
  

 

Third Harmonic Generation in 

Liquid Core Optical Fibres 

 

Dissertation 

for the acquisition of the academic title 

Doctor rerum naturalium (Dr. rer. nat.) 

 

 

submitted to the council of the  

Faculty of Physics and Astronomy 

of the 

 

 

   

 

 

by M.Sc. Kay Schaarschmidt 

born in Karl-Marx-Stadt, Germany, on October 6th in 1988 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reviewers: 

1.  Prof. Dr. Markus A. Schmidt, Jena 

2.  Dr. Falk Eilenberger, Jena 

3.  Dr. Micheal H. Frosz, Erlangen 

Day of disputation: 07.07.2022 



 I 

Abstract 

The objective of this thesis is to investigate third harmonic generation in liquid core 

fibres. Such fibres are formed by injection of liquid into a hollow, solid cladding by 

capillary forces. Carbon disulphide and tetrachloroethylene are identified as most 

promising liquid candidates. Such liquids offer a strong nonlinearity whose major 

contribution is non-instantaneous arising from the molecular structure. The effect of 

this material response during harmonic generation is investigated numerically by 

solving coupled evolution equations and causes distinct spectral shifts and 

broadening of both harmonic and fundamental wave. 

Both liquids offer excellent transparency and a high index of refraction enabling 

intermodal phase matching in a step-index geometry without requiring a complex 

microstructure. Aspects of fibre design and experimental realisation are presented in 

detail. Using sub-picosecond pump pulses of different duration the harmonic is 

generated in a higher order fibre mode and resulting signals are analysed in the 

spectral domain. 

Modification of the fibre cross-section towards an elliptical core is investigated. 

Besides the induced birefringence, harmonic generation in further sets of higher 

order modes is possible due to their transformation of electric fields. Design 

considerations of spatially modified fibres were confirmed experimentally and 

adaptive phase matching by controlling fibre temperature could be realised. 

Feasibility of long term exposure of liquid filled fibres to high average powers of 

femtosecond pulses is demonstrated underpinning that liquid core fibres withstand 

practical applications beyond laboratory use. 

Finally, possible routes to enhance the currently achieved conversion efficiencies 

for tetrachloroethylen of 2 ∙ 10-5, and carbon disulphide of 10-7, are identified and 

future prospects of this fibre platform are discussed. 
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Deutsche Zusammenfassung 

Gegenstand dieser Arbeit sind Flüssigkernfasern zur nichtlinearen Erzeugung der 

dritten Harmonischen durch intensive Pumppulse. Diese Fasern bestehen aus einem 

festen Mantel und einer durch Kapillarkräfte eingebrachten Flüssigkeit. Als 

vielversprechendste Kandidaten wurden Kohlenstoffdisulfid und Tetrachloroethylen 

näher betrachtet. Ein großer Anteil der hohen Nichtlinearität hat seinen Ursprung in 

der molekularen Struktur und führt zu einer nicht-instantanen Materialantwort. Der 

Einfluss dieser wird mittels numerischer Simulationen von gekoppelten Schrödinger 

Gleichungen untersucht und zeigt sich unter anderem durch spektrale Verschiebung 

und Verbreiterung während der Propagation beider Wellen.  

Beide Flüssigkeiten bieten neben hervorragender Transparenz einen hohen 

Brechungsindex um die Bedingungen zur Phasenanpassung für intermodale 

Frequenzkonversion in Stufenindex Fasern ohne Mikrostrukturierung zu erfüllen. 

Das Design der Fasern ist im Detail beschrieben und wird erstmalig experimentell 

umgesetzt. Mittels verschiedener Pulsdauern wird die Harmonische in Moden 

höherer Ordnung erzeugt und die resultierenden Spektren beider Wellen analysiert.  

Weiterführend wird die Modifikation der Fasergeometrie hin zu einem elliptischen 

Kern beschrieben. Neben doppelbrechenden Eigenschaften konnte so die Kopplung 

zu weiteren Moden durch Transformation der elektrischen Felder erhöht und 

experimentell bestätigt werden. Die grundlegende Möglichkeit zur adaptiven 

Phasenanpassung durch aktive Temperatursteuerung der Faser wird aufgezeigt. 

Langzeitversuche mit hohen Durchschnittspumpleistungen konnten im Rahmen 

der Arbeit zudem die Beständigkeit von Flüssigkernfasern für Anwendungen über 

den Laboreinsatz hinaus bekräftigen. 

Abschließend werden Ansätze zur Verbesserung der Konversionseffizienz, die im 

Falle von Tetrachloroethylen im Bereich um 2 ∙ 10-5 und im Falle von 

Kohlenstoffdisulfid bei 10-7  liegt, in Aussicht gestellt.  
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1 Introduction 

Third harmonic generation (THG) is a nonlinear process allowing conversion of a 

fundamental wave to three times its original frequency. It can be applied to convert 

intense laser pulses from near infrared to visible and ultraviolet radiation [1] or 

temporal switching [2]. In nonlinear microscopy interfaces of transparent media can be 

detected [3] and multimodal imaging [4] benefits from the THG  process. Although 

diverse in application, substantial signal yield requires high intensities and in bulk 

media large pulse energies are in demand. Since high performance lasers are costly, 

waveguides, and fibres in particular, became an indispensible tool making nonlinear 

optics accessible at moderate energy levels. Transverse field confinement to the scale of 

the radiation wavelength allows for sufficient intensities and can crucially extend 

interaction lengths far beyond typical dimensions of nonlinear crystals or the confocal 

length of a focused beam. 

However, THG is a phase sensitive process and exploiting fibre length is possible only 

if phase velocities of fundamental and harmonic wave are identical, i.e. if material 

dispersion is compensated. Since fibres are typically made from isotropic media, phase 

matching (PM) techniques known from crystal optics [5] need to be adapted. Here, 

higher order modes (HOMs) guided at the harmonic exhibit reduced phase velocity 

enabling PM to the pump wave which is typically guided in the fundamental mode. 

To this end, a sufficient index contrast between core and cladding must be present to 

make intermodal PM possible. With the introduction of microstructured optical fibres 

(MOFs), numerous demonstrations of THG in MOFs [6] showed HOMs in the visible [7,8] 

and ultraviolet [9] in early 2000. Simultaneously, silica micro fibres, so called tapers, 

were investigated experimentally [10,11] and theoretically in detail [12] as well as the 

propagation dynamics of THG [13,14].   

The conversion efficiency serves as sizable benchmark to assess performance in THG. 

For ultra-short pulses in the femtosecond regime the efficiency is typically of the order 

of 10ିସ in silica tapers [10,15] and in MOF [16]. Highly GeO2-doped fibres achieved 

efficiencies of 3 ∙ 10ି଻ thus far [17]. Despite efficiencies of up to 10-3 reported already in 

early work of MOFs, the modal shape with multiple lobes makes it difficult to further 

utilise the radiation other than in free space. Still, applications towards fluorescence 

sensing were demonstrated [18] and the trend towards multi-wavelength output from a 
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single fibre persists as a range of 300 nm was covered by more than 10 simultaneous 

modes in 2020 [19] in a MOF with suspended core. Thus THG in fibres holds potential 

for image guided surgery [20] or multiplexed fluorescence lifetime spectroscopy [21]. 

Upon proposing fibres to become a future source of correlated three photon states 

[22–24] in 2011, research interest in THG was renewed as it is the inverse process 

sharing the same PM conditions. THG in non-uniform tapers [15], taper knot-resonators 

[25], and silica fibres with highly GeO2-doped cores followed [17,26]. MOF with exposed 

cores [16,27] addressed post processing PM via nano-film deposition and tuning via 

control of ambient gas pressure was demonstrated for tapers in 2018 [28] to 

compensate for manufacturing inaccuracy.  

Since generation of correlated photons requires launching a pump in a HOM for 

existing fibre structures, efforts were taken to achieve conversion among single lobed 

modes; to this end, an advanced, multi-component photonic crystal fibre structure was 

demonstrated in 2016 [29]. The drawing process is very demanding to meet the 

required dimensions since tuning capabilities in silica based fibres are limited. Other 

work proposed conversion by counter propagating pulses [30]. THG in a fundamental 

mode of a taper was just demonstrated experimentally [31] in 2021 by means of 

acousto-optic mode conversion highlighting the on-going trend in the field. 

Considering the requirements for THG for both classical and non-classical regimes, an 

optimal fibre must provide means to achieve phase matching, offer sufficiently large 

nonlinearity, be tuneable ideally during operation, and be compatible with fibre 

packaging for convenience. Mechanical strength and straight forward manufacturing are 

desirable for wide spread use. Interfacing to standard single mode fibres can be 

accomplished by both pigtailed tapers and fibres with high GeO2 concentration via 

simple fibre splices. Yet, tapers usually require diameters below 1 µm for PM 

compromising mechanical strength, handling, and are susceptible to surface roughness 

[32], whereas highly GeO2-doped fibres are limited by the low bulk nonlinearity of silica.  

A fibre platform with potential of combining the aforementioned virtues is 

represented by liquid core fibres (LCFs) as argued hereafter. The replacement of silica in 

the core by a liquid allows introducing a greater nonlinearity to the fibre and at the same 

time maintains its mechanical integrity due to the silica cladding which may have 

standard sizes of 125 µm. Accurate models for dispersion [33] and nonlinearity [34,35] 

enabled convincing experimental progress in, e.g. supercontinuum generation in liquid 
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filled step-index fibres [36–42] and liquid filled MOFs [43–46] in both the normal and 

anomalous dispersive domain. LCFs provide adequate tuning potential due to their large 

thermo-optical coefficient [47]. Successful dispersion tuning in a LCF during operation 

by controlling temperature was already demonstrated [40] as well as reconfiguration of 

the core material by mixtures [41,42]. Further, molecular liquids exhibit a 

non-instantaneous nonlinear response due to orientational effects leading to new pulse 

dynamics [48,49] and enhanced stability in continuum generation [38,50]. Due to the 

temporal extent, the bandwidth of the liquid response is much lower than in silica and 

photon pair generation in LCFs was recently shown to mitigate noise from uncorrelated 

photons while still operating at room temperature [51,52]. 

A large number of fully integrated liquid photonic applications, combining light and 

liquid [53], were demonstrated for continuum [36,37] and Raman comb generation 

[54,55], Kerr cells [56], and integrated dye lasers [57]. Handling of LCF can hence be 

considered no more complex than the use of mechanically less robust softglass, 

chalcogenide glass, or sub-micron tapers made from silica, particularly since techniques 

to apply standard splice technology to LCFs already exist [58]. 

In view of this potential, LCFs are explored in this thesis as a new platform for THG 

from the experimental perspective supported by numerical simulations. 

The central scientific aspects of this thesis are as follows: 

• In what way is the molecular response involved in the generation of harmonics 

and the interaction during propagation?  

• Can combinations of core fluids and fibre dimensions be selected to successfully 

realise THG? 

• How efficient is THG in liquid core fibres in comparison to existing solutions? 

• How does form birefringence affect the participating modes in THG? 

• Can temperature modulation be used as tuning mechanism? 

• Can long-term stability be achieved in LCF? 
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1.1 Structure of the Thesis 

Following the introduction in chapter 1, the 2nd chapter presents the principles of 

waveguiding in circular step-index geometries such as liquid filled fibres and provides 

the tools for pulse propagation in the nonlinear regime. Functional forms of the retarded 

responses are provided and their contribution to the nonlinear refractive index is 

discussed. Theoretical aspects of phase matching and how to design waveguides to 

achieve intermodal third harmonic generation are summarised at the end of chapter 2. 

Chapter 3 provides an overview of nonlinear pulse propagation with the focus on 

studying the particular effects of the molecular contribution to the nonlinearity via both 

self and cross phase modulation. Thereafter coupled evolution dynamics for a pump and 

generated harmonic wave are presented and experimental conditions are assessed. 

Chapter 4 begins with selecting suitable liquids for harmonic generation in silica 

cladding fibres. Further, details of phase matching and waveguide design are presented 

and followed by experimental results. Those include harmonic generation in C2Cl4 and 

CS2 filled fibres for different pulse durations serving as pump pulse. Spatial 

modifications leading to birefringence are considered and executed experimentally. 

Aspects of temperature tuning are illustrated and experimental evidence of their 

potential is presented. The chapter closes with a demonstration of power handling 

capabilities of these fibres. 

In chapter 5 the work is summarised and possibilities for further efficiency 

improvement are provided and potential applications are discussed. 
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2 Nonlinear Wave Propagation in Dielectric Waveguides 

In this chapter a compact introduction to the fundamentals of nonlinear wave 

propagation and third harmonic generation (THG) in dielectric waveguides is presented. 

Extensive derivations are largely omitted and can be reviewed in the literature cited in 

each subchapter.  

2.1 From Maxwell’s equations to an eigenvalue problem 

The fundamental equations of classical electrodynamics are Maxwell’s equations. If 

dielectrics at optical frequencies are considered, it is assumed that neither free charges 

nor free currents are relevant. Moreover, dielectrics are assumed to have a negligible 

magnetization at optical frequencies. Hence Maxwell’s equations in time domain read:  

 

∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡
 

∇ ∙ 𝑫 = 0 

𝑫 = 𝜀଴𝑬 + 𝑷 

∇ × 𝑯 =
𝜕𝑫

𝜕𝑡
 

∇ ∙ 𝑩 = 0 

𝑩 = 𝜇଴𝑯 

(1) 

(2) 

(3) 

Arguments are suppressed for clarity. Vectorial quantities are printed in bold letters. 

E and H are the electric and magnetic field, respectively, while D and B are the electric 

displacement current and the magnetic induction. ∇= 𝒆௫𝜕௫ + 𝒆௬𝜕௬ + 𝒆௭𝜕௭ is the Nabla 

operator, ε0 and µ0 are the free space dielectric and magnetic permeability, and 𝒆~ 

represent Cartesian unit vectors. The polarization of a material is defined by the field P, 

which contains linear and nonlinear phenomena via 𝑷௅ and 𝑷ே௅. 

 𝑷 = 𝑷௅ + 𝑷ே௅ (4) 

The polarization of the material is described as a function of the driving electric field 

𝑬and the inherent properties of the material itself. It is customary to expand this 

dependence in a power series with respect to 𝑬෩ in the frequency domain [59]. 

 𝑃෨௜ = 𝜀଴ ቌ𝜒௜௝
(ଵ)

𝐸෨௝ᇣᇤᇥ
linear

+ 𝜒௜௝௞
(ଶ)

𝐸෨௝𝐸෨௞ + 𝜒௜௝௞௟
(ଷ)

𝐸෨௝𝐸෨௞𝐸෨௟ + ⋯ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ
nonlinear

ቍ (5) 

Note that summation for recurrent indices is implicit. The first term describes linear 

interactions in a possibly anisotropic medium where the electric and polarization fields 

are not necessarily parallel. The second term describes nonlinear interactions of second 

order, e.g. second harmonic generation, sum and difference frequency generation. The 

third term is responsible for THG and intensity dependent refractive index changes. 
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Descriptions of these and higher rank tensors can be found in [60,61]. In general, every 

nth order effect is described by the mixing of n fields via a tensor of rank n + 1. 

In a homogenous dielectric a nonlinear wave equation can be obtained from 

Maxwell’s curl equations for 𝑬෩ in frequency space 

 ∇ଶ𝑬෩ +
𝑛ଶ𝜔ଶ

𝑐଴
ଶ 𝑬෩ = −𝜔ଶ𝜇଴𝑷෩ே௅ , (6) 

where the index of refraction (IOR) was introduced as 𝑛ଶ(𝜔) = 1 + 𝜒(ଵ)(𝜔) for isotropic 

media, such as glasses or liquids. c0 is the velocity of light in vacuum. The solution 

procedure closely follows [62]. Due to the four Maxwell’s equations, only two of the six 

field components of 𝑬෩ and 𝑯෩  are independent and Eq. (6) can be treated as a scalar 

equation for both 𝐸௭
෪ and 𝐻௭

෪. Since the change of the IOR due to intensity is assumed 

small1, the nonlinear polarisation can be neglected at first and the problem may be 

separated by an ansatz of the form 

 𝐸௭
෪ (𝑥, 𝑦, 𝑧, 𝜔 − 𝜔଴) = 𝐹(𝑥, 𝑦)𝐴ሚ(𝑧, 𝜔 − 𝜔଴) exp(i𝛽଴𝑧), (7) 

with an arbitrary 𝛽଴, which leads to two separate equations 

 

ቆ
𝜕ଶ

𝜕𝑥ଶ
+

𝜕ଶ

𝜕𝑦ଶ
ቇ 𝐹 + 𝑛ଶ𝑘଴

ଶ𝐹 − 𝛽ଶ𝐹 = 0 

𝜕ଶ

𝜕𝑧ଶ
𝐴ሚ + 2i𝛽଴

𝜕

𝜕𝑧
𝐴ሚ + (𝛽ଶ − 𝛽଴

ଶ)𝐴ሚ = 0. 

(8) 

 

(9) 

Note that, mathematically, 𝛽ଶ represents a separation constant, its physical meaning is 

evident due to the dispersion relation presented in chapter 2.2. 𝑘଴ = 𝜔଴𝑐଴
ିଵ was 

introduced as vacuum wavenumber. To solve Eq. (8) it is customary to use polar 

coordinates and the ansatz 𝐹(𝜌, 𝜑) = 𝑓(𝜌) cos(𝑚𝜑 + 𝜑଴) which leads to Bessel’s 

differential equation for the radial part [62] within the core and cladding domain. 

Maxwell equations are used to derive the remaining field components and upon 

imposing the boundary conditions for tangential fields the dispersion relation results as 

solvability condition for the linear algebraic system [63]. 

 

 

                                                        

1 Example of CS2 in 3 µm core for 50 kW pulses: Δ𝑛/𝑛 < 10ିଷ 
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2.2 Guided Modes in Cylindrical Waveguides 

Cylindrical waveguides, i.e. fibres, are of key importance in this thesis and a prominent 

platform for nonlinear optics providing long interaction lengths combined with strong 

localisation of electromagnetic fields. The shapes of these fields, also termed modes, are 

obtained from the eigenvalue problem given in, Eq. (8). There is a plethora of different 

fibres currently available, many of which require special numerical treatment to solve 

for modes and the respective propagation constants. Here, simple step-index fibres (SIF) 

are considered as implemented experimentally. Fig. 1 (a) presents a schematic of a SIF 

with a selection of guided modes (b) obtained by solving the eigenvalue problem. Each 

sub-panel shows the intensity distribution and electric field vectors. The standard 

nomenclature for hybrid and transverse modes is used with two indices. The first index 

corresponds to the azimuthal field dependence and occurs in the dispersion relation in 

Eq. (10) as 𝑚 and can take integer values including zero. The second index is counting 

the number of guided modes for a particular type of mode and index 𝑚. Only modes of 

type HEmn (including the fundamental mode HE11) which show a central intensity lobe 

will be of interest for frequency conversion as discussed in section 2.4.3. 

 

Fig. 1: (a) Step-index fibre with schematic profile of refractive index. (b) Selection of intensity 
profiles with electric field vectors for guided modes of hybrid type (HEmn and EHmn) and 
transverse type (TE0n and TM0n). Dashed circle represents the core. Fibre parameters: 𝒏𝒄𝒍 =
𝟏. 𝟒𝟓, 𝒏𝒄𝒐 = 𝟏. 𝟒𝟓𝟖, 𝒓𝐜𝐨/𝝀 = 𝟒. 

In free space a simple dispersion relation 𝑘(𝜔) = 𝑛(𝜔)𝜔𝑐଴
ିଵ can be obtained using a 

plane wave ansatz for Eq. (8). Here, 𝑘 is the wavenumber that corresponds to the 

propagation constant in free space and 𝑐଴ is the speed of light in vacuum. For the case of 

fibres, Eq. (8) can be solved in polar coordinates, which is a known procedure. Explicit 

details are found in the respective chapters of [63–65]. Here, only the transcendental 
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dispersion relation for modes is given using the notation of [64], due to its importance to 

determine dispersive properties of fibre waveguides: 

 ቈ
𝒥௠

ᇱ (𝑈)

𝑈𝒥௠(𝑈)
+

𝒦௠
ᇱ (𝑊)

𝑊𝒦௠(𝑊)
቉ ቈ

𝒥௠
ᇱ (𝑈)

𝑈𝒥௠(𝑈)
+

𝑛௖௟
ଶ

𝑛௖௢
ଶ

𝒦௠
ᇱ (𝑊)

𝑊𝒦௠(𝑊)
቉ = ൤

𝑚𝛽

𝑘଴𝑛௖௢
൨

ଶ

൤
𝑉

𝑈𝑊
൨

ସ

 (10) 

𝒥௠ and 𝒦௠ represent Bessel functions of order 𝑚 for the core and cladding regions 

such that the fields obey physical boundary conditions. The prime indicates a derivative 

with respect to the argument. 𝑛௖௢ and 𝑛௖௟  are the core and cladding IOR. The parameters 

𝑈 = 𝑟௖௢(𝑛௖௢
ଶ 𝑘଴

ଶ − 𝛽ଶ)ଵ/ଶ and 𝑊 = 𝑟௖௢(𝛽ଶ − 𝑛௖௟
ଶ 𝑘଴

ଶ)ଵ/ଶ depend on the propagation constant 

𝛽 and the core radius 𝑟௖௢. The normalized frequency, or V-parameter, is given as 

𝑉 = √𝑈ଶ + 𝑊ଶ = 𝑟௖𝑘଴𝑁𝐴, where the numerical aperture was introduced as 

𝑁𝐴 = ඥ𝑛௖௢
ଶ − 𝑛௖௟

ଶ . Due to its complexity, Eq. (10) is solved numerically by root search 

algorithms to determine 𝛽(𝜔), subsequently the modal fields can be calculated. The 

procedure is explained in detail in chapter 5 of [63], explicit formulas for the vectorial 

field distribution 𝑭 in SIF can be found on page 250 of [64]. 

Since 𝛽(𝜔) has no analytic form, its Taylor expansion 

 𝛽(𝜔) = ෍
1

𝑛!
𝛽௡ ∙ (𝜔 − 𝜔଴)௡ 

ஶ

௡ୀ଴

 with 𝛽௡ =
𝜕௡𝛽

𝜕𝜔௡
ฬ

ఠబ

 (11) 

at a reference frequency 𝜔଴ is commonly employed and its relevance is apparent in 

Eq. (15) in the following subsection.  

2.3 Nonlinear Pulse Propagation  

Nonlinear pulse propagation is a long standing problem and many procedures emerged 

to provide means to solve for the field under a variety of conditions. Comprehensive 

reviews are found in [66–68] but are beyond the scope of this thesis. Here, the focus is 

on the generalised nonlinear Schrödinger equation (GNLSE) that proved successful in 

modelling experiments, see e.g. the review articles focussed on supercontinuum 

generation (SCG) in fibres [69,70]. A perturbative approach to derive the GNLSE closely 

follows [62]. 
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To obtain the GNLSE the following assumptions are made and applied to Eq. (9):  

 డమ஺෨

డ௭మ
≪ 𝛽଴

డ஺෨

డ௭
  and  𝛽ଶ − 𝛽଴

ଶ ≅ 2𝛽଴(𝛽 − 𝛽଴) 

Whereas the former represents the slowly varying amplitude approximation, the latter 

simplification assumes negligible backward waves in analogy to the derivation of 

forward Maxwell equations [68,71]. 

Following the perturbation approach from [62], the IOR and eigenvalues found from 

Eq. (10) are modified as follows: 

 

𝑛ଶ ⇒ (𝑛 + Δn)ଶ ≈ 𝑛ଶ + 2𝑛Δ𝑛 

𝛽ଶ ⇒ (𝛽 + Δ𝛽)ଶ ≈ 𝛽ଶ + 2𝛽Δ𝛽 
(12) 

and Eq. (8) is used to obtain 

 Δ𝛽(𝜔) =
𝜔ଶ𝑛(𝜔)

𝑐଴
ଶ𝛽(𝜔)

∬ Δ𝑛(𝜔)|𝐹(𝑥, 𝑦)|ଶ𝑑𝑥𝑑𝑦
ஶ

ିஶ

∬ |𝐹(𝑥, 𝑦)|ଶ𝑑𝑥𝑑𝑦
ஶ

ିஶ

 . (13) 

Eq. (9) finally reads 

 𝜕௭𝐴ሚ = i[𝛽(𝜔) + Δ𝛽(𝜔) − 𝛽଴]𝐴ሚ. (14) 

After expanding both 𝛽 and Δ𝛽 in their respective Taylor series up to the desired 

order the transfer to the temporal domain yields the GNLSE in SI units used to model the 

evolution of a linearly polarised field with amplitude 𝐴(𝑧, 𝑡) and reads [62,69]: 

 𝜕௭𝐴 = i ෍ i௡
𝛽௡

𝑛!
𝜕௧

௡

௡ஹଵ

𝐴 −
𝛼

2
𝐴 + i𝜅𝐴(1 + i𝜏ୱ𝜕௧){ℛ ∗ |𝐴|ଶ} (15) 

𝐴(𝑧, 𝑡) is scaled in √W, 𝛼 is the linear absorption coefficient in m-1, and 𝜅 = 𝑘଴/𝑎ୣ୤୤ 

represents the nonlinear parameter2 of the fibre in units of m-3. This parameter crucially 

depends on material and waveguide properties due to the effective area, 𝑎ୣ୤୤. The 

contribution due to the field distribution is discussed in chapter 2.4.3 p. 15 and the 

shock constant, 𝜏௦, accounts for the dispersion of the nonlinearity which, in first order 

approximation, is equal to 𝜔଴
ିଵ of the pump field. Higher order correction terms may be 

included [72]. In [73] a general approach to account for dispersion of nonlinearity was 

introduced to meet the requirements for simulating an ultra-wide supercontinuum (SC), 

                                                        

2 The standard nonlinear parameter is defined as 𝛾 = 𝜅𝑛ଶ in W-1/m, above 𝑛ଶ is contained in ℛ(𝑡). 
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but is not of relevance for this thesis. The response ℛ is detailed in the next subchapter 

and ∗ denotes a convolution. 

