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Deutsche Zusammenfassung

In dieser Dissertation wird untersucht, wie sich Wissensräume im Laufe

der Zeit verändern und welche Faktoren ihre Entwicklung vorantreiben.

Die Arbeit ist in sechs Kapitel gegliedert. Kapitel 1 führt in das Thema

ein und bietet eine Literaturübersicht über die Entwicklung von Technolo-

gien und technologischen Räumen sowie kurze Zusammenfassungen der

nachfolgenden Kapitel. Die Kapitel 2 bis 5 bilden den Kern der Disser-

tation und liefern die wichtigsten Ergebnisse unter Berücksichtigung ver-

schiedener Aspekte zu den Faktoren, die den Prozess der Entwicklung von

Technologieräumen beeinflussen. Kapitel 6 schließt die Dissertation mit den

wichtigsten Ergebnissen und Beiträgen, politischen Implikationen und weit-

eren Forschungsmöglichkeiten ab. Zur Gewinnung der Ergebnisse wurden

verschiedene empirische Methoden verwendet, die von dem Differenz-von-

Differenzen-Ansatz über die quantitative Textanalyse bis hin zur Analyse

sozialer Netzwerke reichen. Außerdem wurden als Hauptdatenquellen sowohl

Patente als auch Veröffentlichungen verwendet.

Technologien werden in der Innovationsliteratur als eine Sammlung von

kombinierten Komponenten betrachtet. Diese Komponenten werden in

Form von Netzwerken dargestellt. Diese Netzwerke werden üblicherweise als

Wissensräume oder technologische Räume bezeichnet. Die einzelnen Kompo-

nenten (nodes) sind die Teile des Wissens, während die Beziehungen (edges)

ihre Kombinationen darstellen. Sowohl Technologien als auch Wissensräume

folgen einem evolutionären Prozess und werden durch interne und externe

Faktoren beeinflusst. Die Rolle dieser technologischen Räume und ihre En-

twicklung sind jedoch Aspekte, die in der Literatur noch nicht ausreichend

untersucht wurden. Es gibt Technologien mit besonderen Merkmalen, die

es ihnen erlauben, in Wissensräumen eine zentrale Rolle zu spielen. Ein
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Beispiel für diese herausragenden Technologien sind die General Purpose

Technologies (GPTs). GPTs sind durchdringend ; eine Eigenschaft, die es

ihnen erlaubt mit vielen anderen Komponenten verbunden zu sein. Außer-

dem haben sie innovative Komplementaritäten, sodass sie sinngemäß in der

Lage sind auch die innovativen Aktivitäten innerhalb der Komponenten zu

beeinflussen, die mit ihnen verbunden sind. Daher sind diese Technologien in

der Lage auch die Entwicklung von Wissensräumen zu beeinflussen, welche

die Innovation auch in den anderen Komponenten vorantreiben. In dieser

Arbeit werden Veränderungen der Einbettung wichtiger Technologien im

Wissensraum untersucht, wodurch Implikatinen bezüglich der Motivationen

für solche Prozesse abgeleitet werden.

Vor der Bereitstellung von Instrumenten zur Messung dieser Veränderungen

und zur Analyse der Treiber, die für die Entwicklung von Wissensräumen

verantwortlich sind, konzentriert sich die Arbeit auf die Kategorisierung

von Innovationsaktivitäten. Tatsächlich haben verschiedene innovative Ak-

tivitäten unterschiedliche Auswirkungen auf Unternehmen, Technologien und

Märkte. Normalerweise basiert die Charakterisierung verschiedener innova-

tiver Aktivitäten auf den Auswirkungen, die sie auf diese Dimensionen haben.

Viele verschiedene Begriffe wurden entwickelt, um bestimmte Auswirkungen

hervorzuheben, die von anderen nicht aufgegriffen wurden. Häufig werden

diese Begriffe jedoch anschließend als Synonyme verwendet, was zu einer

Verwechslung der verschiedenen Konzepte führt. Dies ist auch ein Problem

für die zuvor erwähnten technologischen Entwicklungen. Es ist wichtig genau

zu bestimmen,wann eine Innovation in der Lage ist,den Pfad zu durchbrechen

und völlig neue Branchen zu schaffen. Daher sollte eine genaue Definition

dieser Art von Innovation vorgelegt werden. Kapitel 2 der Dissertation

befasst sich mit der Klassifizierung von Innovationsbegriffen und schlägt eine

Unterscheidung zwischen den gebräuchlichsten Innovationskonzepten vor,

nämlich radikal, disruptiv, diskontinuierlich, durchbrechend, kontinuierlich

und inkrementell. Die Ergebnisse bestätigen, dass es einen klaren Gegensatz

zwischen außergewöhnlichen und nicht außergewöhnlichen Innovationen gibt.

Dieser Gegensatz ist bei den Merkmalen und Auswirkungen von Innova-

tionsbezeichnungen deutlich, während er bei den Anforderungen weniger

deutlich ist. Darüber hinaus haben wir Innovationsbegriffe nicht nur an-

hand der häufigsten Dimensionen unterschieden (nämlich: Neuheit und
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Wirkung), sondern auch anhand ihrer Technologie-/Marktorientierung und

ihrer positiven/negativen Auswirkungen.

Nachdem die Hauptmerkmale der verschiedenen Arten von Innovationen, die

für den Wandel der technologischen Paradigmen und damit der technologis-

chen Räume verantwortlich sind, analysiert wurden, liefert die Dissertation

neu entwickelte Indikatoren zur Bewertung ihrer Entwicklung. In der Lit-

eratur fehlen spezifische Maße zur Bewertung der Entwicklung und der

Auswirkungen von Technologien auf den strukturellen Zusammenhalt von

Wissensräumen. Die meisten Indikatoren verwenden Zählungen von Wis-

sensinputs und -outputs, um die Qualität des produzierten Wissens zu

bewerten. Sie berücksichtigen jedoch nicht, dass Aktivitäten zur Rekombi-

nation von Wissen für die Produktion von Innovationen wichtig sind. In

diesem Sinne werden in dieser Arbeit Maße aus der Sozialen Netzwerkanalyse

herangezogen, um die Qualität der technologischen Interaktionen innerhalb

des Wissensraums zu bewerten. Kapitel 3 befasst sich mit der Definition

und Identifizierung von Brückentechnologien. Dies sind Technologien, die als

wichtig für die Struktur und den Zusammenhalt regionaler Wissensräume

angesehen werden, da sie mit vielen anderen Komponenten verbunden sind.

Wir stellen Analyseinstrumente zur Verfügung, die von der Analyse sozialer

Netzwerke inspiriert sind, um sie zu identifizieren, und wir wenden diese

Indikatoren an, um zu zeigen, wie sich die Technologien im Laufe der Zeit

entwickeln. Die hier dargestellten Indikatoren werden auch in den Kapiteln

4 und 5 für die empirische Analyse verwendet. Die deskriptive Analyse der

deutschen Wissensräume zeigt, dass große Patentregionen nicht in der Lage

sind, die meisten Brückentechnologien im Technologieraum zu verankern und

dass die Abhängigkeit Deutschlands von wichtigen Technologien (Maschinen,

Verkehr und Chemie) abgenommen hat. Diese Veränderungen sind eher auf

einen regional verteilten Prozess als auf einzelne Regionen zurückzuführen.

Die Umgestaltung und Entwicklung von Technologieräumen wird auch von

einigen Triebkräften beeinflusst. In der Literatur wird in der Regel die

Verbundenheit als Schlüsselfaktor für den Erfolg von Technologien betra-

chtet. Eine Analyse der Faktoren, die diese Technologien vorantreiben, und

der Prozesse, die die Struktur von Technologieräumen verändern können,

steht jedoch noch aus. In dieser Dissertation liegt der Schwerpunkt auf

zwei möglichen Triebkräften, die die Entwicklung von Technologieräumen
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beeinflussen könnten. Die erste externe regionale Triebkraft ist die Clus-

terpolitik und die zweite interne regionale Triebkraft ist die Fähigkeit von

Organisationen zur Wissensrekombination.

Was die erste Triebkraft betrifft, so haben sich die Forscher in letzter Zeit

auf die systemischen Auswirkungen konzentriert, die eine Clusterpolitik

mit sich bringt, wenn sie in einer bestimmten Region eingeführt wird. Die

meisten dieser Studien verwenden Messgrößen aus der Sozialen Netzwerk-

analyse um zu untersuchen, wie sich die Beziehungsstruktur der regional

verankerten Organisationen nach der Einführung einer Politik verändert.

Im Allgemeinen stellen sie positive kurzfristige Auswirkungen fest. Die

Zunahme der Kooperationsaktivitäten fördert jedoch die Möglichkeiten der

gegenseitigen Befruchtung im technologischen Bereich. Dieser Effekt führt

letztlich zu einer Neugestaltung der Struktur des Wissensraums. Kapi-

tel 4 befasst sich mit den Auswirkungen, die eine Clusterpolitik auf den

Technologieraum hat. Wir haben sowohl kurzfristige als auch langfristige

Auswirkungen gemessen, indem wir die Entwicklung der Technologieräume

vor, während und nach der Einführung einer Clusterpolitik analysiert haben.

Die Neuheit der Studie besteht darin, dass das Konzept der Wissensräume

unseres Wissens nach noch nie verwendet wurde, um die Auswirkungen einer

solchen Politik zu verstehen. Wir wenden dies auf eine einzelne Clusterpoli-

tik an, den deutschen BioRegio-Wettbewerb. Dabei handelt es sich um ein

Programm, das entwickelt wurde, um die Zusammenarbeit auf dem Gebiet

der Biotechnologie zu verstärken und sie mit anderen, nicht verwandten

Technologien in ausgewählten Regionen zu kombinieren. Wir verfolgen die

Entwicklung der Biotechnologie in allen Regionen, die an dem Wettbewerb

teilgenommen haben, indem wir einen Differenz-von-Differenzen-Ansatz und

die Betweenness Centrality als Maß für die Einbettung dieser Technologien

in den Wissensraum verwenden. Die Ergebnisse zeigen, dass das Programm

sowohl zur Steigerung der Bedeutung der Biotechnologie als auch zu einem

gegenseitigen Befruchtungseffekt in den Regionen, die den Wettbewerb

gewonnen haben, beigetragen hat.

Die zweite Triebkraft sind die regionalen Organisationen, in denen das Wis-

sen auf einzigartige Weise kombiniert und neu kombiniert wird. Durch diese

Tätigkeit sind einige Organisationen in der Lage, radikale Veränderungen

herbeizuführen und so den technologischen Raum neu zu gestalten. Die
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Faktoren, die ihre Neigung, Wissen anders als andere zu kombinieren, bee-

influssen, sind unterschiedlich. In der Literatur fehlt jedoch eine Analyse,

die diese Faktoren berücksichtigt und bewertet, welche Organisationen in

der Lage sind, technologische Räume neu zu gestalten. Kapitel 5 befasst

sich mit diesem letzten Ziel der Arbeit und erkennt die Faktoren, welche

die Neigung von Organisationen beeinflussen, Wissen anders als andere zu

kombinieren. Diese beiden Faktoren sind die Positionierung, die sie innerhalb

des regionalen Innovationsnetzwerks einnehmen, und ihre Ausrichtung auf

angewandte oder Grundlagenforschung. Um darzustellen, welche Organ-

isationen Technologien anders als andere kombinieren, schlage ich einen

neuen Indikator vor, der von der Analyse sozialer Netzwerke inspiriert ist

und Redundanzkoeffizient heißt. Dieses Maß ist in der Lage, die von den

Antragstellern kombinierten Technologien zu erfassen, die von keinem an-

deren Unternehmen im Wissensraum kombiniert werden. Die Ergebnisse

zeigen, dass öffentliche Forschungsinstitute Wissen nur dann auf andere

Weise kombinieren, wenn sie im regionalen Innovationsnetzwerk eine zentrale

Rolle spielen. Private Institute hingegen sind in der Lage, Technologien

auf andere Weise zu kombinieren, wenn sie zentral eingebettet sind, aber

auch, wenn sie sich in der Peripherie des regionalen Innovationsnetzwerks

befinden. Diese Ergebnisse deuten also darauf hin, dass sowohl die Ausrich-

tung auf angewandte oder Grundlagenforschung als auch die Einbettung in

das regionale Innovationsnetzwerk für die Art und Weise, wie Technologien

kombiniert werden, von Bedeutung sind. Politische Entscheidungsträger

sollten öffentliche Forschungseinrichtungen dabei unterstützen, eine zen-

trale Position im regionalen Innovationsnetzwerk einzunehmen, die es ihnen

ermöglicht, für den Wissensraum wichtige Technologien zu kombinieren und

so eine solide Wissensbasis zu schaffen.

Zusammenfassend lässt sich sagen, dass die Dissertation einen Beitrag zur

aktuellen Literatur leistet, indem sie verschiedene Erkenntnisse über die

Triebkräfte liefert, die die Entwicklung von Technologieräumen bestimmen,

und Instrumente zur Messung dieser Veränderungen bereitstellt. Diese bei-

den Aspekte sind in der Literatur oft nicht ausreichend erforscht. Ausgehend

von diesem Beitrag können daher weitere Forschungsarbeiten aufzeigen, wie

Veränderungen im Technologieraum die künftige Innovations- und Wirtschaft-

sleistung einer Region oder eines Landes beeinflussen können.
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Chapter 1

Introduction

1.1 The evolution of knowledge spaces

In innovation studies, technologies are usually regarded as a recipe which

includes a collection of combined components (Sorenson and Fleming, 2004;

Dosi and Nelson, 2010). The components are the pieces of knowledge

whereas the relations are their combinations (Fleming and Sorenson, 2001).

Usually, the components and their relations are represented in the network

form, frequently called knowledge spaces (Kogler, Rigby, and Tucker, 2013;

Quatraro, 2010). This thesis is interested in providing tools to measure the

importance of components inside knowledge spaces and to study the drivers

that shape their development.

The components inside a knowledge space can be directly or indirectly related

(Broekel, 2019). The “distances” between the nodes (components) represent

their degree of relatedness. In the general formulation, two technologies are

related if they share the same knowledge base, have similar technological

content and their development requires similar skills (Nooteboom, 2000;

Boschma and Iammarino, 2009). When two highly unrelated components

are combined, the chance to develop an exceptional innovation increases

(Ahuja and Lampert, 2001). This concept has been used by many researchers

to quantify the importance of knowledge spillovers (Nelson and Winter, 1982;

Sorenson and Fleming, 2004) and to explain how knowledge is produced in

time and space (Boschma, Minondo, and Navarro, 2013; Boschma, 2017).

1



2 Introduction

Particular technologies (and the knowledge that they contain) have partic-

ular characteristics, putting them in a central position inside knowledge

spaces (Graf, 2012). Economists and scholars from other fields study the

main features of technologies, identifying them as continuously evolving

assets following an evolutionary process (Dosi, 1988; Dosi and Nelson, 2010).

Normally, technical advances are achieved following a trajectory path within

the limits of a “paradigm”. General Purpose Technologies (GPTs) are one

specific example of prominent technologies (Tushman and Anderson, 1986;

Bresnahan, 1986). Their pervasiveness permits them to be connected to

many other components (Rosenberg and Trajtenberg, 2004; Malerba and

Orsenigo, 1997; Cantner and Vannuccini, 2017). Moreover, they have in-

novational complementarities, in the sense that when a General Purpose

Technology is improved, this creates an incentive to ameliorate also the

connected components (Cantner and Vannuccini, 2017). Therefore, technolo-

gies connected to many others are expected to occupy a central position in

the knowledge space and to drive its evolution. In this thesis, through the

study of the changes in embeddedness of particular technologies, I derive

implications on the drivers involved in this process.

The first objective of the thesis is to characterize innovation activities.

Innovation activities are the basic source of technological progress (non-

exceptional innovations), and they are important for the generation of new

paradigms (exceptional innovations). Both exceptional and non-exceptional

innovations have different sources, different characteristics and different

impacts on firms, on technologies and, ultimately, on markets. Therefore, it

is important to distinguish them based on the previously mentioned factors.

These innovative activities, for example, are able to change the way how

technologies are combined inside the knowledge space.

In the literature so far, there is little understanding on how the structure

of technological spaces evolve over time. It is unclear which are the tech-

nologies that occupy a central position in technological spaces, with similar

characteristics as GPTs, acting as a base for the development of many other

technologies. These important technologies could, once they have reached

the maturity phase, lose their central position in favour of other (newer)

technologies. Thus, the second objective of the thesis is to provide new

indicators for measuring the evolution of technologies inside the regional
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technological space. Strictly connected to the second objective, the changes

in the structure of technological spaces can be determined also by external or

internal drivers. Using the developed indicators following the second objec-

tive of the thesis, I discern how external or internal drivers can influence the

structure and thereby transform technological spaces. Even if I am not able

to analyse all the mechanisms responsible for the evolution of technologies,

the thesis contributes to the scarce literature regarding technological spaces

and provides analytical tools for analysing their evolution.

In the following, the three objectives (namely: innovation, indicators and

drivers) of the thesis are analysed on a detailed level.

1.1.1 Innovation categorization

Different innovations have different effects and characteristics. For example,

the steam engine is considered a radical innovation because it created

completely new markets and industries by destroying existing ones. Instead,

the introduction of a new smartphone model every year is regarded as an

incremental innovation because it only introduces improvements to the

existing product without creating new industries or markets.

In the economics literature, novelties are distinguished based on their impact

on technological change and growth. The most common distinction is be-

tween non-exceptional and exceptional innovations. Exceptional innovations

represent something really new, able to create completely new industries

and destroying existing supply and demand (Hill and Rothaermel, 2003;

Büschgens, Bausch, and Balkin, 2013; Dewar and Dutton, 1986). Non-

exceptional innovations are commonly described as small improvements,

adjustments or further developments of a technology or a product already

present in the industry or in the market (Arts, Appio, and Van Looy, 2013;

Arts and Veugelers, 2015). The technological impact of these innovations

is usually small (Dewar and Dutton, 1986; Henderson and Clark, 1990;

Schoenmakers and Duysters, 2010).

This dichotomy can be easily translated into the theory of technological

paradigms. Dosi (1982) distinguishes between changes continuously hap-

pening along already existing trajectories (non-exceptional innovations) and
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novelties able to challenge existing paradigms (exceptional innovations). In

this sense, non-exceptional and exceptional innovations matter for technolog-

ical evolution, and they could reshape evolutionary trajectories, depending

on their innovative potential.

Scholars in innovation economics under the umbrella of exceptional and

non-exceptional innovations have conceptualized many different terms to

characterize innovation activities. Terms are introduced by authors to

emphasize some characteristics that have not been touched upon by oth-

ers. However, often these labels are used as synonyms, creating confusion

among them (Garcia and Calantone, 2002). Therefore, when researchers

and practitioners have to assess the impact of a specific innovation, they

have difficulties learning from the scientific results if the terminology is

too unclear (Garcia and Calantone, 2002). Moreover, the same innovation

may be identified as both exceptional or non-exceptional depending on who

analyses its impact (Linton, 2009). This is obviously a problem also for the

aforementioned technological trajectories. Identifying when an innovation is

able to break the path and create new industries is crucial, and finding a

definition that suits this innovation in terms of its specific characteristics

should be straightforward.

The first research objective is to differentiate innovations based on their

intrinsic dimensions.

1.1.2 Indicators for measuring changes in Knowledge

Spaces

One of the more accepted theories among scholars in innovation economics

is that the production of knowledge and technological change is important

for economic advances also at the regional level (Romer, 1986; Robert and

Lucas, 1988; Scott, 2006). To measure the generation of knowledge in

space and time, many scholars use the concept of knowledge relatedness

(Alstott, Triulzi, Yan, and Luo, 2017; Boschma, 2015; Neffke, Henning, and

Boschma, 2011; Boschma et al., 2013). Relatedness is frequently used to

reconstruct the knowledge space, i.e. the network of interrelated technologies

(structural elements with specific functions and properties), of a region or
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an economy (Kogler et al., 2013). This concept permits an understanding of

which technological competences are locally present and how they influence

innovative activity. The knowledge space is not static but rather changes

over time and is, among others, affected by the emergence of prominent

technologies. These technologies will hold a central position in the knowledge

space affecting the improvement (in terms of new inventions) of the other

technologies connected to them (Graf, 2012).

In the literature, Graf (2012), for example, uses measures from Social

Network Analysis to identify such important technologies in knowledge

spaces. However, specific indicators for measuring the evolution and impact

of technologies on the structural cohesiveness of the knowledge space are

rare. Many of the indicators used in innovation studies and related fields use

counts of knowledge inputs and outputs to assess the quality of knowledge

that has been produced (Balland and Rigby, 2017). For example, the mere

count of patents present in a technology considers only its diffusion whereas

such a measure does not consider the interrelations with other technologies.

Moreover, forward and backward citations in patents consider only the

direct links among technologies. However, they fail to account for the

ramifications of the technological network on technologies around the focal

technology. Thus, these measures do not take into account the fact that some

technologies are more important than others for the structural cohesiveness

of the knowledge space and that knowledge recombination activities are

important for the production of novelties. In this sense, measures taken

from Social Network Analysis better consider the quality of technological

interactions within the knowledge space.

The second research objective is to provide new indicators for measuring

the importance of technologies for the general cohesiveness and evolution of

knowledge spaces.

1.1.3 Drivers reshaping the evolution of Knowledge

Spaces

Knowledge spaces are not static they are influenced by changes in the local

and global economy. For example, in a technological space where a specific
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technology is well-embedded, a crisis in this and related fields would lead

the exploration of new technological avenues within the knowledge space.

Existing research provides only limited findings on how different drivers

can reshape the technological evolution of nations and regions. An analysis

on the factors able to drive these technologies and which processes are

able to change the structure of technological spaces as a whole are still

largely unknown (Boschma, 2017). Every driver needs a specific approach

in order to study its effects on the structure of knowledge spaces. This is the

motivation behind my focus mainly on two in this thesis. The first external

regional driver presented in this thesis is cluster policies, and the second

internal regional driver is the regional organizations (intended as the actors

where technological components are combined).

The main aim of a cluster policy is to create collaboration activities among

actors present locally. Therefore, when actors active in different technologies

create a connection for the first time, this creates also a link in the tech-

nological space. If this is the case, this collaboration is repeated, and the

effects on the structure of the technological space are huge. Recent literature

assesses the impact of cluster policies on the structure of relationships of

regionally-embedded organizations, providing evidence for positive effects

of cluster policies on network cohesion (Giuliani, Matta, and Pietrobelli,

2016; Töpfer, Cantner, and Graf, 2019; Graf and Broekel, 2020; N’Ghauran

and Autant-Bernard, 2020). The increased collaboration among actors

present locally increases the number of innovative activities and, ultimately,

the possibilities for cross-fertilization opportunities between organizations

specialized in different technologies (Eickelpasch and Fritsch, 2005). Since

cluster policies are targeting specific technologies, these can possibly change

their embeddeddness in the technological space. This effect is able to reshape

the evolutionary trajectories of technological spaces, an aspect that has been

not yet analysed in literature.

The micro-units where knowledge is combined and re-combined in a unique

way are the organizations present locally (Boschma, 2017; Fornahl, Broekel,

and Boschma, 2011). Some of these organizations are responsible for the

development of radical changes, and thus they are able to reshape the

technological space (Tanner, 2014; Gilbert and Campbell, 2015). The

attitude of these organizations to combine in a unique way knowledge is
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influenced by two factors. As already defined by Miller, Miller, and Dismukes

(2005), Graf (2017), Graf and Menter (2021) the factors are: their propensity

towards basic or applied research and their embeddedness in the regional

innovation network. However, an analysis that considers these factors and

assesses which are the organizations potentially able to reshape technology

spaces is missing in the literature (Boschma, 2017).

The third research objective is to assess the impact of external and internal

drivers on technological trajectories in knowledge spaces.

1.2 Structure of the thesis

The thesis is composed of four papers identified as Chapters 2-5. Chapter 2

is intended to disentangle differences and similarities of different innovation

labels. Chapter 3 is focused on providing new indicators for measuring the

evolution of knowledge spaces. Chapters 4 and 5 are focused on the drivers

able to reshape the development of knowledge spaces (respectively policy

intervention and the role of organizations). Table 1.1 offers a summary of

the key aspects of each Chapter.

1.2.1 Chapter 2

The second Chapter, “Revisiting innovation typology: A systemic approach”,

aims to classify and distinguish among the different innovation labels. Differ-

ent terms are used interchangeably in the literature due to partial overlap in

their characteristics. Innovation labels present challenges when they are used

in empirical studies. This is particularly true when theoretical definitions

are operationalised.

There are various types of innovations defined in the literature. For ex-

ample, exceptional innovations are called radical, discontinuous, disruptive

or breakthrough (Kovacs, Marullo, Verhoeven, and Van Looy, 2019) while

non-exceptional innovations are labeled as incremental or continuous. Re-

cently, the label radical has become the concept that most of all characterises

exceptional innovations (Kovacs et al., 2019). Even if the use of this label is
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widespread, it lacks of a clear distinction with other similar concepts (Au-

dretsch, Fornahl, and Klarl, 2022; Gopalakrishnan and Damanpour, 1997).

This leads to inconsistencies and ambiguities about the discrimination of

the different innovation labels. For example, other authors like Garcia and

Calantone (2002), Gatignon, Tushman, Smith, and Anderson (2002), Linton

(2009), Kovacs et al. (2019) have already addressed the issue of interchange-

able use of innovation labels. One way to distinguish the innovation labels

is through their degree of novelty; however this characterization is often

inconsistent (Garcia and Calantone, 2002). The same innovation can be

identified as radical from one author or firm and incremental from another

one (Garcia and Calantone, 2002; Linton, 2009). Multiple challenges arise

from these inconsistencies. First, research that uses different labels may be

neglected by practitioners during the research process. Second, old findings

can be simply refreshed by using new terminology without providing some-

thing really new. Third, for practitioners it is difficult to learn from the

results if the terminology is not clear (Garcia and Calantone, 2002).

The objective of this Chapter is to find unique features of the innovation

terms that would permit their distinction from the other labels. This research

can allow scholars to reach clearer research results, pushing the creation of

knowledge in the field of innovation studies further. To operationalise this,

firstly, we examine which are the features of the single innovation terms.

Secondly, we assess how these labels differ from one to the other based on

their requirements (input), features (content) and effects (output).

Methodologically, in order answer these research questions we retrieve more

than 500 scientific papers from the Web of Science that contain one of the

aforementioned labels. We assign manually the features to each innovation

term, and we quantitatively assess the characteristics. With the definition of

the requirements, features and effects for each innovation label, we contribute

to develop a better understanding of the differences and commonalities of

each term.

The results confirm the clear opposition between the exceptional and ordinary

innovations. This result is clear on the side of the features and effects

whereas it is less clear on the side of the requirements. Furthermore, other

than the classical dimensions of novelty and impact, we find two other
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aspects (technology vs. market orientation and positive vs. negative effects)

important for differentiating further among single innovation labels. In

our results breakthrough, innovation has a clear technology and knowledge

association. Therefore, it refers more to the technical invention rather than

marketed products whereas disruptive and radical are clearly related to

the market and product side. Moreover, incremental and breakthrough are

usually associated with positive effects but disruptive and discontinuous are

more related to negative effects.

This Chapter is co-authored with Louis Knuepling and Colin Wessendorf. I

contributed significantly to the design of the study, the data collection, the

theoretical and empirical elaborations as well to the interpretation of the

results. The Chapter has been published as working paper in Jena Economic

Research Paper (JERP) series: No. 2022-002.

1.2.2 Chapter 3

The third Chapter, “Bridging Technologies in the Regional Knowledge

Space: Measurement and Evolution”, focuses on the definition of Bridging

Technologies (BTs), their identification and their evolution over time. The

BT concept indicate technologies important for the knowledge base of regions

capable of connecting different fields which enable technological development.

Using measures widely diffused in Social Network Analysis (SNA), this

Chapter provides reproducible tools for BTs identification and for measuring

their evolution over time. These methods are used in subsequent chapters of

the thesis to assess the impact of drivers on the evolution of technological

spaces.

Schumpeter (1939) identify innovation and growth cycles as processes initi-

ated by the development of prominent technologies. Dosi (1982) used the

term “technological paradigms” to discuss the emergence of new technologies

able to substitute previous, mature ones. This study initiated a strand of

literature whose main aim is to show the characteristics of these paradigms.

These studies contributed to the definition of General Purpose Technologies

(GPTs). These technologies are able to drive progress and growth in a region,

a nation or worldwide (Bresnahan and Trajtenberg, 1995). An “evolution”

of GPTs is the definition of Key Enabling Technologies (KETs). KETs are

https://ideas.repec.org/p/jrp/jrpwrp/2022-002.html
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a subset of GPTs, and these technologies have the particular characteristic

of enabling subsequent advances, which in turn lead to greater chances for

technical advances (Bresnahan and Trajtenberg, 1995). Based on these two

concepts (GPTs and KETs) we define the term Bridging Technology (BT).

This is a particular type of technology able to link other fields of knowledge

that, without this specific connection, would result distant in the regional

knowledge space. This function affects the cohesiveness of the regional

knowledge space (Quatraro, 2010), and it is derived from the concept of

“pervasiveness” of GPTs and KETs.

For identifying BTs, we propose two alternative concepts based on the

centrality of a technology in the technological space. Moreover, we provide

analytical tools inspired from SNA to identify them. We apply these indi-

cators to show the development of technologies over time. For a regional

comparison, we propose a new index called Revealed Bridging Advantage

(RBA), a specialization index inspired by the Balassa indicator. Therefore,

we contribute to the BTs literature and to the general understanding on

how these are formed inside the technological spaces.

This Chapter is mainly methodological, and the main aim is to provide tools

and insights that will be used in subsequent chapters to identify determinants

responsible for pursuing specific technological trajectories on the regional

level. The descriptive analysis of the German regional knowledge base shows

that large patenting regions are not the ones able to embed most BTs in the

technological space and that Germany became less dependent on important

technologies (machinery, transport and chemicals). These changes are driven

by a regional dispersed process rather than by single regions.

The indexes developed in this Chapter are used and adapted in Chapters

4 and 5. This Chapter is co-authored with Holger Graf. I contributed

significantly to the design of the study, the data collection, the theoretical

and empirical elaboration as well to the interpretation of the results. The

Chapter has been submitted to the Journal of Evolutionary Economics and

it has been already published as a working paper in Jena Economic Research

Paper (JERP) series: No. 2020-012. In the following chapters is referred to

as Basilico and Graf (2020).

https://ideas.repec.org/p/jrp/jrpwrp/2020-012.html
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1.2.3 Chapter 4

The fourth Chapter, “Policy Influence in the Knowledge Space: a Regional

Application”, aims to understand how regional knowledge spaces respond to

the introduction of a cluster policy. Recent cluster policy evaluation studies

analysed how the actor-based knowledge network are affected by these

measures. We continue in this direction by examining how the technological

spaces evolved before, during and after the introduction of such policies. We

are mainly interested in long-term structural effects usually not accounted

for in other policy evaluation studies.

The main aim of cluster policies is to improve collaboration between actors

that are located in the same area to target systemic failures. However,

evaluation studies are mainly focused on the effects visible at the firm level

(Nishimura and Okamuro, 2011). Since the goals of this policy instrument are

manifold and require complex interactions, many scholars call for assessments

that take into account the systemic nature of these measures (Mar and

Massard, 2021; Rothgang, Lageman, and Scholz, 2021). There are few

recent studies tackling these deficiencies, and they use methods from Social

Network Analysis (SNA) to understand how policy affects the structure of

relationships between different actors providing limited evidence for positive

effects on network cohesion (Giuliani et al., 2016; Töpfer et al., 2019; Graf

and Broekel, 2020; N’Ghauran and Autant-Bernard, 2020).

One of the determinants that influences economic growth on the regional

level is the knowledge space (Kogler et al., 2013; Hidalgo, Klinger, Barabasi,

and Hausmann, 2007; Hausmann and Klinger, 2007). Taking into considera-

tion that innovation-oriented cluster policies are targeted to hit a specific

technology, we presume that such policies are able to reshape the knowledge

space of regions. The novelty of the study resides here, as the concept of

knowledge spaces has never been used to understand the effects of such

policies, to our knowledge. These innovation-oriented cluster policies stimu-

late various collaborative activities in some industries or technological fields.

