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Abstract
Kurzfassung
English

The primary goal of this thesis was the experimental exploration of certain linear optical properties
of positionally disordered Huygens’ metasurfaces, which consist of two-dimensional arrangements of
specific scattering particles. This goal has been motivated by two recent trends: On the one hand,
dielectric Huygens’ metasurfaces have proved to be a suitable material platform for holographic and
wavefront-shaping applications, and on the other hand, structurally disordered metamaterials have
already exhibited features that cannot be attained with ordered structures. However, the influence
of positional disorder on Huygens’ metasurfaces has not yet been systematically studied, and it thus
remained the question if and how Huygens’ metasurfaces could benefit from positional disorder.

This thesis characterizes the directional transmission and reflection of positionally disordered Huygens’
metasurfaces both experimentally and numerically, provides a simple theoretical model that explains
the observation of a disorder-induced phase transition on the basis of effective multipole moments, and
confirms that positional disorder is indeed a valuable degree of freedom in the design of holographic and
wavefront-shaping devices. Based on these findings, future research may investigate how the directional
transmission and reflection of positionally disordered Huygens’ metasurfaces can be tailored via their
particle arrangements and/or higher multipole moments.

Deutsch

Das Hauptziel dieser Arbeit war die experimentelle Untersuchung bestimmter linearer optischer Eigen-
schaften positionell ungeordneter Huygens-Metaoberflächen – das sind zweidimensionale Anordnungen
spezieller Streupartikel. Dieses Ziel wurde durch zwei aktuelle Forschungstrends motiviert: Einerseits
haben sich dielektrische Huygens-Metaoberflächen als eine geeignete Materialplattform für holografische
und wellenfrontformende Anwendungen erwiesen, und andererseits wurde bereits gezeigt, dass struk-
turell ungeordnete Metamaterialien Eigenschaften besitzen, die mit geordneten Strukturen nicht zu
erreichen sind. Der Einfluss positioneller Unordnung auf Huygens-Metaoberflächen wurde jedoch noch
nicht systematisch untersucht und es verblieb daher die Frage, ob und wie Huygens-Metaoberflächen
von positioneller Unordnung profitieren könnten.

In dieser Arbeit wird die gerichtete Transmission und Reflexion positionell ungeordneter Huygens-
Metaoberflächen sowohl experimentell als auch numerisch charakterisiert, es wird ein einfaches theoreti-
sches Modell vorgestellt, welches die Beobachtung eines durch Unordnung induzierten Phasenübergangs
auf der Grundlage effektiver Multipolmomente erklärt, und es wird bestätigt, dass positionelle Unord-
nung tatsächlich ein wertvoller Freiheitsgrad in der Gestaltung holografischer und wellenfrontformender
Bauelemente ist. Auf diesen Erkenntnissen aufbauend könnte in Zukunft erforscht werden, wie die
gerichtete Transmission und Reflexion positionell ungeordneter Huygens-Metaoberflächen über deren
Partikelanordnungen und/oder höheren Multipolmomente maßgeschneidert werden kann.
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1. Introduction
Das Gewebe dieser Welt ist aus Notwendigkeit und Zufall gebildet; die Vernunft des Menschen

stellt sich zwischen beide und weiß sie zu beherrschen; sie behandelt das Notwendige als den Grund
ihres Daseins; das Zufällige weiß sie zu lenken, zu leiten und zu nutzen ...

The fabric of our life is formed of necessity and chance; the reason ofman takes its station between
them, and may rule them both: it treats the necessary as the groundwork of its being; the accidental
it can direct and guide and employ for its own purposes ...

— J. W. von Goethe, Wilhelm Meister’s Apprenticeship, Book I, Chapter XVII

The desire to control fate, chance, or randomness seems to be a recurrent theme in human history.
However, it was not until the early 20th century that physicists started to understand and manipulate
the complex atomic structure of condensed matter; which preluded fundamental investigations on the
molecular structure of liquids, amorphous semiconductors, polymer solutions, disordered alloys, and
various other disordered media that have led to countless achievements in chemistry and physics [1].
The propagation of classical or even quantum mechanical waves through disordered media is here of
particular interest due to its immense significance for modern electronic and photonic systems [2].
Moreover, given the omnipresence of disordered structures in nature, it may not come as a surprise
that recent breakthroughs have rekindled the interest in this rich and multidisciplinary subject [3, 4],
and reawakened the desire to direct, guide and employ the accidental to the benefit of our intellectual
and technological advance.

In this thesis, it is studied how light behaves, and how it can be manipulated, when it passes through
a two-dimensional arrangement of specific nanoparticles with tailored positional disorder, a so-called
Huygens’ metasurface. The following paragraphs clarify the terminology, reflect on the current state of
the art, and outline the scope of this work.

In everyday language, disorder often carries a negative connotation and refers to a dysfunctional or
abnormal state, which is why in physics and mathematics, one usually finds less judgmental synonyms
such as entropy (thermodynamics), randomness (statistics), or chaos (chaos theory). However, entropy
may be understood more accurately as a measure for the dispersion or diffusion of energy or information,
in randomness resonates the complete unpredictability of certain quantum mechanical processes that lie
at the very heart of our current understanding of reality, and chaos originally symbolized a metaphysical
primordial void rather than a complex system. Most importantly, though, neither of these synonyms
conveys a nuance that disorder does in its most unbiased sense: The prefix dis- indicates the removal
or reversal of order. Intuitively, one may associate order with a highly regular structure such as a
honeycomb or a snowflake, but already in this example, one may wonder whether a honeycomb is
more ordered than a snowflake, or how they compare to the pattern formed by rice spilled on the floor.
Hence, disorder not only represents the complete absence of order, but also embodies a continuum of
states with different degrees of disorder. In the case of the spilled rice, one may further distinguish
between irregularities in the size, shape, orientation, or position of each kernel, where the latter is
referred to as positional disorder. Nevertheless, it remains the question of how to exactly define what
an ordered structure is and how to measure the degree by which another structure deviates from it.
Unfortunately, since there exists no universally applicable scalar order metric [5], such definitions are
inherently subjective and specific to the problem at hand, but by the same token, this also allows one to
define the degree of disorder as a posterior measure: When an electromagnetic wave propagates through
a disordered structure, it can be more meaningful to evaluate a property of the electromagnetic wave
after it has interacted with the disordered structure, as for example the transmission coefficient, than
to merely quantify the spatial configuration of the structure. Note that such posterior measures are,
more often than not, surjective maps, which means that structures with distinct positional disorder can
yield the same optical response. This circumstance presents new degrees of freedom in the deliberate
design of disordered structures with prescribed optical responses.
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1. Introduction

Optical metamaterials are synthetic structures with unique physical properties that are usually not
found in nature; they consist of three-dimensional arrangements of scattering particles with sizes
comparable to the operation wavelength, where the exact size, shape, orientation, position and refractive
index of each particle is dictated by the intended functionality [6]. Optical metasurfaces are a subclass
of metamaterials where the particles are confined to two dimensions, which means to a flat or possibly
curved surface. The practical realization of such metamaterials is certainly limited by the available
fabrication techniques and natural materials, but due to recent advances in the fabrication of nanoscale
structures [7–11], it has already become possible to manipulate light in ways that cannot be achieved
with conventional optical elements [12–16].
The natural materials used in a metamaterial generally depend on the application: If the goal is to
sense a biological or chemical compound at the surface of a detector, it can be advantageous to use a
plasmonic material, as for example a noble metal or graphene, due to its ability to strongly confine
light to its surface [17–19]. However, since the high intrinsic absorption losses in plasmonic materials
drastically limit the energy efficiency of the resulting metamaterial, which is particularly undesirable
in wavefront-shaping applications, current research has recently shifted its focus towards dielectric and
semiconductor materials [20].
With the advent of dielectric nanoparticles in metasurfaces, it has become possible to resonantly
excite and to selectively tune certain radiative electromagnetic modes, which form an orthogonal set of
multipolar basis functions, within the volume of a nanoparticle [21]. This allows one to tune not only
the radiation strength of each multipolar order via the size, shape, and refractive index of an individual
nanoparticle, but also the electromagnetic coupling strength of neighboring nanoparticles via their
spatial arrangement. More precisely, it is the complex interference of the electromagnetic fields radiated
by each multipolar order and each nanoparticle that allows one to manipulate the amplitude, phase,
polarization and spectrum of an electromagnetic wave as it passes through the metasurface. Moreover,
when a carefully balanced combination of these multipolar orders is excited within each nanoparticle,
so-called Huygens sources can be formed, and the metasurface gains the ability to completely suppress
the backscattering of the incident wave [22]. This property makes dielectric Huygens’ metasurfaces an
auspicious material platform for holographic and wavefront-shaping applications [23, 24].
Recently, and quite to the contrary of the long-standing belief that disorder is generally detrimental to
the performance of a system, it has been demonstrated that a disordered metamaterial can produce a
sharper focal spot than a conventional lens [25], that it can enhance the volume and numerical aperture
of holographic displays [26], and that disordered metasurfaces not only inherit these properties but
also prove suitable for wavefront-shaping applications [27]. This development strongly suggests that
the introduction of positional disorder in Huygens’ metasurfaces may not only offer new degrees of
freedom in the design of such metasurfaces, but could also reveal novel physical effects and properties
that arise from the complex interplay of the excited multipolar orders.
The primary goal of this thesis was the experimental exploration of linear optical properties of
positionally disordered Huygens’ metasurfaces. Aso Rahimzadegan supported this pursuit on theoretical
grounds by conducting multipolar analyses of the studied metasurfaces [28]. Additionally, based on
the fundamental discoveries made in the course of this work, two hypotheses with high technological
significance were identified and experimentally confirmed:

1. Disordered Huygens’ metasurfaces can operate as a perfect optical diffuser at one wavelength and
as a transparent window at another. This wavelength-selective functionality may find application
in augmented reality displays or multi-functional wavefront-shaping devices.

2. Disordered Huygens’ metasurfaces are not only suitable for wavefront shaping, but also for
holographic applications. The new degrees of freedom introduced by positional disorder permit
the use of identical nanoparticle geometries, which in turn allows for simpler and less error-prone
fabrication protocols, or even self-assembly strategies.

Lastly, these objectives required the modification or extension of several numerical methods, and the
construction of customized experimental setups.
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This thesis is organized as follows:

Chapter 2 provides a much broader overview of the current state of the art and motivates the research
goals of this thesis on the basis of important application scenarios.

Chapter 3 presents elementary concepts of modern wave optics, and the notations and conventions
used within this thesis, where great importance was placed on the comprehensible derivation of
all key aspects from first principles.
Note that the citations in the beginning of each passage generally also apply to the subsequent
discussions, and that the presented notations and conventions occasionally deviate from the
cited sources. Moreover, the results related to Eqs. (3.43,57,71) are not discussed in the cited
sources, were not found in similar literature, and might thus represent novel contributions. Lastly,
Secs. 3.4.2–4 introduce concepts that were developed in the course of this thesis, as for example
the directional scatterance, which is a hypernym for directional transmittance and directional
reflectance and establishes a connection between radiometric quantities and plane wave expansions.
This connection was found independently and unknowingly of [29], where such a relationship had
already been derived, but in a less general and less rigorous manner that further failed to explain
why a plane wave expansion cannot provide a position-dependent radiance.

Chapter 4 first briefly describes certain statistical quantities that are known from statistical mechanics,
and then presents two standard methods capable of generating random particle distributions
with prescribed statistics. These methods were extended or generalized as to meet additional
requirements imposed by the metasurfaces studied in this thesis.

Chapter 5 presents all numerical methods that were used for the simulation of electromagnetic fields.
In particular, Secs. 5.2,3 describe two standard methods that were modified or extended in ways
that are advantageous for the accurate design of holographic devices.

Chapter 6 provides details on the fabrication of all presented metasurfaces, and on the measurement
techniques and setups that were involved in the experiments.

Chapter 7 discusses the optical properties of positionally disordered Huygens’ metasurfaces on the
basis of comprehensive experimental and numerical data. This data has already been published
and concerns the optical properties of ordered Huygens’ metasurfaces under oblique incidence [30],
the observation of a disorder-induced phase transition in Huygens’ metasurfaces [31], and an
extensive study of the directional scatterance in positionally disordered Huygens’ metasurfaces
with the focus on their application as optical diffusers [32].

Chapter 8 presents previously unpublished work that experimentally demonstrates the suitability of
positionally disordered Huygens’ metasurfaces for holographic applications.

Chapter 9 summarizes this thesis and provides an outlook on future research possibilities that exceeded
the scope of this thesis.

Appendix A provides additional definitions and derivations that support Chapters 3 and 7.

Appendix B presents auxiliary numerical methods and considerations.

Appendix C contains supplementary data.
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2. State of the Art and Motivation
2.1. Optical metasurfaces
Optical metasurfaces are two-dimensional arrangements of scattering particles with sizes comparable to
the operation wavelength [6]. The majority of metasurfaces is operated within or close to the domain of
Mie scattering, where the particle size and the refractive index contrast with respect to the embedding
medium is just about right to allow for the efficient excitation of resonant electromagnetic modes
within the particles [33]. However, metasurfaces also reach into the domain of Rayleigh scattering,
where the particles are so small that their optical response can be modeled in terms of a simple effective
medium [6], and touch upon the domain of geometric scattering, where the particle size is so large that
the scattering is dominated by diffraction or even refraction [34]. Moreover, the inter-particle distance
must be comparable to the particle size and not larger than the wavelength in the embedding medium.
The former ensures that all of the incident light is scattered and therefore modulated as intended,
whereas the latter avoids the excitation of higher diffraction orders in ordered particle arrangements [35].
These requirements distinguish metasurfaces from diffractive optical elements, but since metasurfaces
often make use of diffraction and exhibit higher diffraction orders for larger incidence angles, while
some diffractive optical elements are based on subwavelength structures [36], a clear distinction can
sometimes be difficult.

Mie scattering is named after Gustav Mie, who analytically described how an electromagnetic wave
scatters off a homogeneous sphere [37]. This description relies on the expansion of electromagnetic
waves in terms of vector spherical harmonics, which form an orthogonal set of multipolar basis functions
that solve the vector wave equation in spherical coordinates [38]. Resonant electromagnetic excitations
of particles that are expressed in terms of such vector spherical harmonics are thus often called
Mie resonances or multipole resonances. In recent years, this formalism has been generalized and
developed into the T-matrix method, which is currently one of the most powerful methods for the
rigorous simulation of electromagnetic scattering in large clusters of arbitrarily shaped particles [39].
The semi-analytical nature of the T-matrix method makes it not only a powerful simulation tool,
but also enables theoretical investigations of particle-particle interactions in ordered and disordered
arrangements of non-spherical particles. Moreover, since effective media models can be based on the
same mathematical framework [40, 41], it usually suffices to discuss optical metasurfaces in the broader
context of multipole resonances.

The multipole resonances of an individual particle possess several properties that can be utilized. On
the one hand, they exhibit a spectral response that typically resembles that of a Lorentz oscillator [42].
As the wavelength of the incident wave is tuned across the bandwidth of a multipole resonance, both
the amplitude and phase of the scattered wave are modulated. This allows for spectral multiplexing or
the realization of arbitrary phase shifts at a fixed wavelength. On the other hand, each multipolar
order possesses a distinct farfield radiation pattern, which means a very specific directional amplitude,
phase, and polarization. Since the scattered wave of a particle is formed by the superposition of all of
its multipolar orders, it is possible to shape virtually all directional properties of an electromagnetic
wave already on the level of an individual particle. While these properties can be tuned via the particle
geometry and refractive index, practical limitations in the available fabrication processes and natural
materials generally render only the lowest multipolar orders accessible [43, 44]. Nevertheless, as more
particles are added to a metasurface, the complex interference of the electromagnetic fields radiated
by each multipolar order and each particle, as well as the intricate electromagnetic particle-particle
interactions, provide a great wealth of additional degrees of freedom.

Hence, by using different particle geometries and/or locally different particle arrangements, it is possible
to imprint a position-dependent amplitude and phase modulation onto a metasurface. This ultimately
combines diffraction-based wavefront-shaping capabilities, as known from diffractive optical elements,
with resonant multipolar features [45].

5



2. State of the Art and Motivation

Phase-shifting mechanisms

Resonant metasurfaces are operated within the domain of Mie scattering, where the wavelength-
dependent optical response of selected multipolar orders is explicitly made use of. However, since an
individual multipole resonance only yields a maximum phase shift of π [22, 46, 47], it is necessary to
combine at least two multipole resonances or to introduce an additional phase-shifting mechanism as
to obtain full phase coverage [44]. The former approach is usually more appealing, since it often only
requires a simple optimization of the particle geometry.
Huygens’ metasurfaces, for example, utilize particles with carefully balanced, spectrally overlapping,
electric and magnetic dipole resonances to completely suppress backscattering. When such particles are
arranged in an array, the transmittance is maximized and the phase covers nearly 2π as the wavelength
is tuned across the bandwidth of the dipole resonances [22]. Consequently, Huygens’ metasurfaces
are interesting for applications that require very high transmission efficiencies. Moreover, since such
particles are typically much wider than tall, they are relatively easy to fabricate and to integrate in
fibers [48, 49], on-chip photonic devices [50, 51], or multilayer structures [52, 53]. However, since
resonantly excited particles are strong scatterers, the electromagnetic inter-particle coupling must be
taken into account during the design process. While this is trivial for an infinitely extended array
of identical particles, which can be simulated very efficiently with periodic boundary conditions, a
large-scale non-periodic metasurface would need to be simulated as a whole. Therefore, current design
approaches typically subdivide a large metasurface into smaller pixels, where each pixel is filled with
a truncated array of identical particles, but the optical properties of each pixel are still based on
simulations of infinite arrays [23, 24]. The idea of this approach is that if sufficiently many particles are
contained within each pixel, they can overcome the neglected coupling effects near the pixel boundaries
and yield a collective response that is close to that of an infinite array. However, this approach is
clearly not suitable for high-performance devices, both due to the neglected coupling effects and the
relatively large required pixel sizes of up to 10 times the wavelength of operation.
Positional disorder could mitigate or even resolve this issue: On the one hand, positional disorder
could break the strong coupling across pixel boundaries and thus allow for smaller pixel sizes. On
the other hand, instead of a subdivision into pixels, one could consider that each particle possesses a
local neighborhood with a radius that roughly corresponds to the interaction distance of a particle.
Judging from the required pixel sizes of the previously mentioned approach, this interaction distance is
likely only slightly larger than the operation wavelength. Hence, each particle could be assigned an
effective optical response that depends on the statistical distribution of its local neighbors. Moreover,
since different particle arrangements can yield the same optical response, this spatial degree of freedom
should allow one to find suitable particle arrangements in regions where the neighborhoods overlap.

Non-resonant metasurfaces operate in the domain of Rayleigh scattering, where the resonance wave-
length of each multipole is much smaller than the operation wavelength. In this limit, the particles can
usually be treated as an effective medium with an effective refractive index that depends on the volume
filling fraction [6]. Hence, the phase of an incident wave can be modulated via position-dependent
optical path length differences, and the resulting optical response is very broadband as it only depends
on the dispersion of the effective refractive index.
Bordering on the domain of Mie scattering, one finds particles with a very small lateral cross section
and a comparatively large height [54]. These nanowaveguides are usually more difficult to fabricate
than typical Huygens’ particles, but their subwavelength lateral cross section allows for a simpler design
process: The metasurface can be divided into a regular array of pixels, where each pixel contains only
one specific nanowaveguide. Then, if the incident wavefront and the desired spatial phase modulation
vary slowly across the width of a nanowaveguide, it generally suffices to simulate the optical response
of an infinite array of a given nanowaveguide, and to use this result for the corresponding pixel.
Consequently, each pixel can be designed almost independently and with relatively little numerical
effort. While some authors perceive this as a fundamental advantage over Huygens’ metasurfaces in
beam-shaping applications [54], it has not yet been discussed nor demonstrated how positional disorder
could enable a truly subwavelength phase control in Huygens’ metasurfaces.
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The Pancharatnam-Berry phase, also known as geometric phase, is a residual phase shift that originates
from the cyclic evolution of a polarization state, and relates to the concept of parallel transport in
differential geometry [55, 56]. More precisely, if the polarization state of an electromagnetic wave is
changed along a closed trajectory on the Poincaré sphere, the wave will return to its initial polarization
state, but also obtain a phase shift that equals one half of the solid angle enclosed by the trajectory.
In practice, the generation of a position-dependent phase shift requires a fixed incident polarization,
anisotropic or birefringent nanoparticles, and a position-dependent in-plane rotation of the nanoparticle
anisotropy with respect to the incident polarization [35, 57]. Since the Pancharatnam-Berry phase
is a purely geometrical effect, it classifies as a non-resonant phase-shifting mechanism. However, it
can also be used in resonant metasurfaces, where it may provide an additional position-dependent but
wavelength-independent phase bias.

