage. Fachbuchverlag Leipzig im Carl-Hanser-

Verlag: M•ünchen; Wien.

Peterson, Larry L. und Bruce S. Davie (2011). Computer Networks. A Systems Approach. 5th edition. Morgan Kaufmann: Burlington, MA.

Stevens, W. Richard (2004). TCP/IP: Der Klassiker. Protokollanalyse. Aufgaben und Lösungen. VDE-Verlag: Berlin.

Tanenbaum, Andrew S. (2012). Computernetzwerke. 5. Auflage. Pearson Studium: M•ünchen.

Detailangaben zum Abschluss

Das Modul Kommunikationsnetze mit der Prüfungsnummer 210474 schließt mit folgenden Leistungen ab:

- mündliche Prüfungsleistung über 30 Minuten mit einer Wichtung von 75% (Prüfungsnummer: 2100803)
- Studienleistung mit einer Wichtung von 25% (Prüfungsnummer: 2100804)

Details zum Abschluss Teilleistung 2:

Das Praktikum wird nur im Wintersemester begleitend zur LV angeboten. Die Terminvereinbarung muss bis spätestens Ende November des jeweiligen Jahres im Fachgebiet erfolgen.

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Bachelor Elektrotechnik und Informationstechnik 2021

Bachelor Ingenieurinformatik 2021

Bachelor Medientechnologie 2021

Diplom Elektrotechnik und Informationstechnik 2021

Master Elektrotechnik und Informationstechnik 2021

Master Fahrzeugtechnik 2014

Master Fahrzeugtechnik 2022

Master Medienwirtschaft 2021

Modul: Leistungselektronik 1 - Grundlagen

Modulabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200554 Prüfungsnummer:2100896

Modulverantwortlich: Prof. Dr. Albrecht Gensior

Leistungspu	nkte: 5			W	orkl	oad	(h):15	50		A	ntei	l Se	elbs	tstu	ıdiu	m (h):94	1		S	WS	:5.0)		
Fakultät für l	Elektro	chni	ik										Fac	hge	biet	:21	61									
SWS nach	1.F	S	2.F	S	3	.FS	;	4	l.FS	3	5	5.FS	3	6	S.FS	3	7	.FS		8.F	S	ć).F	S	10.	FS
Fach-	v s	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	SI	۰ ۱	/ S	Р	٧	S	Р	VS	P
semester	2 2	1																								

Lernergebnisse / Kompetenzen

Die Studierenden kennen nach der Vorlesung und dazu gehörigen Übungen grundlegende physikalische Prinzipien der Leistungshalbleiter und ihre Anwendung in leistungselektronischen Schaltungen. Sie verstehen den grundsätzlichen Aufbau von Stromrichterschaltungen, die Beanspruchung leistungselektronischer Bauelemente während der Kommutierung und die wichtigsten Steuerprinzipien leistungselektronischer Schaltungen.

Sie sind nach dem Praktikum in der Lage leistungselektronische Schaltungen in ihrem statischen und dynamischen Verhalten und in der Einbindung in einfache Regelkreise zu verstehen und zu dimensionieren.

Vorkenntnisse

Grundlagen des ingenieurwissenschaftlichen Studiums

Inhalt

Einführung

- · Abgrenzung des Fachgebiets
- · Grundprinzip leistungselektronischer Schaltungen

Leistungselektronische Bauelemente

- Dioden (als Schalter, Solarzellen und -module)
- Thyristoren
- · aktiv ein- und ausschaltbare Bauelemente (MOSFET, IGBT)
- · Aufbau, Verlustmodelle, Schaltverhalten

DC-DC-Steller

- Grundschaltungen
- Modellbildung (geschaltete und gemittelte Modelle)
- Ruhelagen gemittelter Modelle
- · Grundlagen der Modulation
- Entwurf einer Steuerung
- · Stromregelung durch Vorgabe einer Fehlerdynamik

Ein- und dreiphasiger spannungsgeführter Stromrichter am Netz

- · Modellbildung, Wahl geeigneter Koordinaten
- Grundlagen der Modulation
- Stromregelung
- Einführung in Methoden zur optimalen Ausnutzung des Stellbereichs
- Anwendungsbeispiele (aktiver Gleichrichter, aktives Filter)

Ein- und dreiphasige Thyristorstromrichter am Netz

• Stellgesetze für verschiedene Lasten

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Foliensatz zur Vorlesung, GNU Octave/MATLAB

Literatur

wird in der Veranstaltung bekannt gegeben

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Bachelor Elektrotechnik und Informationstechnik 2021

Master Electric Power and Control Systems Engineering 2021

Master Fahrzeugtechnik 2022

Master Regenerative Energietechnik 2022

Master Wirtschaftsingenieurwesen 2021 Vertiefung ET

Modul: Angewandte Wärmeübertragung

Modulabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200278 Prüfungsnummer:2300732

Modulverantwortlich: Prof. Dr. Christian Cierpka

Leistungspu	nkte: 5			W	orkl	oad	l (h):15	50		Α	ntei	l Se	elbs	tstı	ıdiu	m (n):10	5		S	WS	:4.0)		
Fakultät für I	ultät für Maschinenbau																		I	Fac	hge	biet	:23	46		
SWS nach	1.F	S	2.F	S	3	.FS	3	4	l.F	S	5	5.FS	3	6	3.F	S	7	.FS		8.F	S	ξ).F	S	10.	FS
Fach-	v s	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	SF	V	S	Р	٧	S	Р	V S	P
semester			2 2	0																						

Lernergebnisse / Kompetenzen

Die Lehrveranstaltung Angewandte Wärmeübertragung gab den Studierenden nach dem Erwerb von Grundkenntnissen in den Lehrveranstaltungen Technische Thermodynamik 1 und Strömungsmechanik 1 tiefere Einblicke in das ingenieurstechnische Grundlagenfach der Wärmeübertragung. Als Lernergebnisse erkennen die Studierenden die fundamentalen physikalischen Mechanismen der Wärmeübertragung in Form von Wärmeleitung, Wärmekonvektion und Wärmestrahlung und verstehen die grundlegende wissenschaftliche Vorgehensweise zur Berechnung der dadurch übertragenen Wärmeströme. Sie können folgern, dass die Methodik des Wärmewiderstands, die Methodik des thermischen Ersatzschalbilds und die Methodik der systematischen Kennzahlenbildung von zentraler Bedeutung für die erfolgreiche ingenieustechnische Analyse von gekoppelten Wärmeübertragungsproblemen sind. Die Studierenden sind in der Lage, diese Methodik gezielt zur Lösung von ausgesuchten Problemstellungen der Ingenieurtechnik anzuwenden. Die Studierenden können dabei fachspezifische mathematische Methoden benutzen, um instationäre Wärmetransportvorgänge zu analysieren und zu bewerten sowie die Gesetzmäßigkeiten der Wärmeübertragung bei freier und erzwungener Konvektion zu untersuchen und zu interpretieren. Des Weiteren sind die Studierenden in der Lage, die Wärmeübertragung bei Phasenwechsel (Verdamfung und Kondensation) zuzuordnen. Nach der wöchentlichen Übung könnedie Studierenden eigenständig und in der Gruppe komplexe anwendungsorientierte Aufgaben lösen, die erzielten Ergebnisse interpretieren und diese auf physikalische Plausibilität durch methodische Entwicklung von geeigneten Lösungsansätzen und Bewertung der den Lösungsansätzen zugrunde liegenden physikalischen Annahmen prüfen. Die Studierenden haben zudem ein tiefes Verständnis in den theoretischen und mathematischen Grundlagen und sind bei erfolgreicher Teilnahme hierdurch an die Anforderungen an ein eventuelles anschließendes Promotionsstudium vorbereitet. Hierdurch

entwickelten die Studierenden nicht nur Fachkompetenz, sondern auch Kompetenzen in den Feldern

Vorkenntnisse

Technische Thermodynamik 1 / Strömungsmechanik 1

wissenschaftliches Arbeiten und wissenschaftliche Präsentation.

Inhalt

Die Inhalte orientieren sich an Forschungsprojekten des Fachgebiets Technische Thermodynamik und umfassen die Punkte:

- -Mechanismen der Wärmeübertragung in Form von Wärmeleitung, Wärmekonvektion und Wärmestrahlung sowie die grundlegenden Gesetze zur Berechnung der Wärmströme in Form des Fourierschen Gesetzes, des Newtonschen Kühlungsgesetzes und des Stefan-Boltzmann-Gesetzes mit Beispielen und Anwendungen.
- -Analyse von stationären Wärmeleitungsprozessen mittels der Methodik der Wärmewiderstände und der Methodik des thermischen Ersatzschaltbilds sowie von instationären Wärmeleitungsprozessen mittels der Methodik der lumped capacitance method und den mathematisch/analytischen Methoden zur Lösung partieller Differentialgleichungen mit Beispielen und Anwendungen.
- -Analyse von Wärmeübertragungsprozessen bei erzwungener und freier Konvektion bei laminar und turbulenter Strömung mittels der Methodik der Grenzschichttheorie mit Beispielen und Anwendungen,
- -Analyse von Wärmeübertragungsprozessen bei Phasenwechsel mittels der Methodik des Behältersiedens und der Methodik der Filmkondensation mit Beispielen und Anwendungen.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel, Projektor, Moodle

Literatur

Wärme- und Stoffübertragung, H. Baehr, K. Stephan, Springer-Verlag, Berlin (1996)Fundamentals of Heat and Mass Transfer, F. Incropera, D. DeWitt, J. Wiley & Sons, New York (2002)Freie Konvektion und Wärmeübertragung, U. Müller, P. Ehrhard, CF Müller-Verlag, Heidelberg (1999)VDI-Wärmeatlas, VDI-Verlag Düsseldorf (CD-ROM)Zusatzmaterial auf Moodle

Detailangaben zum Abschluss

Als Hilfsmittel für die schriftliche Prüfung dürfen die Studierenden ein selbständig erstelltes Formelblatt sowie die auf Moodle hinterlegten Arbeitsblätter in gebundener Form benutzen.

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Master Fahrzeugtechnik 2022

Master Maschinenbau 2022

Master Regenerative Energietechnik 2022

Master Technische Kybernetik und Systemtheorie 2021

Modul: Batterien und Brennstoffzellen

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch/Englisch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200592 Prüfungsnummer:210497

Modulverantwortlich: Prof. Dr. Andreas Bund

Leistungspu	nkte: 5			W	orkl	oad	(h)):15	0		Aı	ntei	il Se	elbs	tstu	ıdiu	m (l	า):10)5		S	WS	:4.0)		
Fakultät für E	Elektro	hnil	k										Fa	chge	biet	:21	75									
SWS nach	1.F	;	5	5.FS	S	6	6.FS	3	7	.FS		8.1	FS	ć).F	S	10	.FS								
Fach-	v s	Р	v s	Р	٧	SI	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	V	S P	٧	S	Р	V :	S P
semester			2 1																							

Lernergebnisse / Kompetenzen

Die Studierenden haben im Rahmen der Vorlesung sowie durch Absolvieren der Praktikumsversuche vertiefte Kenntnisse zur Funktionsweise der wichtigsten elektrochemischen Speicher und Wandler erworben. Sie können die Leistungsdaten dieser Systeme bewerten und für eine gegebene Anwendung (Unterhaltungselektronik, Elektromobilität, Netzstabilisierung) ein geeignetes System auswählen.

Im Rahmen der begleitenden Praktikumsversuche setzten Studierende die in der Vorlesung kennengelernten Herangehensweisen in anwendungsbezogene Aufgabenstellungen um. Die Arbeit in Gruppen baute die Fähigkeit aus, unterschiedliche Auffassungen und Herangehensweisen zu akzeptieren und anzuerkennen. Neben dem Vertreten der eigenen Überzeugung sind die Studierenden so auch in der Lage, andere Meinungen zuzulassen und im Kontext ihre eigene zu hinterfragen.

Vorkenntnisse

Grundkenntnisse in Physikalischer Chemie und Elektrochemie

Inhalt

- Thermodynamische und kinetische Grundlagen von Brennstoffzellen und Batterien
- Grundlagen und Anwendungen wichtiger Brennstoffzellentypen wie z.B. Polymer electrolyte membrane fuel cell, direct alcohol fuel cell, alkaline fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell
 - Stationäre und mobile Anwendungen von Brennstoffzellen
 - · Bereitstellung von Wasserstoff
- Grundlagen und Anwendungen wichtiger Batterietypen wie z.B. Bleiakkumulator, Nickel-basierte Batterien, Lithium-basierte Batterien, Redox-Fluss-Batterien, Metall-Luft-Batterien
 - · Batteriemanagement

Die Lehrveranstaltung sieht darüber hinaus das Absolvieren von Praktikumsversuchen inkl. Erstellen von Praktikumsberichten vor.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Projektor

Tafelanschrieb

Literatur

- Allen J. Bard, Larry R. Faulkner: Electrochemical methods: Fundamentals and applications, 2nd edition, John Wiley & Sons, 2001
 - C.H. Hamann, A. Hamnett, W. Vielstich: Electrochemistry, 2nd edition. Wiley-VCH, 2007
 - K. Kordesch, G. Simader: Fuel cells and their application. Wiley-VCH, 1996
 - J. Larminie, A. Dicks: Fuel cell systems explained, 2nd edition. John Wiley & Sons, 2003
- Ryan O'Hayre, Suk-Won Cha, Whitney Colella, Fritz B. Prinz: Fuel cells fundamentals, 2nd edition. John Wiley & Sons, 2009
 - D. Linden, T. B. Reddy: Handbook of Batteries, 3rd edition. McGraw-Hill, 2002
- Claus Daniel, Jürgen O. Besenhard: Handbook of Battery Materials (two volumes), 2nd edition. Wiley-VCH, 2011

Detailangaben zum Abschluss

Das Modul Batterien und Brennstoffzellen mit der Prüfungsnummer 210497 schließt mit folgenden Leistungen ab:

- schriftliche Prüfungsleistung über 90 Minuten mit einer Wichtung von 70% (Prüfungsnummer: 2100936)
- alternative semesterbegleitende Studienleistung mit einer Wichtung von 30% (Prüfungsnummer: 2100937)

Details zum Abschluss Teilleistung 2:

Ausarbeitung eines Beleges im Rahmen des Seminars.

Die Belegarbeit muss mit mindestens "ausreichend" (4,0) bestanden sein.

Auf Grund des Seminars beträgt die maximale Kapazität (mögliche Teilnehmer) des Moduls 39 Studierende. Studierende, für die das Modul ein Pflichtmodul in ihrem Studiengang ist, haben Priorität.