Therefore, the supported fields should become more visible in the knowledge

space either by enhancing the number of links within the industry or by the

creation of links with other fields (cross-fertilization).
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To test if cluster policies are able to reshape knowledge spaces, we focus on

the German BioRegio Contest. This was a specific program developed by the

German federal government to foster collaborations among biotechnological

start-ups and to combine biotechnology with other related or unrelated

technologies (Dohse, 2000; Dohse and Staehler, 2008). The combination

and recombination activities are particularly important for our study since

cross-fertilization effects could reshape the knowledge space of the regions

involved.

We track the evolution of biotechnology in all regions that participated to the

contest using a Difference-in-Differences (DiD) approach and betweenness

centrality as a measure of embeddedness of technologies in the knowledge

space. The results show that the program contributed both to an increase

of the importance of biotech and to a cross-fertilization effect in the regions

that won the contest. Furthermore, we find that biotech in the winning

regions experienced a higher growth than biotech in the non-winning regions

after the funding for the program ceased.

This Chapter is co-authored with Uwe Cantner and Holger Graf. I con-

tributed significantly to the design of the study, the data collection, the

theoretical and empirical elaborations as well to the interpretation of the

results. The Chapter has been published in the Journal of Technology

Transfer, DOI: 10.1007/s10961-022-09925-1. In Chapter 5 is regarded as

Basilico, Cantner, and Graf (2022).

1.2.4 Chapter 5

The fifth and final Chapter, “The influence of organizations on technological

combinations: an application on German regions”, aims to understand which

categories of organizations in the Regional Innovation Network (RIN) are able

to combine prominent technologies important for the regional technological

spaces.

Regionally embedded agents are the units where knowledge is combined

to create innovative activities. A perspective on the actors responsible to

combine technologies important for regional development is missing in the

literature (Boschma, 2017). I recognize two forces able to influence the

https://doi.org/10.1007/s10961-022-09925-1


14 Introduction

ability of agents to combine technological elements important for regional

development. The first element is the position that they occupy inside

the regional innovation network (Boschma, 2017), and the second is their

orientation towards basic or applied research (Graf and Menter, 2021; Graf

and Henning, 2009). Agents considered important are the ones able to

combine technologies in a different way with respect to others. They can

drive the region to explore new technological trajectories, introducing new

technologies in the knowledge space (Tanner, 2014; Gilbert and Campbell,

2015).

To understand which are the agents that combine technologies in a different

way than others, I propose a new indicator inspired from Social Network

Analysis called the Redundancy Coefficient (RC) (Latapy, Magnien, and Del

Vecchio, 2008). This indicator measures how applicants combine technologies

that no one else is combining in the knowledge space. In order to identify

these important actors, I run a series of regressions where my unit of

observation is the single organization. The main independent variables are a

series of dummies to assign the applicant to a specific research category (to

assess if the nature of the research of the agent is more towards applied or

basic) and an indicator (degree centrality) able to identify the centrality of

an applicant in the regional innovation network.

Results show that more basic research institutes are combining technologies

not combined by other organizations present in the region only when they

occupy a central position in the regional innovation network. By contrast,

private institutes are able to combine technologies in a different way both

when they are central and when they are in the periphery. Thus, the orien-

tation towards more applied or basic research as well as the embededdness

in the regional innovation network matter for the propensity to combine

knowledge in a different way than others. Therefore, the policy implications

of this Chapter relate to the fact that policy makers should support public

research institutes by increasing collaboration and transfer activities with

private organizations. If this is the case, public institutes would have access

to a varied asset of knowledge. Therefore they would hold a central position

in the regional innovation network. When they do so, these organizations are

able to combine technologies in a different way, enabling the possibility to

produce radical innovations (Graf and Menter, 2021). These results suggests
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that public institutes should leave their ivory tower culture to occupy a

more central role in the regional innovation network (Etzkowitz, Webster,

Gebhardt, and Terra, 2000). This would help them to combine technologies

important for the survival of the knowledge space, creating a solid knowledge

base that through spillovers could flow to other entities.

This Chapter is single-authored and currently is under preparation for

submission in a scientific journal.
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Chapter 2

Revisiting innovation typology:

A systemic approach

2.1 Introduction

Innovations are differentiated into various types. Rather exceptional innova-

tions, are often labelled radical, discontinuous, disruptive or breakthrough

(Kovacs et al., 2019), whereas more ordinary innovations are labelled incre-

mental or continuous. Between 1999 and 2015, radical innovation evolved as

the most important concept that characterizes exceptional innovations (Ko-

vacs et al., 2019). Despite its popularity, it lacks a coherent distinction from

other important innovation concepts (Audretsch et al., 2022; Gopalakrishnan

and Damanpour, 1997). For example, Kovacs et al. (2019) demonstrate that

more than two thirds of the authors covering innovation-related topics use

several labels in different publications, which they explain with a highly

related ‘intellectual origin’ (p. 23). Innovations are often categorized based

on their novelty, but the categories are inconsistent (Garcia and Calantone,

2002). One firm or one author may identify an innovation as radical, while

other firms or authors would refer to the same innovation as incremen-

tal (Garcia and Calantone, 2002; Linton, 2009). As Gopalakrishnan and

Damanpour (1997) point out, even the label innovation itself is interpreted

differently from different perspectives and by different scholars. The resulting

confusion bears multiple challenges: First, relevant literature which uses a

17
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different terminology may be overlooked in the research process. Second, at

the same time, old findings can be simply refreshed with a new terminology

instead of really bringing forward something new. Third, practitioners can

hardly learn from scientific results if the terminology is too unclear (Garcia

and Calantone, 2002).

Previous studies address the terminological problems in different ways.

Gatignon et al. (2002) put forward a structural approach to innovation

assessment into its locus, the type, and characteristics. Garcia and Calantone

(2002) argue for a distinction into micro- and macro-level effects and between

effects on technology and marketing. Linton (2009) calls for the consideration

of innovation inputs, outputs, and the perspective (different perception of

innovations depending on the firm). All these approaches can help to classify

single innovations more precisely compared to labeling them as radical or

disruptive. However, innovation labels are widely used, because they combine

several underlying characteristics, which helps in classifying innovations in

large-scale empirical studies and to compare empirical results. Though, it

requires a delineation of the different innovation labels in order to assure the

underlying characteristics are clear. In this regard, only Kovacs et al. (2019)

systematically review the origin and scientific usage of radical, disruptive,

discontinuous, and breakthrough as the most common labels for exceptional

innovations. Their analysis of definitions in 100 highly cited papers allows for

a differentiation between on the one hand radical and discontinuous (as novel

innovations) and on the other hand disruptive and breakthrough as impactful

innovations. Though, it does not allow for any further discrimination.

Therefore, the objective of this chapter is to systematically assess the char-

acteristics associated with different innovation labels in the literature on a

larger scale (over 500 articles), in order to come up with a set of distinc-

tive properties. This categorization can enable clearer operationalization

in empirical research, thus pushing knowledge creation in the field of inno-

vation research further and rendering the applicability of scientific results

easier for practitioners. Inspired by the studies of Gatignon et al. (2002)

and Linton (2009) we collect innovation characteristics from definitions in

scientific articles in a systemic way from requirements (input) to descriptive

features (content), and effects (output), as also suggested by Audretsch et al.

(2022). Differently from other studies, we do not limit ourselves to a basic
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distinction of the main requirements, features and effects. We provide a

more in-depth analysis to better characterize the different innovation labels.

Practitioners and other researchers, when faced with choosing the right label

for their study, can be guided by the findings of our research, thus reducing

ambiguity.

In the first step, we inductively code the characteristics assigned to different

innovation labels in more than 500 scientific papers retrieved from the Web

of Science. Then, we aggregate the codes to broader dimensions, allowing

as to quantitatively assess the most decisive characteristics for a coherent

distinction. In determining the core requirements, features, and effects

associated with each innovation label, we develop a better understanding

of their differences and commonalities. In order to detect also shared

characteristics between all ‘exceptional’ innovations, we add incremental

and continuous as labels for rather ordinary innovations to the four labels

analyzed by Kovacs et al. (2019).

Our set of dimensions allows a clear differentiation between exceptional

(more novel and more impactful) and ordinary innovations (less novel and

less impactful). Innovation requirements, however, vary to a lesser extent

between the labels, which highlights that the necessary conditions and inputs

for innovation do not predict innovation outcomes as good as expected by

previous studies (Kovacs et al., 2019). Moreover, beyond refining the posi-

tioning of labels within the dimensions of novelty and impact, we highlight

two further dimensions (technology vs. market orientation and positive vs.

negative effects) that help to differentiate the four labels for exceptional

innovations, especially for operationalization in quantitative studies. Even

though these dimensions have been put forward in other studies (Ahuja

and Lampert, 2001), we, first, confirm this pattern empirically through a

systematic analysis of definitions of the most common innovation labels, and

second, also show how the labels are positioned within the framework.

The remainder of the chapter is structured as follows: After a review of the

literature (2), we explain the applied methodology (3). Our results (4) and

their discussion (5) follow before we conclude in the last section (6).
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2.2 Innovation concepts: interchangeability

and systematization

In the economic literature, (technological) novelties are most frequently

addressed by the labels invention and/or innovation. Invention is usually

either explicitly or implicitly defined as ‘non-commercial’ or ‘not yet commer-

cialized’ (Ahuja and Lampert, 2001; Arts, 2012; Dahlin and Behrens, 2005;

Garcia and Calantone, 2002). An innovation, by contrast, is considered to

be a novelty that contains new knowledge (out of the pool of new knowledge

stemming from the inventions) which ‘has proven its relevance for the market

economy’ (Lundvall, 2016, p. 142). These definitions lead to the ‘consensus

in the literature that innovation is an outcome of new knowledge’ (Forés and

Camisón, 2016, p. 1) and that innovations are commercialized inventions

(Ahuja and Lampert, 2001; Hill and Rothaermel, 2003; Schoenmakers and

Duysters, 2010) – a definition which is either explicitly emphasized in the

literature or implicitly indicated (Arts, 2012; Arts et al., 2013). As our

principal goal is to distinguish the different labels assigned to inventions

and innovations and to outline the labels’ ambiguities, we do not further

stress this particular differentiation. In most of the literature, the difference

between invention and innovation seems to be at least implicitly clear. In

contrast, the distinction within the group of so-called ‘exceptional innova-

tions’ (Kovacs et al., 2019) is more difficult. In the following, we explain how

the innovation labels are often used interchangeably and why it is difficult

to distinguish them. The focus, for a matter of simplicity, lays on the label

radical and on how to distinguish it from others. We select it, because it is

the most widely used label for ‘exceptional innovations’ in the business and

economics literature.

2.2.1 The interchangeable use of innovation concepts

Innovation labels, when first introduced by an author have a specific meaning.

The author wants to emphasize some features of an innovation that have not

been touched upon by other labels. As an example, Bower and Christensen

(1995), when they first introduced ‘disruptive innovation’, referred to old
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technologies that are simplified and adapted to increase demand in the

part of the market where existent products do not. Entrants introduce

these new products in the market, while incumbents are still offering higher

quality products. Eventually, through further innovations and gains in

market shares, the former are able to create new business models and

consequently completely ‘disrupt’ the industry Christensen, Johnson, and

Rigby (2002), Markides (2006). Other pre-existing terms were not considering

the simplification of a technology for marketing reasons as one of their main

features. Therefore, Bower and Christensen (1995) identified examples of

real innovations with exactly this feature and coined the label ‘disruptive

innovation’.

Once the label started to diffuse, other researchers used disruptive as a

term closely related to ’radical innovation’. Hervás-Oliver, Albors-Garrigos,

Estelles-Miguel, and Boronat-Moll (2018, p.1388) use disruptive as a charac-

teristic of ‘radical innovation’, instead of considering it as specific innovation

label in itself. They highlight how ‘radicalities’ can lead to disruption: ‘Rad-

ical innovation’ refers to technological discontinuities that incorporate new

knowledge that destroys the value of incumbent systems and technologies in

the marketplace’. Hao and Feng (2016) claim that radical innovations lead

to changes in the existing way of thinking, which introduces a disruption of

an established technological trajectory. In these two cases it is clear that

the term “disruption” is used to identify events happening in technological

domains after the introduction of a radical innovation. This is a usage of the

term “disrupt” has not been considered originally by Bower and Christensen

(1995) whom coined the term. Moreover, authors often use radical and

disruptive as synonyms increasing the confusion around these two labels

(Colombo, Franzoni, and Veugelers, 2015; Dijk, Wells, and Kemp, 2016;

Kaplan, 1999).

Another prominent example is dealing with three labels that can be used

either as separately with different meanings or as synonyms: ‘radical in-

novation’, ‘discontinuous innovation’ and ‘breakthrough innovation’. ‘Dis-

continuous innovation’ is often regarded as the spark introducing a new

technological path (Büschgens et al., 2013; Kassicieh, Kirchhoff, Walsh, and

McWhorter, 2002; Lynn, Morone, and Paulson, 1996). However, it is also

used as a characteristic of ‘radical innovation’, as in the above quote of
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(Hervás-Oliver et al., 2018), or as a synonym for ‘breakthrough innovation’.

For example, the novelty introduced by ‘radical innovations’ can be defined

as large and breaking with the existing paradigm (Kemp, 1994; Tripsas,

1997). Therefore, this characteristic of “breaking with the existing paradigm”

is exactly named by different authors as discontinuous (O’Connor, 1998;

O’Connor and Ayers, 2005). Moreover, as an example, (O’Connor, 1998)

uses the term discontinuous as a synonym for breakthrough.

Similarly, Ayres (1988) describes the concept of ‘breakthrough innovation’

as the process to overcome a technological bottleneck, opening possibilities

for further innovations. However, breakthrough, is also often used either

as a synonym for radical (Arts et al., 2013; Della Malva and Riccaboni,

2015; Henkel, Rønde, and Wagner, 2015; Schoenmakers, Duysters, and

Vanhaverbeke, 2008) or as a specific characteristic associated with a radical

innovation, the so called “breakthrough-like” character (Ahuja and Lampert,

2001; Steenhuis and Pretorius, 2017).

Even though labels such as radical and incremental should be clearly delin-

eated, because they are located at opposite ends of the continuum of the

degree of innovativeness (Ettlie, Bridges, and O’keefe, 1984; Schoenmakers

and Duysters, 2010), some overlaps still remain. Incremental innovations

are commonly described as improvements, small adjustments or further

developments of an existing technology or product (Arts et al., 2013; Arts

and Veugelers, 2015; Dewar and Dutton, 1986). However, Garcia and Calan-

tone (2002) show how scholars interpret the degree of radicalness that is

embedded in an innovative activity differently: “[T]he same innovation can

be labeled on either ends of the scale of innovativeness depending on the

researcher” (p. 118). Referring to the electric typewriter, which replaced

the manual one, they point out that authors with a market perspective

and practitioners would rather consider it radical, whereas authors with a

technological perspective would regard the changes as rather incremental.

Thus, the same innovation is labeled differently based on its impact on the

technological (incremental) or on the market level (radical). This different

labeling based on the type of characteristic considered generates confusion

between the two concepts.
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In this section we pointed out that innovation labels are often used inter-

changeably or as a specific characteristic of other labels. These practices

are not wrong per se. However, the ambiguous application of innovation

labels creates confusion among researchers and practitioners that approach

innovation studies. Other scholars have noticed the same patterns in the

literature and tried to systematize innovation labels. We provide a review of

these studies in the next subsection.

2.2.2 Literature on systematization of innovation

concepts

Previous attempts, to systematize innovation labels, mainly focus on identi-

fying innovations by using different characteristics (Garcia and Calantone,

2002; Gatignon et al., 2002; Linton, 2009). More recently, Kovacs et al.

(2019) systematically review the definition of the labels. Here we revise these

studies and we explain how our chapter is different and contributes into the

existing literature.

Garcia and Calantone (2002) provide a framework for the theoretical oper-

ationalization of product innovation by grouping innovations into radical,

really new and incremental. They argue to differentiate between the macro

level (industry, world) and the micro level (firm) and between changes in

technology versus changes in marketing. Accordingly, only radical innova-

tions affect all dimensions, whereas really new innovations affect at least

either technology or marketing on both the micro and the macro level,

and incremental innovations only affect the micro level. Gatignon et al.

(2002) systemize innovations by identifying three dimensions: The locus of

an innovation, its type and its characteristics. Locus and type are mainly

defined by a product’s architecture and position within a system (e.g., core

versus peripheral subsystem in a greater system, such as a car). Charac-

teristics also comprise the innovation’s magnitude and effect (p. 1105f.).

Regarding the latter, they find that the distinction between radical and

incremental innovation does not correspond to other common dichotomies,

such as competence-enhancing versus competence-destroying or architectural

versus generational innovation. All of these represent different dimensions in

the description of an innovation. More generally,Linton (2009) puts forward
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a distinction between innovation inputs and outputs and the importance of

the ‘unit and level of analysis’. Among others, latter refers to the different

perception of the same innovation as either radical or incremental, depending

on the perspective, as outlined before.

More recently, Kovacs et al. (2019) investigate origin and usage of innovation

labels. They show that the intellectual origin of the four labels for exceptional

innovation tends to describe either their degree of novelty (radical and

discontinuous) or their effects (breakthrough and disruptive). Contrary to

these empirical findings, Sood and Tellis (2005, p. 153) claim: ‘Many terms,

such as “revolutionary,” “disruptive,” “discontinuous,” or “breakthrough,”

[. . . ] define an innovation in terms of its effects rather than its attribute’.

However, according to Kovacs et al. (2019), scholars tend to use both

novelty and impact to describe and define a label. This might boost the

interchangeable use we highlighted earlier.

In order to reduce ambiguity, Kovacs et al. (2019) systemize innovations in a

two-by-two matrix along the axes of novelty and impact, based on a content

analysis of 100 highly cited papers. Therein, incremental is the only label

solely occurring in the quadrant of low novelty and low impact, whereas

the four labels for exceptional innovations are either always novel (radical

and discontinuous) or always impactful (disruptive and breakthrough) but

varying in the other dimension (Figure 2.1). Though clearly advancing

the understanding of origin and usage of common innovation labels, this

classification does not allow for further differentiation of innovations, such

as disruptive and breakthrough innovation. Moreover, all of the previously

mentioned studies focus on specific and few characteristics of innovation

labels, whereas their specific categorization is important to observe all

possible different facets. The consideration of innovation inputs, a more

nuanced description of characteristics (beyond the degree of novelty), as well

as a further distinction within the effects, might enable to characterize not

only single innovations, but also to define innovation labels more precisely.

By combining the systemic framework along inputs, characteristics and

effects with a more in-depth study of innovation labels’ definitions in over

500 scientific articles we are able to improve current innovation typologies

and the delineation of the six labels investigated. In this sense, we extend
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Figure 2.1: Dimensions of ”exceptional innovation” in Kovacs, Marullo, Verho-
even, and Van Looy (2019). Source: Own representation according to Kovacs,
Marullo, Verhoeven, and Van Looy (2019)

the literature on the categorization of innovation labels by providing a novel

framework and a more precise delineation of the labels.

2.3 Method

To specify the most prominent innovation labels (see section 2) and to

highlight the inconsistencies in their distinction from another, we analyze

how they are defined in a variety of peer-reviewed publications. We obtain

our core dataset by conducting a manual, quantitatively oriented analysis of

the relevant literature. Computational text analysis is improving quickly but

still lacks precision when it comes to context (Arts, Cassiman, and Gomez,

2018). Since we focus on wording, we maintain a conservative approach of

manual text coding. The relevant literature is obtained by a Web of Science

(WoS) search for the labels radical, discontinuous, disruptive, breakthrough,

continuous, and incremental alongside innovation(s), invention(s), technol-
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ogy(ies) or technological change appearing as a topic of the document. We

choose the topic instead of the title to increase the number of hits while

preserving the relevance of the keyword for the content of the document. The

5,042 documents found are reduced by filtering only documents belonging

to the broader category of the social sciences (2,629 documents) (Figure

2.2). These fields are more likely to provide definitions and discussions of

the innovation terminology. Subsequently, the set is reduced by filtering

for ‘articles’, ‘proceeding papers’, and ‘book chapters’ to consider actual

scientific contributions (no news outlets, editorial material, etc.). Further,

we exclude documents with no or few citations. We believe that more in-

fluential work also shaped the use of innovation labels to higher degrees.

Consequently, all documents belonging to the 25 percent of highest citations

within arbitrarily chosen groups of years (see Figure 2.2 – ‘citation filter’)

are selected. Nevertheless, some older articles receive high citation counts,

wherefore we include all articles with more than 30 citations even if the 75

percentile is higher.

In the subsequent review of the remaining 716 documents, we search for

each innovation label that was assigned as a topic of the document and

check for definitional phrases around the label’s occurrences (Figure 2.2 –

‘first coding’). In a group meeting of the three authors with another four

members of the research group, we discussed the joint approach to coding.

Based on the systematic divisions of Linton (2009), Kovacs et al. (2019)

with inputs as necessary condition for a certain type of innovation, its very

nature (features, such as the degree of novelty) and its outputs (or effects),

we reached agreement about assigning each phrase containing definitional

elements about the respective innovation label to one of the three phases

Requirements (Input), Features (Content), or Effects (Output). In this way,

further and other systematizations were excluded in advance but ensured

that all codes could be clearly assigned. The following phrases exemplify

the coding procedure:

“To develop radical innovations, firms depend on technological and market

related capabilities. One important market related capability is the competence

to involve the ‘right’ users at the ‘right’ time in the ‘right form’.” (Lettl,

2007, p. 53)
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Figure 2.2: Data retrieval and coding

This paragraph is coded as “market opportunity” and is assigned to the

requirements phase. It is “market related” and describes the involvement

of “the right users at the right time”, which refers to opportunity detection.

Such a capability can be regarded as a requirement or cause (input) of

radical innovation.

“Most innovations in operational Business Units (BU’s) are incremental

and build on established products and technologies and exploit the current

knowledge base of a company. They are mere improvements in the product

to reinforce the current viability of the company in a particular business or

market” (Berends, Vanhaverbeke, and Kirschbaum, 2007, p. 316)
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Table 2.1: Number of applicants in selected regions

Subject Object Intensity Direction Perspective
Describes what
the code is
about (e.g.
performance,
structure,
power)

Describes to
which entity
the code is
associated
(e.g., market,
organization,
technology)

Describes
whether the
code specifies
an intensity,
such as high or
low

Describes an
additional
subject or
adjective like
positive, nega-
tive, change or
creation

Describes
whether the
code is about
something
internal or
external to
the innovating
entity

Note: The first-round codes are assigned to these dimensions to aggregate
more representations of the innovation labels’ definitions

This is, among others, assigned to the features and coded as ‘small product

modification or improvement’ as it describes the content of an incremental

innovation.

“Moreover, radical innovations can be a key to firms opening new markets

and can have a significant effect on overall firm performance” (Green, Gavin,

and Aiman-Smith, 1995, p. 203)

This example can clearly be identified as an effect (output). Moreover, the

effect is described as “significant”, why we code it as ‘large effect on firm

performance’.

532 documents contain definitional information. From these, we obtain 219

distinct codes (803 mentions) for requirements, 231 codes (2,196 mentions)

for features, and 119 codes (730 mentions) for effects (see Table A3 for

a complete list). In total, we have 3,729 mentions of the six innovation

labels (57% radical, 23% incremental, 8% breakthrough, 5% disruptive, 5%

discontinuous, and 2,5% continuous).

The inductive coding results in many codes occur rarely. However, they

are very similar to others. For example, ‘financial benefit to the firm’ and

‘greater likelihood of, or longer business survival’ both refer to positive effects

on the innovating organization. To systemize and aggregate the codes for

an easier quantitative assessment, the research group engaged in a second

round of discussions (and subsequent coding). Thereby, five dimensions

were defined to which the first-round codes could be assigned with a specific

expression. The result (Table 2.1) is strongly oriented towards linguistic,

grammatical components.
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Table 2.2: Second round of coding: Assignment of codes to dimensions

Code Phase Dimension Innovation
Label
(No. of
Occur-
rences)

S
u
b
je
ct

O
b
je
ct

In
te
n
sity

D
ire

ctio
n

P
e
rsp

e
ctiv

e

R
a
d
ica

l

In
cre

m
e
n
ta
l

Market opportu-
nities

Requirements Structure Market Neutral - External 9 1

Small product
modification or
improvement

Features Novelty Product Low Improvement Neutral 1 81

Big effect on
firm perfor-
mance

Effects Performance Organization High - Internal 20 1

Notes: Empty spaces are left if the code does not contain the respective dimension. The labels ‘radical’ and
‘incremental’ are chosen exemplarily. Note that, e.g. ‘market opportunities’ is an external requirement,
whereas ‘opportunity detection’ is internal.

Based on the description of these five dimensions, for each phase (require-

ments, features, effects) a team of two members of our research group

assigned each first-round code to an inductively generated expression in

each of the five dimensions. For example, when the code describes an effect

on performance (of the firm, the market, etc.) the code is assigned the

expression performance in the dimension subject. In the data aggregation

process, each dimension was given the minimum number of distinct expres-

sions needed to preserve important differences. In some cases, especially

with very general codes (e.g., ‘change’ ), not all dimensions could be filled.

As can be seen in Table 2.2, the first-round code ‘market opportunities’, for

example, is neutral in its intensity and does not have a direction.

In a second step, the results were passed on to another team, which in turn

created its own assignment to expressions in the five dimensions based on

its own inductive expressions. Ambiguous assignments and expressions were

then discussed in the group until a common solution was found. Table 2.2

exemplifies the assignment for one code of each phase. For example, the

code “big effect on firm performance” (effects) is assigned to the subject

‘performance’, the object ‘organization’, the intensity ‘high’ (“big effect”),

the direction ‘neutral’ as it is not further valuated, and to ‘internal’ as it

describes the perspective of the innovating firm.

For a quantitative differentiation between the labels, we aggregate the in-

formation contained in Table 2.2 according to matching expressions in the
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Figure 2.3: Calculation of label-wise shares over expressions of a dimension
(here: subject)
Notes: Irrespective of the original Code (Code1 – Code6), the expressions (struc-
ture, performance, and power) are aggregated and the number of occurrences is
summed up.

different dimensions. If we are, for example, interested in the potential of

the dimension subject to discriminate between the effects of the different

innovation labels, we aggregate the codes of the effects phase to their expres-

sions in the dimension subject regardless of their assignment to the other

dimensions (Figure 2.3). We then calculate the share of each expression as

a label-total. Hence, we observe and interpret differences in the distribu-

tion across the expressions (Figures A1-A3). When all dimensions (subject,

object, intensity, direction, perspective) are combined, the 569 first-round

codes (Column ‘Code’ in Table 2.2) are aggregated into 350 unique com-

binations of expressions along the dimensions (unique combinations of all

‘Dimension’ columns in Table 2.2). For example, the codes ‘revitalization of

incumbents’ and ‘value creation for the whole industry’ are both aggregated

to the expressions ‘performance - industry - neutral - positive - external’ in

the respective five dimensions. Even though the codes do not have identical

meaning, they refer to relatively similar phenomena.



2.4 Results 31

Table 2.3: Share of occurrences between input/content and output (by label)

Rad Disc Disr Bt Con Inc
Requirements/
Features

1682
(79%)

140
(77%)

141
(73%)

212
(75%)

80 (83%) 744
(88%)

Effects 445
(21%)

42 (23%) 52 (27%) 71 (25%) 16 (17%) 104
(12%)

Note: Requirements and Features are aggregated and compared against Effects (as com-
parable with Kovacs, Marullo, Verhoeven, and Van Looy (2019), comparing the input
(novelty) orientation of labels with the output orientation.

2.4 Results

The results section is structured as follows: First, in comparison with

Kovacs et al. (2019) we show the distribution of codes between the phases

(requirements, features, effects) to identify which labels are more input- or

output-associated in the literature. Next, to get an impression of overall

similarities and differences between the labels we display the cosine similarity

between the six innovation labels, based on their distribution over the 350

unique codes that result from the aggregation in the second round of coding

(also divided into requirements, features and effects). Finally, to identify

the origin of these differences, the central distinguishing characteristics are

evaluated and combined into a summarizing table. The evaluation is based

on Figures A1 to A3, which display the label-wise shares of expressions in

the different dimensions (as exemplified in Figure 2.3). Further details, such

as most frequent codes per dimension and label (Table A2) as well as the

complete code table (Table A3) can be found in the appendix.

Looking at the frequency of codes divided by phases, the shares slightly

reflect the higher output orientation of breakthrough and disruptive, contrary

to radical and discontinuous (Table 2.3) as found by Kovacs et al. (2019),

although few differences are statistically significant (Table A1). Hence, even

though the distribution to a certain extent reflects a differentiation between

the labels for rather ordinary and more exceptional innovations, it does not

allow a clear differentiation between different exceptional innovations. Thus,

it justifies a deeper analysis of the underlying characteristics.

Using all 350 unique codes retrieved from the second round of coding the

requirements of radical show a high similarity not only with breakthrough

but also with both labels for rather ordinary innovations (Figure 2.4). This
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Figure 2.4: Cosine similarity (in percent) between innovation labels (by phase)
Notes: Values indicate similarity (in percent) of each two labels based on the
overlap in (the frequency of) association with the 350 unique codes

overlap is far lower (especially with incremental) in features and effects.

Hence, the same conditions and other requirements might lead to innova-

tions with extremely different effects. In the features, the difference between

exceptional and ordinary innovations becomes most apparent, although

continuous is more similar to the exceptional innovations than incremental.

In terms of features and effects, both breakthrough and discontinuous seem

to be more strongly related to radical than disruptive. Moreover, while

discontinuous and disruptive are associated with a different semantic origin

(input- vs. output-related, respectively) (Kovacs et al., 2019), their effects

have a high similarity, equally as high as the one between breakthrough and

radical. With the similarity based on all codes together, both discontinuous

and breakthrough are most similar to radical, despite having less overlap

individually. Showing overall lower similarity with other labels, disruptive,

continuous, and incremental seem to be more distinct. Surprisingly, con-

tinuous has a higher overlap in codes with radical and breakthrough than

with incremental, the other label for a rather ordinary innovation. In the



2.4 Results 33

following, we identify the decisive characteristics in each phase to understand

the observed similarities and differences between the labels.

For all six innovation labels, requirements relate mostly to resources and

structures (subject, Figure A1). Likewise, external sourcing (e.g., for new

knowledge) is not regarded as particularly important for generating excep-

tional innovations compared with rather ordinary innovations (perspective,

Figure A1). However, there are also clear differences: Disruptive is as-

sociated with a stronger market-relation (object, Figure 6; code: ‘market

opportunities’ ). In this sense, firms pursuing disruptive innovations are

keen to develop new marketable products to achieve or maintain compet-

itive advantage (Pandit, Joshi, Gupta, and Sahay, 2017). Breakthrough is

strongly related with the knowledge dimension (object, Figure A1). In order

to successfully develop breakthrough innovation according to the original

codes and to the literature, firms should rely on ‘external knowledge’ sources

(object-perspective, Figure A1; (Phene, Fladmoe-Lindquist, and Marsh, 2006)

or draw from different knowledge sources (code: ‘knowledge breadth’, Srivas-

tava and Gnyawali, 2011). Moreover, continuous is strongly associated with

specific organization-internal structures, such as flexibility and openness

(direction, Figure A1). In fact, to develop continuous innovation, dynamic

capabilities (such as: knowledge creation, absorption, integration and re-

configuration) are considered necessary assets (Verona and Ravasi, 2003).

Nevertheless, altogether the definitions of different innovation labels differ

much less in their requirements compared with their features and effects, as

validated before (Figure 2.4).

Even though all innovation labels are to the largest degree described by

their novelty (subject, Figure A2), the precise extent and quality varies.

Breakthrough, for example, is more related to its knowledge components

and technology (object, Figure A2), with ‘multiple knowledge sources’ as

the respectively most frequent code. According to the literature, to develop

breakthroughs firms should collaborate with heterogeneous partners, which

permits them to draw knowledge from different sources (Qi Dong, McCarthy,

and Schoenmakers, 2017). Moreover, among the exceptional innovations,

breakthrough is least clearly associated with progressive features (direction,

Figure A2). Accordingly, breakthrough innovations seem to feature combina-

tions of existing knowledge or novelties resulting from deepening of current
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knowledge and capabilities as well. Discontinuous is most strongly associ-

ated with novelty in technology (object, subject – without ‘low’, Figure A2).