Dispersion is represented by the coefficients 𝛽௡ according to Eq. (11). Here, 𝛽ଶ is of 

key importance and termed group velocity dispersion (GVD). In a purely linear regime, 

GVD causes pulses to broaden temporally as different spectral components aquire 

different delays with respect to the pulse centre. Further, parameter is used to 

distinguish two different propagation regimes, namely the normal dispersive (ND) 

domain for 𝛽ଶ > 0, and the anomalous dispersive (AD) domain for 𝛽ଶ < 0. Both give rise 

to complex, yet very different propagation dynamics when accompanied by nonlinearity. 

The interested reader is referred to excellent review articles [69,70,74] and text books 

on that matter [75–77].  

Different schemes to numerically solve Eq. (15) were introduced and are detailed in 

[62,78–81]. A standard technique is the Fourier split step method which treats the linear 

and nonlinear terms separately in frequency and time domain, respectively. 

Eq. (15) may be written in normalised units which is convenient for theoretical 

considerations and advantageous in numerical simulations. The procedure closely 

follows [82]. 

 𝜕క𝑈 = i ෍ i௡𝛿௡𝜕ఛ
௡

௡ஹଶ

𝑈 + i𝑁ଶ𝑈(1 + i𝑠𝜕ఛ)(|𝑈|ଶ + ℎ ∗ |𝑈|ଶ) (16) 

To obtain Eq. (16), a characteristic time, 𝑇଴, i.e. the pulse width, and dispersive length 

𝐿஽ = 𝑇଴
ଶ/|𝛽ଶ| were introduced to scale propagation distance 𝜉 = 𝑧/𝐿஽ and co-moving 

time 𝜏 = (𝑡 − 𝛽ଵ𝑧)/𝑇଴. Dispersion parameters are given as 𝛿௡ = 𝛽௡/(𝑛! 𝑇௡ିଶ|𝛽ଶ|), the 

amplitude 𝑈 = 𝐴/ඥ𝑃଴ is scaled by the peak power, and 𝑁 = ඥ𝐿஽𝑛ଶ,௘௟𝜅𝑃଴ is the soliton 

number, defined by the electronic nonlinear IOR [83]. Its purpose is to measure the 

relative strength of dispersion and nonlinearity regardless of the dispersive domain. 

Shock is included by the parameter 𝑠 = (𝜔଴𝑇଴)ିଵ and ℎ represents a scaled version of 

the non-instantaneous contributions which are detailed in Eq. (20), p. 11.  

Despite the generality of the normalisation procedure, characteristic scales to be 

deployed must be consistent with the physical problem at hand.  
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2.3.1 Nonlinear Response with Retardation 

Except for mono-atomic gasses, the nonlinear material response consists of two 

constituents – the electronic effect which is instantaneous, and non-instantaneous, i.e. 

retarded, effects. Such effects originate from molecular vibrations (i.e. the Raman effect) 

and reorientational effects in molecular liquids, which are of central interest in this 

thesis. The total response, as shown in Eq. (15), is given as 

 ℛ = 𝑛ଶ,௘௟𝛿(𝑡) + 𝑅(𝑡), (17) 

where 𝑛ଶ,௘௟ is the nonlinear IOR due to the electronic Kerr effect and 𝑅(𝑡) is a material 

specific retarded response. The time dependent nonlinear change of IOR reads [84] 

 Δ𝑛(𝑧, 𝑡) = 𝑛ଶ,௘௟𝐼(𝑧, 𝑡) + න 𝑅(𝜏)𝐼(𝑧, 𝑡 − 𝜏)𝑑𝜏
ஶ

଴

 (18) 

and is a measure of how much a beam modulates its own, or another beams, phase 

during propagation. The nonlinear phase (NLP) is defined as  

 Φ୒୐(𝑧, 𝑡) = Δ𝑛(𝑧, 𝑡)𝑘଴𝑧, (19) 

which leads to so called self-phase modulation (SPM) as well as cross phase modulation 

(XPM) and to the generation of new frequencies [85]. The intensity in the waveguide is 

defined via the amplitude and effective area: 𝐼 = |𝐴|ଶ/𝑎ୣ୤୤. The retarded response 𝑅(𝑡) 

can consist of multiple contributions, particularly in the case of molecular liquids. It is 

customary to assume all contributions are independent from each other [34,35,84], 

hence 𝑅(𝑡) can be written as superposition 

 𝑅(𝑡) = ෍ 𝑛ଶ,௞𝑟௞(𝑡)
௞

. (20) 

Each effect contributes with its respective strength 𝑛ଶ,௞ and temporal shape 𝑟௞(𝑡) which 

is normalised such that ∫ 𝑟௞(𝑡)𝑑𝑡 = 1. Generally, any response component, due to 

causality, fulfils the condition 𝑟(𝑡 < 0) = 0. It is to note that this approach is general and 

also applies to single component responses, such as the Raman response in silica that is 

often modelled by a single oscillator. An overview of response functions and their 

respective applications in modelling physical processes is given in Table 1. Note, further 

response functions were introduced, yet they rather serve the purpose of simplifying the 

response and reducing the number of model parameters required to reproduce material 

properties, as they do not originate from first principles. A simple exponential decay 

[48,50] was employed, as well as a generalised response [86] which allows to reproduce 
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the physical models qualitatively well with a single parameter. An extensive overview of 

model parameters for reorientational responses in liquids is presented in [34,35,87,88] 

as well as a detailed description of the beam deflection technique allowing the 

experimental retrieval of parameters. 

Table 1: Overview of physically motivated retarded response functions 𝒓(𝒕). 𝝉𝒓 and 𝝉𝒇 are rise 

and fall times, respectively. Constants 𝑪 are chosen such that 𝒓(𝒕) is normalised. 

effect response Ref 

Raman vibration 
𝜏௥

ଶ + 𝜏௙
ଶ

𝜏௥𝜏௙
ଶ exp ቆ−

𝑡

𝜏௙
ቇ sin ൬

𝑡

𝜏௥
൰ [89] 

diffusive and dipolar 
reorientation 

𝜏௥ + 𝜏௙

𝜏௙
ଶ ൬1 − exp ൬−

𝑡

𝜏௥
൰൰ exp ቆ−

𝑡

𝜏௙
ቇ [34,84] 

libration 

𝐶 exp ቆ−
𝑡ଶ

2𝜏௙
ଶቇ sin ൬

𝑡

𝜏௥
൰ [90,91] 

𝐶 exp ቆ−
𝑡

𝜏௙
ቇ න

sin(𝜔𝑡)

𝜔
𝑔(𝜔)𝑑𝜔

ஶ

଴

, with 

𝑔(𝜔) = exp ቆ−
(𝜔 − 𝜔଴)ଶ

2𝜎ଶ ቇ − exp ቆ−
(𝜔 + 𝜔଴)ଶ

2𝜎ଶ ቇ 

[34,92] 

According to Table 1, Raman vibrations in both molecules and solids can be modelled 

by exponentially damped sinusoids, whereas orientational effects are modelled with 

under damped solutions to a driven harmonic oscillator. In case of libration, which is a 

molecular rocking motion, two different models exist, yet both originate from the 

attempt to account for inhomogeneous broadening of the response. 

2.3.2 Effective Nonlinear  Refractive Index and Molecular Fraction 

A single, effective nonlinear IOR 𝑛ଶ,ୣ୤୤ is typically preferred over numerous response 

function parameters to compare materials. The intensity weighted average of the 

nonlinear change of the IOR [93] is used to derive (see [34] for details) 

 𝑛ଶ,ୣ୤୤(𝑧) = 𝑛ଶ,௘௟ +
∫ 𝐼(𝑧, 𝑡)∫ 𝑅(𝑡′)𝐼(𝑧, 𝑡 − 𝑡′)𝑑𝑡′𝑑𝑡

∫ 𝐼ଶ(𝑧, 𝑡)𝑑𝑡
≡ 𝑛ଶ,௘௟ + 〈𝑛ଶ,ோ〉(𝑧). (21) 

Just like the NLP in Eq. (18), 𝑛ଶ,ୣ୤୤ depends on the pulse shape which is subject to 

changes during propagation highlighted by the explicit dependence on 𝑧. Eq. (21) is used 

to introduce an intensity weighted nonlinear IOR due to retardation, 〈𝑛ଶ,ோ〉. It is common 

to express non-instantaneous contributions via a retarded, i.e. molecular, fraction 

 𝑓ோ =
〈𝑛ଶ,ோ〉

𝑛ଶ,௘௟ + 〈𝑛ଶ,ோ〉
, (22) 
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which was originally introduced by Stolen et al. in 1989 [89] who presented an 

analytical model for Raman scattering in silica fibres (see Table 1, first row). For silica a 

constant value of 𝑓ோ = 0.18 was determined via accurate experimental data at that time 

due to its importance in telecommunication fibres. Albeit successful in modelling, a 

constant 𝑓ோ is only a good approximation due to the large bandwidth of 𝑅 in silica, 

rendering it as quasi-instantaneous response. Generally, 𝑓ோ depends on the pulse shape 

due to 𝑛ଶ,ୣ୤୤ and therefore on 𝑧. This fact however, is intrinsic to the particular form of 

the GNLSE presented in Eq. (15). 

 

2.4 Third Harmonic Generation 

This subchapter provides fundamentals to phase matching (PM) and modal field 

overlap, two prerequisites for signal generation at the third harmonic (TH) of a pump. 

Finally, coupled GNLSEs are introduced that serve as numerical model in chapter 3.3. 

2.4.1 Phase Matching in Third Harmonic Generation 

THG, in contrast to SPM and XPM, is a phase sensitive nonlinear wave mixing process 

and crucially depends on the propagation constants of participating modes. Coherent 

build-up of TH signal requires the following condition to be satisfied 

 0 = Δ𝛽 = 𝛽ு(3𝜔) − 3𝛽௉(𝜔) + Δ𝛽୒୐. (23) 

Superscripts indicate the propagation constants of harmonic and pump waves and 

Δ𝛽୒୐ accounts for NLP shifts such as SPM and XPM. If applicable, 𝛽ு and 𝛽௉ are 

expanded in a Taylor series (see Eq. (11)) up to 1st order which yields  

 Δ𝛽 ≅ Δ𝛽଴ + 𝐺𝑉𝑀 ∙ Ω + Δ𝛽୒୐, (24) 

where the group velocity mismatch (GVM) is introduced as 𝐺𝑉𝑀 = 1/𝑣௚
ு − 1/𝑣௚

௉, 

Ω = 3(𝜔 − 𝜔௉) represents a detuning from the pump frequency 𝜔௣ that was chosen as 

expansion point, and Δ𝛽଴ = 𝛽଴
ு − 3𝛽଴

௉ is the phase mismatch at 𝜔௉. Typically, PM is not 

achieved at 𝜔௣, hence a detuning of 

 Ω = −
Δ𝛽଴ + Δ𝛽୒୐

𝐺𝑉𝑀
 (25) 

is expected which depends on dispersion and the launched power due to Δ𝛽୒୐, 

commonly defined as Δ𝛽ே௅ = 3𝜅𝑛ଶ𝑃 [14] where only SPM of the pump and XPM of the 
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harmonic due to the pump were accounted for. Since 𝜕Ω/𝜕𝑃 = −3𝜅𝑛ଶ𝐺𝑉𝑀ିଵ, the TH 

signal is expected to shift with increasing pump power. 

2.4.2 Practical Aspects of Phase Matching in Fibres 

A convenient entity in fibre optics is the effective IOR of a guided mode 𝑛ୣ୤୤ = 𝛽/𝑘଴, 

which is bounded as 𝑛௖௟ < 𝑛ୣ୤ < 𝑛௖௢. In terms of PM, 𝑛ୣ୤୤
௉ = 𝑛ୣ୤୤

ு  must be met where 

nonlinear dephasing was neglected. There are three requirements for sufficient THG to 

occur in a waveguide; i) high refractive index contrast to support higher order modes at 

the harmonic – since material dispersion is inevitable, the difference of IOR of the 

cladding at 𝜔௣ and 3𝜔௣ needs to be exceeded to support higher order modes with 

elevated effective IOR that cross the fundamental pump, i.e. achieve PM, before cut off, 

ii) compensation of material dispersion via such higher order modes, and iii) field 

overlap of the interacting modes – this criterion limits the number of modes that can be 

exploited for harmonic generation. 

Fig. 2 illustrates the first two requirements exemplarily for a generic waveguide 

whose material dispersion is equal to that of silica. A numerical aperture of 0.3 (0.6) is 

chosen in Fig. 2 (a) (Fig. 2 (b)) as an example. The y-axis is referenced to the cladding 

index of the harmonic frequency, such that higher order modes cut off at the dashed 

zero line. The bottom x-axis represents the fibres V parameter at the pump frequency 

and the corresponding core radius is shown at the top. Solid lines represent guided 

modes according to their label and frequency. Corresponding intensity distributions are 

shown in Fig. 2 (c). Although many more modes are guided in this waveguide system, 

the example is restricted to only those modes that feature a central intensity peak which 

enables higher mode coupling efficiency than ring shaped modes (see Fig. 1 (b)). 

Horizontal dashes and dot-dashes represent material indices of the core and cladding 

for both frequencies. PM is possible only if a higher order mode enters the highlighted 

green area and occurs at the intersection with the fundamental mode. Since the green 

area is bounded by the cladding IOR at the harmonic and the fundamental pump mode 

which itself is bounded by the core material index, the core-cladding index contrast 

must exceed the difference of cladding material indices at the respective frequencies. 

Mathematically, the following condition needs to be met: 

 𝑛௖௢(𝜔) − 𝑛௖௟(𝜔) > 𝑛௖௟(3𝜔) − 𝑛௖௟(𝜔) ⟺ 𝑛௖௢(𝜔) > 𝑛௖௟(3𝜔) (26) 
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Although it is desirable to operate in the single mode regime for the pump it can be 

difficult to enforce phase matching inside the grey shaded area (𝑉(𝜔) < 2.405). Again, 

the presentation of modes is restricted to HE type modes. 

  

Fig. 2: Modal dispersion in step index fibre referenced to cladding refractive index at the 
harmonic frequency. (a) NA of 0.3, (b) NA of 0.6. Horizontal dashed (dot-dashed) lines represent 
cladding (core) refractive index. The upper (lower) lines correspond to the harmonic (pump) 
frequency. Higher order modes cut off at the dashed zero line. Phase matching is possible only if 
the cut off occurs within the green area – after intersecting the fundamental pump mode (blue). 
The grey area represents the single mode regime for the pump. (c) shows normalised modal 
intensity distribution according to the labels in (b). The dashed circle indicates the core size of 
the step index fibre. 

2.4.3 Field Overlap Integrals 

Nonlinear phenomena in waveguides are mediated by coupling of the respective field 

with the nonlinear polarization. Here, the original work by Stolen and Bjorkholm [94] is 

followed who introduced the following overlap integrals 

 𝐽௜௝௞௟ = ඵ 𝜓௜𝜓௝𝜓௞𝜓௟  𝑑𝑥𝑑𝑦, (27) 

where transverse fields 𝜓௜  are normalised such that ∬|𝜓௜|
ଶ 𝑑𝑥𝑑𝑦 = 1 and the indices 

may represent different fibre modes involved in the mixing process. As is customary in 

SIF, transverse fields can be chosen purely real valued [64] obviating a notation with 

complex fields. The physical dimension of 𝐽௜௝௞௟  is m-2 and associated with an effective 

area. For this thesis only the cases of self-phase modulation, i.e. 𝐽௜௜௜௜ ⇒ 𝐽ୗ୔୑, cross-phase 

modulation, i.e. 𝐽௜௜௝௝ ⇒ 𝐽ଡ଼୔୑, and third harmonic generation, i.e. 𝐽௜௝௝௝ ⇒ 𝐽୘ୌୋ, are relevant. 

The coupling coefficients using the respective fields of pump and harmonic read: 
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𝐽ୗ୔୑ = ඵห𝜓௉,ுห
ସ

 𝑑𝑥𝑑𝑦 , 

𝐽ଡ଼୔୑ = ඵ|𝜓௉|ଶ|𝜓ு|ଶ 𝑑𝑥𝑑𝑦 , 

𝐽୘ୌୋ = ඵ 𝜓ு𝜓௉
ଷ  𝑑𝑥𝑑𝑦. 

(28) 

Note that inverse THG is characterised by the same 𝐽୘ୌୋ due to real valued fields. 

In order to achieve modal coupling in a cylindrical SIF, the symmetry of pump and TH 

fields must match [95]. Assuming a pump in a HE11, only hybrid modes of type HE1n, 

EH1n, HE3n, and EH3n yield non-vanishing overlaps in cylindrical SIF [96]. HE-modes are 

preferred due to their modal shape over EH modes forming ring-shaped profiles with a 

central node and more complex field distribution (see Fig. 1 (b)). 

2.4.4 Coupled Evolution Equations for Harmonic Generation 

Modelling the propagation dynamics in THG can be performed analogously to a single 

propagating mode using a set of coupled GNLSEs introduced to analyse XPM [97] 

extended by a term for THG [98,99]. It is to note that the former work discarded both 

dispersion and inertial effects, such as Raman scattering. Despite the simplifications 

made, the analysis in [13] is instructive. Here, however, the full dispersion, retarded 

nonlinear response and THG terms are retained and given in Eqs. (29) & (30) for each of 

the normalised modal amplitudes 𝑈~ = 𝐴~/ඥ𝑃௉. 

 𝜕క𝑈௉ = 𝒟௉𝑈௉ + 𝒩௉𝑈௉ + i𝒿ு𝑁ଶ𝑈ு𝑈௉
∗ଶ

exp{i𝜋𝐿௖
ିଵ𝐿஽𝜉} 

𝜕క𝑈ு + 𝐿஽/𝐿௪𝜕ఛ𝑈ு = 𝒟ு𝑈ு + 𝒩ு𝑈ு + i𝒿ு𝑁ଶ𝑈௉
ଷ exp{−i𝜋𝐿௖

ିଵ𝐿஽𝜉} 

(29) 

 (30) 

Normalised units are introduced as for Eq. (16): 𝜉 = 𝑧/𝐿஽ , 𝜏 = (𝑡 − 𝛽ଵ𝑧)/𝑇଴ using the 

pump pulse duration 𝑇଴, dispersive length 𝐿஽ = 𝑇଴
ଶ/𝛽ଶ

௉, and pump soliton number 

𝑁ଶ = 𝐿஽𝜔௉𝑛ଶ,௘௟𝑐଴
ିଵ𝐽ୗ୔୑𝑃௉. Due to this definition, prefactors of 3 and 6 arise in 𝒩ு for 

SPM and XPM compared to 𝒩௉, moreover the prefactor for the THG term is 1/3 of the 

factor for SPM and inverse THG, due to the lesser number of possible field 

permutations3. The dispersive operators 𝒟~ are defined in Eq. (31), nonlinear operators 

are defined in Eq. (32) and (33) for pump and harmonic, respectively. The retarded 

                                                        

3 A simpler argument: cos(𝜔𝑡)ଷ = 3/4 cos(𝜔𝑡) + 1/4 cos(3𝜔𝑡) 
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response is given in Eq. (34). Further, the walk-off length 𝐿௪ = 𝑇଴/𝐺𝑉𝑀 between pump 

and harmonic was introduced using the 𝐺𝑉𝑀 as in Eq. (24). Note 𝐿௪ < 0 if 𝐺𝑉𝑀 < 0, i.e. 

the harmonic propagates faster than the pump, hence 𝐿௪ may be interpreted as distance 

required for the pump to precede its harmonic. Similarly, the coherence length is 

introduced such that 𝐿௖Δ𝛽଴ = 𝜋, i.e. the distance after which pump and harmonic are out 

of phase and energy transfer back towards the pump is expected. 

In case 2nd order dispersion may be neglected, i.e. close to a zero dispersion 

wavelength (ZDW, 𝜆୞ୈ) and hence 𝐿஽ ⇒ ∞, a suitable length scale may be defined either 

via the next non-vanishing dispersion coefficient 𝐿஽
ᇱ = 𝑇଴

௡/𝛽௡ or a scale chosen 

according to the nonlinear process. 

 

𝒟௉,ு = i ෍ i௡𝛿௡𝜕ఛ
௡

௡ஹଶ

  with  𝛿௡
(௉,ு)

=
𝛽௡

(௉,ு)

𝑛! 𝑇଴
௡ିଶ|𝛽ଶ

௉|
 

𝒩௉ = i𝑁ଶ(1 + i𝑠𝜕ఛ)൫ℋ ∗ (|𝑈௉|ଶ + 2𝒿௑|𝑈ு|ଶ)൯ 

𝒩ு = i𝑁ଶ(1 + i𝑠𝜕ఛ)൫ℋ ∗ (3𝒿ௌ|𝑈ு|ଶ + 6𝒿௑|𝑈௉|ଶ)൯ 

ℋ(𝜏) = 𝛿(𝜏) + 𝑛ଶ,௘௟
ିଵ ෍ 𝑛ଶ,௞𝑟௞(𝜏) 

(31) 

(32) 

(33) 

(34) 

Each 𝒿~ represents an overlap normalised to 𝐽ୗ୔୑ at 𝜔௉, i.e. 𝑎ୣ୤୤
ିଶ, with subscript S for 

SPM, X for XPM, and H for THG, respectively. 

Inspection of Eqs. (29) & (30) reveals the retarded response is accounted for in phase 

modulation terms only as it is included in the nonlinear operators 𝒩௉,ு. The source for 

THG, however, is a nonlinear polarisation oscillating at 3𝜔௉. Since an optical cycle is 

much shorter than typical rise and decay times of molecular responses, only the 

electronic nonlinearity contributes to THG. Therefore, THG in bulk liquids allows 

determining solely the electronic nonlinearity of molecular liquids [100–102]. Rau et al. 

[103] compared nonlinear susceptibilities, i.e. a nonlinear parameter proportional to the 

nonlinear IOR, derived from self-focussing and THG experiments. Their ratios are in 

good agreement with the ratio of the total nonlinearity and the purely electronic effects.  
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3 Simulations of Nonlinear Evolution in Retarded Media  

Propagation dynamics are discussed in this chapter based on the GNLSE. After a brief 

introduction of linear propagation, nonlinear effects are considered. Subsection 3.2 

presents spectral transformations due to phase modulation to determine effects of 

instantaneous and retarded nonlinearity that occur for both pump and harmonic wave. 

In 3.3 coupled wave dynamics are in focus to aid waveguide design for THG.   

3.1 Propagation in Linear Medium with Dispersion 

For the case of low powers (𝑁 ≪ 1) a pulse will experience dispersion in a medium or 

waveguide during propagation whereas the spectral power distribution remains 

unaltered. As introduced in Eq. (11) higher orders of dispersion lead to phase 

accumulation depending on the frequency. Two examples are shown in Fig. 3 in the 

temporal (a) and spectral domain (b). The initial pulse (dashed, black) is assumed 

transform limited, i.e. exhibits no higher order spectral phase, and is propagated by 𝐿஽ 

experiencing 2nd order (solid, red) or 3rd order spectral phase (solid, blue), respectively. 

A reduction of peak power and temporal reshaping is evident. The spectrum for all cases 

is shown as dashed line (left axis, in (b)) and coloured lines represent the group delay 

(right axis), i.e. the relative arrival times of the respective frequency and is calculated as 

𝜏௚ = 𝜕ఠΦ(Δ𝜔), where Φ represents the spectral phase. The positive slope of the red 

curve in (b) signals a linear increase in instantaneous frequency (up-chirp) due to 

positive 2nd order phase (𝐺𝑉𝐷 > 0). The quadratic delay (blue) leads to simultaneous 

occurrence of frequency detuned waves which cause a beat signal in time domain as 

shown by the blue curve in (a).  

 

Fig. 3: (a) Temporal intensity without dispersion (dashed), 2nd order dispersion (red), and 3rd 
order dispersion (blue, 𝜹𝟑 = 𝟎. 𝟒) after propagating 𝑳𝑫. (b) Spectral intensity (dashed, left axis) 
and group delay (colour, right axis) for pulses shown in (a). 
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3.2 Propagation in Nonlinear Medium without Dispersion  

In this section the distinct effects of nonlinearity are investigated neglecting dispersion 

which in practice can be justified for intense pulses, i.e. 𝑁ଶ ≫ 1, and appropriately 

designed waveguides such that 𝐿஽ ≫ 𝐿, where 𝐿 represents sample length. However, at 

first a discrepancy in terminology across research communities engaged in the field of 

retarded media is briefly discussed. 

What determines a highly non-instantaneous configuration? 

Whereas the answer to this question in the analogue spatial domain is well accepted, 

i.e. a highly nonlocal medium exhibits a response much wider than the excitation beam 

and vice versa, a local medium exhibits a response much narrower than the excitation 

beam [104–106], this is not the case in the temporal domain where opinions among 

researchers seemingly diverge. Research motivated by theory usually applies the above 

terminology [48,107]. In  contrast, in experimental work high retardation is associated 

with large molecular fractions arising from longer pulses [38,39,41,108]. Fig. 4 

illustrates this issue for a series of different pulse durations and a response of the form 

𝑟 ∝ 𝑡 ∙ exp ൫−𝑡/𝜏௙൯ with a ratio of nonlinearities: 𝑛ଶ,ோ/𝑛ଶ,௘௟ = 9. Hence the maximum 𝑓ோ 

amounts to 0.9 for the continuous wave case and is similar to molecular liquids. 