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Master Elektrochemie und Galvanotechnik 2021

Master Elektrotechnik und Informationstechnik 2021

Master Fahrzeugtechnik 2014

Master Fahrzeugtechnik 2022

Master Maschinenbau 2017

Master Maschinenbau 2022

Master Regenerative Energietechnik 2022

Modul: Digitale Regelungssysteme

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200021 Prüfungsnummer:220435

Modulverantwortlich: Prof. Dr. Johann Reger

Leistungspu	nkte: 5			W	orkl	oac	l (h):15	50		A	ntei	l Se	elbs	tstu	ıdiu	m (h):10	5		S	WS	:4.0)		
Fakultät für I	ultät für Informatik und Automatisierung 3. nach 1.FS 2.FS 3.FS 4.FS																			Fac	hge	biet	:22	13		
SWS nach	1.F	3	5	5.FS	3	6	S.FS	3	7	.FS		8.F	S	ξ).F	S	10.	FS								
Fach-	v s	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	SF	۱ د	/ S	Р	٧	S	Р	v s	Р
semester			2 1	1																					-	

Lernergebnisse / Kompetenzen

Nach erfolgreichem Abschluss des Moduls:

- Kennen die Studierenden die Beschreibung von Abtastsystemen und deren Anwendung auf digitale Regelungen.
- Kennen und verstehen die Studierenden die Beschreibung linearer zeitdiskreter Systeme im Zustandsraum sowie deren Ein-Ausgangsverhalten als z-Übertragungsfunktion.
- Können die Studierenden zeitdiskrete Zustandsraummodelle auf ihre grundlegenden strukturellen Eigenschaften untersuchen.
- Kennen die Studierenden die gängigen Verfahren zum Entwurf zeitdiskreter Regelungen und sind in der Lage diese anzuwenden.
- Sind die Studierenden in der Lage typische Softwarewerkzeuge zur Analyse und zum Entwurf von digitalen Regelkreisen zu verwenden (Praktikum).
- Die Studierenden können Übungsaufgaben in Kleingruppen in Vorbereitung der Lehrveranstaltung gemeisam lösen.
- Die Studierenden können einfache Regelungsprobleme lösen und diese im Team am Versuchsstand implementieren.
- Die gemeinsamen Beobachtungen bei der Versuchsdurchführung können im Team diskutiert, beurteilt und interpretiert werden.
- - Die Studierenden können die Konzepte Steuerbarkeit und Beobachtbarkeit auf Anwendungen übertragen und diese anhand von Kriterien problemangepaßt analysieren.

Können die Studierenden zeitdiskrete Regler auf gängigen Plattformen implementieren (Praktikum).

Vorkenntnisse

Regelungstechnische Grundlagen linearer Systeme im Frequenzbereich und im Zustandsraum (z.B. RST 1 und RST 2)

Inhalt

- Charakterisierung des Abtastregelkreises (Abtastung, Zustandsraumbeschreigung, Lösung von Systemen von Differenzengleichungen, Eigenbewegungen, Stabilität, Abbildung der Eigenwerte durch Abtastung)
- Zustandsraumbeschreibung zeitdiskreter Systeme (Errreichbarkeit, Zustandsrückführung, Formel von Ackermann, Dead-beat Regler, Beobachtbarkeit, Zustandsbeobachter, Separationsprinzip, PI-Regler mit Zustandsrückführung, Störgrößenaufschaltung mit Zustandsbeobachter)
- Ein- Ausgangsbeschreibung von zeitdiskreten Systemen (z-Transformation, Übertragungsfunktion zeitdiskreter Systeme, kanonische Realisierungen zeitdiskreter Übertragungsfunktionen)
- Reglerentwurf für Abtastsysteme im Frequenzbereich (Übertragungsfunktion eines Abtastsystems, diskreter Frequenzgang, Tustin-Transformation, Frequenzkennlinienverfahren für Abtastsysteme, Wahl der Abtastzeit, Approximation zeitkontinuierlicher Regler)
- Regelkreisarchitekturen (Störgrößenaufschaltung, Kaskadenregelung, Internal Model Control, Anti Wind-up Schaltung)

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

https://moodle2.tu-ilmenau.de/enrol/index.php?id=2545

Literatur

- Gausch, Hofer, Schlacher: "Digitale Regelkreise", Oldenbourg Verlag, 1993
- Kugi, "Automatisierung", Vorlesungsskript, TU Wien, 2007
- · Luenberger, "Introduction to Dynamic Systems", Wiley, 1979
- Rugh, "Linear System Theory", Prentice Hall, 1996
- Schlacher, "Automatisierungstechnik II", Vorlesungsskript, Johannes Kepler Universität, Linz, 2007
- Aström, Wittenmark, "Computer Controlled Systems", Prentice Hall, 1997
- Franklin, Powell, Workman, "Digital Control of Dynamic Systems, Addison Wesley, 1997
- Goodwin, Graebe, Salgado, "Control System Design", Prentice Hall, 2001
- · Horn, Dourdoumas: "Regelungstechnik", Pearson, 2004
- Lunze, J.: "Regelungstechnik 2", Springer, 2001

Detailangaben zum Abschluss

Das Modul Digitale Regelungssysteme mit der Prüfungsnummer 220435 schließt mit folgenden Leistungen ab:

- schriftliche Prüfungsleistung über 90 Minuten mit einer Wichtung von 100% (Prüfungsnummer: 2200659)
- Studienleistung mit einer Wichtung von 0% (Prüfungsnummer: 2200660)

Details zum Abschluss Teilleistung 2:

Testat auf 2 bestandene Praktikumsversuche

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Ingenieurinformatik 2013

Bachelor Ingenieurinformatik 2021

Bachelor Technische Kybernetik und Systemtheorie 2021

Master Electrical Power and Control Engineering 2013

Master Electric Power and Control Systems Engineering 2021

Master Fahrzeugtechnik 2014

Master Fahrzeugtechnik 2022

Master Maschinenbau 2017

Master Maschinenbau 2022

Master Mechatronik 2017

Master Mechatronik 2022

Modul: Dynamische Prozessoptimierung

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200006 Prüfungsnummer:220426

Modulverantwortlich: Prof. Dr. Pu Li

Leistungspu	nkte	: 5				W	orkl	oad	d (h):15	0		Α	nte	il Se	elbs	tstu	ıdiu	m (l	า):1	05			S	WS	:4.0)			
Fakultät für I	ultät für Informatik und Automatisierung																					F	ach	ngel	biet	:22	12			
SWS nach	1 50 2 50 2 50 4 50														S	6	S.FS	3	7	.FS	;	8	.FS	3	ç).F	S	10).F	3
Fach-	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	٧	s	Р
semester				2	1	1																								

Lernergebnisse / Kompetenzen

Die Studierenden können

- · die Grundlagen, Problemstellungen und Methoden der dynamischen Prozessoptimierung klassifizieren,
- · Methoden und Werkzeuge anwenden,
- · unterschiedliche Problemstellungen und mathematische Herleitungen analysieren und generieren
- · optimale Steuerungen berechnen sowie
- · Anwendungsfälle für industrielle Prozesse analysieren, entwickeln und bewerten

Die Studierenden haben in der Vorlesung Problemformulierungen für dynamische, unbeschränkte, steuerungsund zustandsbeschränkte Optimierungsaufgabenstellungen unter verschiedenen Zielstellungen erfahren. Sie
nehmen indirekte und direkte Verfahren zur Lösung der Problemstellungen wahr. In den Übungen wurden sie
durch akademische, niedrigdimensionale Beispiele angesprochen und können an der Aufbereitung zur Lösung
höherdimensionaler Probleme Anteil nehmen. Im Praktikum stuften sie typische Zielstellungen, beschränkte,
teilweise praxisorientierte Probleme ein, Sie können diese unter Verwendung vorhandener Optimierungssoftware
numerisch lösen und Ergebnisse richtig einschätzen. Sie können dynamische Optimierungsprobleme erarbeiten,
sie implementieren und die Ergebnisse evaluieren.

Vorkenntnisse

Grundlagen der Mathematik, Physik, Elektrotechnik; Regelungs- und Systemtechnik, Statische Prozessoptimierung

Inhalt

Indirekte Verfahren

- Variationsverfahren, Optimalitätsbedingungen
- Das Maximum-Prinzip
- Dynamische Programmierung
- Riccati-Optimal-Regler

Direkte Verfahren

- Methoden zur Diskretisierung, Orthogonale Kollokation
- Lösung mit nichtlinearen Programmierungsverfahren
- Simultane und Sequentielle Verfahren

Anwendungsbeispiele

- Prozesse in der Luft- und Raumfahrtindustrie
- Prozesse in der Chemieindustrie
- Prozesse in der Wasserbewirtschaftung

Praktikum (2 Verusche: DynPO-1: Numerische Lösung von Optimalsteuerungsaufgaben, DynPO-2:

Programmierung und numerische Lösung von Optimalsteuerungsproblemen mittels Standardsoftware)

millers Standardsoftware)

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Präsentation, Vorlesungsskript, Tafelanschrieb, Praktikum im PC-Pool

Literatur

D. G. Luenberger. Introduction to Dynamic Systems. Wiley. 1979

- A. C. Chiang. Elements of Dynamic Optimization. McGraw-Hill. 1992
- D. P. Bertsekas. Dynamic Programming and Stochastic Control. Academic Press. 1976
- M. Athans, P. Falb. Optimal Control. McGraw-Hill. 1966
- A. E. Bryson, Y.-C. Ho. Applied Optimal Control. Taylor & Francis. 1975
- O. Föllinger. Optimale Regelung und Steuerung. Oldenbourg. 1994
- R. F. Stengel. Optimal Control and Estimation. Dover Publications. 1994
- J. Macki. Introduction to Optimal Control Theory. Springer. 1998
- D. G. Hull. Optimal Control Theory for Applications. Springer. 2003
- M. Papageorgiou, M. Leibold, M. Buss. Optimierung. 4. Auflage. http://dx.doi.org/10.1007/978-3-662-46936-1 (Campus-Lizenz TU Ilmenu)

Detailangaben zum Abschluss

Das Modul Dynamische Prozessoptimierung mit der Prüfungsnummer 220426 schließt mit folgenden Leistungen ab:

- mündliche Prüfungsleistung über 30 Minuten mit einer Wichtung von 100% (Prüfungsnummer: 2200635)
- Studienleistung mit einer Wichtung von 0% (Prüfungsnummer: 2200636)

Details zum Abschluss Teilleistung 2:

Testat für Praktikum. Praktikum umfasst zwei Versuche.

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Master Electrical Power and Control Engineering 2013

Master Electric Power and Control Systems Engineering 2021

Master Elektrotechnik und Informationstechnik 2021

Master Fahrzeugtechnik 2022 Master Ingenieurinformatik 2021

Master Mechatronik 2017

Master Technische Kybernetik und Systemtheorie 2021

Master Wirtschaftsingenieurwesen 2021 Vertiefung AT

Modul: Kunststoffverfahrenstechnologien

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200331 Prüfungsnummer:230525

Modulverantwortlich: Dr. Prof. Florian Puch

Leistungspu	nkte	: 5				W	orkl	oa	d (h):15	50		Α	nte	il Se	elbs	tstu	ıdiu	m (h):9)4			S	WS	:5.0)			
Fakultät für N	Mas	chi	nen	baı	J																	F	acł	nge	biet	:23	53			
SWS nach	1	.FS	S	2	2.F	S	3	.F	3	4	l.F	3	5	5.F	S	6	S.FS	S	7	.FS	3	8	.FS	S	ć).F	S	10).F	S
Fach-	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р
semester				3	1	1																								

Lernergebnisse / Kompetenzen

Nach dem Vorlesungsteil A verstehen die Studierenden vertiefte Grundlagen der Werkstoffkunde. Sie können die Konsequenzen von Kristallisationsprozessen und Aggregatzustandsänderungen verstehen und nutzbar gestalten. Darüber hinaus kennen sie einzelne spezielle Verfahrenstechniken und die damit einhergehenden Beheizungs- und Abkühlvorgänge. Ihre Kenntnisse der PET Verarbeitung zu Vorformlingen und Flaschen im Streckblasverfahren sind besonders vertieft. Die Studierenden sind nach ersten Einblicken in die Konzeption nach dem Vorlesungsteil B in der Lage, die Konstruktion und die Auslegung von Spritzgieß- und Extrusionswerkzeugen, die Instrumente zu einer Auslegung konkret am Beispiel einer Simulation für Spritzgießwerkzeuge zu erproben. Auch andere, in der Kunststoffverarbeitung eingesetzte Werkzeuge, können von den Studierenden vom prinzipiellen Aufbau erarbeitet werden (Praktikum).

Vorkenntnisse

Werkstoffkunde und Verarbeitung von Kunststoffen

Inhalt

Vorlesungsteil A:

- 1. Einführung und Sonderaspekte der Werkstoffkunde und deren Kristallisation Orientierung
- 2. Aufheiz- und Abkühlungsvorgänge in der Kunststoffverarbeitung
- 3. PET Flaschentechnologie
- 3.1. Grundlagen des Materialverhaltens von PET
- 3.2. Maschinen- und Verfahrenstechnik
- 3.3. Flascheneigenschaften
- 3.4. Vorformlingsauslegung
- 3.5. Barriere Eigenschaften in PET Flaschen
- 3.6. Wärmestabile PET Flaschen

Übungsteil A:

Übung 1: Bauteilauslegung und Werkstoffauswahl

Übung 2: Wärmeübergangsberechnung

Übung 3: Wärmeübergang beim Spritzgießen

Übung 4: Vorformlingsauslegung mit Hausarbeitsanteilen

Praktikum:

Praktikum 1: Mechanische Prüfung

Praktikum 2: Orientierungszustände und der Einfluss auf die mechanischen Kennwerte

Praktikum 3: PET-Flaschenmessung

Praktikum 4: Realisierung und Messungen von Beheizungssituationen

Vorlesungsteil B:

- 1. Einführung
- 2. Grundlagen des Fließens und Abkühlens von Kunststoffschmelzen
- 3. Extrusionswerkzeuge
- 3.1 Bauformen von Extrusionswerkzeugen
- 3.2. Simulation von Werkzeugströmungen
- 3.3. Coextrusionswerkzeuge
- 4. Spritzgießwerkzeuge
- 4.1. Werkzeugkonzepte
- 4.2. Formgebung und Füllung
- 4.3. Angusssysteme

- 4.4. Thermische Auslegung von Spritzgießwerkzeugen
- 4.5. Entformung
- 4.6. Mechanische Auslegung
- 4.7. Mehrkomponenten- und Sonderwerkzeuge
- 4.8. Simulationsmethoden für Spitzgießwerkzeuge
- 5. Andere Form- und Presswerkzeuge
- 5.1. Presswerkzeuge
- 5.2. Blasformwerkzeuge
- 5.3. Sonstige Werkzeugbauarten

Übungsteil B:

- 1. Grundlagen der Rheologie
- 2. Extrusionswerkzeugauslegung
- 3. Druckverlustbestimmung in Spritzgießwerkzeugen
- 4. Spritzgießgerechte Bauteilgestaltung
- 5. Simulationsbasierte Auslegung von Kühlkanälen in Spritzgießwerkzeugen
- 6. Rechnergestützte Füllbildsimulation (Moldex3D)

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Vorlesungsunterlagen sind von der Website des FG herunterzuladen, bzw. werden semesterspezifisch bekanntgegeben. Dazu ergänzend Tafelbilder.