As shown by Birkinshaw, Bessant, and Delbridge (2007), in order to pursue

discontinuous innovation firms in high-tech industries should implement

new technologies to remain competitive with other companies. Contrarily,

radical, disruptive, incremental and continuous relate relatively more to

market and product features (object, Figure A2), even though within, the

contrast between radical and incremental becomes clear (subject, direction,

Figure A2): While the former is described by dissimilarity, uncertainty, and

associated with negative features (original codes: ‘market and or consumer

uncertainty’, ‘business inexperience’ and ‘unfamiliar market’ ), the latter is

described by the opposite (original codes: ‘driven by consumer needs’ and

‘in a well-established market’ ). Disruptive differs from the other exceptional

innovation labels because of the particular importance of new entrants to

the market with initially lower performance of the products (subject, direc-

tion, Figure A2). Disruptive innovations are said to initially target small

niches of the market and to redefine old technologies (Ansari, Garud, and

Kumaraswamy, 2016; Govindarajan, Kopalle, and Danneels, 2011). Finally,

continuous is more strongly described as dissimilar than incremental (sub-

ject, Figure A2), but this dissimilarity relates more to products and processes

(original code: ‘new product(s) and services’ ) compared with technology and

the market (for the ‘exceptional’ innovations) (object, Figure A2).

The clearest delineation between exceptional and ordinary innovations is

visible in the extent of their effects. Radical (code: ‘big effect on firm

performance’ ), discontinuous (code: ‘competence destroying’ ), disruptive

(code: ‘failure, destruction of established firms’ ), and breakthrough (code:

‘high profitability’ ) are to a considerable degree associated with high impact,

whereas continuous and incremental are not (intensity, Figure A3). Further-

more, radical and breakthrough are both associated with more positive effects

(direction, Figure A3), but the former is more strongly affecting the market,

whereas the latter rather affects technology (object, Figure A3). The firms

developing radical innovations gain competitive advantage (Shahin, Barati,

and Geramian, 2017) whereas breakthrough innovations rather describe the

creation of novel technological combinations shaping industry trajectories

(Kaplan and Vakili, 2015). Disruptive and discontinuous are associated with
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negative effects (direction, Figure A3), with the former strongly relating

to changes in the market, whereas the latter also significantly affects the

innovating firm (object, Figure A3). When a disruptive innovation is intro-

duced in the market, incumbents face new challenges, possibly leading to

a crowding-out effect (Bergek, Berggren, Magnusson, and Hobday, 2013).

According to the literature, the focus of discontinuous innovations lies on

the outcomes of single firms even though these firms face an initial reduction

in performance and the rewards are distant in time (Birkinshaw et al., 2007).

By contrast, incremental is strongly described by the positive effects on the

firm and on performance (of the firm) (object – direction, subject – direction,

Figure A3), for example, by creating value, which increases profitability and

strengthens the market position. However, compared to the more ‘excep-

tional’ innovations, these positive effects are characterized by a relatively

low magnitude and they become apparent only in the short run (Benner

and Tushman, 2002). Finally, contrary to incremental, continuous shows a

share of external effects comparable to the labels for exceptional innovations

(perspective, Figure A3). However, due to the small sample size, the results

for continuous should be treated cautiously.

Altogether, features and effects are much more useful to delineate the dif-

ferent innovation labels than their requirements, even though the discussion

about the four ‘exceptional’ innovations is more focused on the output in

contrast to the rather ‘ordinary’ innovations. However, confirming the results

of Kovacs et al. (2019), we find no significant difference in the input/content

vs. output orientation among the ‘exceptional’ innovations.

2.5 Discussion

Our first and broad results largely correspond to the innovation typology by

Kovacs et al. (2019) presented in Figure 2.1, with the central dimensions of

novelty and impact. The label incremental is clearly described as less novel

and less impactful. On the other end, the more ‘exceptional’ innovations

can be divided into the more novelty-oriented (radical and discontinuous)

and the more (high) impact-oriented (disruptive and breakthrough) labels:

radical and discontinuous have lower shares of occurrences for specifically
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‘high’ effects, but a stronger relation to novelty as descriptive dimension

for their features as well as an overall slightly higher percentage of rather

‘progressive’ requirements and features (Figure 2.5a). Continuous, which

we additionally consider, tends to describe ‘ordinary’ innovations, but not

as clearly as incremental. More importantly, however, our results highlight

at least two further considerations for the evaluation and classification of

innovation concepts.

First, according to our results and in contrast to Kovacs et al. (2019),

the differences between the labels are not so pronounced that either of

the dimensions ‘novelty’ and ‘impact’ alone would be sufficient to mark a

clear-cut differentiation. Our results highlight two additional dimensions

along which the labels need to be differentiated (Figure 2.5b). On the one

hand, they can be categorized as more product- and market-related versus

more knowledge- and technology related. On the other hand, their effects

can be categorized as rather positive or negative. The first dimension has

already been stressed in several publications, though for a limited number of

innovation labels: Ahuja and Lampert (2001), for example, divide impactful

innovations into radical (market impact) and breakthrough (technological

impact). By contrast, Rosenkopf and Nerkar (2001) mention that radical

and breakthrough innovations are both valuable from the market and tech-

nology side. Our findings suggest that disruptive and incremental are clearly

related to the market- and product level, whereas the association is unclear

for discontinuous and radical. Even though discontinuous is strongly linked

to technological features, the effects are associated with the market to a

considerable degree, based on our results. Breakthrough, by contrast, has a

clear technology- and knowledge association. Therefore, it refers more to

the technical invention than to marketed products, which suggests a more

general distinction between inventions and innovations (Figure 2.5b). As

stated in section 2, inventions are technical advances that are not yet com-

mercialized (Ahuja and Lampert, 2001), whereas innovations are products

or processes that are relevant for the market (Lundvall, 2016). Accordingly,

breakthrough is closer to the knowledge and technological dimension and

thus only impacts the technical trajectory, whereas disruptive mostly refers

to the market dimension. The frequent association of breakthrough with

invention further underlines this characterization, in contrast to disruptive,
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(a) Innovation typology based on
impact and novelty

(b) Innovation typology based on di-
rection and entity of impact

Figure 2.5: Innovation typologies (circles around the labels refer to how widely
or narrowly they are defined in the literature)

which is usually associated with innovation. The second dimension, the

positive or negative connotation of effects, is less present in the discussion of

innovation concepts. Nevertheless, the notion of ‘competence-destroying’ or

‘competence-enhancing’ effects of innovations has been stressed, for example,

by Cooper (2000), Henderson (1993), Kostoff, Boylan, and Simons (2004),

Lettl, Herstatt, and Gemuenden (2006).

However, these studies mostly contrast concepts for exceptional and ordinary

innovation. Our data reveals that effects of incremental innovation are

the most positively connoted in comparison to exceptional innovations,

albeit breakthrough is also associated with mostly positive effects. Moreover,

disruptive and discontinuous tend to be more strongly associated with

negative effects, apart from the positive effects for the innovating company

itself. The proportions of positive and negative associations lie between the

other labels for radical.

Second, innovation labels are defined by and described with specific char-

acteristics to map distinguishable innovation concepts. This distinction is

particularly important when these labels are used to operationalize innova-

tion in empirical studies. Many quantitative studies use large data sets such

as patent data. The dimensions of novelty and impact are frequently used in

these studies to distinguish exceptional from ordinary innovations. Within

the group of exceptional innovation, however, empirical approaches usually
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do not differentiate. Breakthrough, for example, is mostly measured on the

basis of the impact (patent citations) (Kaplan and Vakili, 2015; Phene et al.,

2006). Regarding the other dimension, a different label, atypical, has been

used several times to capture particularly new innovations or innovations

that deviate from existing ones (Kim, Cerigo, Jeong, and Youn, 2016; Mewes,

2019; Uzzi, Mukherjee, Stringer, and Jones, 2013). Radical, on the other

hand, is operationalized based on both dimensions, separately or as a combi-

nation of both novelty and impact (Dahlin and Behrens, 2005). However, the

quality of these dimensions is usually not further specified. Particularly, no

differentiation between effects on technological development or the market

(and industries) and between positive and negative effects is made.

The positions of the different labels within the frameworks of Figure 2.5

highlight why a clear operationalization might be very difficult: Some labels

are rather narrowly defined, such as incremental – with low novelty, low

impact, related to product and market and associated with positive effects.

Others, such as discontinuous or radical, are much more widely defined in

the literature. Operationalization, however, usually is and should be based

on accurate indicators for specific characteristics (which a certain type of

innovation fulfills) and not on a rather spurious label (see Downs Jr and

Mohr, 1976). Researchers need to clarify what innovation characteristics

they ought to measure. This concerns, for example, whether the degree of

impact, the degree of novelty or both are important in the respective study.

Further, a differentiation between (technological) inventions and (marketed)

innovations and the direction of their effects (rather competence-enhancing

or competence-destroying) can be very important for policy implications

derived from innovation studies. It clearly makes a difference whether the

investigated type of innovation has a big negative impact on established

structures, or whether it enables all industry or market actors to improve

their products and processes. The same holds for the status as either a

technological advancement (which might affect further patenting) or as a

marketed product (which already affects the industry, its structures and its

customers).

Following these considerations, the innovation literature might offer a concept

(and label) that describes, or at least includes, an innovation with the selected
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characteristics. However, the respective label might be used in the literature

in several ways or with overlaps with others.

2.6 Conclusion and Limitations

The aim of this chapter was to bring more clarity in current innovation

typology by quantitatively assessing the decisive characteristics of prominent

innovation labels based on their use in the innovation literature. In another

recent paper, Kovacs et al. (2019) have already examined the bibliographic

origins of four labels for exceptional innovations. In particular, they consid-

ered the use of the dimensions of novelty and impact as descriptive elements

of innovation labels. These dimensions largely form the basis of quantitative

operationalization of innovation but reflect only to a limited extent the

content of some innovation concepts. Moreover, they still yield potential

to confound and lead to the use of the labels interchangeably. To further

improve the typology of innovation, we examined the definitions of the labels

radical, discontinuous, disruptive, breakthrough, continuous and incremental

in over 500 scholarly articles. Like Kovacs et al. (2019), we find that the

degree of novelty and the impact are key descriptive features of all innovation

labels, although their linguistic origins rather belong in either of the two

dimensions.

Moreover, we show two additional aspects: On the one hand, it is important

to consider whether an innovation is more market- and product-related

or technology- and knowledge-related, which can also be referred to as a

distinction between innovations and inventions. On the other hand, it is

essential to pay special attention to what degree the resulting effects have

positive or negative connotations (particularly ‘competence-destroying’ vs.

‘competence-enhancing’). The connotation of innovation labels can be even

more relevant when scientific research is transported to the political sphere.

However, rarely, one of the innovation labels examined (especially exceptional

innovations) can be assigned exclusively and solely to distinct categories.

These implications show above all that for an accurate operationalization and,

thus, replicability of studies, the existing labels should be used cautiously. As

we aim for more clarity in innovation terminology, we refrain from presenting
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even new labels for the quadrants within our extended typology. Nevertheless,

we encourage further research to investigate the decisive characteristics of

innovations. Our typology and the additional and more detailed results

presented in the appendix present a useful starting point.

Notwithstanding, our study has few limitations. Firstly, we selected a

distinct set of innovation labels based on their presence in the innovation

literature and on their investigation in the previous study of Kovacs et al.

(2019). Other popular labels for exceptional innovations, such as ‘architec-

tural’ (Henderson and Clark, 1990) are likely to reflect characteristics other

than the ones represented by the labels used in our study. Secondly, our

quantitative analysis does not consider the research context of the papers

from which we code the definitional characteristics. For example, our finding

that breakthrough as a label for a technological and impactful innovation

fits well with its operationalization in quantitative innovation studies might

be caused by an overrepresentation of these studies in the definitions of

breakthrough in the literature. Thirdly, a bibliographic analysis of the diffu-

sion of the innovation labels might explain how and why certain definitional

characteristics are more frequently mentioned than others – an endeavor we

leave for our further research. Fourthly, radical and incremental are very

common in many papers included in our analysis. However, the literature

mentioning continuous or disruptive is much more limited, so our findings

might be less valid for these labels. Lastly, even though our coding system

has been cross-validated, it is possible that other research teams would have

conceived of different assignments and therefore produce at least slightly

different results. Nevertheless, this chapter contributes to a better under-

standing and careful use of innovation concepts and respective labels in

scientific research.

Future research could validate our innovation typology with additional

qualitative studies about the perception and interpretation of innovation

labels by both researchers and practitioners. When performing quantitative

innovation studies, researchers should carefully consider the appropriate

operationalization of the type of innovation they investigate.
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Chapter 3

Bridging Technologies in the

Regional Knowledge Space:

Measurement and Evolution

3.1 Introduction

Technological change is an evolutionary process, and it is cumulative in the

sense that it builds on previous technical findings in combination with new

elements. These elements are more fertile when they are combined with other

technologies or are connected with previously disconnected technological

fields (Pavitt, 1984; Jaffe, 1989).

Concepts of technologies with great innovative and transformative potential,

such as General Purpose Technologies (GPTs) or Key Enabling Technologies

(KETs), build on this idea of establishing or reinforcing connections between

different technology fields. GPTs as well as KETs have been identified as

sources of economic growth and have attracted the attention of policy makers

(Bresnahan and Trajtenberg, 1995; Posada et al., 2015).

This view of interconnected fields of knowledge or technology calls for

a network perspective, as proposed in the literature on Product Spaces,

economic complexity and Knowledge Spaces (KS) (Kogler et al., 2013;

Hidalgo et al., 2007; Hausmann and Hidalgo, 2011). Within such networks,

43
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fertile technologies, particularly, serve as bridges with the potential to affect

the improvement (new inventions) of connected technologies (Graf, 2012).

We define a Bridging Technology based on its function as a connecting

element between many other technologies by being positioned in the center

of the KS. A common feature of BTs, similar to KETs and GPTs, is that

developments in a BT have the potential to affect innovation in many other

areas. The main difference is that in contrast to GPTs and KETs, BTs

are not defined ex ante and are not necessarily global but can be identified

within each KS based on their position and functionality. We propose two

different definitions of BTs and develop indicators for their identification.

The indicators are inspired by Social Network Analysis (SNA) methods

applied to the KS. In particular, we develop a measure called Bridging Index

(BI) that accounts for degree centrality (to understand how strongly related

a technology is with others) combined with a diversification index (to assess

the distribution of these connections). As an alternative, we capture the

idea of bridging in a network by Betweenness Centrality (BC). The index is

based on the frequency with which a node is on the shortest path between

all other nodes to explain which technologies are responsible for the diffusion

of knowledge in the KS.

We use the PATSTAT database, Autumn 2017, and technologies are defined

based on the Cooperative Patent Classification (CPC) on the 4-digit level.

The analysis is performed for Germany with a particular focus on the region

of Jena, located in East Germany (former GDR). We choose Jena as a

prototype for our methods since it is a strong patenting region and its

innovation system has been analysed in several studies (Graf, 2006; Fritsch

and Graf, 2010; Graf and Broekel, 2020), allowing us to cross-validate our

findings. We use both co-occurrence and Revealed Relatedness matrices of

CPC classes to reconstruct the KS. The period of analysis is from 1990 (after

German reunification) until 2015 with 5-year moving windows to identify

the BTs and to track their development and their change in position in the

KS.

We apply both indicators to an analysis of the development of technologies

over time to identify changes in the main BTs in Jena. To be able to compare

results across regions, we propose the Revealed Bridging Advantage (RBA),
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a specialization index inspired by the Balassa indicator. We group CPC

classes into technological fields based on Schmoch (2008) for Jena and then

compare the results with Germany to observe differences in terms of bridging

technologies between Jena and Germany. Thereby we contribute to the

scarce literature on BTs and to the general understanding on how these are

formed in knowledge spaces.

We proceed as follows. In the next section, we review the literature on

structural change, innovation, GPTs, KETs and KS as a background for

the discussion of the properties of bridging technologies. In section 3.3, we

provide two alternative definitions of bridging technologies. In section 3.4,

we develop the methodologies used to reconstruct the KS of Jena and

present the analytic tools for measuring bridging technologies according to

the two definitions. In section 3.5, we present results on the technological

development of Jena’s KS. In section 3.6, we develop and apply the RBA

index for cross-regional comparisons of BTs. Finally, we conclude with a

general overview of our findings and suggestions for applications and further

analysis.

3.2 Literature Review

3.2.1 Structural Change and Innovation

Many studies distinguish between different types of technologies based on

their potential impact on structural change and growth. A fundamental

distinction is between radical and incremental technological innovations.

Radical innovations render existing competences obsolete and redefine the

concept of competitive advantage, sometimes by creating completely new

industries, in line with Schumpeter’s view on “creative destruction”. Incre-

mental innovations, on the other hand, do not reshape economies but rather

ameliorate what is already existing, solving problems on the production

or distribution flow (Schumpeter, 1934; Abernathy and Clark, 1985; Scott,

2006). Dosi (1982) uses the concept of technological paradigms to distinguish

between continuous changes along existing trajectories and discontinuities

that challenge existing paradigms and help to establish new ones. In a
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subsequent article, Dosi (1988) points out that processes of innovation are

local and context dependent. He defines untraded interdependencies as com-

petences shared between different sectors that can be seen as collective assets

of multiple firms established within a region or country. Because of their

regional specificity, these interdependencies not only impose restrictions but

also open unique avenues for subsequent technology development paths.

Another strand of literature shifted the focus towards economic geography,

trying to apply the main concepts and definitions from evolutionary eco-

nomics (such as selection, path-dependency, chance and increasing returns)

to geography. The main intention is to understand how the spatial environ-

ment reacts to changes in the technological sphere. Evolutionary theories

provide possible explanations for phenomena on the geographical level such

as collective learning processes, regional problems with increasing worldwide

product variation and the spatial formation of new industries (Boschma and

Lambooy, 1999).

3.2.2 General Purpose Technologies and Key

Enabling Technologies

Theories on General Purpose Technologies and Key Enabling Technologies

make linkages and interdependencies between different fields of technology

more explicit (Tushman and Anderson, 1986; Bresnahan, 1986; 2010).

In their seminal study, Bresnahan and Trajtenberg (1995) explicitly define

and discuss the features of a GPT, referring to the examples of the steam

engine, electric motors, semiconductors and computers. Progress and growth

in a region, nation or worldwide is driven by technologies. Advancement and

innovation are not made in isolation but in combination with other sectors

that can benefit from the improvements in the “main technology”. Rosenberg

and Trajtenberg (2004) retrieve the features of GPTs by taking the example of

the steam engine. First, GPTs have general applicability, which is defined as

a generic feature that permits the GPT to be fundamental for a large number

of applications and processes. Secondly, they manifest dynamism which

means that they experience continuous innovation, defined as improvements

of the existing technology using new configuration systems (Boer and Gertsen,
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2003) that increase efficiency for users and help diffusion in other sectors.

In the literature, this third characteristic is called pervasiveness, and it

is usually used in combination with technological diversification (Malerba

and Orsenigo, 1997; Cantner and Vannuccini, 2017). Fourth, they have

innovational complementarities in the sense that when a GPT is improved,

it also creates incentives to ameliorate the connected technologies (Rosenberg

and Trajtenberg, 2004). All these characteristics create loops in which the

better performances of an industry or technology connected to the GPT

also creates incentives to invest in the GPT itself. This creates a particular

environment in which the GPT as well as a connected industry can profit

from the highest reached performance of either of the two (Cantner and

Vannuccini, 2017).

From these features, pervasiveness and innovational complementarities are

closely related to the concept of a bridging technology; the former creates new

combinations between GPTs and previously unrelated technological fields

while the latter induce the innovative activities of the connected technologies

in the KS. This happens when further advances in the mainstream technology

become too costly, whereas new opportunities to connect previously unrelated

fields become economically attractive (Malerba and Orsenigo, 1997; Graf,

2012).

Hall and Trajtenberg (2004) relate the emergence of GPTs with the increase

in patent citations and the number of patents in general. Using quality

indicators (from the USPTO patent database), they discover that in techno-

logical classes identified as GPTs, there is an above average increase of both

patent citations and patent growth. This means, presumably, that GPTs

have a considerable effect on inventive activities and suggests that the emer-

gence of a new technological paradigm also affects the patent distribution.

For our purposes, this is important since it means that not only does the

focal technology benefit by creating linkages with others, but an increase in

patenting is also visible on both sides.

An “evolution” of the concept of GPT is that of Key Enabling Technologies

(KET). Actually, KETs are a particular subset of GPTs. In their definition

of GPTs, Bresnahan and Trajtenberg (1995) explain that they could have



48 Bridging Technologies in the Knowledge Space

the ability to enable other subsequent advances. In this sense, they can open

new possibilities for technical advances without offering final solutions.

An explicit identification of KETs was first proposed by the European

Commission (EC), which selected six GPTs aimed at sustaining the com-

petitiveness of European industry in the global economy (nanotechnology,

micro and nano-electronics including semiconductors, photonics, advanced

materials and biotechnology) (European Commission, 2009). The European

Commission (2009) claims that these technologies have unexpressed poten-

tials that should be exploited by the European industry, with the aim to use

these KETs within smart specialization strategies. As affirmed by Montresor

and Quatraro (2017), the main problem is that there was no theoretical

foundation provided by the EC on how the KETs can be used as a driver

for such strategies.

KETs have similar properties as GPTs (explained above), but they can also

be represented as the elementary units for the development of new processes,

new products and new industries in the market (Montresor and Quatraro,

2017). This is a distinguishing feature between a GPT and a KET. In

other terms, the sub-KETs are successful realizations of the main KET. One

recent example was analysed by Akyildiz, Nie, Lin, and Chandrasekaran

(2016), who observed challenges that the wireless technology face with the

introduction of the fifth generation (5G) of mobile communication. Wireless

is seen as the KET while the 5G as the sub-KET. The development in

the first is necessary to have the second because without the fundamental

advancement of the existing technology, the realization of the new one is

also at risk. This is the most important feature of a KET, and it can be

easily translated in the Knowledge Space (KS): the emergence of a KET

can create sub-technologies that were previously not observable in the same

KS. This will be used for the definition of BT, since we expect that they are

catalysts and help the development of other sub-technologies.

3.2.3 Knowledge Space

Studying the inter-relatedness between different industries or technological

fields has a long tradition. For example, Pavitt (1984) studied technical

innovations in Britain to explain technological change and how it is influenced
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by knowledge flows from various sources. Another study by Jaffe (1989) used

U.S. patent data to identify technologically related groups and shows that

the success in terms of productivity of one firm is related to the investment

in R&D in its technological neighbours. In both studies, it is affirmed that

innovation activities are more favourable in a context with connected or

related fields (Pavitt, 1984; Jaffe, 1989). A similar concept is applied by

Teece, Rumelt, Dosi, and Winter (1994) who show that the growing number

of activities performed by US manufacturing firms coincide with an increased

coherence between similar industries. Breschi, Lissoni, and Malerba (2003)

develop a method to study technological relatedness through patent data to

understand diversification and firm performance.

Other researchers extend previous work on relatedness by including a spatial

dimension. Hausmann and Klinger (2007) and Hidalgo et al. (2007) first

studied relatedness with international trade data to understand the distance

between different exported products. They propose that countries specialized

in goods located in the most dense area of the “product space” can shift their

production more easily to other products. This happens because the new

knowledge needed for shifting is similar to their existing competencies. As a

consequence, these economies are more diversified. For countries specialized

in products in the periphery of the “product space”, it is more difficult to

shift production to other goods because they lack the respective competences,

so they remain specialized.

Boschma, Minondo, and Navarro (2012) extend the work of Hidalgo et al.

(2007) and show how Spanish regions diversify in different industries and

how this process is affected by the pre-existing knowledge of the region.

Other studies build on similar ideas to study the technological landscape

of different regions. The study by Neffke et al. (2011) is based on the

long-term evolution of the Swedish technological and economic landscape.

They show how industries that are related to those already present in the

region can more easily enter the regional industry space. Quatraro (2010)

show that the the knowledge stock embedded in Italian regions can shape

the regional economic performance, triggering regional growth. Kogler et al.

(2013) use patent data to study how knowledge is distributed in different

US cities. They discover that higher relatedness is present in smaller cities,

while larger ones generate knowledge that it is more dispersed. They were
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the first to use the term Knowledge Space to identify the network based on

relatedness between different technologies. More recently, Boschma, Balland,

and Kogler (2014) study how existing relatedness can affect the entrance of

a new technology in a city, using US patent data. Finally, Balland, Boschma,

Crespo, and Rigby (2019) find that it is difficult for EU regions to diversify in

complex technologies and propose that regions should increase their existing

capabilities to assure competitive advantage.

This brief review of the literature shows that various data sources are

used to measure relatedness. Measures using information on employee

mobility (Neffke et al., 2011, e.g.) require micro-level data which is often

unavailable or difficult to access, and they relate industries rather than

technologies. Product exports (Hidalgo et al., 2007, e.g.) lack information

on the technologies required for their production. Measuring relatedness

with patent data has several advantages (Joo and Kim, 2010): patents are

legal documents, so all the data is gathered very carefully; they provide

comprehensive information about the timing of the invention, technological

classification, name of the inventors and applicants; and they can be granted

for very long periods of time and in almost every technological sector (beside

software) (Verbeek et al., 2002; European Commission, 2003; Kogler et al.,

2013). On the other hand, the use of patents is associated with specific

problems that have to be taken into account: inventive activity is not fully

covered because inventors can strategically decide whether to patent or not;

there are differences in patenting activities geographically, technologically

and firm-wise; and some legal changes can influence patenting activity

(Pavitt, 1985; Griliches, 1990; Khan and Dernis, 2006).

There are different methods to reconstruct the KS from patent data. Sev-

eral studies classify and compare them and propose new ways on how to

measure relatedness (Joo and Kim, 2010; Alstott et al., 2017; Yan and Luo,

2017). There are two main types of measures to capture relatedness between

different technological fields: Patent Reference-Based Measures and Patent

Classification Based Measures (Yan and Luo, 2017).

The Patent Reference-Based Measures use citation data to calculate the

relationships between different technological classes (International Patent

Classification or Cooperative Patent Classification). With this data it is
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possible to actually detect the cognitive “distance” among different classes

(Alstott et al., 2017; Yan and Luo, 2017). Leydesdorff, Kushnir, and Rafols

(2014) and Kay, Newman, Youtie, Porter, and Rafols (2014) use a cosine

similarity index to look into relationships in technologies that are cited

or citing each other. This is useful to understand where the knowledge is

generated and where it is applied.

The Patent Classification-Based Measures are based on the fact that patents

are classified in different technological fields. These categories are provided

by examiners from the issuing patent offices rather than by the applicants

themselves. This information is used to calculate “distances” between

technological classes based on co-classifications. The basic assumption

is that the higher the frequency of two classes being assigned to single

patents, the higher the proximity between these two classes (Yan and Luo,

2017). Several studies use this methodology and calculate a co-occurrence

matrix where the frequency represented by the number in each cell is the

actual number of patents that are combining two classes, represented by the

corresponding column and row (Breschi et al., 2003; Kogler et al., 2013).

In this paper, we use two different approaches to reconstruct the KS. The

first one is a simple co-occurrence matrix that, as explained above, represents

the “proximity” between technologies by the number of patents that co-

occur in two different classes. The second approach is based on the idea of

Revealed Relatedness (RR) (Neffke and Henning, 2008). This introduces a

probabilistic measure that allows us to compare the observed number of co-

occurrences with the expected one. We employ two different methodologies

to assess their suitability for our research question.

3.3 Bridging Technology Definition

GPTs as well as KETs are identified by top-down approaches. These

technologies have first been recognized by scholars of economic history

as being responsible for growth in regions or countries (Landes, 1969).

Subsequently, evolutionary economists identify these technologies as GPTs

because of their particular characteristics (Bresnahan and Trajtenberg, 1995).

Building on the definitions of GPTs and KETs, we try to identify technologies
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that are sources of growth for single regions. In this sense, we do not search

for specific, already identified technologies in the regional KS. Instead, we

search for technologies that have similar characteristics as GPTs and KETs

(mainly pervasiveness) in the regional KS and analyze the dynamics of these

important and presumably growth-driving technologies. Assuming that

knowledge is sticky and a particular milieu is formed in specific regions,

we expect that regions have their particular technological characteristics,

which can change over time (as a new paradigm emerges also a new bridging

technology can emerge in the analysed region).

In the following, we define the concept of Bridging Technology (BT). Quite

generally, it is defined as a field of technology that connects otherwise more

distant technologies within a KS. This is a shared characteristic with GPT

and KET, but what differs is that there is no ex ante identification of a BT.

Rather, it is defined by its function within the KS. As such, there can be

different BTs in a diverse KS which depends on the embedded characteristics

of the area itself. The function of the BT is important since it affects

the cohesion of the KS. The literature about KS coherence helps us to

understand how these technologies can be important for the structure of the

network. Quatraro (2010) states that the understanding of how two nodes

(technologies) are associated can provide valuable information on how the

KS in a particular region is structured. We expect that these nodes which

occupy central positions in the network are important for its performance

since they establish potentials for cross-fertilization in the KS by connecting

otherwise more distant technologies.

We define bridging technologies based on two alternative concepts of central-

ity of a technology (node) within the KS (Graf, 2012). In the first approach,

we define BTs as those technologies that serve as catalysts in the KS network

by being connected to many other technologies (degree centrality). In the

second approach, we define BTs as technologies that connect two different

parts of a KS that would either be unconnected or only at longer distances

(betweenness centrality).

Figure 3.1 shows a graphical representation of both definitions. The first one

(Figure 3.1a) represents a BT (red node) that is connected to many other

technologies and is at the center of the network. In the second definition
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Figure 3.2: Number of Patents and Nodes in Jena KS

(Figure 3.1b), the red node does not have most connections, but it establishes

a link between two otherwise separated parts of the KS.

3.4 Methodology

3.4.1 Data

We use the OECD, PATSTAT database, Autumn 2017 to select all patent

applications with at least one inventor or applicant located in Jena with

priority 1990 to 2015. We use the Labour Market Region (LMR) as a regional
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boundary. This includes not only the city of Jena but also its surrounding

area where commuters live. The knowledge spaces are reconstructed for

5-year moving windows so that the KS for the year 1994 is composed of

patents filed between 1990 and 1994.

For the technological (co-)classification of patents, we rely on the Cooper-

ative Patent Classification (CPC). The CPC classification was developed

in cooperation between the European and US Patent offices to replace the

International Patent Classification (IPC) (Leydesdorff, Kogler, and Yan,

2017). The CPC classification is comparable to the IPC at four digits level;

however, the process of re-classification from IPC to CPC allows the addition

of new classes.

We decided to use the CPC classification for several reasons. It seems

to be more consistent over time, it allows us to identify more linkages

between technologies via co-occurrences, and it includes the section “Y”

that identifies new technological developments (Leydesdorff et al., 2017).

These are principally classes connected to nanotechnology and climate

change mitigation (Scheu et al., 2006; Veefkind, Hurtado-Albir, Angelucci,

Karachalios, and Thumm, 2012). We exclude two of the Y subclasses from

our analysis since they do not describe sufficiently homogeneous technologies
1.

Figure 3.2 shows the number of patents and distinct CPC4 classes that

constitute the Jena KS for the observation period. There is a pronounced

increase in the number of 4-digit CPC classes (nodes) until 2004 and a

flattening afterwards with a more or less constant number of classes during

the final periods. The number of patents reaches its maximum in 2008 and

then constantly declines.

In the next sections, we describe how we reconstruct the knowledge space

of Jena (and of the other German regions). More specifically, we use two

different methods based on the co-occurrence matrix and on the relatedness

matrix.

1Y10S (GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS;
GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER
SEVERAL SECTIONS OF THE IPC) and Y10T (TECHNICAL SUBJECTS COVERED
BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS AND DIGESTS) are
special classes that include many different technological fields due to the harmonization
from IPC to CPC classification.
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3.4.2 Knowledge Space reconstruction

The basic KS reconstruction follows a co-occurrence method. In this case,

the connection between two technology classes is formed whenever a patent is

co-classified in both of them. The more frequently the connection is repeated

in one period, the closer two CPC classes are in the KS (Nesta and Saviotti,

2006; Graf, 2012). The results for the co-occurrence methodology are

provided in subsection 3.4.3 (with the Bridging Index) and in the appendix

3.8.

For the relatedness matrix, we use a similar approach as the revealed

relatedness method explained in detail by Neffke and Henning (2008). They

develop a strategy to distinguish relations between different industries from

product portfolios. They use information from product portfolios of plants

and assume that the production of two goods in the same factory indicates

a relation between the two industries to which the products are assigned.