Natural materials

Plasmonic metasurfaces contain conducting particles that support localized surface plasmon resonances,
which are coherent free-space excitations of surface waves that couple to the collective motion of the
conductor’s free electrons [58]. On the one hand, such resonances produce strong electromagnetic field
enhancements that are tightly confined to the surface of the particle. On the other hand, the rapid
phase shift near the plasmon resonance frequency allows one to tune both the spatial and the spectral
dispersion of the metasurface. While plasmonic materials may be an ideal choice for applications that
benefit from the enhanced light-matter interaction close to the particle’s surface, as for example for
biosensing or nonlinear light generation [17, 59], they may be less so for wavefront shaping, where
the high intrinsic absorption losses near the plasmon resonance severely limit the energy efficiency.
Moreover, since spherical plasmonic particles do not exhibit significant magnetic multipole resonances [6],
more complicated particle geometries are required to obtain plasmonic Huygens’ metasurfaces [60].
Consequently, many plasmonic metasurfaces rather rely on the Pancharatnam-Berry phase to obtain
full phase coverage [35, 61].

Dielectric metasurfaces contain dielectric or semiconducting particles. Contrary to plasmonic particles,
dielectric particles not only minimize absorption losses, but also support electric and magnetic multipolar
modes that are localized within the particles’ volume. Recently, silicon particles embedded in silicon
dioxide have become a popular choice for applications in the near-infrared spectral range [20, 21],
and with the rapid technological progress in the fabrication of semiconductor devices, silicon-based
metasurfaces have already started to enter integrated photonic circuits [62, 63].
More recently, research has also started to investigate resonantly excited dielectric particles for
their use in nonlinear or reconfigurable optical devices [64]. These applications benefit from the
strong electromagnetic field enhancement within such particles (strong light-matter interaction), the
subwavelength thickness of the resulting metasurface (relaxed phase-matching conditions), and the
ability to tune the multipole resonances not only via the particle geometry and material, but also
the surrounding material. Based on these aspects, a great number of metasurfaces have already been
reported with astounding nonlinear [65–67], light-emitting [68–71], or tunable [72–75] properties.

From ordered to disordered Huygens’ metasurfaces

So far, the majority of reported optical metasurfaces have used ordered particle arrangements as their
fundamental building blocks [76–78]. In the case of non-resonant metasurfaces, it seems that the
introduction of positional disorder is neither needed, since disorder in the particle size or shape provides
essentially the same control over the effective refractive index as a variation in the local particle density,
nor desired, as it would only complicate the simple design approach.
In the case of resonant metasurfaces, however, it seems that the spatial degrees of freedom presented
by positional disorder have been widely overlooked so far. One reason for this could be the high
computational complexity that comes with positional disorder: While the periodic boundary conditions
in arrays of identical particles greatly simplify numerical simulations, and even facilitate the analytical
investigation and design of lattice coupling coefficients [79], positionally disordered arrangements of
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resonant particles require the position-dependent inter-particle coupling to be fully taken into account.
Although the T-matrix method is currently the most suitable tool for this problem, it still requires
a great amount of expertise and computational power to simulate hundreds of multipolar particles.
Considering that it is already possible to fabricate metasurfaces containing millions of particles, one
currently faces the need to spatially discretize large metasurfaces in some smart way.

Ordered Huygens’ metasurfaces that are based on a regular grid of pixels, where each pixel is filled with
a truncated array of particles, follow a simplistic design idea: Each pixel represents a spatially-invariant
transmission coefficient and transmits exclusively along the zeroth diffraction order. The optical
response of such a metasurface is then entirely based on the diffraction introduced by the pixel grid,
where the largest diffraction angle is limited by the pixel size. However, since the coupling near the
pixel boundaries is neglected, the boundaries act as scattering centers that can scatter into the entire
hemisphere. Consequently, one may imagine that the desired diffracted wave is superposed with an
unaccounted-for scattered wave, where the perturbation increases as the pixel size decreases. While it
might still be feasible to simulate a single 3-by-3 neighborhood of small pixels, as to determine a more
precise estimate of the transmission coefficient of the central pixel, the use of n unique transmission
coefficients would require n9 of such simulations, which quickly becomes ungovernable. In fact, since
ordered Huygens’ metasurfaces make explicit use of the lattice constant of their truncated arrays,
which means the local particle density, it even seems nonsensical to approach the mode of operation
of non-resonant metasurfaces, which means a regular grid of pixels where each pixel contains only
one particle. However, in this limit, the control over the local particle density can be regained by
transitioning to positionally disordered Huygens’ metasurfaces.
In summary, ordered Huygens’ metasurfaces require rather large pixel sizes to overcome unconsidered
coupling effects, but for some application, as for example for the generation of vortex beams [80],
this might not be a problem. Regarding the claim that the inter-particle coupling is the source of
“Fundamental limitations of Huygens’ metasurfaces for optical beam shaping” [54], it must be kept in
mind that although non-resonant metasurfaces provide a subwavelength spatial control that cannot
be achieved with ordered Huygens’ metasurfaces, they do not offer spectral control. Even more so,
positionally disordered Huygens’ metasurfaces may fill the gap for applications that require both a
spectral and a subwavelength spatial control.

Positionally disordered Huygens’ metasurfaces can be discretized as mentioned above in the paragraph
“phase-shifting mechanisms”. If a pixel-based approach is chosen, each pixel can be filled with a
homogeneous particle arrangement that follows a specific statistical distribution. Here, the idea is
that different realizations of the same distribution yield, in average, the same optical response, which
makes it possible to generate the particle coordinates of one pixel in a way that also takes into
account the particle coordinates in neighboring pixels. Since this effectively blends neighboring particle
distributions near the pixel boundaries, it may also result in a smooth transition in the optical response
of neighboring pixels. Ultimately, this idea can be developed further by switching from a regular grid
of pixels to local particle neighborhoods. Alternatively, one could simply rearrange some particles near
the pixel boundaries in a way that disrupts the coupling of neighboring pixels.
Certainly, the introduction of positional disorder also leads to scattering into the entire hemisphere,
but this is not necessarily detrimental. Since this aspect can be fully taken into account in simulations
based on the T-matrix method, and thus during the design process, one can explicitly make use of
scattering to significantly enhance the numerical aperture of a metasurface, which has already been
demonstrated with non-resonant metasurfaces in the context of wavefront shaping [27].

A brief review of disordered metasurfaces

In the last two decades, photonic devices with various types of disorder have been reported to exhibit
a wide range of exceptional properties, but it was not until very recently that research has started to
investigate disordered metasurfaces more systematically, both from a technological [81–83], and from a
theoretical point of view [84–87]. Hence, the remainder of this section mainly focuses on the reported
properties of disordered metasurfaces, categorized in terms of their type of disorder.
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Position Positional disorder seems to be the most commonly used type of disorder in early experimental
studies that have investigated its impact on the directional scattering of resonant metasurfaces [88–90].
At about the same time, the concept of hyperuniformity was introduced as a unifying theoretical
framework for the classification and characterization of exotic disordered states of matter [91]. Supported
by this framework, it was soon experimentally demonstrated that the directional scattering of resonant
metasurfaces can not only be tailored via the particle statistics [10, 92], but also be rendered wavelength-
selective [93, 94]. The same has been observed in dielectric Huygens’ metasurfaces, but with an
additional control over the transmission-to-reflection energy ratio [31, 32, 95].
Other novel uses and effects of positional disorder include: Geometric-phase plasmonic metasurfaces,
where the positional disorder is applied in the sense of spatial multiplexing, enhance the information
capacity of multi-functional devices [96, 97]. Dielectric bilayer metasurfaces, where the particles
are strongly coupled via guided waves, exhibit an ultrahigh angular selectivity [98]. Plasmonic
bilayer metasurfaces, where the particles break the out-of-plane symmetry, show diffuse reflection and
reciprocity-protected transmission [99].

Size Resonant plasmonic metasurfaces, where the lateral dimensions of each particle are randomized,
demonstrate a tailorable directional reflectance that may find application in high-quality reference
structures and engineered diffusers [100]. Similarly, non-resonant dielectric metasurfaces with the same
type of size disorder show a tailorable directional transmittance that has been used to enhance the
numerical aperture of wavefront-shaping devices [27].

Orientation Plasmonic bilayer metasurfaces with orientational disorder exhibit purely circular eigen-
states that enable circular dichroism and optical activity without linear birefringence [101].

Position + Size Fabrication methods based on self-assembly strategies often not only introduce disorder
in the position, but also in the size of the particles. This combination has been used in plasmonic
and dielectric metasurfaces for angle-independent structural coloration [102, 103], and in dielectric
metasurfaces for an optimized chromaticity and light diffusion in organic light-emitting diodes [104].

Position + Orientation The combination of positional and orientational disorder in plasmonic meta-
surfaces has led to the realization of polarization-independent metalenses [105, 106].

Structural disorder in metamaterials and photonic devices Three-dimensional metamaterials with
hyperuniform disorder are expected to exhibit a complete photonic bandgap [7], while two-dimensional
metamaterials additionally provide a precise control over the light transport and localization [107–110].
In an even broader context, the incorporation of structural disorder has led to novel photonic devices
with unique functionalities in a wide range of fields such as information security, optical computing,
spectroscopy, hyperspectral imaging, ultrafast optical pulse measurement, optical sensing, or random
lasers [83]. Lastly, considering that nature has had millions of years to optimize disordered biological
structures through evolution, as for example for structural coloration, it seems only fair to conclude
that research can still learn from nature about how to harness disorder [11].

2.2. Towards perfect optical diffusers
Optical diffusers are key elements in a wide range of applications, as for example in illumination
[104, 111, 112], imaging [25, 113–115], screens [116], microscopy [117–121], colorants [103, 122, 123],
spectroscopy [124–126], photovoltaics [127–129], or wavefront shaping [27, 130–132]. Their main use
is to redistribute incident light across a large solid angle while minimizing or ideally removing high-
intensity spots [133, 134]. However, conventional optical diffusers are usually thick volume scatterers
(Rayleigh scattering) or microstructured surfaces (geometric scattering) that lack the potential for
on-chip integration in photonic devices [135–137]. Positionally disordered Huygens’ metasurfaces, on
the other hand, are mechanically-robust ultra-thin embedded layers that are readily integrable.
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Conventional optical diffusers can generally be classified as volume diffusers [138–140], microstructured
surface diffusers [141–145], or holographic diffusers [146–149]. Volume diffusers, such as opal glass,
consist of deep-subwavelength scatterers that provide an almost Lambertian light distribution, but at
the cost of a low energy efficiency. Microstructured surface diffusers, such as ground glass, offer relatively
high transmission efficiencies, but only limited control over the spatial distribution of scattered light.
Holographic diffusers are carefully engineered surface diffusers that offer high transmission efficiencies
and tailored spatial light distributions [150]. However, their optical response is usually very sensitive
to the incidence angle and polarization, and since most surface diffusers require a defined refractive
index contrast at their surface, they cannot readily be deployed in changing environments. All of these
conventional optical diffusers are based on non-resonant scattering mechanisms and, thus, provide a
broadband diffuser functionality. Only recently, a microstructured surface diffuser and a holographic
diffuser have been reported that provide a wavelength-selective diffuser functionality [151, 152], which
means that the diffuser turns into a non-diffusing fully-transparent window as the wavelength of the
incident wave is tuned away from the operation wavelength. In both cases, this functionality has been
achieved via the precise engineering of disordered structures.

Resonant metasurfaces can overcome the limitations of conventional optical diffusers and even provide
additional wavelength-dependent and multipolar features [86, 153]. Plasmonic disordered metasurfaces
have already shown wavelength-selective diffuser functionalities in combination with unique features
such as a tailorable scattering profile or a large optical memory effect [89, 92, 94]. The optical memory
effect refers to the observation that if an electromagnetic wave entering a thin scattering layer is tilted
or shifted, the transmitted wave tilts and shifts by the same amount while all other aspects of its
wavefront remain mostly unchanged [154]. More recently, dielectric disordered metasurfaces have also
shown high-numerical-aperture wavefront-shaping capabilities with a large optical memory effect [27],
and structural color generation with an improved insensitivity regarding the viewing angle [103, 155].

Furthermore, while ordered Huygens’ metasurfaces completely suppress the zeroth-order reflectance
[156–158], positionally disordered Huygens’ metasurfaces can additionally fully suppress the zeroth-
order transmittance at the resonance wavelength and for a critical degree of positional disorder [31].
This means that all incident light is completely redistributed across all possible directions [32], which in
turn leads to the concept of perfect optical diffusers as discussed in the following paragraph. Moreover,
the resonant nature of Huygens’ metasurfaces renders this perfect diffusion wavelength-selective, which
offers intriguing new opportunities in applications such as fluorescence microscopy, augmented reality
displays [93], or holographic displays [26]. In the case of displays, it would be possible to present
information at one wavelength, and to track the motion of a person through the display at a possibly
invisible secondary wavelength, which in turn would allow for a relatively simple implementation of
interactive features.

What is a perfect optical diffuser?

A perfect optical diffuser shall be defined as a device that exhibits zero absorption losses and yields
the directional scatterance (Sec. 3.4.3) of a Lambertian surface (Appendix A.1) independently of the
incidence angle and polarization. Depending on the width of the wavelength range over which perfect
diffusion is achieved, one may distinguish between wavelength-selective or broadband perfect optical
diffusers. Note that this definition seems highly idealistic, as it may already be physically impossible
to exactly realize a broadband Lambertian surface, let alone a directional scatterance that does not
change with the excitation condition. Hence, this definition should rather be understood as an attempt
to generalize the concept of a Lambertian surface that takes into account that metasurfaces are able to
shape both the directional transmission and reflection. The definition could be relaxed by requiring
that the directional scatterance complies with the concept of the optical memory effect rather than
being completely independent of the excitation, or one could argue that a generalized Lambertian
surface should allow for an arbitrary ratio of hemispherical transmittance to hemispherical reflectance,
but such discussions exceed the scope of this thesis. Nevertheless, since real devices might never exactly
meet these requirements, it seems necessary to classify a device on the basis of a performance metric.

10



2.3. Towards disordered metasurface holograms

N̂

θ

M̂
ϕ

k̂
x̂ŷ
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Fig. 2.1 | What is a perfect optical diffuser? (a) Artistic impression of a positionally disordered metasurface with a scattering
profile (orange; scattered intensity I per unit solid angle dΩ = sin(θ) dϕ dθ) that hardly changes when excited by generic
TE (blue) or TM (red) polarized plane waves. The (b) azimuthal and (c) polar scatterance show the fraction of the incident
intensity I0 per unit angle that is scattered along all polar or azimuthal angles, respectively, when the metasurface is excited by
a normally-incident plane wave near (saturated colors) or off (desaturated colors) its resonance wavelength. The scatterance of
ideal scatterers is shown for comparison. The (d) diffuse scatterance, as a function of the incidence angle θin of a plane wave,
is the efficiency with which a metasurface redistributes the incident energy across all diffuse directions Σ. For reference: (b–d)
show simulations of the soft-core uniform metasurface type for the overlapping resonance case with resonant (λ = 1.38 µm)
and off-resonant (λ = 1.52 µm) excitation.

Figure 2.1 illustrates the properties of a perfect optical diffuser and motivates the physical quantities
that are used in this thesis to judge the performance of diffusers. The artistic impression in Fig. 2.1a
depicts a positionally disordered metasurface with a scattering profile, intensity per solid angle dI/dΩ,
that hardly changes for different plane wave excitations. Note that a Lambertian surface and a Hertzian
dipole are considered for reference, both of which exhibit equal hemispherical transmittance and
reflectance (Appendix A.1). For an easier comparison of the shape of dI(θ, ϕ) /dΩ, the scattering
profile is normalized by the incident intensity I0 and integrated over all polar angles θ (Fig. 2.1b), or all
azimuthal angles ϕ (Fig. 2.1c). Note that since the differential solid angle dΩ ∝ sin(θ) vanishes along
the polar axis, Fig. 2.1c inherits the sin(θ) factor, and Fig. 2.1b effectively excludes contributions from
regular directions (here: zeroth-order transmission and reflection). Figures 2.1b,c show the simulated
optical response of a metasurface with a disordered particle arrangement as depicted in Fig. 2.1a when
the metasurface is excited directly at or slightly off its resonance wavelength by a normally-incident
plane wave. Clearly, the optical response is almost independent of the incident polarization, and for
off-resonant excitation, the metasurface scatters considerably less light along diffuse directions, which
means non-regular directions. The latter demonstrates the wavelength-selective diffuser functionality.
Moreover, the scattering profile is highly uniform along the azimuthal direction, slightly asymmetric
along the polar direction, and has a shape similar to the reference scatterers. Lastly, Fig. 2.1d shows
the integral of the normalized scattering profile across all diffuse directions. This quantity measures
how efficiently a metasurface diffuses the incident energy. As the incidence angle θin increases, less
light is scattered along diffuse directions and, thus, more light resides in the zeroth diffraction orders.
However, while holographic diffusers typically only accept incidence angle deviations of a few degrees,
the presented metasurface allows a few tens of degrees.

2.3. Towards disordered metasurface holograms
Holography – from Greek “holos” (whole) and “graphē” (writing, drawing) – may be seen as a
generalization of photography where the goal is to record the full three-dimensional optical information
of an object in a two-dimensional medium, a hologram, from which the object can be reconstructed at
any later point in time [159, 160]. While photography only records the intensity distribution of the
electromagnetic wave emanated by an object, holography aims to store both the amplitude and phase
of the object wave, or additionally its polarization (polarization holography). The term “holography”
was coined by Dennis Gabor [161–163], who realized that although a photographic plate can only record
the intensity of an electromagnetic field, it is still possible to store both the amplitude and phase of an
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object wave in an encoded form. To this end, the object wave is interfered with a well-defined reference
wave and the intensity of the interference pattern is stored in the hologram. Then, when the hologram
is illuminated once again by the reference wave, the interference pattern modulates the amplitude
of the reference wave and diffracts it in a way that recreates the object wave. However, since this
approach projects a two-dimensional parameter space (amplitude and phase) onto a one-dimensional
space (intensity), it is not possible to uniquely reconstruct the object phase, which in turn leads to the
appearance of additional unwanted waves. This can be illustrated by considering the intensity of the
interference pattern I(x, y) ∝ |1 + o(x, y)|2 in the hologram plane (x, y), where the electric field of the
reference wave is normalized to 1 and the object wave is represented by a complex-valued modulation
o(x, y). Then, since I(x, y) ∝ 1 + |o(x, y)|2 + o(x, y) + o(x, y) modulates the amplitude of the reference
wave in the reconstruction process, it can be concluded that the first two terms result in an unwanted
background wave, while the last two terms generate the desired object wave, but also its complex
conjugate. In an in-line configuration, where the reference wave illuminates the hologram under normal
incidence, the image of the object wave is generally disturbed by the other waves. However, the different
waves can be spatially separated in an off-axis configuration, which means for oblique incidence of the
reference wave [159, 160].