Literatur

Menges, G., Michaeli, W., Mohren, P.: Spritzgießwerkzeuge, Carl Hanser Verlag, 2007

Mennig, G.: Werkzeugbau in der Kunststoffverarbeitung, Carl Hanser Verlag 2008

Michaeli, W.: Extrusionswerkzeuge, Carl Hanser Verlag 1991

Menges, G., Haberstroh, E., Michaeli, W., Schmachtenberg, E.; Werkstoffkunde der Kunststoffe, Carl Hanser Verlag, München, 2002

Ehrenstein, G.W.; Polymer Werkstoffe, Carl Hanser Verlag, München, 1999

Eyerer, P., Hirth, T., Elsner, P.; Polymer Engineering, Springer Verlag, Berlin, 2008

Brooks, D., Giles, G. (Editors), Koch, M.: PET Packaging Technology - Two stage injection stretch blow moulding, Sheffield Academic Press, 2002

Uhlig, K.: Polyurethan Taschenbuch, Carl Hanser Verlag, 2006

Altstädt, V., Mantey, A.: Thermoplast Schaumspritzgießen, Carl Hanser Verlag, 2010

Lake, M.: Oberflächentechnik in der Kunststoffverarbeitung, Carl Hanser Verlag, 2009

Detailangaben zum Abschluss

Das Modul Kunststofftechnologie 2 mit der Prüfungsnummer 230525 schließt mit folgenden Leistungen ab:

- schriftliche Prüfungsleistung über 120 Minuten mit einer Wichtung von 100% (Prüfungsnummer: 2300807)
- Studienleistung mit einer Wichtung von 0% (Prüfungsnummer: 2300808)

Details zum Abschluss Teilleistung 2:

Praktika gemäß Testatkarte in der Vorlesungszeit

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

E-Exam (virtueller Raum) - es wird keine Technik bereitgestellt

verwendet in folgenden Studiengängen:

Master Fahrzeugtechnik 2014

Master Fahrzeugtechnik 2022

Master Maschinenbau 2017

Master Maschinenbau 2022

Master Mechatronik 2017

Modul: Leistungselektronik 2 - Theorie

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200555 Prüfungsnummer:2100897

Modulverantwortlich: Prof. Dr. Albrecht Gensior

Leistungspu	nkt	e: 5				W	ork	load	d (h):15	50		Α	nte	il Se	elbs	tstu	ıdiu	m (h):9	94			S	WS	:5.0)			
Fakultät für l	für Elektrotechnik und Informationstechn																					F	acl	nge	biet	:21	61			
SWS nach		1.F	S	2	2.F	S	3	3.F	S	4	l.F	3	5	5.F	S	6	6.F	3	7	'.F	3	8	3.F	S	ç).F	S	10).F	S
Fach-	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р
semester				2	2	1																								

Lernergebnisse / Kompetenzen

- Die Studierenden kennen nach der Vorlesung und dazu gehörigen Übungen grundlegende systematische Zusammenhänge zwischen Schalternetzwerk, Kommutierungsprinzip, Steuerverfahren und Eigenschaften leistungselektronischer Schaltungen.
- Sie sind in der Lage, leistungselektronische Systeme im elektrischen Energiesystem praktisch zu entwerfen und zu dimensionieren. Sie können leistungselektronische Schalternetzwerke in Einheit mit deren Regelstrategie auf unterschiedlichen Abstraktionen beschreiben und die Systemstabilität bewerten. Sie haben einen vollständigen Überblick über alle schaltungstechnischen Möglichkeiten der Leistungselektronik.

Vorkenntnisse

Grundlagen des ingenieurwissenschaftlichen Studiums; Besuch/Abschluss der Lehrveranstaltungen "Leistungselektronik 1 - Grundlagen" sowie "Stromrichtertechnik"

Inhalt

Thyristorstromrichter

- · Sechspuls-Brückenschaltung
- · Zwölfpuls-Brückenschaltung
- · (klassische) Hochspannungsgleichstromübertragung
- Stellgesetze verschiedener Lasten
- Einfluss der Kommutierungsinduktivität
- Netzströme

spannungsgeführte Mehrpunkttopologien

- diodengeklemmter Mehrpunktstromrichter (NPC)
- · Mehrpunktstromrichter mit 'fliegenden' Kondensatoren (FLC)
- zellbasierte Stromrichter
- · Zweipunktstromrichter in Parallelschaltung

Modulation

- Modulationsarten
- Qualitätskriterien
- · Spektren ausgewählter Modulationsverfahren
- Erweiterung des Stellbereichs
- · Raumzeigermodulation
- · schaltende Regelungsverfahren

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Foliensatz zur Vorlesung, GNU Octave/MATLAB

Literatur

wird in der Veranstaltung bekannt gegeben

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Master Electric Power and Control Systems Engineering 2021 Master Elektrotechnik und Informationstechnik 2014 Vertiefung EET

Master Elektrotechnik und Informationstechnik 2021

Master Fahrzeugtechnik 2022

Modul: Lichttechnik 1 und Technische Optik 1

Modulabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200232 Prüfungsnummer:2300659

Modulverantwortlich: Prof. Dr. Stefan Sinzinger

Leistungspu	nkt	e: 5				W	ork	load	d (h):15	50		Α	nte	il Se	elbs	tstu	ıdiu	m (h):9	94			S	WS	:5.0)			
Fakultät für I	VIa:	schi	inen	ba	u																	F	acl	nge	biet	:23	32			
SWS nach		1.F	S	2	2.F	S	3	3.F	S	4	l.F	S	5	5.F	S	6	6.F	3	7	'.FS	3	8	3.F	S	ć).F	S	10).F	S
Fach-	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р
semester				2	3	0														-										

Lernergebnisse / Kompetenzen

Nach erfolgreicher Teilnahme an diesem Modul sind die Studierenden in der Lage,

- · die verschiedenen Modelle zur Beschreibung der Ausbreitung von Licht zu benennen.
- die vier Axiome, auf denen die geometrische Optik beruht, zu benennen und das geometrisch optische Modell zu erklären.
- Aufgaben zur geometrisch-optischen Lichtausbreitung mittels Brechungs- und Reflexionsgesetz zu berechnen
- die höchste Abstraktion der optischen Abbildung, die paraxiale Abbildung, mit Hilfe des kollinearen Modells zu erklären.
- kollineare Strahlkonstruktionen an einfachen und an zusammengesetzten brechenden Systemen und Spiegeln zur Bestimmung von Objekt/Bildlage oder zur Bestimmung eines Ersatzsystems durchzuführen.
 - mit Hilfe der kollinearen Abbildungsgleichungen Parameter von optischen Systemen zu berechnen.
 - die unterschiedlichen Blenden und deren Funktionen in einem optischen System zu erläutern.
- die Öffnungsblende und ihre Bilder sowie die Feldblende und ihre Bilder eines kollinearen optischen Systems zeichnerisch zu bestimmen.
- die wichtigsten Kenngrößen für das Auge im Zusammenhang mit optischen Instrumenten zu benennen und einfache Modellberechnungen durchzuführen.
- die Blenden und Strahlenverläufe sowie die wichtigsten optischen Kenngrößen von optischen Instrumenten, wie Lupe, Fernrohr und Mikroskop zu erklären.
- die Eigenschaften von Licht sowie licht- und strahlungstechnische Grundgrößen zu erklären und diese auf lichttechnische Problemstellungen anzuwenden.
 - lichttechnische Probleme zu analysieren und entsprechende Berechnungen durchzuführen.
 - die Funktionsweise von Lichtquellen und Strahlungsempfängern zu erklären.
 - die Grundprinzipien der Lichtmessung zu nennen.
 - die Grundprinzipien der Lichtlenkung zu nennen.

Nach erfolgreicher Teilnahme an den Übungen sind die Studierenden in der Lage

- · Aufgaben selbständig zu lösen und ihren Lösungsweg vor ihren Kommilitonen darzustellen.
- · die Leistungen ihrer Kommilitonen zu würdigen und richtig einzuschätzen und Feedback zu geben.
- Feedback anzunehmen und in ihren Lern- und Entwicklungsprozess einfließen zu lassen.

Vorkenntnisse

Inhalt

- · Geometrische Optik,
- · Modelle für Abbildungen,
- · kollineare Abbildung,
- · Blenden in optischen Abbildungssystemen

- · Grundlagen optischer Instrumente.
- · Eigenschaften des Lichtes,
- Lichttechnische und strahlungstechnische Grundgrößen und Grundgesetze,
- · Lichtberechnungen,
- · Stoffkennzahlen,
- · Optische Sensoren,
- · Messprinzipien,
- · Einführung in die Lichterzeugung, Leuchten und Lichtlenkung

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Daten-Projektion, Folien, Tafel, Vorlesungsskript, Demonstrationen

Literatur

- W. Richter, "Technische Optik 1", Vorlesungsskript TU Ilmenau.
- H. Haferkorn, "Optik", 4. Auflage, Wiley-VCH 2002.
- E. Hecht, "Optik", Oldenbourg, 2001.
- D. Gall, "Grundlagen der Lichttechnik Kompendium", Pflaum Verlag 2007

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Bachelor Maschinenbau 2021 Bachelor Mechatronik 2021 Bachelor Medientechnologie 2013 Bachelor Medientechnologie 2021 Diplom Maschinenbau 2021 Master Fahrzeugtechnik 2022

Modul: Maschinenelemente 3

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200271 Prüfungsnummer:230501

Modulverantwortlich: Prof. Dr. Ulf Kletzin

Leistungspu	nkte	: 5				W	orkl	oa	d (h):15	50		Α	nte	il Se	elbs	tstu	ıdiu	m (h):9)4			S	WS	:5.0)			
Fakultät für N	Mas	chi	nen	baı	J																	F	acł	nge	biet	:23	11			
SWS nach	1	.FS	S	2	2.F	S	3	.F	3	4	l.F	3	5	5.F	S	6	6.F	S	7	.FS	3	8	.FS	S	ç).F	S	10).F	s
Fach-	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р
semester				2	3	0																								

Lernergebnisse / Kompetenzen

- Die Studierenden sind befähigt, bei belasteten komplexen Maschinenbauteilen (vgl. "Inhalt") in methodischer Vorgehensweise die Belastungsart zu erkennen und unter Verwendung geeigneter Berechnungsmethoden die Dimensionierung, Nachrechnung und Auswahl von Maschinenelementen vorzunehmen (Analyse und Synthesekompetenzen).
- Die Studierenden sind befähigt, unter Anwendung der Konstruktionsmethodik neue konstruktive Lösungen für Getriebebaugruppen selbständig zu erarbeiten und zu dokumentieren (Synthesekompetenz).
- Die Studierenden sind nach den Übungen in der Lage die Ergebnisse eigener Arbeiten an andere (Studierende, Betreuer) zu vermitteln und in Diskussionen ihren Standpunkt zu vertreten (Hausbelege).
- Die Studierenden sind im Stande, erworbenes Wissen und erworbene Fähigkeiten jederzeit anzuwenden und darauf aufbauend sich eingenständig neues Wissen und neue Fähigkeiten zu erarbeiten.

Begründung der 2 Abschlussleistungen:

In diesem konstruktiven Grundlagenmodul werden 2 grundsätzlich verschiedene Kompetenzen vermittelt und müssen damit auch abgeprüft werden:

- 1. Analysekompetenzen
- 2. Synthesekompetenzen
- Zu 1) ist eine schriftliche Prüfung notwendig.
- Zu 2) ist ein Konstruktionsbeleg notwendig, der semesterbegleitend als aPI abgelegt wird.

Vorkenntnisse

- · Technische Mechanik (Statik, Festigkeitslehre)
- Darstellungslehre
- Maschinenelemente 1
- Maschinenelemente 2
- · Werkstoffe
- · Fertigungstechnik

Inhalt

- · erweitere Berechnung von Achsen und Wellen (Dauerfestigkeit, Verformung)
- · spezielle Welle/Nabe-Verbindungen
- · hydrodynamische Gleitlager

- Zahnradgetriebe (Verzahnungsgeometrie, Zahnfestigkeit, Vorgehen beim Entwurf)
- Konstruktiver Entwurf von Getriebebaugruppen unter Nutzung von Verbindungselementen, Wellen und Lagern, Gehäuse und Dichtungen.
 - Durchführen der notwendigen Berechnungen und Anfertigen eines Technischen Entwurfs

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Skripte und Arbeitsblätter in Papier- und elektronischer Form; Aufgaben- und Lösungssammlung

Literatur

- · Niemann, G.: Maschinenelemente. Springer Verlag Berlin
- · Schlecht, B.:Maschinenelemente 1. Pearson Studium München
- · Schlecht, B.:Maschinenelemente 2. Pearson Studium München
- Decker, K.-H.: Maschinenelemente. Carl Hanser Verlag München
- Roloff; Matek: Maschinenelemente. Verlagsgesellschaft Vieweg & Sohn Braunschweig
- Steinhilper; Röper; Sauer u.a.: Maschinen- und Konstruktionselemente. Springer Verlag Berlin
- Krause, W.: Konstruktionselemente der Feinmechanik. Carl Hanser Verlag München
- · Lehrblätter und Aufgabensammlung des Fachgebietes Maschinenelemente

Detailangaben zum Abschluss

Das Modul Maschinenelemente 3 mit der Prüfungsnummer 230501 schließt mit folgenden Leistungen ab:

- schriftliche Prüfungsleistung über 120 Minuten mit einer Wichtung von 60% (Prüfungsnummer: 2300723)
- alternative semesterbegleitende Prüfungsleistung mit einer Wichtung von 40% (Prüfungsnummer: 2300724)

Details zum Abschluss Teilleistung 2: konstruktiver Hausbeleg in der Vorlesungszeit

Im Krankheitsfall: Es ist Rücksprache mit dem Fachgebiet zu halten, um die beste Vorgehensweise festzulegen (z.B. Verlängerung um die Anzahl Tage der Krankschreibung, Rücktritt und Nachholen in einem späteren Semester).

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Schriftliche Abschlussarbeit (Klausur) in Distanz entsprechend § 6a PStO-AB Technische Voraussetzungen

- Internetzugang
- Moodle-Account f
 ür die TU Ilmenau
- · Rechentechnik zum Herunterladen der Aufgabenstellung und Hochladen der Lösungen
- Webcam zum Beaufsichtigen der Klausurteilnehmenden durch die Pr
 üfenden
- Technik zum Digitalisieren der handgeschriebenen Lösungen (Mobiltelefon, Scanner, o.a.)

verwendet in folgenden Studiengängen:

Master Fahrzeugtechnik 2022 Master Maschinenbau 2022

Modul: Mikrocontroller- und Signalprozessortechnik 1

Modulabschluss: Prüfungsleistung mündlich 45 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200558 Prüfungsnummer:2100900

Modulverantwortlich: Prof. Dr. Albrecht Gensior

Leistungspu	nkte	: 5				W	orkl	oad	d (h):15	50		Α	ntei	il Se	elbs	tstu	ıdiu	m (l	h):9)4			S	WS	:5.0)		
Fakultät für E	tät für Elektrotechnik und Informationstechn																					F	ach	ngel	biet	:21	61		
SWS nach	1 50 2 50 2 50 4 5													5.FS	S	6	S.FS	3	7	.FS	3	8	.FS	3	ç).F	S	10	.FS
Fach-	٧	S	Р	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	V :	S P
semester				2	2	1																							

Lernergebnisse / Kompetenzen

Die Studierenden sind nach der Vorlesung und dazu gehörigen Übungen in der Lage, die wichtigsten Hardwarekomponenten von Steuerbaugruppen der elektrischen Energietechnik in die verschiedenen Kategorien und Prinzipien einzuordnen und zu verstehen.

Sie sind mit den Grundkenntnissen der Mikrorechnerprogrammierung vertraut.

Sie können grundlegende Softwaretools für gewünschte Anwendungen auswählen, in der Praxis modifizieren und in Betrieb nehmen.