Pulse durations 𝑇଴ are scanned and given in ratios of the fall time 𝜏௙ as stated in 

panels (a) and (b). Curves in (a) are normalised to emphasise the greater overlap of 

longer pulses (coloured) with the response (black, dashed) naturally leading to a larger 

relative contribution which is reflected in 𝑓ோ in (c) as defined in Eq. (22). Importantly, 𝑓ோ 

does not depend on the choice of scale as it relates the intensity weighted nonlinear 

average indices. For calculations of the NLP (b) the following definition is used in 

accordance with Eqs. (18) and (19): Φ୒୐ = Φ଴൫|𝑈|ଶ + 𝑛ଶ,ோ/𝑛ଶ,௘௟ ∙ 𝑟 ∗ |𝑈|ଶ൯. A reduction 

in peak power due to stretching the pulses is accounted for in 𝑈, i.e. all pulses exhibit a 

constant energy which is of greater practical relevance since pulses may be stretched in 

time maintaining their energy via, e.g. dispersive propagation. Constant factors such as 

sample length, pulse energy, and nonlinear parameter are absorbed in Φ଴. 

From the experimental perspective, longer pulses leading to larger 𝑓ோ harness a 

greater part of the retarded response, i.e. provide higher sample nonlinearity, which 

hence may be considered a highly non-instantaneous configuration. However, the NLP 

presented for different pulse durations in (b) suggests the contrary. Shorter pulses 
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resolve the different mechanisms contributing the NLP, i.e. the NLP is altered 

significantly in comparison to longer pulses. The NLP resembles the case of 

instantaneous media for width ratios around 1 despite the delay due to the asymmetry 

of the response. Here, NLP for pulses of width 0.1 are noticeably altered suggesting large 

impact from retardation, whereas the respective molecular fraction is less than 10 % 

indicating the effective nonlinearity is mainly of electronic nature. Yet, the peak of NLP 

due to retardation is already 50 % of the global peak of the total NLP (see (b), teal 

curve). The peak NLP for different pulse durations is extracted from the NLP curves and 

is shown in (c). The coloured lines show the pure retarded (blue, dashed) and total (red, 

solid) NLP normalised by the overall highest NLP among the parameter range, i.e. the 

electronic contribution for the shortest pulse. The kink at ≈0.22 occurs when the two 

peaks from instantaneous and retarded phases are equal at 𝑓ோ ≈ 0.2. This case is close to 

silica fibres which are commonly considered quasi-instantaneous. 

 

Fig. 4: (a) Response 𝒓 ∝ 𝒕 ∙ 𝐞𝐱𝐩 ൫−𝒕/𝝉𝒇൯ (dashed, black) and pulses (coloured) with durations 

𝑻𝟎/𝝉𝒇 as stated versus normalised time. Curves are normalised to power. (b) NLP for pulses of 

equal energy and of width ratio as stated versus normalised time. Ratio of nonlinearities is 
𝒏𝟐,𝑹/𝒏𝟐,𝒆𝒍 = 𝟗 and NLP is normalised to the global peak phase. (c) Molecular fraction (black, left 

axis) and local peak NLP for total and retarded NLP normalised by global total peak NLP (colour, 
right axis). The kink for total phase (red) occurs at 𝑻𝟎/𝝉𝒇 ≈ 𝟎. 𝟐2 when retarded and electronic 

NLP are level at 𝒇𝑹 ≈ 𝟎. 𝟐. 

Proposing a new standard for definitions is not the intent of this thesis, however the 

demand for a unified terminology across the research community in this field is 

emphasised. For the following analysis in this chapter relevant scales and ratios are used 

to characterise propagation dynamics providing insights to individual nonlinear effects.  
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3.2.1 Self-Phase Modulation – Impact of Electronic and Retarded Response 

At first, spectral changes due to SPM are investigated for instantaneous and 

non-instantaneous media based on the evolution equation 𝜕క𝑈 = iΦ଴ ∙ ℎ ∗ |𝑈|ଶ ∙ 𝑈. Using 

a solution of the form 𝑈(𝜏, 𝜉) = 𝑈(𝜏, 0) ∙ exp(iΦ୒୐) where Φ୒୐ = Φ଴ ∙ ℎ ∗ |𝑈|ଶ𝜉 is the 

NLP and ℎ is the material response scaled such that Φ଴ represents the maximum phase 

shift after a propagation distance 𝜉 = 1. Assuming Gaussian pulses the resulting spectra 

and group delays for increasing NLP are presented in Fig. 5. The top row illustrates the 

electronic Kerr effect (ℎ(𝜏) ∝ 𝛿(𝜏)) exhibiting symmetrical spectral broadening (a) and 

an overall up-chirp across the pulse (b).  

 

Fig. 5: Spectral broadening and group delay for instantaneous (a, b) and non-instantaneous (c, d) 
response 𝒉 ∝ 𝝉 ∙ 𝐞𝐱𝐩(−𝝉/𝟑) for peak nonlinear phases 𝚽𝟎 as stated in (a, c). Group delays are 
separated by 2T0 for clarity. 

In the bottom row spectra resulting from a non-instantaneous medium with a 

response ℎ(𝜏) ∝ 𝜏 ∙ exp(−𝜏/3) are shown. It is to emphasize the NLPs stated in panels 

(a) and (c) correspond to the peak NLPs for each case, however to achieve such a peak 

NLP for the retarded response a ≈15.4-fold greater intensity, or a ratio of 𝑛ଶ,ோ/ 𝑛ଶ,௘௟ =

15.4 is required. Hence the contribution to broadening is comparably small unless 𝑛ଶ,ோ 

exceeds 𝑛ଶ,௘௟ noticeably. Asymmetric broadening towards smaller frequency resulting in 
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an overall red-shift is apparent. Still in this case the frequency is down-chirped (albeit 

being lower overall) across the pulse contrasting the previous case of an instantaneous 

response. 

3.2.2 Impact of the Response Functional Form 

The objective of this subsection is to identify parameters the frequency down-shift is 

most pronounced and likely to be observed experimentally. The particular impact of the 

response function form is hence investigated using the over-damped oscillator response  

 𝑟(𝑡 > 0) =
𝜏௥ + 𝜏௙

𝜏௙
ଶ ൬1 − exp ൬−

𝑡

𝜏௥
൰൰ exp ቆ−

𝑡

𝜏௙
ቇ, (35) 

which is commonly used to model dipolar, diffusion, and collisional responses providing 

two parameters namely the rise and fall times 𝜏௥ and 𝜏௙ , respectively. 𝑟(𝑡) is shown in 

Fig. 6 (a) for a variety of rise times along with its asymptotic responses (dashed: 𝜏௥ ≪ 𝜏௙ 

and dot-dashed: 𝜏௥ ≫ 𝜏௙). Note time is scaled in 𝜏௙ and despite the large values of 𝜏௥ the 

response peaks within 𝜏௙ , i.e. its delay is still finite.  

Fig. 6 (b) presents the gain associated with the response for negative frequency shifts 

similar to the common Raman gain in silica. The Raman gain in silica however originates 

from photon-phonon interaction rather than induced motion. Colours in (b) correspond 

to those from (a) for various 𝜏௥ . 

 

Fig. 6: (a) Shape of damped oscillator response for various rise times versus normalised time. 
(teal: 𝝉𝒓 ≪ 𝝉𝒇; magenta: 𝝉𝒓 ≫ 𝝉𝒇). Asymptotic responses are shown in black (dashed: 

𝒓 ∝ 𝐞𝐱𝐩(−𝝉) and dot-dashed: 𝒓 ∝ 𝝉 ∙ 𝐞𝐱𝐩(𝝉), respectively. (b) Gain for normalised red-shift from 
the excitation central frequency as commonly used for Raman spectra. Colours correspond to 
those from (a). 
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In the following the response parameters are scanned in units of the pulse duration 

and spectra due to SPM for increasing NLP are evaluated. To condense data and extract 

information, all spectra are analysed in terms of moments defined as: 

 〈𝑥ெ〉 =
∫ 𝑥ெ|𝑈(𝑥)|ଶ𝑑𝑥

∫|𝑈(𝑥)|ଶ𝑑𝑥
 (36) 

Here, 𝑥 represents frequency but in general may represent any physical coordinate. 

As it is common, moments for 𝑀 > 1 are centred by the 1st moment which is assumed 

implicit in Eq. (36). In the context of normalised units, 〈𝑥ଵ〉 is associated with the shift of 

the central frequency 𝛿𝜈େ୓୑ × 𝑇଴, i.e. the spectral centre of mass (COM), and ඥ〈𝑥ଶ〉  

represents the root-mean-squared  bandwidth denoted as 𝜎 = 𝑇଴ × 〈(𝜈 − 𝜈଴ − 𝛿𝜈)ଶ〉ଵ/ଶ. 

The first two moments are illustrated in Fig. 7 (a) for a SPM broadened spectrum with 

parameters as stated in the caption. 

 

Fig. 7: (a) Illustration of spectral moments. The spectrum (solid, black) is obtained from a 
Gaussian pulse modified by SPM of the over-damped oscillator (Eq. (35), 𝝉𝒓 = 𝟎. 𝟓, 𝝉𝒇 = 𝟑, 

𝚽𝐍𝐋 = 𝟐𝟎𝝅). Dashes represent spectral COM and bandwidth is highlighted by the shaded area. 
(b) Representative example of bandwidth evolution for increasing nonlinear phase. 

Both 𝛿𝜈 and 𝜎 evolve with increasing NLP, yet their dynamics are well captured by a 

linear fit of the resulting moments versus NLP as is shown for the bandwidth 

exemplarily in Fig. 7 (b). The fitted parameters, i.e. the rates at which the central 

frequency and bandwidth change, are then scaled by the initial bandwidth and are 

shown in Fig. 8 (a) and (b), respectively.  

It is to emphasise that the rates compensate the neglect of dispersion as those 

measure changes per acquired NLP rather than absolute moments whose dynamics may 

decline with reduced acquisition of NLP due to e.g. dispersive broadening. 
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Fig. 8: Contours of evolution for 1st and 2nd spectral moment for a range of rise and fall times 
normalised by pulse duration. Bright yellow represents largest absolute rates. (a) Shift of central 
frequency and (b) increase of bandwidth each in units of 𝝈𝟎/𝐫𝐚𝐝. 

The largest absolute shift rates 𝛿𝜈େ୓୑ from (a) are observed in a relatively wide 

range of parameters, whereas broadening rates 𝛿𝜎 from (b) increase for faster 

responses, i.e. a response more similar to an instantaneous nonlinearity, as broadening 

originates from the steepness of the NLP. Further, spectra exhibit an overall greater 

down-shift rate in frequency than broadening rate, which can lead to depletion at the 

initial central frequency. Although similar to soliton self-frequency shift known from 

anomalous dispersive silica fibres [109,110], here spectra exhibit pronounced 

asymmetry, i.e. spectral amplitudes of frequencies smaller than the central frequency 

are greater than amplitudes of larger frequencies as in Fig. 5 (c). 

To better visualise the dependence throughout the large range of responses the data 

from Fig. 8 is shown as scatter plot in Fig. 9 for all ratios of 𝜏௥ and 𝜏௙ . Note colours are 

the same as above representing the vertical axis value. 

 

Fig. 9: Scattered representation of data from Fig. 8 versus the ratio of fall and rise time. (a) Shift 
rate of central frequency and (b) bandwidth enhancement rate. Vertically extended clusters 
denote larger susceptibility to pulse duration. 
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The extent of the scatter plot reveals the impact of pulse duration which is most 

prominent for ratios 𝜏௙/𝜏௥ ≈ 10 but the sensitivity to pulse duration is overall larger in 

the range 1-10. This range is rather common in case of molecular liquids whose 

response consists of multiple components [35] highlighting their relevance for 

experimental studies. Although limited to −0.6 𝜎଴/rad for each ratio of rise and fall 

times there is an optimal pulse duration to achieve the largest possible red-shift as 

suggested by the local maximum of the shift-rate in Fig. 8 (a). 

Although any response obeying causality and the implications invoked by Kramers 

Kronig relations [111] leads to the same qualitative behaviour, i.e. frequency down shift 

while broadening, the numerical study reveals quantitative impact of the functional 

form. To this end, inertial responses from molecular liquids are found very suitable due 

to their beneficial ratios of rise and fall times in general which may be probed under 

favourable conditions that exhibit maximal sensitivity to pulse duration. 
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3.2.3 Self-Phase Modulation – Effects of a Combined Response  

In this section the interplay of electronic and retarded nonlinearity is studied. While the 

former is inevitable in any kind of medium, the contribution of the latter is a specific 

material property and hence may vary. To this end the spectral evolution for a response 

of the form ℋ(𝜏) = 𝛿(𝜏) +
௡మ,ೃ

௡మ,೐೗
𝑟(𝜏) is studied for a range of ratios of the nonlinearities 

and pulse durations. The response functional form of CS2 is chosen for 𝑟(𝜏) [87] as it is 

well characterised due to the relevance of CS2 in previous work in the field of liquid 

photonics. Further, CS2 exhibits the largest nonlinearity among the liquids that may be 

considered suitable for experiments [35] and at the same time features the largest 

possible ratio of inertial and electronic effects. Further considerations of the selection 

process of suitable core media are presented in section 4.1. 

Resulting SPM spectra mediated by the response ℋ are shown in Fig. 10 (b-d) for 

different pulse durations as illustrated in (a). The pulse durations 𝑇଴ are 0.3 (b), 1 (b) 

and 5 (d) in units of the rise time 𝜏௥ which for CS2 amounts to 150 fs and is a generally 

accepted value for reorientational effects and hence chosen to normalise time and 

frequency. The prominent decay of the diffusive contribution is 1.6 ps and hence 

𝜏௙/𝜏௥ ≈ 10. The ratio of nonlinearities amounts to 17.5 for the physical response. 

 

Fig. 10: Spectral broadening in the presence of the electronic effect. (a) Physical response shape 
of CS2 (dashed, black) and pulses of width 0.3 (b), 1 (c), and 5 (d) in units of 𝝉𝒓. Spectra are 
shown for the respective pulse duration in (b-d) for a nonlinear electronic phase shift of 4𝝅 
accompanied by the phase shift due to retardation for increasing ratios of nonlinearities. 

 While scanning 𝑛ଶ,ோ/𝑛ଶ,௘௟ the peak power of these pulses was maintained such that 

the purely electronic contribution amounts to a peak phase shift of 4𝜋 i.e. the inertial 

effects are added to the phase, rather than competing with the electronic effect. Despite 

the additional phase, the bandwidth for the shortest pulse (b) is not significantly 

enhanced as opposed to the cases of longer pulses. In fact, a broadening reduction 
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occurs for pulses short enough to resolve the distinct phase contributions from 

electronic and inertial effect (also see Fig. 4 (b) p. 20) which eventually lead to smoother 

phase, that is a smaller gradient, and therefore lesser broadening. 

However, regardless of the ratio of nonlinearities spectra generally broaden for larger 

accumulated nonlinear phases either due to higher power or further propagation.  

Analogous to the previous chapter the rates of frequency shift and frequency 

broadening are presented in Fig. 11 (a) and (b), respectively. Throughout all cases a 

linear trend was observed and subsequently the rates are derived from a linear fit. The 

numbers in colour represent the nonlinearity ratio employed for the simulation while 

pulse duration was varied. The case of a purely instantaneous response is included in 

(b) for the broadening rate (dashed) which is independent of pulse duration and 

amounts to 0.86 as was found numerically and is derived in [85]. There is no centre 

frequency shift in case of the purely electronic nonlinearity. 

 

Fig. 11: Rates of central frequency shift (a) and bandwidth increase (b) versus pulse duration. 
Coloured numbers represent the ratio 𝒏𝟐,𝑹/𝒏𝟐,𝒆𝒍 and 17.5 represents the case of CS2. The dashed 

black line in (b) corresponds to the broadening rate of 0.86 for a purely instantaneous medium. 

It is observed that both shift and broadening rates increase in absolute value for both 

larger retarded contribution and pulse duration overall. Since either parameter is scaled 

to 𝜎଴ this is only a measure of efficiency and must not be mistaken for largest overall 

bandwidth which may be achieved. For a particular range of pulse durations 

approximately at 0.4 𝜏௥ the broadening rate is reduced compared to the sole electronic 

effect despite the higher total nonlinearity – pulses partially resolve the rise time of the 

response leading to flatter phase. 

This range of 𝑇଴, where SPM based broadening is reduced, may prove beneficial for 

frequency conversion processes with limited phase matching bandwidth.  
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3.2.4 Cross-Phase Modulation and Retardation 

In this subsection the interplay of co-propagating waves is studied to provide insight to 

the dynamics induced by XPM for pulses with varying relative delay, or similarly, 𝐺𝑉𝑀 

leading to accumulated delays during propagation. These results are of interest in view 

of THG to assess the dynamics after the initial generation when pump and harmonic 

propagate the remaining sample length in presence of a retarded nonlinearity. 

The results below deploy the solution presented by Agrawal et al. [112] and are 

obtained by evaluating spectra for waves of the form 𝑈(𝜏, 𝜉) = 𝑈(𝜏, 0) ∙ exp(iΦଡ଼୔୑), 

where Φଡ଼୔୑ = Φ଴ ∫ ℎ ∗ |𝐴(𝜏 − 𝜏ௗ + 𝑧 ∙ 𝐺𝑉𝑀/𝑇଴, )|ଶ𝑑𝑧
క

଴
 represents the accumulated NLP 

due to the pump wave 𝐴. In the following examples 𝑇଴ of pump and probe wave are 

identical throughout and Φ଴ was chosen such that the electronic NLP amounts to 20𝜋 

when 𝜉 = 1 representing the end of the sample. The value of 20𝜋 for NLP is chosen for 

displaying purposes. Dispersive effects are neglected and at first 𝐺𝑉𝑀 = 0, i.e. pump  

and probe co-propagate for various initialised delays 𝜏ௗ  of the pump with respect to the 

probe pulse centre. For 𝜏ௗ > 0 the NLP due to the pump wave trails behind the probe 

wave and vice versa for Fig. 12. All spectra are normalised to unity individually for 

clarity. Panel (a) shows the purely electronic effect: a delayed pump induces a positive 

NLP gradient, i.e. frequency down shift, whereas an advanced pump causes a negative 

NLP gradient leading to frequency up shift. The effect exhibits odd symmetry and the 

spectral modulation is mirrored. Note that due to scaled units the spectra are identical 

for any pulse duration. 

For the remaining panels (b-h) the physical response of CS2 is added and both pulse 

durations are varied in units of 𝜏௥ of the response as stated in each panel. It is observed 

that a trailing phase enhanced by the response leads to extended broadening but the 

temporal extend of this effect is limited similarly to the electronic effect in (a). By 

contrast, for an advanced pump the longer temporal interaction is evident by greater 

extension of spectral modulation for 𝜏௥ < 0, i.e. the odd symmetry is broken. Generally 

the extent of up shift is reduced due to the smoother decay of NLP in all cases compared 

to trailing phase.  

If phase is advanced by the physical time of approximately 𝜏௥ (note the range of 

normalised delays in (b-h) varies due to different 𝑇଴/𝜏௥), spectra exhibit relatively large 

susceptibility to pulse duration. Spectra at these delays (≈ −3 in (b-c)) are 
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predominantly modulated with decreasing structure towards longer pulses, i.e. (d, e). 

Cases (f, g) yield wider and smoother spectra than any of the other configurations 

shown for a delay of ≈ −1. Such spectra seem well suited for XPM induced pulse 

compression similar to a scheme using cross polarised pulses in CS2 [113] exploiting a 

nonlinearly induced negative change of IOR. 

 

Fig. 12: Spectra of a weak probe pulse due to XPM induced phase changes for various delays of the 
pump pulse. Each spectrum in each panel is scaled to unity individually for clarity. For negative 
delays the pump is leading and for positive delays the pump trails behind the probe. The NLP due 
to the electronic effect is 20𝝅 in all cases. (a) is purely electronic, (b)-(h) include the retarded 
response of CS2. Pulse durations in units of 𝝉𝒓 are given in each panel, note (a) is identical for all 
pulse durations due to normalised scales. 

In view of experimental THG the case of non-vanishing 𝐺𝑉𝑀 due to the difference in 

frequency of pump and harmonic wave is of importance. Since THG is expected to be 

most efficient at the pulse centre, i.e. for highest intensities, an initial delay of zero is 

assumed henceforth. Otherwise conditions are maintained to the above cases and at first 

the evolution in an instantaneous medium is illustrated in Fig. 13 for 𝐺𝑉𝑀 > 0 (a) and 

𝐺𝑉𝑀 < 0 (b), respectively. Distance is scaled in walk off length and for the electronic 

nonlinearity mirror symmetric spectral modulation is observed which saturates after 

two walk off lengths, i.e. a temporal separation of pulses by 2 𝑇଴. In case of an advanced 

pump the probe spectrum experiences frequency up shift and vice versa, both 

potentially able to counter, or balance, opposing shifts resulting from power dependent 

changes of the PM wavelength as introduced in section 2.4.1, Eq. (25) and below. 
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Fig. 13: Spectral evolution of a weak pulse that undergoes XPM by a strong pump in an 
instantaneous medium for positive 𝑮𝑽𝑴 (a) and negative 𝑮𝑽𝑴 (b). NLP is set to 20𝝅 and both 
pulse durations are identical. Distance is scaled by 𝑳𝒘 = 𝑻𝟎/|𝑮𝑽𝑴|. Each spectrum is scaled to 
unity individually for clarity. Spectral modification saturates at 𝟐𝑳𝒘, i.e. a distance after which 
pulses are split by 2𝑻𝟎. 

Including the retarded response as in Fig. 14 the modulation depends on pulse 

duration (numbers in panels represent 𝑇଴/𝜏௥) particularly in case of 𝐺𝑉𝑀 > 0 (a-d), 

whereas a common saturation distance as in the electronic case of ≈ 2𝐿௪ can be 

observed for 𝐺𝑉𝑀 < 0 (e-h). For advanced pumps, a decelerating spectral 

transformation is present due to the long range response, yet spectral extension 

stagnates. For pulse durations equal or longer than 𝜏௥ initial broadening is evident 

particularly for case (c) up to 2𝐿௪ after which the decaying NLP initiates an up shift. 

 

Fig. 14: Specral evolution of weak pulses due to XPM of a strong pump in a medium with retarded 
response as in CS2. The NLP due to the electronic effect is 20𝝅 (a-d) 𝑮𝑽𝑴 > 𝟎, i.e. faster pump, 
and (e-h) 𝑮𝑽𝑴 < 𝟎, i.e. slower pump pulse. Pump pulse durations are stated in each panel in 
units of 𝝉𝒓 and are identical for the probe pulse. In (e-h) modification of spectra ceases after 𝟐𝑳𝒘, 
whereas in (a-d) the spectral shift continues with deceleration. 
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3.3 Coupled Evolution Dynamics of Pump and Harmonic  

Numerical solutions of coupled NLS equations are presented to gain insights into the 

complex THG process. Different dispersion regimes and types of nonlinearity are studied 

in subsection one. Part two aims at optimising the efficiency to aid experimental design 

consideration and subsection three presents an experimental configuration in detail.  

3.3.1 Overview of Evolution Dynamics 

Simulations in this section are based on Eqs. (37) and (38) which are obtained from the 

set introduced in chapter 2.4.4. As conversion efficiency is typically low in the cases 

considered, i.e. |𝑈ு|ଶ ≪ |𝑈௉|ଶ, only SPM and XPM terms due to the pump field are 

employed. Both THG and inverse THG terms are retained. GVD for the pump and GVM 

are considered whereas higher orders of dispersion are neglected. 

 𝜕క𝑈௉ + i
𝜘

2
𝜕ఛ

ଶ𝑈௉ = i(ℋ ∗ |𝑈௉|ଶ)𝑈௉ + i𝒿ு𝑈ு𝑈௉
∗ଶ

exp{i𝜋𝐿௖
ିଵ𝐿஽𝜉} 

𝜕క𝑈ு + 𝐿஽/𝐿௪𝜕ఛ𝑈ு = 6i(ℋ ∗ |𝑈௉|ଶ)𝑈ு + i𝒿ு𝑈௉
ଷ exp{−i𝜋𝐿௖

ିଵ𝐿஽𝜉} 

(37) 

 (38) 

Note the soliton number 𝑁 is absorbed via 𝑈௉,ு(𝜏, 𝜉) → 𝑁𝑈௉,ு(𝜏, 𝜉) and 𝒿௑ ≈ 1, which 

is typical for experimental conditions. 𝜘 is either +1 in the ND or −1 in the AD regime. 

3.3.1.1 Electronic Nonlinearity and Anomalous Dispersion 

By intuition THG should be driven most efficiently with highest powers which suggests 

pulses unaltered by dispersion, so called solitons, ideally serve as pump. These entities 

are considered in the following by launching pulses of the form 𝑈(𝜏, 0) = 2 sech(𝜏), i.e. 

the form of a higher order soliton with 𝑁 = 2 comparing different conditions of 

dispersion such as walk-off and phase mismatch (PM) represented as ratios 

𝐿஽ௐ = 𝐿஽/𝐿௪ and 𝐿஽஼ = 𝐿஽/𝐿௖, respectively. Fig. 15 shows results propagating the pulse 

in the AD domain without perturbations from higher orders of dispersion and 

retardation except for THG with coupling 𝒿ு = 0.01. Intensity evolution in the temporal 

(spectral) domain is shown in the top (bottom) row in linear (logarithmic) normalised 

scale. 
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Fig. 15: Temporal (top row, linear scale, common colour bar) and spectral (bottom row, log scale, 
common colour bar) evolution of sech-pulse (𝑵 = 𝟐, AD, 𝓳𝑯 = 𝟎. 𝟎𝟏) (a, e) and the resulting TH 
for different PM conditions. (b, f) 𝑳𝑫/𝑳𝒘 = 𝟏𝟎, 𝑳𝑫/𝑳𝒄 = 𝟎; (c, g) 𝑳𝑫/𝑳𝒘 = 𝟏𝟎, 𝑳𝑫/𝑳𝒄 = 𝟓𝟎; (d, h) 
𝑳𝑫/𝑳𝒘 = 𝟎, 𝑳𝑫/𝑳𝒄 = 𝟓𝟎. 