With the rapid advance of computer technology and nanofabrication, digital holography and computer-
generated holography have largely replaced conventional holography in the fields of optical metrology
and wavefront shaping [164–166]. While digital holography generally refers to the digital recording
and numerical reconstruction of holograms, computer-generated holography focuses on the numerical
design, physical realization, and optical reconstruction of holograms via wavefront-shaping methods.
Independent of the used method, one may distinguish here between amplitude-only, phase-only, and
amplitude-and-phase holograms [164], which expresses whether the hologram modulates the reference
wave’s amplitude, phase, or both. Computer-generated holograms can be realized with spatial light
modulators, which are tunable devices such as digital micromirror devices or liquid crystal cells, or
with static structures, as for example diffractive optical elements or metasurfaces [167, 168]. Here,
metasurfaces are particularly interesting due to their ability to modulate the amplitude, phase, and
polarization on a subwavelength scale, whereas spatial light modulators typically have a coarser spatial
resolution and can only modulate either the amplitude or the phase, or require more sophisticated
configurations to achieve both simultaneously [169–171]. Moreover, computer-generated holograms
are liberated from the need to encode the object wave in the form of an intensity interference
pattern, which in turn eliminates unwanted waves and thus allows for simple in-line configurations.
For example, to obtain a specific complex-valued electric field distribution in the image plane, one
simply has to numerically back-propagate the electric field into the hologram plane, implement the
resulting amplitude and phase distribution in terms of a spatially-variant transmission coefficient,
and illuminate the resulting hologram with a plane wave. Clearly, this approach generally requires
amplitude-and-phase holograms. With amplitude-only and phase-only holograms it is still possible
to achieve a desired intensity distribution in the image plane, but without precise control over the
resulting phase distribution. Such holograms with constraints are typically generated with an iterative
Fourier transform algorithm (Sec. 5.3).

Another interesting feature of resonant metasurfaces is their ability to store multiple object waves
that can be selectively reconstructed via a change in the wavelength, polarization, or incidence angle
of the reference wave [172]. This method, known as multiplexing, can also be applied to the spatial
arrangement of the scattering elements in a metasurface. For example, the lateral interleaving of
scattering elements can help in situations where a single element cannot provide all required amplitude
and phase values for all target wavelengths simultaneously, and the vertical stacking of two metasurfaces
can break the out-of-plane symmetry and thus allow for two different object waves to be reconstructed
depending on whether the metasurface is illuminated from its front or back side [123]. Moreover,
nonlinear holograms have been demonstrated on the basis of all-dielectric resonant metasurfaces,
and tunable metasurface holograms have been implemented via the use of phase-change materials,
mechanically stretchable substrates, or chemical reactions [123].
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The introduction of positional disorder in ordered Huygens’ metasurfaces can increase their information
capacity in several ways. Firstly, ordered Huygens’ metasurfaces are limited to phase-only holograms,
because their pixels exhibit a transmittance of one for any phase value. To modulate the amplitude, it
is necessary to reduce the scattering strength of the Huygens’ particles in some way (Appendix A.5).
One way is to spectrally separate the electric and magnetic dipole resonances via the particle geometry
or lattice constant, which means by resorting to simple resonant metasurfaces. However, this increases
the reflectance and it is not guaranteed that all possible amplitude and phase combinations can be
addressed, since an individual multipole resonance only provides a phase range of π. With positionally
disordered Huygens’ metasurfaces, on the other hand, it is possible to almost independently tune
the amplitude via the degree of positional disorder and the phase via the particle density [31], while
maintaining a vanishing zeroth-order reflectance [32].
Secondly, the directional scattering typically increases in strength as the degree of positional disorder
approaches its critical value, which means as the zeroth-order transmittance approaches zero. Although
this may sound detrimental at first, the ability to shape the directional scattering via the particle
arrangement can be utilized in several ways. To understand this, consider that the rather large pixel
sizes in ordered Huygens’ metasurfaces limit the largest achievable diffraction angle and often produce
unwanted diffraction orders. With positional disorder, all pixels can be replaced by overlapping particle
neighborhoods, where the area average of the transmitted electric field across a local neighborhood
determines its zeroth-order transmission coefficient. This effectively reduces the pixel size to a length
scale comparable to the average inter-particle distance, which in turn increases the largest achievable
diffraction angle. In this context, the object wave is generated by the spatially-variant zeroth-order
transmission coefficient. However, the transmitted electric field will generally also exhibit subwavelength
spatial modulations within each local neighborhood, which means that it contains spatial frequencies
that may lead to scattering into the entire hemisphere. Nevertheless, the low-frequency components can
explicitly be used to increase the intensity homogeneity of the zeroth-order object wave in the image
plane, mid-frequency components can extend the object wave beyond the largest diffraction angle of the
zeroth-order object wave, and high-frequency components could be used to smoothly diffuse unwanted
light along all directions that do not interfere with the image of the object wave. The latter may be seen
as a compromise that acknowledges that Huygens’ metasurfaces can only attenuate the zeroth-order
amplitude in transmission via the degree of positional disorder if the remaining light is redistributed
along diffuse directions. Compared to ordered Huygens’ metasurfaces, which generally exhibit discrete
diffraction orders that produce copies of the object wave, this ability to diffuse unwanted light across
unimportant directions represents an advantage. Moreover, while non-resonant metasurfaces provide
direct control over deep-subwavelength spatial modulations of the electromagnetic field within the
hologram plane, it seems that resonant metasurfaces must rely on positional disorder to achieve a
comparable subwavelength control.
Lastly, since uniform positional disorder typically renders a metasurface less sensitive to changes in the
incidence angle and polarization [32, 105], positionally disordered Huygens’ metasurfaces could also be
used as amplitude-and-phase Fourier holograms [159, 160], which means as the transfer function in a
4-f imaging system [173], where they facilitate the optical processing of large objects.

Note that the preceding discussion generally also applies to the approach where the metasurface is
subdivided into pixels with homogeneous positional disorder. However, this pixel-based approach
raises two interrelated questions of its own accord: As compared to ordered Huygens’ metasurfaces,
(i) can positional disorder help reducing the pixel size and (ii) how does the scattering from within a
pixel affect the holographic image? These questions are addressed in Chapter 8, where the pixel-based
approach was used for the first time in conjunction with positionally disordered Huygens’ metasurfaces.
This may be seen as a first step towards metasurface holograms with truly inhomogeneous positional
disorder.
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3. Fundamentals of Wave Optics
3.1. Fourier transformations
Continuous transformations Throughout this thesis, the following one-dimensional non-unitary
Fourier transformation pair is used for transformations between time t and angular frequency ω

Ft{f(t)}(ω) = f(ω) =
�
R
f(t) eiωt dt (3.1)

F −1
ω {f(ω)}(t) = f(t) = 1

2π

�
R
f(ω) e−iωt dω (3.2)

and the following D-dimensional non-unitary Fourier transformation pair with a conjugated kernel is
used for transformations between space r and wavevector k:

Fr{f(r)}(k) = f(k) =
�
RD

f(r) e−ik·r dr (3.3)

F −1
k {f(k)}(r) = f(r) = 1

(2π)D

�
RD

f(k) eik·r dk (3.4)

The motivation behind this choice is that harmonic waves of the form exp(i (k′ · r− ω′t)) with positive
frequencies ω′ and k′ are mapped to positive frequencies in the Fourier space, which can be seen from
the Fourier representation of the Dirac delta function in time Ft{exp(−iω′t)}(ω) = 2πδ(ω − ω′) and in
space Fr{exp(ik′ · r)}(k) = (2π)D δ(k− k′). Such positive-frequency waves advance in space along the
direction of k′ as the time t increases, which is commonly referred to as the “ e−iωt time convention”.
Lastly, note that the differentiation property Ft{∂n

t f(t)}(ω) = (−iω)n f(ω) can be of great help in the
solution of partial differential equations, and that the presented notation uses the units of the function
arguments to distinguish a function from its Fourier transformation.

Discrete transformations In the development and application of numerical methods, it is advantageous
to use a fast implementation of the discrete Fourier transformation [174]. In order to approximate
a D-dimensional continuous Fourier transformation, all continuous variables must be sampled on an
equidistant grid that takes the shape of a hypercube with N = (N1, . . . , ND) points per side length
p = (p1, . . . , pD). Although the choice of sample points is not unique due to the p-periodicity of the
discrete Fourier transformation, the grid coordinates rn and km are most commonly defined as

rn = ∆r ◦
(︂
n−

⌈︂
N−1

2

⌉︂)︂
∆r = p

N n = (n1, . . . , nD) (3.5)

km = ∆k ◦

⎧
⎨
⎩

m m ≤
⌊︂

N−1
2

⌋︂

(m−N) otherwise
∆k = 2π

p m = (m1, . . . ,mD) (3.6)

where the multi-indices n and m can take on integer values in the range of nd,md ∈ {0, . . . , Nd − 1},
and the multiplication a ◦b and division a

b of vectors are element-wise operations. The discrete Fourier
transformation pair may then be written as

f(km) =
N−1∑︂

n=0
f(rn) e−i2πm· n

N (3.7)

f(rn) = 1
∏︁D

d=1Nd

N−1∑︂

m=0
f(km) ei2πm· n

N (3.8)

which can be computed with a time-complexity of O(N log2N), where N = ∏︁D
d=1Nd is the total

number of sample points and each Nd = 2i3j5k7l is ideally a product of small primes.
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3. Fundamentals of Wave Optics

Nonuniform transformations In situations where the spatial or spectral points are non-equidistant, it
is advantageous to use fast nonuniform Fourier transformations [175]

f(km) =
∑︂

i

f(ri) e−ikm·ri Type 1: Nonuniform to Uniform (3.9)

f(ri) =
∑︂

m
f(km) eikm·ri Type 2: Uniform to Nonuniform (3.10)

f(kj) =
∑︂

i

f(ri) e−ikj ·ri Type 3: Nonuniform to Nonuniform (3.11)

where the nonuniform spatial ri and spectral kj points are enumerated by i = 1, . . . , I and j = 1, . . . , J ,
respectively, and km is the same as in the discrete Fourier transformation. The type-1 and type-2
transformations each have a time-complexity of O

(︂
M |log10(ϵ)|D +N log2N

)︂
, where M = I, J is the

number of nonuniform points, N the number of uniform points, and ϵ the targeted relative precision.
The time-complexity of type 3 scales with the space-frequency product of ri and kj .

3.2. Maxwell’s equations
Maxwell’s macroscopic equations, which model the interaction of electromagnetic fields with matter on
a scale that exceeds and therefore ignores most of the matter’s atomic structure, are defined as [176]

∇×E(r, t) = −∂tB(r, t) Faraday’s law (3.12)
∇×H(r, t) = ∂tD(r, t) + j(r, t) Ampere’s law (3.13)
∇·D(r, t) = ρ(r, t) Gauss’s law (3.14)
∇·B(r, t) = 0 Gauss’s law for magnetism (3.15)

where E is the electric field strength, H the magnetic field strength, D the electric flux density, B
the magnetic flux density, j the free current density, and ρ the free charge density. The flux densities
account for bound currents and charges via the material equations

D = ε0E + P (3.16)
B = µ0H + µ0M (3.17)

where ε0 is the vacuum permittivity, µ0 the vacuum permeability, P the polarization field, and M
the magnetization field. For the special case of linear and isotropic dielectrics (j = 0, ρ = 0), the
polarization and magnetization fields can be modeled in the frequency domain as

P(r, ω) = ε0χe(r, ω) E(r, ω) (3.18)
M(r, ω) = χm(r, ω) H(r, ω) (3.19)

where χe and χm are the material’s electric and magnetic susceptibility, respectively. Since these
material models require the evaluation of convolution integrals in the time domain, it is much more
convenient to Fourier-transform Maxwell’s macroscopic equations into the frequency domain

∇×E(r, ω) = iωµ0µ(r, ω) H(r, ω) Faraday’s law (3.20)
∇×H(r, ω) = −iωε0ε(r, ω) E(r, ω) Ampere’s law (3.21)

∇· [ε(r, ω) E(r, ω)] = 0 Gauss’s law (3.22)
∇· [µ(r, ω) H(r, ω)] = 0 Gauss’s law for magnetism (3.23)

where ε = 1 + χe and µ = 1 + χm are the relative permittivity and permeability, respectively. Note
that although most dielectric materials typically exhibit µ ≈ 1, it is convenient to explicitly retain µ in
all equations as to preserve the self-dual symmetry of Maxwell’s equations.
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3.3. Vector wave equation

Duality Principle The duality principle states that Maxwell’s equations (Eqs. (3.20–23)) map back
onto themselves given the following substitutions [38]:

E→ H H→ −E ε→ µ0
ε0
µ µ→ ε0

µ0
ε (3.24)

The duality principle can be used to quickly transform known expressions for E into complementary
expressions for H, and vice versa. Due to this reason, the remainder of this thesis avoids the explicit
discussion of those properties of H that can easily be derived from the duality principle.

Boundary conditions At material interfaces, ε and µ generally exhibit jump discontinuities that are,
by definition, not differentiable but still integrable. Consequently, Maxwell’s equations (Eqs. (3.20–23))
must be stated in their integral form in order to derive continuity conditions for the electromagnetic
field at such interfaces [38]:

�
∂S

E(r, ω) · dr = iωµ0

�
S
µ(r, ω) H(r, ω) · dS Faraday’s law (3.25)

�
∂V
ε(r, ω) E(r, ω) · dS = 0 Gauss’s law (3.26)

By considering sufficiently short integration paths across the interface of two media (subscripts 1,2),
such that all quantities are effectively constant, the tangential components of the field strengths and
the normal components of the flux densities are found to be continuous at the interface:

P∥ (E1 −E2) = 0 (3.27)
P⊥ (ε1E1 − ε2E2) = 0 (3.28)

The tangential projection (P∥), normal projection (P∥), and reflection (R) of an arbitrary vector with
respect to the unit normal n̂ or tangential plane of a surface can be expressed in terms of operators

P∥ = (I− n̂n̂) · (3.29)
P⊥ = (n̂n̂) · (3.30)

R = P∥ − P⊥ = (I− 2n̂n̂) · (3.31)

where I is the identity matrix, n̂n̂ is a dyadic product, and hats represent unit vectors n̂ = n/
√

n · n.
Note that all operators become position-dependent if the surface is curved.

3.3. Vector wave equation
Faraday’s and Ampere’s law (Eqs. (3.20,21)) can be combined to a single vector wave equation

[︂
∇×∇×− (∇ lnµ(r, ω))×∇×− k2(r, ω)

]︂
E(r, ω) = 0 (3.32)

where k2 = ω2ε0µ0εµ is, at first, only a symbolic abbreviation. However, in the following sections it
will become apparent that the wavenumber k dictates the spatial frequency of an electromagnetic wave
and asserts a constraint on the wavevector k of plane waves. Hence, it is convenient to explicitly define
the wavenumber k and the refractive index n as

k(r, ω) = ω

c0
n(r, ω) n(r, ω) =

√︂
ε(r, ω)µ(r, ω) (3.33)

where c0 = 1/√ε0µ0 is the speed of light in vacuum, and the definition of the refractive index involves
the principal square root that satisfies Re

√
z ≥ 0 and sgn(Im

√
z) = sgn(Im z) for any z ∈ C. Lastly,

it should be noted that n2 = εµ and
√
n2 = n hold by definition, even though generally

√
z2 ̸= z.
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3. Fundamentals of Wave Optics

Homogeneous media The vector wave equation simplifies greatly for homogeneous media:
[︂
∇2 + k2(ω)

]︂
E(r, ω) = 0 (3.34)

A common approach to the solution of such vectorial differential equations is to reduce the vectorial
problem to a scalar problem by assuming and confirming that E can be expressed in terms of a rather
complicated scalar potential ψ(r) and a simple pilot vector v(r) [38]. The purpose of the pilot vector
is to establish, together with ∇ψ, a vector basis for the polarization states of E, and to provide any
additional spatial dependencies with which the ansatz ultimately satisfies the vector wave equation.
The search for a suitable pilot vector can be simplified by requiring that v itself arises from a scalar
potential ν, and that ψ is the general solution of the associated scalar wave equation:

v(r) = ∇ν(r) (3.35)
[︂
∇2 + k2

]︂
ψ(r) = 0 (3.36)

Then, to formulate an appropriate ansatz for E, one should keep in mind that arbitrary vector
fields can be separated into a curl-free and a divergence-free part, which is known as the Helmholtz
theorem [38, 177, 178]. In homogeneous media, however, the electromagnetic field is purely divergence-
free (Eqs. (3.22,23)). Furthermore, in analogy to Faraday’s and Ampere’s law (Eqs. (3.20,21)), the
divergence-free part can be expressed in terms of two vector fields that share the notion of an electric
and magnetic field. With these considerations in mind, the vector wave functions M and N may be
defined as

M(r) = 1
k
∇×[ψ(r) v(r)] (3.37)

N(r) = 1
k
∇×M(r) (3.38)

which immediately implies the following identities

∇·M = 0 ∇·N = 0 (3.39)

∇×M = kN ∇×N = −1
k
∇2M != kM (3.40)

with the exception that the equality with the exclamation mark only holds if M solves Eq. (3.34).
Note that if M is a solution, it immediately follows that N is another solution; which can be seen by
applying

[︁
∇2 + k2]︁ to Eq. (3.38). Consequently, the equality with the exclamation mark can be used

to formulate a condition for ν under which M and N are indeed solutions of Eq. (3.34). To this end,
the vector wave functions are first brought into a more explicit form

M = 1
k
∇ψ × v (3.41)

N = 1
k2∇[∇ψ · v] + 1

k2 [tr(∇v) I− 2∇v] · ∇ψ + ψv (3.42)

where ∇v = ∇∇ν is the Jacobian matrix of v or the Hessian matrix of ν, tr(·) is the trace of a matrix,
I is the identity matrix, and Eqs. (3.35,36) and several vector calculus identities were used. With this,
the sought-for condition under which M and N solve Eq. (3.34) is quickly found:

∇×{[tr(∇∇ν) I− 2∇∇ν] · ∇ψ} = 0 (3.43)

Note that this condition is trivially satisfied when ∇∇ν = mI reduces to a constant multiple m of the
identity matrix. In Cartesian coordinates, this is the case for

ν = m

2 r2 + c · r v = mr + c m ∈ R, c ∈ R3 (3.44)

where m = 0 yields a particularly simple pilot vector. In spherical coordinates, however, it is more
convenient to choose c = 0, which can be seen when changing the basis of v.
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3.4. Plane vector wave functions

3.4. Plane vector wave functions
The scalar wave equation (Eq. (3.36)) reads in Cartesian coordinates (x, y, z) as:

[︂
∂2

x + ∂2
y + ∂2

z + k2
]︂
ψ(x, y, z) = 0 (3.45)

After assuming that the scalar potential is separable in each coordinate ψ(x, y, z) = X(x)Y (y)Z(z),
performing the separation of variables by introducing the arbitrary constants k2

x and k2
y, and abbreviating

k2
z = k2 − k2

x − k2
y, the scalar wave equation splits into the following set of differential equations and

general solutions with integration constants ci:
[︂
∂2

x + k2
x

]︂
X(x) = 0 X(x) = c1 e

ikxx + c2 e
−ikxx (3.46)

[︂
∂2

y + k2
y

]︂
Y (y) = 0 Y (y) = c3 e

ikyy + c4 e
−ikyy (3.47)

[︂
∂2

z + k2
z

]︂
Z(z) = 0 Z(z) = c5 e

ikzz + c6 e
−ikzz (3.48)

By defining the wavevector as k = (kx, ky, kz), where k2 = k2
x + k2

y + k2
z = k2 establishes the connection

with the wavenumber k, it is possible to write the scalar potential as

ψk(r) = eik·r (3.49)
∇ψk(r) = ikψk(r) (3.50)

but since the “magnitude” k2 = k2 is fixed by the material, only the direction of k is a free parameter.
Together with the pilot vector v = n̂/ sin(θ), where cos(θ) = k̂ · n̂ represents the angle between k̂ = k/k
and the normal vector n̂ of an arbitrary reference plane, the plane vector wave functions become

Mk(r) = iψk(r) M̂k M̂k = k̂× n̂
sin(θ) (3.51)

Nk(r) = −ψk(r) N̂k N̂k = k̂× M̂k = cos(θ) k̂− n̂
sin(θ) (3.52)

and the projections of the plane wave unit vectors with respect to the reference plane read as

P⊥M̂k = 0 P∥M̂k = M̂k RM̂k = M̂Rk = M̂k (3.53)