Sie sind befähigt, einfache Anwendungsbeispiele von Steuer- und Regelverfahren analog und digital umzusetzen.

Vorkenntnisse

Inhalt

Verteilte Versionsverwaltung mit Git

- · Grundlegende Konzepte
- Einchecken, auschecken, verzweigen, mischen

Quelltextarbeit in Kleingruppen mit verteilter Versionsverwaltung

Anwendungsbeispiele

· Pulsweitenmodulation, Signalgenerator, Farbsteuerung

Mikrocontroller, DSP

- · Architekturmodell (Register, Spezialregister, Stack)
- · Peripherieeinheiten von Mikrocontrollern und DSPs: General Purpose Input/Output,

Analog-Digital-Wandler, Digital-Analog-Wandler, Zeitgeber, Interrupts.

· Festkomma- und Gleitkommaarithmetik

Programmiersprache C mit regelmäßigen Konsultationen

- · Organisation der Quelltexte
- Programmaufbau (main, Interrupt)
- Kontrollstrukturen
- · Datentypen und Variablen
- Funktionen
- Zeiger
- · C-Präprozessor
- Compiler
- Debugger (JTAG-Unterstützung)

- Quelltextkommentare zur Dokumentation von Programmteilen
- Peripherie mit C ansprechen

Hinweis: Die in der Veranstaltung vermittelten Fertigkeiten und Kenntnisse sind Grundlage für das im Wintersemester stattfindende, darauf aufbauende Modul "Mikrocontroller- und Signalprozessortechnik 2".

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

eigener Rechner wird empfohlen

Literatur

Kerninghan, Ritchie: Programmieren in C

Wolf: C von A bis Z

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Bachelor Elektrotechnik und Informationstechnik 2013

Master Electrical Power and Control Engineering 2013

Master Electric Power and Control Systems Engineering 2021

Master Elektrotechnik und Informationstechnik 2014 Vertiefung EET

Master Elektrotechnik und Informationstechnik 2021

Master Fahrzeugtechnik 2022

Master Wirtschaftsingenieurwesen 2021 Vertiefung ET

Modul: Strömungsmesstechnik

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200280 Prüfungsnummer:230503

Modulverantwortlich: Prof. Dr. Christian Cierpka

Leistungspu	nkte: 5			W	orkl	oad	l (h):15	50		Α	ntei	l Se	elbs	tstu	ıdiu	m (n):10	5		S	WS	:4.0)		
Fakultät für I	Maschi	nen	bau																	Fac	hge	biet	:23	46		
SWS nach	1.F	S	2.F	S	3	.FS	3	4	l.F	S	5	5.FS	3	6	6.F	3	7	.FS		8.F	S	ξ).F	S	10.	FS
Fach-	v s	Р	v s	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	S	Р	٧	SF) V	S	Р	٧	S	Р	VS	S P
semester			2 0	2																						

Lernergebnisse / Kompetenzen

Die Studierenden können die wichtigsten Versuchseinrichtungen und Messverfahren für unterschiedliche Messaufgaben erklären und auswählen. Sie verstehen die Vor- und Nachteile der Messmethoden bezüglich Anwendbarkeit, Auflösung und Messgenauigkeit und sind in der Lage, geeignete Verfahren auszuwählen. Im Laborpraktikum haben die Studierenden in der Vorlesung erworbene Kompetenzen an anwendungsnahen Messproblemen und kommerziellen Mess- und Versuchsanlagen angewandt. Die Studierenden sind in der Lage traditionellen Sondentechniken und moderne optische Verfahren zu verwenden, um einfache und komplexe Strömungen in Luft und Wasser qualitativ zu analysieren und quantitativ zu vermessen. Sie können entscheiden, in welchen Fällen der Einsatz von hochauflösenden Laser-Methoden sinnvoll und notwendig ist. Nach dem Praktikum sind die Studiernden darin geschut, im Praktikumsteam die Versuchsdurchführung zu besprechen, sie zu beachten. Sie sind in der Lage, die Messergebnisse mit Literaturwerten zu diskutieren und zu evaluieren. Mittels mathematischer Methoden können sie sich der Messfehler bewusst werden, sie berechnen und in der Gruppe diskutieren.

Vorkenntnisse

Strömungsmechanik 1

Inhalt

- Beispiele der Strömungsmesstechnik aus der Forschung des Instituts für Thermo- und Fluiddynamik (Thermische Konvektion, Mikrofluidik, Thermische Energiespeicher, Flüssigmetallströmungen)
- · Druckmessung mittels Sonden
- Geschwindigkeitsmessung mittels Sonden
- · Volumenstrommessung
- · Elektrische und elektro-magnetische Strömungsmessverfahren (Hitzdraht-Anemometrie, Lorentzkraft-Anemometrie)
- Schallbasierte Strömungsmessverfahren (Ultraschall-Doppler-Velocimetrie)
- · Optische Strömungsmessverfahren (Laser-Doppler-Velocimetry, Partikel-Image-Velocimetry, Partikel-Tracking-Velocimetry)
- · Mikrofluidische Messverfahren
- · Kombinierte Messverfahren für Geschwindigkeit und Temperatur (Thermochromic Liquid Crystals,

Thermochromic Phosphors

- · Versuchstechnik (Wind- und Wasserkanal, Mikrofluidik)
- · Ähnlichkeitstheorie
- Signal- und Datenverarbeitung, Bestimmung und Bewertung von Messunsicherheiten, statistische Fehlerberechnung

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Tafel und Kreide, Folien, Praktikumsanleitungen, Powerpoint-Präsentationen, Moodle-Tests

Literatui

- Handbook of Experimental Fluid MechanicsTropea et al. (Eds.), Springer 2007- StrömungsmesstechnikW. Nitsche, A. Brunn, Springer 2006

Detailangaben zum Abschluss

Das Modul Strömungsmesstechnik mit der Prüfungsnummer 230503 schließt mit folgenden Leistungen ab:

- schriftliche Prüfungsleistung über 60 Minuten mit einer Wichtung von 50% (Prüfungsnummer: 2300734)
- Studienleistung mit einer Wichtung von 50% (Prüfungsnummer: 2300735)

Details zum Abschluss Teilleistung 2: Benotete Praktika gemäß Testatkarte in der Vorlesungszeit

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Master Fahrzeugtechnik 2014 Master Fahrzeugtechnik 2022 Master Maschinenbau 2017 Master Maschinenbau 2022 Master Mechatronik 2017 Master Mechatronik 2022

Modul: System Identification

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Englisch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200090 Prüfungsnummer:220459

Modulverantwortlich: Prof. Dr. Yuri Shardt

Leistungspu	nkte: 5			W	orkl	oad	l (h):15	0		A	nte	il Se	elbs	tstu	ıdiu	m (ł	າ):10	5		S	WS	:4.0)			\neg
Fakultät für I	nforma	atik ı	und A	uton	natis	sierı	ung	3											F	-ac	hge	biet	:22	11			
SWS nach	/S nach 1.FS 2.FS 3.FS 4.FS											5.F	S	6	6.FS	3	7	FS		8.F	S	9).F	S	10	.FS	
Fach-	VS Hach					S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	SF	V	S	Р	٧	S	Р	V	SF	>
semester	2 1 1																										

Lernergebnisse / Kompetenzen

By the end of this course, students should be able to understand the principles of creating models for complex processes using different methods and approaches. From the lectures, they will have learnt linear regression, nonlinear regression, design of experiments, and time series analysis, while from the laboratory, they will have learnt to apply the system identification framework to solve relevant modelling and identification problems. From the lectures and laboratories, the students should have learnt how to develop and implement solutions that require the use of statistics, linear regression, and experimental design for real-world problems. They should have learnt to constructively take criticism and implement comments and suggestions from their instructors and fellow students.

Vorkenntnisse

Knowledge in "Control Engineering I" and "Model Building"

Inhalt

The course content is:

- 1. Data Visualisation
- 2. Statistical Tests
- 3. Linear Regression
- 4. Nonlinear Regression
- 5. Design of Experiments
- 6. Time Series Analysis

Laboratory (2 Visits: HSS-1: Identification I; HSS-2: Identification II)

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Presentations, Course notes, and Whiteboard lectures, online according to the regulations of TU Ilmenau, Moodle

Literatur

- · Y.A.W. Shardt, Statistics for Chemical and Process Engineers: A Modern Approach, Springer, 2015, https://doi.org/10.1007/978-3-319-21509-9.
- · L. Ljung, System Identification: Theory for the user, Prentice Hall, 1999.

Detailangaben zum Abschluss

Das Modul System Identification mit der Prüfungsnummer 220459 schließt mit folgenden Leistungen ab:

- schriftliche Prüfungsleistung über 120 Minuten mit einer Wichtung von 100% (Prüfungsnummer: 2200752)
- Studienleistung mit einer Wichtung von 0% (Prüfungsnummer: 2200753)

Details zum Abschluss Teilleistung 2: Pass for the laboratory component

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

• Written take-home examination according to the regulations in §6a PStO-AB

Duration: 240 minutes

Technical Requirements: Exam-Moodle https://intranet.tu-ilmenau.de/site/vpsl-

pand/SitePages/Handreichungen_Arbeitshilfen.aspx

verwendet in folgenden Studiengängen:

Diplom Elektrotechnik und Informationstechnik 2017

Master Fahrzeugtechnik 2022

Master Research in Computer & Systems Engineering 2016 Master Research in Computer & Systems Engineering 2021

Modul: Werkstofftechnologie der Metalle

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Sommersemester

Modulnummer: 200292 Prüfungsnummer:2300751

Modulverantwortlich: Dr. Günther Lange

Leistungspu	nkte: 5			W	orklo	ad (h	1):15	50		A	nte	il Se	elbs	tstu	ıdiu	m (l	า):105	5		S	WS:	4.0)		
Fakultät für N	kultät für Maschinenbau																	F	acl	hge	biet:	23	52		
SWS nach	1.F	l.FS	3	5	5.F	S	6	6.F	3	7	.FS	8	3.F	S	9	.FS	3	10	FS						
Fach-	1.FS 2.FS V S P V S				VS	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	SP	٧	s	Р	V	s	Р	VS	S P
semester		4 0 0											·			Ţ,									

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage die Eigenschaften und Anwendungen der behandelten Verbundwerkstoffe sowie ihre Verarbeitung zu verstehen und dadurch auch zu beschreiben.

Die Studierenden sind in der Lage die Eigenschaften metallischer Werkstoffe in den einzelnen Herstellungsstufen bis zum Halbzeug zu beschreiben.

Dadurch sind die Studieren in die Lage ingenieurwissenschaftlich relevante Anwendungen auf Basis der behandelten Verbundwerkstoffe und Bauweisen grundlegend zu analysieren, um dann passende Lösungsmöglichkeiten aufzuzeigen und zu erarbeiten.

Vorkenntnisse

keine

Inhalt

In den Vorlesungen werden die Grundlagen der metallischen Werkstoffen behandelt (beispielsweise Aufbau, mech. Eigenschaften, EKD, Phasendiagramme, Wärmebehandlungen) bis hin zur Verabeitung.

- · Gitterstrukturen von Stahl- und Aluminiumlegierungen
- · Verfestigungsmechanismen
- Phasendiagramme einfacher Zweistoffsysteme
- · Einsen-Kohlenstoffdiagramm
- Wärmebehandlungsverfahren
- · Blechherstellung durch Walzen
- · Blechverarbeitung in Streck- und Tiefziehverfahren
- · Abhängigkeit der mechanischen Eigenschaften vom Fertigungsverfahren
- Sonderverfahren (Innenhochdruckumformung, Hydro-Umformverfahren, u.a.)
- · aktuelle Fragestellungen aus Industrie und Forschung

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Power Point, Tafel. Vorlesungsbegleitende Unterlagen werden zum Download bereitgestellt.

Die Einschreibung erfolgt über Moodle:

https://moodle2.tu-ilmenau.de/course/view.php?id=3485

Literatur

- Einführung in die Werkstoffwissenschaft, W. Schatt, Dt. Verlag für Grundstoff, ISBN 3-342-00521-1
- Werkstofftechnik, W. Bergmann, Carl Hanser Verlag, ISBN 3-446-15598-8
- Grundlagen der Werkstofftechnik, M. Riehle, E. Simmchen, VDI-Verlag, ISBN 3-18-400823-1
- Handbuch der Umformtechnik, Doege, E., Behrens, Bernd-Arno Springer Verlag 2010
- Praxis der Umformtechnik : Arbeitsverfahren, Maschinen, Werkzeuge; Heinz Tschätsch, JochenDietrich, Vieweg und Teubner, 2010

- Metal forming : mechanics and metallurgy; William F. Hosford; Robert M. Caddell, Cambridge Univ. Press, 2011
 - Schatt, W.; Wieters, K.-P.; Kieback, B.:

Pulvermetallurgie: Technologien und Werkstoffe; 2. Auflage;

ISBN-10 3-540-23652-X; Springer-Verlag Berlin Heidelberg New York; 2007

· Wiedemann, J.:

Leichtbau: Elemente und Konstruktion, 3. Auflage;

ISBN-13 978-3-540-33656-7 Berlin Heidelberg New York; 2007

Klein, B.:

Leichtbau-Konstruktion: Berechnung und Gestaltung; 8. Auflage;

ISBN 978-3-8348-0701-4; Vieweg+Teubner | GWV Fachverlage GmbH, Wiesbaden 2009

· Rammerstorfer; F. G.:

Repetitorium Leichtbau; ISBN 3-486-22398-4; R. Oldenbourg Verlag Wien München; 1992

- Werkstoffe Aufbau und Eigenschaften; E. Hornbogen, G. Eggeler, E. Werner; 9 Auflage, Springer, 2008
- Werkstoffwissenschaft; W. Schatt, H. Worch; 9. Auflage, Wiley-VCH, 2003
- U.a.
- · Grundlagen der Kunststoffe, G. Menges

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Bachelor Betriebswirtschaftslehre mit technischer Orientierung 2021

Bachelor Werkstoffwissenschaft 2021

Bachelor Wirtschaftsingenieurwesen 2021 Vertiefung MB

Master Fahrzeugtechnik 2014

Master Fahrzeugtechnik 2022

Master Werkstoffwissenschaft 2013

Master Werkstoffwissenschaft 2021

Modul: Data Science für industrielle Anwendungen

Modulabschluss: Prüfungsleistung schriftlich 60 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200308 Prüfungsnummer: 2300774

Modulverantwortlich: Prof. Dr. Steffen Straßburger

Leistungspu	nkte	: 5				W	orkl	oad	d (h):15	0		Α	nte	il Se	elbs	tstu	ıdiu	m (h):1	05			S	WS	:4.0)			
Fakultät für I	Mas	chi	nen	bau	ı																	F	acł	nge	biet	:23	26			
SWS nach 1.FS 2.FS 3.FS 4.FS												5	5.F	S	6	S.FS	3	7	.FS	3	8	.FS	S	ć).F	S	10	.F	3	
Fach-	٧	S	Р	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р
semester		2	2	0																										

Lernergebnisse / Kompetenzen

Nach Vorlesung und Übungen können die Studenten den Begriff des Data Science erklären sowie damit verbundene Begrifflichkeiten wie IoT, maschinelles Lernen, Deep Learning und Reinforcement Learning benennen, erklären und klassifizieren. Die Studenten können hieraus im Kontext von industriellen Anwendungen ein relevantes Methodenportfolio klassifizieren und Methoden daraus für konkrete Anwendungsmöglichkeiten bewerten und anwenden.