The justification for this assumption is that they apparently share, at least

partly, the same inputs and production processes. Our approach is similar,

since patents that draw on or are relevant for two technologies (CPC classes)

indicate a relatedness between these technologies. With an increasing number

of patents assigned to two classes, relatedness between them increases. This

co-occurrence is only the first step in the revealed relatedness method. In

the second step, we use a probabilistic measure to compare actual with

potential co-occurrences. If we assume that knowledge spaces on different

levels are interrelated, the KS of the world influences the national ones and

the national KS affects the regional ones. By reconstructing the world KS, it

is possible to understand if a region is following the global trends in terms of

relatedness. We assume that a frequent combination of two technologies in

the global KS positively influences the likelihood of this edge being repeated

in the studied region.

To calculate relatedness between each CPC 4 digits technology pair, we

employ the Otsuka-Ochiai coefficient Cij (Ochiai, 1957) to normalize the

observed co-occurrences with the size difference among technologies.

Cij =
cij√
ci · cj

(3.1)
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Where cij is the simple number of co-occurrences between two technologies

(i and j), the square root of ci and cj represents the geometric mean of the

size of the two technologies (occurrence of i multiplied by the occurrence of

j). The index can vary between 0 (no overlap) and 1 (i and j always appear

together).

In the second step, we compare these relatedness measures for each region

(Cr
ij during one period) with the world (Cw

ij world for the same period). The

world relatedness helps us to understand the degree to which the regional

relatedness follows global trends. Thereby, we implicitly assume that if two

IPC classes are combined frequently in the world, the likelihood that they

are associated within any region increases.

The differences between the region (Cr
ij) and the world (Cw

ij) are used to

map the knowledge spaces, i.e., they are the edges in the regional knowledge

spaces for each period. In the case of a positive difference (Cr
ij − Cw

ij > 0),

the region combines the classes i and j more frequently than expected from

observing the world relatedness.

3.4.3 Two Indicators for Bridging

Inspired by the first definition of BT, we calculate the “Bridging Index”

based on a simple co-occurrence matrix. It is a continuous indicator, taking

into account the degree to which any technology fulfills a bridging function.

This measure is composed of two different parts: a diversification index (DI)

and the normalized sum of co-occurrences.

The DI is based on the Herfindahl-Hirschman Index (HHI), which is widely

used to explain concentration, e.g. in the banking sector (Acharya, Hasan,

and Saunders, 2006; Stiroh, 2004) or in markets and income (Rhoades, 1993).

Since the HHI is a measure of concentration, the DI is simply the inverse of

the HHI to measure diversification (Duranton and Puga, 2000). The idea

is that the more a technology is diversified, the more it is connected with

different technologies.

DIi =
1

n∑
j=1

s2ij

(3.2)
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In equation 3.2, sij is the share of patents co-classified between two CPC

classes (i and j) with respect to the total number of patents belonging to

CPC class i. The Bridging Index (BI) is then defined in equation 3.3.

BIi = DIi ·
n∑

j=1

normcoij (3.3)

We take the product of the DI and the normalized sum of co-occurrences

(normcoij). The co-occurrences between two technologies (i and j) are

normalized by multiplying DI with the sum of all co-occurrences in one

period so that it is independent of the number of patents when comparing

across time or regions. As such, the BI accounts for the number and

distribution of co-occurrences of a technology. A change in this index for a

CPC 4-digit class indicates increasing or decreasing importance of the node

in the network.

As an alternative indicator for bridging, we use the second definition of

BT to understand which nodes hold a central, bridging position within the

KS network. The calculation of betweenness centrality (BC
i ) for node i is

provided in the following equation 3.4.

BC
i =

∑
j<k

gjik
gjk

,∀i ̸= j, k (3.4)

With j, i, k as distinct nodes, gjk is the number of geodesics between j and

k, and gjik is the number of geodesics between j and k passing through i

(Wassermann and Faust, 1994).2 We use a weighted version of betweenness

so that high relatedness edges are shorter than edges with low relatedness.

Table 3.1 shows the descriptive statistics and a correlation analysis of the

different measures. As expected, the correlation between BC, BI and the

number of patents is quite high. This suggests that a class with a high number

of patents has also a high score in BC and BI. However, the importance

of a technology in the KS is not completely explained by the number of

patents. This is even clearer in figure 3.3, where, for Jena in the year 2010,

both measures are plotted against the number of patents. Unsurprisingly,

2We calculate node betweenness centrality with the igraph package for R (R Core
Team, 2018; Csardi and Nepusz, 2006).
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Figure 3.3: Correlation between the bridging measures and the number of
patents of each 4-digit CPC class in Jena for a representative year (2010).

Optical Elements has high values for BI, BC and a high number of patents.

However, classes like Cements, Shaping Plastic (in BC) and Semiconductor

Devices (in BI) score high in one of the presented indexes despite their low

number of patents.

Table 3.1: Descriptive Statistics and Correlations in Jena

Statistics

Descriptive Statistics Correlations

Mean SD Minimum Maximum N Brdg Ind Bet Cent Pat

Bridging Index 0.028 0.079 0 0.969 3350 1 \ \
Betweenness Centrality 142.162 399.264 0 4922.000 3726 0.74 1 \
Patents 6.259 14.454 1 208.000 3726 0.68 0.82 1

3.5 Comparing Bridging Indicators for the

Jena KS

In the following, we present an analysis of the Jena KS according to both

measures for bridging technologies presented above.

3.5.1 Bridging Index (BI)

In figure 3.4, we present the results for changes in the BI, based on the

co-occurrence matrix for the highest ranked CPC 4 classes in Jena. We rank
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each CPC 4 class for each period (the one with the highest BI is marked

with 1). We only display the CPC 4 classes that appear at least 4 times

(from 1994 to 2015) among the top 10 in the ranking. Thereby, we identify

technologies that are continuously relevant for the KS and exclude outliers,

which might be important technological fields only for a short period due to

one patent assigned to many CPC classes. The ordering of classes is from

the highest median rank throughout all years (top of the heat map) to the

lowest median rank (bottom). For ease of interpretation and readability,

we provide simplified names of the CPC 4 classes rather than the official

ones (e.g. G02B is Optical Elements instead of “OPTICAL ELEMENTS,

SYSTEMS, OR APPARATUS”.

Only three technologies (Optical Elements, Material Analysis and Chemical

Processes) are continuously among the top 15 bridging technologies in the

Jena KS. Medical Preparations is in top spots at the beginning and at the

end of the period, and it only loses its high position in some years in the

middle. Some technologies appear in top positions at the beginning but

become less important over time: Chemical Processes, Acyclic Compounds,

General Chemistry and Macromolecular Compounds. Another group of

classes emerges as BTs by the end of the observation period: Shaping

Plastic, Cements, Soldering, Diagnosis; Surgery and Semiconductor Devices.

Prothesis and Sterilising Material have a high index only during the middle

of the period. One of them fulfills a bridging function only during the early

and later periods: Glasses Composition.

3.5.2 Betweenness Centrality (BC)

In figure 3.5, we present the results for Jena based on the rankings of

betweenness centrality in the relatedness matrix (using the same method of

display and assumptions for selecting the displayed technologies as in figure

3.4). There is more turbulence when using betweenness centrality than with

the BI above, so that the interpretation is less straightforward.3

3In Appendix 3.8, we display the heat map with betweenness based on the co-occurrence
matrix. Since the results are quite similar, the larger turbulence is not caused by the
method of reconstructing the KS but by the methodology used to identify BTs.



60 Bridging Technologies in the Knowledge Space

20

18

3

17

1

8

5

15

61

2

6

50

71

27

53

3

45

1

10

14

16

8

5

6

9

82

23

60

6

89

1

13

14

10

9

5

3

8

30

25

34

8

78

2

13

15

11

4

6

1

9

10

30

34

3

82

1

12

27

20

4

5

2

13

7

26

27

3

90

1

12

34

38

4

7

2

8

6

19

12

2

51

1

7

37

59

6

3

4

23

5

12

7

2

58

1

13

24

22

10

3

5

6

8

14

5

2

20

1

13

15

11

23

3

4

10

8

18

1

4

10

3

11

9

8

32

2

7

15

6

15

1

8

11

3

12

9

4

34

2

5

13

6

15

1

13

12

4

9

3

7

46

5

2

10

6

13

1

14

10

3

7

4

8

33

6

2

25

5

5

2

19

11

4

3

6

10

29

8

1

14

7

2

7

8

13

5

3

6

4

33

11

1

10

9

2

7

11

9

4

3

5

6

26

10

1

8

14

2

11

12

8

7

5

16

3

30

6

1

4

10

1

8

10

6

11

9

12

3

46

5

2

4

14

2

11

10

7

9

24

6

3

92

5

1

4

13

3

15

6

8

9

28

10

2

106

4

1

7

5

6

29

5

19

12

34

8

2

180

3

1

7

4

6

32

5

21

8

36

7

2

143

3

1

9

4

OPTICAL ELEMENTS

CHEMICAL PROCESSES

MATERIAL ANALYSIS

MEDICAL PREPARATIONS

SOLDERING

CEMENTS

SEMICONDUCTOR DEVICES

GLASSES COMPOSITION

PROTHESES

GENERAL CHEMISTRY

DIAGNOSIS; SURGERY

STERILISING MATERIAL

ACYCLIC COMPOUNDS

1995 2000 2005 2010 2015

 

 

Rank
1

5

10

15

20

50

80

100

180

Figure 3.4: Bridging Index Ranking in Jena (1990-2015)

The two technologies identified as BTs throughout the whole period are

as in figure 3.5: Material Analysis and Optical Elements. Measuring and

Chemical Processes are dominant in the beginning but then lose their high

positions. Five classes become important by the end of the period: Soldering,

Semiconductor Devices, Emissions Reduction, Shaping Plastic and Coating.

Climate Change Mitigation is only important during the middle of the

considered time frame. Finally, three classes lose important positions during

the middle but then recover by the end of the time frame: Diagnosis; Surgery,

Medical Preparations and Cements.

Two BTs in Jena are identified by both measures: Optical Elements and

Material Analysis. This means that throughout the whole period, they have

the capacity to connect with many other technologies (as indicated by the

BI measure) and are often on the shortest path between other technologies

(BC measure). This result is not surprising since some large international

companies in Optics and Instruments, such as Carl Zeiss or Jenoptik, are

located in Jena.



3.5 Comparing Bridging Indicators for the Jena KS 61

6

3

1

9

23

12

2

5

23

12

82

82

82

6

3

1

10

25

12

2

5

15

20

25

93

93

8

4

3

6

28

9

1

2

23

18

28

28

102

7

4

3

5

35

9

2

1

20

35

35

15

104

7

3

2

11

37

6

4

1

22

22

37

9

109

12

6

2

15

41

9

4

1

5

3

24

10

119

22

4

3

19

49

7

2

1

6

5

17

8

49

21

5

3

8

35

31

2

1

4

7

29

6

37

16

4

3

12

30

22

1

2

11

6

28

5

26

18

3

5

7

62

13

1

2

14

9

20

6

30

11

3

7

13

44

19

2

1

14

8

30

4

16

5

9

16

14

40

6

2

1

11

39

42

7

21

12

7

9

13

37

2

3

1

10

24

46

6

18

8

24

34

16

13

2

6

1

9

26

14

3

15

3

14

19

6

12

28

4

1

7

43

10

2

8

2

12

11

10

6

26

3

1

8

29

4

5

9

2

11

12

6

7

40

3

1

8

26

5

4

9

3

10

12

7

6

37

2

1

8

15

5

4

9

3

9

11

6

5

42

2

1

4

21

7

14

8

3

8

12

7

9

83

2

1

4

23

6

5

10

3

8

30

9

10

85

2

1

6

14

7

4

5

4

7

11

9

13

84

2

1

3

17

6

5

8

OPTICAL ELEMENTS

MATERIAL ANALYSIS

SOLDERING

DIAGNOSIS; SURGERY

MEDICAL PREPARATIONS

CHEMICAL PROCESSES

SEMICONDUCTOR DEVICES

CEMENTS

MEASURING

CLIMATE CHANGE MITIGATION

EMISSIONS REDUCTION

SHAPING PLASTIC

COATING

1995 2000 2005 2010 2015

 

 

Rank
1

5

10

15

20

50

80

100

119

Figure 3.5: Betweenness Centrality Ranking in Jena (1990-2015)

For the remaining part of the paper, we will use BC as the bridging indicator.

Even if the BI is more intuitive and less correlated with the number of

patents, it can be misleading in some points. First, the BI index is based on

a simple co-occurrence matrix which does not fully capture the relatedness

between different classes (Joo and Kim, 2010; Yan and Luo, 2017). We

believe that introducing a probabilistic measure which compares the actual

with the expected number of co-occurrences better captures the relatedness

between different technologies. Second, BC is a measure that takes the

structure of the whole KS into account and not just direct connections

as the BI. Third, as shown in Figures 3.4 and 3.5), the BC index puts a

stronger weight on classes with a higher number of patents. This gives a

better representation of the classes that are really important to the regional

KS. This holds true for the Jena case where Optical Elements and Material

Analysis appear strongest throughout the whole period (1990-2015) with BC

but not with the BI. Since we know that in Jena there is a strong presence

of multinational companies specialized in Optics and Material Analysis, we

rely on the BC index.
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3.6 Revealed Bridging Advantage (RBA)

In this section, we propose an additional index to perform regional and

technological comparisons in Germany. While BC can be used for compar-

isons among technologies within a regional KS, it is not applicable when

comparing the same technology observed in different regions. The idea here

is to create a benchmark for each technology that shows if a region performs

better in embedding a specific class compared to all other LMRs in Germany

(3.6.2) and which technologies are increasingly well-embedded across regions

(3.6.3). In addition, we exemplify the application of the RBA measure by

taking a deeper look at developments within the KS of Jena (3.6.4).

3.6.1 Defining Revealed Bridging Advantage (RBA)

A widely accepted measure for assessing specialization patterns is the so-

called Revealed Comparative Advantage (RCA) or, alternatively, Revealed

Technological Advantage (RTA) (Hidalgo et al., 2007; Boschma et al., 2013).

While the RCA is typically based on the volume of traded goods between

regions, the RTA is based on the number of patents. The RTA compares

shares of patents of a specific technology in a region with patent shares of

the same technology at the national level. An RTA larger than 1 indicates

that the region is specialized in the respective technology.

We propose the Revealed Bridging Advantage (RBA) as an index inspired

by the Revealed Technological Advantage (RTA) (Soete, 1987), applied to

the BC measure. In this sense, our systemic measure considers the quality

of the technological interactions within the KS. It is also a comparative

measure, since it is relative to the KS composition on the national level. The

specialization effect will be represented in the size of the relative measure.

In this sense, we can measure if a technology serves the bridging function

within the local KS to a larger extent than overall in Germany. In the

following, we use an aggregation of CPC 4-digit classes as provided by

Schmoch (2008). The aggregation is useful for two reasons. First, if a

region is highly specialized in few CPC 4-digit classes that belong to the

same Schmoch category, it is easier to identify the entire group as a BT.

The second reason is more technical. The CPC 4 digit classification is too
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fine-grained when applied on the level of LMRs in Germany. In many regions,

we can only observe a subset of these classes, and some are only present in

few periods so that the KS appears more turbulent than it actually is.

For this aggregation, we calculate SBCrst as the sum of the BC values of all

CPC classes belonging to each Schmoch class:

SBCrst =
∑
j∈s

BCrjt (3.5)

Where, r is the region, j is the CPC 4 digit class, t is the year and s is the

Schmoch class.

The RBA is then defined as follows:

RBArst =
SBCrst/

∑n
r=1 SBCrst∑m

s=1 SBCrst/∑n
r=1

∑m
s=1 SBCrst

(3.6)

Where s is a Schmoch technological field (out of m) and r is a region (out

of n) at time t. RBArst ranges between 0 and + 8. An RBArst = 1 means

that the level of bridging of a technology in a region is the same as on the

national level. An RBArst < 1 indicates that the technology serves the

bridging function in the respective region to a lower extent than in the rest

of Germany. Finally, an RBArst > 1 means that the region is above the

general technological bridging capacity in that specific technology.

To better understand how the RBA and the RTA differ from an empirical

point of view, we perform a correlation analysis between these two indicators

and two other variables. Table 3.2 shows the correlations between different

measures on the German level. Sum Betwenness Centrality is exactly SBCrst

from equation 3.6, RBA is the Revealed Bridging Advantage indicator, RTA

is the classic Revealed Technological Advantage using shares of patents at

the regional and national level and Number of Patents is the number of

patents in each region and technology.

The main encouraging result from this matrix is that the correlation between

the RBA and RTA is not perfect (0.5), meaning that they are actually

measuring two different concepts. Therefore, not all technologies that are

regarded as important by the RTA indicator are also prominent for the
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RBA indicator. In other words, not all the technologies in which a region is

specialized are also the technologies that are important for the structural

cohesiveness of the same region. Obviously, the two variables cannot be

completely uncorrelated because if the number of patents in a specific

technology increases then the probability to have combinations with others

(and be in the shortest path) also increases.

Moreover, from the matrix it is evident that the RBA is less correlated (0.02)

to the number of patents in each technology with respect to the RTA (0.23).

This means that the RBA is less influenced by the mere number of patents

that each technology in each region has, increasing its explanatory power.

Table 3.2: Correlation table among different measures

(1) (2) (3) (4)
(1) Sum Betweenness Centrality - 0.06*** 0.12*** 0.61***
(2) RBA - 0.50*** 0.02***
(3) RTA - 0.23***
(4) Number of Patents -
Note: *p ¡ 0.1; **p ¡ 0.05; ***p ¡ 0.01

3.6.2 Regional RBA dynamics

Following the work of Boschma et al. (2013) on Spanish regions, we explore

how the Jena KS performs relative to other German regions in terms of

the RBA. For each German region, we compare the average number of

technologies for which the RBA was ≤ 1 in the 5-year periods 1995, 2000,

2005, 2010 and 2015 but developed an RBA > 1 five years later with

the average number of technologies that in the same years experienced an

advantage (RBA > 1). To put it more simply, we count for each region,

how many technologies move from a revealed bridging disadvantage to an

advantage (the regions included are only the ones that have at least 500

patents in the period ranging from 1990 to 2015). This should give us an

indication of the performance of regions in terms of developing bridging

advantages we analyse how Jena is positioned in this context.

Figure 3.6 shows that there is a positive relationship between the number of

technologies that have an advantage with the number of technologies in which
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the region develops an RBA five years later. Therefore, regions that show a

higher number of RBAs are also the ones that have better capabilities to

develop an advantage in the future. The fact that these regions are dynamic

eases the incorporation of new technologies to create a better, interconnected

system. Regions that are below the regression line acquire fewer RBAs over

time than expected. While the ones above, on average, acquire more RBAs

than expected. The former regions are technologically more stable, whereas

the latter regions are technologically more dynamic.
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Figure 3.6: Relation between the number of technologies with an RBA > 1 at
time t and the number of new technologies with an RBA > 1 at time t + 5 in
German LMRs (1995-2015 average; 5 year intervals)

Jena belongs to the group of stable regions which develops few new Bridging

Advantages. This indicates that the KS of Jena maintains RBAs in the same

technologies over this long period, a result that is in line with our findings

above, that show that the core technologies in the KS are related to optics

and material analyses. When looking at the results for other regions, we find

that the large regions with a high number of RBAs, such as Stuttgart (S),

Munich (M) and Nuremberg (N), develop fewer new RBAs than expected.

On the other hand, there are some regions with a smaller number of RBAs

that develop many new RBAs (RT = Reutlingen, KA = Karlsruhe, SO =

Soest, WÜ = Wuerzburg, DD = Dresden, A = Augsburg), i.e. their KS

is highly dynamic. Overall, these results show that some regions that do

not patent a lot are still capable of introducing more BTs than some larger
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regions (the list of regions is reported in Table 3.5). As to whether a more or

less dynamic KS is a good indicator for economic development, there is no

simple answer. While a rigorous analysis of its causes and effects is beyond

the scope of this paper, it should be clear that KS dynamism in terms of RBA

development is not an end in itself. Rather, it shows that a region might

respond to structural change and thereby transform its KS. A stable KS can

also indicate success, as some examples of small specialized regions show.

Erlangen (ER) or Jena (J) are well below the average RBA development but

are nevertheless considered technologically highly developed and experienced

substantial economic growth during the past decades.

3.6.3 Technological RBA dynamics

In addition to regional differences, we apply the concept of RBA to technolo-

gies to analyse their differential dynamics within the German and regional

KS. To identify particularly well-embedded technologies, we build an indi-

cator that takes into account how many regions for each technology had

an RBA > 1 in two different time periods (1995 and 2015). In figures 3.7a

and 3.7b, this measure is compared to the BC (aggregated by IPC 4 digits

classes) for the whole German KS for each Schmoch category in the same

two periods. This allows us to understand which technologies became more

important in the German KS both regionally and nationally. A large number

of regions with an RBA > 1 in a particular technology implies a greater

regional diffusion in the German KS. If the aggregated BC is high, it means

that the technology is well embedded in the whole national KS. Since we take

all German patents into consideration and it takes time to observe changes

in the system, we chose to compare two periods with a 20-year difference.

Not surprisingly, in both periods, Betweenness Centrality in the German KS

is positively related with our regional diffusion measure (Number of Regions

with RBA > 1). In the year 1995, Chemical engineering is at the center of

the German KS while Other special machines is most widely diffused. Some

technologies are important for many regional KS despite a lower bridging

relevance in Germany (e.g. Macromolecular chemistry or Materials).

Comparing figure 3.7a and figure 3.7b, most technologies increased the

number of regions with an RBA > 1. This means that, generally, the
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technologies are more diffused regionally in the German KS. Nationally, we

observe a BC reduction for technologies that were particularly central in

the 1995 period. The increased local diffusion could be explained by the

fact that there is a general trend towards the increasing of the division of

labour, meaning that the average team size is increasing putting together

people with backgrounds in different scientific disciplines. This is reflected

also on the KS with an increased possibility of interaction among different

technologies (Wuchty, Jones, and Uzzi, 2007).

In figure 3.8, the dynamics for selected technologies with notable shifts are

displayed. These nine technologies can be divided into three different groups

based on their long-term development. The first group consists of technologies

that were strong both in local diffusion and national embeddedness in 1995

(Transport, Other special machines and Chemical Engineering). All three

of them experienced a reduction in the national BC and a slight decrease in

the number of regions that have an RBA > 1, meaning that they became

slightly less diffused locally and less embedded nationally. The second group

is composed of technologies positioned in the central part of figure 3.7a

(Electrical machinery, apparatus, energy and Control). Both increase in

terms of the number of regional bridging advantages but with a reduced

national BC. Therefore, these technologies experienced an increased local

diffusion with a reduction of the national embeddedness. The third group

is represented by technologies that in 1995 have a medium-low BC and

number of regions with RBA > 1 (Semiconductors, Computer technology,

Medical technology and Measurement). These four technologies have both a

higher number of regions with bridging advantages and a rise in BC in 2015.

This means that they are becoming more diffused locally and have a higher

embeddeddness nationally.

Overall, it is interesting to observe how technologies move within both

regional and national KSs. This type of analysis provides insights about

which technologies are of increasing relevance for the German KS and which

are losing importance in connecting technology fields. It is noteworthy that

there are no technologies that become more embedded within the German

KS without an increase in regional RBA diffusion. Apparently, the process

of increasing embeddedness is not driven by single regions but rather a

geographically dispersed phenomenon.
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Figure 3.7: National BC versus the number of regions with RBA > 1 for each
technology in two different time periods

3.6.4 RBA in Jena

In our final application of the RBA, we come back to our case study of the

Jena KS. To observe long-term technological changes in the KS of Jena, we

compare the RBAs in 1995 and in 2015. This can help us to understand if

some technologies emerged as driving, in the sense that they are specifically

from Jena and not elsewhere, the bridging process and/or if the ones that
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Figure 3.8: National BC versus the number of regions with RBA > 1 for each
technology in two different time periods (comparison on selected technologies)

were driving it at the beginning of the considered period are not important

in the Jena KS anymore. It also helps us to assess whether the BTs identified

in the previous section are Jena specific.

In figure 3.9, the RBAs for all technologies are presented. There are several

technologies which have a continued higher bridging capacity in Jena than

in Germany: Optics, Pharmaceuticals, Measurement, Microstructural and

Nano-Technology, Medical Technology and Materials, Metallurgy. These

classes represent the core activities of Jena with big international firms,

such as Carl Zeiss AG, Jenoptik AG and Schott AG located in the area.

In this group, only Optics shows an increase in relative bridging, while

all others show a decline, because the RBA value is increasing in 2015.

This suggest that a technology that is already established in Jena (like

Optics is) is even reinforcing its position in the KS by connecting many

other fields. The stability of this technological core is also responsible for

our observation of relative stability of the Jena KS (see section 3.6.2 and

figure 3.6). Semiconductors, Audio-Visual Technology, Machine Tools and

Computer Technology are the classes in which Jena developed an RBA. In

1995, they were bridging less in Jena than in the average of all German

regions but more in 2015. Machine tools was not even present in Jena in

1995 while in 2015 it has a Bridging Advantage. Other technologies show a
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decline in relative bridging, passing from an RBAist > 1 to an RBAist < 1.

These are: Organic Fine Chemistry, Chemical Engineering, Macromolecular

Chemistry, Polymers and Biotechnology.

Overall, the KS in Jena is relatively stable, and if we compare the technolog-

ical landscape of Jena with the other German regions, we observe that Jena

does not develop so many new RBAs over time. We also find that the Jena

KS evolves by embracing new technologies that were not important 20 years

ago. These new technologies are mostly related to Information and Commu-

nication Technologies (the presence of the class Semiconductors reveals that

Jena is also involved in the production of elements for the computer industry)

and creation of machines for the production of other goods. Other classes

lose their important bridging feature, and these industries which were once

quite crucial for Jena do not seem to be anymore. A particularly interesting

case is Biotechnology : Jena won the BioRegio contest and received funds

for projects related to BioInstruments. It seems that the core Biotechnology

was progressively abandoned in favour of other technologies related to the

“instrument” part.

3.7 Conclusion

Technologies differ in their potential to spur economic growth by affecting

developments in related fields of technology and economic activity. Such

technologies have been labelled as General Purpose technologies or Key

Enabling Technologies. In the context of the knowledge space, i.e. the

network of related technologies, they serve a bridging function by establishing

links between technology fields. We contribute to the scarce literature on

bridging technologies and knowledge spaces. Both from a theoretical and a

methodological point of view, we provide analytical tools to measure BTs

and their evolution over time. We apply these tools by studying the case

of Jena within the German context, where we could observe a process of

substitution of previously important technologies in the KS over the last 20

years with some emerging technological trends. This framework could be

applied to other regions but also used for comparative studies.
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Figure 3.9: RBA comparison in two different periods of time (1995-2015)

According to the reviewed literature, a Bridging Technology has to be

connected with many other technologies and has to be important for the

structure of the knowledge space. With these indications, we develop two

definitions, one concentrated on the number of connections within the KS

(BI) and the other one based on the structural position of a technology within

the KS (BC). Based on both definitions, we developed two different indicators

to detect BTs and apply them to an analysis of the Jena KS. We choose Jena

as a case study region since it is a strong patenting region. Due to its success

in the BioRegio contest, we know about some recent technological changes

that should affect the KS. Nevertheless, Jena has continued technological

strengths in Optics and Instruments. Both technologies were identified

as BTs according to our bridging measures. Overall, the BC calculated

on the Revealed Relatedness matrix has a stronger correlation with the

number of patents than the BI calculated on a simple co-occurrence matrix.

Since the BC measure has a stronger theoretical foundation and seemed to
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better describe the Jena KS, we used it for subsequent, cross-regional and

technology analyses.

For inter-regional comparisons, we introduce the Revealed Bridging Advan-

tage (RBA) as a new index that captures regional specific technological

strengths in bridging. This permits us to create comparisons both on a

regional and on a technological level on the whole German KS. The results

on the regional level show how some regions are more dynamic, so they are

capable to increase their number of bridging advantages while others are

more stable. In particular, we observe regions with historically high patent-

ing activity like Stuttgart, Munich and Nuremberg are less dynamic than

several smaller regions, such as Reutlingen, Karlsruhe, Soest, Wuerzburg,

Dresden and Augsburg and are able to introduce new bridging advantages

at a higher than expected rate.

Regarding the technological level, we compare the embeddedness in the

national KS and the regional diffusion. This analysis gives important in-

sights about the positioning of single technologies in the German KS to

understand if a technology is pervasive or localized or both. Our results

show that there are three notable trends in the German KS. A first group

of technologies becomes both less diffused and less embedded (Transport,

Other special machines and Chemical engineering). In a second group, there

are technologies that become more diffused but less embedded (Electrical

machinery, apparatus, energy and Control). The last group involves tech-

nologies that are both more diffused and more embedded (Semiconductors,

Computer technology, Measurement and Medical technology). Our results

indicate that the process of increasing embeddedness is not driven by single

regions but rather a geographically dispersed phenomenon.

Applying similar methodologies on a single regional KS shows that Jena has

a relatively stable KS with few new bridging technologies compared to the

other German regions. An analysis of single technologies in Jena suggests

that new technologies that became important by the end of the period are

mostly related to ICT. Others, such as Biotechnology or fields related to the

pharmaceutical industry, are losing their importance in the Jena KS.

While our findings reveal the applicability of our proposed indices, our

approach has several limitations. First, by using patents as the basis of
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the analysis, we can only identify patentable technologies. Thereby we

neglect or at least underestimate important developments in fields such as

services, software or business models. Second, since our approach relies

on patent and technology classifications, we assume a sufficient amount of

homogeneity within the respective classes and a similar homogeneity across

classes. While this is already a strong assumption, the indices might be even

more biased when technological classes are aggregated. Third, by focusing

on co-occurrences, we do not observe directions of technological impact but

rather cross-fertilization potentials. Finally, the relevance of bridging for the

performance of regional economies as well as the factors driving it, such as

its relation to inventor networks, need to be shown in subsequent research.

In addition, future research could try to identify the patents that establish

these important links between different technologies and see if they have

particular features in terms of quality measures or inventor and applicant

characteristics. With existing quality measures (Squicciarini, Dernis, and

Criscuolo, 2013), it would be possible to understand if these patents are more

valuable in terms of citations, for example, and if they spur the innovative

activity of the area. Given the ongoing discussion about the role of public

research for technology development (Graf and Henning, 2009; Graf and

Menter, 2021), it could be a fruitful avenue to explore if public research is

also a relevant actor in bridging technologies.

3.8 Betweenness based on co-occurrences

In this appendix, we present our results for Betweenness Centrality if we use

the simple Co-occurrence matrix instead of Revealed Relatedness. Overall,

the results are quite similar despite some small differences in the technology

rankings.
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Figure 3.10: Node Betweenness Centrality on Co-occurrence matrix ranking in
Jena (1990-2015)

3.9 Descriptive statistics and correlations

for all German regions

Table 3.3: Descriptive Statistics and Correlations in Germany

Statistics

Descriptive Statistics Correlations

Mean SD Minimum Maximum N Brdg Ind Bet Cent Pat

Bridging Index 0.019 0.058 0 3.207 592669 1.00 \ \
Betweenness Centrality 271.406 672.264 0 14312.000 658156 0.56 1.00 \
Patents 9.009 25.559 1 1218.000 658156 0.45 0.52 1

3.10 Schmoch Classification

The work of Schmoch (2008) on the classification of industrial activities is

based on the IPC classification. To make it suitable for the CPC classifi-

cation, it is necessary to make some assumptions. First, we created a new
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technological class denoted Miscellaneous in which all CPC 4 digit classes

not present in the IPC classification are subsumed. These are mainly the

ones of the Y class. Considering CPCs at a lower level than 4 digits, it is

possible to identify some classes that are present in some different technologi-

cal classifications. In this case, we opted to select the Schmoch technological

field that is more represented (has the highest number of patents) in that

specific CPC 4 digit class. A61K is mostly in field 16 Pharmaceuticals,

but A61K-008 is in 14 Organic fine chemistry, H04N is mainly in class 2

Audio-visual technology, but also in 3 Telecommunications and 4 Digital

communication, G01N is mainly in 10 Measurement but also with G01N-033

in 11 Analysis of biological materials, finally B01D is both in 23 Chemical

engineering and 24 Environmental technology. We decided to keep all CPC 4

digit classes in one technological field, the one that had the highest presence

of patents worldwide. So, A61K was assigned to Pharmaceuticals, H04N

to Audio-visual technology, G01N to Measurement and B01D to Chemical

engineering. Another factor to take into consideration is that the 4 digit

CPC class is also identified in IPC but the correspondence at a lower level

of classification (6 or 10 digits) tends to differ. In these cases, we assume

that CPC 4 digit is exactly the same as IPC 4 digit to simplify calculations.