P⊥N̂k = − sin(θ) n̂ P∥N̂k = k̂− cos(θ) n̂
tan(θ) RN̂k = −N̂Rk (3.54)

where P⊥, P∥ and R are the operators from Eqs. (3.29–31). Since Mk has no normal component and
is typically associated with the electric field, it is customary to refer to Mk and Nk as the transverse
electric (TE) and transverse magnetic (TM) plane wave, respectively. These waves are orthogonally
polarized M̂k · N̂k = (P∥M̂k) · (P∥N̂k) = 0 and form a right-handed system with M̂k × N̂k = k̂.
Lastly, for the special case of n̂ = ẑ, and by expressing k(θ, ϕ) = kk̂(θ, ϕ) in terms of polar Re θ ∈ [0, π]
and azimuthal ϕ ∈ [−π, π] propagation angles, the unit vectors can be written as:

k̂(θ, ϕ) =

⎛
⎜⎝

sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

cos(θ)

⎞
⎟⎠ M̂k(θ, ϕ) =

⎛
⎜⎝

sin(ϕ)
− cos(ϕ)

0

⎞
⎟⎠ N̂k(θ, ϕ) =

⎛
⎜⎝

cos(θ) cos(ϕ)
cos(θ) sin(ϕ)
− sin(θ)

⎞
⎟⎠ (3.55)

Often it is not only convenient but even necessary to require ImP∥k = 0 (cf. Appendix B.3), which
demands Im θ to be determined by tanh(Im θ) = − tan(arg(k)) tan(Re θ) and results in

k̂(θ, ϕ) = cosh(Im θ) k̂(Re θ, ϕ) + i sinh(Im θ) N̂k(Re θ, ϕ) (3.56)

k(θ, ϕ) =
[︄
|k|2 cosh(Im θ)

Re(k) P∥ + Re(k)
cosh(Im θ)P⊥

]︄
k̂(Re θ, ϕ) + i

Im(k) cosh(Im θ)
cos(Re θ) n̂ (3.57)

where Re θ = π
2 ± arg(k)⇔ Im θ = ±∞ is in fact the largest achievable angle due to refraction at a

planar interface when the refractive index of the medium on the incident side tends to infinity.
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3. Fundamentals of Wave Optics

3.4.1. Plane wave expansion
Without loss of generality, one may assume a standard Cartesian coordinate system where the reference
plane is identical to the x-y plane (z = 0, n̂ = ẑ), require ImP∥k = 0 for simplicity, and introduce the
following abbreviation for a two-dimensional integral across the reference plane:

⟨f⟩ξ =
�
R2
f(ξ) dξx dξy (3.58)

The orthogonality conditions of the plane vector wave functions (Eqs. (3.51,52)) read then as

⟨Mk′ ·Nk⟩r = ⟨Nk′ ·Mk⟩r = 0 (3.59)
⟨Mk′ ·Mk⟩r = ⟨Nk′ ·Nk⟩r = (2π)2 δ

(︁
k− k′)︁ (3.60)

⟨Mk′×Nk⟩r = ⟨Nk′×Mk⟩r = ik̂ (2π)2 δ
(︁
k− k′)︁ (3.61)

⟨Mk′×Mk⟩r = ⟨Nk′×Nk⟩r = 0 (3.62)

where the overline denotes complex conjugation. With this, the plane wave expansion of an electric
field E(r) in a homogeneous medium, and its Fourier transformation E(k), may be defined as

E(r) = E0
1

(2π)2 ⟨akMk(r) + bkNk(r)⟩k (3.63)

E(k) = E0
[︂
iakM̂k − bkN̂k

]︂
(3.64)

where ak and bk are expansion coefficients with units of square meters, and E0 is a reference electric
field strength. Given E, the expansion coefficients can be found from scalar projections:

ak = 1
E0
⟨Mk ·E⟩r = − i

E0
M̂k ·E(k) (3.65)

bk = 1
E0
⟨Nk ·E⟩r = − 1

E0
N̂k ·E(k) (3.66)

Faraday’s law (Eq. (3.20)) provides an expression for the associated magnetic field

H(r) = − iE0n

c0µ0µ

1
(2π)2 ⟨akNk(r) + bkMk(r)⟩k (3.67)

H(k) = E0n

c0µ0µ

[︂
iakN̂k + bkM̂k

]︂
(3.68)

where n is the refractive index of the homogeneous background medium. Note that all orthogonality
conditions and the expressions for E(r) and H(r) can be evaluated at any point in space, but if the
reference plane is shifted along the z-axis, the expansion coefficients ak(z) and bk(z) and the Fourier
transformations E(k; z) = E(k) eikzz and H(k; z) = H(k) eikzz become dependent on z. Nevertheless,
a mere multiplication with eikzz in the frequency domain suffices to propagate any electromagnetic
field in a homogeneous medium from the z = 0 to the z ̸= 0 plane.
Lastly, an individual plane wave of arbitrary polarization, defined in terms of its electric field

E(r) = E0
[︂
cos(γ) eiαMk(r) + sin(γ) eiβNk(r)

]︂
(3.69)

H(r) = − iE0n

c0µ0µ

[︂
cos(γ) eiαNk(r) + sin(γ) eiβMk(r)

]︂
(3.70)

with a given wavevector k, electric field amplitude E0 ∈ C, and polarization parameters α, β, γ ∈ R,
possesses an intensity I = S · n̂ (see Eq. (3.72)) that is invariant across the reference plane

I(z) = |E0|2

2c0µ0µ
Re(n cos(θ))

[︂
cosh2(Im θ)− cos(2γ) sinh2(Im θ)

]︂
e−2 Im(k cos(θ))z (3.71)

where it was assumed that µ ∈ R. The term in the square brackets shows that TM waves can yield
higher intensities than TE waves, but since it expands to 1+2 sin2(γ) (Im θ)2 +O

(︁
(Im θ)4)︁ for Im θ ≈ 0,

this effect can be neglected in media with small gain or loss.
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3.4. Plane vector wave functions

3.4.2. Area-averaged radiance
The time-averaged Poynting vector is defined as [176]

S(r) = 1
2 Re

(︂
E(r)×H(r)

)︂
(3.72)

and the net energy flux (radiant flux) P = ⟨S · n̂⟩r that passes through the reference plane of a plane
wave expansion (Eqs. (3.63,64,67,68)) can be computed both in the spatial and the frequency domain
⟨E×H⟩r = (2π)−2 ⟨E×H⟩k. However, since either approach requires the evaluation of integrals that
span across the entire reference plane, P can be infinite even if S is finite everywhere. For example, an
individual plane wave possesses an infinite energy flux, but its intensity is spatially-invariant and finite.
Hence, to avoid such mathematical singularities, it is better to consider the area average of S instead.
The area-time-averaged Poynting vector ⟨S⟩ may then be defined as

⟨S⟩ = lim
R→A

⟨χRS⟩r
⟨χR⟩r

χAS = S A ⊆ R2 (3.73)

where A represents a physical aperture that is either fully transparent (A = R2) or that truncates the
electromagnetic field such that S(r) = 0 for r /∈A ⊂ R2, and the indicator function

χR(r) =
{︄

1 r ∈ R

0 r /∈ R
(3.74)

can be understood as a generalization of the Heaviside step function to higher dimensions. However, in
situations where ⟨S⟩ vanishes although S is nonzero everywhere, or where S is not known everywhere,
one is forced to choose a smaller, virtual aperture A′ ⊂A that approximates the exact area average
in a meaningful way

⟨S⟩ ≈ ⟨S⟩r
A

χA′S ≈ S A = ⟨χA′⟩r (3.75)

where A is the transparent area of the virtual aperture A′. With this, the area-averaged intensity
(irradiance) I = |⟨S⟩ · n̂| of a plane wave expansion can be expressed in terms of an integral, where the
integrand can be interpreted as the following differential

d2I(k)
dkx dky

= |E0|2 n
2c0µ0µ

|ak|2 + |bk|2

(2π)2A

⃓⃓
⃓k̂ · n̂

⃓⃓
⃓ (3.76)

and the limit A′ →A must be kept in mind. Here, it was assumed that n, µ ∈ R, and the choice of
making I non-negative only affected the sign of k̂ · n̂. Furthermore, after a change of variables

dkx dky = k2
0 |cos(θ)|dΩ (3.77)

dΩ = sin(θ) dϕ dθ (3.78)

where k0 is the wavenumber of the homogeneous background medium and dΩ is the unit solid angle,
and by comparison with the position-dependent radiance L(r, θ, ϕ) = dP (r) /[cos(θ) dA dΩ] where P is
the energy flux along the direction of (θ, ϕ) into a unit solid angle dΩ that emerges from a surface
element dA at the point r of the radiating surface [176], an opportunity arises to identify and define
the area-averaged radiance L in terms of the area-averaged intensity (irradiance) I:

L(θ, ϕ) = dI(θ, ϕ)
|cos(θ)|dΩ = k2

0
d2I(k)
dkx dky

⃓⃓
⃓⃓
⃓
k=k(θ,ϕ)

(3.79)

The necessity for the area average can also be understood from the uncertainty principle of the Fourier
transformations in the plane wave expansions: All quantities are either absolutely sharp in space or
in frequency, but never simultaneously. In other words, the use of plane waves only allows for the
knowledge of I(r) or I(k), but not I(r,k) as it would be required by L(r, θ, ϕ).
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3. Fundamentals of Wave Optics

3.4.3. Directional scatterance

Since a planar structure transmits and reflects light into two distinct hemispheres, the hemispheres
may as well be unified by composing the area-averaged intensity I in the form of

d2I(k)
dkx dky

= d2

dkx dky

{︄
IT(k) k̂ · n̂ ≥ 0
IR(k) k̂ · n̂ < 0

(3.80)

where IT is the transmitted and IR the reflected area-averaged intensity on the respective side of the
structure. Any plane wave expansion coefficients (ak, bk) can be unified in the same manner. Motivated
by the differential forms in Eq. (3.79), the directional scatterance QΩ = L/I0 may be defined as

QΩ(k) = k2
0
I0

d2I(k)
dkx dky

=
{︄
QT

Ω k̂ · n̂ ≥ 0
QR

Ω k̂ · n̂ < 0
(3.81)

QΩ(θ, ϕ) = 1
I0

dI(θ, ϕ)
|cos(θ)| dΩ = QΩ(k(θ, ϕ)) (3.82)

where I0 is the intensity of an arbitrarily-polarized plane wave that illuminates the structure, and QT
Ω

and QR
Ω are the directional transmittance and reflectance, respectively. Physically, one may interpret

QΩ as the fraction of the incident intensity that is scattered along (θ, ϕ) into a projected unit solid
angle, or equivalently, as the normalized intensity recorded in the back-focal-plane of a lens that collects
the light transmitted or reflected by the planar structure. Given the unified plane wave expansion
coefficients (ak, bk), the directional scatterance of a plane wave expansion is then found to equal

QΩ(k) = k2
0
|ak|2 + |bk|2

(2π)2 cos(θ0)A

⃓⃓
⃓k̂ · n̂

⃓⃓
⃓ (3.83)

where θ0 is the incidence angle of the illuminating plane wave. Since ak and bk correspond to TE and TM
polarized plane waves, respectively, it is trivial to separate their contributions as in QΩ = QTE

Ω +QTM
Ω .

Furthermore, the azimuthal scatterance Qϕ and the polar scatterance Qθ may be defined as the definite
integral of QΩ with respect to either θ or ϕ

Qϕ(ϕ) = dQ(ϕ)
dϕ =

� π

0
QΩ(θ, ϕ) sin(θ) |cos(θ)|dθ (3.84)

Qθ(θ) = dQ(θ)
dθ =

� π

−π
QΩ(θ, ϕ) sin(θ) |cos(θ)|dϕ = |sin(2θ)|

2

� π

−π
QΩ(θ, ϕ) dϕ (3.85)

which can also be interpreted as the azimuthal dQ = Qϕ dϕ and polar dQ = Qθ dθ contributions to
the total scatterance Q. Note that due to energy conservation, Q = 1 in the absence of gain and loss.
Moreover, the sectorial scatterance Q(θ) may be defined as the antiderivative of Qθ

Q(θ) =
� θ

0
Qθ

(︁
θ′)︁ dθ′ + ∆(θ) (3.86)

which represents the fraction of the incident intensity that is scattered into a spherical sector with an
half-angle of θ ∈ [0, π] with respect to n̂. Since the determinant of the Jacobian matrix vanishes for
the given coordinate transformation at the critical points θ ∈ {0, π}, the piecewise constant function

∆(θ) = lim
K→{0}

[︄
⟨χKQ

T
Ω⟩k

k2
0

+ δθ,π
⟨χKQ

R
Ω⟩k

k2
0

]︄
(3.87)

with the Kronecker delta δi,j was included as to capture any Dirac deltas that may be present at the
critical points. In other words, ∆ can be understood as an integration constant that vanishes due to
Sard’s theorem if QΩ is finite at the critical points [179], or introduces jump discontinuities otherwise.
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3.4. Plane vector wave functions

With this, the hemispherical transmittance QT and reflectance QR

QT =
⟨QT

Ω⟩k
k2

0
= Q

(︁
π
2
)︁

QR =
⟨QR

Ω⟩k
k2

0
= Q(π)−Q

(︁
π
2
)︁

(3.88)

trivially satisfy QT +QR = Q(π) = Q. See Appendix A.1 for a definition of ideal scatterers.
Lastly, it is desirable to define a quantity that measures how efficiently a structure diffuses all incident
light. Here, diffusion shall be understood as the capability of a structure to redistribute the optical
energy from the zeroth order in transmission and reflection along all other directions. Hence, one may
simply compute Q from QΩ while excluding the zeroth orders, but since certain structures scatter
mainly or even exclusively along directions that can be associated with diffraction orders, a fairer
comparison of different structures can be achieved if not only the zeroth orders, but also all higher
diffraction orders are excluded. To this end, the diffuse scatterance QD may be defined as

QD = Q− lim
K→KT

⟨χKQ
T
Ω⟩k

k2
0

− lim
K→KR

⟨χKQ
R
Ω⟩k

k2
0

(3.89)

where KT and KR are sets of wavevectors that are associated with the zeroth and, if applicable, all
higher diffraction orders of the structure. In this context, the countably many directions represented
by KT and KR are referred to as the regular directions, and their continuum-forming complement
constitutes the diffuse directions. Note that in the absence of gain and loss, for negligible cross-
polarization, and if no higher diffraction orders are excited, the diffuse scatterance simplifies to
QD = 1− T −R, where T and R are the transmittance and reflectance (cf. Sec. 3.4.4), respectively.

3.4.4. Generalized transmission coefficient
Given that a planar structure is excited by a TE or TM polarized plane wave with an electric field of

EX
0 (r) = EX

0

{︄
Mk0(r) X: TE
Nk0(r) X: TM

(3.90)

where EX
0 is the complex-valued amplitude, k0 the wavevector, and X the polarization state of the

incident wave, the generalized transmission coefficient of the structure may then be defined as

tX,Y
k = lim

R→R2

1
EX

0 ⟨χR⟩r

{︄
⟨χRMk ·E⟩r Y: TE
⟨χRNk ·E⟩r Y: TM

≈ 1
A

{︄
ak Y: TE
bk Y: TM

(3.91)

where E is the total electric field transmitted by the planar structure, Y is the polarization state of a
transmitted plane wave with wavevector k, and the limit represents an area-averaging operation that
is analogous to that introduced in Sec. 3.4.2. The approximate equality applies to the situation where
E is only known over a finite area A, in which case the generalized transmission coefficient can be
computed from an area-average of the plane wave expansion coefficients.
In the remainder of this thesis, the zeroth-order co-polarized transmission coefficient is simply referred
to as the transmission coefficient t, and the transmittance T and phase φ are defined as:

t = tX,X
k0

T = |t|2 φ = arg(t) (3.92)

The zeroth-order reflection coefficient r and the reflectance R = |r|2 are defined analogously to
Eqs. (3.91,92), with the exception that k0 must be replaced by its reflection Rk0.
Moreover, the definitions of the transmission coefficient profile t(r), the transmittance profile T (r),
and the phase profile φ(r) are obtained by omitting the integrals in Eqs. (3.91,92).
Lastly, the spatial statistics of transmittance and phase profiles are expressed in terms of means µT , µ̊φ

and variances σ2
T , σ̊

2
φ, where the ring accents emphasize on the circular nature of the phase angle and

the use of corresponding circular moments. See Appendix A.4 for the definition of statistical quantities
that are based on standard, folded, and wrapped normal distributions.
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3.5. Spherical vector wave functions
The scalar wave equation (Eq. (3.36)) reads in spherical coordinates (r, θ, ϕ) as:

[︃
r2∂2

r + 2r∂r + ∂2
θ + cos(θ)

sin(θ) ∂θ + 1
sin2(θ)∂

2
ϕ + k2r2

]︃
ψ(r, θ, ϕ) = 0 (3.93)

After assuming that the scalar potential is separable in each coordinate ψ(r, θ, ϕ) = R(r) Θ(θ) Φ(ϕ)
and performing the separation of variables by introducing the polar mode number n and azimuthal
mode number m, the scalar wave equation splits into the following set of differential equations and
general solutions with integration constants ci

[︂
r2∂2

r + 2r∂r + k2r2 − n (n+ 1)
]︂
R(r) = 0 R(r) = c1jn(kr) + c2yn(kr) (3.94)

[︄
∂2

θ + cos(θ)
sin(θ) ∂θ + n (n+ 1)− m2

sin2(θ)

]︄
Θ(θ) = 0 Θ(θ) = c3P

m
n (cos θ) + c4Q

m
n (cos θ) (3.95)

[︂
∂2

ϕ +m2
]︂

Φ(ϕ) = 0 Φ(ϕ) = c5 e
imϕ + c6 e

−imϕ (3.96)

where jn and yn are spherical Bessel functions with integers n ≥ 0, and Pm
n and Qm

n are associated
Legendre polynomials with integers −n ≤ m ≤ n. If the mode numbers were not integers, Pm

n would
exhibit singularities at θ ∈ {0, π} and thus produce nonphysical solutions along the entire polar axis.
Moreover, since Qm

n remains to exhibit logarithmic singularities even for integer mode numbers, this
solution can be rejected altogether. Hence, the scalar potential may be defined as

ψm
n (r; k, i) = zn(kr; i) Ψm

n P
m
n (cos θ) eimϕ (3.97)

∇ψm
n (r; k, i) =

[︃
r̂ ∂r + θ̂

1
r
∂θ + ϕ̂

im

r sin(θ)

]︃
ψm

n (r; k, i) (3.98)

where Ψm
n represents a convenient normalization factor, and zn enumerates linear combinations of

spherical Bessel functions including the spherical Hankel functions h(1)
n and h

(2)
n :

Ψm
n =

√︄
1

2π
2n+ 1

2n (n+ 1)
(n−m)!
(n+m)! zn(kr; i) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

jn(kr) i = 1
yn(kr) i = 2
h

(1)
n (kr) = jn(kr) + iyn(kr) i = 3
h

(2)
n (kr) = jn(kr)− iyn(kr) i = 4

(3.99)

Finally, with the radial pilot vector v = kr, the spherical vector wave functions can be written as:

Mm
n (r; k, i) =

[︃
θ̂

im

sin(θ) − ϕ̂ ∂θ

]︃
ψm

n (r; k, i) (3.100)

Nm
n (r; k, i) = 1

kr

[︃
r̂n (n+ 1) + θ̂ ∂θ [r∂r + 1] + ϕ̂

im

sin(θ) [r∂r + 1]
]︃
ψm

n (r; k, i) (3.101)

Note that without Ψm
n , the functions M0

0 = N0
0 = 0 vanish everywhere since n and m appear as

prefactors and ∂θψ
0
0 = 0. Consequently, one may as well require n ≥ 1 and introduce a Ψm

n that is
singular at n = 0. The motivation behind the presented Ψm

n is to simplify the orthogonality conditions
of the vector wave functions and to render ψ±m

n more symmetric.
Lastly, Nm

n and Mm
n are commonly referred to as the electric and magnetic vector spherical harmonics,

respectively. The reason for this convention is that only Nm
n can represent a directed vector field due to

its radial component, and if it is used to represent a directed electric field, it is accompanied by a purely
circulating magnetic field in the shape of Mm

n . Moreover, since n represents electromagnetic modes
with up to 2n poles, the first few orders n = 0, 1, 2, 3 are commonly referred to as: monopole, dipole,
quadrupole, octopole. Since the monopole cannot be expressed in terms of divergence-free vector wave
functions, it must be associated with a curl-free field. This makes the dipole the fundamental mode in
homogeneous media.
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3.5. Spherical vector wave functions

3.5.1. Orthogonality conditions
The following abbreviations represent volume and solid angle integrals in spherical coordinates:

⟨f⟩V =
� ∞

0
⟨f⟩Ω r

2 dr ⟨f⟩Ω =
� π

0

� 2π

0
f(r, θ, ϕ) sin(θ) dϕ dθ (3.102)

With the help of several additional identities (Appendix A.2), the scalar products are found to equal

⟨Mm′
n′ ·Nm

n ⟩Ω = 0 (3.103)

⟨Mm′
n′ ·Mm

n ⟩Ω = zn(k′r; i′)zn(kr; i) δm,m′ δn,n′ (3.104)

⟨Nm′
n′ ·Nm

n ⟩Ω = (n+ 1) zn−1(k′r; i′)zn−1(kr; i) + n zn+1(k′r; i′)zn+1(kr; i)
2n+ 1 δm,m′ δn,n′ (3.105)

and the special case for i = i′ = 1

⟨Mm′
n′ ·Mm

n ⟩V = ⟨Nm′
n′ ·Nm

n ⟩V = π

2k2 δm,m′ δn,n′ δ
(︁
k − k′)︁ (3.106)

can be seen as an integral representation of the Dirac delta function δ(k − k′). For the computation of
the energy flow through a spherical surface, it is convenient to note that

⟨[Mm
n ×Nm′

n′ ] · r̂⟩Ω = (n+ 1) zn−1(k′r; i′)− n zn+1(k′r; i′)
2n+ 1 zn(kr; i) δm,m′ δn,n′ (3.107)

⟨[Mm
n ×Mm′

n′ ] · r̂⟩Ω = 0 (3.108)

⟨[Nm
n ×Nm′

n′ ] · r̂⟩Ω = 0 (3.109)

and the special case for i = i′ = 3 and k = k′

Im ⟨[Mm
n ×Nm′

n′ ] · r̂⟩Ω = Im ⟨[Nm
n ×Mm′

n′ ] · r̂⟩Ω = − 1
k2r2 δm,m′ δn,n′ (3.110)

relies on a property of spherical Hankel functions (Appendix A.2).