Die Studenten können die Begriffe Data Farming und Hybrid Systems Modelling erklären, Unterschiede zwischen Echtdaten und simulierten Daten gegenüberstellen sowie Methoden zur Auswertung großer Mengen von Simulationsdaten aus dem Portfolio von Data Science anwenden. Die Studenten können den Begriff der Metamodellierung erklären und können Metamodelle aus simulierten Daten mithilfe der erlernten Data-Science-Methoden entwickeln

Die Studenten können das Konzept von Visual Analytics erläutern, sowie ein Portfolio von relevanten Visualisierungsmethoden benennen, klassifizieren und Visualisierungsmethoden hinsichtlich der Anwendung im Kontext von Data Science auswählen.

Vorkenntnisse

Fundierte Kenntnisse in Mathematik und Statistik (z. B. Statistik 1 und 2), Programmierkenntnisse (z. B. Entwicklung von Anwendungskomponenten)

Inhalt

Die Inhalte der Vorlesung umfassen folgende Bereiche

- · Grundlagen von Data Science
 - · Statistische Grundlagen und moderne Statistikkonzepte
 - Maschinelles Lernen, Deep Learning und Reinforcement Learning
 - · IoT, Sensordaten und Industrielle Daten
 - · Industrielle Anwendungsmöglichkeiten
- Data Science und Simulation
 - · Echtdaten vs. Simulationsdaten
 - · Hybrid Systems Modellig
 - Data Farming
 - Auswertung großer Mengen von Simulationsdaten mit Methoden der Data Science
 - · Robustheitsanalysen
 - Metamodellierung und Prädiktion
 - · Visual Analytics und moderne Visualisierungskonzepte

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Powerpoint-Präsentation, interaktives Tafelbild, Arbeitsblätter für rechnergestützte Übungen

Literatu

N. Feldkamp. Wissensentdeckung im Kontext der Produktionssimulation. - Ilmenau : Universitätsverlag Ilmenau, 2020.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Prüfungsgespräch (mündliche Abschlussleistung) in Distanz entsprechend § 6a PStO-AB

verwendet in folgenden Studiengängen:

Bachelor Mechatronik 2021 Master Fahrzeugtechnik 2014 Master Fahrzeugtechnik 2022 Master Maschinenbau 2017 Master Maschinenbau 2022 Master Wirtschaftsinformatik 2021

Modul: Deep Learning

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten

Sprache:Englisch Pflichtkennz.:Wahlmodul Turnus:ganzjährig

Modulnummer: 200131 Prüfungsnummer:220488

Modulverantwortlich: Prof. Dr. Patrick Mäder

Leistungspu	nkte: 5			W	orkl	oac	d (h):15	50		Α	ntei	l Se	elbs	tstı	ıdiu	m (h):1	05			S۱	NS:	4.0)		
Fakultät für I	nforma	tik	und Aเ	uton	nati	sier	นทรู)												F	ach	geb	oiet:	22	52		
SWS nach	/S nach 1.FS 2.FS 3.FS 4.FS											5.FS	3	6	3.F	S	7	.FS		8	.FS		9	.FS	3	10	.FS
Fach-						S	Р	٧	S	Р	٧	s	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	s	Р	V 5	S P
semester					2	2	0																				

Lernergebnisse / Kompetenzen

Professional competence gained through lectures and examined through written exam:

- Students have knowledge about theoretical foundations of deep neural networks.
- · Students have knowledge about CNN architectes and their applications.
- Students have knowledge about architectures for sequence modeling and their applications.

Methodological competence gained through seminars and examined through aPI (assignments):

- Students gained the ability to implement and apply a variety of deep learning algorithms.
- · Students gained the ability to evaluate and troubleshoot deep learning models.
- Students gained the ability to use computational resources for training and application of deep learning models.

Social competence gained through lectures and seminars:

- Students gained insights in ethical aspects of machine learning (e.g., bias, autonomous driving) through discussions in lectures and seminars.
- Students can discuss advantages and disadvantages of different deep learning approaches among each other and with their lecturers and gained professionality in mastering discussions beyond their mother tongue.
 - · Students learn to discuss and solve a scientific problem in a team of peers

Vorkenntnisse

- · basic programming skills in Python
- · basic understanding of machine learning preferable

Inhalt

Deep learning has recently revolutionized a variety of application like speech recognition, image classification, and language translation mostly driven by large tech companies, but increasingly also small and medium-sized companies aim to apply deep learning techniques for solving an ever increasing variety of problems. This course will give you detailed insight into deep learning, introducing you to the fundamentals as well as to the latest tools and methods in this rapidly emerging field.

Deep learning thereby refers to a subset of machine learning algorithms that analyze data in succeeding stages, each operating on a different representation of the analyzed data. Specific to deep learning is the ability to automatically learn these representations rather than relying on domain expert for defining them manually. The course will teach you the theoretical foundations of deep neural networks, which will provide you with the understanding necessary for adapting and successfully applying deep learning in your own to implement, parametrize and apply a variety of deep learning (CNNs) as well as recurrent neural networks (RNNs) and transformers for image, text, and time series analysis. You will further become familiar with advanced data science tools and in using computational resources to train and apply deep learning models.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

- Presentations
- · Assignments incldung code stubs
- · Jupyter cloud services (personal computer required)
- · All material will be shared via Moodle, accessible [HERE]

Technical Requirements

- · personal computer required for all seminars and assignments
- · ... with access to moodle.tu-ilmenau.de
- · ... with access to colab.google.com

Literatur

- · Deep Learning: Ian Goodfellow, Yoshua Bengio, and Aaron Courville, MIT Press (2016)
- Pattern Recognition and Machine Learning: Christoper M. Bishop, Springer (2006)
- Hands-On Machine Learning with Scikit-Learn and TensorFlow: Aurélien Géron, O'Reilly Media (2017)

Detailangaben zum Abschluss

Das Modul Deep Learning mit der Prüfungsnummer 220488 schließt mit folgenden Leistungen ab:

- alternative semesterbegleitende Prüfungsleistung mit einer Wichtung von 50% (Prüfungsnummer: 2200822)
- alternative semesterbegleitende Prüfungsleistung mit einer Wichtung von 50% (Prüfungsnummer: 2200823) Details zum Abschluss Teilleistung 1:
- multiple coding assignments evaluating methodological and practical competence in the taught concepts to be individually solved at home with due date and submission via Moodle
 - · result determined as average across the evaluated solutions to the assignments
 - · students must register via thoska for this exam, typically within the 3rd and 4th week of the semester

Details zum Abschluss Teilleistung 2:

- one or multiple written tests consisting of multiple-choice and free-form questions evaluating the professional competence in the course's topics
 - · preferably conducted digitally via Moodle and on the student's device
- final results may be scaled or individual questions may be excluded depending on best performing percentile of students
- students must register via thoska for this exam, typically within the 3rd and 4th week of the semester

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Diplom Elektrotechnik und Informationstechnik 2017

Master Communications and Signal Processing 2021

Master Elektrotechnik und Informationstechnik 2021

Master Fahrzeugtechnik 2014

Master Fahrzeugtechnik 2022

Master Informatik 2013

Master Informatik 2021

Master Ingenieurinformatik 2021

Master Mathematik und Wirtschaftsmathematik 2022

Master Medientechnologie 2017

Master Research in Computer & Systems Engineering 2016

Master Research in Computer & Systems Engineering 2021

Master Wirtschaftsinformatik 2021

Modul: Lasermaterialbearbeitung und innovative Fügetechnologien

Modulabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200268 Prüfungsnummer:2300718

Modulverantwortlich: Prof. Dr. Jean Pierre Bergmann

Leistungspu	nkte: 5			W	orklo	oad (I	า):1	50		Α	ntei	l Se	elbs	tstuc	liu	m (h)	:94		S	SWS	:5.0)		
Fakultät für N	Maschi	nen	bau															Fa	chge	biet	:23	21		
SWS nach	1.FS	S	2.F	S	3	.FS	Τ.	4.F	S	5	5.FS	3	6	.FS		7.F	S	8.	FS	6).F	S	10.	FS
Fach-	v s	Р	v s	Р	V	S P	٧	S	Р	٧	S	Р	٧	SI	-	v s	Р	V	SP	٧	S	Р	v s	Р
semester					4	1 0																		

Lernergebnisse / Kompetenzen

Die Studierenden kennen die physikalischen Grundlagen der Lasertechnik und können die Vor- und Nachteile unterschiedlicher Laserstrahlquellen wiedergeben. Sie können die Mechanismen bei der Laserstrahlbearbeitung erläutern sowie deren Auswirkungen auf die Bearbeitungsergebnisse übertragen. Die Studierenden kennen die Sicherheitsprobleme beim Einsatz der Lasertechnik und können daraus Schutzmaßnahmen ableiten. Nach der Vorlesung und den Übungen sind die Studierenden in der Lage Laserstrahlquellen und Systemtechniken hinsichtlich unterschiedlicher Anforderungen zu bewerten und einsatzspezifisch zu konzinieren.

Hinsichtlich der im modernen Maschinenbau eingesetzten breiten Werkstoffpalette können die Studierenden Fügeverfahren für artgleiche und artfremde Bauweisen anhand wirtschaftlicher und technologischer Merkmale auswählen und auslegen. Sie können zudem die, mit den unterschiedlichen Bauweisen und Werkstoffen einhergehenden, Problematiken hinsichtlich Schweißeignung, Schweißkonstruktion und Schweißfertigung beurteilen und Maßnahmen ableiten.

Vorkenntnisse

Konstruktion, Fertigungstechnik und Werkstoffe

Inhalt

- Grundlagen der Lasertechnik: laseraktive Medien, Aufbau und Wirkung eines Resonators, Eigenschaften der Laserstrahlung, Strahlführungssysteme, Strahl-Stoff-Wechselwirkung
- Lasersystemtechnik: Aufbau einer Laserbearbeitungsstation, Strahlformung und -führung, Prozessüberwachung und -regelung
 - · Materialbearbeitung mittels Laserstrahlung
- Laserstrahlfügen: Werkstoffe, Applikationen, Prozesstechnik, Tiefschweißen, Wärmeleitungsschweißen, Löten, Beschichten, Mikrobearbeitung, Hybridverfahren
 - Laserstrahlschneiden: Eigenschaften, Prozess- und Werkstoffeinfluss, Bewertung eines Laserschnittes
- Lasersicherheit, Gefährdung der Laserstrahlung, Sicherheitsmaßnahmen, sekundäre Gefährdungspotenziale
- Vortragsreihe "innovative Fügetechnologien" mit Berichten zu aktuellen Fragestellungen von füge- und schweißtechnischen Prozessen mit Berücksichtigung von Grundlagen, Besonderheiten und anwendungsorientierten Fragestellungen

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Bereitstellung der Vorlesungsfolien in elektronischer Form

https://moodle2.tu-ilmenau.de/course/view.php?id=2984 Es wird kein Einschreibeschlüssel benötigt.

Literatur

Hügel, H.; Graf, T.: Laser in der Fertigung: Grundlagen der Strahlquellen, Systeme, Fertigungsverfahren. Springer Vieweg Verlag, 2014.

Bliedtner, J.; Müller, H.; Barz, A.: Lasermaterialbearbeitung: Grundlagen - Verfahren - Anwendungen - Beispiele.

Hanser Verlag, 2013.

Eichler, H. J.; Eichler, J.: Laser: Bauformen, Strahlführung, Anwendungen. Springer-Verlag Berlin Heidelberg, 2015.

Graf, T.: Laser: Grundlagen der Strahlerzeugung. Springer Vieweg, 2015.

Anderson, L. W.; Boffard, J. B.: Lasers for Scientists and Engineers. World Scientific Company, 2017.

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

Ist aufgrund verordneter Maßnahmen im Rahmen der SARS-CoV-2 Pandemie die Durchführung der Abschlussleistunge(n) im WS 2021/2022 in der festgelegten regulären Form nicht möglich, dann erfolgt die Erbringung der Abschlussleistung in der folgenden alternativen Form. Die Verantwortung für ein zur Teilnahme an Distanz-Prüfungen geeignetes Endgerät und eine geeignete Internetverbindung liegt bei den Studierenden. Abschlussleistung:

Schriftliche Abschlussarbeit (Klausur) in Distanz entsprechend § 6a PStO-AB technische Vorraussetzungen: E-Exam (MoodleExam), PC/Tablet/Handy mit Internetverbindung, Drucker, Scanner

Der Modulverantwortliche trifft die Entscheidung über die konkrete Form unter Berücksichtigung der gegebenen Umstände und des Grundsatzes der Chancengleichheit spätestens eine Woche vor dem Tag der Abschlussleistung. Die Entscheidung wird über das Nachrichtenforum des Moodle-Kurses zur Lehrveranstaltung bekannt gegeben.

verwendet in folgenden Studiengängen:

Master Fahrzeugtechnik 2014

Master Fahrzeugtechnik 2022

Master Maschinenbau 2017

Master Maschinenbau 2022

Master Werkstoffwissenschaft 2013 Master Werkstoffwissenschaft 2021

Modul: Leichtbautechnologie

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200297 Prüfungsnummer:230511

Modulverantwortlich: Dr. Prof. Florian Puch

Leistungspu	nkte: 5			W	orkl	oad	(h):15	50		A	ntei	l Se	elbs	tstı	ıdiu	m (h):10)5			SWS	3:4.0	0		
Fakultät für I	Maschi	inen	ıbau																	Fa	achge	ebie	t:23	53		
SWS nach	4	l.FS	3	5	5.FS	3	6	3.F	S	7	.FS		8.	FS	,	9.F	S	10.	FS							
Fach-	V S	Р	v s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S P	٧	S	Р	V S	P
semester																										

Lernergebnisse / Kompetenzen

Nach ersten Einblicken in die Leichtbautechnologie (Vorlesung) kennen die Studierenden sowohl die werkstofflichen, die verarbeitungstechnischen als auch vor allem die gestalterischen konstruktiven Aspekte des Leichtbaus mit Kunststoffen und Verbundwerkstoffen. Neben den Potentialen der Metalle und Keramiken sind auch die der Kunststoffe und Verbundwerkstoffe verstanden. Nach dem Praktikum sind die Studierenden in der Lage anhand von Anforderungen an die Bauteile und Baugruppen geeignete Werkstoffe und Verbundwerkstoffe auszuwählen. Dabei sind sie dazu befähigt, die Werkstoffe anhand ihrer spezifischen Eigenschaften und lernen ihre wesentlichen Charakterisierungsmethoden zu vergleichen.

Vorkenntnisse

Grundlegende Werkstoffkenntnisse, Grundlagenfächer des GIG, idealerweise das Modul "Werkstoffkunde und Verarbeitung von Kunststoffen".