Since the intention is to have some indications on the dominant technologies

and their evolution, the slight differences when passing from IPC to CPC

are not taken into account.
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Table 3.4: Schmoch Classification

Nr Schmoch Technological Field CPC Classes
0 Miscellaneous A23V, Y02P, Y02T, Y02W, F05B, Y02E, Y02B, Y02C, F05D, D10B, C01P, C12Y, Y04S, E05Y
1 Electrical machinery, apparatus, en-

ergy
F21H, F21K, F21L, F21S, F21V, F21W, F21Y, H01B, H01C, H01F, H01G, H01H, H01J, H01K,
H01M, H01R, H01T, H02B, H02G, H02H, H02J, H02K, H02M, H02N, H02P, H02S, H05B,
H05C, H05F, H99Z

2 Audio-visual technology G09F, G09G, G11B, H04N, H04R, H04S, H05K
3 Telecommunications G08C, H01P, H01Q, H04B, H04H, H04J, H04K, H04M, H04Q
4 Digital communication H04L, H04W
5 Basic communication processes H03B, H03C, H03D, H03F, H03G, H03H, H03J, H03K, H03L, H03M
6 Computer technology G06C, G06D, G06E, G06F, G06G, G06J, G06K, G06M, G06N, G06T, G10L, G11C
7 IT methods for management G06Q
8 Semiconductors H01L
9 Optics G02B, G02C, G02F, G03B, G03C, G03D, G03F, G03G, G03H, H01S
10 Measurement G01B, G01C, G01D, G01F, G01G, G01H, G01J, G01K, G01L, G01M, G01N, G01P, G01Q,

G01R, G01S, G01V, G01W, G04B, G04C, G04D, G04F, G04G, G04R, G12B, G99Z
12 Control G05B, G05D, G05F, G07B, G07C, G07D, G07F, G07G, G08B, G08G, G09B, G09C, G09D
13 Medical technology A61B, A61C, A61D, A61F, A61G, A61H, A61J, A61L, A61M, A61N, H05G, G16H
14 Organic fine chemistry A61Q, C07B, C07C, C07D, C07F, C07H, C07J, C40B
15 Biotechnology C07G, C07K, C12M, C12N, C12P, C12Q, C12R, C12S
16 Pharmaceuticals A61K, A61P
17 Macromolecular chemistry, polymers C08B, C08C, C08F, C08G, C08H, C08K, C08L
18 Food chemistry A01H, A21D, A23B, A23C, A23D, A23F, A23G, A23J, A23K, A23L, C12C, C12F, C12G,

C12H, C12J, C13B, C13D, C13F, C13J, C13K
19 Basic materials chemistry A01N, A01P, C05B, C05C, C05D, C05F, C05G, C06B, C06C, C06D, C06F, C09B, C09C, C09D,

C09F, C09G, C09H, C09J, C09K, C10B, C10C, C10F, C10G, C10H, C10J, C10K, C10L, C10M,
C10N, C11B, C11C, C11D, C99Z

20 Materials, metallurgy B22C, B22D, B22F, C01B, C01C, C01D, C01F, C01G, C03C, C04B, C21B, C21C, C21D, C22B,
C22C, C22F

21 Surface technology, coating B05C, B05D, B32B, C23C, C23D, C23F, C23G, C25B, C25C, C25D, C25F, C30B
22 Micro-structural and nano-technology B81B, B81C, B82B, B82Y
23 Chemical engineering B01B, B01D, B01F, B01J, B01L, B02C, B03B, B03C, B03D, B04B, B04C, B05B, B06B, B07B,

B07C, B08B, C14C, D06B, D06C, D06L, F25J, F26B, H05H
24 Environmental technology A62C, B09B, B09C, B65F, C02F, F01N, F23G, F23J, G01T
25 Handling B25J, B65B, B65C, B65D, B65G, B65H, B66B, B66C, B66D, B66F, B67B, B67C, B67D
26 Machine tools A62D, B21B, B21C, B21D, B21F, B21G, B21H, B21J, B21K, B21L, B23B, B23C, B23D, B23F,

B23G, B23H, B23K, B23P, B23Q, B24B, B24C, B24D, B25B, B25C, B25D, B25F, B25G, B25H,
B26B, B26D, B26F, B27B, B27C, B27D, B27F, B27G, B27H, B27J, B27K, B27L, B27M, B27N,
B30B

27 Engines, pumps, turbines F01B, F01C, F01D, F01K, F01L, F01M, F01P, F02B, F02C, F02D, F02F, F02G, F02K, F02M,
F02N, F02P, F03B, F03C, F03D, F03G, F03H, F04B, F04C, F04D, F04F, F23R, F99Z, G21B,
G21C, G21D, G21F, G21G, G21H, G21J, G21K

28 Textile and paper machines A41H, A43D, A46D, B31B, B31C, B31D, B31F, B41B, B41C, B41D, B41F, B41G, B41J,
B41K, B41L, B41M, B41N, C14B, D01B, D01C, D01D, D01F, D01G, D01H, D02G, D02H,
D02J, D03C, D03D, D03J, D04B, D04C, D04G, D04H, D05B, D05C, D06G, D06H, D06J,
D06M, D06P, D06Q, D21B, D21C, D21D, D21F, D21G, D21H, D21J, D99Z

29 Other special machines A01B, A01C, A01D, A01F, A01G, A01J, A01K, A01L, A01M, A21B, A21C, A22B, A22C,
A23N, A23P, B02B, B28B, B28C, B28D, B29B, B29C, B29D, B29K, B29L, B33Y, B99Z, C03B,
C08J, C12L, C13C, C13G, C13H, F41A, F41B, F41C, F41F, F41G, F41H, F41J, F42B, F42C,
F42D

30 Thermal processes and apparatus F22B, F22D, F22G, F23B, F23C, F23D, F23H, F23K, F23L, F23M, F23N, F23Q, F24B, F24C,
F24D, F24F, F24H, F24J, F24S, F24T, F24V, F25B, F25C, F27B, F27D, F28B, F28C, F28D,
F28F, F28G

31 Mechanical elements F15B, F15C, F15D, F16B, F16C, F16D, F16F, F16G, F16H, F16J, F16K, F16L, F16M, F16N,
F16P, F16S, F16T, F17B, F17C, F17D, G05G

32 Transport B60B, B60C, B60D, B60F, B60G, B60H, B60J, B60K, B60L, B60M, B60N, B60P, B60Q, B60R,
B60S, B60T, B60V, B60W, B61B, B61C, B61D, B61F, B61G, B61H, B61J, B61K, B61L, B62B,
B62C, B62D, B62H, B62J, B62K, B62L, B62M, B63B, B63C, B63G, B63H, B63J, B64B, B64C,
B64D, B64F, B64G

33 Furniture, games A47B, A47C, A47D, A47F, A47G, A47H, A47J, A47K, A47L, A63B, A63C, A63D, A63F,
A63G, A63H, A63J, A63K

34 Other consumer goods A24B, A24C, A24D, A24F, A41B, A41C, A41D, A41F, A41G, A42B, A42C, A43B, A43C,
A44B, A44C, A45B, A45C, A45D, A45F, A46B, A62B, A99Z, B42B, B42C, B42D, B42F,
B43K, B43L, B43M, B44B, B44C, B44D, B44F, B68B, B68C, B68F, B68G, D04D, D06F,
D06N, D07B, F25D, G10B, G10C, G10D, G10F, G10G, G10H, G10K

35 Civil engineering E01B, E01C, E01D, E01F, E01H, E02B, E02C, E02D, E02F, E03B, E03C, E03D, E03F, E04B,
E04C, E04D, E04F, E04G, E04H, E05B, E05C, E05D, E05F, E05G, E06B, E06C, E21B, E21C,
E21D, E21F, E99Z
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3.11 LMR Abbreviations

Table 3.5: Abbreviations for Labour Market Regions in Germany

Region Name Region Code
Aachen AC
Altenkirchen AK

Altoetting AÖ
Amberg AM
Ansbach AN
Aschaffenburg AB
Augsburg A
Bad Kreuznach BK
Bamberg BA
Bautzen BZ
Bayreuth BT
Berlin B
Bielefeld BI
Bochum BO
Boeblingen BB
Bonn BN
Borken BOR
Braunschweig BS
Bremen BRMN
Bremerhaven BRMR
Celle CE
Cham CHA
Chemnitz C
Coburg CO
Darmstadt DA
Deggendorf DEG
Dessau Rosslau DSR
Donau Ries DNR
Dortmund DO
Dresden DD
Duesseldorf D
Elbe Elster EE
Emden EMD
Emsland EL
Erfurt EF
Erlangen ER
Essen E
Flensburg FL
Frankfurt Oder FO
Frankfurt Am Main FAM

Region Name Region Code
Freiburg FR
Fulda FD
Giessen GSS
Goeppingen GP

Goettingen GÖ
Goslar GS
Hagen HA
Halle HAL
Hamburg HMB
Hameln HM
Hannover H
Havelland HVL
Heidelberg HD
Heidenheim HDH
Heilbronn HN
Hoexter HX
Hof HO
Ingolstadt IN
Jena J
Kaiserslautern KL
Karlsruhe KA
Kassel KS
Kempten KE
Kiel KI
Kleve KLE
Koblenz KO
Koeln K
Konstanz KN
Landau LAN
Landshut LA
Leipzig L
Limburg Weilburg LW

Loerrach LÖ
Ludwigshafen LU
Luebeck LB
Magdeburg MD
Mainz MZ
Memmingen MM
Minden MI
Muenchen M

Region Name Region Code
Muenster MS
Nuernberg N
Oberhavel OHV
Oldenburg OL
Olpe OE
Ortenaukreis OR
Osnabrueck OS
Passau PA
Pforzheim PF
Pirmasens PS
Potsdam Mittelmark PM
Ravensburg RV
Regensburg R
Reutlingen RT
Rostock ROS
Rottweil RW
Saalfeld Rudolstadt SR
Saarbruecken SB
Schwaebisch Hall SHA
Schweinfurt SW
Siegen SI
Sigmaringen SIG
Soest SO
Stade STD
Stuttgart S
Suhl SHL
Teltow Flaeming TF
Traunstein TS
Trier TR
Ulm UL
Vechta VEC
Waldeck Frankenberg WF
Waldshut WT
Weilheim Schongau WS
Weissenburg Gunzenhausen WG
Wolfsburg WOB

Wuerzburg WÜ
Wuppertal W
Zollernalbkreis Z
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Chapter 4

Policy Influence in the

Knowledge Space: a Regional

Application

4.1 Introduction

Cluster policies are a popular instrument of regional innovation policy, often

implemented to deal with so-called systemic failures by establishing and

fostering interaction between innovative agents. Despite their systemic

nature, most evaluation studies focus on policy effects on individual firms,

thereby treating them similar to other types of R&D subsidies. These

studies typically identify positive effects on R&D inputs while results on

innovation-related outputs are more mixed (Mar and Massard, 2021).

Since clusters are composed of a variety of actors and organizational types,

including not only firms but also universities, research centers and research

services, a focus solely on the effects on firms poses unjustifiable limitations to

their analysis. In addition, policy effects on the composition and structure of

relations within a cluster are often overlooked and pose a substantial challenge

for cluster policy evaluation (Uyarra and Ramlogan, 2012). Because of the

variety of policy targets and complex interactions of different instruments

within cluster policies, several scholars call for wider and more systemic

evaluations (Mar and Massard, 2021; Rothgang et al., 2021). A few recent

79
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studies tackle these shortcomings of the field and apply social network

analysis (SNA) to understand how policy affects the overall structure of

relationships between different actors (Giuliani et al., 2016; Töpfer et al.,

2019; Graf and Broekel, 2020; N’Ghauran and Autant-Bernard, 2020).

While cohesive networks have been identified as drivers of innovation-based

economic development of regions (e.g. Breschi and Lenzi, 2016), these studies

provide only limited evidence for positive effects of cluster policies on network

cohesion.

Another important structural feature of regions which has been associated

with economic development is the knowledge space (Kogler et al., 2013).

The knowledge space is a network of interrelated technologies that can

help us understand the structures and characteristics of regional knowledge

capacities, i.e., it is a representation of the regional knowledge base. Its

structure is considered important for the regional creation and accumulation

of knowledge and has been used for comparing the technological structure and

evolution of regional innovation systems (RIS) (Kogler et al., 2013; Boschma

et al., 2014; Balland, Rigby, and Boschma, 2015). The knowledge space

and the related product space shape the direction of change in innovative

activities. These spaces set constraints by indicating if required competencies

for the development of specific technologies are present in a region, and they

create technological opportunities by revealing potential for new knowledge

recombinations (Malmberg and Maskell, 1997; Sonn and Storper, 2008). As

such, they are considered important determinants of economic development

and growth (Hidalgo et al., 2007; Hausmann and Klinger, 2007). Given

that many innovation-oriented cluster policies have a technological focus, we

expect that such policies are able to shape and redirect the knowledge space

of regions to open new technological pathways. However, to our knowledge,

this concept has not been used to understand the effects of a cluster policy.

Within the variety of cluster policies, we relate to the innovation-oriented

cluster policy which focuses its support on collaborative R&D activities

within selected regions. The main goal of such policies is to increase innova-

tiveness and competitiveness of the supported clusters, the regions where

they are located or even of the national economy. The main instrument to

achieve this goal is to stimulate collaborative, innovation-related activities

in more or less precisely defined industries or technology fields. As such, the
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effects of such policies should show in the structure of the knowledge space.

Supported fields of activity should increase their visibility and importance

within the knowledge space by either creating or intensifying links within the

field itself (along existing trajectories) or by creating links with previously

unrelated fields (cross-fertilization). A greater impact on the whole economy

or innovation system is to be expected when technological relations with

other fields are established and enforced, indicating a broad diffusion of the

technology and its applications.

In order to analyze how cluster policies shape the knowledge space, we focus

on the German BioRegio contest. This program was implemented when

Germany was lagging behind the United Kingdom and the United States

in the development and commercialization of biotechnology (Cooke, 2001).

The German federal government and local authorities started to develop

initiatives to try to close this gap; one of them was the BioRegio contest

(Dohse, 2000). There were 17 regions that applied for this program, and four

of them won the contest. The program, whose main aim was identifying and

strengthening clusters that were already performing well in biotechnology,

started in 1997, and funding ended in 2005 (Dohse, 2000).

Other goals of the BioRegio contest were to increase collaboration among

existing actors, to support entrepreneurial activities in the field of biotech-

nology and to combine biotech with other, previously unrelated technologies

(Dohse, 2000; Dohse and Staehler, 2008). The latter goal is an important

aspect for our analysis, since new combinations between different techno-

logical fields enable cross-fertilization effects and change the shape of the

knowledge space. We look at these changes in order to evaluate the impact

of the BioRegio contest on the regional knowledge space.

We track the evolution of biotech in all 17 regions during and after the policy

and expect these technologies to become more central and more connected

to other fields. Our results show that the BioRegio contest contributed to

an increase in the importance of biotechnology in the four winning regions

in terms of connectedness with other fields and importance in the knowledge

space. The effect is visible after the policy ceased its funding period. Also,

we find that in the post-treatment period, biotechnology in winning regions

experienced higher growth than biotechnology in the non-winning regions.
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We proceed as follows. In Section 4.2, we review the literature on clusters,

cluster policies and knowledge spaces. We introduce the BioRegio contest in

Section 4.3 and provide a descriptive analysis of changes in regional knowledge

space in Section 4.4. Section 4.5 presents the econometric approach along

with a description of the variables, in particular, betweenness centrality as

our measure of knowledge space embeddedness of a technology. Section

4.6 presents the main results of the difference-in-differences approach and

Section 4.7 concludes.

4.2 Literature Review

4.2.1 Clusters and knowledge diffusion

To understand why policy makers are so interested in clusters and why they

decide to intervene and support them, we should first define the benefits

associated with agglomeration externalities and the clustering concept. Mar-

shall (1890) proposed three different types of agglomeration externalities

that arise in environments with specialized industries in the same location:

the accessibility to a market with high skilled workers, the availability of aux-

iliary and supporting activities (technological and knowledge spillovers) and

the presence of companies specialized in different phases of the production

chain (Martin and Sunley, 2003; Martin and Sunley, 1996).

A revived interest in clusters followed Porter (1990), who proposed a neo-

Marshallian cluster concept in his work on international competitiveness.

He argues that although the phenomenon of globalization should reduce the

importance of local agglomerations, this is not the case. On the contrary,

the competitive advantages of international markets are realized locally

(Porter, 1998). This is where the proper milieu is formed, characterized by a

concentration of elements necessary for creating a competitive advantage

(highly specialized knowledge, institutions, competition, cooperation and

customers with specific needs). Despite the popularity of Porter’s view,

there is no consensus on the definition of a cluster (Martin and Sunley,

2003; Duranton, 2011). As noted by Martin and Sunley (2003), the past

decades saw economic geographers develop many similar concepts, such
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as “industrial districts” (Markusen, 1996), “network regions” and “learning

regions,” which results in ambiguity around the concept of clusters.

There is a broad discussion in the literature about the advantages of being

located within a cluster. Several studies point out how firms benefit from the

unique mix of collaboration and competition, as well as from complementary

goods or technologies present in the region (Porter, 1998; 2000; Belleflamme,

Picard, and Thisse, 2000). In their study on innovative activities in the

UK, Baptista and Swann (1998), show that firms located in clusters (high

regional employment in own sector) are more innovative. Beaudry and

Breschi (2003) show that firms have tangible benefits only if other companies

in the same location are innovative themselves. Audretsch and Feldman

(1996), studying selected industries and states in the US, find that innovative

activities tend to cluster, especially in the early stages of the industry life

cycle. They provide evidence of a dispersion of innovative activities during

later stages and argue that this is because of a lock-in situation where new

space is necessary to develop new ideas. Delgado, Porter, and Stern (2014)

show how industries thrive in strong clusters experiencing high employment

and increasing in patenting activities. Furthermore, they highlight how the

initial endowment (in terms of occupation and patenting activity) positively

influences industry development within a region.

Research on clusters then moved beyond the Marshallian conceptualization

of knowledge spillovers. One of the strongest criticisms of this view is that it

is not sufficient to be located in the same geographical space to benefit from

knowledge externalities for innovation. Firms inside a cluster do not equally

benefit from knowledge embedded in the region; knowledge is not simply “in

the air” (Giuliani and Bell, 2005). To acquire external knowledge, firms need

specific characteristics (e.g., the right cognitive distance) as well as the right

connections (Boschma, 2005). Therefore, researchers shifted their attention

to studying the relationships among the actors within clusters to understand

their innovative capacities and performance (Boschma and ter Wal, 2007).

Research on clusters and regional innovation has thus been complemented

by aspects of the structure and evolution of innovation networks (Koo, 2005;

Cantner and Graf, 2006; Giuliani and Bell, 2005; 2008). These ideas also

entered the policy realm by an increased support of collaborative activities in

innovation policy (Broekel and Graf, 2012; Cantner and Vannuccini, 2018).
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4.2.2 Cluster policies

Policy makers support clusters on national, regional and local levels (Kiese,

2019; Sternberg, Kiese, and Stockinger, 2010). Frequently building on

Porter’s cluster concept, these policies have an increase in competitiveness of

the region or nation as their ultimate goal. An intermediate goal to achieve

competitiveness is an increase in innovation by means of supporting R&D,

collaboration and network formation to facilitate knowledge spillovers. Such

innovation-oriented cluster or network policies are justified from different

perspectives (see, e.g., Cantner and Vannuccini, 2018; Graf and Broekel,

2020, for more detailed discussions). First, networks are known to drive the

economic and innovation performance of organizations and regions (Breschi

and Lenzi, 2016; Broekel, 2012; Fornahl et al., 2011). Second, funding of

collaborative R&D to support network formation is quite simple to implement

in existing funding schemes (Broekel and Graf, 2012) and has been shown to

lead to behavioral additionality (Wanzenböck, Scherngell, and Fischer, 2013;

Lucena-Piquero and Vicente, 2019). Third, system or network failures reduce

interorganizational knowledge access and exchange because of intermediation,

complementarity and reciprocity problems (Cantner, Meder, and Wolf, 2011;

Cantner and Vannuccini, 2018; Lucena-Piquero and Vicente, 2019).

Cluster policies are rooted in a variety of policy fields, such as science and

technology policy, industrial policy and regional policy (Sternberg et al.,

2010). Therefore, they come in various forms and can show a wide set of

design features (Hospers and Beugelsdijk, 2002, p. 382). Cluster policies focus

on actors when their goal is to provide support to specific groups of actors,

such as SMEs, start-ups or science industry relations. If the aim is to support

specific industries (industrial policy) or technologies with high potentials

and expected impact (GPTs, climate change mitigation), theme-related

characteristics are of relatively greater importance. As with innovation policy,

we can distinguish between technology-specific and unspecific measures in

cluster policy. Take, for example, two prominent cluster policies in Germany.

The BioRegio contest was focused on promoting biotechnology (and was

therefore technology-specific), whereas the subsequent Leading-Edge Cluster

Competition was open to all types of technologies and industries (Rothgang et

al., 2017; EFI, 2017). In both cases, clusters were selected by an independent
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jury who took into account the capabilities and experience of actors, their past

and future interactions and the type of knowledge or technology to be created.

Moreover, the program directors and the jury valued or even expected

interdisciplinary approaches and visions regarding the cross-fertilization

between related fields to open new technological pathways. For example,

Bioinstruments Jena was selected for its innovative coupling of organic

chemistry and microbiology with optics and instruments. Therefore, a

combination of actors with diverse capabilities and technological backgrounds

with a “optimal” level of cognitive proximity could be considered an asset.

The popularity of cluster policies attracts much research on their effects

and consequences. According to Mar and Massard (2021), there is ample

evidence for positive effects on R&D inputs while results on innovation-

related outputs are mixed or inconclusive. Typically, such evaluation studies

focus on the economic and innovative effects on single firms (Nishimura and

Okamuro, 2011; Broekel, Fornahl, and Morrison, 2015; Mar and Massard,

2021) or on regional aggregates (Engel, Mitze, Patuelli, and Reinkowski,

2013). However, a cluster consists not only of firms but of a variety of actors

with different characteristics, as well as the relations between them. In fact,

the performance of a cluster is based on how the different actors interact

and not on how the single elements perform (Andersson and Karlsson, 2006).

Recently, a number of studies tried to fill this gap by applying social network

methods within cluster policy evaluation (Giuliani et al., 2016; Töpfer et

al., 2019; Graf and Broekel, 2020; N’Ghauran and Autant-Bernard, 2020).

Some of these studies indicate that there are short-term intended effects

of cluster policies on cohesion in actor networks, but they also point out

limited long-term effects and partly unintended structural effects, such as

an increase in network centralization (Töpfer et al., 2019; Graf and Broekel,

2020). In contrast to the actor level, we know very little about the cluster

policy effects on the direction of technological development. Given that

technological innovations are one of the core goals of cluster policy and

that politicians strive to become more proactive in terms of the direction of

innovation (Cantner and Vannuccini, 2018; Kattel and Mazzucato, 2018),

we should also be more interested in effects on the technology dimension.
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4.2.3 Adding the knowledge space to cluster policy

evaluation

One of the possible methods to measure knowledge generation over space and

time (to map the knowledge space) is to use the concept of relatedness. This

method allows calculation of “proximities” between different technologies to

give a sense of how knowledge in a particular area (that could be a nation, a

region or a city) is connected (Kogler et al., 2013). The concept of relatedness

is not new; in fact, it was already present in the innovation literature in the

1980s and 1990s, where it was used to demonstrate the relevance of knowledge

spillovers (Rosenberg and Frischtak, 1983; Carlsson and Stankiewicz, 1991).

In particular, Pavitt (1984) and Jaffe (1989) argue that innovation is favored

by connections between different fields of knowledge. Teece et al. (1994) show

how the knowledge base of a firm is linked to the portfolio of technologies

it owns. Breschi et al. (2003) use patent data to understand how firms

diversification into related technologies affects their performance.

Hidalgo et al. (2007) and Hausmann and Klinger (2007) were pioneers in

studying the concept of relatedness using international trade data to under-

stand the “proximity” between exported products among different countries.

Their methods allow them to predict countries’ future export specialization

into related products based on its existing capabilities. Subsequent studies

followed this approach and adapted it to the regional level (Boschma et al.,

2012; Neffke et al., 2011; Quatraro, 2010; Kogler et al., 2013; Boschma et al.,

2014; Balland et al., 2019). Kogler et al. (2013) analyzed the knowledge

space of the US and identified systematic differences between cities in terms

of knowledge space structure and evolution. For example, relatedness in

small cities is higher than in large cities, and higher levels of relatedness

indicate higher growth in knowledge production. Boschma et al. (2014)

look into the drivers of technological evolution in US cities and find that

entry of a new technology in a city is more likely if it is related to existing

technologies, while the exit probability declines with increasing relatedness.

However, cities with a diverse knowledge space that is proximate to tech-

nologies outside their fields of comparative advantage seems to have benefits

in terms of higher resilience in phases of technological downturn or crisis

(Balland et al., 2015). From these studies, it follows that an expansion of
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the knowledge space is easier to accomplish if it includes technological fields

that are related to the region’s existing competencies, thus strengthening its

performance.

Despite this evidence on the relevance of the knowledge space for regional

development, we know little about policy effects on the knowledge space.

In particular, cluster policies, with their focus on actors with specific tech-

nological competencies, should affect the structure of the knowledge space.

We expect that supported fields of activity increase their visibility and be-

come more important within the knowledge space by either creating and/or

intensifying links within the field itself (along existing trajectories) or by

creating links with previously unrelated fields (cross-fertilization). In the

case of BioRegio, one of the aims was to create bridges between biotech

and other technologies (Dohse, 2000; Staehler, Dohse, and Cooke, 2007).

Thereby, regions should increase their capabilities to create new applications

and a wider diffusion of the technology. Against this background, we assess

whether the policy met these expectations, and more importantly, we provide

a framework that might be used for other cluster policies.

4.3 The BioRegio Contest

To analyze if cluster policies have the ability to reshape the knowledge

space and change its technological trajectory, we focus on the German

BioRegio contest. In the 1990s, Germany was said to be lagging behind

other leading countries (such as the US or the UK) in the development of a

biotechnology industry (Cooke, 2001). There were some institutional barriers

that prevented the formation of a biotechnology industry in Germany. In

particular, there was a low number of companies that were performing

biotechnology research, a weakly developed venture capital market and

governmental barriers connected to the regional support of biotechnology

(Krauss and Stahlecker, 2001). Therefore, the German federal government

started to develop initiatives to try to reduce the gap, with the BioRegio

contest being one of them (Dohse, 2000; Kaiser and Prange, 2004; Dohse

and Staehler, 2008). The main aims of this and subsequent policies was to

stimulate the development of life science clusters, increase the number of
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biotech start-ups, enhance the performance of existing biotech firms, support

the supply of venture capital and improve the acceptance of biotechnology in

the population (Eickelpasch and Fritsch, 2005; Champenois, 2012). Another

focal objective was to combine biotechnology with other technologies in

novel ways (Dohse, 2000; Dohse and Staehler, 2008). In fact, this last

aspect is an important motivation for our analysis, since the creation of new

combinations between different technological fields is a driver of knowledge

space evolution.

BioRegio was a competitive program, encouraging proposals from different

local authorities that could meet these objectives. Submissions should

highlight the core characteristics of the respective region and how the network

structure could support the achievement of the set objectives (Müller, 2002;

Dohse, 2000; Dohse and Staehler, 2008). The evaluation of the projects

was performed by an international jury of scientists, representatives of labor

unions and industry. The selection criteria for project assessment were the

following (Dohse, 2000; Staehler et al., 2007):

• number and size of firms oriented to biotechnology already present in

the region;

• number, characteristics and productivity of research facilities and

universities in the region;

• ways in which different biotech research branches interact in the region

(networking characteristics);

• supporting services (patent offices, information networks and consul-

tancy);

• explanation of the possible strategies to convert biotechnology know-

how present in the region into new products, processes and services;

• offer of help on a regional level to support biotechnology start-up

activities;

• provision of financial resources through banks and public equity to

economically support biotechnology firms;
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• cooperation among clinical hospitals and biotech research institutes

regionally;

• approval of new experiments and new facilities by the regional author-

ities through a smooth process.

The regional boundaries were not predefined by the application call (there

was no exact indication about the composition of the consortium). Instead,

local authorities could decide autonomously which regions to include in their

applications (Champenois, 2012). Nevertheless, geographic proximity played

a substantial role, and the core actors were all located in close vicinity (Engel

et al., 2013). The regions that participated are very different in terms of

population. For example, the most populated region (Berlin-Brandeburg)

has a population of 6 million inhabitants, while the smallest one (Jena)

has only slightly more than one hundred thousand. Some applicants are

single cities, while others are larger areas which include several cities (Dohse,

2000).

Overall, 17 regions submitted proposals and three of them won the contest:

Munich, Rhineland (Cologne, Aachen, Düsseldorf and Wuppertal) and the

Rhine-Neckar triangle (Heidelberg, Mannheim and Ludwigshafen). A special

vote was given to Jena because of its specialization in Bioinstruments and

as the best proposal from an East German region (Dohse, 2000; Graf and

Broekel, 2020). Funding was provided from 1997 to 2005 (Staehler et al.,

2007). The three winning regions received support from the BMBF with 25

million EUR each and Jena was supported with 15 million EUR in public

funds (Engel et al., 2013). Due to its success, this innovative approach

towards clusters inspired other BMBF policy initiatives, such as: InnoRegio,

BioProfile, Leading Edge Cluster Competition and InnoProfile (Dohse and

Staehler, 2008; Eickelpasch and Fritsch, 2005; EFI, 2017).

Several studies evaluate the BioRegio contest and identify, in general, posi-

tive developments according to various indicators, such as short-term R&D

activity, venture capital funding, firm births, employment growth and repu-

tation effects (Staehler et al., 2007; Dohse and Staehler, 2008; Engel et al.,

2013; Graf and Broekel, 2020). In contrast, Engel and Heneric (2008) find

that BioRegio participant regions which were not successful in the contest
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outperform winning regions in terms of changes in the number of newly

founded biotech firms during the funding phase. The few studies that test for

long-term effects of BioRegio on innovation activity or innovation networks

find mixed or inconclusive evidence (Engel et al., 2013; Graf and Broekel,

2020). One of the reasons for the difficulty of identifying long-term effects is

that subsequent biotech-related programs, such as BioProfile on the national

level, or funding by the EU and regional governments, had effects on a

broader set of regions, which might be included in the control groups of the

respective studies. Given that we do not have access to funding data for

all levels of government, the present study suffers from the same limitation.

However, if untreated regions benefit from such unobserved policies, that

should lead to an underestimation of the observed policy effects.

4.4 Biotechnology in Regional Knowledge

Spaces

4.4.1 Patents and regions

We use PATSTAT (Autumn 2017) as our primary source to detect innovative

activities. The International Patent Classification (IPC) on the 4 digit level

(IPC4) is used to distinguish between the different technologies. We adopt

the OECD standard classification of biotechnology (Van Beuzekom and

Arundel, 2009) to identify IPC4 classes as biotechnology1.

Since patents are associated with different technological domains, they have

proven to be a valuable source of information in capability-based research

(Breschi et al., 2003; Kogler et al., 2013; Boschma et al., 2014; Balland et al.,

2019; Whittle and Kogler, 2019). Their documentation is highly standardized

so that they allow for dynamic analyses over long periods on various levels of

aggregation. However, patents also have several well-known limitations (see

Griliches, 1990, for an overview). Patent analyses are limited to inventions

that can be patented so that they miss many non-patentable inventions, in

particular in industries with a lower propensity to patent, such as software

1At the IPC 4 digit level, these are A01H, A61K, C02F, C07G, C07K, C12M, C12N,
C12P, C12Q, C12S and G01N.
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or services. Besides, our analysis relies on the patent classification system,

and we assume that patents in the same IPC class are similar to each other

but different from those in other classes. Since this classification is done by

the patent offices for other reasons than this type of analysis, this might not

hold true.