3.5.2. Multipole expansion and scattered field formalism
The main idea behind the scattered field formalism is to utilize the superposition principle of the vector
wave equation in piecewise homogeneous media (Eq. (3.34)) for the separation of the total electric field
E into a background electric field Eb and a scattered electric field Es [38, 176]

E(r, ω) = Eb(r, ω) + Es(r, ω) k2(r, ω) = k2
b(ω) + χV (r) k2

s (ω) (3.111)

where kb is the wavenumber of the homogeneous background medium, ks represents a scattering
structure that modulates the refractive index of the background medium within a finite volume V ,
and χV is the indicator function of this volume (Eq. (3.74)). Given that E and Eb are governed by
homogeneous wave equations,

[︁
∇2 + k2]︁E splits into an inhomogeneous wave equation for Es:

[︂
∇2 + k2(ω)

]︂
E(r, ω) = 0 k2(ω) ∈ C (3.112)

[︂
∇2 + k2

b(ω)
]︂

Eb(r, ω) = 0 k2
b(ω) ∈ R (3.113)

[︂
∇2 + k2

b(ω)
]︂

Es(r, ω) = −χV (r) k2
s (ω) E(r, ω) k2

s (ω) = k2(ω)− k2
b(ω) (3.114)

The scattered field can be understood as a superposition of outgoing wavelets that originate from
within the scattering volume and are generated by the total field. Since the total field may in turn
be understood as the superposition of the background field and all scattered wavelets, the scattered
field represents a self-consistent solution that readily takes into account how all wavelets influence each
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3. Fundamentals of Wave Optics

others generations due to interference effects within the scattering volume. The background field can
be seen as an external wave that excites the scattering structure. Although it is admissible to use a
piecewise constant background medium, which is typically very easy to simulate with electromagnetic
field solvers, the presented formalism assumes a single background medium that extends to infinity.
The reason for this assumption is related to the fact that the orthogonality conditions of the spherical
vector wave functions only hold in a homogeneous background and that the derivation and evaluation
of the Green’s dyadic for a piecewise constant background can be very challenging.
With these considerations in mind, the scattered electric field and its associated magnetic field can be
expanded in terms of spherical vector wave functions

Es(r) = E0

∞∑︂

n=1

n∑︂

m=−n

[am
n Nm

n (r; kb, 3) + bm
n Mm

n (r; kb, 3)] (3.115)

Hs(r) = − iE0kb
ωµ0µb

∞∑︂

n=1

n∑︂

m=−n

[am
n Mm

n (r; kb, 3) + bm
n Nm

n (r; kb, 3)] (3.116)

where E0 is a reference electric field strength and am
n and bm

n are the multipole expansion coefficients.
Note that since the spherical Hankel function of first kind (i = 3) is singular at the origin, this expansion
should only be used outside of the scattering volume. For expansions within the scattering volume, the
spherical Bessel function of first kind (i = 1) should be used instead.

Multipole expansion based on orthogonality Given the scattered electric field Es on a spherical
surface with a radius of r0 that encloses the entire scattering volume, the multipole coefficients

am
n = 1

E0

⟨Nm
n ·Es⟩Ω

⟨Nm
n ·Nm

n ⟩Ω

⃓⃓
⃓⃓
⃓
r=r0

bm
n = 1

E0

⟨Mm
n ·Es⟩Ω

⟨Mm
n ·Mm

n ⟩Ω

⃓⃓
⃓⃓
⃓
r=r0

(3.117)

are easily found from Eq. (3.115) with the help of the orthogonality conditions Eqs. (3.103–105). The
origin of the coordinate system is often placed at the geometric center of the scattering volume.

Multipole expansion based on impulse response The inhomogeneous wave equation of the scattered
electric field (Eq. (3.114)) can be solved with the help of the Green’s dyadic G [38]

[︂
∇2 + k2

b

]︂
G
(︁
r, r′)︁ = −Iδ

(︁
r− r′)︁ (3.118)

where I is the identity matrix and G can be understood as the impulse response of the scattering
structure given a point-like excitation at r′. The solution can be written as

Es(r) = k2
s

�
R3

G
(︁
r, r′)︁ ·E

(︁
r′)︁χV

(︁
r′)︁ dr′ = k2

s

�
V

G
(︁
r, r′)︁ ·E

(︁
r′)︁ dr′ (3.119)

which can be confirmed by applying
[︁
∇2 + k2

b
]︁

to this equation and substituting Eq. (3.118). Hence,
once the explicit form of G is known, the scattered field outside of the scattering volume can be
computed from the total field within the scattering volume. With the Dirac delta representation from
Eq. (3.106) and several other considerations (Appendix A.2), the Green’s dyadic is found to equal

G
(︁
r, r′)︁ = ikb

∞∑︂

n=1

n∑︂

m=−n

[︂
Mm

n (r; kb, 3) Mm
n (r′; kb, 1) + Nm

n (r; kb, 3) Nm
n (r′; kb, 1)

]︂
(3.120)

which, however, is only valid for r ≥ r′ where the radius r′ represents the smallest sphere that encloses
the entire scattering volume. Hence, it is best to choose the geometric center of the scattering volume
as the origin of the spherical coordinate system.
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3.5. Spherical vector wave functions

When Eq. (3.120) is inserted into Eq. (3.119) and compared with Eq. (3.115), it is found that the
multipole expansion coefficients must equal:

am
n = i

kbk
2
s

E0

�
V

Nm
n (r′; kb, 1) ·E

(︁
r′)︁ dr′ (3.121)

bm
n = i

kbk
2
s

E0

�
V

Mm
n (r′; kb, 1) ·E

(︁
r′)︁ dr′ (3.122)

It is important to note that this multipole expansion is only exact if the homogeneous background
medium extends to infinity, but it can still be performed even if the background medium is piecewise
constant. Due to this reason, it is worth to discuss the physical implications of the latter: The total field
induces currents inside the scattering volume that, in turn, generate the scattered field. However, by
using this multipole expansion, it is as if the induced currents were taken out of the piecewise constant
background and placed into a homogeneous background. The resulting scattered field can again be
thought of as being generated by these currents, but with the important difference that it does not
couple back to the currents. The scattered field obtained in this way is therefore not a self-consistent
solution and it is not identical to the actual scattered field in the piecewise constant medium. Despite
these differences, it is often still possible to obtain a qualitatively correct decomposition of the actual
scattered field.

Scattering cross section The energy flux of the scattered field through a spherical surface that
encloses the entire scattering volume can be written as

Ps = 1
2 Re ⟨[Es ×Hs] · r̂⟩Ω r2 (3.123)

where r is the radius of the sphere, and the factor of r2 stems from the surface element dS = r2 dΩ.
The scattering cross section Cs is defined as [34, 39]

Cs = Ps
I0

I0 = |E0|2 nb
2c0µ0µb

(3.124)

where I0 is interpreted as the incident intensity of an arbitrarily polarized plane wave (cf. Eq. (3.71)).
With this, the scattering cross section of a multipole expansion

Cs = 1
k2

b

∞∑︂

n=1

n∑︂

m=−n

[︂
|am

n |
2 + |bm

n |
2
]︂

(3.125)

is found by inserting Eqs. (3.115,116) into Eq. (3.123) and applying Eq. (3.110) and Re(iz) = − Im(z).
Lastly, this expression motivates the definition of partial scattering cross sections

Cs =
∞∑︂

n=1

[︂
CE

s,n + CM
s,n

]︂
CE

s,n = 1
k2

b

n∑︂

m=−n

|am
n |

2 CM
s,n = 1

k2
b

n∑︂

m=−n

|bm
n |

2 (3.126)

where CE
s,n and CM

s,n represent the contributions of electric-type and magnetic-type n-poles to the full
scattering cross section, respectively.
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4. Particle Statistics
4.1. Structure factor and pair correlation function
In statistical mechanics [180], the n-particle density ρ(n)

N (rn) of a system of N identical particles with
random coordinates RN = R1, . . . ,RN is defined as a probability density function that quantifies how
likely it is to find a specific configuration of n particles at the query coordinates rn = r1, . . . , rn per
combined volume element drn = dr1 · · ·drn. To construct this probability density function, one may
first count how often a given particle configuration occurs in each concrete realization of the system,
and then take the ensemble average across all possible realizations. For example, the single-particle
density ρ(1)

N and the pair density ρ(2)
N can be written as

ρ
(1)
N (r1) =

⟨︄
N∑︂

i=1
δ(r1 −Ri)

⟩︄
(4.1)

ρ
(2)
N (r1, r2) =

⟨︄
N∑︂

i=1

N∑︂

j=1
j ̸=i

δ(r1 −Ri) δ(r2 −Rj)
⟩︄

(4.2)

where ⟨·⟩ denotes the ensemble average with respect to RN . Consequently, the integral of ρ(n)
N over all

drn yields the number of permutations of n-particle configurations present in the system:�
V
ρ

(n)
N (rn) drn = N !

(N − n)! (4.3)

In a homogeneous and isotropic ideal gas that consists of non-interacting and uniformly-distributed
particles with a number density of ρ = N/V , all n-particle densities are spatially invariant and approach
limN→∞ ρ

(n)
N = ρn. This motivates the definition of the n-particle distribution function

g
(n)
N (rn) = ρ

(n)
N (rn)

∏︁n
i=1 ρ

(1)
N (ri)

(4.4)

which quantifies by how much the system deviates from the completely random ideal gas. Note that
the denominator simplifies to ρn for homogeneous systems. Furthermore, since the absolute position of
rN is irrelevant in homogeneous systems, it is convenient to marginalize one coordinate and to define
the pair correlation function as

g(r) = 1
V

�
V
g

(2)
N (r1, r1 + r) dr1 = 1

ρ

⟨︄
1
N

N∑︂

i=1

N∑︂

j=1
j ̸=i

δ(r− [Rj −Ri])
⟩︄

(4.5)

where r has now the meaning of a difference vector as in r = r2 − r1. The structure factor S(k) is
essentially the Fourier transformation of the pair correlation function

S(k) = 1 + ρ

�
RD

[g(r)− 1] e−ik·r dr (4.6)

g(r) = 1 + 1
(2π)Dρ

�
RD

[S(k)− 1] eik·r dk (4.7)

where small modifications were introduced to render S and g both unitless and square-integrable.
Moreover, by inserting the explicit form of g from Eq. (4.5) into Eq. (4.6), it is possible to write S and
g alternatively as

S(k) = ⟨S̃(k)⟩ − (2π)Dρ δ(k) (4.8)

g(r) = 1
(2π)Dρ

�
RD

[︂
⟨S̃(k)⟩ − 1

]︂
eik·r dk (4.9)
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where S̃(k) is the microscopic structure factor

S̃(k) = |ρ̃(k)|2

N
ρ̃(k) =

N∑︂

n=1
e−ik·Rn (4.10)

and ρ̃(k) is the Fourier transformation of the microscopic particle density ρ̃(r). The tilde accents
and the term microscopic shall emphasize that these quantities do not characterize the macrostate
(ensemble average) of the system, but rather only one concrete microstate (realization) for which all
coordinates RN are fixed. Lastly, note that S and g inherit the Hermitian symmetry of ρ̃(−k) = ρ̃(k),
S̃(0) = ρ̃(0) = N count all particles, S̃ can also be written as a nonuniform cosine transformation

S̃(k) = 1 + 2
N

N−1∑︂

i=1

N∑︂

j=i+1
cos(k · [Rj −Ri]) (4.11)

which requires the explicit computation of N (N − 1) /2 pair distances, and see Appendix A.3 for the
definition of the radial functions S(k) and g(r), and Appendix B.5 for numerical considerations.

4.2. Collective coordinate method
This section presents an extension of the collective coordinate method [181–183]. The collective
coordinate method is formulated as an optimization problem that seeks a finite number of particle
coordinates in a finite-sized simulation domain such that the corresponding structure factor takes a
prescribed shape. The method was extended by a simultaneous constraint on the pair correlation
function, which can not only be used to ensure a minimum distance between all particles, but also to
fine-tune the system’s short-range order.
The computational efficiency of this method stems from the use of fast Fourier transformations and
the observation that for a large number of particles, it is considerably more favorable to obtain the
structure factor from Eq. (4.10) than from Eq. (4.11) or a histogram of the pair correlation function as
in Eq. (4.5). Contrary to histogram-based approaches, the direct computation of the structure factor
further provides continuously differentiable analytic expressions that are needed by gradient-based large-
scale optimization routines such as the Broyden-Fletcher-Goldfarb-Shanno algorithm [184–187] and its
memory-limited variants. Lastly, the periodic boundary conditions of the fast Fourier transformations
also resolve the paradoxical situation of simulating a homogeneous particle system on a finite-sized
domain: Any finite system would be inhomogeneous if it was not extended to infinity by suitable
boundary conditions. In fact, even if the simulation domain was surrounded by a sufficiently large but
finite number of other particles, and only those directed distances that start from within the simulation
domain were taken into account, the system would still classify as inhomogeneous. This can be seen in
the derivation of Eq. (4.11) from Eq. (4.10), where the structure factor would become complex-valued
if not all bi-directional pair distances were accounted for. Hence, it seems that periodic boundary
conditions are the only suitable boundary conditions for this method.
The main input parameters of a D-dimensional particle system can be summarized as

ρ = N
∏︁D

d=1 pd

∆r = p
L 0 ≤ Rm

n < p n = 1, . . . , N m = 1, . . . ,M (4.12)

where ρ is the particle density, N is the number of particle coordinates in each realization, M is the
number of independent realizations for the computation of the ensemble average, p = (p1, . . . , pd)
represents the side lengths of the periodic simulation domain, ∆r is the spatial resolution of the
simulation domain and of the pair correlation function, L represents the number of sample points
in each dimension, and all particle coordinates Rm

n require suitable initial guesses. With this, the
ensemble average of the microscopic structure factor ⟨S̃⟩ can be computed from nonuniform Fourier
transformations of the particle coordinates

⟨S̃(k)⟩ = 1
M

M∑︂

m=1
S̃m(k) S̃m(k) = |ρ̃m(k)|2

N
ρ̃m(k) =

N∑︂

n=1
e−ik·Rm

n (4.13)
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4.2. Collective coordinate method

where S̃m and ρ̃m are the microscopic structure factors and particle densities of each realization,
respectively. The derivatives with respect to a specific particle coordinate can be written as:

d ⟨S̃(k)⟩
dRm

n

= 1
M

dS̃m(k)
dRm

n

dS̃m(k)
dRm

n

= − 2
N

k Im
(︂
ρ̃m(k) eik·Rm

n

)︂
(4.14)

The proposed objective function F = FS + Fg consists of two terms

FS =
�
RD

wS(k)
[︂
⟨S̃(k)⟩ − S0(k)

]︂2
dk

�
RD

wS(k) dk = 1 wS(−r) = wS(r) ≥ 0 (4.15)

Fg =
�
RD

wg(r) [g(r)− g0(r)]2 dr
�
RD

wg(r) dr = 1 wg(−r) = wg(r) ≥ 0 (4.16)

where FS and Fg demand that ⟨S̃⟩ and g approach the target functions S0 and g0 in regions where
the weight functions wS and wg are nonzero, respectively. For convenience, S0(0) = N should be
enforced irrespective of the user input. Regarding the choice of weights, it was found that the optimizer
converges faster if the weight functions have suitable gradients in regions where S0 or g0 are constant.
For example, a minimum distance R between all particles can be enforced by setting g0(r) = 0 and
wg(r) = max(0, 1− |r| /R). Physically, one may interpret wg [g − g0]2 as a scalar potential with a
repelling force that is larger for smaller pair distances. If wg was constant as well, this potential could
have shallow local minima due to g, in which the optimizer can be trapped.
The derivative of the objective function with respect to the particle coordinates can be written as

dF
dRm

n

= − 4
MN

Im
(︃�

RD

kf(k) ρ̃m(k) eik·Rm
n dk

)︃
(4.17)

where the integral can be computed with a nonuniform Fourier transformation, and f is given by:

f(k) = wS(k)
[︂
⟨S̃(k)⟩ − S0(k)

]︂
+ 1

(2π)Dρ

�
RD

wg(r) [g(r)− g0(r)] eik·r dr (4.18)

Note that when g is computed with a discrete Fourier transformation from Eq. (4.9), it may be
necessary to multiply [⟨S̃⟩ − 1] with a window function that renders this term periodic and continuous
at the Nyquist frequency. The second sum term in f must then also be multiplied with this window
function. The computation of multiple realizations can, to some extent, be parallelized. Lastly, even
if an unconstrained optimizer algorithm is used, one may simply enforce dF/dRm

n = 0 for specific
particles to keep these coordinates fixed throughout the optimization.