The pump (a, e) exhibits periodic evolution with period 𝜋/2 [114,115] and the 

remaining panels show the harmonic. GVM causes the delay observed in (b, c). (b-d) 

illustrate how THG and temporal compression of the pump coincide confirming the 

above intuition. Note, relative extent must not be mistaken for greater efficiency as each 

panel is normalised. However, the spectral extent observed in (h) results from on-going 

XPM of co-propagating waves and modulations along 𝑧 are due to mismatched phases, 

as is also observed in the spectrum (g). Further, in case (c, g) clear detuning is seen 

(down-shift as both Δ𝛽, GVM > 0) and PM is indicated in panel (g) which occurs once 

seeded by spectral expansion (temporal compression) of the pump but subsequently 

splits off preventing dephasing. A second burst is generated at 𝑧 = 3𝜋/4, i.e. the instance 

of temporal compression. Note the resulting frequency modulation due to the double 

pulse is present shortly after 2.5 𝐿஽ but hard to observe in log-scale. The frequency 

up-shift as discussed in previous sections is also present for cases with mismatched 

group velocities and is indicated in (f). Ultimately, spectral evolution is much affected by 

NLP as the periodic behaviour is seen to be transferred to the harmonic if phase 

mismatch is present. In those cases, however, the conversion efficiency is low. 



 - 33 - 

3.3.1.2 Electronic Nonlinearity and Normal Dispersion 

For comparison, the cases from above are illustrated in Fig. 16 for propagation in the ND 

domain. Note for the case (d, h) 𝐿஽/𝐿௖ = 0 was chosen unlike the case of 𝐿஽/𝐿௖ = 50 in 

Fig. 15 (d, h) for displaying purposes.  

 

Fig. 16: Temporal (top row, linear scale, common colour bar) and spectral (bottom row, log scale, 
common colour bar) evolution of sech-pulse (𝑵 = 𝟐, ND, 𝓳𝑯 = 𝟎. 𝟎𝟏) (a, e) and the resulting TH 
for different PM conditions. (b, f) 𝑳𝑫/𝑳𝒘 = 𝟏𝟎, 𝑳𝑫/𝑳𝒄 = 𝟎; (c, g) 𝑳𝑫/𝑳𝒘 = 𝟏𝟎, 𝑳𝑫/𝑳𝒄 = 𝟓𝟎; (d, h) 
𝑳𝑫/𝑳𝒘 = 𝟎, 𝑳𝑫/𝑳𝒄 = 𝟎. 

In contrast to the AD domain the pump pulse suffers from dispersion as seen in (a) 

and spectral broadening due to SPM ceases after one dispersive length due to reduction 

of intensity (e). Whereas frequency up-shift remains similar, no secondary THG burst is 

present as for the AD domain due to the lack of the pumps periodicity. The harmonic 

spectrum in (f) exhibits typical narrowing – the harmonic signal in temporal domain 

stretches which inevitably leads to bandwidth reduction, if not altered by NLP, as 

bandwidth is proportional to (𝐿 ∙ 𝐺𝑉𝑀)ିଵ. On the other hand, 𝐺𝑉𝑀 may assist in 

preventing undesired phase shifts by temporally splitting pump from signal. 

Panel (g) elucidates that signal generation at the PM wavelength occurs eventually, 

yet the significantly smaller seed (note the pump spectrum covers 𝜆୔୑ in the numerical 

simulation due to the pulse form) leads to reduced generation, whereas phase 

mismatched TH rapidly splits off from the pump mitigating further back conversion.  

The symmetrical shapes for (d, h) clearly indicate the dependence of phase matching 

on further effects, i.e. the pump GVD and SPM or XPM induced frequency shifts, yet such 
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dynamics can hardly be observed under experimental conditions as usually either phase 

or group velocities can be matched only. 

3.3.1.3 Comparison of Conversion Efficiency 

Typically nonlinear conversion processes are assessed in terms of their conversion 

efficiency defined here as the ratio of pump and harmonic pulse energy, i.e. 𝜂 = 𝐸ு/𝐸௉. 

The evolution of efficiency from examples above is presented in Fig. 17 for the AD (a) 

and ND (b) domain. Efficiencies are scaled by the largest observed efficiency which, 

interestingly, occurred for the case of perfect phase matching with 𝐺𝑉𝑀 > 0 in the AD 

domain. By contrast, in the ND domain the case of matched phases and group velocities 

performed best, yet reached only 25% of the efficiency obtained in the AD due to 

dispersive pulse spreading in the range of shown examples. 

 

Fig. 17: Evolution of efficiency for AD (a) and ND (b) domain normalised by maximal efficiency. 𝜼 
is defined as ratio of pulse energies and 𝜼𝑨𝑫

𝐦𝐚𝐱 = 𝟓 ∙ 𝟏𝟎ି𝟒. Cases including phase mismatch 
(𝑳𝑫/𝑳𝒄 = 𝟓𝟎) are multiplied as indicated. Legend applies to both panels. 

The introductory examples show that efficiency crucially depends on phase matching 

and pump power evolution even in case of the relatively low maximum conversion of 

𝜂஺஽
୫ୟ୶ = 5 ∙ 10ିସ. These conditions justify the application of the undepleted pump 

approximation, i.e. neglect feedback of the harmonic. In the AD domain clear boosts in 

conversion are observed shortly after temporal compression took place (blue, green, 

yellow), for cases with sizable phase mismatch (green, yellow), back conversion 

occurred whereas GVM hinders reflow of energy partially due to reduced temporal 

overlap. For the phase matched cases (blue, red) the greater efficiency in case of GVM is 

attributed to lesser net dephasing due to SPM and XPM during temporal compression 

due to the accumulated delay. In the ND domain the situation more reflects common 
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expectations, i.e. best conversion is achieved if phase mismatch is zero across a large 

bandwidth, i.e. Δ𝛽଴ = 0 and GVM = 0. 

 Albeit not decaying during propagation when perturbed by THG, higher order 

solitons typically fission into their fundamental constituents under the emission of weak 

radiation that disperses; a process exploited in SCG often mediated by, e.g. third order 

dispersion or a retarded response. Detailing this intriguing process to its full extent is 

beyond the scope of this work and the interested reader is referred to the literature, e.g. 

[69,70] for general review, and the thesis by M. Chemnitz [116] and articles [39,49] with 

particular emphasis on experimental demonstration and numerical investigation of 

solitons in retarded media such as liquid filled fibres. 

3.3.1.4 Pump Evolution with Molecular Nonlinearity and Anomalous Dispersion 

In the following, selected cases of evolution in presence of retarded responses under 

otherwise equal conditions are considered since the pump evolution plays a crucial role 

in the THG process. It is to note here that the choice of a specific response necessitates 

the choice of a specific pulse duration as both functions are evaluated on the same grid 

and hence their relative widths must be considered. 

Whereas 𝑇଴ was a free parameter in the former case, here the pulse duration results 

from two aspects of the simulation; first the grid is chosen to accommodate delays of 

±100 𝑇଴ due to GVM in coupled equations, and second it is chosen to cover a range of 

±10 𝜏௙ for the CS2 response in SI units. This yields a physical pulse duration 𝑇଴ of 

0.1 𝜏௙ = 161 fs, or 284 fs FWHM. Similarly, desired pulse duration and temporal 

response extent can be converted to the required normalised grid size. After evaluating 

the response in physical units it is normalised to the respective temporal simulation grid 

maintaining its ratio of nonlinearities. 

 Fig. 18 illustrates evolution of an 𝑁 = 2 sech-pulse in the AD domain comparing CS2 

(a, d), C2Cl4 (b, e), and SiO2 (c, f). In the latter case the shift of a Raman soliton is 

apparent, the initial compression stage extends up to 𝐿஽/𝑁 [82] after which fission takes 

place and the pulse decays into a soliton of greater power and shorter width under 

emission of residual radiation [117]. A qualitatively very similar effect is observed for 

molecular responses, the pulse contracts and exhibits intensity enhancement. Although 

in none of the examples the peak intensity is maintained, in case of C2Cl4 a shorter and 

more intense pulse emerges after fission, similarly to the case of SiO2. Note that the 
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ratios of nonlinearities 𝑛ଶ,ோ/𝑛ଶ,௘௟ is almost two orders of magnitude greater than in the 

case of silica, yet this is not a measure of additional NLP due to the response and hence 

does not fully contribute to the steepness of the NLPs gradient due to the convolution in 

the nonlinear term. The ratio of nonlinearities in case of silica as stated in the caption 

results from its established molecular fraction as 𝑓ோ/(1 − 𝑓ோ) in accordance with the 

nomenclature used to define 𝑁 solely via 𝑛ଶ,௘௟. 

 

Fig. 18: Temporal (top) and spectral (bottom) evolution of a  𝑵 = 𝟐 soliton, 𝑻𝟎 = 161 fs in the AD 
domain in presence of the material response of CS 2 (a, d), C2Cl4 (b, e), and silica (c, f). The colour 
scale applies to all panels in one row. The ratios of nonlinearities 𝒏𝟐,𝑹/𝒏𝟐,𝒆𝒍 are 17.5 (CS2), 13.3 

(C2Cl4), and 0.22 (SiO2). Initial compression is indicated for all responses after which the pulse 
decays. All cases exhibit a red-shift, indicated exemplarily in (e) leading to deceleration of the 
wave. (a) and (b) exhibit similar evolution to the Raman soliton in (c) although dispersion is not 
fully compensated particularly for CS2. 

As was discussed in section 3.2.2 frequency down-shift due to any kind of causal 

response is expected and is observed accordingly. Due to the frequency shift the 

spectrum evolves into a region of increasing group index, i.e. lesser group velocity 

resulting in deceleration as indicated after the compression event. Apparently the fission 

length depends on the response parameters which further influence propagation 

beyond fission. Here the model from [39] was used for C2Cl4, if the model of [88] is 

deployed frequency down-shift is less pronounced whereas temporal spreading is 

similarly strong as in case of CS2. It may be established that compression, or fission, 

occurs earlier for larger contribution of the nonlinearity, that is larger 𝑛ଶ,ோ/𝑛ଶ,௘௟ as in 
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case of CS2 compared to C2Cl4. Further attention should be paid to the temporal axis 

extent. The Raman soliton emerging in the silica case shifts at an inferior rate compared 

to the molecular responses which is also reflected in the steeper red-shift in (e) and (d). 

3.3.1.5 Pump Evolution with Molecular Nonlinearity and Normal Dispersion 

Evolution dynamics of a sech-pulse with 𝑁 = 2 launched in the ND domain are 

illustrated in Fig. 19 for CS2 (a, d), C2Cl4 (b, e), and SiO2 (c, f) as in the previous figure.  

 

Fig. 19: Temporal (top) and spectral (bottom) evolution of a  𝑵 = 𝟐 sech pulse, 𝑻𝟎 = 161 fs in the 
ND domain in presence of the material response of CS2 (a, d), C2Cl4 (b, e), and silica (c, f). The 
colour scale applies to all panels in one row. The ratios of nonlinearities as in Fig. 18. Initial 
compression is indicated in (a) forming a new intensity peak. In (b) the pulse reshapes to a peak 
with extended pedestal. In case of silica dispersive pulse broadening is observed. 

In comparison of ND and AD domain the case of silica exhibits a major difference, as 

NLP and GVD no longer compensate each other a short initial stage accompanied by SPM 

induced broadening leads to rapid pulse spreading. In contrast, in case of molecular 

responses qualitatively similar dynamics as in the AD domain can be observed, 

particularly the spectral evolution resembles the former case, i.e. exerts a red-shift, 

temporal compression occurs for CS2 more dominantly as a global intensity peak is 

formed on a wider pedestal. The wave with red-shifted spectrum accelerates due to 

declining group indices for lower frequency. These initial dynamics deviate substantially 
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from those of purely electronic systems and have to be ascribed to the molecular 

response.  

3.3.1.6 Harmonic Evolution with Molecular Response and Anomalous Dispersion 

In Fig. 20 a selection of PM parameters and the resulting evolution dynamics of the 

harmonic wave are illustrated for the case of pumping in the AD domain including the 

retarded response of CS2 exemplarily as in Fig. 18 (a, d). The pump evolution is not 

altered from the cases shown above. The different ratios of 𝐿஽ to 𝐿ௐ and 𝐿஼  exhibit 

substantial impact on the TH and are stated in the panels.  

 

Fig. 20: Temporal (top, linear scale) and spectral (bottom, log-scale) evolution of harmonic wave 
pumped in AD domain by a 𝑵 = 𝟐 sech-pulse, 𝑻𝟎 = 161 fs for ratios 𝑳𝑫𝑾 = 𝑳𝑫/𝑳𝑾 and 
𝑳𝑫𝑪 = 𝑳𝑫/𝑳𝑪 as stated in the top row. Vertical axis at top is truncated for visibility. 

Whereas the spectral evolution can hardly be interpreted, the temporal domain 

allows for more insight into the generation dynamics. As was shown in Fig. 18 (a) the 

pump decelerates and compresses, the resulting intensity peaks can be observed as a 

delayed arm in (a), as the net GVM is actually negative due to the delayed pump. In (b) 

and (c) in particular, the pump’s compression point is highlighted and generates a 

secondary TH wave after the typical initial signal. In (c) GVM is chosen such that the TH 

still trails the pump and propagates at approximately the same velocity, i.e. the initial 

and secondary wave trajectories are almost in parallel. Before, however, the indicated 

modulations which result from Δ𝛽 cease due to temporal delay. The generation 

efficiencies for cases (b, e) and (c, f) are much inferior to the case of perfect PM.  
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3.3.1.7 Harmonic Evolution with Molecular Response and Normal Dispersion 

Evolution dynamics of the harmonic wave originating from a pump (see Fig. 19 (a, d)) in 

the ND domain are presented in Fig. 21 for the dispersive conditions stated in each 

panel. Due to the retarded response the pump pulse compresses initially which is 

evident in the temporal domain evolution in (a) and (b). Due to the red-shifting pump 

the net GVM is altered and the pulse walks off for GVM = 0 as in (a). An attempt of 

matching group velocities is shown in (c) which also leads to more XPM as the 

bandwidth enhancement suggests.  

 

Fig. 21: Temporal (top, linear scale) and spectral (bottom, log-scale) evolution of harmonic wave 
pumped in ND domain by a 𝑵 = 𝟐 sech-pulse, 𝑻𝟎 = 161 fs for ratios 𝑳𝑫𝑾 = 𝑳𝑫/𝑳𝑾 and 
𝑳𝑫𝑪 = 𝑳𝑫/𝑳𝑪 as stated in the top row. Vertical axis at top is truncated for visibility. 

The shown dynamics provide an overview of the rich interplay even at the reduced 

level of complexity as higher orders of dispersion were not yet considered. Whereas 

dispersion of third order allows steering the pump in time domain, its impact on 

conversion efficiency was found to be marginal compared to phase matching. In the 

following section the effect of Δ𝛽଴ and GVM are studied in an extended range of 

parameters focusing on conversion efficiency.  
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3.3.2  Efficiency Considerations of THG with Retarded Response 

To aid design considerations for experimental implementation and identify possible 

deviation from the established PM concept of linear dispersion, the ratios 𝐿஽/𝐿ௐ and 

𝐿஽/𝐿஼  are investigated in a larger range in both ND and AD domains. Sech-pulses with 

𝑁 = 1 and 𝑁 = 3 and duration 𝑇଴ = 161 fs are deployed. After propagation of 2 𝐿஽ , i.e. a 

distance after which peak power substantially decayed in presence of GVD, the efficiency 

is evaluated and results are gathered in Fig. 22. The ND domain is shown on the left and 

AD on the right. Panels (a-d) include the retarded response of CS2 exemplarily which is 

removed for examples (e, f). 

 

Fig. 22: Normalised efficiency 𝜼 in log-scale when pumping in the ND (left column) and AD (right 
column) domain. (a-d) include the response of CS 2, (e-f) are purely electronic (R=0). Powers are 
indicated as 𝑵 in each panel. The detuning, 𝛀 = 𝟑(𝝎 − 𝝎𝟎), represents the shift from the pump 
pulse centre angular frequency for the harmonic. Area of positive/negative group and phase 
mismatch is indicated in (a). 

Efficiencies from above are normalised and shown in dB-scale. The colour bar in (c) 

applies to all panels. The respective regimes of mismatch represented by the ratios of 
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length scales (note 𝐿஽ is always positive) are indicated in (a). A similarity among all 

configurations is the central peak location. Despite a small displacement towards 

positive GVM in case of (c) and the double hump observed in (f) a common trend of 

higher efficiency for reduced mismatch remains, nevertheless. The dual hump in (f) for 

the ideal 𝑁 = 3 soliton indicates NLP shifts deteriorate conversion upon co-propagation. 

  The electronic ND case (e) forms the shape of an hourglass without preferential PM 

conditions when deviating from the centre unlike the cases including retardation. In 

both AD and ND the upper and lower triangles bend towards negative detuning from the 

pump central frequency which is indicated in (b, d) and is represented by Δ𝛽/𝐺𝑉𝑀 > 0. 

The cause is found in the pumps tendency to frequency down-shift due to the response.  

Within the limits of the above analysis it may be established that despite the presence 

of SPM and XPM the common PM conditions should be met for optimal signal yield. 

Deviation from optimum should preferentially allow detuning towards lower frequency, 

i.e. longer wavelengths, due to enhanced spectral broadening towards lower frequencies 

of the pump caused by the non-instantaneous response.  

 

3.3.3 Numerical Investigation of Experimental Conditions 

In this subsection simulations are conducted in view of experimental realization – in this 

perspective, conditions and waveguide properties closely resembling those which are 

experimentally accessible are in focus. Since the previous analysis validated that 

established concepts of phase matching are fully applicable, the remaining waveguide 

properties, such as higher orders of dispersion or nonlinear overlap integrals, are 

determined in favour of accomplishing phase matching. The details and design 

considerations are presented in chapter 4 – here, one specific waveguide configuration 

is investigated to guide experimental execution by revealing potential impact of pulse 

parameters and to preview evolution dynamics. The analysis serves to provide 

characteristic benchmark figures that are experimentally accessible as well as 

confirming experimental feasibility.  

The waveguide configuration of choice is a 3.4 µm core C2Cl4 filled fibre as deployed 

in section 4.3.1. Numerical simulations presented in this subsection resort to a set of 

coupled GNLSE scaled in the SI unit system for convenience. Dispersive properties are 
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described by constant expansion coefficients rather than a set of length scales which 

include a dependence on pulse duration.  

Throughout the remaining section simulations deploy dispersive properties of the 

pump as listed in Table 2. Higher orders of dispersion for the harmonic were found to 

have negligible effect as dispersion is dominated by the linear term due to GVM. 

Table 2: Simulation parameters for a 3.4 µm liquid core of C2Cl4 [39,118]. 

𝜆଴ 
[µm] 

𝐺𝑉𝑀 
[fs/mm] 

𝛽ଶ 
[fs2/mm] 

𝛽ଷ 
[fs3/mm] 

𝛽ସ 
[fs4/mm] 

𝐽ୗ୔୑ = 𝐽ଡ଼୔୑ 
[µm-2] 

𝐽୘ୌୋ 
[µm-2] 

1.56 320 32 85 -215 0.1 0.002 

 

3.3.3.1 Bulk Loss and Reduction of Conversion 

For the practical application material absorption can limit performance in general. In 

order to assess its impact in the present case simulations with multiple bulk absorption 

values are conducted. The efficiency in terms of energy conversion is calculated and 

shown in Fig. 23 (a). The dashed line corresponds to the experimental bulk loss of the 

liquid and coloured lines show artificially increased losses and the resulting relative 

reduction of efficiency is given in (b). It is shown that the reduction is negligible in the 

experimental case (less than 2 % less conversion) and that loss as high as 30 dB/m 

results in less than 40 % reduction in efficiency. Although conversion rapidly saturates 

within the first 2 cm of the fibre (𝑃଴ = 3 kW, 𝑇଴ = 510 fs), sample lengths suitable for 

convenient handling do not deteriorate conversion efficiency in practice. 

 

Fig. 23: Impact of loss on THG efficiency. (a) Evolution of normalised efficiency of a 3 kW sech 
pulse (𝑻𝟎 =  510 fs) for different amounts of loss. 0.6 dB/m corresponds to the experimental bulk 
absorption of C2Cl4 at 532 nm. (b) Relative reduction of efficiency with respect to zero loss. 
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3.3.3.2 The Influence of Group Delay Dispersion 

Under laboratory conditions pulses emitted from a laser need not be transform limited, 

i.e. their temporal shape is not optimally compressed to the minimal temporal width. 

Particularly beam routing, power adjustments and coupling optics, e.g. lenses, lead to 

accumulated spectral phase and dispersive spreading of a pulse. 

Here, the effect of externally acquired second order spectral phase, i.e. group delay 

dispersion (GDD), on THG efficiency is investigated. Pulse propagation with varying 

initial pulse widths but constant peak power is simulated. GDD was applied to the pulse 

after initialising which leads to a reduction in peak power due to an increased width and 

frequency chirp. The pulse energy in each case of GDD remains constant. Due to the 

constant peak power pulses with initially greater length are more energetic. 

In Fig. 24 (a) the full width half maximum (FWHM) pulse width which results due to 

GDD is shown for various initial FWHM. Note that ±GDD leads to the same pulse width, 

yet opposite frequency chirps. The legend in (a) also applies for (b-d). 

Panels (b-d) present the efficiency evaluated after propagating 10 cm for five cases of 

phase mismatch Δ𝛽. In each case the impact of GDD is noticeable and it is more 

pronounced for shorter pulses whose width is more strongly affected by the same 

amount of GDD. Apart from the initial 200 fs pulse a clear maximum in efficiency is 

formed for which GDD < 0 in all cases. The reason why negative GDD is preferable is due 

to the normal dispersive fibre (𝛽ଶ > 0), which allows balancing dispersive spreading 

initially as will be shown below. Despite the inherent reduction in peak power due to the 

initial spectral phase, more than 100 % enhancement of efficiency is possible in case of 

30 fs pulses regardless of the phase matching conditions. 

Albeit showing little susceptibility to GDD, the case of 200 fs pulses exhibits 

remarkably strong dependence on Δ𝛽 as the conversion efficiency drops by an order of 

magnitude for Δ𝛽 = −10 mm-1 and even more for Δ𝛽 = −25 mm-1. The cause is the 

limited initial coverage of the phase matched wavelength 𝜆୔୑. The inertial response 

causes considerable initial red-shift of the pump spectrum. Therefore negative detuning, 

i.e. phase matching to wavelengths greater than 𝜆୔୑, is preferred over the opposite case 

and is observed even for shorter pulses, although the effect is less pronounced. 
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Fig. 24: Efficiency dependence on initial group delay dispersion (GDD) for various pulse widths. 
(a) Resulting FWHM for increased absolute GDD. The legend applies to all panels. (b-f) Efficiency 
at the end of a 10 cm fibre filled with C2Cl4 under experimental conditions. Pulses are initialised 
with 𝑷𝟎 = 10 kW in the ND domain (1.56 µm) and GDD is applied thereafter including intensity 
reduction in simulation. The phase mismatch considered is stated in panels (b-f).  

According to both (b, d) an optimal GDD amounts to approximately −1000 fs2 for 

pulses below 100 fs, whereas this suggest a favourable pulse duration in the range 75 fs 

to 90 fs (see area of multiple intersections in (a) for GDD = 1000 fs2) it is to note that 

the pulse chirp is essential for an enhancement in efficiency. For larger positive phase 

mismatch (f) greater negative GDD is beneficial, yet longer pulses exhibit less 

pronounced maxima in efficiency. 

Fig. 25 illustrates the dynamic evolution in case of Δ𝛽 = 10 mm-1. (a) and (b) show 

how a 30 fs pulse evolves along the fibre without (a) and with −1000 fs2 GDD. The 

transform limited case exhibits rapid temporal dispersion, whereas spectral broadening 

(c) is saturated within the first centimetre of the fibre. In contrast, the chirped pulse 

exhibits lower peak power, compresses at first to a level of 4.75 kW, which is still 

substantially below the peak power of case (a) amounting to 10 kW, and disperses 

thereafter. In the spectral domain narrowing accompanied by a red-shift is present until 

compression completes. The evolution of efficiency (e) for the two cases (black and red) 
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is shown together with an unchirped pulse (blue) of identical width and peak power as 

the chirped pulse. THG energy steeply rises at first but soon stagnates for the unchirped 

pulse (black), the same pulse chirped by −1000 fs2 (red) exhibits less steep signal 

increase due to the reduced peak power closely following the trajectory of the unchirped 

pulse of identical width until yield is substantially boosted beyond the level of the 

intense short pulse. The interplay of pre-compensated dispersion and spectral 

narrowing enhancing power density nearby 𝜆୔୑ possibly lead to the increase of 𝜂.  

The resulting THG spectra (f) are affected in location, width and overall shape by 

these changes in peak power, pulse chirp and duration. A reasonable explanation for the 

shift of the THG in case of the chirped pulse (red) with respect to the other cases is 

phase accumulated by XPM during the extended distance of signal generation before and 

after the compression point which, as shown in earlier sections, can lead to blue-shift.  

 

Fig. 25: Temporal and spectral evolution for a 30 fs (FWHM) pulse with GDD = 0 (a, c) and 
GDD = -1000 fs2 (b, d). Colour scale from (c) applies to (d). (e) Conversion efficiency for the 
transform limited pulse (red), the same pulse with GDD (black) and a transform limited pulse 
with identical peak power and width as in case of GDD (𝑷𝟎 = 3.62 kW, FWHM = 92 fs). (f) THG 
spectra (linear scale) resulting from the three different pulses. 
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3.3.3.3 Power Dependent Spectral Evolution 

The dynamic evolution along the waveguide is difficult to access experimentally. 