For the geographical boundaries of knowledge spaces, we assign each patent

to a region if at least one inventor resides in that area (Cantner and Graf,

2006; Toth, Elekes, Whittle, Lee, and Kogler, 2022). The inventor-based

approach is used because large companies or research institutes with many

locations tend to file patents at their headquarters, which is not necessarily

where the invention originates (Graf, 2017).

We consider Labor Market Regions (LMRs) for the regional boundaries.

LMRs are aggregates of NUTS3 regions which are designed to account for

commuting patterns. By choosing LMRs rather than NUTS3 regions, we

better capture patents by inventors who reside in suburbs or rural areas

and commute to their workplace in larger cities. There are 141 LMRs in

Germany which comprise of cities with their surrounding areas. Our unit of

observation are those LMRs where at least one city that won the BioRegio

contest is located.

Figure 4.1 shows a map of Germany with the 17 regions that participated

in the BioRegio contest. We distinguish between the four “winner” regions

that were successful and received grants and 13 “non-winners” that did not

proceed to the funding stage (Dohse, 2000). Since some applications were

from networks of cities, LMRs do not always correspond to the areas affected

by BioRegio. In those cases, we aggregated smaller LMRs into larger areas.

4.4.2 Mapping the knowledge space

To map the knowledge space, we consider patent applications from 1986

to 2014 in the winning and non-winning regions. This permits us to have

enough time before and after the policy was running to assess its impact.

To account for fluctuations of patent applications, we follow Boschma et al.

(2014) and use five-year moving windows. For example, 1990 refers to the

five-year period 1986 until 1990 and includes all patent applications filed
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Not Participating

Participant

Winner

Figure 4.1: BioRegio Participants and Winners

during those years. This choice is motivated by the turbulence observed

when using shorter periods, e.g., one year, especially in smaller regions. The

nodes of the network are the IPC4 classes, while the edges based on the

co-occurrence of IPC4 classes on patent applications, weighted according to

their relatedness.

For measuring relatedness (the “proximities” among the different technologies

present in the same space at the same time), we follow Basilico and Graf

(2020) who use a two-step approach. In the first step, we calculate a

co-occurrence matrix and assume that the more patents are assigned to

two classes, the higher is their relatedness. To take into account that co-

occurrences between highly frequented patent classes are more likely, we

standardize co-occurrences and calculate relatedness between all pairs of

IPC classes by using the Otsuka-Ochiai coefficient Cij (Ochiai, 1957):

Cij =
cij√
ci · cj

(4.1)

Where cij is the simple number of co-occurrences between two technologies

(i and j), the square root of ci and cj represents the geometric mean of the
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size of the two technologies (occurrence of i multiplied by the occurrence of

j). The index can vary between 0 (no overlap) and 1 (i and j always appear

together).

In the second step, we compare these relatedness measures for each region

(Cr
ij during one period) with the world (Cw

ij world for the same period). The

world relatedness helps us to understand the degree to which the regional

relatedness follows global trends. Thereby, we implicitly assume that if two

IPC classes are combined frequently in the world, the likelihood that they

are associated within any region increases.

The differences between the region (Cr
ij) and the world (Cw

ij) are used to

map the knowledge spaces, i.e., they are the edges in the regional knowledge

spaces for each period. In the case of a positive difference (Cr
ij − Cw

ij > 0),

the region combines the classes i and j more frequently than expected from

observing the world relatedness.

4.4.3 Relational embeddedness of biotechnology

To illustrate the evolution of the knowledge space in a BioRegio winner region,

figure 4.2 shows the main components of Jena before, during and after the

funding period. The black nodes are IPC4 classes identified as biotechnologies

by the OECD. In general, the knowledge space of Jena increased in size

over time, incorporating new technological sources. Biotechnology classes

became central and well-embedded during the funding period. Afterwards,

they maintained some connections with other classes of the knowledge space.

In the following, we provide descriptive statistics on the development of

the number of connections in the regions that won the BioRegio contest.

The most simple and straightforward way to measure embeddedness of

biotech classes in the knowledge space is to take a purely relational view by

calculating degree centrality2. Degree centrality of technology i is calculated

by taking the sum of its relations with other technologies in the knowledge

space of a specific region r in one period j (Freeman, 1978; Graf, 2017).

We expect the biotech classes to interact more intensely and with other

technologies in the knowledge space during and after the funding period.

2Structural embeddedness, as measured by betweenness centrality, is addressed in
section 4.5.
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(a) 1993 (b) 2004

(c) 2010

Figure 4.2: Main components of the Jena knowledge space before, during and
after the BioRegio program. Node size is proportional to degree centrality with
biotechnology IPC4 classes in black.

To give a first impression, figure 4.3 shows the aggregate degree centrality

for biotech classes in the four winning regions over time. To aggregate, we

take the sum of the degree centralities calculated for each IPC4 class in

biotech. The number of interactions with other classes increases during

the funding period (1997-2005) and reaches its peak by the end of it in all

winning regions. After funding ceases, there is a sharp decline of interactions,

reaching levels below the end of the pre-funding period. While this supports

our expectation of biotechnological classes becoming more embedded in the

knowledge space of winning regions during the funding period, it contradicts

our expectations for the post-funding phase.
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Figure 4.3: Aggregated degree centrality for biotech IPC4 classes in winning
regions

For a more fine-grained analysis, we take a closer look at the newly formed

linkages in the knowledge space. In order to aggregate not only the IPC4

classes belonging to the field of biotechnology but also all other fields, we

use the classification by Schmoch (2008). In this classification, the IPC

classes are grouped into 35 more broadly defined technology fields. In

this way, we can count the number of IPC4 links established (or dissolved)

between biotechnology and other fields. Figure 4.4 shows the number of new

connections between biotech and the respective fields for each region during

and post-funding (the technologies are ordered according to decreasing

new connections during the funding period). New combinations are co-

occurences between IPC4 classes that have not been combined previously

in the respective region. The combinations with biotechnology classes in

the pre-funding period are taken as reference to calculate the new edges

created during the funding period. Regarding the post-funding period, both

previous periods are taken together as a reference.

In line with our previous observation (figure 4.3), in all winning regions, most

new combinations are established during the funding period. The variety of

the technological classes combined with biotechnology in the four winning

regions is wide. In Jena during the funding period, biotechnology establishes

new connections mostly with Organic fine chemistry (14), Medical technology

(13) and Chemical engineering (23). To observe Medical technology to be

increasingly related with biotechnology is consistent with the focus of the

projects in Jena on “Bioinstruments”. After funding, the classes with
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Figure 4.4: Number and type of new combinations with biotechnological classes
created during and after BioRegio

most new combinations with biotechnology in Jena are Medical technology

(13), Chemical engineering (23), Basic Materials, chemistry (19) and Audio-

visual technology (2).

In Munich, during the funding period, biotechnology is mostly combined

with Basic Materials, chemistry (19), Food chemistry (18) and Other special

machines (29). While in the post-funding period the classes mostly combined

with biotechnology are Basic Materials, chemistry (19), Food chemistry (18)

and Thermal processes and apparatus (30).

The region Rhein Neckar during the funding period creates the highest

number of edges with biotechnology in Basic Materials, chemistry (19),

Food chemistry (18) and Chemical engineering (23). Whereas in the post-

funding period, biotechnology is combined mostly with Textile and paper

machines (28), Machine tools (26) and Basic Materials, chemistry (19).

Rhineland combines biotechnology in the period during the funding mostly

with Other special machines (29), Basic Materials, chemistry (19) and Tex-

tile and paper machines (28). In the post-funding period the classes are

Basic Materials, chemistry (19), Textile and paper machines (28), Electri-

cal machinery, apparatus, energy (1), Engines, pumps, turbines (27) and

Materials, metallurgy (20).
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Figure 4.5: Number and type of combinations with biotechnological classes
dissolved during and after BioRegio

Figure 4.5 shows the technological classes that lost connections with biotech-

nology in the winning regions. Since there are 11 IPC4 classes in biotechnol-

ogy according to the OECD classification, it might happen that some biotech

classes show new combinations while others are less connected compared to

the previous period. In general, as already confirmed by figures 4.3 and 4.4,

the number of interactions decreases in the post-funding period. Therefore,

we observe an increase in combinations that do not exist anymore in the

knowledge space of all winning regions. Another interesting result is that the

technological classes that scored high in figure 4.4 during funding also score

high in the period after funding, meaning that most of the new combinations

created during BioRegio were not maintained after funding. This suggests

that the effect on the structure of the regional knowledge space is limited to

a short time span (at least in terms of the number of interactions with other

technologies).

Figure 4.6 shows the number of classes in each technological field which were

connected with a biotech class during the funding period but not anymore

afterwards. It is interesting to observe that the classes with the highest

numbers here are also the ones that established the highest number of

connections in the considered regions (figure 4.4). As such, most of the edges

established during the funding period disappeared afterwards. Apparently,
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Figure 4.6: Number and type of combinations with biotechnological classes that
are abandoned after the time when BioRegio was running

these connections were not maintained over time and in terms of creating

new interactions in the knowledge space so that BioRegio had only a short

term effect.

For example, in Jena the classes Organic Fine Chemistry (14), Chemical

Engineering (23) and Macromolecular chemistry, polymers (17) were among

the classes with the highest number of new interactions with biotech classes

during the funding period but lost many of these in the post funding period.

Similar patterns can be observed in the other regions as well. For Munich

it involves the classes Basic materials chemistry (19), Electrical machinery,

apparatus, energy (1), Medical Technology (13), Food chemistry (18) and

Other special machines (29). For Rhein Neckar it involves the classes 18,

19, Materials, metallurgy (20), 23, Textile and paper machines (28) and 29.

Finally, for Rhineland it involves classes 18, 19, 23, 28 and 29. However,

there are also exceptions, such as Medical technology (13) in Jena, which

lost almost none of its new combinations. Since this is a fundamental class

to be combined with biotech classes in Jena’s proposal on “Bioinstruments”,

this suggests that the program had lasting effects in selected areas of the

knowledge space.
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4.5 Econometric Approach

4.5.1 Structural embeddedness: betweenness

centrality

Complementing the descriptive analysis of the previous section, we assess the

impact of BioRegio on the embeddedness of biotechnology in the knowledge

spaces of regions with an econometric approach. We measure embeddedness

with the betweenness centrality (BC) of each IPC4 class in the regional

knowledge space. In contrast to degree centrality, which only considers the

direct linkages, this network based statistic captures the bridging function

of a technology by considering node positions in relation to all other nodes

(Basilico and Graf, 2020). Because of its ability to capture the structural

embeddedness, we use it as the dependent variable in the subsequently

discussed difference in differences (DiD) approach.

Betweenness centrality measures the number of times that a node is in the

shortest path between two other nodes in the knowledge space. Thereby,

it captures the importance of a node for the overall connectedness of the

network. A node with a high intensity relation to only one other node

could score high on degree centrality even though it is unconnected to the

rest of the network (Basilico and Graf, 2020). Betweenness centrality takes

all indirect relations into account and if a node with high betweenness

disappears, the knowledge space would be less connected. We therefore

consider it more meaningful in the context of this analysis. Betweenness

centrality of node i is defined by:

BC
i =

∑
j<k

gjik
gjk

,∀i ̸= j, k (4.2)

With i, j, k as distinct nodes, gjk is the number of geodesics between j and

k and gjik is the number of geodesics between j and k passing through i

(Wassermann and Faust, 1994)3. We use a weighted version of betweenness so

that edges with high relatedness are shorter than edges with low relatedness

3We calculate the node betweenness centrality with the igraph package for R (R Core
Team, 2018; Csardi and Nepusz, 2006).
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(Basilico and Graf, 2020). Since we are interested in nodes that are important

for the regional knowledge space, we only included the ones that have at

least a score of 1, meaning that they are at least once on the shortest path

between two other nodes.

For the econometric analysis, we take the logarithm of betweenness centrality

since the raw measure is highly skewed to the right (meaning there are many

nodes with low betweenness and few with high so that the mean is shifted

to the right of the distribution).

4.5.2 Estimation strategy

The difference-in-differences (DiD) approach is widely used in the literature

to assess the impact of the introduction of a policy on some performance

indicators. Our approach is based on two different regression models. In

the first one, we assume that biotech was treated by the policy while other

technologies have not, i.e., we assess if biotechnology became more embedded

in the knowledge space of the winning regions relative to other fields. In

this case, we compare betweenness among the biotech IPC4 classes with

all non-biotech IPC4 classes. This analysis is performed only among the

winning regions. The linear model is the following (the time index is dropped

for readability):

logBC
i,r∈W = β0+β1Time+β2Bioi,r+β3(Time×Bioi,r)+γi+δr+µ (4.3)

where logBC
i,r∈W is the natural logarithm of betweenness centrality calculated

for each IPC4 class (i) in all winning regions (r ∈ W ), Time is a dummy

variable that takes value zero in the pre-treatment period (1990-1996) and

value 1 in the post-treatment period (two different regressions for the time

during and after BioRegio), Bio takes the value zero if the IPC4 class is not

identified as biotechnology while it takes value one if it is, γ and δ are the

control variables on the technology and regional level and µ represents the

residuals.

In the second model, we assume that the policy treatment took place on

the level of the region. Therefore, we compare betweenness of biotechnology
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classes within winning regions with betweenness in non-winning regions.

With this regression, it is possible to understand if any trend of increased

embeddedness of biotechnology identified by the model 1 is also present in

other regions. If this should be the case, BioRegio would not have affected

the transformation of the knowledge space of the winning regions, but there

is rather a more general trend of higher bridging of biotechnology. The

second model is the following:

logBC
i∈B,r = β0+β1Time+β2Winningi,r+β3(Time×Winningi,r)+γi+δr+µ

(4.4)

where logBC
i∈B,r is the natural logarithm of betweeennes centrality calculated

only on the IPC4 classes identified as biotechnology (i ∈ B) in all regions

(r), Time is a dummy variable that distinguishes between the pre-treatment

period (before BioRegio) and the post-treatment period (for the time during

and after BioRegio was running), Winning is a dummy variable which is

zero IPC4 classes in the non-winning regions and one for those that won the

competition, γ and δ are controls and µ are the residuals.

In both models, a treatment effect is observed by the coefficient of the

interaction term. By differentiating between policy effects during and after

funding, we capture four different effects: biotech compared to non-biotech

within winning regions and biotech in winning as compared to non-winning

regions, each in the short and in the long run. As noted above, our dependent

variable is calculated on a knowledge space based on patent applications

during a five-year period. By using moving windows for smoothing, our

approach might not be best suited to identify immediate policy effects.

However, given the nature of the knowledge space and the policy, we think

that this a more conservative and therefore appropriate approach.

Using patent data as described in section 4.4.1, we generate several variables

for the whole period (1990-2014) at the level of the single IPC4 class in each

region. Table 4.1 contains all variables used for the regressions along with

short descriptions. Tables 4.2 and 4.3 present descriptive statistics of the

subsets of these variables used in the respective regressions. Correlations

are presented in tables 4.8 and 4.9 in appendix 4.8.
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4.5.3 Control variables

We control for several variables that might affect the position of a technology

within the knowledge space. The first one is the log of the number of patents

in an IPC4 class in one region in a specific period (Log patents). This

variable is used to control for potentially disturbing effects of IPC4 classes

with high patenting activity on the betweenness measure. Since there is a

positive correlation between betweenness and the number of patents (0.59

in table 4.8 and 0.47 in table 4.9), the possibility that a node with more

patents is central in the knowledge space is higher, but we are interested in

the structural embeddedness induced by the policy beyond the size effect.

Avg Team Size measures the average number of inventors in each IPC4 class.

For each patent, we calculate the number of inventors and take the average

for each IPC4 class. There is a constant, general increase in the division of

labor, which shows in more and larger teams in science and research (Wuchty

et al., 2007). This trend might affect the number of interactions between

different technologies since, with increasing the team size, there is more

interaction among people with potentially different backgrounds. This could

impact the structure of the knowledge space, with an increased number of

interactions between different technological fields due only to a physiological

increase in the team size and not due to the BioRegio program itself.

The third control variable is a dummy variable that distinguishes between

regions located in East and West Germany (East). It takes value 1 for

all observations from the East and 0 otherwise. This is important since,

especially in the period after reunification, there was a big difference between

patenting activities in the Eastern and Western part of Germany. West

Germany had a higher research intensity and patented more than the East,

and even though there are some high-patenting regions in the East, the

process of catching-up is still ongoing. Since we cover the period right after

reunification (1990-1996) as our pre-treatment period, we have to control

for these structural differences.

The Neighbour dummy is one for all observations from non-winning regions

that are neighbors of regions that won the contest. The regions that won

the contest could have influenced indirectly other neighboring areas in their

biotech patent production. Because of such spillovers, we should consider the
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Table 4.1: Variables used in the regressions

Variable Name Description Regressions
Dependent Variable

Log Betweenness Centrality Betweenness centrality logarithm measured
on each node in the regional technological
space

Both

Independent Variables
Time During BioRegio Dummy variable that takes value one when

the year is between 1997 and 2005
Both

Time After BioRegio Dummy variable that takes value one when
the year is between 2006 and 2014

Both

BioTech Dummy variable that takes value one when
the IPC class is a biotechnology according
to OECD classification

First

Winning region Dummy variable that takes value one when
the node is from a winning region

Second

Interaction Term During
BioRegio

Interaction term used for the DiD approach,
takes value one only for the treatment
group in the period between 1997 and 2005

Both

Interaction Term After
BioRegio

Interaction term used for the DiD approach,
takes value one only for the treatment
group in the period between 2006 and 2015

Both

Control Variables
Log Number of Patents Logarithm of the number of patents for

each IPC class
Both

Avg Team Size Average team size calculated for each IPC
class

Both

East Dummy variable that takes value one when
the node is from a region in the former Ger-
man Democratic Republic (GDR)

Both

Neighbor Dummy variable that takes value one when
the node is from a region sharing a common
border with a winning cluster

Second

possibility that an increasing betweenness centrality in one of the non-winning

regions is due to funding in a neighboring area. In the literature, there is

evidence that when a cluster is supported by a policy, then automatically

the neighbors also indirectly increase the number of their relationships

within the cluster (Delgado et al., 2014). This is mainly evidenced in the

inventor/applicant clusters, but if there are more relationships and more

patents on this level, then the technological space might also be influenced.

For the nature of this variable, it is only used in model 2 where non-winning

regions are present.
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Table 4.2: Descriptive statistics for model 1 (table 4.5)

Variable Name N Mean SD Min Max
Dependent Variable

Log Betweenness Centrality 28302 5.226 1.728 0.000 9.292
Independent Variables

Time During BioRegio 28302 0.378 0.485 0.000 1.000
Time After BioRegio 28302 0.374 0.484 0.000 1.000
BioTech 28302 0.028 0.164 0.000 1.000

Control Variables
Log Number of Patents 28302 2.810 1.284 0.000 7.336
East 28302 0.055 0.227 0.000 1.000
Avg Team Size 28302 1.693 0.617 1.000 9.167

Table 4.3: Descriptive statistics for model 2 (table 4.7)

Variable.Name N Mean SD Min Max
Dependent Variable

Log Betweenness Centrality 2872 5.765 2.020 0.000 9.292
Independent Variables

Time During BioRegio 2872 0.380 0.485 0.000 1.000
Time After BioRegio 2872 0.365 0.482 0.000 1.000
Winning region 2872 0.273 0.446 0.000 1.000

Control Variables
Log Number of Patents 2872 3.698 1.510 0.000 7.602
East 2872 0.210 0.407 0.000 1.000
Neighbor 2872 0.191 0.393 0.000 1.000
Avg Team Size 2872 1.894 0.551 1.000 5.200
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Figure 4.7: Number of patents (model 1 (table 4.5) for Biotech (treatment) and
non-biotech (control) IPC4 classes)

4.6 Results

4.6.1 Biotechnology compared to other technologies

in winning regions

Figure 4.7 shows the total number of patents in the winner regions for

each of the two groups considered as treatment (biotech IPC4 classes) and

control (non-biotech IPC4 classes) groups in model 1 (table 4.5). It becomes

apparent that both groups experienced an increase in the number of patents

during the period when BioRegio was running. In the period after BioRegio,

the number of filed patents declined for both groups. However, as pointed

out above, to assess the policy effects on the knowledge space it is not

sufficient to simply count the number of patents. It is not the amount of the

innovative activity that determines the quality of a system. Instead, it is the

number and the quality of interactions among the elements of this network.

Therefore, it is necessary to use measures able to evaluate the changes on

the structure of the knowledge space over time.

Table 4.4 shows a mean comparison of the log betweenness centrality for

the two considered groups. In addition to the means of both groups, their

difference, the significance and the standard errors are shown for each

considered year. It is important to note that the hypothesis of parallel

trends in the pre-treatment period (fundamental condition for the DiD

approach) cannot be rejected. The difference between both groups in the
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Table 4.4: Mean comparison of log betweenness centrality. Treatment and
control groups as in model 1 (table 4.5)

Year Non-Biotech Mean Biotech Mean Difference SE

Pre-Treatment

1990 5.344 5.341 -0.003 0.443
1991 5.277 5.253 -0.025 0.444
1992 5.293 5.252 -0.042 0.404
1993 5.281 5.394 0.114 0.415
1994 5.299 5.291 -0.008 0.424
1995 5.347 5.393 0.046 0.429
1996 5.320 5.081 -0.239 0.479

During-Treatment

1997 5.263 5.330 0.067 0.442
1998 5.248 5.453 0.205 0.340
1999 5.253 5.406 0.153 0.344
2000 5.104 5.528 0.424 0.325
2001 5.092 5.447 0.355 0.376
2002 5.047 5.378 0.331 0.382
2003 5.030 5.383 0.353 0.400
2004 5.053 5.531 0.478 0.406
2005 5.084 5.412 0.328 0.390

Post-Treatment

2006 5.179 5.718 0.54 0.368
2007 5.229 5.697 0.468 0.425
2008 5.227 5.822 0.595 0.415
2009 5.269 5.988 0.719. 0.379
2010 5.289 5.931 0.642. 0.377
2011 5.259 5.991 0.732* 0.328
2012 5.269 5.871 0.601. 0.330
2013 5.218 6.174 0.955** 0.348
2014 5.277 6.229 0.952* 0.381

period before funding is marginal and not significant. However, a difference

between the two groups starts to develop while BioRegio was running.

The gap widens by the end of the considered period when it also becomes

statistically significant.

Figure 4.8 shows the predicted values of log betweenness for treatment

and control groups from the base-line model (considering only logBC
i,r∈W

and β2Bioi,r) for model 1. The graph adds support to the hypothesis of

parallel trends in the pre-treatment period observed in table 4.4. The visual

representation helps us to understand how the predicted values change over

time, and we observe an increasing difference between the dashed (treatment
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Figure 4.8: Fitted trends comparison for model 1

group) and the solid (control group) lines. This indicates that BioRegio

had a positive influence on the embeddedness of biotechnological classes in

the knowledge spaces of the winning regions. In the post-treatment period,

both curves show an increase in betweenness centrality. Since this might be

related to the simultaneous decrease in the total number of patents, it is

necessary to control for the number of patents in the subsequent regressions.

To test the influence of BioRegio on biotechnology embeddedness, we per-

formed a classical DiD regression, i.e., a simple OLS with clustered standard

errors over time with regional fixed effects (table 4.5). The first column

(model 1a) shows the results for the period in which the policy was running.

Here, the interaction term is negative and significant. This indicates that the

policy in this time frame was not effective in better connecting biotechnology

with other classes in the winning regions. As such, it did not contribute to

an increased connectedness and density in the knowledge spaces beyond its

positive impact on the number of patents in biotechnology.

In model 1b, we test if there are effects in the period after BioRegio funding.

Here, the interaction term becomes positive and significant. This means that

the biotechnology classes become more important and more connected in

the knowledge space of the winning regions compared to other technologies

in the post-treatment period4. One possible interpretation of these results

4As explained by Basilico and Graf (2020) the usage of a different methodology to
map the knowledge space can change the results when calculating centrality measures.
Using a simple co-occurrence matrix instead of a relatedness matrix, the results on the
calculated betweenness centrality do not vary.
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is that during the initial stages of the program, research was focused on

incremental and refined what was already known. Later in the funding period,

research shifted and started to connect biotechnology with other, distant

fields. Due to the time lag between funding and patentable output, which

might also differ between incremental and more radical innovations, an exact

attribution of these changes is difficult. Nevertheless, our findings indicate

that BioRegio was a trigger to allow exploration of different capabilities that

were not accessible inside the regions before.

Table 4.5: Comparing structural embeddedness between biotech and non-
biotech classes in winning regions (DiD regression, robust standard errors and
regional fixed effects)

Dependent variable:

Log Betweenness Centrality
Model during funding Model after funding

(1a) (1b)

Time During BioRegio −0.453∗∗∗

(0.060)

Time After BioRegio −0.172∗∗∗

(0.057)

BioTech −0.778∗∗∗ −0.997∗∗∗

(0.077) (0.082)

Interaction Term During BioRegio −0.243∗

(0.128)

Interaction Term After BioRegio 0.352∗∗∗

(0.121)

Log Number of Patents 0.879∗∗∗ 0.878∗∗∗

(0.007) (0.007)

East 0.630∗∗∗ 0.629∗∗∗

(0.042) (0.042)

Avg Team Size −0.232∗∗∗ −0.231∗∗∗

(0.011) (0.011)

Observations 28,304 28,304
R2 0.382 0.382
Adjusted R2 0.382 0.382
Residual Std. Error (df = 28274) 1.359 1.359
F Statistic (df = 29; 28274) 603.578∗∗∗ 603.912∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



4.6 Results 109

● ●
●

● ● ● ●
●

●

●

●

●

●

● ● ● ●

●

● ●

●
●

●
●

●

● ● ●
● ●

●
●

●
●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

● ●

100

200

1990 1995 2000 2005 2010 2015
Years

P
at

en
ts

 M
ea

n

●

●

Participants
Winners

Figure 4.9: Number of patents over time (model 2 (table 4.7) treatment and
control groups)

4.6.2 Biotechnology in winner and non-winner

regions

Figure 4.9 shows the evolution of the average number of biotechnology

patents in the treatment (winner regions) and control (non-winner regions)

groups for model 2. Since in this case we use the same number of classes

(only from biotechnology) among different knowledge spaces, it is possible to

compare them by their averages. We observe that both curves have a similar

development. Biotech classes both in winning and non-winning regions have

a rather low average number of patents in the period before the funding,

while in the period during funding, there is the peak for both groups and

then finally a decrease in the period when funding ceased. This means

that even if the curve for the winners is higher, there is no big difference

in relative changes in patenting activity when comparing biotechnological

classes in winning and non-winning regions. Nevertheless, as stated above,

the number of patents it is not sufficient to assess if there was an increased

interaction among the nodes in the knowledge space.

Table 4.6 shows the means of log betweenness, their differences and standard

errors for control and treatment groups in model 2 for each year. The control

group is mainly above the treatment group in terms of betweenness centrality.

This situation changes only in the post-treatment period. In fact, here the

gap is lower, and in some years, the treatment group is above the control

group. This result gives already some insights on what to expect from the
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DiD regressions. Moreover, the difference in means in the pre-funding period

is never significant. So, the assumption of parallel trends, which is important

for the DiD approach, cannot be rejected.

Table 4.6: Mean comparison of log betweenness centrality. Treatment and
control groups as in model 2 (table 4.7)

Year Participating Mean Winning Mean Difference SE
(Control group) (Treatment group)

Pre-Treatment
1990 5.755 5.341 -0.413 0.494
1991 5.789 5.253 -0.536 0.495
1992 6.082 5.252 0.444
1993 5.877 5.394 -0.483 0.467
1994 5.725 5.291 -0.434 0.481
1995 5.696 5.393 -0.303 0.477
1996 5.720 5.081 -0.639 0.515

During-Treatment
1997 5.822 5.330 -0.492 0.481
1998 5.561 5.453 -0.108 0.400
1999 5.664 5.406 -0.259 0.405
2000 5.702 5.528 -0.174 0.390
2001 5.752 5.447 -0.305 0.427
2002 5.806 5.378 -0.427 0.434
2003 5.694 5.383 -0.311 0.454
2004 5.606 5.531 -0.075 0.464
2005 5.636 5.412 -0.225 0.456

Post-Treatment
2006 5.686 5.718 0.032 0.441
2007 5.932 5.697 -0.235 0.475
2008 5.768 5.822 0.054 0.471
2009 6.035 5.988 -0.047 0.430
2010 6.139 5.931 -0.208 0.418
2011 6.142 5.991 -0.151 0.378
2012 6.073 5.871 -0.202 0.380
2013 6.130 6.174 0.044 0.398
2014 6.202 6.229 0.026 0.418

Figure 4.10 represents the DiD approach for model 2 using a base-line model

without controls. Here, the result shown in table 4.6 become even clearer.

Betweenness centrality increases steadily in both groups after the start of

BioRegio. Before and during treatment, biotechnology in the control group

(solid line) is structurally more embedded than in the treatment group.
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Figure 4.10: Fitted trends comparison for model 2

However, in the post-treatment period, biotechnology embeddedness in the

two groups becomes more similar. The relatively lower embeddedness in the

winning regions can be explained by their strength in several other fields so

that initial embeddedness of biotech was lower despite absolute strength in

terms of the number of patents. The sharper increase, in particular after

funding, indicates long term changes in the knowledge space which might be

induced by the policy.

To test this, in table 4.7, we present the results for models 2a and b. Model 2a

evaluates if BioRegio had a significant impact on biotechnology embeddedness

in the period when the policy was running, while model 2b evaluates the

significance for the post-treatment period. For both models, it holds that

winning regions show a significantly lower betweenness centrality than the

control regions. With respect to period differences, the first model (2a) shows

that betweenness centrality in the time during BioRegio is significantly lower

than in the other periods. The second model (2b) delivers that for the time

after BioRegio, there is no significant difference in betweenness centrality to

the periods before. The interaction of time during BioRegio and winning

region is positive but not significant. However, in the post-treatment period,

the interaction term turns out positive and significant. This means that

the biotech classes in the winning regions become more important than

their corresponding classes in the non-winning regions. This result is quite

important because it shows that when comparing biotech classes among

regions (some affected by the policy and some not), the positive effect on
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betweenness is larger in the regions that won the contest. As such, winning

regions have a knowledge space with better embedded biotechnological classes

by the end of the considered period5.

4.7 Conclusion

Innovation oriented cluster policies, such as the German BioRegio contest,

have the potential to change the behavior of actors in terms of increased

innovation activities and interaction (Engel et al., 2013; Graf and Broekel,

2020). Such effects, measured on the individual (firm) level, find substantial

support in the literature (Nishimura and Okamuro, 2011; Mar and Massard,

2021). In that respect, they do not differ much from other types of innovation

policies, such as general R&D subsidies. However, the ambition of cluster

policies goes beyond increased innovation and interaction, and it also aims at

more ample structural effects in terms of specific technologies pursued and

links to other technologies intensified or newly created. For the purpose of

evaluation of such policy targets, there is a need to identify respective policy

impacts in a causal way. Since targeted structural effects might not show

up in the short term, such evaluation studies need to focus, in particular, on

long term effects. Complementing research on policy effects on the structure

of actor networks (Graf and Broekel, 2020; N’Ghauran and Autant-Bernard,

2020), we investigated their impact on the regional knowledge space. As

an interesting case, we took biotechnology and the BioRegio program in

Germany. We studied changes in the embeddedness of biotechnology in

regional knowledge spaces and how this was affected by BioRegio.