Special case If one only requires S = 0 and/or g = 0 in specific regions and is indifferent about their
shape in the remainder, it is possible to exploit the fact that S and g are non-negative by definition,
which ensures that the following F = FS + Fg will minimize S and g to zero

FS =
�
RD

wS(k) ⟨S̃(k)⟩dk (4.19)

Fg =
�
RD

wg(r) g(r) dr =
�
RD

wg(k)
(2π)Dρ

[︂
⟨S̃(k)⟩ − 1

]︂
dk wg(k) =

�
RD

wg(r) e−ik·r dr (4.20)

and the same comments about the weight functions and the computation of g apply as mentioned
above. With this, the objective function gradients become

dF
dRm

n

= − 2
MN

Im
(︃�

RD

k
[︃
wS(k) + wg(k)

(2π)Dρ

]︃
ρ̃m(k) eik·Rm

n dk
)︃

(4.21)

which can be computed with a nonuniform Fourier transformation for each realization m individually
and the term in the square brackets needs to be evaluated only once. This special case not only allows
for a better code optimization and higher parallelization, but it can also be used to quickly generate
particle coordinates that serve as excellent initial guesses for the general method mentioned above.
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4. Particle Statistics

Implications Figure 4.1 illustrates the capabilities of the collective coordinate method for a realistic
set of parameters. Here, five types of particle distributions (Stealthy, Box, Ring, Liquid, Chain) were
generated to demonstrate the possibility of realizing stealthy configurations [86, 91] that not only
respect a minimum pair distance and contain fixed particle coordinates (Stealthy), but additionally
exhibit an anisotropy (Box), a fine-tuned short-range order (Ring), or strikingly different emerging
patterns due to a particular long-range order (Liquid, Chain).
In a disordered Huygens’ metasurface, the short-range order could have a strong influence on the
nearfield-coupling of neighboring particles and, therefore, on their multipolar composition, whereas
the long-range order could have a dominant influence on the shape of the farfield diffraction pattern.
However, such a distinction may prove elusive, since the particles in a Huygens’ metasurface are generally
strongly coupled via both the nearfield and farfield. Moreover, the first-order Born approximation [176],
which ignores all particle-particle couplings, does not apply and the scattered field of such a metasurface
cannot immediately be deduced from the structure factor alone. Nevertheless, future research may
reveal how the optical response of a disordered Huygens’ metasurface depends on its particle statistics.
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Fig. 4.1 | A demonstration of the collective coordinate method. (a) Visualizations of five generic distributions (column titles)
of cylindrical particles with diameters of 0.6 and densities of ρ = 1, and their (b,c) two-dimensional and (d,e) radial pair
correlation function (PCF) and structure factor (SF). All distributions require the same minimum pair distance (g(r) = 0 for
|r| < 0.7), stealthy configuration (S(k) = 0 for |k| < π) and fixed particle coordinates (Stealthy), or extend these requirements
to ∥r∥∞ < 0.7 (Box), |r| ∈ [1.3, 1.5] (Ring), |k| < 1.8π (Liquid), or |k| ∈ [2π, 2.5π] (Chain). The initial coordinates of the Stealthy
distribution were taken from a uniform distribution, and those of all other distributions from the resulting Stealthy distribution.
Each simulation involved M = 24 realizations.
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4.3. Matérn-type distributions

4.3. Matérn-type distributions
This section presents the three types of uniform hard-core distributions introduced by Matérn [188],
their generalizations by Teichmann et al. [189], and the modifications used in this thesis. In the jargon
of a physicist, uniform means homogeneous and isotropic, and hard-core refers to a minimum pair
distance R (g(r) = 0 for r ≤ R). Although the collective coordinate method is capable of generating
Matérn-type distributions, a direct generation of these distributions is often faster to implement and in
certain situations also faster to execute.
Matérn’s idea was to apply a thinning rule to an initial homogeneous Poisson point process that
enforces the minimum pair distance but maintains the uniformity of the initial process. For example,
one may first uniformly fill a region in space with a specific initial point density ρ̂, and then remove all
points that are too close to each other. In general, more sophisticated thinning rules are necessary to
keep the resulting point density ρ ≤ ρ̂ as large as possible.
The idea of Teichmann et al. was to introduce a deletion probability function f(r) that controls how
likely a point is deleted depending on its distance r to another point. This allows for the generation of
soft-core distributions, where f has the notion of a far-reaching repulsive pair potential, whereas for
a hard-core distribution, f resembles a step-like pair potential. In this thesis, the following deletion
probability functions with positive parameters R,α, β, γ > 0 were used for all hard-core (subscript hc)
and soft-core (subscript sc) distributions:

fhc(r;R) =
{︄

1 0 ≤ r < R

0 R ≤ r
fsc(r;α, β, γ) =

⎧
⎪⎪⎨
⎪⎪⎩

1 0 ≤ r < α(︂
β−r
β−α

)︂γ
α ≤ r < β

0 β ≤ r
(4.22)

A central term in [189] is the volume integral V = 2πD/2/Γ(D/2)
�∞

0 f(r) rD−1dr in D dimensions,
and the discussion in [188] suggests that the packing density τ of a hard-core distribution is given by
τ = ρVhc/2D. The remainder of this section is limited to D = 2 dimensions, where

V = 2π
� ∞

0
f(r) r dr Vhc = πR2 Vsc = π

[︃
α2 + 2

(︃
α+ β

γ + 1

)︃
β − α
γ + 2

]︃
(4.23)

and preliminary considerations of ordered Huygens’ metasurfaces show that rather large packing
densities of about τ ≈ 0.40 are required (jamming limit: τ = 0.547 [188]). Lastly, the main focus
in the following paragraphs is on the rapid generation of large numbers of points. Although perfect
simulations are possible [188], where edge effects at the boundaries of the simulation domain and other
subtleties are fully accounted for, they tend to be computationally more complex.

Matérn type I In this thinning rule, a point is marked if there is at least one other point within a
distance of R. The marked points are deleted after all points were checked. The resulting densities

ρ = ρ̂ e−ρ̂V ≤ 1
eV

ρ̂ ≤ 1
V

τ ≤ 1
4e ≈ 0.09 (4.24)

are rather low due to excessive deletion. For example, given a dense cluster of points where each point
is within the R-neighborhood of another point, this rule causes the deletion of the entire cluster.

Matérn type II In this thinning rule, each initial point is assigned a random weight drawn uniformly
from [0, 1]. A point is marked if there is at least one other point within a distance of R that has a
lower weight. The marked points are deleted after all points were checked. As compared to the type-I
thinning rule, considerably higher densities can be achieved

ρ = 1− e−ρ̂V

V
<

1
V

ρ̂ = − ln(1− ρV )
V

<∞ τ <
1
4 (4.25)

but the maximum packing density requires an infinite initial point density. In a dense cluster of points,
this rule retains the point with the lowest weight.
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4. Particle Statistics

Matérn type III In this thinning rule, each initial point is assigned a random weight drawn uniformly
from [0, 1]. A point is marked if there is at least one other point within a distance of R that has a
lower weight and is not (yet) marked. Contrary to the type-I and II thinning rules, the order in which
the points are checked has now an influence on the result. For example, if the points are checked in the
order of decreasing weights, all points with lower weights are always unmarked and this rule reduces to
the type-II rule. However, if the points are checked randomly or in the order of increasing weights, a
dense cluster of points might break up into smaller clusters. When a cluster cannot be broken down
any further, similarly to the type-II rule, the point with the lowest weight is retained. The marked
points can be deleted immediately as the algorithm progresses, or after all points were checked.
Unfortunately, the ρ̂-ρ-dependency cannot be expressed in closed form, which makes it difficult to
predict the initial density ρ̂ that is needed for a desired resulting density ρ. However, it was shown
that this thinning rule is capable of reaching the jamming limit τ = 0.547 [188], and it is still possible
to establish the required ρ̂-ρ-dependency numerically.

Matérn type III (generalized) Teichmann et al. generalized the Matérn point process of type I and II,
and likely skipped III due to its “rather formidable mathematics” [188]. Nevertheless, given a purely
numerical interest, it is straight forward to apply the same ideas to the type-III rule.
Each initial point is assigned a retention probability p = 1 and a random number p0 drawn uniformly
from [0, 1]. To accelerate the search for other points in the r ≤ β neighborhood of a selected point, the
simulation domain is split into a grid with a cell size ≥ β, and the initial points are associated with
their enclosing cell. Hence, only the 3-by-3 cell-neighborhood of a selected point needs to be checked.
While the list of points is traversed in a random permutation, all points that remain to be checked are
assumed to have a higher weight than the currently selected point. Hence, the currently selected point
cannot be deleted by its neighbors, but may cause their deletion. For the currently selected point, the
retention probability p← p · (1− f(r)) of each unmarked neighbor in a distance of r ≤ β is updated,
and then the neighbor is marked if p < p0. This is repeated with the next unmarked point in the list.
The marked points are deleted after all points were checked.
Figure 4.2a demonstrates the ρ̂-τ -dependency of this rule for a hard-core (blue) and soft-core (red)
distribution with a fixed minimum pair distance. The soft-core distribution cannot reach the desired
packing density (τ = 0.4), and the maximum packing density (τ = 0.567) slightly exceeds the jamming
limit due to edge effects. Figure 4.2b shows resulting point distributions for selected initial densities.
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Fig. 4.2 | A demonstration of the generalized Matérn type-III thinning rule. (a) The input-output density characteristics of a
hard-core (blue) and soft-core (red) distribution with R = 0.7125. Gray lines indicate the required initial density ρ̂ for a desired
packing density of τ = 0.4. (b) Resulting point distributions for selected ρ̂ (column titles). Colored circles have radii of R/2, so
that an intersection would indicate the violation of the minimum pair distance. Overlapping gray circles have radii of 1.
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5. Simulation Methods
5.1. Electromagnetic field solvers
Electromagnetic field solvers directly solve Maxwell’s equations (Sec. 3.2) or the vector wave equation
(Sec. 3.3) for the full or scattered electromagnetic field. This can be done both in the time and frequency
domain and requires the simulation to be discretized in some way. For example, the finite-difference
time-domain (FDTD) method stores electric and magnetic field vectors at the vertices of a staggered
rectangular grid [190]. While it is a simple yet powerful method, its computational complexity grows
quickly with the simulation volume, since the accurate simulation of structures with curved surfaces
typically requires a spatial resolution of about one tenth of a wavelength.
The following paragraphs introduce the solvers that were used in this thesis for the simulation of
infinite arrays and disordered arrangements of cylindrical scatterers.

Finite element method The finite element method (FEM) not only discretizes the simulation volume,
but also approximates the electromagnetic field within each volume element by a low-order polynomial
[191, 192]. These volume elements, the finite elements, commonly take the shape of tetrahedra or
hexahedra and can be transformed to exactly represent curved surfaces. The electromagnetic field is
stored at a few special points within each finite element, which are usually the nodes of a particular
quadrature rule, since this allows for the rapid evaluation of the polynomial at arbitrary points within
the finite element. The electromagnetic problem is then solved by matching the global boundary
conditions and those of all finite elements, which results in a large matrix equation. Due to the use of
polynomials, a spatial resolution of about one half of a wavelength is often sufficient for finite elements
of quadratic order. Hence, the FEM is capable of solving complicated structures more accurately
and efficiently than the FDTD method, but since the numerical handling of finite elements is rather
intricate, its computational complexity still grows quickly with the simulation volume.
Here, the proprietary software “COMSOL Multiphysics” was used to simulate an individual cylindrical
scatterer or infinite arrays of such scatterers. The main derived quantities were the transmission and
reflection coefficients of all diffraction orders (Sec. 3.4.4 and Appendices B.3,4), and the multipole
coefficients and scattering cross sections (Sec. 3.5.2).

Local-coordinate T-matrix method In the local-coordinate T-matrix method [28, 39], each scatterer is
assigned its own scattered electromagnetic field, namely a truncated series of spherical vector wave
functions (Eqs. (3.115,116)) with multipole coefficients am

n and bm
n . The origin of each series is taken

to be r = 0, which means that each scatterer is, at first, treated within its own local frame of reference.
The global coordinates of all scatterers are introduced in a later step. Then, by expressing the incident
field in terms of multipole coefficients pm

n and qm
n , and collecting the multipole coefficients in vectors

( a
b ) and ( p

q ), the optical response of an isolated scatterer to the incident field can be written as a
matrix product ( a

b ) = T · ( p
q ) with the scatterer’s transition matrix (T-matrix) T.

The T-matrix of arbitrarily-shaped scatterers can be assembled from FEM simulations in which the
scatterer is excited by one spherical vector wave function at a time for a range of polar and azimuthal
orders [193]. It often suffices to compute T up to the octopolar order (n = 3).
Given a cluster of scatterers with known T-matrices, the effective multipole coefficients aeff and beff
of each scatter are found by considering that each scatterer is not only excited by the incident wave
but also by all other scatterers. In other words, the effective multipole coefficients represent the
self-consistent solution of the scattering problem in the context of the scattered wave formalism. To
solve this problem, the addition theorem of spherical wave functions must be used to express the
global coordinate of one scatterer within the local coordinate system of each other scatterer [194, 195].
Ultimately, this leads to a large system of linear equations that can be solved for aeff and beff .
Here, the local-coordinate T-matrix method was used to simulate disordered arrangements of cylindrical
scatterers with often more than 200 scatterers. This provided the same quantities as the finite element
method, plus the directional scatterance (Sec. 3.4.3) and effective dipole moments (Appendix A.5).
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5.2. Band-limited angular spectrum method
This section presents an adaptation of the band-limited angular spectrum method [196, 197]. The
angular spectrum method is based on the idea that any electromagnetic field in a homogeneous medium
can be propagated from one plane into another via its plane wave expansion (cf. Sec. 3.4.1). Without
loss of generality, one may assume a standard Cartesian coordinate system where the input plane is
identical to the x-y-plane and the output plane lies parallel to the input plane in a distance of z ̸= 0.
With this, the angular spectrum method can be summarized in three steps:

1. Expansion of the electric field in the input plane E(r) into its plane wave spectrum E(k).

2. Propagation of E(k) into the output plane via a simple multiplication E(k; z) = E(k) eikzz.

3. Reconstruction of the electric field in the output plane E(r; z) from E(k; z).

The band-limited aspect of the method takes into account that the discrete Fourier transformations
used in the numerical simulations generally suffer from aliasing. The goal is to exclude those regions of
E(k; z) at the end of step 2 that would otherwise lead to aliasing artifacts in E(r; z).
In mathematical terms, the method can be summarized as

E(r; z) = F −1
k {h(k; z)Fr{E(r)}(k)}(r) k = (kx, ky) r = (x, y) (5.1)

h(k; z) = χK(k) exp
(︂
i
√︁
k2 − k2 z

)︂
k = 2π

λ
n (5.2)

where λ is the vacuum wavelength, n the real-valued refractive index of the homogeneous background
medium, h the propagator kernel, χK the indicator function (Eq. (3.74)), and K the set of points k for
which no aliasing occurs (Eq. (5.4)). In the following paragraph it will become clear that χK takes
the role of a specific low-pass filter. For numerical purposes, the continuous Fourier transformations
must be replaced by discrete transformations, the simulation domain must be truncated to a finite
but periodic window p = (px, py), and all functions must be sampled at N = (Nx, Ny) points with
corresponding discretized coordinates rn and km as mentioned in Eqs. (3.5,6).
The set K is found from an investigation of the instantaneous frequency ℓ, which is defined as the
derivative of the local phase of the non-truncated (K = R2) kernel h

ℓ(k; z) = 1
2π

d
dk arg(h(k; z)) = − kz

2π
√
k2 − k2

(5.3)

where the product ℓ · dk equals the number of periods that the phase of h would advance at the point
k for an infinitesimally small step along dk. In other words, this quantity measures how rapidly h
oscillates at each point of the k-plane. When dk is replaced by the resolution ∆k of the discrete
Fourier transformation, the inverse (|ℓd|∆kd)−1 can be interpreted as the number of sample points per
one period of ℓd along the dimension d. According to the Nyquist criterion, there must be at least
two sample points per period (|ℓd|∆kd)−1 ≥ 2 to avoid aliasing. This criterion must be met along all
dimensions simultaneously and requires k to lie within the intersection of two ellipses

K =
{︄

k
⃓⃓
⃓⃓
⃓

k2
x

[k sin(θx)]2
+
k2

y

k2 ≤ 1 ∧ k2
x

k2 +
k2

y

[k sin(θy)]2
≤ 1

}︄
(5.4)

where k sin(θd) carries the notion of a numerical aperture as it determines the largest possible spatial
frequency in the output plane, and the angle

θd = arctan
(︃
pd

2 |z|

)︃
(5.5)

can be interpreted geometrically as the half-angle under which one period of the input plane appears
when viewed from the output plane, or vice versa.
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5.2. Band-limited angular spectrum method

Additionally, the spatial resolution ∆r should be chosen small enough such that the Nyquist frequency
1
2Nd ∆kd is slightly larger than the band limit k sin(θd), which ensures that the kernel is not artificially
truncated and therefore propagates the maximum possible amount of information:

1
2Nd ∆kd ≥ k sin(θd) ⇔ Nd ≥ 2n sin(θd) pd

λ
⇔ ∆rd ≤

λ

2n sin(θd) (5.6)

Considering that discrete Fourier transformations are usually most efficient for array sizes that are
products of small primes, Nd should be rounded up to such an integer. Moreover, since the discrete
Fourier transformations are inherently periodic, the propagation of the electric field becomes a circular
convolution with the propagator kernel. Depending on the frequency content of the electric field in
the input plane and the propagation distance, this can introduce significant errors due to diffracted
waves that wrap around the simulation domain. However, the circular convolution can be turned into
a linear convolution by zero-padding the simulation domain to twice its original size (p→ 2p) while
maintaining the spatial resolution (N→ 2N). This also results in a finer frequency resolution of the
kernel, but all other preceding considerations remain valid (see [196] for more technical details).

Optimal parameters Equation (5.6) reveals that the optimal spatial resolution is bounded by

λ

2n ≤ ∆rd ≤
λ

2n sin(θd) = λ

2n

√︄(︃2 |z|
pd

)︃2
+ 1 (5.7)

where the lower limit stems from the fact that any features in the electric field with sizes smaller
than λ/(2n) originate from evanescent waves that cannot propagate into the farfield. Hence, although
possible, the use of an even smaller spatial resolution is not meaningful. The upper limit represents
the smallest possible feature size in the output plane due to the low-pass-filter characteristic of the
propagator kernel. In other words, the limited numerical aperture n sin(θd) causes blurring in the
output plane. Moreover, the upper limit is identical to the Abbe diffraction limit [166], and its violation
implies that the electric field in the output plane is undersampled. While the use of the upper
limit results in the most efficient numerical implementation, the considered range can be used to
accommodate additional requirements as mentioned in the following paragraph. This concludes the
standard band-limited angular spectrum method.
The following discussion seeks optimal parameters for the sampling of an object in the input plane that
is represented by I pixels, where each pixel may be further divided into J sub-pixels. For example,
such an object may be a metasurface where each pixel consists of a particular arrangement of scattering
particles, and the subdivision allows one to further take into account the internal structure of each pixel.
Since the following discussion applies to each dimension individually, the corresponding subscripts are
dropped in favor of readability.
Additionally to Eq. (5.7), one may require a minimum number of sub-pixels Jmin, that the size of the
simulation domain p = N ∆r is larger than both the size of the object sobj and the image simg, and
that N is an integer power of two

∆r = sobj
IJ

max
{︃
Jmin ; 2n sin(θobj)

sobj
Iλ

}︃
≤ J ≤ 2nsobj

Iλ
I, J, Jmin ∈ Z>0 (5.8)

N = 2m log2

(︄
max

{︄
1 ; simg

sobj

}︄
IJ

)︄
≤ m m ∈ Z≥0 (5.9)

where θobj = arctan(sobj/(2 |z|)) is half of the object’s apparent size, and Jmin ≤ 2nsobj/(Iλ) must not
be exceeded. Since the computational workload grows rapidly with N , the goal is to keep N as small
as possible, and since the lower bound of the exponent m increases with J , it is best to first determine
m from the lower bound of J before concluding with J :

m =
⌈︄

log2

(︄
max

{︄
1 ; simg

sobj

}︄
max

{︃
IJmin ; 2n sin(θobj)

sobj
λ

}︃)︄⌉︄
J =

⌊︄
2m

I
min

{︄
1 ; sobj

simg

}︄⌋︄
(5.10)

This fully determines the optimal choices for N and ∆r, as well as p and ∆k.
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5.3. Iterative Fourier transform algorithm
In the broadest sense, iterative Fourier transform algorithms (IFTAs) represent a class of optimization
methods that aim to find an input to a linear system that produces a desired output, but with the
important restriction that the output is not fully specified, or otherwise the problem could be solved by
a simple back-propagation of the output. In general, the response of a linear system can be written as
a convolution integral of the input and the system’s impulse response, which in turn can be computed
efficiently in the Fourier domain via the convolution theorem; hence the “FT” in IFTA. The iterative
aspect of IFTAs is due to their underlying optimization strategy.
The first IFTA, known as Gerchberg-Saxton algorithm, was introduced by Gerchberg & Saxton [198].
There, the focus was on the retrieval of an object’s phase information given its intensity diffraction
pattern, which is commonly called the phase retrieval problem. Consequently, IFTAs are also known as
phase retrieval algorithms, and by now, numerous variations and extensions of the Gerchberg-Saxton
algorithm have been reported [199–201]. Two major optimization strategies are projection-based
and gradient-search methods [166]. The latter typically offer faster convergence but have problems
with discontinuous constraints. The Gerchberg-Saxton algorithm and its improvements, such as the
error-reduction algorithm and the input-output algorithm, are projection-based methods. The improved
versions offer faster convergence but require careful manual tuning.
In this thesis, a modified Gerchberg-Saxton algorithm was implemented for the generation of a thin
transmission hologram that, when illuminated by a light source, produces a specific intensity distribution
in a given plane behind the hologram. Figure 5.1 shows a flowchart of the implemented algorithm.