Recording the evolution by cutting the fibre to shorter lengths leaves an open end in 

case of liquid core fibres. Evaporation is inevitable and steady experimental conditions 

can hardly be achieved. An alternative approach to investigate nonlinear dynamics is 

recording output spectra for successively increased powers. Modelling results for 

experimentally available laser systems are presented in Fig. 26 to assess feasibility and 

characteristic spectral features in experiments. 

 

Fig. 26: Numerically obtained power spectral evolution during THG in a 15 cm long C2Cl4 LCF with 

parameters as in Table 2 and 𝚫𝜷 = 𝟐𝟓. 𝟑 𝐦𝐦ି𝟏 to match the experimental 𝝀𝐏𝐌. Columns 
represent pump spectra (left), TH spectra (centre), and average power of TH (right) for pump 
pulses of 900 fs (top), 90 fs (centre), and 30 fs (bottom) assuming the respective repetition rates 
of the pump lasers. Vertical axes (left and centre) are identical and represent soliton number and 
peak power, respectively. Colour scale applies to each panel in respective column. 
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For experiments lasers delivering pulses of 30 fs, 90 fs, and 900 fs (FWHM) are 

available. Considering the given fibre dispersion and typical power levels readily 

achieved in prior work on SCG in liquid filled fibres, panels (a, d, g) present the expected 

dynamics of spectral broadening. The vertical axes show the respective power as soliton 

number (equivalent peak powers are given in centre column) to assess the relative 

contributions of dispersion and nonlinearity in these cases. The relatively stronger 

dispersive effects lead to smooth spectral broadening in the normal dispersive domain 

(𝜆୞ୈ = 1.95 µm) for 30 fs and 90 fs, whereas rather clean SPM structure can be observed 

in the case of 900 fs pulses whose dispersive length scale substantially exceeds the 

sample length. The expected trend to red-shift is also present. 

Spectra of the generated harmonic (b, e, f) are centred near 532 nm initially due to 

Δ𝛽 = 25 mm-1 providing phase matching at a red-shifted wavelength similar to the 

experimental configuration discussed in the next chapter. Further, all spectra exhibit a 

shift towards shorter wavelength for increasing powers, although Eq. (25) suggests the 

opposite. As established in section 3.2.4 propagation subsequent to generation leads to 

XPM which more than compensates the opposite detuning. The particular rates at which 

the harmonic shifts are given in the panels. The rate is highest for the longest pulse 

maintaining its intensity throughout the sample producing a long-tailed trailing NLP. 

Intensities of the short pulses are reduced more rapidly also due to higher spectral 

broadening rates.  

For all cases, an efficiency of the order 1 – 5 × 10-5 is expected for the fibre 

configuration. Since damage thresholds in terms of both peak power and fluence are 

largely unexplored, it is hardly possible to unambiguously identify the optimum pulse.  

Panels (c, f, i) show the expected average powers of the TH signal accounting for the 

respective laser repetition rates. The average power is of importance since direct 

measurements are preferentially performed with power meters based on sensitive 

photo diodes. More sensitive equipment such as photo multipliers seem unnecessary 

even in case of the longest pulses. Power levels of 10-20 nW are detectable with 

standard equipment and can be reached at peak powers of 2 kW – 3 kW suggesting that 

each pump pulse configuration is promising to achieve THG experimentally.  
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4 Third Harmonic Generation in Liquid filled Step Index Fibres 

This chapter is devoted to the experimental part of the thesis. Considerations towards 

waveguide design are in focus of the first subsection. The selection process of core 

liquids is described first followed by a phase matching analysis in 4.1 utilising methods 

outlined in chapters 2.2 and 2.4. Details of the experimental setup are provided in 4.2. 

Subsection 4.3 comprises studies conducted in fibres with circular core. To that end, 

lasers delivering pulses with different durations in the sub-picosecond domain were 

selected to target propagation regimes with different amounts of molecular contribution 

to the nonlinearity as will be discussed in the respective sections. An analysis of core 

ellipticity and the resulting birefringence is presented in section 4.4. The potential of 

active tunability during operation by external temperature control is explored in 4.5. 

Finally, the accomplished long-term durability of liquid filled fibres is presented in 4.6 

highlighting their future prospects in applications. 

4.1 Liquid Core Materials 

Despite the large number of liquids that are available to form liquid core fibres (LCFs), 

wide transparency for the desired pump and harmonic range cannot be achieved with 

every liquid. For successful harmonic generation experiments, both reliable pump 

sources and detection for both the pump and harmonic spectral ranges are necessary. 

Since material absorption towards the ultraviolet limits the harmonic spectral range to 

greater than 400 nm, the most promising pump sources operate in the telecom domain. 

This spectral range around 1.56 µm can be accessed with mature laser technology and 

detection equipment, whereas the resulting harmonics are in the visible range that also 

allows for convenient and sensitive detection of signals. 

The requirements for liquid candidates can be established as follows: 

1) High transparency in both visible and near infrared 

2) Large molecular contribution to the nonlinearity 

3) High refractive index compared to silica 

4) Ideally well characterized optical properties 

Since the focus is on studying the molecular contribution in the harmonic generation 

process, the molecular structure is important to consider. Symmetrical molecules exhibit 

an isotropic polarisability and their nonlinear response is dominated by the electronic 
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effect. In contrast, elongated molecules exhibit an anisotropic polarisability which will 

lead to a time dependent dipole that experiences torque in the excitation field. This 

molecular motion is the origin of non-instantaneous nonlinear responses. 

Among others, carbon disulphide (CDS, CS2) exhibits an extraordinarily large 

molecular contribution to its nonlinearity and therefore was in focus of recent and 

former nonlinear frequency generation experiments. Further, the response of CS2 is a 

role model of a non-instantaneous response and thoroughly characterised [34,87]. 

Tetrachloroethylene (TCE, C2Cl4) is a promising candidate also which to date was much 

overlooked but its response was recently characterised as well [88] and already 

exploited in supercontinuum generation experiments [39]. Benzene derivatives such as 

toluene (C6H5CH3) and nitrobenzene (C6H5NO2) also exhibit a high molecular 

nonlinearity [35] and recently served as nonlinear fibre core material, e.g. in 

Refs. [42,44,54,119–121]. 

4.1.1 Absorption in Selected Nonlinear Liquids 

To fully exploit the propagation lengths provided by the fibre geometry, absorption in 

the liquid core material must be kept minimal. Losses in CS2 and C2Cl4 were 

characterised from the visible to short-wave-infrared without further treatment of the 

chemicals after withdrawal from their repository. Absorption measurements are based 

on spectrally resolved transmission data acquired for variable path lengths of the bulk 

liquids in silica cuvettes. Fig. 27 presents transmission data referenced to an empty path. 

 

Fig. 27: Transmission data versus wavelength for CS2 filled cuvettes with path lengths of 1 cm 
(black), 2 cm (red), and 5 cm (blue). A triangle (square) indicates the transmission dip at 
2224 nm (1950 nm) which is shown in the inset versus path length. Dashed lines represent linear 
fits whose slopes correspond to absorption in dB/cm multiplied by -1. 
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For this example data of CS2 is chosen using 1 cm, 2 cm, and 5 cm path length. 

Absorption can be retrieved by fitting a linear function for each individual wavelength as 

indicated in the inset exemplarily. Triangles (squares) represent data at 2224 nm 

(1950 nm) and the negative slope corresponds to absorption of 125 dB/m (12 dB/m). 

The full range of data is shown in Fig. 28 including the absorption of CS2 (orange) and 

C2Cl4 (blue) along with highly nonlinear benzene derivatives, toluene (C6H5CH3, black) 

and nitrobenzene (C6H5NO2, red). The latter two are scaled by 0.1 for better visibility, as 

their absorption coefficient was determined to be notably higher [122] particularly in 

the near infrared when compared to CS2 and C2Cl4. Molecules containing C-H bonds 

exhibit infrared absorption due to stretching, bending and deformation modes whose 

overtones reach into the near infrared and are not considered further due to these 

losses. Although such absorption can be manipulated, i.e. pushed towards longer 

wavelength by exchanging hydrogen with heavier atoms [122], the impact of 

deuteration on dispersion is not fully researched and introduces further complications 

for practical use, such as deterioration by atmospheric water vapour. 

 

Fig. 28: (a, b) Liquid absorption for C2Cl4 (blue), CS2 (orange), toluene (C7H8, black), and 
nitrobenzene (C6H5NO2, red). Curves for toluene and nitrobenzene are scaled by 0.1 for better 
visibility, data taken from [122]. Note different y-axis limits for (a) and (b). Grey area in (b) 
corresponds to the visible light range shown in (a). Typical bandwidths of common laser ions are 
shown in (b). 

It must be noted this list of liquid candidates is by no means exhaustive but already 

takes into account further constraints listed above, e.g. the sufficiently high IOR which 

rules out alcohols and ketones which also show limited transmission in the 

near-infrared.   
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4.1.2 The Nonlinear, Non-instantaneous Response in Molecular Liquids 

As outlined in chapter 2.3.1 the nonlinear response in molecular liquids is a 

superposition of multiple effects commonly modelled by the functional forms given in 

Table 1. The latest response models for CS2 [34,123] and C2Cl4 [88] are illustrated with 

all their constituents in Fig. 29 (a) and (b), respectively. Note, in case of C2Cl4, no 

collisional contribution is necessary to achieve good agreement between measurement 

and modelling in [88]. Generally, librational motion exhibits shorter decay times and 

accounts for the initial peak of the response whereas collisions between dipoles and the 

diffusive reorientation represent the slow decaying tail of the total response. Responses 

in (a) and (b) are normalised by the respective 𝑛ଶ,௘௟ of the liquid revealing the 

enhancement of the nonlinear contribution to the IOR. CS2 exhibits extraordinarily large 

molecular contributions among the molecular liquids characterised so far [124]. 

To assess its impact on the nonlinearly induced change of the IOR, Δ𝑛, and similarly 

the nonlinear phase (NLP, see Eq. (18) and Eq. (19) on p. 11) is evaluated for pulse 

durations deployed in experiments. The results are shown as red curves in panels (c) –

 (e) for CS2 and (f) – (h) for C2Cl4 along with the initial pulse shape as dashes. Blue 

curves represent the instantaneous detuning from the carrier frequency due to phase 

modulation. The change of IOR is again normalised by the purely electronic effect and 

exhibits substantial changes trailing the pulse even in case of pulses with full width half 

maximum (FWHM) of 30 fs (c and f). For increasing pulse durations (90 fs in (d) and 

(g)) local minima in Δ𝑛 are less pronounced as the pulse width approaches the rise 

times of the inertial effects (commonly set to 100 fs or 150 fs). Finally, in case of 900 fs 

(panels (e) and (h)), Δ𝑛 is fully dominated by inertial contributions exhibiting a 

decaying tail of NLP. In contrast to purely electronic effects the detuning 𝛿𝜔 ∝ −𝜕௧Φ୒୐  

is negative at the pulse centre and not symmetrical across the pulse shape but 

red-shifted. It is to mention that the pulse chirp, i.e. 𝜕௧𝛿𝜔, can be inferred from the 

detuning and on average remains positive across the pulse as in case of a purely 

electronic response. Yet, copropagating pulses, i.e. a pump and radiation created via 

THG, may alter their respective phase via XPM as was discussed in chapter 3. 
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Fig. 29: Non-instantaneous response and its constituents for CS2 (a) and C2Cl4 (b) normalised by 
the respective 𝒏𝟐,𝒆𝒍. (c-e) Change of refractive index due to instantaneous and total 

non-instantaneous response of CS2 (red, left axes, in units of 𝒏𝟐,𝒆𝒍𝑰𝟎) and frequency shift (blue, 
right axes, in arbitrary units). Pulses assumed for the convolution are shown as dashes with 
FWHM durations of 30 fs (c), 90 fs (d), and 900 fs (e). (f-h) same as (c-e) for C2Cl4. 

Table 3 lists the parameters for the characteristic response function of C2Cl4 and CS2 

used to obtain the responses shown in Fig. 29 (a) and (b). C2Cl4 was only recently 

characterised by using the beam deflection technique [88]. A former model developed in 

[39] is shown in the table for comparison. All 𝑛ଶ,௞ values are in 10-20 m²/W, rise and fall 

times 𝜏௙,௥ in ps, 𝜔଴, i.e. the librational resonance frequency, and 𝜎, i.e. its bandwidth due 

to inhomogenous broadening, are given in ps-1. 

By comparing the different models for C2Cl4 an approximate factor of two in terms of 

nonlinear strength, i.e. higher values for 𝑛ଶ,௞, shows that parameters for the material 

model are difficult to determine accurately, since both in [88] and in [39] very good 

agreement between experimental data and simulations was achieved using the 

respective model parameters.  
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Table 3: Response parameters for CS2 and C2Cl4. Functional forms of the respective effects are 
given in Table 1, page 12. Nonlinear indices 𝒏𝟐 are given in 10-20 m²/W, 𝝉𝐫,𝐟 are in ps, and 𝝎𝟎 and 

𝝈 are in ps-1.  

 CS2 [34,87] C2Cl4 [39] C2Cl4 [88] 
effect n2 r f 0/ n2 r f 0/ n2 r f 0/ 

electronic 15.2    5.52    3.87    
libration 76  0.57 8.5/5 20.8  0.78 4/6.3 10  0.65 4/6.5 
diffusion 180 0.1 4.5  50.1 0.1 4.5  18 0.15 6.5  
collision  10 0.1 0.78  3.1 0.1 2.98  0    
max. 𝒇𝑹  92.47%   93.05%   87.91%  

In comparison to other known solvents [34,35,87], and CS2 in particular, C2Cl4 

exhibits a relatively large fall time for the diffusion component and at the same time 

either model corroborates a short temporal width of the librational component which 

manifests in in a L-shaped response with a low level extended tail. Both CS2 and C2Cl4 

represent excellent retarded nonlinear materials. 

For completeness, the molecular fraction 𝑓ோ for the above liquids is compared to silica 

(SiO2) in Fig. 30. In contrast to a constant value of 0.18 for silica, the multicomponent 

response  from [125] was used to evaluate 𝑛ଶ,ୣ୤୤ and finally 𝑓ோ assuming Gaussian pulses.  

 

Fig. 30: Molecular fraction for CS2, C2Cl4, and SiO2 for Gaussian pulses. 𝒙-axis is logarithmic. 

When probing the material response with pulses shorter than characteristic rise 

times, inertial effects cease to contribute, as expected. This effect is observed for silica, 

too. Interestingly, silica exhibits greater molecular fractions in the sub-40 fs regime than 

CS2 and C2Cl4 due to the shorter rise times of its Raman response which is still probed by 

such short pulses. Fig. 30 shows that 𝑓ோ = const. is a reasonable approximation only if 

the pulse duration is significantly larger than characteristic rise times and should not be 

applied for molecular liquids in the sub-picosecond domain.  
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4.1.3 Material Refractive Index 

Material indices for the two core liquids and silica cladding are shown in Fig. 31 (a) (left 

axis) along with the resulting fibre NA (right axis). Curves are calculated based on the 

respective Sellmeier equations (silica [126], C2Cl4 [39,118], CS2 [38]) defined as 

 𝑛(𝜆)ଶ = 1 + ෍
𝑎௞𝜆ଶ

𝜆ଶ − 𝑏௞
ଶ

௞

 . (39) 

A peculiar and perhaps unique property of liquid core fibres is the local minimum of 

the NA (e.g. 900 nm for C2Cl4). The infrared absorption strength used in modelling the 

refractive index is much lower for liquids as compared to silica or most other glasses. 

This results in relatively large ZDW for the liquids and causes the increase in NA with 

potential of robust modal confinement towards mid infrared wavelengths reducing 

losses due to the silica cladding in this spectral domain.  

Fig. 31 (b) shows that CS2 and C2Cl4 are valid core materials as their referenced 

indices exceed the zero-line sufficiently. The number of modes guided in such high NA 

fibres can be very large in the visible range as indicated in the bar chart in Fig. 31 (c). 

However, the green portion of the bars indicates modes with azimuthal index equal to 

one, as in case of the fundamental pump mode. Only such modes will achieve reasonable 

modal overlap which reduces the higher the order of the respective mode.  

 

Fig. 31: Dispersion and fibre properties. (a, solid lines, left y axis) Refractive index of core (red: 
CS2 [38], blue: C2Cl4 [39,118]) and cladding (black: silica [126]). (a, dashed lines, right y axis) 
Numerical aperture. (b) Index difference to cladding at the harmonic (colours as in (a)). (c) 
Number of non-degenerate guided modes for CS2 (red) and C2Cl4 (blue) at 532 nm. The green 
portion highlights the number of modes with a central intensity lobe. 

4.1.4 Phase Matching in a Liquid Filled Fibre 

In simulations different linear dispersion regimes, as well as nonlinear contributions, 

were explored to determine their impact on the conversion process. Sufficient signal can 
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be generated if phase matching is achieved among the interacting modes. In this 

subsection the waveguide design is detailed for both liquids revealing the dispersion 

parameters that can be targeted. 

Fig. 32 provides an overview of possible higher order modes that achieve phase 

matching to a fundamental pump mode at 1.56 µm using C2Cl4 (Fig. 32 (a)) or CS2 (Fig. 

32 (b)). As discussed in subsection 2.4.3, only modes with central intensity peaks 

(HE-type) are considered. Phase matching is indicated at the intersection of the HOM 

with the fundamental mode (HE11) upon entering the green area. For C2Cl4 phase 

matching is achieved with a HE13 mode close to the single mode regime of the pump 

which is indicated by the grey shaded area, an HE14 mode can also be phase matched at 

higher V parameters and core sizes, respectively. CS2 exhibits an enlarged green area 

within the V parameter range shown in Fig. 32 (b) compared to C2Cl4 due to the larger 

NA, yet the same two types of modes can be phase matched at smaller core sizes 

compared to C2Cl4. 

To determine an optimal core size for an experiment, the phase matching points 

shown in Fig. 32 (a, b) are traced in the desired spectral range and yield unambiguous 

pairs of core size and wavelength. For this calculation the full material and waveguide 

dispersion is accounted for by solving the linear phase matching condition 

 0 = Δ𝛽୪୧୬ = 𝛽ு(3𝜔) − 3𝛽௉(𝜔). (40) 

In this case no approximation is applied, 𝛽(𝜔) is found numerically for the modes of 

interest and Eq. (40) is solved subsequently. Nonlinear contributions, i.e. a power 

dependent shift from the phase matched wavelength 𝜆୔୑, are neglected since both 𝜕௥Δ𝛽 

and 𝜕ఒΔ𝛽 are more than two orders of magnitude larger than Δ𝛽୒୐(𝑃୫ୟ୶) assuming a 

30 kW peak power in either CS2 or C2Cl4. 

The resulting phase matching curves are shown in the bottom row of Fig. 32 (left 

axes) as solid lines for the modes HE13 in C2Cl4 (a), HE13 in CS2 (b), and HE14 in CS2 (c). 

The coloured part highlights normal (red, ND) and anomalous dispersion (blue, AD) for 

the fundamental pump mode. At the black dot the GVD of the pump is equal to zero. The 

dashed curves (right axes) show the group velocity mismatch (GVM) between pump and 

harmonic. Symbols highlight experimental observation (stars) which are discussed in 

the following subsections. Insets in Fig. 32 (c-e) show the Poynting vector distribution of 

the respective modes in colours of the experimental observation in a LCF with core 
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diameter 3.4 µm. From the bottom row it is evident that the condition GVM < 0 cannot 

be fulfilled in the shown range of wavelengths and core sizes. In fact, no modal 

combination, including pumping via transverse electric and transverse magnetic modes, 

was found to achieve phase matching and provide a negative GVM in C2Cl4 or CS2 filled 

LCF to enable XPM based frequency down-shift in a THG experiment. 

 

Fig. 32: Modal dispersion in liquid filled step index fibre referenced to cladding refractive index at 
the harmonic frequency. (a) C2Cl4, NA = 0.372 and (b) CS2, NA = 0.655 for 1.56 µm pump 
wavelength. Horizontal lines indicate core and cladding indices, coloured curves represent modes 
according their label. PM indicates phase matching at the intersection of a higher order mode 
with the fundamental pump mode which occurs upon entering the green area. Grey area: single 
mode operation of pump. (c – e) Phase matching calculation for (c) HE13 mode in C2Cl4, (d) HE13 
mode in CS2, (e) HE14 mode in CS2. Solid lines represent the required core diameter (left axis) vs. 
harmonic wavelength. The red (blue) part indicates normal (anomalous) dispersion at the pump 
wavelength. Dots highlight the zero dispersion wavelengths. Group velocity mismatch (dashes, 
right axis) is shown for each core-wavelength pair. Insets: modal intensity with core as dotted 
line. Stars: experiments with 3.4 µm core (c) 533 nm and 3.5 µm core (d) 669 nm, (e) 518 nm. 

In general, larger cores lead to larger 𝜆୔୑ because HOMs cut-off at fixed V 

parameters. The tuning slope, i.e. the change of THG wavelength versus core diameter, 

amounts to 7.7 % in (c), 10.3 % in (d), and 7.0 % in (e) evaluated at the experimental 

THG wavelengths indicated by stars. Axially varying core sizes, i.e. tapered fibres can 

hence be used to achieve a phase matched bandwidth beyond that of a fibre with 

constant core size provided sufficient pump bandwidth is supplied. 
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A similar approach was demonstrated using a standard silica telecommunication 

fibre tapered down with a linear slope in width [15], yet multiple modes were observed 

in that case rather than a single HOM with broadband emission. 

 

4.2 Experimental setup 

A representative experimental setup is shown in Fig. 33 (a) below. Commercial 

Er:doped fibre lasers are used as pump sources delivering pulses of different durations 

in order to investigate the impact of the molecular nonlinearity. Autocorrelation traces 

are shown in the inset exemplarily. The pulse energy is controlled via a combination of 

half wave plate and linear polarizer. Depending on the beam size and fibre core size a 

suitable aspheric lens is used to launch pulses into the fibre which is assembled 

manually in a home-made optofluidic mount4. The mount is fed with the fibre and serves 

as liquid reservoir and light coupling interface. Such a pair of mounts is then clamped in 

commercial holders using a 40 mm optical rail system. Fibres fill by capillary forces 

when submerged in the liquid without the need of external pressure. 

The assembly is then positioned between coupling and collecting lenses which are 

mounted on three-axes-translation stages. 

PUMP

3.4µm

40 mm rail

in- & outlet

fibre

fibre chamber
with window
and sealing

900 fs

30 fs

LASER

HWP+POL

SAMPLE
OFM

LCF

OFM
DIAGNOSTICS

OSA

PM

CAMSP

a

b

c

2 ×

2 ×

 

Fig. 33: (a) Experimental setup: Three different Er:doped fiber lasers are used as pumpsources 
(30 fs, 90 fs, and 900 fs FWHM pulse duration). Typical autocorrelation traces are shown for 30 fs 
and 900 fs. The diagnostics include an optical spectrum analyser (OSA) and beam profilers for 
visible and near infrared radiation (HWP: half-wave-plate, POL: polarizer, OFM: optofluidic 
mount, LCF: liquid filled fiber, SP: short pass filter, PM: power meter). (b) photograph of the 
mounted LCF. (c) SEM image of capillary. [After Ref [118], © OSA 2020]. 

                                                        

4 Initial designs of optofluidic mounts by Mario Chemnitz  
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Fibre coupling and transmission is monitored via input and output powers which are 

measured with a thermal power meter in case of the pump and the spatial beam profile 

is observed with a camera for near infrared radiation. The harmonic signal is monitored 

via a photo diode power meter and a camera sensitive in the visible range. Both 

harmonic and pump waves are collected using a fibre with core diameter of 200 µm and 

are analysed in the spectral domain by optical spectrum analysers (OSAs) that provide a 

noise floor of -80 dBm (10-8 mW). The power dependent evolution and signal strength 

can thus be recorded for small steps of launched pulse energy and yields the power 

spectral evolutions which will be presented in the respective subsections.  

 

4.3 Third Harmonic Generation in Circular Liquid filled Step Index Fibres 

C2Cl4 and CS2 were identified to fulfil the criteria pointed out in section 4.1, that is high 

transmission for pump and harmonic, large molecular contribution, and ability to form 

LCFs with sufficient index contrast to allow phase matching. Hence these two liquids are 

deployed as core materials for the following experiments.  

4.3.1 Third Harmonic Generation in C2Cl4 filled Fibres 

In this subsection the experimental data for THG in TCE in circular fibres are presented 

and results were published in parts in ref. [118]. To investigate a possible effect of the 

non-instantaneous nonlinearity and to study the conversion dynamics in the 

sub-picosecond domain, three kinds of Er:doped fibre lasers delivering pulses with full 

width at half maximum of 30 fs, 90 fs, and 900 fs are used as pump sources. The central 

wavelength is in the telecom domain at 1.56 µm, such that THG is expected in the green 

part of the visible spectrum. 