We argue that supported fields of activity, in our case biotechnology, should

increase their visibility and importance within the knowledge space by

either creating and/or intensifying links within the field itself (along ex-

isting trajectories) or by creating links with previously unrelated fields

(cross-fertilization). Our descriptive analysis shows that in the four win-

5These results are robust to the selection of regions. We performed the same analyses
with a more homogeneous subsample of regions. For each winning region, we manually
select the most similar non-winning region in terms of the number of biotechnology
patents during the pre-funding period and ran models 2a and b. Since the results do not
change much (slightly higher model fit), we refrain from presenting them here. Tables are
available upon request.
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Table 4.7: Comparing structural embeddedness of biotech classes between win-
ning and non-winning regions (DiD regression, robust standard errors and re-
gional fixed effects)

Dependent variable:

Log Betweenness Centrality
Model during funding Model after funding

(2a) (2b)

Time During BioRegio −0.496∗∗

(0.245)

Time After BioRegio 0.263
(0.225)

Winning region −0.820∗∗∗ −0.899∗∗∗

(0.093) (0.100)

Interaction Term During BioRegio 0.022
(0.152)

Interaction Term After BioRegio 0.241∗

(0.144)

Log Number of Patents 0.727∗∗∗ 0.727∗∗∗

(0.020) (0.020)

East 0.043 0.042
(0.085) (0.085)

Neighbour −0.033 −0.033
(0.083) (0.083)

Avg Team Size −0.252∗∗∗ −0.249∗∗∗

(0.048) (0.048)

Observations 2,872 2,872
R2 0.278 0.279
Adjusted R2 0.271 0.271
Residual Std. Error (df = 2841) 1.726 1.725
F Statistic (df = 30; 2841) 36.507∗∗∗ 36.623∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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ning regions, biotechnology was connected with many other fields in the

knowledge space during funding. However, we also observed a decrease

in those inter-technological linkages in the periods after the funding. In

connecting biotechnology with other fields, all four winner regions showed

distinct patterns of specialization. In Jena, for example, many links were

established with medical technology, while in Rhineland, novel combinations

with textiles and paper machines were developed. In general, many of the

new combinations were with classes in the broader field of chemistry.

We complemented this dyad-based analysis with an econometric approach to

assess the policy impact on the embeddedness of biotechnology within the

knowledge space of supported regions. To measure embeddedness, we used

betweenness centrality of IPC4 classes in the regional knowledge spaces and

implemented it as the dependent variable in two sets of diff-in-diff estimations.

In the first set, we compared biotech with non-biotech IPC4 classes in winning

regions and find a positive effect of the policy on the embeddedness of the

biotech classes only after the funding period. By focusing only on winning

regions, this setting did not allow us to unambiguously identify policy effects,

since increasing biotechnology embeddedness could also have been a result

of a general technological trend. Therefore, in a second set of regressions,

we compared biotechnology in winning and non-winning regions. Again, our

results indicate a positive policy effect on the knowledge space integration of

biotechnology only after the funding period. Given that patent applications

increase substantially during the funding period but drop afterwards, this

finding is somewhat startling. One reasonable interpretation would be that

research during initial stages of BioRegio was concerned with incremental

progress along the lines of existing research, while public funding via the

BioRegio program allowed for research that was more risky and connected

biotechnology with more distant technological fields. That type of research

takes more time to develop, which might explain why such a transformative

effect of the policy shows up only after the funding period.

Compared with other evaluations of the BioRegio program, our research

implies that long term effects of cluster policies can be manifold. While

neither Engel et al. (2013) nor Graf and Broekel (2020) find evidence for

long term effects on innovation outputs or actor network structures, our

findings show that the direction of the search process was shaped by the
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policy. We have to acknowledge, though, that our research approach did not

allow for a comparison with other, simultaneous policy measures.

A generalization of our findings has limitations due to the nature of the

analysis. First, like several other studies on the knowledge space, we rely on

patents which limits our analyses to inventions that can be patented. As

such, we miss many non-patentable inventions like advances in software and

services. Second, our analysis relies on the patent classification system which

implies that the patents classified within each class are assumed to be similar

but substantially different from others. Since this classification is done by

the patent offices for other reasons than this type of analysis, this might

not hold true. Third, measuring treatment effects with moving windows

is also subject to limitations. Immediate policy effects might be blurred

since periods overlap. Fourth, since we do not control for other policies

that support biotechnology, we cannot exclude that they had effects on the

knowledge space as well. Generalizing the results to other cluster policies

seems challenging, as each policy has its own objectives, characteristics and

design features.

Future research should focus on the effects of these induced changes in

the structure of the knowledge space on regional innovative and economic

performance. This is fundamental, since the usage of performance indicators

can really capture if a policy had an effect on the innovative activity of

a region, whereas, the creation of new technological combinations cannot

be directly translated to an increase in more and better innovations in the

region.
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4.8 Correlation Tables

Table 4.8: Correlation table for models 1a and b (table 4.5)

(1) (2) (3) (4) (5) (6) (7)

(1) Log Betweenness Centrality - -0.04*** 0.02*** 0.03*** 0.59*** -0.07*** 0.03***

(2) Time During BioRegio - -0.60*** 0.00 0.02*** 0.01*** 0.02***

(3) Time After BioRegio - -0.01 0.05*** 0.06*** -0.01***

(4) BioTech - 0.20*** 0.09*** 0.11***

(5) Log Number of Patents - -0.16*** 0.29***

(6) East - 0.13***

(7) Avg Team Size -

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

Table 4.9: Correlation table for models 2a and b (table 4.7)

(1) (2) (3) (4) (5) (6) (7) (8)

(1) Log Betweenness Centrality - -0.06*** 0.08*** -0.06*** 0.47*** -0.09*** 0.02 0.02

(2) Time During BioRegio - -0.59*** 0.01 0.08*** 0.02 -0.01 0.03

(3) Time After BioRegio - -0.01 0.08*** 0.02 0.01 -0.08***

(4) Winning region - 0.24*** -0.05*** -0.30*** 0.23***

(5) Log Number of Patents - -0.15*** -0.04*** 0.41***

(6) East - 0.16*** 0.19***

(7) Neighbour - 0.07***

(8) Avg Team Size -

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01



Chapter 5

The influence of organizations

on technological combinations:

an application on German

regions

5.1 Introduction

Inside a regional knowledge space (KS) (Kogler et al., 2013), technologies

are considered important if they are able to connect several fields, thereby

supporting technological development (Basilico and Graf, 2020). Authors

can define these particular technologies in different ways based on their

role in the technological space, famous definitions are: General Purpose

Technologies (e.g. Bresnahan and Trajtenberg, 1995; Hall and Trajtenberg,

2004), Key Enabling Technologies (e.g. European Commission, 2009; Mon-

tresor and Quatraro, 2017) and Bridging Technologies (Basilico and Graf,

2020; Corradini and De Propris, 2017). However, the literature does not yet

offer a perspective on which economic agents combine these technologies

(Boschma, 2017). In this context, I am interested in the role of two distinct

actor characteristics: i) the position of actors within the knowledge network

in the respective region (Boschma, 2017) and ii) the particular role of public

117
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research in technological development (Graf and Menter, 2021; Graf and

Henning, 2009).

Agents are considered important for knowledge development in the regional

innovation network if they provide particularly important combinations of

already existing technologies in the KS. These agents could drive regions

to explore new technological trajectories through the introduction of novel

technologies in the KS (Tanner, 2014; Gilbert and Campbell, 2015). The

degree of novelty introduced in the KS is influenced by the nature of the

organization (Miller et al., 2005) and its position in the RIN (Graf, 2017;

Graf and Menter, 2021). On one hand the more the research orientation

of a organization is towards basic research its attitude to combine “distant”

knowledge increases. On the other hand the more the organization is central

in the network the more has access to diverse knowledge from different sources.

These two forces are complementary and they influence the propensity of

the organization towards knowledge recombination processes. The aim of

this paper is to assess under which circumstances organizations with specific

characteristics combine knowledge differently from others.

To understand how organizations combine knowledge I constructed two

different networks for each Labour Market Region (LMR) in Germany using

patents as main data source. The first network is a Knowledge Space

(KS) (e.g. Quatraro, 2010; Kogler et al., 2013) and the second one is a

“innovator network” (e.g. Graf, 2017). The simultaneous construction of the

two networks is important since on one side from the KS information about

how different organizations combine knowledge is collected and on the other

side information on how central a single organization is inside the Regional

Innovation Network (RIN) is also collected. In both cases measures taken

from Social Network Analysis (SNA) are performed to retrieve the relevant

information.

In the case of KS I decided (after analysing the different characteristics of

the widely used indicators in Social Network Analysis) to use the so-called

Redundancy Coefficient (RC) Latapy et al. (2008). This indicator is used

to assess if organizations are combining knowledge important for the KS

itself. In other words, this measure permits to identify organizations that

combine technologies that no one else combines in the KS. These important
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organizations, when removed, should affect the cohesiveness of the KS to a

higher degree than others. In the case of the “innovator network” I measured

degree centrality for each applicant to assess how central it is in the RIN. To

characterize these organizations, I run a series of regressions with the RC for

each applicant as the dependent variable and the rank degree centrality as

independent variable. Moreover, I have included a series of dummy variables

able to identify the different typology of the organizations. The results show

that public research institutes involved in the production of basic research

activities combine knowledge that it is not important for the cohesiveness of

the KS. Therefore, they introduce to a lower degree different combinations in

the KS. Private research institutes are more important for the cohesiveness

of the KS. Thus, they introduce more different combinations than others.

However, when the variables for the identification of the research orientation

of organizations are interacted with the degree centrality on the “innovator

network”, the results are different. With an increase in centrality of basic

(public) research institutes in the RIN there is an increase in importance

for the technological structure of the region, enabling the possibility of

introducing unique combinations in the KS. Therefore, in the case of public

research institutes, both the orientation of the considered organization and

the embeddedness in the RIN matter for the cohesiveness of the KS. These

findings are also relevant for policymakers. Policy makers should stimulate

public research institutes by promoting collaboration with private institutes

so that they hold central positions in the RIN. Only when public research

institutes are central in the RIN can combine technologies important for the

KS and, possibly, introduce highly impactful technological innovations (Graf

and Menter, 2021).

The remainder of the paper is organized as follows. Section 5.2 provides

an extensive literature review on knowledge production, innovation, tech-

nologies and the role of agents in the technological recombination processes.

I introduce the different typologies of considered applicants in Section 5.3

along with a presentation of the database. Section 5.5 presents the main

dependent variable, namely the Redundancy Coefficient along with a de-

scriptive analysis of its features on a selected number of regions. Section 5.6

presents the econometric approach, a description of the utilized variables

and some descriptive statistics. Section 5.7 presents the main results of the
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Tobit regressions. Finally, Section 5.8 concludes and discusses the main

implications of the paper.

5.2 Literature Review

5.2.1 Technological Combinations and the

Knowledge Space

The origin of a technological innovation stems from the recombination

of already existing knowledge and technology to reach a specific purpose

(Nelson and Winter, 1982; Weitzman, 1998; Sorenson and Fleming, 2004).

This combination process is characterized by the degree of two different

dimensions: the relatedness between the components and the uniqueness of

their combination (Arts and Veugelers, 2015).

The concept of relatedness has been used to measure the importance of

knowledge spillovers (Rosenberg and Frischtak, 1983; Pavitt, 1984; Jaffe,

1989). Moreover, it has been adopted widely to measure the complexity

and the production of knowledge in time and space (Boschma et al., 2013;

Boschma, 2017). In its general formulation, the closer a technology is with

another one, the more they are related. When two non-related technologies

are combined, the possibility to develop exceptional innovations increases

(Ahuja and Lampert, 2001).

The set of technologies embedded in a nation or region (and therefore their

“distances”) is usually represented in a network form, and this can take the

name of Knowledge Space or Technological Space (Quatraro, 2010; Kogler

et al., 2013). In the KS nodes are the technological components and the

links their relations. Here, different types of connections are present in which

some components are directly linked, and yet others are connected only

through indirect links. As Broekel (2019) shows, for example: “in regard to

airplane technology, the components’ wing design and aluminium processing

are directly linked, while electronic navigation is only indirectly related since

other components (e.g., electronic control systems, mechatronic interfaces)

act as bridges”. In this case, everything that is related to the electronic

navigation of an airplane has a bridging function acting as indirect links
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between electronic and aircraft technologies. Therefore, these bridges are

connecting many other components, establishing indirect links among them

being important for the cohesiveness of the network (Basilico and Graf,

2020).

The ability to be an indirect connector of many other technologies is called

pervasiveness. Through the indirect connection of many components, these

technologies could drive the economic development of a region or initiate

a new technological paradigm (Bresnahan and Trajtenberg, 1995). These

technologies are usually identified as General Purpose Technologies (GPTs)

or with their subgroup Key Enabling Technologies (KETs) (e.g. Hall and

Trajtenberg, 2004; Montresor and Quatraro, 2017). These technologies

(GPTs, KETs and Bridging Technologies) and their combinations can be

mapped inside a KS. Through the usage of measures from Social Network

Analysis (SNA) their relations and their importance for the cohesiveness of

the KS has been already demonstrated in the literature (Basilico and Graf,

2020).

Other prominent studies show how already existing technologies can be

combined in new ways to introduce innovative activities (Arts and Veugelers,

2015). Arthur (2009) refers to this process as combinatorial evolution. Novel

technologies arise when old components that were never combined before are

integrated. In this sense, the newly created technology grows in complexity

over time because in every new step in the technological evolution, something

more technically complex is obtained. The inventions that result from

this recombination process can, eventually, embed high novelty that leads

to important new discoveries (Weitzman, 1998). However, not only do

unique combinations exist, combinations also occur along well-defined paths.

The combination of already existing technologies in unique ways requires

exploration, whereas the combination of technologies along already defined

paths requires exploitation. The former leads to technological breakthroughs,

while the latter leads to incremental technological improvements (Fleming

and Sorenson, 2001; Arts and Veugelers, 2015).

This recombination approach is important also for the aforementioned re-

latedness. When two previously unrelated technologies are continuously

combined, their relatedness increases (Castaldi, Frenken, and Los, 2015).
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Therefore, relatedness can be regarded not as a static but as a dynamic

force (Boschma, 2017). However, the potential for developing breakthrough

technologies resides in the combination of previously unrelated pieces of

knowledge, even if the probability of failing in this case is higher (Saviotti

and Frenken, 2008). In this sense, the younger is the technology that re-

sulted from the recombination process, the higher is the potential to develop

breakthrough innovations. Whereas after the same components have been

combined in a certain way many times only incremental innovations would

appear. However, the probability that novelty emerges directly only from

new combinations or exclusively from old ones it is quite rare, and in reality

it is a mix of both processes (Boschma, 2017).

In literature studies focus on the relatedness and its effects on diversification

on the regional or national level. For example, Frenken, Van Oort, and

Verburg (2007) find that when regions embed related activities, it is easier

for them to successfully recombine technologies. However, the combination

between unrelated technologies could also occur in regions. Castaldi et al.

(2015) shows how regions with higher unrelated variety possess a higher

potential to develop breakthrough innovations. Nonetheless, they show that

regions with higher related variety are the ones that combine technologies

but with a lower potential for radical inventions.

5.2.2 Cognitive and Geographical Spillovers

Knowledge used to produce exceptional technological innovations and thereby

introduce new paradigms has specific characteristics. Dosi (1988) identifies

as an important asset for technological improvement the exploitation of

both private (tacit and protected knowledge) and public knowledge (knowl-

edge available to all economic actors embedded in a region or a country).

The latter has the ability to diffuse among industries and economic actors

through spillovers, whereas the former is transmitted with more difficulty.

Spillovers can be classified in geographical, cognitive, organizational, social

or institutional (Boschma, 2005). Despite differences in definitions, these

different forms of spillovers are all able to reduce uncertainty and increase

coordination among the actors involved (Breschi and Lissoni, 2009). There-
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fore, they facilitate knowledge transfer and the subsequent undertaking of

innovation activities (Boschma, 2005).

In this paper I am mostly interested in the characteristics and effects of

cognitive and geographical spillovers. Cognitive spillovers is intended as

the process of knowledge sharing between actors having similar capabilities

(Nooteboom, 2000). However, if the two actors involved in knowledge sharing

are cognitively too similar, this could sabotage the learning process. This

deficiency is caused by the necessity of both dissimilar and complementary

knowledge in producing the most benefits from spillover effects. Different

and novel knowledge enhances creativity (Cohendet and Llerena, 1997).

However, if the two actors are cognitively too distant, their absorptive

capacities are limited (Boschma, 2005). If the cognitive distance is too

low, there is a lack of novelty whereas if the cognitive distance is too

high, communication problems could arise. Therefore, an optimal cognitive

distance, one which is neither too large nor too small, is necessary for

stimulating interactive learning (Nooteboom, 2000). This problem can be

solved through geographical spillovers. The presence of a common knowledge

base coming from different sources inside a geographical cluster can trigger

cognitive spillovers (Maskell, 2001; Boschma, 2005). Moreover, spillovers

are usually identified as geographically concentrated, making it difficult to

disseminate knowledge over long distances (Fritsch and Franke, 2004; Acs,

Anselin, and Varga, 2002).

Proximity facilitates the passage of knowledge among different entities

through spillover activities (Boschma, 2005). The higher spillover activities

are in a specific location the more knowledge is accumulated, increasing the

complexity embedded in the area. Knowledge complexity is defined as the

ability to combine multiple and diverse skills (Zander and Kogut, 1995).

The production of complex knowledge is not a simple task, and it requires

huge economic efforts. As a result, complex knowledge is an exclusive asset

not publicly available to all economic actors (Rivkin, 2000). The production

of complex knowledge requires continuous feedback, in this sense strong ties

between actors are necessary (Boschma, 2005). The higher is the complexity

of knowledge, the stronger the collaboration ties among the actors must

be to achieve a fruitful transfer (Hansen, 1999). Moreover, the presence of

complex knowledge embedded in a specific location is a determinant factor
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for its economic success and to achieve a competitive advantage (Fagerberg,

Verspagen, and Caniels, 1997; Glaeser, Kallal, Scheinkman, and Shleifer,

1992; Jaffe, Trajtenberg, and Henderson, 1993; Kogler et al., 2013; Hidalgo

and Hausmann, 2009; Boschma, 2005).

5.2.3 The role of agents in the Technological

Recombination Process

The agents (organizations and firms) present locally are the micro-units

where knowledge and technological elements are combined in the pursuit of

innovative activities. As denoted by Boschma (2017), a micro-perspective

on which are the agents responsible for combining technologies important

for the structural composition of the KS and therefore spur innovation in

the region is missing. Inside the KS, there are two forces influencing the

propensity of agents to combine technologies differently than others: the

first is the position they occupy within the Regional Innovation Network,

and the second is their orientation towards basic or applied research (Graf

and Menter, 2021). These forces are not completely separate but affect each

other, as will be explored in the following.

Firstly, it is important to understand how knowledge can be combined

differently when the interested agent resides in the center of the innovation

network or in the periphery. To analyze this, the theory of knowledge

spillovers could help. Spillovers, as already explained in subsection 5.2.2, are

an important factor for growth through knowledge flows, and subsequently

they influence the production of innovative activities (Griliches, 1992). Acs,

Braunerhjelm, Audretsch, and Carlsson (2009) identifies spillovers as an

important source for identification and exploitation of entrepreneurial op-

portunities. Therefore, if an agent is embedded in a region where many

innovative activities are produced, its chances of having higher than average

innovative and economic performance are higher (Powell, Koput, and Smith-

Doerr, 1996). Knowledge usually flows not only between two actors but also

through many components in the network, therefore being positioned in the

center gives greater opportunities for knowledge recombination (Graf, 2017;

Graf and Menter, 2021).
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Many studies considered the concept of centrality as the main measure to

assess the embeddedness of entities in a regional network (Freeman, 1978).

The higher is the centrality of the considered entity, the more it influences

the knowledge flows, thereby affecting the frequency of combinations inside

the network. As denoted by Rowley, Behrens, and Krackhardt (2000), an

entity that is positioned inside a dense network has higher possibilities for

exploitation, whereas agents embedded in a sparse network are explorers.

As already pointed out in subsection 5.2.1, exploitation can eventually lead

to incremental innovations, whereas exploration is conducive to radical

innovations. This is confirmed by Hervas-Oliver, Lleo, and Cervello (2017)

where they argue that actors in the center of the network hesitate to develop

radical innovations because these are risky activities and could lead to the

loss of their previously achieved status. However, these studies focus only

on firms and do not consider the fact that a region is composed by different

typologies of actors. Usually universities and public organizations occupy a

central position in the regional innovation network because of their knowledge

transfer activities, therefore they should be considered separately (Graf and

Krüger, 2011). In this sense, Graf and Menter (2021) find that the centrality

of organizations increases the possibility to develop radical innovations.

Not only the embeddedness of actors inside the regional innovation network

influences the propensity to combine knowledge in a different way, but also

the scientific orientation (basic vs applied) plays a role. Basic research, in

the classic view, is focused on introducing new revolutionary technological

combinations without a clear application. Whereas applied research is usually

redefining knowledge that is already existing to produce and commercialize

products and services (Miller et al., 2005; Graf and Menter, 2021). Moreover,

the role of public research changed over time, departing from this classical

dichotomy. Basic research organizations have been allowed to directly

translate new findings into intellectual property rights with the appropriation

of the outcomes (Etzkowitz, 2004). This shift pushed universities and

research organizations to assume a more entrepreneurial orientation. They

started to undertake new activities ranging from patents applications to

consultancy, making the boundaries between applied and basic research

blurry (Leyden and Menter, 2018). Therefore, the assumption that basic

research is only focused on combining different knowledge to initiate new
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technological waves does not, necessarily, hold true anymore. It is important

to understand how the access to a variety of knowledge sources, given by

the fact that basic research organizations usually occupy a central position

in the collaboration network, is mitigated by the shift to a more applied

research orientation.

Summing up, centrality surely matters for the quality of inventions, but it

depends also on the typology of the considered organization. However, a

perspective on how the mitigation effect carried out by centrality matters

on the typology of technological combinations is missing in the literature.

This point of view would allow us to better ascertain if central actors in

the regional innovation network are also combining important knowledge

present locally, enabling opportunities for innovative activities and ultimately

permitting regional economic growth.

5.3 The German research infrastructure

The research infrastructure is the set of private and public organizations

present in the country dedicated to research purposes. The main aim of

the paper is to assess how different types of organizations are combining

knowledge inside the KS. As a practical application, I consider the German

research infrastructure, where heterogeneous organizations in terms of fund-

ing sources are present. Germany is composed both by private and public

entities that do research in different fields of studies. Germany has around

one thousand research organizations that are publicly funded (BMBF, 2017).

There are around 340 universities (120 Universities and 220 Polytechnics).

Graf and Menter (2021), based on BMBF (2012, 2014, 2020) ordered public

institutes based on two factors: the degree of funds received from public

sources and the type of research output (patents over publications). The first

factor implies that the organization that receives the highest share of funds

from public sources is regarded as the most basic research organization. The

second factor implies that the organization that has a lower ratio between

patents and publications is regarded as the most basic one. Then these two

rankings are aggregated and, the final order of the organizations (from basic

to applied research) is the following:
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• The Max Planck Society consists of 86 institutes with more than 23000

employees. The focus of their research activity is on natural sciences,

life sciences, humanities and social sciences.

• The Leibniz Association consists of more than 90 research institutes

with around 20000 employees. The focus of their research is broad,

covering various subjects from natural to social sciences.

• The Helmholtz Association is the biggest German scientific association.

It consists of 19 research centers with around 40000 employees. The

main focus of their research is on these areas: (1) energy; (2) earth

and environment; (3) health; (4) aeronautics, space, and transport; (5)

matter and (6) key technologies.

• Fraunhofer is a leading organization in Europe which is mostly focused

on applied research, It includes 72 institutes with more than 26000

employees. The institutes are focused on the following research areas:

(1) health, (2) security, (3) communication, (4) mobility, (5) energy

and (6) environment.

Therefore, the scientific orientation of these organizations is affected by the

different degree of private funding they receive. The more the institute

receive funding from public sources, the more its focus is on basic research

(Graf and Menter, 2021).

5.4 Data

The OECD, REGPAT database, January 2020 is used to select patent

applications filed between 2010 and 2015 that have at least one inventor

located in Germany. While patent data have been used in many empirical

applications, their availability and the amount of information that they

provide increased their popularity. However, patents do not capture all

the knowledge produced in an economy, and firms can also protect their

knowledge in other ways (Kogler et al., 2013; Griliches, 1990).

The Labour Market Region (LMR) is used to identify the regional areas in

the German KS. LMRs are larger than the standard NUTS3 regions (smaller
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units which separate two different regions, the city and the surroundings)

because they account also for commuters that are traveling each day to

reach the workplace. For my purposes, it suffices to capture technological

combinations on a wider perspective than NUTS3 regions, allowing for a

higher number of observations. To permit the participation of an adequate

number of applicants for each geographical entity, only regions with at least

147 patents (corresponding to the 15% quantile of the distribution) in the

period are included. All the patents filed in a specific region from 2010 to

2015 (snapshot) are used to reconstruct the KS.

In a similar fashion as Graf (2017), a patent is assigned to a LMR if at least

one inventor is located there. This is particularly important since applicants

tend to register their patents only in their headquarters. Therefore, with

this procedure, a high concentration of patents in few regions of Germany is

avoided. Following Graf and Menter (2021) using the Regpat HAN database,

patents are associated using an algorithm to the organizations that filed them.

The included organizations are the ones already described in subsection 5.3

with firms as an additional category.

Firstly, to construct the knowledge spaces of each LMR, information of the

IPC classes listed in each patent has been used. The node of the network is

a single IPC 4 digits class and the edges are patents that co-classify two or

more of these classes. The applicants that do not create any combination are

removed from the sample. Secondly, to construct the “innovator networks”

information about applicants and inventors is collected. In this case the

node of the network is an applicant present in the region and the edges are

inventors listed by two or more applicants in different patents.

Table 5.1 shows the number of patents belonging to each group of applicants.

As expected, private institutes are the group with the highest number of

patents. This is because the number of private institutes applying for a

patent in the period from 2010 to 2015 is much higher than other groups.

However, the number of patents on average for each private institute is lower

than for other groups. This means that many small private institutes are

included. The category “others” represents the applicants not identified in

any other category. These are individual inventors or registered associations

which are not identified as private companies or a specific organization among
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Table 5.1: Number of patents for each category of applicant

Category Nr. Applicants Nr. Patents Average Patents
Max Plack Institute 51 677 13.27
Leibniz Institute 48 172 3.58
Helmholtz Institute 20 115 5.75
University 362 2492 6.88
Technical University 148 1017 6.87
University of Applied Sciences 73 142 1.95
Fraunhofer Institute 133 3438 25.85
Private Institutes 12537 134602 10.74
Other 1408 7041 5.00
Total 14780 149696 10.13

the ones described in section 5.3. This category of applicants is excluded from

the analysis because it is difficult to assign their attitude towards applied or

basic research since it is composed by a set of non-homogeneous individuals

and single research institutes (not affiliated to Max Planck Society, Leibniz

Association, Helmholtz Association or Fraunhofer).

For clarification purposes it is important to specify that the “Nr. Applicants”

column counts multiple times the same applicant for each category. This

happens because each patent is assigned to a region based on the inventor

location, therefore the same applicant can be matched with many regions.

This is the unique reason why the numbers do match up with what has been

specified in section 5.3.

5.5 The Redundancy Coefficient

5.5.1 The conceptualization of the Redundancy

Coefficient

The main intent of this paper is to measure how different organizations

combine components in a different way with respect to others. In the

subsequent paragraphs I analyse the characteristics of some measures used

in Social Network Analysis to find the right indicator for my analysis.

Density is the number of existing ties divided by the number of potential

ties. One possible application would measure network density before and

after the removal of a single applicant. However, density is not informative



130 Organizations and technological combinations

when comparing networks (regions) of different sizes (Graf, 2017). Since my

setting is composed by regions with different dimensions, this measure is

not suitable. A possible alternative would be to measure the mean degree in

both situations. This measure shows the average number of connections, and

it is well suited to compare networks with different sizes. However, the value

expressed by the mean degree could be high because one node has many

connections with others, pushing the mean to a higher level (Graf, 2017).

Therefore, the removal of this single node causes a substantial drop of the

cohesiveness. This, in theory, could be good for my setting since I want to

capture the relation between applicants and important technologies. However,

organizations combine knowledge in a unique way (different from others) to

pursue innovation, so this effect would not be captured using only degree

centrality. Other cohesiveness measures like connectedness, fragmentation,

average distance and clustering coefficient are focused on the distribution of

the links in the network, but they do not tell anything about the importance

of the combinations. Therefore, to correctly address how important are

single combinations for the cohesiveness of the network, I decide to present

another (new) indicator.

The cohesiveness of the KS should be affected differently depending on how

applicants combine technologies. Applicants combining technologies that no

one else is matching in the KS should affect the general cohesion of the KS

at a higher rate. To detect this phenomenon, I introduce the Redundancy

Coefficient (RC). This indicator is first theorized by Latapy et al. (2008) for

a variety of large two-mode networks. In the following paragraphs, I explain

how the RC works on a real-world example from the database.

For example, I have chosen two patents from the KS of Jena. These patents

have two different application IDs (“417355760” and “329948400”), and they

belong to two different organizations (Fraunhofer Institute and Jenoptik

AG). Figure 5.1a shows a two-mode network in this situation. The red

nodes (squares) are the patents, whereas the blue nodes (circles) are the

technologies. The 4-digit CPC classes “G02B” and “B29C” co-occur in both

patents, while the other classes are present only in one of the two. Figure

5.1b represents the one-mode projection of the same graph and helps with the

comprehension on how the RC works. If the patent “417355760” is removed

from this network, then among the combinations made by this patent, only
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Figure 5.1: Two-Mode network and its One-Mode projection: an example

the red edge between “G02B” and “B29C” survives. To understand the

setting even better, the shaded nodes and links in figure 5.1 are the ones

that would disappear if “417355760” is removed.

In the example illustrated in Figure 5.1, the RC for patent “417355760”

would be:

rc(p) =
|{{u,w} ⊆ N(p),∃p′ ̸= p, (p′, u) ∈ E and (p′, w) ∈ E}|

(|N(p)|(|N(p)| − 1))/2
=

1

5
= 0.2

(5.1)

Formally, assuming that p is a secondary node in the two-mode network (a

patent in Figure 5.1a), rc(p) is the fraction of edges of a generic node p linked

to another node than p. In the one-mode projection, these edges would

survive even without p (Latapy et al., 2008). With rc(p) = 1 the one-mode

projection would not change after the removal of p, whereas if rc(p) = 0 none

of the neighbors (N) would be linked together in the projection. However,

this indicator would account only for redundancies on a single patent. Since

the focus of this paper is on the applicants and their role in combining

technologies in the KS an evolution of the aforementioned RC must be

calculated.



132 Organizations and technological combinations

Let’s assume that a hypothetical network exists and that it is composed of

only the patents from two applicants called Fraunhofer Institute and Jenoptik

AG. Jenoptik with its patents creates 29 technological combinations, and

when all the patents from this applicant are removed, only 7 combinations

will survive.

In this case, the redundancy coefficient on the level of an applicant a would

be:

rc(a) =
ns

na

=
7

29
= 0.241 (5.2)

Where rc(a) is the number of edges that would survive (ns) to the removal

of all patents of a divided by the total number of edges (na) created by the

patents of a. When rc(a) = 1, the one-mode projection remains the same

without all the patents belonging to a. However, when rc(a) = 0, all the

neighbors of all the patents belonging to a are disconnected. This measure

is able to show how the applicant is redundant in combining technologies in

the KS. Therefore, this coefficient actually shows how different applicants

combine knowledge inside the KS and which are the most unique ones. I

expect that the cohesiveness of the network drops when the least redundant

applicants are removed because these combine knowledge not available to

others in the KS. Merely the patents with only one applicant listed are

removed from the KS to calculate the Redundancy Coefficient.

5.5.2 The Redundancy Coefficient applied on

selected regions

To show the properties of the rc(a) indicator and how the cohesiveness of the

KSs are influenced by the removal of applicants with different redundancy

degrees, an example on the regions Berlin, Düsseldorf, Munich and Stuttgart

is performed. These four regions have a similar applicant structure, and

they are among the most important German KSs (as showed in table 5.2).

Following Toth et al. (2022), for each region, patents are sequentially removed

starting from the most redundant applicant to the least. At each stage, the

mean degree is calculated to evaluate how the network is reacting and is
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Table 5.2: Number of applicants in selected regions

Type
Region

Düsseldorf Munich Stuttgart Berlin
Max Planck Society 1 1 1 2
Leibniz Association 0 0 0 2
Helmholtz Association 0 0 0 6
Universities 8 15 13 10
Technical Universities 10 8 4 8
University of Applied Sci-
ences

6 3 1 10

Fraunhofer Institutes 3 2 1 3
Private Institutes 392 425 415 376
Other 56 62 41 86
Total 476 516 476 503

eventually becoming more disconnected. As previously explained, the mean

degree is not suitable when the aim is to assess how applicants combine

technologies, but it can give a good indication of how the cohesiveness of

the network is reacting to the removal of some of its components (Molloy

and Reed, 1995).

The mean degree is calculated as follows (Wassermann and Faust, 1994):

d̄ =

∑n
i=1 di
n

(5.3)

di is the degree of a single node and n is the number of nodes of the network.