Start

Initial hologram
t

Constraint
Pholt

Hologram
t

Modulation
Ehol = tEsrc

BLASM
forward

Image
Eimg

Similar?
Target

Itar
End

Constraint
PimgEimg

BLASM
backward

Demodulation
t = Ehol/Esrc

Normalization
median(|t|) = 1

2

Source
Esrc

yes

no

Fig. 5.1 | Flowchart of an IFTA for the generation of a thin transmission hologram. The band-limited angular spectrummethod
(BLASM) is used for the free-space propagation of the electric field Ehol from directly behind the transmission hologram t into
the image plane. The hologram is illuminated by the electric field Esrc of a light source. The goal is to generate a hologram for
which the intensity of the electric field in the image plane Eimg is very similar to the target intensity image Itar. The projection
operators Phol and Pimg are explained in the main text. Symbols according to ISO 5807.

More precisely, the thin transmission hologram produces an electric field Ehol(rm) = t(rm) Esrc(rm) in
response to the electric field Esrc(rm) of a light source, where the transmission coefficient profile of the
hologram t(rm) is represented by a rectangular grid of M pixels with two-dimensional multi-indices m.
Each pixel corresponds to a specific arrangement of scattering particles and may be divided further
into sub-pixels as to account for scattering effects from within each pixel. The goal of the algorithm
depicted in Fig. 5.1 is to generate a hologram that produces an electric field Eimg(r′

m) in a plane r′
m

behind the hologram with an intensity profile that is very similar to a given target intensity image
Itar(r′

m). The free-space propagation between the hologram and the image plane is computed with the
band-limited angular spectrum method. The backward propagation can be realized with a complex
conjugation of the forward propagator kernel. For the initial guess of the hologram, one may assign
each pixel a random amplitude or phase or both, or implement the transfer function of an actual optical
element, as for example the parabolic phase of a lens. The latter can help to concentrate more energy
into the image area, whereas a random initial guess acts as a strong diffuser. The choice of the initial
guess can have a substantial impact on the convergence speed and outcome of the algorithm. The
demodulation step requires special care in regions where Esrc vanishes. The normalization step applies
a constant scaling factor to t such that the median amplitude of t equals 1

2 . This is necessary since the

38



5.3. Iterative Fourier transform algorithm

backward free-space propagation can scatter energy out of the hologram area, and the image projection
operator typically introduces an arbitrary amplitude scaling. The image projection operator

PimgEimg =
√︁
Itar e

i arg(Eimg) (5.11)

is an integral part of the standard Gerchberg-Saxton algorithm and constrains the electric field
amplitude of the holographic image to follow the target image. The main modification introduced in
this thesis is the hologram projection operator with the purpose to constrain t to values that can be
realized experimentally. The following hologram projection operators were investigated

Pholt =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

t None
|t| Amplitude-only
ei arg(t) Phase-only
min(max(|t| ; amin) ; amax) eimin(max(arg(t);φmin);φmax) Sector
argmin

t′∈T′

⃓⃓
ln
(︁
t/t′

)︁⃓⃓
Discrete

(5.12)

where the transmission coefficient t(rm) of each pixel m is projected independently, parameters
amin, amax, φmin, φmax define an annular sector, and t′ is a member of a finite set of realizable transmission
coefficients T′. If sub-pixels are used, t and t′ become matrices, the projection operator must be
applied to the spatial average of each t(rm), and each projected pixel should be filled with the available
sub-pixel information. A more detailed descriptions of each operator is in order:

None This is an identity operator. It may be used to rapidly improve an initial hologram or to
determine the best possible image quality of a given configuration.

Amplitude-only, Phase-only These constraints allow for the generation of amplitude-only and phase-
only holograms. Their purpose is similar to the none constraint.

Sector Transmission coefficients outside of the given annular sector are mapped to its nearest boundary.
Note that the phase term requires special care regarding phase wrapping around the branch cut.
This constraint generalizes amplitude-only and phase-only, and may serve as a reference case in
situations where only a limited phase range can be realized experimentally.

Discrete This constraint assigns each pixel one member of T′ that is closest to t according to the
distance measure |ln(t/t′)|. If sub-pixel information is used, it must be ensured that the mean
value of each matrix in T′ is unique. The distance measure was based on several observations:

• The Euclidean distance |t− t′| often gave unsatisfactory results near the origin of the complex
plane, especially when T′ contained only a small number of elements.

• The distance
√︂
a [|t| − |t′|]2 + b [arg(t)− arg(t′)]2 produced better results, but it was cumbersome

to account for phase wrapping and to find good values for the weights a and b.

• The distance |ln(t/t′)| =
√︂

[ln(|t/t′|)]2 + [arg(t/t′)]2 =
√︂

[ln(|t|)− ln(|t′|)]2 + [arg(t)− arg(t′)]2 is
much easier to evaluate and the logarithmic scaling of the amplitudes may even be favorable.

Moreover, to simplify the fabrication of resulting holograms, it can be desirable to reduce the set
T′ in a way that tries to preserve the image quality. Two strategies were devised:

Reduction by distance Given a target set t ∈ T with N elements, find N elements in t′ ∈ T′ without
repetition for which the sum of distances |ln(t′/t)| is minimal. This fundamental combinatorial
optimization problem is also known as the assignment problem. This strategy is most useful
when the number of elements in T′ is much larger than N .

Reduction by prevalence Given the hologram t from a previous run of the IFTA, first project it
t′ = Pholt, then form a histogram of all t′, and finally retain the N most-frequently used t′. This
strategy is most useful when the number of elements in T′ is only slightly larger than N .
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5. Simulation Methods

In each iteration of the algorithm, the hologram and image are updated. The algorithm terminates
after a certain number of iterations or once the image is sufficiently similar to the target. To define a
measure for similarity and to quantify the performance of the hologram, consider the intensities in
front of the hologram (Isrc), behind the hologram (Ihol), and in the image plane (Iimg)

Isrc(rm) ∝ |Esrc(rm)|2 Ihol(rm) ∝ |t(rm) Esrc(rm)|2 Iimg
(︁
r′

m
)︁
∝
⃓⃓
Eimg

(︁
r′

m
)︁⃓⃓2 (5.13)

and the following operators

Mf(rm) = 1
M

∑︂

m
f(rm) Sf(rm) =

√︄
1
M

∑︂

m
[Zf(rm)]2 Z = 1−M (5.14)

where M produces the spatial mean, S the spatial standard deviation, and Z a mean-free function.
With this, the zero-normalized cross correlation ZNCC, the total efficiency ηtot, and the scattering
efficiency ηsca can defined as

ZNCC =M
{︄

[ZIimg] [ZItar]
[SIimg] [SItar]

}︄
ηtot = AtarMIimg

AholMIsrc
ηsca = AtarMIimg

AholMIhol
(5.15)

where the ZNCC ∈ [0, 1] measures the similarity between the offset-and-scale-normalized intensities
Iimg and Itar, and Atar and Ahol are the surface areas of the target and hologram, respectively.
Figure 5.2 demonstrates the performance of the IFTA for the five presented constraints. Generally, the
introduction of amplitude modulations increases the ZNCC but reduces the total efficiency. Moreover,
preliminary tests of the discrete constraint indicate that for a fixed cardinality |T′|, target sets T′ that
represent a hexagonal or a similarly-spaced cylindrical grid often yield the highest ZNCC.
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Fig. 5.2 | A demonstration of the presented IFTA. (a) Visualizations of all presented constraints (column titles). The none
constraint maps each coordinate (Re t, Im t) to a unique color and serves as colormap for (a,b). White lines and dots in
the sector and discrete constraint represent their customization parameters. (b) Resulting holograms with 200 pixels per
1 mm side length, each surrounded by a rectangular aperture (not visible) and initialized with a parabolic phase profile that
focuses incident light into the image plane. Overlays show the total efficiency ηtot. (c) Resulting intensity images Iimg with
side lengths of 2 mm in a distance of 11.44 mm behind the hologram for a plane wave excitation under normal incidence at a
vacuum wavelength of 1.5 µm. The intensity in each subplot is normalized with respect to its 99th percentile. Overlays show
the zero-normalized cross correlation ZNCC.
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5.3. Iterative Fourier transform algorithm

Design considerations In the design of in-line holograms, that are a configurations in which the image
is generated along the system’s optical axis, it must be kept in mind that the hologram’s pixelation
can act as a diffraction grating and may produce unwanted diffraction orders. Along the direction of
these diffraction orders, replicas of the target image can appear that, depending on the distance with
respect to the hologram, can spatially overlap and interfere not only with the zeroth diffraction order
but also with each other. This overlap is often detrimental to the image quality, since the hologram
must not only encode information about the image but also about the compensation of the overlaps
within a finite number of pixels. Moreover, since the maximum possible intensity in the image plane
typically reduces along larger scattering angles, one has to find a good compromise between the spatial
resolution, distance, and intensity homogeneity of the image.
The following discussion applies to each lateral dimension individually and assumes that the hologram
is illuminated by a normally incident plane wave with an effective wavelength of λ = λ0/n, where λ0 is
the vacuum wavelength and n the refractive index of the environment. With this, the polar propagation
angle of the m-th diffraction order θm(θ) in dependence on the scattering angle θ of the zeroth order,
the largest possible scattering angle θmax that extends from one edge of the hologram to the opposing
edge of the image, and the opening angle θNA of the numerical aperture can be written as

θm(θ) = arcsin
(︃
λ

Λm+ sin(θ)
)︃

θmax = arctan
(︃
shol + simg

2d

)︃
θNA = arctan

(︃
simg
2d

)︃
(5.16)

where Λ is the size of one pixel, d the image distance, and shol and simg the hologram and image size,
respectively. The first diffraction orders do not overlap with the zeroth order if their critical scattering
angle lies just outside of the numerical aperture θ1(−θmax) ≥ θNA, which is equivalent to

sin
(︃

arctan
(︃
simg

2dmin

)︃)︃
+ sin

(︃
arctan

(︃
shol + simg

2dmin

)︃)︃
= λ

Λ (5.17)

where d ≥ dmin is the minimum image distance required for the separation of the diffraction orders.
The exact solution of this equation for dmin is rather unwieldy, but if the image size is much larger
than the hologram size, a good approximation can be found:

dmin ≈ simg

√︄(︃Λ
λ

)︃2
− 1

4 simg ≫ shol (5.18)

If the image size is large, the minimum image distance is large as well, and the envelope of the farfield
intensity distribution produced by the hologram may be interpreted as the Fraunhofer diffraction of a
slit. More precisely, using the Fraunhofer intensity diffraction pattern of a slit with a width of Λ [173],
the relative intensity Ir at the edge of the image with respect to its center can be written as

Ir = sinc2
(︃Λ
λ

simg
2d

)︃
d≫ Λ

λ
Λ (5.19)

where sinc(x) = sin(πx) / (πx) is the normalized sinc function. Lastly, by setting d(µ) = µdmin as a
real multiple µ ≥ 1 of the minimum image distance, the relative intensity can be written as:

Ir(µ) = sinc2
(︃ 1

2µ

)︃
d(µ) = µ

Λ
λ
simg

Λ
λ
≫ 1

2 (5.20)

The inverse µ(Ir) can be computed numerically and determines the image distance d(µ) that is
required to achieve a given relative intensity Ir at the image edge. A larger value of µ leads to a more
homogeneous intensity envelope, but since it also increases the image distance, it increases (worsens)
the achievable spatial resolution ∆r in the image plane

∆r = λ

2

√︄(︃
2µΛ
λ

simg
shol

)︃2
+ 1 ≈ µsimg

shol
Λ (5.21)

according to the Abbe diffraction limit (cf. Eq. (5.7)).
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6. Experimental Methods
6.1. Fabrication of dielectric metasurfaces
The fabrication of all metasurfaces presented in this thesis was based on electron-beam lithography and
reactive-ion etching. The starting material was a 1 mm thick amorphous silicon dioxide substrate with
a 500 nm thick amorphous silicon cover layer (Tafelmaier Dünnschicht-Technik GmbH). The resulting
metasurfaces consisted of ordered and disordered arrangements of nanocylinders with identical height
but possibly different radii.
First, the thickness of the amorphous silicon layer was reduced to the desired nanocylinder height of
220 nm using argon ion-beam etching (Oxford Ionfab 300). Then, the substrate was covered by a
30 nm thick chromium layer via ion-beam deposition (Oxford Ionfab 300), followed by a 100 nm thick
layer of negative electron-beam resist (ma-N 2401, EN038) via spin-coating. The resist was exposed in
a variable-shape electron-beam lithography system (Vistec SB 350) and then developed (AZ 726 MIF,
OPD 4262). The resulting resist mask was transferred into the chromium layer via argon ion-beam
etching, and then further into the amorphous silicon layer via inductively-coupled plasma reactive-ion
etching (Sentech SI-500 C) using carbon tetrafluoride. The chromium mask and any residual resist
were removed with a chromium etchant and acetone.
In Chapter 8, each hologram needed to be surrounded by an embedded aluminum aperture. There,
the sample was covered by a 300 nm thick layer of negative electron-beam resist (AR-P 617, CSAR)
via spin-coating, followed by 10 nm of gold via thermal vapor deposition (VTD Dresden B30). The
resist was exposed and developed as mentioned above, which left a protective patch of resist on top of
each hologram. Then, a 100 nm thick aluminum layer was deposited using thermal vapor deposition
(JEVATEC V700). The protective patches were lifted off using acetone.
Lastly, all samples were covered by a 1 µm thick layer of spin-on glass (Futurrex IC1-200) with a
refractive index that matches the amorphous silicon dioxide substrate.

6.2. Back-focal-plane imaging
The directional scatterance QΩ(k) (Eq. (3.81)) of an object can be measured in the back-focal plane of
a lens with a high numerical aperture that collects the scattered light. Figure 6.1 depicts the setup
that was constructed for the measurement of the directional transmittance QT

Ω(k).

Light source
(monochromatic)

Camera

PMC HWP LP Object L1 L2 L3FP1 IP FP2

PMC Parabolic mirror collimator LP Linear polarizer FP Fourier plane
HWP Half-wave plate L Lens IP Image plane

Fig. 6.1 | Back-focal-plane imaging setup. The light source was a fiber-coupled tunable continuous-wave laser. The PMC,
HWP and LP produced a weakly-diverging linearly-polarized Gaussian beam (red areas). Lens L1 was a microscope objective
with a numerical aperture of 0.65 and a long working distance that allowed the object to be rotated by up to about 20° as to
simulate oblique incidence. The red, green and blue lines represent three distinct scattering angles originating from two points
on the object. Note how rays with identical scattering angles meet at unique points in the FP1 and FP2.

When an object is placed in the front-focal plane of lens L1, the Fourier transformation of the scattered
electromagnetic field can be observed in the back-focal plane, the Fourier plane FP1. More precisely, it
is the transmitted area-averaged intensity [d2IT(k)]/[dkx dky] (Eq. (3.80)) that can be measured there.
However, since the FP1 was located within the body of L1, and due to the large size of the camera
chip, lenses L2 and L3 were used to project a magnified image of the area-averaged intensity onto the
camera in FP2. The incident intensity I0 needed in the calculation of the directional transmittance
was obtained from a measurement of the empty setup, which means by removing the object.
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6. Experimental Methods

6.3. White-light spectroscopy

Figure 6.2 shows the setup that was constructed for the measurement of the zeroth-order transmittance
spectrum T (λ, θ, ϕ) in dependence on the incidence angle θ and polarization angle ϕ of a collimated
beam, and the zeroth-order reflectance spectrum R(λ) for normal incidence (Sec. 3.4.4).

Light source
(broadband)

Camera

Spectrometer

PMC LP Object BS* FCA1 A2M1
* M2

*

M3 M4

L1 L2 L3 L4 L5 L6

L7 L8

L9

PMC Parabolic mirror collimator A Aperture
LP Linear polarizer L Lens
BS Beam splitter (50:50) M Mirror
FC Fiber coupler (∅ 105 µm, NA 0.22)

Lens Focal length
6 20 mm
1,3,4,7,8 50 mm
2 100 mm
5,9 200 mm

Fig. 6.2 | White-light spectroscopy setup. The light source was a fiber-coupled halogen lamp. The PMC produced a Gaussian
beam with a divergence angle of less than 1°. The rotation of the LP, and the rotation and lateral shift of the object were
automated. The largest collectible object diameter (525 µm) and scattering angle (2.52°) can be reduced via apertures A1 and
A2, respectively. Elements with a star superscript are removable. Insertion of M1

* and BS* switches the setup from transmission
to reflection mode. Insertion of M2

* allows for the inspection and alignment of the object. Red and green areas indicate the
illumination path in the transmission and reflection mode, respectively. Blue areas represent the collection path.

The basic idea of this setup is to illuminate the object with a highly collimated beam and then image
the object onto the core of a fiber that is connected to a spectrometer. The numerical aperture and
the core diameter of the fiber define, together with the magnification factor of the system, the largest
collectible object diameter and scattering angle. Aperture A1 selects the measurement area, which
means the region of the object across which the transmittance or reflectance shall be averaged, whereas
aperture A2 reduces the collection angle towards the zeroth order. The insertion of M1

* and BS*

switches the setup from transmission to reflection mode. Mirror M2
* was only inserted for the inspection

and alignment of the object. Since the spectrometer records the transmitted or reflected intensity
spectrum I, it is necessary to perform a reference measurement I0 to obtain T,R = I/I0, where the
object is either removed (transmission mode) or replaced by a mirror (reflection mode). Lastly, to
facilitate the measurement of a large number of measurement areas with a fine resolution of θ and ϕ,
motorized stages were added to the setup and software was written that enabled a fully automatic
acquisition of spectra.

6.4. Phase-shifting interferometry

A phase-shifting interferometer records a set of two-beam interferograms, which means the spatial
intensity distribution due to the interference of a known reference beam with a beam that was modulated
by the test object, where the phase of the reference beam is shifted in specific steps with the help of a
moving mirror or an active optical element [159, 160, 202]. From such a set of interferograms, it is
possible to retrieve the phase modulation that was introduced by the test object.
The following discussion focuses on transparent planar objects that generate an output electric field
Eout(x, y) = t(x, y) Ein(x, y) in response to an input electric field Ein, where t =

√
T eiφ, T and φ are

the transmission coefficient profile, transmittance profile and phase profile, respectively (Sec. 3.4.4).
For this class of objects, it is advisable to use a Mach-Zehnder configuration. Figure 6.3 depicts the
setup that was constructed for the measurement of the transmission coefficient profile.
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6.4. Phase-shifting interferometry
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(monochromatic)
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HWP Half-wave plate
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BS Beam splitter (50:50)
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Fig. 6.3 | Phase-shifting interferometer setup. The light source was a fiber-coupled tunable continuous-wave laser. The PMC
produced a weakly-diverging Gaussian beam. The HWP and LP prepared the source beam. Elements with a star superscript
must be identical to their non-starred counterparts. Since the piezo actuator shifted M1

* only by fractions of a wavelength, the
lateral shift of the reference beam was neglected. The object can be moved along −ẑ to measure the phase profile in various
planes behind the object. Red and blue areas indicate the paths of the source beam and the imaging system, respectively.