Due to different pulse durations, the non-instantaneous contribution to the 

nonlinearity (i.e. the molecular fraction 𝑓 ) amounts to 3 % for 30 fs, 17 % for 90 fs, and 

71 % for 900 fs at the fibre input. This targets THG in a quasi-instantaneous (30 fs), 

weakly non-instantaneous (90 fs), and highly non-instantaneous (900 fs) regime. It is to 

emphasize again that 𝑓ோ dynamically changes during propagation due to the interplay of 

dispersion and nonlinear frequency generation, yet it is common to present a static 

initial value as it is done for solid glass fibres. 
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4.3.1.1 Characteristic figures for THG in TCE-LCF 

A core diameter of 3.4 µm is chosen to achieve intermodal phase matching between the 

fundamental pump mode and the HE13 higher order mode (HOM) targeting the 

harmonic wavelength of 532 nm (see Fig. 32 (c) star) which can be an important 

wavelength for future investigations of spontaneous parametric down conversion 

experiments in such LCFs. The hybrid mode represents the HOM of lowest order 

allowing for highest possible modal coupling due to its field distribution. The central 

intensity lobe contains approximately 22 % of the total energy that is guided in the 

mode. The LCF supports 4 (19) modes at 1596 nm (532 nm) wavelength and is normal 

dispersive in both cases with a group velocity dispersion (GVD) of 30 fs²/mm and 

296 fs²/mm, respectively. The group velocity mismatch (GVM) is ≈299 fs/mm such that 

pulse walk-off is expected even for 900 fs pulses after the relatively short distance of 

3 mm. It is to emphasise again that the above parameters are evaluated at the exactly 

phase matched wavelength according to the modal dispersion. In other words, these 

parameters are based on the LCF, not on the laser systems to be used. The initial 

bandwidth of the 30 fs laser covers the phase matched wavelength. Both laser systems 

providing 90 fs and 900 fs pulses are centred at 1.56 µm wavelength, whereas the 

bandwidth of the latter does not cover the phase matched wavelength. Table 4 therefore 

summarises important parameters that are evaluated for this LCF in view of the 

particular laser central wavelength of 1.56 µm. 

As it is common, the phase mismatch is expanded around the laser central frequency 

𝜔଴ up to the first order as in section 2.4.1 which yields Δ𝛽(𝜔) ≅ Δ𝛽଴ + GVM ∙ Ω. The 

phase mismatch Δ𝛽଴ amounts to 25 mm-1 which results in a coherence length of 124 µm 

for the THG wavelength of 520 nm. For the particular experimental configuration the 

detuning, Ω = 3(𝜔 − 𝜔଴), amounts to −12.4 THz which leads to a redshift of 11.2 nm. 

The numerical value where to expect THG (531.2 nm) agrees well with the direct 

calculation, showing the validity of the low order approximation in this case. The ZDW, 

i.e. the transition from ND to AD domain, is at 1.95 µm. As it is far away from the PM 

wavelength it is not considered further. 
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Table 4: Summary of fibre parameters according to the experimental configuration at the pump 
central wavelength of 1.56 µm. 𝑳𝒄 = 𝝀𝟎/𝟔𝚫𝒏𝐞𝐟𝐟, 𝛀 = 𝟑(𝝎 − 𝝎𝟎) = −𝚫𝜷𝟎/𝐆𝐕𝐌 

dispersion 
parameters 

GVM 
[fs/mm] 

GVD 
[fs²/mm] 

TOD 
[fs³/mm] 

FOD 
[fs4/mm] 

  520 nm 
1560 nm 

320 
263 
32 

-320 
85 

2148 
-215 

phase matching Δ𝛽଴ 
[mm-1] 

𝐿௖ 
[µm] 

Ω 
[2𝜋THz] 

𝛿𝜆୘ୌୋ 
[nm] 

 25.3 124 -12.4 11.2 
modal coupling JSPM 

[µm-2] 
JXPM 

[µm-2] 
JTHG 

[µm-2] 
 

  520 nm 
1560 nm 

0.202 
0.097 

0.096 0.0023 
 

pulse 
parameters 

Lw 
[mm] 

LD 
[mm] 

fr 
[1] 

 

   30 fs 0.09 9 0.03  
   90 fs 0.28 81 0.17  
900 fs 2.81 8146 0.71  

The coupling constant 𝐽୘ୌୋ exceeds the one reported in ref. [17] by 200% using the 

same type of HOM. Yet the overlap for SPM of the pump, and XPM of the TH due to the 

pump, are approximately 40 times larger, which highlights their relative importance 

during propagation. 

4.3.1.2 THG in TCE-LCF – Experimental Data 

The power spectral evolutions for TH and pump wave are shown in Fig. 34 (top row: 

THG, bottom row: pump) after propagating a 15 cm long TCE-LCF. For each panel the 

experimental data is normalised to its respective maximum and plotted in dB-scale. Note 

here, the colour bar in (f) represents a 40 dB contrast which applies to the bottom row, 

whereas each panel in Fig. 34 uses a different colour scale and contrast for THG ((a) 

30 dB, (b) 40 dB, and (c) 20 dB) due to different resolutions during acquisition and 

repetition rates of the laser systems (resolution: (a) 0.05 nm, (b) 0.2 nm, and (c) 

0.05 nm; repetition rates: (a) 80 MHz (b) 40 MHz (c) 400 kHz). For top and bottom the 

axes show pump pulse energy (left) and pump peak power (right), which is calculated 

assuming a Gaussian pulse with the measured pulse energy. The initial molecular 

fraction is indicated in the bottom row using the model of [88]. Insets in top row show 

experimental farfield images of the HE13 mode which prove intermodal phase matching 

to a HOM, rather than intramodal THG that would emerge in the fundamental mode. The 

diamond in Fig. 34 (f) highlights 𝜆୔୑ for panel (c) at the onset of THG. 
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Fig. 34: Experimental power spectral evolution in a 15 cm TCE-LCF with core diameter 3.4 µm of 
TH (top row) and pump (bottom row) for pump pulse durations of 30 fs (a, d), 90 fs (b, e), and 
900 fs (c, f) in log-scale. Left axes: pulse energy, Right axes: pulse peak power. Insets in top row 
show modes in farfield, initial molecular fractions are stated in bottom row. Colour scale in (f) 
applies to bottom row. Diamond in (f) highlights THG onset from (c). Reprinted from [118] © 
OSA (2020) 

A common peak power threshold slightly below 3 kW is revealed by experiments, 

although it requires more pulse energy for longer pulses to generate measurable TH 

signal. Whereas the 30 fs and 90 fs pulses exhibit a bandwidth that covers 𝜆୔୑ initially, 

for 900 fs pulses the bandwidth of the pump must be increased due to SPM. As soon as 

the pump spectrum reaches 𝜆୔୑ TH is generated (see marker in Fig. 34 (f)). 

Remarkably, THG occurs almost immediately once the pump covers 𝜆୔୑, which first 

occurs towards the end of the fibre leaving little propagation length for conversion. With 

increasing power, SPM causes spectral broadening at shorter propagation distances, 

leaving a greater length of interaction for THG. These results clearly show that THG 

occurs at 𝜆୔୑ if a seeding spectral component is present. 

For the 90 fs pulses (Fig. 34 (b)) a narrow TH peak is observed followed by a growing 

spectral pedestal which is attributed to XPM between the harmonic signal and the 

spectral pump components generated by SPM. However, the level of the pedestal is 

25 dB – 30 dB below the TH peak. Despite the lesser dynamic range in the other 

experiments (Fig. 34 (a,c)), for 30 fs pulses the pedestal is still visible. The wavelength at 

which the TH peaks shifts by 2 nm – 3 nm from experiment to experiment. Small 

variations of the core diameter along the capillary spool from which the samples are 
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taken can cause such shifts. 𝜆୔୑ shifts by 7% of the core size deviation in Fig. 32 (a). 

Since the spatial resolution of the SEM imaging is also limited to approximately 50 nm –

 60 nm, this can amount to a shift of 3.5 nm – 4.2 nm for 𝜆୔୑. 

In Fig. 34 (d,e,f) the spectral evolution of the pumps are shown. SPM driven 

broadening is observed in the normal dispersive regime and is particularly clean, but 

asymmetric in case of the 900 fs pulses (Fig. 34 (f)). The evolution will be discussed in 

subchapter 4.3.1.4 in more detail. 

4.3.1.3 Analysis of Experimental Data in TCE-LCF 

The spectra of the harmonic develop a spectral FWHM of 0.6 nm for 30 fs and 1.4 nm for 

90 fs pump pulses. This bandwidth is two orders of magnitude larger than predicted by 

first order dispersion theory, Δ𝜆୘ୌୋ = 0.441 ∙ 𝜆୘ୌୋ
ଶ /(𝑐଴ ∙ 𝐿୐େ୊ ∙ GVM), resulting in 

Δ𝜆୘ୌୋ ≈ 9 pm for a 15 cm long LCF as in the experiments. Note that neither of the 

aforementioned bandwidths is limited due to the resolution of the OSA, which allows 

retrieving it and the respective peak centre from the data. In Fig. 35 the TH peaks are 

shown versus pump pulse energy and exhibit a blue-shift for increasing energy and 

pump peak power for 30 fs and 90 fs pulses in Fig. 35 (a) and (b). The green shaded area 

represents the spectral FWHM which follows the same trend. In case of 900 fs pulses, 

the complicated splitting dynamics shown in Fig. 34 (c) are captured in Fig. 35 (c), to 

this end the peaks are extracted above and below 529.7 nm and are evaluated 

separately. The limit of 529.7 nm is arbitrary, yet it represents a reasonable choice in 

accordance with the data shown in Fig. 34 (c). 

 

Fig. 35: Experimental power dependence of TH peak wavelength for (a) 30 fs, (b) 90 fs, and (c) 
900 fs. Legend in (a) applies to all panels. The shaded area in (a) and (b) represent the spectral 
FWHM, which is omitted in (c) for clarity. Due to the more complex dynamical behaviour for 
900 fs pulses, in (c) the peaks are extracted above and below 529.7 nm (indicated by the dashed 
horizontal line). For details see main text. 
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For linear fits data points with low signal were excluded, and in case of Fig. 35 (b) the 

initial swings of the peaks were excluded as well, yet the general trend is not affected if 

all data is included for a fit. The rates 𝑅ఋఒ
ா  at which the TH peaks shift versus pulse 

energy are −456 pm/nJ (a), −322 pm/nJ (b), −116 pm/nJ below 529.7 nm, and 

213 pm/nJ above 529.7 nm (c), respectively. Note however, a blue-shift may be 

continued even above the 529.7 nm case in (c) if greater pulse energies are launched 

than it was possible in experiments due to the damage threshold of the LCF samples. The 

findings suggest a stronger shift for shorter pulses, however if the fits are conducted 

versus peak power, the situation is reversed. The rate can be obtained via 𝑅ఋఒ
௉బ = 𝜏 × 𝑅ఋఒ

ா , 

with the pulse duration 𝜏 and leads to −14 pm/kW (30 fs), −29 pm/kW (90 fs), 

−104 pm/kW, and 191 pm/kW (900 fs, below and above 529.7 nm) in agreement with 

simulations from section 3.3.3.3. 

As established before, the detuning due to peak power, 𝜕Ω/𝜕𝑃 = −3𝛾/GVM, which is 

expected to lead to a red-shift for the present dispersion (GVM > 0) [127], is 

overcompensated by XPM. In solid glass microstructured fibres GVM < 0 is the more 

common case [9,127,128] and blue-shifts of the TH with increasing power were 

observed when the fibre was pumped close to the maximum group index in the AD 

regime. Hence the experimental observation indicates the potential impact of the 

non-instantaneous response. Further, it is to note that a red-shift in silica based fibres 

may originate from both positive 𝐺𝑉𝑀 and soliton self-frequency-shift due to the 

ultrafast Raman response in glasses. 

4.3.1.4 Pump Evolution in the Non-Instantaneous Regime 

Revealing the effect of the retarded response during propagation is challenging, the data 

shown in Fig. 34 (f) on p.61 allow investigating the bandwidth evolution for a large 𝑓  

that may be used to determine both the effective nonlinearity of the fibre as well as the 

effect of the material response. Fig. 36 presents cut-off wavelengths extracted from 

individually normalised experimental data. An experimentally relevant cut-off at the 

−30 dB (-30dB, circles) and at the 1/e level (1/e, squares, corresponds to −4.34 dB), 

which is common in theoretical considerations, are chosen. Red (blue) colour represents 

longer (shorter) wavelength cut-offs with respect to 0. Black diamonds indicate the 

centre of mass wavelength (COM). Whereas on the red spectral edge both cut-offs run in 

parallel for increasing power, a significant difference for the evolution of the cut-offs is 



 - 64 - 

observed on the blue spectral wing, indicating a general shift of spectral power towards 

longer wavelengths. This effect is reminiscent of a soliton self frequency shift in the AD 

domain, yet in this case the soliton maintains its spectral shape [109,110,129]. Here, 

typical SPM structure above and a rather flat spectral extension below 0 is observed, 

similarly as in [33] but with larger NLP shifts. The evolution of COM shows a linear 

red-shift at a rate of (5.8±0.1) nm/kW. 

 

Fig. 36: Experimental evolution of bandwidth for 900 fs pulses in a C2Cl4 LCF with 3.4 µm 
diameter. Data is extracted from Fig. 34 (f). Black diamonds represent spectral centre of mass 
(COM), The -30 dB and 1/e cut-off for the short (blue) and long wavelength region (red) are 
shown as circles and squares, respectively. 

For 900 fs pulses the characteristic length scales of dispersion are much larger than 

the sample length (Table 4, p. 60, 𝐿஽ > 8 m), the attempt to extract an effectively acting 

nonlinearity, eff, directly from the bandwidth is reasonable. Since the relevant 

broadening mechanism is SPM and dispersive broadening is negligible, the standard 

estimate δ𝜔୫ୟ୶ = 𝛿𝜆୫ୟ୶ ∙ 2𝜋𝑐଴/𝜆଴
ଶ  = 0.86 ∙ 𝛾ୣ୤୤𝑃଴𝐿 ∙ 𝑇଴

ିଵ (see, e.g. [85]), where L is 

length (15 cm), T0 is the 1/e half width (540 fs), and P0 is peak power, connects 

bandwidth and NLP resulting from the fibre and pulse parameters during propagation. 

The slope of a linear fit yields 𝛿𝜆୫ୟ୶/𝛿𝑃଴ and when solved for 𝛾ୣ୤୤ while accounting for 

the red-shift in 𝜆଴, one obtains 𝛾ୣ୤୤
୰ୣୢ = (34 ± 1) (m kW)-1 and 𝛾ୣ୤୤

ୠ୪୳ୣ = (24.2 ±

0.5) (m kW)-1, respectively. Note these values represent an effective nonlinearity, i.e. the 

nonlinearity necessary to achieve the measured bandwidth regardless of the physical 

mechanism. It is worth noting that 𝛾ୣ୪ < 𝛾ୣ୤୤ < 𝛾୲୭୲ୟ୪ holds for either of the two values 

retrieved from experiment and calculated values using the model from [39] or [88], 

respectively. This means the retarded response not fully contributes to SPM. 
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4.3.1.5 Experimental Efficiency of THG in C2Cl4 fibre 

To evaluate the efficiency of the THG process, direct average output power of the 

harmonic is measured for increasing average pump powers. Average powers are 

converted to energy via the laser repetition rates and the data is shown as symbols in 

Fig. 37 (a) and (b) versus peak power and pump pulse energy, respectively. Solid lines 

show cubic polynomial fits (𝑠 ∙ 𝑋ଷ) with good agreement to the data as expected for 

THG. Here, 𝑠 is the slope efficiency and 𝑋 is either peak power or pulse energy of the 

pump. Scaling the 𝑦-axis by 10-6 allows direct determination of the experimental 

conversion efficiency 𝜂ୣ୶୮ by reading off the respective value from the axis (Fig. 37 (b)). 

Important parameters are given in Table 5, including the experimental maximum 

conversion efficiency 𝜂୫ୟ୶
ୣ୶୮

= 𝑃ு/𝑃௉ for the highest average powers of pump and 

harmonic. Note that 𝜂ୣ୶୮ is obtained from the slope efficiency 𝑠ா  by rescaling with 𝑓୰ୣ୮
ିଶ 

(𝑓୰ୣ୮: repetition rate).  

 

Fig. 37: Output energy of harmonic signal for increasing pump peak power (a) and pulse energy 
(b) for 30 fs (red circles), 90 fs (blue squares), and 900 fs (green diamonds) pulse duration 
(FWHM) in C2Cl4 LCF. Solid lines represent cubic fits as described in the main text. Upper 𝒚-axis 
limits in (a) and (b) are identical. Reprinted from [118] © OSA (2020). 

In these experiments it was shown that the slope efficiency with respect to peak 

power continuously increased with pulse duration, whereas a decrease is found when 𝑠 

is evaluated with respect to pulse energy. Both results are consistent – yet, the highest 

conversion efficiency was similar for 90 fs and 900 fs pulses, which both were limited by 

the damage threshold of the sample. The damage mechanism in LCFs is largely 

unexplored and beyond the scope of this thesis. However, long term studies showed 

excellent stability for high average power beam delivery and continuum generation 

[130] when pumping at 1.9 µm which will be discussed in section 4.6, and capabilities to 
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deliver highly energetic 3 µm pulses in the ns-regime were already demonstrated 

[131,132] . In case of 30 fs pulses the delivered pulse energies were insufficient to 

damage the LCF. 

Table 5: Slope efficiency 𝒔, experimental efficiency 𝜼, and number of photons per pulse for THG 
with different pulse durations in C2Cl4 LCF. 

pump FWHM 
[fs] 

𝑠௉బ
 

[fJ/kW³] 
𝑠ா 

[fJ/nJ³] 
𝜂୫ୟ୶

ୣ୶୮
 

[1] 

photons / pulse 

(𝜆 = 532 nm) 
30 2.9×10-4 10.9 1.2×10-5    30×103 
90 2.2×10-3    3.0 2.7×10-5 216×103 

900 0.478    0.7 2.6×10-5 385×103 
 

 

4.3.2 Third Harmonic Generation in CS2 filled Fibres 

Experimental results for CDS-LCFs are presented in this subsection focussing on the two 

spectrally separated phase matched modes shown in panels (d) and (e) in Fig. 32 on 

page 56. Due to the higher refractive index compared to C2Cl4 two modes, namely the 

HE13 and HE14 modes, can be addressed with the 30 fs and 90 fs laser systems. For 900 fs 

pulses no stable THG output could be generated and detected due to the lower coupling 

constant of the HE14 mode at 520 nm and the lack of pump signal for the HE13 mode at 

650 nm. Further, CS2 exhibited a slightly lower damage threshold than C2Cl4. 

Due to its strong retarded response, the initial 𝑓ோ amounts to 9 % for 30 fs and 42 % 

for 90 fs pulses in a CS2 LCF representing more than twice as much contribution due to 

the molecular response as for C2Cl4.  

4.3.2.1 Characteristic figures for THG in CDS-LCF 

Similar to the case of TCE, a round 3.5 µm core size is used to achieve phase matching in 

the visible domain. Here, different pump dispersion regimes, i.e. the ND and AD regimes, 

are targeted to observe a possible impact from GVD and potential soliton formation in 

the AD regime compared to a dispersive wave pump in the ND regime. 

For the case of phase matching to the HE14 mode the CDS-LCF supports 7 (72) modes 

at 1554 nm (518 nm) wavelength and is normal dispersive in both cases with a GVD of 

38 fs²/mm and 348 fs²/mm, respectively. The GVM is ≈813 fs/mm, i.e. the slope of Δ𝛽 is 

much steeper than in case of TCE which ought to limit the THG bandwidth. The CDS-LCF 

in the HE13 mode configuration supports 4 (37) modes at 2007 nm (669 nm) 

wavelength but this time is anomalous dispersive for the HE11 mode (ZDW is 1.79 µm) 
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with a GVD of -35 fs²/mm and normal dispersive at the harmonic (204 fs²/mm). The 

GVM amounts to 459 fs/mm. Again the above parameters are evaluated at 𝜆୔୑ according 

to the modal dispersion without approximations as in case of TCE. Similar to the former 

section, a central laser wavelength of 1.56 µm is chosen to present dispersive 

parameters in Table 6 as well as characteristic lengths and the detuning.  

Since 𝜆୔୑ for the HE13 mode in this case is far from the pump central wavelength, the 

linear expansion of Δ𝛽 is not valid anymore, therefore a fictitious pump central 

wavelength of 1.95 µm, e.g. a Tm-doped laser source, is assumed as reference as if the 

HE13 mode was pumped by a separate pulse. This assumption may seem arbitrary at 

first but is motivated by the spectral evolution shown in the following chapter. Hence all 

parameters in Table 6 are given twice corresponding to the wavelength pairs of 520 nm 

and 1560 nm for the HE14 mode and 650 nm and 1950 nm for the HE13 mode which are 

pumped from the fundamental HE11 mode in either case. 

Table 6: Summary of fibre parameters according to the experimental configuration at the pump 
central wavelength of 1.56 µm for a conversion to the HE14 mode given by the first value in each 
cell. The second value corresponds to the HE13 mode pumped at 1950 nm. 𝑳𝒄 = 𝝀𝟎/𝟔𝚫𝒏𝐞𝐟𝐟, 
𝛀 = 𝟑(𝝎 − 𝝎𝟎) = −𝚫𝜷𝟎/𝐆𝐕𝐌 

dispersion 
parameters 

GVM 
[fs/mm] 

GVD 
[fs²/mm] 

TOD 
[fs³/mm] 

FOD 
[fs4/mm] 

  HE14 / HE13 

HE11 
809 / 477 

 
345 / 218 
37 / -26 

227 / 182 
214 / 334 

249 / 193 
-266 / -902 

phase matching Δ𝛽଴ 
[mm-1] 

𝐿௖ 
[µm] 

Ω 
[2𝜋THz] 

𝛿𝜆୘ୌୋ 
[nm] 

 -36 / 30 87 / 105 7.12 / -9.93 -6.4 / 14 
modal coupling JSPM 

[µm-2] 
JXPM 

[µm-2] 
JTHG 

[µm-2] 
 

  HE14 / HE13 

HE11 
0.28 / 0.25 

0.144 / 0.128 
0.135 / 0.125 0.0006 / 0.0018 

 

pulse 
parameters 

Lw 
[mm] 

LD 
[mm] 

𝑓ோ 
[1] 

 

   30 fs 0.04 / 0.06 8 / 12.6 0.09  
   90 fs 0.11 / 0.19 78 / 113 0.42  
900 fs 1.11 / 1.9 7,822 / 11,311 0.89  

The detuning due to the choice of expansion wavelengths matches the experimental 

observation. Due to the different types of modes, the coupling constants 𝐽୘ୌୋ differ by a 

factor of three which results in an approximate order of magnitude difference in 

generation efficiency if all other conditions were kept constant highlighting the 

importance of phase matching to the lowest order HOM possible. 
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4.3.2.2 THG in CDS-LCF – Experimental Data 

During the course of experiments it was necessary to assemble several LCF samples 

since the damage threshold, in contrast to TCE-LCFs, varied noticeably from sample to 

sample. A higher degree of moisture, i.e. water absorption in the solvent, may have 

caused larger optical absorption which, however, was not evident in the recorded 

spectra. As a consequence the spectra shown below extend to the respective damage 

threshold of the LCF in use rather than to a common maximum power throughout all 

pump and harmonic recordings. 

The power spectral evolution in case of 30 fs pump pulses is shown in Fig. 38 for the 

pump (a), the HE14 mode (b), and the HE13 mode (c). The ZDW is indicated as a dashed 

line in (a), at first the entire spectral power resides in the ND regime and SPM of the 

initial spectrum causes broadening towards the ZDW more rapidly as in the opposite 

direction. This is similar to the cases shown in Fig. 34, albeit the detection bandwidth 

this time is sufficient to capture the most red-shifted spectral components for the short 

pump pulse durations. At a level of 5 kW peak power the arrow indicates a sudden 

radiation transition from ≈1780 nm towards 2 µm with subsequent red-shift. 

Remarkably, for 90 fs pulses the same effect occurs at 5 kW peak power (see arrow in 

Fig. 39 (a)). This transition is essential as it provides the pump radiation for the HE13 

mode and is well explained by a four wave mixing (FWM) approach. 1780 nm radiation 

serves as degenerate pump, strong initial pump light at 1.6 µm acts as signal and 

generates an idler at 2 µm which is confirmed by a phase matching condition of the 

respective propagation constants, i.e. 2𝛽(1.78µm) = 𝛽(1.6µm) + 𝛽(2µm).  

 

Fig. 38: Power spectral evolution in log-scale in a CS2 filled LCF for 30 fs pump pulses (a) and THG 
in mode HE14 (b) and mode HE13 (c). The dashed line in (a) highlights the ZDW. Arrows at the top 
mark the central TH wavelengths from (b) and (c), a transition of radiation towards 𝝀𝐏𝐌 is 
indicated. Insets in (b) and (c) are mode images captured simultaneously after the fibre. Common 
upper axes levels are chosen for comparability - data in (a) is cropped due to sample damage at 
0.72 nJ. The fibre length was 15 cm. 
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Both HOMs in panels (b) and (c) exhibit an onset power threshold of approximately 

7 kW, despite the initial coverage of the pump spectrum in case of the HE14 mode. As 

stated above the modal coupling coefficient is three times smaller and hence the overall 

conversion is less efficient in this case. Both modes exhibit a blue-shift with power 

despite their positive GVM with respect to the pump.  

In case of 90 fs pump pulse duration the spectral dynamics of the pump show 

equivalent features in Fig. 39 (a), especially the FWM transition occurs also at 5 kW and 

the harmonic was detectable from approximately 7 kW onwards. A substantial extend 

towards short wavelengths in contrast to the 30 fs pulses is observed for similar powers, 

yet higher launched pulse energies. Note the dark patch in the 20 kW domain at 2.4 µm 

signals a grating artefact from 2nd order diffraction, i.e. spectral components with 

𝜆 < 1.2 µm. In each case absorption in CS2 limited broadening beyond 2.2 µm (see Fig. 

28 (b) p. 50). As in all previous experiments, the harmonic tends towards shorter 

wavelengths for increased powers but in this case exhibits more spectral structure 

whose origin is difficult to determine. Qualitatively the same dynamics were observed 

for different samples with similar shifts and spectral structure. 