When the mean degree reaches the critical value of 2, it means that the

network is completely disconnected. In the literature, this threshold is

identified as the Molloy-Reed criterion, the point after which the network

is fragmented in too many components (Molloy and Reed, 1995). The

technological base of the regional KS would be completely dissolved (Toth

et al., 2022).

Figure 5.2 shows the results for the aforementioned procedure. On the

abscissa is represented the mean degree calculated every time an applicant

from the region is removed, on the ordinate is represented the parameter

α that goes from 0 to 1. When α is 0 means that no patents from any

applicant has been removed from the KS, when α is equal to 1 means that

all applicants with their patents have been removed from the KS. All four

networks become completely disconnected when around 95% of applicants



134 Organizations and technological combinations

are removed. When the first 50% of applicants are removed (the ones

that combine at a higher rate knowledge already combined by others), the

mean degree of the four KSs does not fall by much. However, when the least

redundant applicants are removed, the mean degree drops dramatically. This

finding confirms that the least redundant applicants have a bigger impact

on the cohesiveness of the KS. Moreover, some substantial drops in the

mean degree for all four KSs show that there are applicants creating many

connections. These applicants have the highest number of patents in the

region (big firms with many applications). Therefore, they are contributing

to create a high number of connections in the region, once they are removed

they are responsible of a huge drop in the mean degree. For example, the big

drop in mean degree in Stuttgart from 13.76 to 5.95 is due to the presence

of a big company Robert Bosch GMBH that alone is detaining 2299 patents

and creates 1986 edges in the regional knowledge space. For this reason, in

the econometric analysis that will follow the number of patents that each

applicant has will be used as a control variable.
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Figure 5.2: Sequential removal of applicants and mean degree calculation on
selected regions
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5.6 Econometric Approach

In this section I show the econometric approach that I used to understand

how different typology of organizations combine knowledge. In particular, I

am interested not only generally on their cross-fertilization abilities but also,

and more importantly, if there is a mitigation effect due to their position in

the Regional Innovation Network.

5.6.1 Dependent, Independent and Control Variables

Table 5.3 shows the variables used for the series of regressions. The impact

of the combinations created by the applicants on the KS is assessed through

the Redundancy Coefficient (already presented in section 5.5) that acts as

dependent variable.

The first set of independent variables (Type Max Planck, Type Leibniz, Type

Helmholtz, Type University, Type Technical University, Type University of

Applied Sciences,Type Fraunhofer, Type Private Institutes) is represented

by dummies to indicate the type of applicant. These dummy variables take

value one if the name of the applicant inside the HAN database matches a

specific applicant category. For the variable Rank Degree Centrality, regional

“innovator networks” (applicants are nodes and common inventors are edges)

have been constructed for each considered LMR. The degree centrality

for each applicant is measured in each network and then ranked from the

highest to the lowest result. In the literature, the “innovator network” is

used to assess the potentials for knowledge spillovers among innovative

actors inside a region (Graf, 2017). It follows that with this variable, the

actual importance of the applicant for knowledge diffusion inside the regional

innovation network is also assessed. The rank afterwards is reversed to aid

interpretation of the results (high values in the reversed measure mean low

ranks). The reversed rank degree centrality take values between 0 and 1,

inclusive. A value of 1 indicates that an applicant is first in terms of degree

centrality in the region, and a value of 0 means that the applicant is last in

terms of centrality in the region.
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The Rank Degree Centrality is then interacted with the typology of the

applicant to assess whether when a specific typology of applicant is central

has also an effect on its redundancy coefficient. This is particularly important

for public organizations, since they usually occupy a central position and act

as moderators and distributors of knowledge inside the regional innovation

network. If the degree centrality of the applicant indeed decreases with

its redundancy, then these agents could enable radical innovations as they

combine knowledge in a unique way.

Finally, the Number of Patents is employed as the main control variable.

This variable counts the number of patent filings of each applicant in each KS.

The inclusion of this variable is necessary since the Redundancy Coefficient

is affected by the number of patents. As already explained in the description

of figure 5.2, the removal of applicants with many patents would affect the

cohesiveness of the network to a higher extent. Furthermore, there are many

applicants with only few patents in the dataset. To account for this, I use

the logarithmic form to get to a normal distribution.
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Table 5.3: Variables used in the regression

Variable Name Description

Dependent Variable

Redundancy Coefficient Redundancy Coefficient calculated

on each applicant present in the sam-

ple

Independent Variables

Type Max Planck Dummy variable that takes value

one when the applicant is identified

as Max Plack Society

Type Leibinz Dummy variable that takes value

one when the applicant is identified

as Leibniz Association

Type Helmholtz Dummy variable that takes value

one when the applicant is identified

as Helmholtz Association

Type University Dummy variable that takes value

one when the applicant is identified

as University

Type Technical Univer-

sity

Dummy variable that takes value

one when the applicant is identified

as a Technical University

Type University of Ap-

plied Sciences

Dummy variable that takes value

one when the applicant is identified

as a University of Applied Sciences

Type Fraunhofer Dummy variable that takes value

one when the applicant is identified

as Fraunhofer Institute

Type Firms Dummy variable that takes value

one when the applicant is identified

as Firm

Rank Degree Centrality Rank degree centrality of the appli-

cant in the applicant-inventor net-

work (reversed)

Interaction Terms De-

gree Rank vs Type

Dummies

Groups of interaction terms between

the type of the considered applicant

and the rank degree centrality

Control Variable

log(Number of Patents) Number of patents for each appli-

cant in logarithmic form
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Table 5.4: Descriptive statistics

Variable Name N Mean SD Min Max
Dependent Variable

Redundancy Coefficient 14780 0.534 0.362 0.000 1.000
Independent and Control Variables

Type Max Planck 14780 0.003 0.059 0.000 1.000
Type Leibniz 14780 0.003 0.057 0.000 1.000
Type Helmholtz 14780 0.001 0.037 0.000 1.000
Type University 14780 0.024 0.155 0.000 1.000
Type Technical University 14780 0.010 0.100 0.000 1.000
Type University of Applied Sciences 14780 0.005 0.070 0.000 1.000
Type Fraunhofer 14780 0.009 0.094 0.000 1.000
Type Private Institutes 14780 0.848 0.359 0.000 1.000
log(Number of Patents) 14780 1.174 1.190 0.000 8.276
Rank Degree Centrality 14780 0.149 0.125 0.050 1.000

Table 5.5: Average Rank Degree Centrality in regional innovator networks by
group of actors

Type Average Rank Degree
Max Planck 0.19

Leibniz 0.18
Helmholtz 0.17
University 0.20

Technical University 0.19
University of Applied Sciences 0.14

Fraunhofer 0.34
Private Institutes 0.15

5.6.2 Descriptive Statistics

Table 5.4 shows the descriptive statistics for the variables used in the

regressions. The dummy variables show that almost 85% of the sample

is composed by private entities, while the other public entities add up to

around 5% of the sample. The total does not sum up to 100% because there

10% is identified as “others”. As previously explained, this group has been

excluded from the main empirical analysis. The table 5.7 in the appendix

5.9 shows the correlations among the variables.

Table 5.5 shows the average rank degree centrality in the regional “innova-

tor networks” for each considered group of applicants. This confirms the

assumption that public entities are on average more central than private or-

ganizations. In fact, Private Institutes have one of the lowest average degree

centrality (together with University of Applied Sciences) when compared to

the other groups.
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Figure 5.3: Predicted effects with different levels of Rank Degree

Figure 5.3 shows the redundancy coefficients at different levels of rank

degree centrality for each group of applicants. In general, in all groups

apart from the Leibniz Institutes and Fraunhofer Institutes, redundancy

drops when the rank degree centrality increases. This means that when

the applicant interacts more with others, it has access to more knowledge

sources and combines technologies differently than others. The confidence

intervals displayed in the figure have different lengths because of the number

of participants identified in each group. The precision of the coefficient

is higher when the number of applicants identified in one group is higher.

Private Institutes have a higher precision because they are more numerous.

In order to assess the least redundant applicants and the ones that have the

highest impact on the cohesiveness of the KS, it is necessary to consider

implementing an econometric approach.

5.7 Results

Table 5.6 shows the results for the econometric approach. Models 1 and 2

are OLS standard regressions, whereas models 3 to 5 include regional fixed

effects. Model 1 shows the results which include only the dummy variables

that distinguish the typology of applicant. Model 2 additionally controls for

the Number of Patents. Model 3 introduces regional fixed effects. Model 4
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additionally includes the Rank Degree Centrality as an independent variable.

Finally, model 5 uses all variables with the addition of the interaction terms.

Starting from the first eight dummy variables (Type Max Planck, Type

Leibniz, Type Helmholtz, Type University, Type Technical University, Type

University of Applied Sciences, Type Fraunhofer and Type Private Insti-

tutes), the public organizations that are more redundant are: Max Planck,

Fraunhofer, Universities and Technical Universities. These have a positive

coefficient, meaning that, to a higher extent, they combine knowledge that it

is already combined by others. Consequently, they do not combine knowledge

in an unique way, and the impact on the cohesiveness of the KS when these

groups of applicants are removed is significantly lower. Private Institutes

show a negative and significant coefficient. Therefore, they have a higher

impact on the cohesiveness of the KS when removed, and to a larger extent,

they combine knowledge in a unique way compared to others.

Other interesting results emerge when considering the interaction terms

between the Rank Degree Centrality and the typology of applicant. This

accounts for possible mitigation effects when the applicant holds a central

position in the Regional Innovation Network. In other words, the interaction

term tests how an increase of centrality in the “innovator network” affects

the ability of different groups of applicants to combine knowledge. In this

context, some groups of public organizations have a negative and significant

coefficient. Looking more closely at the typology of the applicants, these are:

Max Planck Society, Universities, Technical Universities and Fraunhofer

Institutes. Public organizations have a considerable effect on the cohesiveness

of the KS, and they combine unique knowledge only when they hold a central

position in the Regional Innovation Network. Therefore, centrality acts as a

positive force towards the combination of less-redundant technologies with a

consequent higher impact on the cohesiveness of the KS. The results from

a robustness check using a different main independent variable (namely: a

ranking based on betweenness centrality, not on degree centrality) is provided

in table 5.8 in Appendix 5.10. The results are similar to the ones presented

here in the main analysis.
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Table 5.6: Linear Model and Fixed Effects results

Dependent variable:

Redundancy Coefficient
LM LM FE FE FE

(1) (2) (3) (4) (5)

Type Max Planck 0.021 0.050 0.077 0.067 0.218∗∗∗

(0.051) (0.050) (0.048) (0.047) (0.079)

Type Leibniz 0.038 0.038 0.096∗ 0.087∗ 0.073
(0.052) (0.052) (0.050) (0.049) (0.092)

Type Helmholtz 0.031 0.043 0.080 0.085 0.139
(0.080) (0.080) (0.076) (0.075) (0.122)

Type University 0.091∗∗∗ 0.098∗∗∗ 0.098∗∗∗ 0.065∗∗∗ 0.203∗∗∗

(0.021) (0.021) (0.020) (0.020) (0.028)

Type Technical University 0.080∗∗∗ 0.088∗∗∗ 0.094∗∗∗ 0.071∗∗ 0.170∗∗∗

(0.031) (0.031) (0.029) (0.029) (0.043)

Type University of Applied Sciences −0.019 −0.027 −0.019 −0.023 −0.025
(0.043) (0.042) (0.040) (0.040) (0.069)

Type Fraunhofer −0.023 0.011 0.066∗∗ −0.019 0.187∗∗∗

(0.032) (0.032) (0.031) (0.031) (0.048)

Type Private Institutes −0.171∗∗∗ −0.159∗∗∗ −0.141∗∗∗ −0.131∗∗∗ −0.082∗∗∗

(0.010) (0.010) (0.010) (0.009) (0.015)

log(Number of Patents) −0.027∗∗∗ −0.031∗∗∗ −0.047∗∗∗ −0.047∗∗∗

(0.002) (0.002) (0.002) (0.002)

Rank Degree Centrality 0.616∗∗∗ 1.033∗∗∗

(0.031) (0.080)

Degree Rank X Max Planck −0.887∗∗∗

(0.333)

Degree Rank X Type Leibniz −0.021
(0.430)

Degree Rank X Type Helmholtz −0.393
(0.583)

Degree Rank X Type University −0.821∗∗∗

(0.113)

Degree Rank X Type Technical Uni −0.630∗∗∗

(0.178)

Degree Rank X Type University of Applied Sciences 0.016
(0.402)

Degree Rank X Type Fraunhofer −0.839∗∗∗

(0.131)

Degree Rank X Type Private Institutes −0.345∗∗∗

(0.080)

Constant 0.676∗∗∗ 0.698∗∗∗ 0.534∗∗∗ 0.399∗∗∗ 0.649∗∗∗

(0.009) (0.010) (0.041) (0.041) (0.025)

Regional Dummies No No Yes Yes Yes
Observations 14,780 14,780 14,780 14,780 14,780
R2 0.037 0.045 0.149 0.172 0.176
Adjusted R2 0.037 0.045 0.142 0.165 0.168
Residual Std. Error 0.355 (df = 14771) 0.353 (df = 14770) 0.335 (df = 14654) 0.331 (df = 14653) 0.330 (df = 14645)
F Statistic 71.672∗∗∗ (df = 8; 14771) 77.757∗∗∗ (df = 9; 14770) 20.523∗∗∗ (df = 125; 14654) 24.095∗∗∗ (df = 126; 14653) 23.341∗∗∗ (df = 134; 14645)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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5.8 Conclusion

Different organizations have different purposes based on their main focus

(basic or applied research). They also combine knowledge in a different way.

Basic research organizations are usually regarded as explorers. Whereas,

applied research organizations are usually regarded as exploiters (Rowley

et al., 2000; Hervas-Oliver et al., 2017; Miller et al., 2005). This divide can

be reflected in the type of combinations developed by different entities. Since

the development of new technological trajectories need diverse knowledge

for their development (Castaldi et al., 2015; Arts and Veugelers, 2015), basic

research organizations should combine knowledge differently with respect

to others. However, the central position occupied by these basic research

entities in the Regional Innovation Network could act as a driving force

towards a more exploitative attitude (Gilsing, Nooteboom, Vanhaverbeke,

Duysters, and Van Den Oord, 2008). Pursuing the development of new

technological trajectories is risky and the fear of losing centrality could

inhibit them (Hervas-Oliver et al., 2017). By contrast, the paper by Graf

and Menter (2021) finds that basic research organizations occupying a central

position in the RIN produce more radical patents. This finding suggests that

these organizations combine different knowledge to produce such radical

inventions through exploration activities. Complementing these previous

studies on the effect of public and private organizations on the quality of

inventions, I investigate the impact of different organizations on the type

and uniqueness of knowledge combinations created.

To capture this effect, I introduce a new measure called a Redundancy

Coefficient (RC), which estimates how many combinations inside the tech-

nological space of a region would survive when the patents of one applicant

are removed. This measure shows how good an applicant is in combining

knowledge that no one else is combining in the KS and therefore has a

higher potential to develop new technological trajectories. Moreover, as

demonstrated in the descriptive analysis, the lower is the redundancy of an

applicant, the more it affects the cohesiveness of the technological space.

However, the Redundancy Coefficient alone is not sufficient to assess the

impact that applicants have on the uniqueness of combinations. RC and

the effect that it has on the cohesiveness of the network is influenced by
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the number of patents that each applicant has, therefore it is necessary to

employ an empirical approach to control for this problem.

Using an empirical approach which employs the aforementioned RC as

the dependent variable and a set of dummies distinguishing between the

different typologies of applications as the independent variable, I find that

different organizations combine knowledge in different ways. In particular,

public organizations like universities, technical universities and Fraunhofer

institutes, to a larger extent, combine knowledge that is already combined

by others, whereas private institutes combine unique knowledge. However,

the results change when the typology of the applicant is considered with

the mitigation effect of centrality inside the Regional Innovation Network.

Max Planck, Fraunhofer Institutes, universities, technical universities and

private institutes combine knowledge differently than others. In other words,

these applicants combine technologies in an unique way when they are central.

This finding suggests that not only does the typology of an applicant matter

for the quality of technological combinations, but the centrality in the RIN

is also a relevant factor.

These results suggest that policymakers should support basic research in-

stitutes in abandoning the ivory tower culture in favor of a more central

role inside the Regional Innovation Network (Etzkowitz et al., 2000). This

approach would help them actually combine technologies that are funda-

mental for the regional Knowledge Space. In this way, public organizations

could create a solid knowledge base that through spillovers, which would

allow knowledge to flow to other entities like private firms (Graf and Menter,

2021). Promoting further integration of applied and basic research should

be pursued. However, policymakers should not forget that organizations

can also work well in engaging different types of research. Consequently,

every attempt to modify the agenda of these organizations could harm them.

Max Planck, universities, technical universities and Fraunhofer institutes

are able to combine technologies in an unique way when their centrality is

high, whereas Helmholtz, Leibniz and university of applied sciences do not

show any significance. However, this finding does not imply that the latter

produces less important combinations but instead that they are involved in

combining more marginal knowledge that could become mainstream in the

future. Organizations on their own cannot trigger technological development
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in a region. Rather, it is the interaction and cooperation of all the interested

actors that allows this process. Policymakers should take into account this

interplay when shaping new cluster policies (Basilico et al., 2022).

The study proposed here has several limitations. First, when using only

patents as database for the analysis, only patentable inventions are included.

As a result, many non-patentable inventions (for example advances in soft-

ware and services) are neglected (Griliches, 1990). Second, the analysis relies

fully on the classification system of patents provided by patent offices. This

implicitly implies that the patents classified in a single class are similar to

each other. Patent offices classify patents for other purposes than the type

of analysis proposed in this paper, therefore it might not hold true. Third,

the Redundancy Coefficient is not yet diffused in evolutionary economic and

economic geography studies. Hence, care should be taken in interpreting the

results. Finally, these results may not be generalizable to other countries

and research infrastructures other than the German one.

Based on the findings presented in this paper, future research should focus

on exploring how diversification patterns of single organizations develop and

how these patterns influence innovation and economic performance of regions.

This research could be a fundamental step in determining the importance of

organizations inside the Regional Innovation Network.
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5.9 Correlation Tables

Table 5.7: Correlation table for the first regression with Redundancy Coefficient
as dependent variable

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
(1) Redundancy Coefficient - 0.03*** 0.03*** 0.02*** 0.10*** 0.06*** 0.02*** 0.03*** -0.19*** -0.03*** -0.08***
(2) Type Max Planck - 0.00 0.00 -0.01 -0.01 0.00 -0.01 -0.14*** 0.00 0.02***
(3) Type Leibniz - 0.00 -0.01 -0.01 0.00 -0.01 -0.13*** -0.01 0.02***
(4) Type Helmholtz - -0.01 0.00 0.00 0.00 -0.09*** 0.00 0.00
(5) Type University - -0.02*** -0.01 -0.02*** -0.37*** -0.01 0.06***
(6) Type Technical University - -0.01 -0.01 -0.24*** -0.01 0.03***
(7) Type University of Applied Sciences - -0.01 -0.17*** -0.01 0.00
(8) Type Fraunhofer - -0.23*** 0.03*** 0.15***
(9) Type Firms - 0.03*** -0.06***
(10) Number of Patents - 0.22***
Note: *p ¡ 0.1; **p ¡ 0.05; ***p ¡ 0.01 (11) Rank Degree Centrality -

5.10 Robustness checks

Table 5.8 shows the results for some robustness checks performed, using rank

betweenness centrality instead of rank degree centrality. The model here is

the same as the the one in table 5.6 for columns (4) and (5). The results for

columns (1), (2) and (3) are not reported since they would be the same.

The results are not affected by the introduction of a different independent

variable. When the dummies are interacted with the degree centrality the

coefficient becomes negative for the same applicants as in table 5.6 (namely:

Max Planck institutes, Universities, Technical Universities, Fraunhofer Insti-

tutes and Firms). However, the only significant results among the public

organizations are universities and Fraunhofer institutes. This confirms that

when considering a different centralization indicator as main independent

variable the results do not change.
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Table 5.8: Robustness checks results

Dependent variable:

Redundancy Coefficient
FE FE

(1) (2)

Type Max Planck 0.068 0.110
(0.048) (0.067)

Type Leibniz 0.094∗ 0.112
(0.050) (0.077)

Type Helmholtz 0.080 0.035
(0.076) (0.111)

Type University 0.087∗∗∗ 0.126∗∗∗

(0.020) (0.025)

Type Technical University 0.084∗∗∗ 0.113∗∗∗

(0.029) (0.038)

Type University of Applied Sciences −0.018 −0.053
(0.040) (0.055)

Type Fraunhofer 0.032 0.100∗∗

(0.031) (0.043)

Type Private Institutes −0.139∗∗∗ −0.123∗∗∗

(0.010) (0.012)

log(Number of Patents) −0.037∗∗∗ −0.037∗∗∗

(0.003) (0.003)

Rank Betweenness Centrality 0.227∗∗∗ 0.425∗∗∗

(0.034) (0.079)

Betweenness Rank X Max Planck −0.321
(0.267)

Betweenness Rank X Type Leibniz −0.179
(0.446)

Betweenness Rank X Type Helmholtz 0.273
(0.587)

Betweenness Rank X Type University −0.324∗∗∗

(0.114)

Betweenness Rank X Type Technical Uni −0.266
(0.166)

Betweenness Rank X Type University of Applied Sciences 0.407
(0.423)

Betweenness Rank X Type Fraunhofer −0.349∗∗∗

(0.124)

Betweenness Rank X Type Private Institutes −0.167∗∗

(0.077)

Constant 0.512∗∗∗ 0.717∗∗∗

(0.041) (0.024)

Yes Yes
Observations 14,780 14,780
R2 0.152 0.152
Adjusted R2 0.144 0.145
Residual Std. Error 0.335 (df = 14653) 0.334 (df = 14645)
F Statistic 20.767∗∗∗ (df = 126; 14653) 19.643∗∗∗ (df = 134; 14645)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Chapter 6

Conclusion

The thesis contributes to the general understanding of the evolution of

knowledge spaces, particularly on the role that important technologies have

in this process. The research aims of the thesis are to define and understand

the differences between different typologies of innovations that contribute to

the technology evolution, to provide indicators to assess how technological

spaces evolve and to analyse how drivers (both internal and external) can

drive the process of technological evolution. In the core Chapters from 2

to 5, the evolution of technological spaces is analysed based on these three

objectives.

In order to analyse how technology spaces evolve over time, the development

of the thesis was an iterative process. The thesis recombines different streams

of literature, different data sources and methodologies from different fields.

In the following, I summarize the main findings and contributions, formulate

policy implications and point out limitations and avenues for further research.

6.1 Main findings and contributions

Regarding the first research objective of the thesis, namely to distinguish and

give a clear definition of different innovation concepts, Chapter 2 gives valu-

able insights. We performed a text analysis over 532 documents belonging to

the category of the social sciences in Web of Science containing a definition of

radical, discontinuous, disruptive, breakthrough, continuous and incremental

149
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innovations. Then, we assigned each phrase containing defining elements to

one of the subsequent phases: Requirements (Input), Features (Content) or

Effects (Output). Our broad results confirm the ones already put forward

by Kovacs et al. (2019). The innovation labels can be clearly distinguished

by the two dimensions novelty and impact. The “exceptional” innovations

have higher degree of novelty, and they are more impactful whereas the

“non-exceptional” innovations have a lower degree of novelty and they are less

impactful. However, we identify two additional aspects often neglected by the

relevant literature. On one hand, it is important to consider if the concepts

are more market or technology related. On the other hand, it is important to

understand on which level the resulting effects have a positive or a negative

connotation (in other words if the labels are competence-enhancing or if they

are competence-destroying). In the discussion of the innovation concepts,

both of these dimensions has been rarely stressed, and in both cases, at our

knowledge, they were never systematized. We find that the terms disruptive

and incremental innovations are clearly related to the market-level whereas,

breakthrough has a clear association with an impact on the technological level.

Disruptive is clearly a competence-destroying concept while incremental is

a competence-enhancing term. In this sense, we contribute to the scarce

literature about the systematization of innovation terms by giving a more

precise definition of the innovation labels.

Chapter 3 gives valuable insights on the second research objective of the

thesis, namely to provide new indicators for assessing the importance of tech-

nologies inside knowledge spaces. Starting from the definition of well-known

concepts like General Purpose Technologies and Key Enabling Technologies,

we provide the definition of Bridging Technologies. These are technologies

that in the context of knowledge spaces serve a bridging function by establish-

ing direct and indirect links between other technology fields. We develop two

definitions of bridging technologies, one based on the number of connections

within the knowledge space and the other based on the structural position

inside the knowledge space. Then, we develop two different indicators based

on these definitions and we apply them on the Jena knowledge space to

assess its evolution over time. We find that there are technologies emerging

as bridging and others leaving this role, confirming our assumption that

knowledge spaces are continuously evolving. Moreover, we introduced a
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new indicator called Revealed Bridging Advantage (RBA) for inter-regional

comparisons. Our results show that large patenting regions are not neces-

sarily the ones that embed most new technologies in their knowledge space

and that the German knowledge space became less dependent on important

technologies like transport, machinery and chemicals over time. Therefore,

we contribute to the scarce literature of bridging technologies and knowledge

spaces both from a theoretical and methodological point of view. The tools

developed in this Chapter are implemented in the subsequent ones to assess

how drivers are reshaping the development of knowledge spaces.

Chapters 4 and 5 deal with the last research objective of the thesis, namely to

show how external and internal drivers reshape the development of knowledge

spaces. Chapter 4 analyses how technology-based regional knowledge spaces

are shaped by the introduction of a cluster policy. In particular, we analysed

how the embeddedness of a specific targeted technology (biotechnology) by

the BioRegio program is changing over time in the supported regions. We

argue that the supported field should become more relevant in the knowledge

space by creating new connections with other fields. From the empirical

analysis performed using as dependent variable the betweenness centrality

indicator and a difference-in-difference analysis, we observe a positive effect

of the policy on the embeddedness of biotechnology after the funding ceases.

Our analysis complements other evaluations of the BioRegio program (Engel

et al., 2013; Graf and Broekel, 2020) which find only short time effects on

innovation outputs and actor network structures. Our findings show that the

direction of the exploration process (searching new ways to combine other

technologies with biotechnology) is driven by policies. On a more general

point of view, we demonstrate that the changes in knowledge spaces are

driven by external factors (in this case public funding).

Chapter 5 deals with internal drivers of change in knowledge spaces, in par-

ticular, on how organizations present locally combine technologies important

for the cohesiveness of the knowledge space. To perform such analysis, I

introduced an indicator called Redundancy Coefficient that measures the

extent to which an organization combines technologies in a different way

than others. Not all organizations present locally are homogeneous. There-

fore, I have divided them in different categories based on their research

orientation. Moreover, I assess how central these organizations are in the
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regional innovation network. Both these forces can influence their propensity

to combine technologies important for the cohesiveness of the knowledge

space. Results show that when the centrality in the regional innovation

system is not taken into account, only organizations that do mostly applied

research are the ones combining knowledge in a different way than others.

Interestingly, when the centrality in the regional innovation system is taken

into account, public organizations also have an important role in knowledge

recombination. This Chapter contributes to the scarce literature about the

role of organizations in knowledge recombination activities, providing new

insights and tools to measure it.

The findings of the thesis range from contributions to better define and gen-

eralize innovation activities, to the definition and identification of important

technologies inside regional knowledge spaces providing tools to assess their

impact and to an empirical contribution about which the possible internal

and external drivers reshape the evolution of knowledge spaces.

6.2 Policy Implications

Concerning policy implications, the thesis offers insights based on different

dimensions.

First, the differentiation of innovation labels between technological and

marketed and the direction of their effects between competence-enhancing

and competence-destroying is relevant for the policy implications. Whether

the observed effects from innovation activities make a difference for the

market or for the technology can shape the policy intervention. If the

effect of innovation activities is specific to one of these two dimensions, a

one-sizes-fits-all policies can be less effective rather than a targeted policy

intervention.

Second, an assessment on the effects that targeted cluster policies have on the

regional technological structures helps in the understanding of whether the

objectives of such policy measures have been reached. In fact, cluster policies

are usually targeted to organizations active in specific technologies with

the intent to increase cross-fertilization activities with other, non-related,

technologies. Therefore, such studies on the positive effects of policies on
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technological spaces can create room for an increase in funding for subsequent

policy interventions.

Third, policy makers when introducing a new policy should also consider the

effects that this could have on the technological structure of the targeted

area based on their previous technological strengths. On one hand, negative

effects could emerge when a policy is targeting regions that are already strong

in a single technology. This would result in a technological reinforcement of

such regions with an increase in the gap with the lagging ones. Therefore,

the result is not beneficial in terms of equality. On the other hand, a massive

investment in lagging regions could possibly result in a waste of resources.

The technological strength of these regions is low, and the possibilities of

cross-fertilization are scarce. Thus, in these cases it is difficult to build

“cathedrals in the desert”. Policy makers should target policies to hit weak

spots in the knowledge spaces only when there is potential to actually

reinforce them through cross-fertilization activities. When it is difficult to

promote such activities, the investment could result in a waste of resources.

Fourth, the main results on the organizations involved locally in the process of

production of knowledge suggest that policy makers should pay attention on

the positioning of such actors inside the region. In fact, especially for public

research institutes, it has been demonstrated that when these organizations

are central in the regional innovation network, they combine core knowledge

for the region. Thus, policy makers should support these organizations

through the promotion of knowledge transfer activities with other partners

inside the regional innovation network. In this case, the organizations would

benefit from a varied asset of knowledge sources, and they would contribute

to a higher extent to reinforce the knowledge regional base.

6.3 Limitations and further research

avenues

This thesis certainly contributes to the scarce literature regarding the study of

the evolution of technological spaces and on the identification of innovative

activities. However, the research efforts are not exempt from a certain
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amount of limitations, including directions and alternative paths that have

not been undertaken.

In particular, in Chapter 2 where we characterized different innovation terms,

we based our analysis only on a subset of most famous concepts in innovation

literature. It is possible to extend such analysis including other emerging

terms (like architectural innovation) to provide researchers and practitioners

with a more comprehensive distinction among different innovation definitions.

Moreover, another aspect that has been neglected is the connection between

the indicators developed for assessing the impact of specific innovations and

the innovation terms itself. Finally, the historical evolution of these labels

has not been taken into account. We have treated all the innovation labels

as if they do not change over time. This is far from true, as every author

when using these definitions adds some features and changes slightly the

meaning of each term. An evolutionary perspective gives insights on why

and how nowadays specific terms are used to relay a specific meaning.

The main limitation of Chapters 3 to 5 is that only the effects on the tech-

nological structure of regions have been addressed. Future research should

focus on how these changes induced by organizations, policies and prominent

technologies influence the future economic and innovative performance of the

region. This type of research pushes the frontier much further, and it would

disentangle the inter-dependencies between the changes on the technological

level and on the economic sphere. The changes on the technological level

could eventually also result in a lower economic performance in the region

since it has to adapt to the different setting. However, once the region and

the actors composing it adequately adapt to the change, the region could

face economic growth.

There are two general technical limitations common for Chapters 3 to 5.

These are the usage of patent data as the main source for the analysis and

the fact that most of the analysis relies on the classification system of patents.

First, only patentable inventions are included in the analysis neglecting all

the non-patentable inventions. Therefore, the chapters are based only on a

part of the regional technological spaces. One of the challenges undertaken by

recent papers (e.g. Balland and Boschma, 2021) studying knowledge spaces

is to connect different data sources to include a wider spectrum of regional
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capabilities. This process bears multiple obstacles because the connection

between different databases is not straightforward, and concordance tables

must be used in order to perform such analyses. Second, the usage of the

classification system of patents implies that a patent classified in a class is

substantially different from a patent classified in another class. This might be

far from true because the classification done by the patent offices is for other

reasons other than for the construction of a knowledge space. Nowadays,

more sophisticated techniques using, for example, text analysis have been

put forward by researchers to overcome this problem. However, they require

high performance computers and an assessment by a commission of experts.

Therefore, these type of analyses are, for now, suitable for a small number

of regions or for a limited amount of technological classes.

In conclusion, the thesis has highlighted how technology spaces change over

time and the factors that drive these processes. While this analysis bears mul-

tiple challenges that could not be faced uniquely in this dissertation, I hope

that the contribution adds to understanding the dynamics of technological

spaces and inspires subsequent research in that direction.
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