Inhalt

Vorlesung:

- 1. Einführung Leichtbau2. Strukturleichtbau
- 2.1. Methodisches Vorgehen
- 2.2. Leichtbauwesen
- 2.3. Sandwichstrukturen
- 2.4. Verbindungstechniken
- 3. Konstruktionsleichtbau
- 3.1. Formfaktoren und Leichtbaukennzahlen
- 3.2. Geometriegestaltung, belastungsgerechte Auslegung
- 4. Werkstoffleichtbau
- 4.1. Werkstoffwahl
- 4.2. Leichtbau mit Stahl
- 4.3. Leichtbau mit Aluminium & anderen
- 4.4. Sintermetalle und MIM
- 4.5. Leichtbau mit Thermoplasten
- 4.6. Leichtbau mit faserverstärkten Kunststoffen
- 4.7. Werkstoffmodelle für FVK
- 5. Fertigungsleichtbau
- 5.1. Thermoplastverarbeitung mit Faserverstärkung
- 5.2. Integrierte Verarbeitungsketten Thermoplaste
- 5.3. Schaumkunststoffe
- 5.4. Faserverbundverarbeitungstechniken
- 5.5. Faserverbundbearbeitungstechniken

Praktikum:

- 1. DSC und TMA/FTIR Analyse von Thermoplasten
- 2. TMA und DMA Messung an Thermoplasten
- 3. Rheometrie: Rotationsviskosimeter und MFI von Thermoplasten
- 4. Messung duroplastischer Harzsysteme

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Vorlesungsunterlagen sind von der Website des FG herunterzuladen, bzw. werden semesterspezifisch bekanntgegeben. Dazu ergänzend Tafelbilder.

Literatur

- W. Michaeli: Einführung in die Kunststoffverarbeitung, Carl Hanser Verlag, München 2006
- R. Stauder, L. Vollrath (Hrsg.): Plastics in Automotive Engineering, Carl Hanser Verlag, München 2007
- M. Neitzel, P. Mitschang: Handbuch Verbundwerkstoffe, Carl Hanser Verlag, München 2004
- G. Ehrenstein: Faserverbundkunststoffe, Carl Hanser Verlag, München 2006
- B. Klein, Leichtbaukonstruktion: Berechnung und Gestaltung, Vieweg+Teubner GWV Fachverlage Wiesbaden 2009
- J. Wiedemann: Leichtbau: Elemente und Konstruktion, Springer Verlag, Berlin 2007

Grellmann, W., Seidler, S.; Kunststoffprüfung, Carl Hanser Verlag 2005

Menges, G., Haberstroh, E., Michaeli, W., Schmachtenberg, E.: Werkstoffkunde der Kunststoffe, Carl Hanser Verlag 2002

Ehrenstein, G.: Polymer Werkstoffe; Carl Hanser Verlag 2011

Frick, A., Stern, nC.: DSC Prüfung in der Anwendung, Carl Hanser Verlag 2006

Detailangaben zum Abschluss

Das Modul Leichtbautechnologie mit der Prüfungsnummer 230511 schließt mit folgenden Leistungen ab:

- schriftliche Prüfungsleistung über 90 Minuten mit einer Wichtung von 100% (Prüfungsnummer: 2300759)
- Studienleistung mit einer Wichtung von 0% (Prüfungsnummer: 2300760)

Details zum Abschluss Teilleistung 2:

Praktika gemäß Testatkarte in der Vorlesungszeit

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

E-Exam (virtueller Raum) - es wird keine Technik bereitgestellt

verwendet in folgenden Studiengängen:

Bachelor Werkstoffwissenschaft 2013

Bachelor Werkstoffwissenschaft 2021

Master Fahrzeugtechnik 2014

Master Fahrzeugtechnik 2022

Master Maschinenbau 2022

Modul: Mikrocontroller- und Signalprozessortechnik 2

Modulabschluss: Prüfungsleistung alternativ Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200557 Prüfungsnummer:2100899

Modulverantwortlich: Prof. Dr. Albrecht Gensior

Leistungspu	nkte:	5		W	orkl	oac	l (h):15	50		Α	nte	il Se	elbs	tstı	ıdiu	m (h):9	4			S	WS	:5.0)			
Fakultät für l	Elektr	otec	nnik ur	nd Ir	nforr	nat	ion	ste	chn	ik										F	acl	nge	biet	:21	61			
SWS nach	1.1	S	2.F	S	3	.FS	3	4	l.F	S	5	5.F	S	6	S.FS	S	7	.FS	3	8	s.F	S	9	.FS	S	10	.FS	;
Fach-	VS	Р	v s	Р	V	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V	s I	Р
semester					2	2	1																•					

Lernergebnisse / Kompetenzen

Die Studierenden sind nach der Vorlesung und dazu gehörigen Übungen in der Lage, Mikrorechner und Signalprozessoren für Steuerungen und leistungseelektronische Baugruppen auszuwählen, zu programmieren und auch praktisch in Betrieb zu setzen. Sie können geeignete Prozessoren und die geeigneten Softwaretools auswählen. Sie sind in der Lage, die erforderlichen Schnittstellen zu den Prozessen und für die Kommunikation festzulegen und umzusetzen. Sie sind befähigt, die für die Applikation erforderlichen Verfahren und Algorithmen in Assemblersprache oder in C-Sprache umzusetzen und zu testen. Sie können verschiedene Entwicklungswerkzeuge zur Softwareentwicklung für Mikrocontroller parametrieren und anwenden.

Vorkenntnisse

- · Grundlagen der Leistungselektronik
- Mikrocontroller- und Signalprozessortechnik 1 (oder vergleichbar, d.h. Umgang mit Git, Erfahrungen in der Programmierung von Mikrorechnern)

Inhalt

In der Veranstaltung wird ein Softwareentwicklungsprojekt in der Kleingruppe bearbeitet. Das Projekt hat zum Ziel, Algorithmen in einen digitalen Signalprozessor zu implementieren, so dass ein zur Verfügung gestelltes leistungselektronisches System mit einem gewünschten Funktionsumfang ausgestattet wird. Dabei werden folgende Inhalte vermittelt:

- · Entwurf von Inbetriebnahmestrategien und Testszenarien für komplexere leistungselektronische Systeme
- · Modellbildung und Simulation
- · modellgestützer Entwurf von Algorithmen
- fortgeschrittener Umgang mit Git (Git-Submodule)

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Vorlesungsunterlagen, Arbeit im Selbstlernraum

Literatur

wird in der Veranstaltung bekanntgegeben

Detailangaben zum Abschluss

Softwareentwicklungsprojekt in der Kleingruppe für eine leistungselektronische Anwendung

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Diplom Elektrotechnik und Informationstechnik 2017

Master Electrical Power and Control Engineering 2013

Master Electric Power and Control Systems Engineering 2021

Master Elektrotechnik und Informationstechnik 2021

Master Fahrzeugtechnik 2022

Modul: Regenerative Energien und Speichertechnik

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten Sprache: Deutsch/Englisch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200591 Prüfungsnummer:210496

Modulverantwortlich: Prof. Dr. Andreas Bund

Leistungspu	nkte: 5			W	orkl	oad	l (h):15	50		Α	ntei	l Se	elbs	tstu	ıdiu	m (h):1	05			S۱	NS:	4.0)		
Fakultät für E	Elektrot	tech	nnik un	ıd Ir	nforr	nati	ion	ste	chn	ik										F	acho	geb	oiet:	217	75		
SWS nach	1.FS	3	2.F	.FS	l.F	3	5	5.FS	3	6	6.F	S	7	.FS		8	.FS		9	.FS	3	10	.FS				
Fach-	v s	Р	V S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	s	Р	٧	s	Р	V 5	S P						
semester			•		2	1	1																				

Lernergebnisse / Kompetenzen

Die Studierenden haben aus Vorlesung, Übung und Praktikum ein umfassendes Verständnis der physikalischchemischen Grundlagen für die Speicherung und Wandlung von Energie gewonnen, insbesondere für die erneuerbaren Energieträger (z. B. Wind-, Solar- und Wasserkraft). Sie können die theoretischen Wirkungsgrade der entsprechenden Wandlersysteme abschätzen und diese hinsichtlich ihrer technischen Grenzen einordnen. Für die längerfristige Speicherung von Energie können sie geeignete Systeme vorschlagen (z. B. verschiedene Typen von Elektrolyseuren oder spezielle Batterien), da sie die entsprechenden theoretischen Grundlagen verstanden haben.

Vorkenntnisse

Grundkenntnisse in Physik und Chemie

Inhalt

- Thermodynamische Grundlagen der Energiewandlung
- Allgemeine Grundlagen zu WInd-, Wasser- und Sonnenenergie
- · Physikalische und chemische Grundlagen von Energiewandlern und Speichern
- Eigenschaften, Herstellung und Verteilung verschiedener Energieträger (z. B. Wasserstoff)

Die Lehrveranstaltung sieht darüber hinaus das Absolvieren von Praktikumsversuchen inkl. Erstellen von Praktikumsberichten vor.

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Projektor

Tafelanschrieb

Moodle-Kurs: https://moodle2.tu-ilmenau.de/course/view.php?id=3792

Literatur

- Holger Watter: Nachhaltige Energiesysteme. Vieweg+Teubner, 2009
- Richard A. Zahoranski: Energietechnik, 4. Auflage. Vieweg+Teubner, 2009
- K. Kordesch, G. Simader: Fuel cells and their application. Wiley-VCH, 1996
- J. Larminie, A. Dicks: Fuel cell systems explained, 2nd edition. John Wiley & Sons, 2003
- Ryan O'Hayre, Suk-Won Cha, Whitney Colella, Fritz B. Prinz: Fuel cells fundamentals, 2nd edition. John Wiley & Sons, 2009
 - M. Kaltschmidt, H. Hartmann, H. Hofbauer: Energie aus Biomasse, 2. Auflage. Springer, 2009

Detailangaben zum Abschluss

Das Modul Regenerative Energien und Speichertechnik mit der Prüfungsnummer 210496 schließt mit folgenden Leistungen ab:

- schriftliche Prüfungsleistung über 90 Minuten mit einer Wichtung von 70% (Prüfungsnummer: 2100934)
- alternative semesterbegleitende Studienleistung mit einer Wichtung von 30% (Prüfungsnummer: 2100935)

Details zum Abschluss Teilleistung 2:

Ausarbeitung eines Beleges im Rahmen des Seminars. Teilleistung 2 wird nur im Wintersemester angeboten.

Auf Grund des Seminars beträgt die maximale Kapazität (mögliche Teilnehmer) des Moduls 39 Studierende. Studierende, für die das Modul ein Pflichtmodul in ihrem Studiengang ist, haben Priorität.

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Diplom Elektrotechnik und Informationstechnik 2017

Master Elektrochemie und Galvanotechnik 2021

Master Elektrotechnik und Informationstechnik 2021

Master Fahrzeugtechnik 2014

Master Fahrzeugtechnik 2022

Master Regenerative Energietechnik 2022

Master Werkstoffwissenschaft 2013

Master Werkstoffwissenschaft 2021

Modul: Schaltnetzteile/Stromversorgungstechnik

Modulabschluss: Prüfungsleistung mündlich 45 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200991 Prüfungsnummer:2101075

Modulverantwortlich: Prof. Dr. Tobias Reimann

Leistungspu	nkte	e: 5				W	ork	load	d (h):15	50		A	ntei	il Se	elbs	tstı	ıdiu	m (h):1	105			S	WS	:4.0)			
Fakultät für E	Elel	ktro	tecł	nnik	un	d Ir	nfor	mat	ion	ste	chn	ik										F	acl	hge	biet	:21	68			
SWS nach	1	l.F	S	2	2.F	S	3	3.F	3	4	l.F	3	5	5.FS	S	6	6.F	S	7	.FS	3	8	3.F	S	9).F	3	1	0.F	S
Fach-	٧	s	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
semester							2	1	1																					

Lernergebnisse / Kompetenzen

Die Studierenden haben verschiedene Topologien der elektronischen Stromversorgungstechnik verstanden. Sie sind in der Lage, Stromversorgungen für beliebige Anwendungen (spezifische Leistung, Ausgangsspannung, Ausgangsstrom) zu projektieren, zu dimensionieren und besitzen Grundkenntnisse für die praktische Realisierung. Sie können für den geforderten Einsatzfall die geeignetste Grundschaltung auswählen und dimensionieren. Sie sind fähig, analoge und digitale Steuerverfahren einzusetzen und zu parametrieren. Sie sind vertraut mit wichtigen Netzanschlußbedingungen, unter denen die Stromversorgung zuverlässig funktionieren soll. Sie können die Zuverlässigkeit/ Lebensdauer von Schaltnetzteilen durch die Auslegung beeinflussen.

Vorkenntnisse

Ingenieurwissenschaftliches GrundstudiumGrundlagen der Elektrotechnik

Inhalt

Grundschaltungen der DC-DC-Stromversorgungstechnik,Kommutierung am Beispiel leistungselektronischer Grundschaltungen,Grundlagen der Halbleiterbauelemente für die Schaltnetzteiltechnik,Grundlager der passiven Bauelemente,Grundprinzipien der potentialfreien Energieübertragung,Sperr- und Durchflusswandlerprinzip, Prinzipien und Auslegung von Eintransistorschaltungen (Sperrwandler, Durchflusswandler),Prinzipien und Auslegung von Brückenschaltungen,Prinzipien und Auslegung von Power Factor Correction (PFC)-Schaltungen, Prinzip der hart schaltenden Technik,Prinzip der Resonanz- und Quasiresonanztechnik,Verfahren zur Steuerung und Regelung von Schaltnetzteilen,Simulation (SPICE) von Stromversorgungen,messtechnische Analyse von Stromversorgungen

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Präsentationen/ Tafelbilder, Arbeitsblätter, Schaltungsdemonstratoren für das Laborpraktium, Simulationsmodelle (SPICE), praktische Messungen Scripte in elektronischer Form

Literatur

Maksimovic, D.; Erickson, R.: Fundamentals of Power Electronics, Billings, K.: Switchmode Power Supply Handbook, Whittington, H.W.: Switched Mode Power Supplies: Design and Construction, Pressman, A.: Billings, K.; Morey, T.: Switching Power Supply Design, Schröder, D.: Elektrische Antriebe/ Leistungselektron. Schaltungen (4.Aufl.), Specovius, J.: Grundkurs Leistungselektronik - Bauelemente, Schaltungen und Systeme

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Diplom Elektrotechnik und Informationstechnik 2017

Master Elektrotechnik und Informationstechnik 2014 Vertiefung EET

Master Elektrotechnik und Informationstechnik 2021

Master Fahrzeugtechnik 2014 Master Fahrzeugtechnik 2022

Modul: Software Safety

Modulabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten

Sprache:Deutsch/Englisch Pflichtkennz.:Wahlmodul Turnus:ganzjährig

Modulnummer: 200002 Prüfungsnummer:220423

Modulverantwortlich: Prof. Dr. Patrick Mäder

Leistungspu	nkte: 5	W	/orkload (h):150	Anteil S	elbststudiu	ım (h):105	S	WS:4.0	
Fakultät für I	nformati	k und Autor	matisierun	9				Fachge	biet:2252	
SWS nach	1.FS	2.FS	3.FS	4.FS	5.FS	6.FS	7.FS	8.FS	9.FS	10.FS
Fach-	V S F	V S P	V S P	V S P	V S P	V S P	V S P	V S P	V S P	V S P
semester			2 2 0							

Lernergebnisse / Kompetenzen

Fachkompetenzen hauptsächlich erlangt in Vorlesungen und geprüft durch die abschließende mPI:

- Die Studierenden kennen die Konzepte und Terminologie abhängiger und sicherheitskritischer Systeme (dependability und safety).
- Die Studierenden verfügen über Kentnisse wesentlicher Entwicklungsstandards sicherheitskritischer Systeme und deren Anforderungen an den Entwicklungsprozess von Systemen.
- Die Studierenden wissen, welche zusätzlichen Maßnahmen in allen wesentlichen Phasen eines Softwareund Systementwicklungsprozesses im Kontext sicherheitskritischer Entwicklungen, je nach Kritikalität der Anwendung, ergriffen werden sollten und wie diese umzusetzen sind.
- Die Studierenden verfügen über Kenntnis zur qualifizierten Auswahl von Programmiersprachen, Werkzeugen, Code Analyse Techniken für sicherheitskritische Systeme.