 

Fig. 39: Power spectral evolution in log-scale in a CS2 filled LCF for 90 fs pump pulses (a) and THG 
in mode HE13 (b). The experimental mode is shown as inset. The dashed in (a) highlights the 
ZDW. The shaded batch is a higher order reflection artefact from radiation with 𝝀 < 𝟏. 𝟐 µm 
inside the OSA. A sudden radiation transition at the ZDW towards 𝝀𝐏𝐌 is marked in (a). 

It is to note here that the HE14 mode was observed on a camera screen at relatively 

low intensity as the entire coupling conditions were optimised in favour of the HE13 

mode for all samples. 
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4.3.2.3 Analysis of Experimental Data in CDS-LCF 

The spectral FWHM of the harmonic in the CDS-LCF amounts to 1.06 nm for the HE14 

mode at 519 nm (30 fs pulses), 0.74 nm (30 fs pulses), and 0.95 nm (90 fs pulses) for 

the HE13 mode. In case of 30 fs pulses the FWHM was averaged, whereas the median is 

reported for the 90 fs case due to the extent of structural fluctuation in the spectrum. 

As in the case of TCE, the theoretical bandwidth predicted by first order dispersion 

theory, Δ𝜆୘ୌୋ = 0.441 ∙ 𝜆୘ୌୋ
ଶ /(𝑐଴ ∙ 𝐿୐େ୊ ∙ GVM), is surpassed by two orders of magnitude 

as the calculation yields Δ𝜆୘ୌୋ ≈ 9 pm for HE13 and a width of 3 pm for the HE14 mode in 

a 15 cm long LCF. Further the overall trend of the blue-shift is shown in Fig. 40 (a-c). 

Peak TH wavelengths are extracted from the data and the FWHM is indicated by shaded 

areas. A solid line represents a linear fit and yields the rates 𝑅ఋఒ
ா  at which the peak 

wavelengths shift. For 30 fs the blue shift amounts to -1409 pm/nJ (a), -1834 pm/nJ (b), 

or – 42 pm/kW and -165 pm/kW, respectively. The shift rates are larger by a factor of 

three to four compared to the case in TCE. The enhancement is due to the stronger 

relative contribution of molecular effects to the total nonlinearity. 

 

Fig. 40: Spectral shift in CDS-LCF extracted from experimental data. Pulse durations and mode 
labels are given in the panels. Shaded area corresponds to the FWHM. Solid lines represent linear 
fits highlighting the overall blue-shift with increasing pump energy. In (c) a modest red-shift is 
observed before a relatively steep blue-shift. 

When pumped with 90 fs pulses 𝑅ఋఒ
ா  is +475 pm/nJ initially but changes sharply at 

1.7 nJ (≈17 kW) to -2361 pm/nJ (-212 pm/kW) in Fig. 40 (c) which maintains the 

overall trend of the blue-shift. Similar rates are obtained throughout different CDS-LCF 

samples, yet different samples from the same fibre spool showed quantitatively different 

spectral modulations since the THG process is sensitive to the launching conditions, i.e. 

modal coupling at input and pulse parameters, e.g. power and chirp. 
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4.3.2.4 Pump evolution in the non-instantaneous regime 

Analogous to the case of a C2Cl4 filled LCF the evolution of bandwidths (1/e and −30 dB) 

is investigated based on experimental data and is shown in Fig. 41. For 30 fs (a) and 

90 fs (b) spectral broadening is limited due to absorption in CS2 at 2.2 µm and it is to 

note that strong uncompensated chromatic aberration from coupling optics after the 

LCF alters spectral amplitudes which impacts retrieved bandwidths already at around 

5 kW but especially beyond 10 kW. Albeit present in the case of 900 fs pulses, chromatic 

effects are less detrimental due to the smaller bandwidths. The −30 dB width (circles) 

highlights the generation of 2 µm radiation via FWM in (b), whereas in (a) the 1/e width 

(squares) jumps at the respective peak power as a consequence of different relative 

spectral amplitudes. Besides this jump, the 𝜆ଵ/௘ bandwidths remain in the spectral 

centre in (a) and (b) which is in contrast to the case of 900 fs (d). Here, broadening is 

also more symmetric towards blue and red spectral edges than in case of C2Cl4 shown in 

Fig. 36. The data shown in (d) is extracted from the spectral evolution in (c).  

 

Fig. 41: Bandwidth evolution for 30 fs (a), 90 fs (b), and 900 fs (d). Data for (d) was extracted 
from power spectral evolution for 900 fs in (c). Different bandwidths are indicated by dots 
(-30 dB) and squares (1/e) for longest (red) and shortest (blue) wavelength. The centre of mass 
(COM) wavelength is shown as black diamonds. 
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Note 𝜆େ୓୑ was not determined beyond 3.5 kW due to insufficient detection 

bandwidth where only the blue spectral edges are retrieved. For each pulse duration an 

initial red-shift can be observed. Since dispersive length scales are much greater than 

the fibre length only for 900 fs pulses, the red-shift of (9.2±0.5) nm/kW in this case can 

be attributed to the retarded response. 

The procedure to extract an effective nonlinearity as described in section 4.3.1.4 

using both the red and blue 𝜆ଵ/௘ leads in this case to 𝛾ୣ୤୤
୰ୣୢ = (50 ± 1) (m kW)-1 and 

𝛾ୣ୤୤
ୠ୪୳ୣ = (48.5 ± 1) (m kW)-1, respectively. As in the former case, the red-shift was 

accounted for, but here both parameters are very similar as the symmetrical broadening 

suggested. Experimentally obtained values are smaller than the purely electronic 

nonlinear parameter 𝛾ୣ୪ = 89 (m kW)-1 calculated for a 3.5 µm core CDS-LCF. 

Considering the error margin of 𝑛ଶ,ୣ୪ stated in [87] (27 %) and an overestimated peak 

power the experimental and theoretical values are in close proximity, however, no 

contribution to SPM from the retarded response would be present in that case despite 

the relatively long pulse duration harnessing a large amount of the retarded response.  

4.3.2.5 Experimental efficiency of THG in CS2 fibre 

The procedure to obtain the conversion efficiency for the case of CS2 filled LCF is 

analogous to that described in section 4.3.1.5, despite the THG signal used here is 

retrieved from the optical spectrum analysers (OSA) due to the lack of optimised short 

and long pass filters. Measured power spectral density is converted to signal energy 

using the laser repetition rate. Pump parameters are measured directly. 

In Fig. 42 the increase in THG energy is presented versus pump peak power (a) and 

pump pulse energy (b) for the different modes and pump pulse durations, respectively. 

Solid lines represent cubic fits of the form 𝑠 ∙ 𝑋ଷ with slope efficiency 𝑠 and 𝑋 is either 

peak power or pulse energy. Cubic fits show reasonable agreement with the data as 

expected for a THG process. It is to note that the 90 fs case exhibits large fluctuation due 

to the spectral dynamics evident in Fig. 39 (b). 

The respective efficiencies are provided in Table 7. Although the experimental 

efficiency is fairly low – mainly due to overall lesser power handling capabilities 

compared to C2Cl4 – the slope efficiencies exceed the ones obtained for C2Cl4 filled fibres 

by more than two orders of magnitude.  
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Fig. 42: Experimental THG output in a CS2 filled LCF pumped by 30 fs (squares, red and diamonds, 
green) and 90 fs pulses (circles, blue) for increasing peak power (a) and pulse energy (b). Solid 
lines represent cubic fits to the data. Slope efficiencies are given in Table 7. 

Table 7: Slope efficiency 𝒔 and experimental efficiency 𝜼 for THG with different pulse durations in 
CS2 LCF. 

pump FWHM 
[fs] 

𝑠௉బ
 

[fJ/kW³] 
𝑠ா 

[fJ/nJ³] 
𝜂୫ୟ୶

ୣ୶୮
 

[1] 
mode 

 

30   5.4×10-3 167.3 1.2×10-7 HE14 
30 378×10-3 1160 9.9×10-7 HE13 
90 199×10-3 22.6 1.4×10-7 HE13 

 

Clearly, THG in the HE13 mode performed better than in case of the HE14, as reasoned 

earlier due to its smaller modal coupling constant. Although the presented data do not 

admit conclusions which impact the pulse duration may have, these results suggest 

further capability of efficiency enhancement accounting for the large mismatch of power 

spectral density and phase matched bandwidth due to the pump pulse spectrum which 

occurred for both TCE and CDS-LCFs. Usually less than 5 % of the spectral power density 

is located within the phase matched bandwidth which in each case was experimentally 

determined to be of the order of 1 nm. Therefore transform limited pump pulses in the 

2 µm domain with 2 ps FWHM duration and above seem ideal to greatly enhance the 

conversion efficiency in case of the HE13 mode in a CDS-LCF, and similarly for TCE-LCFs 

at the respective wavelength. 
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4.4 Birefringence in Liquid Core Fibres 

This chapter is devoted to explore in detail the possibilities to incorporate birefringence 

in LCF and to study its effects with the focus on THG and the participating HOMs in this 

process by both numerical methods and experiments. Results were published partially 

in [133]. Up to this point the pump was assumed to propagate in a single fibre mode, yet 

not necessarily in the single mode regime, discarding effects related to the polarisation 

of the input field and the existence of degenerate modes. It is the latter that may cause 

severe fluctuations during nonlinear wave propagation for instance during SCG as 

discussed in [134]. Both coherence and polarisation properties deteriorate due to vector 

or polarisation modulation instability (MI). Although MI is a noise seeded FWM process 

which occurs for large soliton numbers in the AD domain, recent studies showed that 

these effects are limiting performance in the ND domain as well [135,136] calling for an 

approach circumventing crosstalk among modes. Mitigation of polarisation related 

instabilities can be achieved by breaking the fibres symmetry, i.e. introducing 

mechanical stress or a noncircular geometry. The latter method is chosen here as it is 

straight forward to incorporate whereas inducing stress in the cladding of an LCF does 

not promise noticeable effects since liquid phase core materials intrinsically are free of 

any stress. The resulting IOR profile then exhibits at least two distinct axes a 

propagating mode may be polarised along with – the fast and slow axis. It will be shown 

that these are unrelated to the fibre geometry by its own which is in contrast to common 

sense. Further, the transformation of modes as discussed in the following sections 

reveals a number of advantages in THG due to enhancement of modal coupling. 

4.4.1 Transformation of Modes in Elliptical Liquid Core Fibres 

Guided modes in fibres strongly depend on the IOR distribution which is investigated 

here by means of fully vectorial finite element calculations covering a large range of 

ellipticity and wavelength using the commercial software COMSOL Multiphysics™ rather 

than semi-analytical methods [137] due to the large contrast of core and cladding IOR in 

elliptical LCF (eLCF).  

A schematic of the fibre geometry is illustrated in Fig. 43 (a) to introduce the 

ellipticity Δ, i.e. the difference between semi major and semi minor axis of the ellipse. 

The semi major axis is denoted with 𝜌 and is kept constant at 1.6 µm in the following 

analysis to allow for potential phase matching at smaller wavelengths than in previous 
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experiments. Particularly the prospect of phase matching a lower order HOM (EH-type 

of mode) which requires larger PM wavelengths motivates the core size reduction. 

Fibres with elliptical cores were employed already in the late 70’s to preserve 

polarisation states [138]. Modes in eLCF are labelled with their respective original mode 

label as in case of the circular fibre and a superscript ⊥ (∥) denotes polarisation 

perpendicular (parallel) to the semi major axis. It is to note that the following analysis 

applies to any elliptical SIF, yet here it is focused on eLCF for the purpose of THG in a 

C2Cl4 filled core. 

Birefringent fibres are commonly operated exclusively in the single mode regime 

where only the two HE11 types of modes are guided. These two, which are now 

non-degenerate, and the first four HOMs are presented in Fig. 43 (b-f) for increasing Δ. 

In common notation 𝑛ୣ୤୤
∥ > 𝑛ୣ୤୤

ୄ  for HE11 modes and hence the polarisation parallel to the 

major axis is termed the slow axis, i.e. exhibits the lower phase velocity, and the 

perpendicular polarisation is associated with the fast axis. Whereas the deformation of 

the HE11 is barely visible despite the alignment of the electric fields, even the lowest 

order HOMs, such as TE01 (c), the two degenerate HE21 (d,e), and TM01 (f), rapidly 

transform their intensity, i.e. Poynting vector 𝑧-component, into double bell shapes 

resembling LP11 modes known from weakly guiding fibres [139], or the more general 

case of Ince-Gauss modes observed in elliptical Gaussian beams [140].  

More noticeably the field vectors immediately align with either major or minor axis – 

moreover, these modes reveal that neither polarisation, nor core geometry alone 

predetermine the optical axis of a birefringent fibre which is a particular property of the 

fibre modes under consideration. It is to note that 𝑛ୣ୤୤ of the presented modes decreases 

from top to bottom and hence fast and slow axes interchange each time another pair of 

HOMs is considered, i.e. 𝑛ୣ୤୤ of mode (c) is larger than for (d) and it is larger for case (e) 

than for (f). This is in contrast to the common case where fast and slow axes are 

associated with the fibre geometry in commercial polarisation maintaining fibres, whose 

applications, however, are usually limited to the single mode regime.  

For the THG process, modes of higher order are in focus as presented in Fig. 44. 

Significant transformation is observed for the EH12 mode in (a) forming a central 

intensity lobe from its initial dual ring intensity shape and again the electric field rapidly 

aligns with the ellipse axes. Modes of HE-type (b) undergo less drastic transformation 

and the field orientation remains largely unaffected.  
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Fig. 43: Overview of modal transformation in elliptical fibres. (a) Schematic of cross section. 
Poynting and electric field vectors are shown for bound modes for ellipticity 𝚫 as stated, silica 
cladding, TCE core and 𝝆 = 1.6 µm. 𝝀 = 500 nm. The dashed white line indicates the core. (b) 
HE11, (c) TE01, (d,e) HE21, (f) TM01. neff decreases from top to bottom. See text for further details. 
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Fig. 44: Transformation of HOM in elliptical fibre for ellipticities as stated on top. Parameters as in 
Fig. 43. EH11 (a) and HE13 (b) modes split into parallel and perpendicularly polarised modes. neff 
decreases from top to bottom and the core is indicated by the white dashed line. Adapted from 
[133] © OSA (2020). 

4.4.2 Quantitative Analysis of Modes in elliptical LCF 

In order to quantify the visual change of modes the mode field diameter (MFD) 

 𝑀𝐹𝐷௫ =
∫ 𝑥ଶ𝑆௭dA

ஶ

ିஶ

∫ 𝑆௭dA
ஶ

ିஶ

 , (41) 

along direction x (y), which here is associated with the semi major (minor) axis 

direction, is introduced as well as the ratio of polarisation (ROP) 

 𝑅𝑂𝑃 =
∫ |𝐸௫|ଶdA

ஶ

ିஶ

∫ |𝐸௫|ଶ + ห𝐸௬ห
ଶ

dA
ஶ

ିஶ

 , (42) 

which is a measure of the relative amount of power carried by the respective 

polarisation direction. These quantities are presented in Fig. 45 (a) for modes relevant 

for the THG process evaluated at representative wavelengths (see figure caption); the 
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MFD ratio (left axis), i.e. MFDy / MFDx, of these modes is initially 1 due to the circular 

symmetry and is a measure how much the modes expand (MFD ratio < 1) and squeeze 

(MFD ratio > 1) along the semi major axis. The right axis shows the ROP for the EH12 

modes (note in case of HE13 modes the ROP is not affected) indicating strong field 

alignment for Δ ≈ 60 nm, i.e. a change less than 𝜆୘ୌ/8. A benefit thereof is the 

enhancement of modal coupling discussed below. Panel (b) shows the contrast of 

effective indices, i.e. birefringence, of the respective modes for THG (e.g. pump at 

1551 nm, harmonic at 517 nm); positive and negative values indicate the flip of 

orientation of the fast and slow axes in case of HOMs. Interestingly, birefringence peaks 

for Δ close to 90 nm and decreases monotonically thereafter for HE13 even below zero 

where fast and slow axis interchange yet again. It is to note that these modes are rather 

close to their respective modal cut-off due to the reduced core size in this case. Similarly, 

for EH12 modes the index contrast exhibits a local minimum after which the 

birefringence reduces again. This peculiar behaviour is associated with the field 

structure of the modes and the amount of tangential and perpendicular field 

components at the core cladding interface which alters in case of decreasing core area. 

The birefringence for the pump mode increases monotonically as expected from fibres 

with increasing ellipticity at a rate of 4.5∙10-7 nm-1 and at a rate of 7∙10-8 nm-1 with 𝜆 

within the investigated parameter range. 

 

Fig. 45: (a) Ratio of MFDy / MFDx (left axis) evaluated at 520 nm (500 nm) for EH12 (HE13) modes. 
ROP (right axis) for EH12 modes. (b) Birefringence for pump (HE11, 1551 nm) and TH (HE13 and 

EH12, 517 nm) modes. (c) Shift of 𝝀𝐏𝐌. In the circular case 𝝀𝐏𝐌
𝐇𝐄𝟏𝟑 = 516 nm and 𝝀𝐏𝐌

𝐄𝐇𝟏𝟐 = 528 nm.  

Adapted from [133] © OSA (2020). 

The shift of 𝜆୔୑ due to Δ is presented in panel (c). A shift towards shorter 

wavelengths results from the overall reduction of the core size, the steeper decline for 

the HE-type modes is inferred from the modal expansion along the minor axis. Due to 



 - 79 - 

this transformation HE13 modes mainly probe the nearby core cladding interface and 

closely follow the PM wavelengths of a circular fibre with radius of the minor axis (not 

shown for clarity) resulting in a linear shift of −32 nm for up to 200 nm ellipticity. Note 

that EH12 modes in a circular fibre experience the same shift. In contrast, in the elliptical 

fibre the shift of the EH12 modes is much less steep since they are elongated along the 

major axis utilising more of the available high IOR core area.  

 

Fig. 46: (a) Birefringence and (b) modal coupling constant at 𝝀𝐏𝐌 for EH and HE type modes as 
represented by the colour map. 𝝀𝐏𝐌 was averaged among the two polarisations in (a). Adapted 
from [133] © OSA (2020). 

In Fig. 46 the combined effects of Δ and the resulting 𝜆୔୑ on birefringence (a) and 

modal coupling constant 𝐽୘ୌୋ (b) are presented for the targeted THG application. It is to 

note that due to the reduction of 𝜆୔୑ the reduction in core size probed by the HE type 

modes is compensated, i.e. 𝑛∥ − 𝑛ୄ monotonically increases, whereas for EH modes the 

index contrast shows less dependence on 𝜆୔୑. The most remarkable effect, already 

indicated by the ROP in Fig. 45 (a), is the enhancement of 𝐽୘ୌୋ by more than one order 

of magnitude compared to a circular fibre making this mode accessible experimentally.  

In [141] multiple THG modes from highly germanium doped elliptical SIF were 

reported, yet their analysis based on scalar Ince-Gauss modes did not reveal the intricate 

transformation of electric fields leading to enhanced coupling of such modes. 

4.4.3 Experimental THG in elliptical LCF filled with TCE 

To confirm the modal analysis, i.e. intensity and field transformations, THG experiments 

are performed in TCE filled eLCF. To this end a capillary which was drawn under 

relatively high collapsing ratio of about 64 % with a hollow core with semi major axis 

𝜌 = 1.6 µm and Δ ≈ 60 nm – 80 nm was deployed. The 90 fs laser system served as pump 
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source and recorded data is presented in Fig. 47 for which the horizontal pump 

polarisation was used. Panel (a) presents a THG spectrum in linear scale along with the 

respective portion of the pump spectrum (normalised to its respective peak beyond the 

axis limits). Note the wavelength axes in (a) and (b) show equivalent ranges. Insets 

show experimental farfield images of the modes in agreement with simulation. Band 

pass filters were used to capture these modes individually. The third mode visible in the 

log-scale power spectral evolution in (b) probably originates from an even higher order 

mode, namely the HE32, as phase matching calculations suggest. Due to the weak signal 

and proximity to the other strong modes no farfield images could be taken in this case. It 

is to note the relative strength of HE13 and EH12 modes is not reflected in this 

measurement due to chromatic dispersion. When coupling the signal into the collection 

fibre the focus is adjusted for optimum power and remained unaltered during data 

recording. 

 

Fig. 47: Experimental results of THG in TCE filled eLCF with 𝝆 = 1.6 µm and 𝚫 ≈ 70 nm. (a) 
Harmonic and pump spectrum (limited range, linear scale). Insets show experimental farfield and 
simulated intensity. Power spectral evolution of harmonic (b) and pump (d). Adapted from [133] 
© OSA (2020). 

In (b) a phase matched bandwidth of 630 pm for both modes and a blue-shift at a rate 

of 𝑅ఋఒ
ா ≈ − 250 pm/nJ is extracted which is consistent throughout all previous 

measurements. The eLCF is normal dispersive in both pump polarisation axes and SPM 
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based spectral broadening is observed as shown in (d). THG powers measured directly 

in free space are shown in (c) along with a cubic fit to the data. The slope efficiency 

obtained is s = 2.7∙10-6 nJ-2, while a conversion efficiency 𝜂ୣ୶୮ = 2.8∙10-5 (3.3 µW TH 

signal from 128 mW pump) was achieved.  

In the following the polarisation properties deduced from modelling are validated 

experimentally and results for the EH12 type modes are shown in Fig. 48. To this end the 

input polarisation is adjusted such that either perpendicular (a) or parallel (b) THG 

yield is optimised, subsequently the farfield images are captured without linear 

polariser (1st column) and with a linear polariser once in parallel (2nd column) and once 

in perpendicular orientation (3rd column). The transformation of electric fields is 

evident as high contrast among the two polarisation axes is observed. A further, more 

sophisticated approach to analyse anisotropy in elliptical fibres was presented in [26]. 

 Residual light in the outer area in (a-2) and (b-3) is likely to originate from the 

sapphire window acting as retardation plate for non-normal incidence leading to 

elliptically polarised light and retardation increases with angle of incidence, i.e. towards 

the outer region of the mode. 

 

Fig. 48: Farfield images of EH12 modes for perpendicular (a) and parallel (b) excitation. A linear 
polariser (LP) was inserted before the camera as indicated for columns 2 and 3. Images in column 
1 are recorded without LP. (c) Normalised output signal for scanned input polarisation. Adapted 
from [133] © OSA (2020). 

Scanning the input polarisation (c) demonstrates the crucial dependence of the signal 

yield in case of birefringent fibres on launching conditions. While the transmitted pump 

power is stable (red dots) the THG signal (green dots) drops by 30 % when coupled 

power is split among the fast and slow axis proving each individual polarisation state 

generates THG. Full signal strength is recovered after 90° rotation as expected. 
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Finally, the shift of 𝜆୔୑ due to birefringence is revealed by an experiment deploying a 

slightly larger eLCF with semi major axis of 2 µm and ellipticity of approximately 70 nm 

which allows investigating a larger number of modes at a time. In Fig. 49 (a) the 

resulting THG spectrum and farfield images are shown as insets. The modes observed 

earlier are shifted towards longer wavelength. As shown in Fig. 45 (c) the shift of 𝜆୔୑ is 

expected to be larger in case of the EH12 mode pair.  Panel (b) of Fig. 49 shows a well 

resolved shift of the PM wavelength for parallel, perpendicular and intermediate input 

polarisation. The shift is also apparent in colour for the case of EH12 modes (not shown), 

whereas in case of the other modes no such change is observed. 

 

Fig. 49: (a) THG spectrum and farfield images as insets from a TCE-eLCF with 𝝆 = 2 µm and 
𝚫 ≈ 70 nm. (b) Spectra for different polarisation conditions revealing a shift in 𝝀𝐏𝐌 for parallel 
and perpendicular excitation. 

It is to note, that an additional pair of modes is observed in panel (a) which, in 

contrast to the former modes, does not originate from a HE11 like pump mode, but rather 

originates from a pump in a HOM as shown in Fig. 43 (c-f) with a double bell shape 

usually referred to as linearly polarised (LP) modes. Strong dependence of the LP31 

modal intensity on coupling conditions was observed which is attributed to 

preferentially exciting one of the two modes in parallel or perpendicular polarisation by 

a transverse focal shift at the fibre facet switching among the modes shown in Fig. 43 

(c,f) or (d,e), respectively. Sufficient signal generation even for higher order pump 

modes enabling dispersive properties that usually require microstructured fibres [142] 

can allow multi-wavelength signals similarly to recently demonstrated supercontinuum 

induced THG in a suspended core fibre [19].   
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4.5 Tuning Potential via Temperature Control 

In this section the ability of liquid core fibres to adjust phase matching on demand are 

highlighted. Tunability can become an important aspect in THG to compensate 

manufacturing insufficiency or environmental conditions. Whereas longitudinal 

adjustment of the core size leads to a static change in the PM wavelength (see Fig. 32, p. 

56), dynamic control can be utilised exploiting the liquids thermo optical coefficient 

(𝑇𝑂𝐶). Recent broadband measurements in a fibre coupler form the basis of the analysis 

[47]. To account for temperature dependence, the refractive index is assumed to have 

the following form: 𝑛(𝜆, 𝑇) = 𝑛(𝜆) + 𝑇𝑂𝐶 ∙ Δ𝑇, where Δ𝑇 represents the temperature 

deviation from 20°C. Hence dispersion of the 𝑇𝑂𝐶 towards near infrared is neglected for 

calculations of the wavelength shift 𝛿𝜆୔୑ from its original value for 20°C.  

Fig. 50 presents the PM shifts accounting for the 𝑇𝑂𝐶 in both core and cladding for 

C2Cl4 (a) and CS2 (b,c) cores for the respective modes as stated in the panels for various 

core diameters. 𝑇𝑂𝐶𝑠 for all cases are given in the caption. 