Methodenkompetenzen haupsächlich erlangt in den Seminaren und geprüft durch die begleitende aPI (Assignements):

- Die Studirenden sind in der Lage Spezifikationen für sicherheitskritische Systeme zu erstellen.
- Die Studierenden sind in der Lage Sicherheitsanalysen und Safety Cases zu erstellen.
- Die Studierenden sind in der Lage Architekturen und Entwürfe für sicherheitskritische Systeme zu erstellen.
- Die Studierenden sind in der Lage ausgewählte Programmiersprachen für sicherheitskritische Systeme anzuwenden.

Sozialkompetenzen erlangt in Seminaren und Vorlesungen:

- Die Studierenden sind in den Seminaren fähig, die in der Vorlesung gelehrten Methodiken in Gruppenarbeit anzuwenden (z.B. gemeinsam eine FMEA durchzuführen), Lösungstrategien zu diskutieren und Lösungen zu entwickeln.
- Studierende können die Risiken und Risikoerwägungen sicherheitskritischer Entwicklungen (z.B. tollerierbares Risiko) und die damit verbundene Veranwortung der Entwicklungsbeteiligten zum Beispiel anhand schwerer Unfälle mit ihren Lehrenden diskutieren. Sie kennen moralische Erwägungen und länderspezifische Ansätze zum Umgang mit Restrisiko.

Vorkenntnisse

· Grundkenntnisse in Softwaretechnik (Software Engineering) vorteilhaft

Inhalt

Sicherheitskritische Systeme sind solche, deren Versagen oder unzureichende Funktionalität katastrophale Folgen für Menschen, die Umwelt und die Wirtschaft haben kann. Diese Systeme werden kontinuierlich

komplexer in ihren Funktionalitäten, aber auch in ihren Interaktionen mit der Umgebung. Die Veranstaltung widmet sich dem Thema Softwareentwicklung für sicherheitskritische Systeme und stellt Techniken von den eingehenden Sicherheitsanalysen, über Spezifikation und Entwicklung bis zur Verifikation vor. In umfangreichen Übungen werden diese Techniken an Beispielen erlernt und unterstützende Applikationen vorgestellt. Schwerpunkte:

- · System Safety
- · Safety Standards und Safety Case
- · Requirements Engineering und Modellierung*
- Requirements Management, Verifikation und Validierung*
- Architektur und Design Entwicklung, Verifikation und Validierung*
- · Safety und Risiko Analyse
- Programmiersprachen, Programmierung, Metriken*
- Testen, Verifikation und Validierung auf Code-Ebene*
- · Qualitätssicherung und -management*
- *) im Kontext sicherheitskritischer Software- und Systementwicklungen

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

- · Vorlesungs- und Seminarfolien als PDF
- aufgezeichnete Screencasts in Deutsch via Moodle and OpenCast
- Tutorials, White-Paper und wissenschaftliche Beiträge verlinkt aus Folien und Moodle
- · Entwicklungswerkzeuge
- · Auszüge aus Entwicklungsprojekten
- · Moodle quizzes als Übergang zur nächsten Vorlesung
- · Aufgaben und Aufgabenblätter via Moodle
- Alle Materialien werden via Moodle bereitgestellt. Der folgenden Link zeigt auf den jeweils aktuellen Kurs: [HERE].

Literatur

- · C. Hobbs: Embedded Software Development for Safety-critical Systems. CRC Press (2019)
- K. E. Wiegers and J. Beatty: Software Requirements. Mircosoft Press (2013)
- C. Carlson: Effective FMEAs: Achieving safe, reliable, and economical products and processes using failure mode and effects analysis. John Wiley & Sons (2012)
- B. P. Douglass: Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Systems. Addison Wesley (2002)
 - E. Hull and K. Jackson and J. Dick: Requirements engineering. Springer (2011)
- Van Lamsweerde: Requirements engineering: from system goals to UML models to software specifications. Wiley Publishing (2009)
 - J. Barnes: Safe and secure software: An invitation to Ada 2012. AdaCore (2013)
 - J. W. Vincoli: Basic guide to system safety. John Wiley & Sons (2006)
 - J.-L. Boulanger: Static analysis of software: The abstract interpretation. John Wiley & Sons (2013)
- J. Schäuffele and T. Zurawka: Automotive software engineering-principles, processes, methods and tools. SAE International (2005)

Detailangaben zum Abschluss

Das Modul Software Safety mit der Prüfungsnummer 220423 schließt mit folgenden Leistungen ab:

- alternative semesterbegleitende Prüfungsleistung mit einer Wichtung von 50% (Prüfungsnummer: 2200628)
- alternative semesterbegleitende Prüfungsleistung mit einer Wichtung von 50% (Prüfungsnummer: 2200629)

Details zum Abschluss Teilleistung 1:

- multiple assignments evaluating methodological and practical competence in the taught concepts to be individually solved at home with due date and submission via Moodle
 - result determined as average across the evaluated solutions to the assignments
 - · students must register via Thoska for this exam, typically within the 3rd and 4th week of the semester

Details zum Abschluss Teilleistung 2:

- one or multiple written tests consisting of multiple-choice and free-form questions evaluating the professional competence in the course's topics
 - · preferably conducted digitally via Moodle and on the student's device
- final results may be scaled or individual questions may be excluded depending on best performing percentile of students

• students must register via Thoska for this exam, typically within the 3rd and 4th week of the semester

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Master Fahrzeugtechnik 2014

Master Fahrzeugtechnik 2022

Master Informatik 2013

Master Informatik 2021

Master Ingenieurinformatik 2014

Master Ingenieurinformatik 2021

Master Research in Computer & Systems Engineering 2016

Master Research in Computer & Systems Engineering 2021

Master Wirtschaftsinformatik 2021

Modul: Zuverlässigkeit von Schaltungen und Systemen

Modulabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten Sprache: Deutsch Pflichtkennz.: Wahlmodul Turnus: Wintersemester

Modulnummer: 200530 Prüfungsnummer:2100869

Modulverantwortlich: Prof. Dr. Martin Ziegler

Leistungspu	nkte: 5			W	orkl	oad	(h)):150)		Ant	eil S	elb	ststı	ıdiu	ım (ł	າ):10	5		S	WS	:4.0)		
Fakultät für E	Elektro	tech	nik un	d Ir	forr	natio	n	stech	nnik									I	Fac	hge	biet	:21	43		
SWS nach	1.F	S	2.F	.FS	4.	FS		5.I	-S		6.F	3	7	.FS		8.F	S	9).F	S	10	.FS			
Fach-	v s	Р	,	V S	3 P	٧	S	Р	٧	SF	· V	S	Р	٧	S	Р	V	S P							
semester					2	2 ()		ĺ																

Lernergebnisse / Kompetenzen

Die Studierenden kennen nach der Vorlesung und dazu gehörigen Übungen die grundlegenden Zusammenhänge und Methoden zur Beschreibung der Zuverlässigkeit elektronischer Schaltungen und Systeme. Sie sind mit Herangehensweisen zur Erfassung und Beeinflussung vertraut und kennen grundlegende Ausfallmechanismen.

Fachkompetenzen: Die Studierenden kennen ingenieurtechnische Grundlagen zur Bewertung und Beeinflussung der Zuverlässigkeit elektronischer Systeme sowie bauelementetypische Ausfallmechanismen.

Methodenkompetenz: Die Studierenden beherrschen Methoden der Zuverlässigkeitsanalyse und ihre Anwendung, können die Ergebnisdokumentation zuverlässig vornehmen.

Systemkompetenzen: Die Studierenden verstehen den Zusammenhang von Entwurf, Fertigung und Test basierend auf den Fachkenntnissen anderer Lehrgebiete (HL-Technologie, Schaltungsentwurf, Mikro- und nanoelektronische Systeme). Sie können auf ein gut entwickeltes interdisziplinäres Denken aufbauen.

Vorkenntnisse

Bachelor (Ingenieur- oder Naturwissenschaften), Kenntnisse zur Funktion von Halbleiterbauelementen und ICs

Inhalt

- Ausfall- und Überlebenswahrscheinlichkeit (Verteilungsfunktionen)
- Zuverlässigkeit von Systemen mit mehreren Elementen (Zuverlässigkeitsersatzschaltbild; Redundante und nichtredundante Elemente; Analysemethoden)
- Methoden der Zuverlässigkeitsanalyse
- Zuverlässigkeit elektronischer Bauelemente (Qualitäts- und Zuverlässigkeitssicherung;

Zuverlässigkeitsbildende Maßnahmen im Entwurf, der Produktion und in der Endkontrolle)

- Bewertung der Zuverlässigkeit
- Zuverlässigkeit integrierter Schaltungen (Intrinsische und extrinsische Fehlermechanismen;

Ausfallmechanismen in CMOS-ICs)

- Test integrierter Schaltungen (Grundprobleme; Automatische Testmustererzeugung, passive und aktive Testhilfen; BIST; IDDQ-Test)

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Folien, Beamer, Tafel

Literatur

Bajenescu/Bazu: Reliability of Electronic Components, Springer, 1999 Jha/Gupta: Testing of Digital Systems, Cambridge Univ. Press, 2003

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Diplom Elektrotechnik und Informationstechnik 2017

Master Elektrotechnik und Informationstechnik 2014 Vertiefung MNE

Master Elektrotechnik und Informationstechnik 2021

Master Fahrzeugtechnik 2014 Master Fahrzeugtechnik 2022 Master Fahrzeugtechnik 2022

Modul: ABSCHLUSSARBEIT

Masterarbeit mit Kolloquium

Fachabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten

Sprache:Deutsch/Englisch Pflichtkennz.:Pflichtmodul Turnus:unbekannt

Fachnummer: 201089 Prüfungsnummer:99000

Fachverantwortlich: Jana Buchheim

Leistungspu	nkte	: 3	0			W	ork	load	d (h):90	00		A	ntei	l Se	elbs	tstı	ıdiu	m (h):9	00			S	WS	:0.0)			
Fakultät für I	Mas	chi	inen	baı	J																	F	acl	nge	biet	:23				
SWS nach	1	.F	S	2	2.F	S	3	3.FS	3	4	ŀ.F	S	5	5.F	3	6	6.F	S	7	.FS	;	8	3.FS	S	9	.FS	S	10).F	s
Fach-	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
semester											900 h																			

Lernergebnisse / Kompetenzen

Mit der Masterarbeit sind die Studierenden befähigt eine vorgegebene umfangreiche ingenieurwissenschaftliche Aufgabenstellung in einem gesetzten Zeitrahmen, selbständig bearbeiten.

Die Studierenden konnten ihre bisher erworbenen Kompetenzen in einem speziellen fachlichen Thema vertiefen und erweitern. Sie können sich somit gründlich in ein Thema einarbeiten und ihre eigenen Gedanken zur Problematik ordnen. Unter Anwendung der bisher erworbenen Theorie- und Methodenkompetenzen können sie die Aufgabenstellung nach wissenschaftlichen Methoden selbständig bearbeiten und im wissenschaftlichen Kontext einordnen. Sie sind in der Lage eine konkrete Problemstellung zu beurteilen und gemäß wissenschaftlichen Standards zu dokumentieren.

Durch die Analysen von Fachliteratur bezüglich der Aufgabenstellung und die eigene wissenschaftliche Arbeit, sind sie darin geschult ihre erworbenen Kenntnisse und Fähigkeiten auf neue Systeme und die Fragestellung anzuwenden.

Die Studierenden konnten Problemlösungskompetenz erwerben und sind in der Lage, die eigene Arbeit zu bewerten und einzuordnen.

Die Studierenden sind befähigt, das Anliegen ihres bearbeiteten wissenschaftlichen Thema in einem Vortrag vor einem allgemeinen und/oder fachlich involvierten Publikum vorzustellen, die Forschungsergebnisse in komprimierter Form im Rahmen eines Abschlusskolloquiums zu präsentieren und die gewonnenen Erkenntnisse sowohl darzustellen als auch in der Diskussion zu verteidigen. Sie können Anmerkungen Beachtung schenken und Kritik würdigen und sind in der Lage, ihre Arbeit kritisch zu hinterfagen. Sie können Anmerkungen Beachtung schenken und Kritik würdigen und sind in der Lage, ihre Arbeit kritisch zu hinterfagen. Sie haben gelernt, ihre eigenen Erkenntnisse und Ergebnisse klar und verständlich darzustellen und zu belegen sind sie somit in der Lage, auch zu anderen Themen wissenschaftlich fundierte Texte zu verfassen.

Vorkenntnisse

Erfolgreich abgeschlossenes Bachelorstudium

Inhalt

- Selbstständige Bearbeitung eines fachspezifischen Themas unter Betreuung
- Dokumentation der Arbeit (Konzeption eines Arbeitsplanes, Literaturrecherche, Stand der Technik, des Lösungswegs und der Ergebnisse)
- Wissenschaftliche Tätigkeiten (z. B. Analyse, Synthese, Modellierung, Simulationen, Entwurf und Aufbau, Vermessung)
 - Auswertung und Diskussion der Ergebnisse
 - · Verfassen einer schriftlichen Abschlussarbeit
 - Wissenschaftlich fundierter Vortrag mit anschließender Diskussion

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Schriftliche Dokumentation und Vortrag mit digitaler Präsentation

Literatur

Themenspezifischen Literatur wird zu Beginn der Arbeit vom Betreuer benannt bzw. ist selbstständig zu recherchieren.

- Ebeling, P.: Rhetorik, Wiesbaden, 1990.
- · Hartmann, M., Funk, R. & Niemann, H.: Präsentieren. Präsentationen: zielgerichtet

und adressatenorientiert, 4. Auflage, Beltz, Weinheim, 1998.

- Knill, M.: Natürlich, zuhörerorientiert, aussagenzentriert reden, 1991.
- Motamedi, Susanne: Präsentationen. Ziele, Konzeption, Durchführung, 2. Auflage, Sauer-Verlag, Heidelberg, 1998.
 - · Schilling, Gert: Angewandte Rhetorik und Präsentationstechnik, Gert Schilling Verlag, Berlin, 1998.

Detailangaben zum Abschluss

Das Modul Masterarbeit mit Kolloquium mit der Prüfungsnummer 99000 schließt mit folgenden Leistungen ab:

- alternative Prüfungsleistung (= selbstständige schriftliche wissenschaftliche Arbeit, Umgang 720 Stunden, Bearbeitungsdauer 5 Monate) mit einer Wichtung von 80% (Prüfungsnummer: 99001)
- mündliche Prüfungsleistung (= Abschlusskolloquium, 20 Minuten) mit einer Wichtung von 20% (Prüfungsnummer: 99002)

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Master Fahrzeugtechnik 2022 Master Maschinenbau 2022 Master Mechatronik 2022

Master Optische Systemtechnik/Optronik 2022

Modul: Masterarbeit mit Kolloquium

Masterarbeit - Abschlusskolloquium

Fachabschluss: Prüfungsleistung Kolloquium 20 min Art der Notengebung: Gestufte Noten Sprache: Pflichtkennz.:Pflichtmodul Turnus:ganzjährig

Fachnummer: 0000 Prüfungsnummer:99002

Fachverantwortlich:

Leistungspu	nkte: 0			W	orklo	ad (h):0			Ar	nteil	Se	elbst	studiu	ım (h):()			S	WS	:0.0)		
Fakultät für I	Maschinenbau															F	acl	nge	biet	:23					
SWS nach	1.F	S	2.F	S	3.F	5	.FS		6.	FS	7	7.FS	3	8	3.F	S	ć).F	3	10.	FS				
Fach-	V S	Р	v s	Р	VS	Р	٧	S	Р	٧	SF	>	V :	S P	٧	S	Р	٧	S	Р	٧	S	Р	V S	S P
semester																									

Lernergebnisse / Kompetenzen

Vorkenntnisse

Inhalt

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Literatur

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Diplom Maschinenbau 2017

Diplom Maschinenbau 2021

Bachelor Medienwirtschaft 2015

Master Wirtschaftsingenieurwesen 2014 Vertiefung BT

Master Elektrotechnik und Informationstechnik 2014 Vertiefung MNE

Master Optische Systemtechnik/Optronik 2022

Bachelor Informatik 2010

Master Wirtschaftsingenieurwesen 2021 Vertiefung MB

Master Allgemeine Betriebswirtschaftslehre 2013

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Medientechnologie 2021

Master Wirtschaftsingenieurwesen 2015 Vertiefung MB

Bachelor Angewandte Medien- und Kommunikationswissenschaft 2012

Master Micro- and Nanotechnologies 2021

Master Informatik 2021

Bachelor Mathematik 2013

Diplom Elektrotechnik und Informationstechnik 2021

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Master Wirtschaftsinformatik 2021

Bachelor Angewandte Medien- und Kommunikationswissenschaft 2013

Master Media and Communication Science 2021

Master Fahrzeugtechnik 2022

Master Mechatronik 2022

Master Wirtschaftsingenieurwesen 2011

Bachelor Wirtschaftsinformatik 2021

Master Miniaturisierte Biotechnologie 2009

Bachelor Fahrzeugtechnik 2021

Bachelor Informatik 2021

Master Electric Power and Control Systems Engineering 2021

Bachelor Technische Kybernetik und Systemtheorie 2013

Bachelor Ingenieurinformatik 2021

Bachelor Mathematik 2009

Master Wirtschaftsingenieurwesen 2021 Vertiefung AT

Master Ingenieurinformatik 2014

Master Medientechnologie 2013

Master Maschinenbau 2022

Bachelor Werkstoffwissenschaft 2013

Bachelor Mathematik 2021

Master Biotechnische Chemie 2020

Master Medienwirtschaft 2018

Master Elektrotechnik und Informationstechnik 2014 Vertiefung AST

Bachelor/Lehramt Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Master Wirtschaftsingenieurwesen 2014 Vertiefung MB

Master Regenerative Energietechnik 2013

Master Technische Kybernetik und Systemtheorie 2014

Master Biomedizinische Technik 2021

Bachelor/Lehramt Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Master Technische Physik 2013

Master Elektrochemie und Galvanotechnik 2013

Master Wirtschaftsingenieurwesen 2021

Master Biomedizinische Technik 2014

Bachelor Maschinenbau 2021

Bachelor Ingenieurinformatik 2013

Master Research in Computer & Systems Engineering 2016

Bachelor Biotechnische Chemie 2013

Master Werkstoffwissenschaft 2013

Master Mathematik und Wirtschaftsmathematik 2022

Bachelor Medienwirtschaft 2013

Bachelor Angewandte Medien- und Kommunikationswissenschaft 2021

Master Wirtschaftsinformatik 2018

Master Wirtschaftsinformatik 2014

Bachelor/Lehramt Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Master Ingenieurinformatik 2021

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Bachelor Technische Physik 2013

Master Wirtschaftsingenieurwesen 2009

Bachelor Technische Kybernetik und Systemtheorie 2010

Master Medienwirtschaft 2021

Master Wirtschaftsingenieurwesen 2018 Vertiefung MB

Master Technische Kybernetik und Systemtheorie 2021

Master Optische Systemtechnik/Optronik 2017

Master Elektrotechnik und Informationstechnik 2021

Master Wirtschaftsingenieurwesen 2014

Master Communications and Signal Processing 2021

Bachelor/Lehramt Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Master Micro- and Nanotechnologies 2016

Bachelor Medienwirtschaft 2021

Diplom Elektrotechnik und Informationstechnik 2017

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung MB

Bachelor Mechatronik 2021

Bachelor Elektrotechnik und Informationstechnik 2021

Master Medien- und Kommunikationswissenschaft/Media and Communication Science 2013

Bachelor Biotechnische Chemie 2021

Master Elektrotechnik und Informationstechnik 2014 Vertiefung IKT

Bachelor/Lehramt Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Informatik 2013

Bachelor Elektrotechnik und Informationstechnik 2008

Master Elektrotechnik und Informationstechnik 2014 Vertiefung ATE

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung ET

Master Maschinenbau 2017

Master Wirtschaftsingenieurwesen 2021 Vertiefung ET

Bachelor Elektrotechnik und Informationstechnik 2013

Master Ingenieurinformatik 2009

Master Wirtschaftsingenieurwesen 2018

Bachelor Wirtschaftsingenieurwesen 2021 Vertiefung MB

Bachelor Technische Kybernetik und Systemtheorie 2021

Master Elektrochemie und Galvanotechnik 2021

Master Medientechnologie 2017

Bachelor Werkstoffwissenschaft 2021

Master Wirtschaftsingenieurwesen 2013

Master Research in Computer & Systems Engineering 2021

Bachelor Angewandte Medien- und Kommunikationswissenschaft 2014

Bachelor Betriebswirtschaftslehre mit technischer Orientierung 2021

Bachelor/Lehramt Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Master Communications and Signal Processing 2013

Bachelor Medientechnologie 2013

Master Medienwirtschaft 2014

Master Electrical Power and Control Engineering 2008

Bachelor Biomedizinische Technik 2021

Master Elektrotechnik und Informationstechnik 2014 Vertiefung EET

Master Wirtschaftsingenieurwesen 2015 Vertiefung BT

Master Fahrzeugtechnik 2009

Master Wirtschaftsinformatik 2015

Master Regenerative Energietechnik 2022

Bachelor Optische Systemtechnik/Optronik 2013

Master Wirtschaftsingenieurwesen 2018 Vertiefung BT

Master Wirtschaftsingenieurwesen 2010

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung WM

Master Wirtschaftsingenieurwesen 2013 Vertiefung BT

Bachelor Wirtschaftsingenieurwesen 2021 Vertiefung ET

Master Wirtschaftsingenieurwesen 2015

Master Wirtschaftsingenieurwesen 2021 Vertiefung BT

Master Medienwirtschaft 2015

Master Werkstoffwissenschaft 2021

Master Electrical Power and Control Engineering 2013

Master Informatik 2013

Master Regenerative Energietechnik 2016

Master International Business Economics 2021

Modul: Masterarbeit mit Kolloquium

Masterarbeit - schriftliche wissenschaftliche Arbeit

Fachabschluss: Masterarbeit alternativ 5 Monate Art der Notengebung: Generierte Noten

Sprache: Pflichtkennz.:Pflichtmodul Turnus:ganzjährig

Fachnummer: 0000 Prüfungsnummer:99001

Fachverantwortlich:

Leistungspu	nkte	e: 0				W	orkl	oad	d (h):0			Α	nte	il Se	elbs	tstu	ıdiu	m (h):0)			S	ws	:0.0)			
Fakultät für N	Mas	chi	nen	baı	pau																	F	acl	nge	biet	:23				
SWS nach	1	l.F	S	2	2.F	S	3	3.FS	3	4	l.F	S	5	5.F	S	6	S.FS	S	7	.FS	3	8	3.F	S	ξ).F	S	1	0.F	S
Fach-	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
semester																														

Lernergebnisse / Kompetenzen

Vorkenntnisse

Inhalt

Medienformen und technische Anforderungen bei Lehr- und Abschlussleistungen in elektronischer Form

Literatur

Detailangaben zum Abschluss

alternative Abschlussform aufgrund verordneter Coronamaßnahmen inkl. technischer Voraussetzungen

verwendet in folgenden Studiengängen:

Diplom Maschinenbau 2017

Diplom Maschinenbau 2021

Bachelor Medienwirtschaft 2015

Master Wirtschaftsingenieurwesen 2014 Vertiefung BT

Master Elektrotechnik und Informationstechnik 2014 Vertiefung MNE

Master Optische Systemtechnik/Optronik 2022

Bachelor Informatik 2010

Master Wirtschaftsingenieurwesen 2021 Vertiefung MB

Master Allgemeine Betriebswirtschaftslehre 2013

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Medientechnologie 2021

Master Wirtschaftsingenieurwesen 2015 Vertiefung MB

Bachelor Angewandte Medien- und Kommunikationswissenschaft 2012

Master Micro- and Nanotechnologies 2021

Master Informatik 2021

Bachelor Mathematik 2013

Diplom Elektrotechnik und Informationstechnik 2021

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Master Wirtschaftsinformatik 2021

Bachelor Angewandte Medien- und Kommunikationswissenschaft 2013

Master Media and Communication Science 2021

Master Fahrzeugtechnik 2022

Master Mechatronik 2022

Master Wirtschaftsingenieurwesen 2011

Bachelor Wirtschaftsinformatik 2021

Master Miniaturisierte Biotechnologie 2009

Bachelor Fahrzeugtechnik 2021

Bachelor Informatik 2021

Master Electric Power and Control Systems Engineering 2021

Bachelor Technische Kybernetik und Systemtheorie 2013

Bachelor Ingenieurinformatik 2021

Bachelor Mathematik 2009

Master Wirtschaftsingenieurwesen 2021 Vertiefung AT

Master Ingenieurinformatik 2014

Master Medientechnologie 2013

Master Maschinenbau 2022

Bachelor Werkstoffwissenschaft 2013

Bachelor Mathematik 2021

Master Biotechnische Chemie 2020

Master Medienwirtschaft 2018

Master Elektrotechnik und Informationstechnik 2014 Vertiefung AST

Bachelor/Lehramt Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Master Wirtschaftsingenieurwesen 2014 Vertiefung MB

Master Regenerative Energietechnik 2013

Master Technische Kybernetik und Systemtheorie 2014

Master Biomedizinische Technik 2021

Bachelor/Lehramt Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Master Technische Physik 2013

Master Elektrochemie und Galvanotechnik 2013

Master Wirtschaftsingenieurwesen 2021

Master Biomedizinische Technik 2014

Bachelor Maschinenbau 2021

Bachelor Ingenieurinformatik 2013

Master Research in Computer & Systems Engineering 2016

Bachelor Biotechnische Chemie 2013

Master Werkstoffwissenschaft 2013

Master Mathematik und Wirtschaftsmathematik 2022

Bachelor Medienwirtschaft 2013

Bachelor Angewandte Medien- und Kommunikationswissenschaft 2021

Master Wirtschaftsinformatik 2018

Master Wirtschaftsinformatik 2014

Bachelor/Lehramt Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Master Ingenieurinformatik 2021

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Bachelor Technische Physik 2013

Master Wirtschaftsingenieurwesen 2009

Bachelor Technische Kybernetik und Systemtheorie 2010

Master Medienwirtschaft 2021

Master Wirtschaftsingenieurwesen 2018 Vertiefung MB

Master Technische Kybernetik und Systemtheorie 2021

Master Optische Systemtechnik/Optronik 2017

Master Elektrotechnik und Informationstechnik 2021

Master Wirtschaftsingenieurwesen 2014

Master Communications and Signal Processing 2021

Bachelor/Lehramt Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Master Micro- and Nanotechnologies 2016

Bachelor Medienwirtschaft 2021

Diplom Elektrotechnik und Informationstechnik 2017

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung MB

Bachelor Mechatronik 2021

Bachelor Elektrotechnik und Informationstechnik 2021

Master Medien- und Kommunikationswissenschaft/Media and Communication Science 2013

Bachelor Biotechnische Chemie 2021

Master Elektrotechnik und Informationstechnik 2014 Vertiefung IKT

Bachelor/Lehramt Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Informatik 2013

Bachelor Elektrotechnik und Informationstechnik 2008

Master Elektrotechnik und Informationstechnik 2014 Vertiefung ATE

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung ET

Master Maschinenbau 2017

Master Wirtschaftsingenieurwesen 2021 Vertiefung ET

Bachelor Elektrotechnik und Informationstechnik 2013

Master Ingenieurinformatik 2009

Master Wirtschaftsingenieurwesen 2018

Bachelor Wirtschaftsingenieurwesen 2021 Vertiefung MB

Bachelor Technische Kybernetik und Systemtheorie 2021

Master Elektrochemie und Galvanotechnik 2021

Master Medientechnologie 2017

Bachelor Werkstoffwissenschaft 2021

Master Wirtschaftsingenieurwesen 2013

Master Research in Computer & Systems Engineering 2021

Bachelor Angewandte Medien- und Kommunikationswissenschaft 2014

Bachelor Betriebswirtschaftslehre mit technischer Orientierung 2021

Bachelor/Lehramt Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Master Communications and Signal Processing 2013

Bachelor Medientechnologie 2013

Master Medienwirtschaft 2014

Master Electrical Power and Control Engineering 2008

Bachelor Biomedizinische Technik 2021

Master Elektrotechnik und Informationstechnik 2014 Vertiefung EET

Master Wirtschaftsingenieurwesen 2015 Vertiefung BT

Master Fahrzeugtechnik 2009

Master Wirtschaftsinformatik 2015

Master Regenerative Energietechnik 2022

Bachelor Optische Systemtechnik/Optronik 2013

Master Wirtschaftsingenieurwesen 2018 Vertiefung BT

Master Wirtschaftsingenieurwesen 2010

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung WM

Master Wirtschaftsingenieurwesen 2013 Vertiefung BT

Bachelor Wirtschaftsingenieurwesen 2021 Vertiefung ET

Master Wirtschaftsingenieurwesen 2015

Master Wirtschaftsingenieurwesen 2021 Vertiefung BT

Master Medienwirtschaft 2015

Master Werkstoffwissenschaft 2021

Master Electrical Power and Control Engineering 2013

Master Informatik 2013

Master Regenerative Energietechnik 2016

Master International Business Economics 2021

Glossar und Abkürzungsverzeichnis:

LP Leistungspunkte

SWS Semesterwochenstunden

FS Fachsemester

V S P Angabe verteilt auf Vorlesungen, Seminare, Praktika

N.N. Nomen nominandum, Platzhalter für eine noch unbekannte Person (wikipedia)

Objekttypen It.

K=Kompetenzfeld; M=Modul; P,L,U= Fach (Prüfung,Lehrveranstaltung,Unit)

Inhaltsverzeichnis