 

Fig. 50: Shift of phase matched wavelength 𝜹𝝀𝐏𝐌 due to temperature in a circular SIF. (a) C2Cl4, 
mode HE13, (b) CS2, mode HE14, (c) CS2, mode HE13. Legend with inner diameters (ID) applies to 
all panels. TOCs are assumed equal for pump and harmonic and amount to: 0.1 (silica 
cladding), -6 (C2Cl4), -8 (CS2) in 10-4/K [47]. Cut off behaviour is explained in the text. 

Since the 𝑇𝑂𝐶 for the liquids is negative and much greater in absolute value 

compared to silica, the fibre 𝑁𝐴 reduces with increasing temperature and so does the 𝑉 

parameter. This resembles a reduction in core size and therefore the reduction in 𝜆୔୑ in 

case of CS2 (b, c) is understood intuitively. A linear slope which depends on core size is 

observed within the investigated range of temperatures. In case of C2Cl4 (a) the situation 

is different, here the initial 𝑁𝐴 of the fibre is lower compared to the CS2 case and the 

phase matched HOM is closer to cut off. In such cases dispersion of modes varies more 

strongly as is evident from the curvature of 𝛿𝜆୔୑ in (a). For core diameters of 3 µm and 

3.5 µm the HOMs cut off in the temperature range, however, this cut off is determined 
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numerically, whereas physically the mode starts leaking into the cladding leading to 

propagation loss rather than abrupt disappearance. 

Experimental results in a temperature controlled eLCF filled with C2Cl4 as in section 

4.4.3 are presented in Fig. 51. A 5 cm long peltier element placed directly after the 

opto-fluidic mount was used to heat and cool part of the fibre. Panel (a) presents 

measured TH power exhibiting signal reduction for temperatures beyond 35°C, which is 

in good qualitative agreement to calculations in circular fibres with similar core size. 

 

Fig. 51: Experimental shift of phase matching in an elliptical fibre (𝝆 = 1.6 µm, 𝚫 = 60 nm, C2Cl4 
core). A 5 cm peltier element placed directly after the optofluidic mount (≈2 cm behind input 
facet) was used to control temperature of a 15 cm fibre. (a) Normalised temperature dependent 
TH output power. Temperature dependent TH spectra (linear scale, individually normalised) for 
HE13-type (b) and EH12-type modes (c). Non-shifted harmonic signal in (b, c) result from fibre 
parts with unaltered temperature of 21°C-22°C. 

Spectral changes with temperature are presented in (b) and (c) for the two types of 

modes. Since part of the fibre remained at ambient temperature unaltered spectral 

components are evident at 508 nm (b) and 526 nm (c). Temperature dependent 

features exhibit an initial blue-shift towards ambient temperature (≈22°C), followed by 

a red-shift. These features vanish beyond 35°C due to modal cut off. Note, the pump 

polarisation was not aligned with ellipse axes and hence two spectral lobes are observed 

particularly in (c). Temperatures from 20°C to 35°C allow shifts of 4 nm (b) and 

2 nm(c), i.e. at a rate of 0.26 nm/K and 0.13 nm/K, before the cut off. Similar rates are 

expected for CS2 (Fig. 50 (c)) without approaching a cut off making this tuning scheme 

compatible to tapers in pressurised gas cells (0.12 nm/bar in Ref. [28]), while 

temperature tuning in solid core fibres is less sensitive (0.015 nm/K in Ref. [29]). 
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4.6 Long-term Stability and High Power Delivery in Liquid Core Fibres 

The many recent reports of nonlinear effects in LCF clearly show that sufficiently high 

peak powers can be launched into such fibres – the remaining issue is a persistent worry 

that high average powers lead to thermally induced damage or boiling. Since high flux of 

photons is important to achieve high data acquisition rates with low noise figures for e.g. 

spectroscopic applications the long-term stability under such launching conditions in 

LCF filled with CS2 and C2Cl4 was investigated.  

To this end SCG in the AD domain was identified as most suitable nonlinear effect to 

contest LCF durability on long terms as it can be benchmarked with many other reports 

and the formation of typical spectral features such as solitons and dispersive waves 

(DWs) are more susceptible to fluctuations than continua generated in the ND regime. 

Experimental results were published in [130] in cooperation with the FS-LA group of the 

DESY synchrotron facility in Hamburg providing a state of the art Tm-doped fibre laser 

operating at 380 MHz which allowed to demonstrate record high average power SC from 

LCF as well as stable beam delivery above one Watt.  

4.6.1 Stable High Power Beam Delivery in Large Core LCF 

In order to push the limits of LCFs in terms of average power both a potent pump laser 

delivering femtosecond pulses and optimal fibre coupling conditions are necessary. In 

general larger cores are less restrictive in coupling efficiency from free space beams, as 

is the case here. Among the different core diameters under test a 20 µm core size 

allowed launching the maximum laser average power of 1.6 W with an efficiency of 

> 80% into the fibre. In Fig. 52 (a) the launched power is shown versus time. The power 

was calculated from the measured output power compensating reflection losses at 

window interfaces and propagation loss. Whereas for C2Cl4 propagation loss is negligible 

(0.23 dB/m) a pronounced absorption line near 1.95 µm in CS2, already indicated in Fig. 

27 on p. 49, partially overlaps with the laser pump spectrum resulting in propagation 

loss of 4.23 dB/m in the 15 cm LCF, i.e. 86 % transmission. For both liquids the power 

remains stable for the shown 90 minutes and beyond – since no sign of degradation was 

observed no further tracking was considered. A root-mean-square stability of 0.5 % and 

below is obtained. The beam profiles shown in (b) for CS2 and (c) for C2Cl4 indicate good 

beam quality at the highest power level.  
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Fig. 52: Launched in-fibre average power for 20 µm core diameter LCF calculated from measured 
output power (a). Root mean square fluctuations are given for CS2 and C2Cl4. Output beam 
profiles for CS2 (b) and C2Cl4 (c) confirm guidance in the core. Reprinted from [130] © OSA 2019. 

To ascertain the power was not transmitted in the cladding the LCF was bent slightly 

and immersed in index matching oil while monitoring power. No reduction in 

transmission was observed.  

4.6.2 Record Average Power Supercontinuum in Liquid Core Fibre 

SCG mediated by fission of higher order solitons is an excellent test scenario for long 

term stability, as soliton fission and subsequent DW emission are considered more 

susceptible to external fluctuations than SCG in the ND domain which is dominated by 

SPM and subsequent optical wave breaking [69]. The LCF is required to exhibit 

anomalous dispersion, i.e. 𝛽ଶ < 0 using the core size to tune the ZDW. However, this 

procedure is more limited than in case of microstructured fibres [108]. It must be noted 

that recent works experimentally verified mixtures of different liquids in the core allow 

shifting the ZDW towards the 1.55 µm regime [41,42] and exploiting higher order modes 

in CS2 filled LCF enabled the use of two ZDW in SCG as in [142]. However, the approach 

taken here focuses on pumping the fundamental mode. 

Fig. 53 shows the respective ZDW (solid lines) for CS2 (a) and C2Cl4 (b) for various 

core diameters. Green and purple shaded areas represent AD and ND, respectively. 

Dashed horizontal lines represent the respective bulk ZDWs. In general the AD domain 

is located above the given lines and the ND domain resides below. 
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Fig. 53: Zero dispersion wavelengths (ZDW) for CS2 (a) and C2Cl4 (b) filled LCF in the 
fundamental HE11 mode. Bulk ZDW are indicated as dashed lines. AD domain lies above 
solid/dashed lines, ND domain lies below solid/dashed lines. Symbols: (a) ∎ [36], ★ [37], ▲ [40], 

♦ [38], (b) ★ [39]. Grey  ◯ and ● represent THG experiments and high power SCG from this 
work, respectively. Adapted from [130], © OSA 2019. 

Different symbols highlight experimental configurations from literature and this 

thesis (see caption). Strong waveguide dispersion is evident in (a) in the range of 1.8 µm 

to 2 µm cores that allows normal dispersive pumping up to 3.3 µm, exceeding either 

bulk ZDW. The ranges of core sizes between 3 µm to 5 µm for CS2 and 4 µm to 5 µm for 

C2Cl4, respectively, exhibit a pronounced ZDW reduction which is ideal for pump lasers 

around 2 µm targeting the AD domain.  

Experimental verification of soliton mediated SCG via fission and DW generation is 

shown in Fig. 54. The power spectral evolution was recorded for CS2 (a) and (b) and 

C2Cl4 (c) and (d) using a grating based spectrometer to capture the DW side and a 

Fourier transform spectrometer for the range of the pump and solitons. Spectral overlap 

could not be achieved due to the devices bandwidth limitations. Therefore each panel is 

normalised with its respective maximum. Left axes correspond to the launched pulse 

energy and right axes correspond to measured output average power. 

Fission occurs at the indicated launched pulse energies for CS2 (a) and C2Cl4 (c) 

where a distinct DW is first generated. Due to the larger nonlinearity in CS2 the DW 

signal is much more pronounced and broadband and at the same time the extension 

towards the mid-infrared exceeds the one for the C2Cl4 LCF despite the strong 

absorption peak around 2.2 µm in case of CS2. Still, the onset of DW emission occurs at 

𝑁 ≈ 11, where 𝑁 is the soliton number, in either case. Phase matching calculations agree 

with the experimental DW wavelengthts (𝜆ୈ୛ = 1.4 µm (a) and 𝜆ୈ୛ = 1.36 µm (c)) 

assuming a higher order soliton at 1.95 µm. 
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Fig. 54: Power spectral evolution of SCG in CS2 (a, b) and C2Cl4 (c, d) filled fibre. Each panel is 
normalised individually. Fission is indicated at the onset of dispersive wave (DW) generation. 
Insets show experimental beam profiles. 

The results from above represent the highest average power continua generated in a 

LCF to date and their stability was investigated by capturing both output power and 

output spectra for an extended period of time. For this experiment the CS2 LCF was 

chosen and pumped at the highest possible power. Fig. 55 presents the acquired 

long-term data. A CaF2 window served as beam splitter to capture spectra and the direct 

output power with an automated measurement routine for a 72 hour period.  

In (a) the spectra are shown, whereas (b) shows integrated spectral intervals of 

pronounced features (red: pump, blue: soliton) on the left axis and the direct power 

measurement on the right axes. The experiment was initiated and running freely during 

the weekend resulting in a moderate reduction of power observed at the pump 

wavelength but a sizable reduction in power in the 2.3 µm to 2.6 µm interval which 

underpins the sensitivity of the SCG process to fluctuations.  

Since the pump source showed no evidence for reduced power delivery the 

mechanical components were realigned after 48 h as indicated in (b). As the output 

power was re-established effortlessly data acquisition was continued. The slow decrease 

in power is assigned to the drift of mechanical components rather than high average 

power induced damage of the LCF sample. These results in conjunction with previous 

work where higher pulse energies were launched in such fibres at lower repetition rates 

[38] point towards the potential of such LCFs beyond scientific research.  
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Fig. 55: Long term acquisition of spectra (a) and output power (b) of a CS2 LCF pumped at 
1.95 µm. Red and blue lines in (b) are integrated ranges from data in (a) as stated. After 48 h 
coupling optics were aligned again restoring the initial power almost completely. 

4.6.3 Overview of Damage Thresholds in Liquid filled Fibres with CS2 or C2Cl4 

This subsection presents an overview of recent experimental results in LCF filled either 

with CS2 or C2Cl4 compiled in Table 8 and Table 9, respectively. Laser parameters and 

the respective powers and energies endured by LCFs during experiments are collected 

from literature and experiments conducted in this thesis. If not provided in the article 

missing values are calculated as detailed in the table caption.  

No claim to completeness is raised for the given list and it is to note that reported 

values not always represent the damage threshold, i.e. in case of insufficient laser power. 

Yet, all experiments aimed for nonlinear frequency conversion via SCG or THG which 

suggests the highest power available was employed. Despite the sizeable number of data 

no general power limits can be extracted. Whereas more than 300 MW/cm² peak 

intensity was possible to launch for either liquid the maximum fluence of 200 mJ/cm² 

for CS2 allowed for only 200 MW/cm² intensity indicating complex dependence of 

energy and power related parameters. Future research may address the issue of 

correlations between fluence, average and peak powers as well as wavelength 

dependence making operational domains for LCFs more predictable. Momentarily CS2 

and C2Cl4 LCFs seem to hold potential to further scale up power in combination with 

laser sources providing repetition rates of several tens of MHz as is common for 

nowadays fibre lasers.  



 - 90 - 

Table 8: Overview of experimental power capabilities in CS2 LCFs. The given parameters are 
extracted from literature and converted accounting for transmission or other losses if stated. 
Unless specified, calculated values discard functional shapes, i.e. peak powers are calculated as 

𝑷𝟎 = 𝑬𝒑/𝚫𝒕, the fluence is determined as 𝚽 = 𝟒𝑬𝒑/൫𝝅 𝐈𝐃𝟐൯, with the inner diameter (ID) of the 

core, and intensity is obtained from 𝑰𝟎 = 𝚽/𝚫𝒕, with 𝚫𝒕 as FWHM pulse duration. Experiments 
conducted in this thesis are highlighted by * in the last column. 

𝜆଴ 
[µm] 

ID 
[µm] 

𝐸௣ 

[nJ] 

𝑃ୟ୴୥ 

[mW] 

𝑃଴ 
[kW] 

Δ𝑡 
[fs] 

frep 
[MHz] 

Φ 

ቂ
୫୎

ୡ୫మቃ 

𝐼଴ 

ቂ
ୋ୛

ୡ୫మቃ Ref. 

1.56 1.8 - 200 - CW - - - 
[36] 1.56 1.8 0.76 32 1.9 400 42 29.9 74.7 

1.91 1.8 1.53 61.2 8.4 180 40 60.1 334 

1.03 
5 0.85 35 1.7 

>350 41 

4.35 12.4 

[37] 

10 1.71 70 3.4 2.17 6.21 

1.51 
5 0.59 24 1.1 2.98 8.52 

10 2.20 90 5.5 2.79 7.99 

1.69 
5 0.41 17 <1  - - 

10 0.61 25 1.1 - - 

1.56 3.1 
0.32 25.6 10.7 30 80 4.23 141 

[108] 
0.63 25.2 7 90 40 8.35 92.8 

1.56 
3.5 0.9 72 30 30 80 9.35 312 

* 3.5 2.88 115.2 32 90 40 29.9 333 
3.5 4.97 1.988 5.52 900 0.4 51.7 57.3 

1.95 4.7 
16 40 34.78 460 2.5 92.2 200.5 

[38] 15.13 85 32.88 460 5.6 87.2 189.5 
7.83 88 17.02 460 11.24 45.1 98.1 

1.92 3.3 1.8 45 5.14 350 25 21.0 60.1 [40] 

1.95 
4.6 1.4 532 12.73 110 380 8.42 76.6 

[130]* 
20 3.29 1250 29.9 110 380 1.05 9.52 

 

Table 9: Overview of experimental power capabilities in C2Cl4 LCFs. Parameters are evaluated as 
for Table 8. Experiments conducted in this thesis are highlighted by * in the last column. 

𝜆଴ 
[µm] 

ID 
[µm] 

𝐸௣ 

[nJ] 

𝑃ୟ୴୥ 

[mW] 

𝑃଴ 
[kW] 

Δ𝑡 
[fs] 

frep 
[MHz] 

 

ቂ
୫୎

ୡ୫మቃ 

𝐼଴ 

ቂ
ୋ୛

ୡ୫మቃ 
Ref. 

1.56 3.4 
1 80 33.3 30 80 11.01 367.1 

[118]* 3 120 33.3 90 40 33.04 367.1 
5.7 2.28 6.3 900 0.4 62.78    69.7 

1.56 4.9 0.84 67.2 28 30 80 4.45 148.5 [42] 
1.92 4.6 3.06 76.5 9.97 270 25 18.41 68.19 [39] 

1.95 
4.6 1.86 707 16.9 110 380 11.19 101.7 

[130]* 
20 3.16 1200 28.7 110 380 1.01 9.14 
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5 Summary 

In this thesis liquid core fibres (LCFs) were deployed as a new platform for third 

harmonic generation (THG) of ultra-short laser pulses. Such LCFs are formed by filling a 

highly nonlinear, molecular liquid into a silica capillary. Careful consideration of 

material properties based on existing dispersion data and new loss measurements 

identified carbon disulfide (CS2) and tetrachloroethylen (C2Cl4) as most promising.  

Either of these allows making fibres with high numerical aperture above 0.6 and 0.4, 

respectively, such that a sufficient number of higher order modes (HOMs) can be guided 

at the third harmonic (TH) wavelength. Considerations to achieve coherent signal build 

up, i.e. to achieve phase matching among the fundamental and harmonic wave, in LCFs is 

described in detail for the step-index geometry.  

Both liquids exceed the nonlinearity of common silica material by a factor of 6.8 and 

2.5, respectively, only accounting the purely electronic contribution. Additional 

contribution to nonlinearity originates from the molecular structure and the possibility 

to move freely in the bulk liquid upon excitation with an external field. These 

orientational effects give rise to a non-instantaneous response which in contrast to 

silica’s Raman response is of no oscillatory nature and decay times of 1.5 ps – 4.5 ps are 

typical. The ratio of these molecular and electronic nonlinearity is as high as 17.5 for CS2. 

To assess the influence of this response on spectral transformation due to self and cross 

phase modulation (SPM and XPM), i.e. a strong pump and weak harmonic wave, 

numerical simulations based on coupled nonlinear Schrödinger equations were 

conducted. A persistent frequency down-shift for the pump in both normal and 

anomalous dispersive domains is observed. XPM on the other hand leads to asymmetric 

spectral shifts for the harmonic depending on the relative group velocities and acquired 

delays along the fibre. The non-instantaneous response causes significant nonlinear 

phase (NLP) trailing the pump and slower waves experience enhanced frequency 

up-shifts. The measured material loss for the harmonic was found to be negligible which 

allows utilizing the fibre geometry.  

THG was demonstrated experimentally using three different laser sources based on 

Erbium fibre lasers with pulse durations of 30 fs, 90 fs, and 900 fs harnessing different 

amounts of contribution from the molecular response. A 3.4 µm circular capillary was 

chosen admitting a detuning from the pump centre of 1.56 µm in favour of addressing 
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532 nm as TH wavelength in the HE13 mode in C2Cl4. Here the expected reduction in 

efficiency by 25 % for 900 fs and less than 20 % for shorter pulses is acceptable. Due to 

positive group velocity mismatch the harmonic trails behind the pump after generation. 

Broadening dynamics in the normal dispersive domain were observed in agreement 

with simulations. Particularly 900 fs pulses exhibit the frequency down-shift caused by 

the molecular response at a rate of 5.8 nm/kW whereas the harmonics reduce peak 

wavelength at rates of 14, 29, and 104 pm/kW for 30, 90, and 900 fs pump pulses, 

respectively. In simulations blue-shift rates of 7, 29, and 153 pm/kW were obtained also 

indicating phase modulation of the harmonic by the delayed trailing phase of the pump. 

The efficiency was obtained by direct power measurement and at the highest 

experimental power was found to be in the range of 1 – 3 × 10-5.  

Further, in a CS2 filled capillary with 3.5 µm core diameter simultaneous phase 

matching to a HE14 mode at 520 nm and a HE13 mode at 670 nm is demonstrated which 

is enabled by the extraordinarily high refractive index of CS2. Whereas the pump 

remained at 1.56 µm, sufficient spectral broadening was required to provide radiation in 

the anomalous dispersive domain at 2.01 µm to pump the HE13 mode. For 900 fs a 

spectral centre shift of 9.2 nm/kW was observed due to the greater nonlinearity of CS2, 

yet THG could be observed only for 30 fs and 90 fs pulses that reached the bandwidth 

required to pump the HE13 mode, whereas coupling to HE14 is less efficient due to the 

higher order of the mode. Harmonic spectra exhibited a stronger rate of blue-shift than 

in case of C2Cl4 due to the larger contribution of the molecular response. The 

experimental conversion efficiencies, despite the higher nonlinearity, amount to 10-6 

(HE13, 30 fs) and 10-7 (HE14, 30 fs and HE13, 90 fs). 

In circular fibres the number of accessible modes is limited and the degree of 

polarisation for the pump can degrade lowering also efficiency in THG. Therefore the 

effect of birefringence in a LCF was investigated in view of THG which further provides 

insights to birefringent modes in fibres beyond the set of fundamental modes. An 

elliptical core was modelled by finite element simulations considering the difference of 

major and minor axis Δ. Breaking the circular symmetry lifts modal degeneracy and 

modes transform both their intensity and field distribution. The latter exhibits an 

increasing degree of alignment with the geometric axes of the ellipse.  

The change in modal shape is associated with a change in propagation constants 

leading to birefringence. Whereas birefringence increases monotonically for the 
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fundamental modes, this behaviour is different for HOMs. Specifically, HOMs originating 

from HE13 and EH12 modes exhibited a maximum difference of propagation constants for 

Δ = 60 nm which was evaluated for 517 nm wavelength. The subsequent reduction is 

due to the eventual approach of their respective cut-off. Importantly, the orientation of 

fast and slow axis in their case was orthogonal to each other due to combination of 

amplitude distribution and polarisation of the field. EH12-type modes are elongated 

along the major ellipse axis and a polarisation parallel to it represents the fast mode, i.e. 

the one with lesser effective index. HE13-type modes expand along the minor axis and 

here the field polarised along the minor axis represents the fast mode. Qualitatively, the 

mode whose field exhibits a greater portion of normal components with respect to the 

core cladding boundary is associated with the fast axis and vice versa.  

Due to the reduced core area the expected THG wavelengths reduced, whereas the 

modes of HE13-type showed three times steeper dependence as they are closer to cut-off. 

The coupling constant of the EH12-type was enhanced by more than one order of 

magnitude caused by the alignment of field vectors. Experimentally such an elliptical 

fibre with Δ =  60 nm was deployed. Both harmonic wavelengths and modal shapes 

were found in good agreement with simulations and the field polarisation was 

confirmed as well as polarisation dependent wavelength shifts imposed by 

birefringence. Conversion efficiency of 2.8 ∙ 10-5 was achieved in C2Cl4.  

Temperature dependence of phase matching was shown experimentally and is in 

agreement with calculations. Tuning rates of 0.1 – 0.2 nm/K were obtained in a C2Cl4 

fibre near to modal cut-off. Negative rates of the same order are expected in case of CS2 

due to larger contrast between core and cladding.  

In addition, power handling capabilities of C2Cl4 and CS2 filled LCFs were put to a test 

using a Thulium based fibre laser with 380 MHz repetition rate emitting 90 fs pulses 

centred at 1.9 µm. Highest average power supercontinuum generation from a 4.8 µm 

LCF was demonstrated at a level of 430 mW and 660 mW for CS2 and C2Cl4, respectively. 

Excellent stability persisted for days without degradation. Average powers beyond one 

Watt were shown to be delivered via large core fibres which were limited by the pump 

power of the laser.  
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5.1 Outlook 

Within the scope of this thesis conversion efficiencies of order 10-5 for C2Cl4  represent 

modest values compared to silica based platforms, ranging from 10-7 for similarly sized 

GeO2 doped fibres up to 10-3 in small core MOF or taper. CS2 filled fibres provided 

efficiencies of 10-7. Potential for improvement and possible future research directions 

are provided below. 

Pump conditions in the step index fibre geometry 

In case of a 3.5 µm CS2 LCF substantial improvement is expected for addressing the HE13 

mode directly in the AD domain, exploiting solitary waves able to sustain their peak 

power for appreciable lengths [38].  

Similarly an increase in core size and shift of 𝜆୔୑ is possible for C2Cl4 which also due 

to the reduction of 𝐺𝑉𝑀 compared to the present case holds promise of further 

enhancement. On the other hand, since capillary based LCF can be made meters long, 

pulse widths of several picoseconds allow to address a regime of negligible dispersion 

without the necessity of further 𝐺𝑉𝐷 adjustments and should be addressed in future. 

Active control and tuning 

To exploit the tuning capabilities in THG, a temperature control system can be realised 

using miniature peltier elements. Such an implementation would allow tuning 

dispersion and phase mismatch curves along the fibre beyond linear gradients to 

potentially compensate for acquired mismatch due to nonlinear phase shifts. 

The transfer of the recently shown mode conversion technique [31] to LCFs may 

enable progress towards realisation of correlated photon sources with reduced noise 

from spontaneous Raman scattering. 

Fibre modification 

Since phase matching is sensitive to core sizes, the case of restricted access to capillary 

fibres can be compensated to an extent by mixtures, which were formerly deployed to 

tune the 𝐺𝑉𝐷 of LCFs [41,42]. 

Adjusting the core size along the fibre by either down or up tapering can assist if 

preferential tuning beyond the thermal tuning capacity is required. To this end, a 

particularly interesting configuration is an average core size chosen such that the phase 

matched wavelength and zero dispersion wavelength of the pump coincide. Axial 
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modulation of the core size then results in alternating 𝐺𝑉𝐷 with potential to compensate 

dispersive broadening as demonstrated in silica fibres [143]. 

Beyond the step-index capillary the versatility of MOFs has yet to be explored – 

promising a rich variety of dispersive landscapes. Large air filling fractions in the 

photonic cladding and reduction in core size possibly enable phase matching to a HE12 

mode with enhancement of the modal coupling constant. In an extreme case, utilising 

selective filling techniques [43], a suspended liquid column waveguide can be 

envisioned. 

Effects beyond THG 

The introduced elliptical fibres should provide a simple but effective platform to study 

polarisation related effects in LCFs which to date are largely unexplored. In particular 

polarisation mode instability was identified to limit coherence of supercontinua, i.e. 

their pulse to pulse stability, even in the normal dispersive domain [136]. The impact of 

the retarded response thus can be studied in such birefringent fibres. 

Finally, a recently demonstrated effect called intermodal XPM was shown to induce 

soliton fission in silicon nitride ridge waveguides with instantaneous response [144].  

Utilising birefringent LCF, these dynamics can be studied under the influence of a 

retarded response. 
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