The imaging system, consisting of lenses L1, L1
* and L2 with respective focal lengths f1 and f2, maps

conjugate points r = (x, y) of the object plane and reference plane into the same point r′ = −f2/f1 r
of the camera plane. The non-polarizing beam splitters BS1 and BS2 have an intensity splitting ratio
of 50:50. Consequently, the electric field E in the camera plane is the superposition of the electric field
Eobj from behind the object plane and the electric field Eref from behind the reference plane

E
(︁
r′)︁ = 1√

2
Eobj(r) + 1√

2
Eref(r) = 1

2
[︂
t(r) + eikδ

]︂
Esrc(r) (6.1)

Eobj(r) = t(r) 1√
2

Esrc(r) (6.2)

Eref(r) = eikδ 1√
2

Esrc(r) (6.3)

where Esrc/
√

2 is the electric field of the source directly in front of the object plane or reference plane,
k is the wavenumber of the surrounding medium, δ is the path length difference introduced by the
piezo actuator, an ideal imaging system was assumed, and all phase terms that are common to both
interferometer arms were ignored. The source field generally diffracts as it propagates into the object
and reference plane, but if this happens symmetrically in both interferometer arms, it suffices to only
consider Esrc(r) /

√
2 and its intensity profile Isrc(r) /2 directly in front of the object or reference plane.

With this, the intensity profile in the camera plane I = 1
2 Re(E×H) · ẑ can be written as

I
(︁
r′; kδ

)︁
= I0(r) [1 + V (r) cos(φ(r)− kδ)] (6.4)

I0(r) = 1 + T (r)
4 Isrc(r) (6.5)

V (r) = 2
√︁
T (r)

1 + T (r) (6.6)

where the visibility V ∈ [0, 1] measures how strongly the average intensity I0 is modulated due to
interference. In a realistic setup, the beam paths and optical elements in the interferometer arms are
rarely identical, which can have the same effect as an additional phase modulation ∆(r) that leads
to a deformed phase profile φ(r) → φ(r) + ∆(r). To compensate for ∆, it is necessary to directly
measure ∆ by removing the object from the beam path (φ = 0). Moreover, since the light source and
the piezo actuator often drift, it is advisable to repeat this procedure with each new measurement of φ.
Instructions for the initial alignment of a Mach-Zehnder interferometer can be found in [202].
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6. Experimental Methods

Phase retrieval algorithms Least-squares fitting is a standard numerical method for the inversion of
an overdetermined nonlinear system, such as Eq. (6.4), where one seeks the phase profile φ(r) given
N interferograms I(r′; kδn) that were recorded at specific steps δn. Although the steps may have an
arbitrary spacing, general least-squares algorithms greatly simplify for equispaced δn [203]. In this
case, the fitting problem reduces to the computation of the following partial sum

I
(︁
r′)︁ =

N−1∑︂

n=0
I
(︁
r′; kδn

)︁
eikδn = N

2 I0(r)V (r) eiφ(r) δn = λ

N
n N ≥ 3 (6.7)

from which the phase profile can easily be recovered:

φ(r) = arctan
(︃ Im I(r′)

Re I(r′)

)︃
(6.8)

For N = 4, this becomes the Carré algorithm [204], and for N > 4, there is a close relation to
error-correcting algorithms that aim to compensate for certain systematic errors [202]. Note that in
this class of algorithms, all spatial points are computed independently of each other.
By making use of the spatial information encoded in the interferograms, an N -step algorithm has been
developed that is robust against deviations from the nominal δn steps [205]. However, this algorithm
typically requires more than four interference fringes to be present in the interferograms, which may
require the deliberate introduction of a phase modulation ∆(r) in the reference beam. This algorithm
starts from the same premise as Eq. (6.7), but retrieves the phase profile, up to a constant term, from

φ(rm) = arctan
(︃N {[N Im−N Re] I(rm)}
N {[N Im +N Re] I(rm)}

)︃
− const. Nf(rm) = f(rm)√︂

1
M

∑︁
m [f(rm)]2

(6.9)

where the two-dimensional multi-index m enumerates the M camera pixels, and N is a normalization
operator that divides a function by its spatial root-mean-square value. For a fixed N , the constant term
depends only on the (unknown) actual δn steps. Hence, as long as the actual δn steps are reproducible,
the constant term has the same value and can be eliminated altogether with a measurement of ∆(r).
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7. Optical Properties of Positionally Disordered
Huygens’ Metasurfaces

7.1. Fundamentals of ordered Huygens’ metasurfaces
A Huygens’ metasurface is a resonant metasurface where each particle sustains a Huygens source [22],
which in turn is a carefully balanced superposition of vector spherical harmonics that completely
suppresses scattering antiparallel to the propagation direction of an incident plane wave. More precisely,
the multipole coefficients of a particle must satisfy the generalized Kerker condition [206, 207], which
can be derived by requiring the differential energy flux along the polar axis to vanish (Appendix A.2).
This condition typically also largely suppresses scattering into the backward-facing hemisphere, as
demonstrated by the electric field in Fig. 7.1c, where destructive interference occurs along the negative
z-axis for the superposition of an x-oriented electric dipole (Fig. 7.1a) and a y-oriented magnetic
dipole (Fig. 7.1b). Purely dipolar Huygens sources require electric and magnetic dipole coefficients that
satisfy a1

1 = b1
1 and a−1

1 = −b−1
1 . As higher-order multipoles are introduced, additional combinations of

multipole coefficient become available, and the creation of Huygens sources that are based entirely on
either electric or magnetic multipoles becomes possible. Lastly, since the multipole coefficients are
wavelength-dependent, the involved multipole resonances must be brought into spectral overlap and
should ideally have identical lineshapes.

When Huygens sources are arranged in an array, the Floquet-Bloch boundary conditions reduce the
continuum of scattered waves to a finite number of diffraction orders, and since resonant metasurfaces
are typically operated at wavelengths for which only the zeroth diffraction orders can propagate into
the farfield, the ability of Huygens sources to completely suppress backscattering translates into a
vanishing reflectance and a maximized transmittance. More precisely, the transmission coefficient of an
ordered metasurface can be expressed in terms of effective multipole coefficients (or moments) that
result from the multipole coefficients of a single particle, which are fully determined by the particle’s
geometry and refractive index, and the electromagnetic coupling with the array (Appendix A.5). Hence,
the transmission coefficient can be tuned via the particle geometry and lattice constant. Lastly, note
that Huygens’ metasurfaces generally require particles that have at least two independent geometrical
parameters, as for example the radius and height of a cylinder, or otherwise it would be impossible
to independently tune the resonance wavelengths of the involved multipolar orders [21]. Moreover,
dielectric particles offer not only considerably lower absorption losses than plasmonic particles, but
also a simpler and more direct control over both electric and magnetic multipoles [20].
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7.1. Fundamentals of ordered Huygens’ metasurfaces

Figure 7.2 shows the simulated zeroth-order transmittance and phase of a square array of amorphous
silicon nanocylinders that are embedded in amorphous silicon dioxide. Each subplot displays realistic
parameter ranges for all pairwise combinations of the excitation wavelength λ, the lattice constant a,
and the nanocylinder radius r and height h. Solid and dashed lines indicate the resonance positions
of electric and magnetic dipoles, respectively. In general, it can be observed that the transmittance
approaches 1 and the phase π near overlapping resonances, or 0 and ±π

2 near an isolated resonance.
Appendix A.5 provides a brief theoretical explanation for this observation in ordered metasurfaces.
Moreover, only in the vicinity of overlapping resonances it is possible to obtain phase values of |φ| > π

2 .
Hence, to attain a Huygens’ metasurface, one may search for geometric parameters that yield a
transmission coefficient of t = −1, which also marks the point of operation.
The r-h-dependency is here of special interest, since it is only due to this geometric anisotropy that
the resonance positions of electric and magnetic dipoles can be shifted with respect to each other. For
spherical particles, the relative positions are fixed by the sphere’s radius and index contrast [6]. The
higher sensitivity of the electric dipole with respect to r, or that of the magnetic dipole with respect
to h, is due to the pronounced radial or orbital shape of the respective vector spherical harmonics
(cf. Figs. 7.1a,b). Hence, by tuning the aspect ratio h/r, the electric and magnetic dipole resonances
can be brought into spectral overlap, which then typically also results in the (approximate) fulfillment
of the Kerker condition across the entire bandwidth of the dipole resonances.
For a fixed aspect ratio, the a-λ-dependency shows that the resonance wavelengths of the electric and
magnetic dipoles shift almost synchronously with a. Deviations only occur for very small a, where the
nearfield coupling of neighboring particles dominates, and for very large a, where higher diffraction
orders begin to play a role [208]. Moreover, since Maxwell’s equations are scale invariant, the resonance
wavelengths can also be shifted via an isotropic scaling of the nanocylinders.
In summary, these dependencies allow the point of operation to be realized at arbitrary wavelengths,
provided that materials with suitable refractive indices are available at the target wavelength. Other
combinations of transmittance and phase values are typically obtained via the r-a-dependency, since
height variations are usually more difficult to fabricate.

Figure 7.3 analyses the multipolar contributions to the scattering cross section of the ordered Huygens’
metasurface from Fig. 7.2 for different lattice constants. Note that since the scattering cross section
was obtained from a multipole expansion of the total electric field within one nanocylinder of the array,
which includes the collective response of all nanocylinders, the presented multipolar contributions
represent the effective response of one nanocylinder inside the array.
At the point of operation (Fig. 7.3a), the electric and magnetic dipole contributions are very similar
to each other and reminiscent of Lorentzian and Fano-type lineshapes. The contributions of higher
multipolar orders are very small, and hence, the asymmetry in the transmittance spectrum is mostly
caused by the asymmetric dipolar lineshapes and the approximate fulfillment of the Kerker condition.
However, it is important to keep in mind that CE

s,n and CM
s,n only represent the magnitudes of the excited

multipole coefficients, whereas the generalized Kerker condition demands a very specific complex-valued
relationship between all multipole coefficients. Hence, identical values for CE

s,n and CM
s,n are merely a

good indicator rather than a strict requirement for the achievement of a high transmittance (compare
at λ = 1.40 µm and λ = 1.44 µm).
When the lattice constant is reduced (Fig. 7.3b), enhanced nearfield coupling leads to the spectral
separation of the maxima in the electric and magnetic dipole contributions, and to the excitation of
slightly stronger magnetic quadrupoles. At λ = 1.30 µm, only magnetic dipoles are excited and the
transmittance approaches zero, whereas at λ = 1.34 µm, the generalized Kerker condition appears to
be satisfied due to the interaction with magnetic quadrupoles.
Lastly, note that the resonance width of the electric and magnetic dipoles typically amounts to about
100 nm or less, which may be narrow enough for the realization of certain wavelength-selective or
wavelength-multiplexed devices.
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7. Optical Properties of Positionally Disordered Huygens’ Metasurfaces

(a) Resonance case
Nanocylinder Overlapping Separate

Diameter d 490 [468] 600 [582] nm
Height h 220 [213] 220 [211] nm
Lattice constant a 800 [800] 900 [900] nm
Density, soft-core ρ 1.56 [1.51] 1.23 [1.12] µm-2

Density, hard-core ρ 1.56 [1.55] 1.23 [1.22] µm-2

(b) Metasurface types

Array p ∈
{︁
ai | i ∈ Z2}︁

Perturbed array p ∈
{︁
ai + Pi | i ∈ Z2}︁

Soft-core uniform p ∈ Mat3[fsc(r;R, a, 1)]
Hard-core uniform p ∈ Mat3[fhc(r;R)]

Pi = a−R
2
√
Ui
(︂

cos(2πVi)
sin(2πVi)

)︂
Ui, Vi ∈ [0, 1]

R = d+ dmin fsc, fhc: Eq. (4.22)

Table 7.1 | A summary of design parameters. (a) Targeted and actual (in square brackets) nanocylinder parameters for the
overlapping and separate resonance case. (b) Particle positions p of all metasurface types, where Ui, Vi are samples from
the continuous uniform distribution, Mat3[·] is the generalized Matérn type-III point process that uses the deletion probability
functions fsc, fhc, and the fabrication required a minimum edge-to-edge distance of dmin = 80 nm between all nanocylinders.
Each fabricated metasurface had a size of (2 mm)2 and contained more than 6 million nanocylinders.
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7.2. Design of metasurface types and resonance cases

7.2. Design of metasurface types and resonance cases
This section presents the design parameters of ordered and disordered Huygens’ metasurfaces that
were studied throughout the remainder of this chapter. The term metasurface type is used to classify
the type and degree of disorder in the particle distribution of a metasurface, and the resonance case
distinguishes between metasurfaces that do or do not sustain Huygens sources.
More precisely, four metasurface types (array, perturbed array, soft-core uniform, hard-core uniform)
and two resonance cases (overlapping, separate) were devised that utilize amorphous silicon nanocylin-
ders embedded in amorphous silicon dioxide (fabrication details in Sec. 6.1). The array is the only
ordered metasurface type and serves as reference. The overlapping resonance case was designed such
that the electric and magnetic dipole resonances overlap at a wavelength of about λ = 1.4 µm, whereas
in the separate resonance case, they are located around λ = 1.6 µm and λ = 1.5 µm, respectively.

Table 7.1 summarizes the geometric parameters of the nanocylinders and illustrates how the particle
positions were generated. The particles in the array form a square lattice with lattice constant a.
The perturbed array is based on the array, where each particle is translated by a random vector
with a maximum magnitude of (a−R)/2 for a minimum pair distance of R. The soft-core uniform
and hard-core uniform types were obtained from the generalized Matérn type-III point process with
respective deletion probability functions fsc and fhc (Eq. (4.22)) for a target density of ρ = a−2.

Figure 7.4 shows the pair correlation function and structure factor of the disordered metasurface types.
The perturbed array maintains the long-range order of the underlying square lattice (narrow peaks in
Figs. 7.4b,d). The uniform-type metasurfaces are highly homogeneous and isotropic (g ≈ 1 for r/a > 2
in Figs. 7.4a,c), and nearly classify as hyperuniform [91], which requires limk→0 S(k) = 0 (cf. Fig. 7.4b)
and implies that the structure does not repeat itself on very large length scales. The main difference
between soft-core uniform and hard-core uniform is their short-range order (Fig. 7.4a for r/a < 2): The
short-range order of soft-core uniform is similar to that of the perturbed array, where most particles
have a pair distance of r/a = 1, as compared to r/a ≈ 0.7 for hard-core uniform. Hence, since these
metasurface types resemble crystal-like or liquid-like structures, one may associate increasing positional
disorder with the sequence of: array, perturbed array, soft-core uniform, hard-core uniform.

7.3. Zeroth-order transmission and reflection
This section presents experimental data that nearly exhaustively characterizes the optical properties of
ordered and disordered Huygens’ metasurfaces along the zeroth order in transmission and reflection.
Most of the experiments are supported and validated by simulations based on the T-matrix method.
More specifically, the subsequent sections focus on the following properties of all metasurface types:

Section 7.3.1 presents experimental transmittance spectra in dependence on the incidence angle of a
TE or TM polarized incident plane wave. Here, the generalized Brewster effect can be observed
in the array, and the uniform-type metasurfaces exhibit a transmittance that hardly changes
with the incidence angle and polarization of the incident wave.

Section 7.3.2 presents experimental and simulated spectra of the transmission coefficient, reflectance,
and diffuse scatterance for normally-incident plane wave excitation. Here, a disorder-induced
phase transition and a diffuse scatterance of one can be observed in metasurfaces that possess a
critical degree of positional disorder. Such a high diffuse scatterance is essential for the realization
of perfect optical diffusers, which is investigated in more detail in Sec. 7.4.

Section 7.3.3 presents spatial statistics of the transmission coefficient for the overlapping resonance case
with resonant or off-resonant excitation by a normally-incident plane wave. Here, experimental
evidence indicates that disordered metasurfaces are suitable for wavefront shaping, and simulations
of the induced electric and magnetic dipole moments provide a deeper theoretical understanding
of how positional disorder affects the optical properties of Huygens’ metasurfaces.
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7.3. Zeroth-order transmission and reflection

7.3.1. Spectra for oblique incidence
Figure 7.5 shows experimental transmittance spectra of all metasurface types and resonance cases
for TE or TM polarized plane wave excitation with incidence angles θin of up to 20°. The following
discussion focuses on how the transmittance changes directly at the resonance wavelength of the electric
or magnetic dipole. Hence, to enhance the readability of the following paragraphs, this specification is
not repeated and the reader is asked to mentally add the phrase “at the dipole resonance wavelength”
after each occurrence of “transmittance”.
The array behaves as expected [30]: In the overlapping resonance case and for normal incidence
(Fig. 7.5a; θin = 0°), the electric and magnetic dipole resonances are in spectral overlap at λ = 1.4 µm,
the generalized Kerker condition is satisfied, and the transmittance is nearly one. As the incidence
angle increases, the dipole resonances shift apart and separate at about 15° (TE) or 10° (TM), which
is accompanied by a reduction of the transmittance to nearly zero. In the separate resonance case
(Fig. 7.5b) and for TM polarization, the electric and magnetic dipole resonances (near λ = 1.6 µm
and λ = 1.5 µm, respectively; θin = 0°) shift towards each other and overlap at about θin = 13.5°,
which leads to a high transmittance due to the generalized Brewster effect [209]. However, the electric
dipole resonance shifts significantly less than the magnetic dipole resonance. For TE polarization,
the electric and magnetic dipole resonances shift apart, but here it is the magnetic dipole resonance
that is less sensitive to the incidence angle. This may qualitatively be understood by considering the
volume that the electric and magnetic vector spherical harmonics occupy within a nanocylinder, where
a compression or expansion of the mode volume, due to the rotation of the nanocylinder with respect
to the incident wave, corresponds to a spectral blue-shift or red-shift, respectively. The comparatively
narrow resonances at wavelengths of about 1.25 and 1.30 µm in Fig. 7.5a, and 1.40 and 1.45 µm in
Fig. 7.5b, are higher-order lattice modes that are not excited under normal incidence.
The resonance wavelengths of the perturbed array are almost identical to those of the array. However,
the presence of positional disorder significantly reduces the transmittance when the electric and
magnetic dipole resonances are in spectral overlap (compare Figs. 7.5a,c for θin < 10° and Figs. 7.5b,d
at θin = 13.5°), or slightly increases the transmittance when they are spectrally isolated. Additionally,
all spectral features appear slightly broader than in the array. The physical reason for the decrease or
increase of the transmittance due to disorder will be discussed in Sec. 7.3.2 on the basis of a phase
transition, and in Sec. 7.3.3 with the help of spatial statistics of induced dipole moments.
The soft-core uniform and hard-core uniform types show only minuscule differences when compared
to each other, but a much stronger insensitivity with respect to the incidence angle and polarization
when compared to the array or perturbed array. In the overlapping resonance case (Figs. 7.5e,g), the
transmittance is near zero, and the electric and magnetic dipole resonances hardly shift as the incidence
angle increases. In the separate resonance case (Figs. 7.5f,h), the transmittance is considerably higher,
and the dipole resonances are spectrally much broader than in the perturbed array.
In summary, the array allows for the realization of angle-selective devices that are, except for a narrow
range of incidence angles, highly reflective at the design wavelength (cf. Fig. 7.5b; TM; λ = 1.6 µm).
Moreover, it possible to obtain the generalized Brewster effect alternatively for TE polarized excitation
if the nanocylinder aspect ratio is changed such that the electric dipole resonance occurs, for normal
incidence, at a shorter wavelength than the magnetic dipole resonance.
The uniform-type metasurfaces of the overlapping resonance case exhibit properties that make them
promising candidates for optical diffusers: On the one hand, they show a near-zero transmittance, which
is a necessary requirement for a high diffuse scatterance and thus a non-trivial directional scatterance.
On the other hand, their insensitivity with respect to the incidence angle and polarization of an incident
plane wave allows a device to accept more complex input fields. Moreover, since the scattered farfield
of the considered metasurfaces can already be taken into account during the design, it seems feasible to
utilize such positionally disordered metasurfaces even in wavefront-shaping applications. For example,
the angle-insensitive but wavelength-dependent transmittance hints towards the possibility of realizing
a metasurface that implements a lens at one wavelength and a diffuser at another.
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7.3. Zeroth-order transmission and reflection

7.3.2. Spectra for normal incidence
Figure 7.6 shows the zeroth-order transmittance, phase, reflectance, and diffuse scatterance spectra
of all metasurface types and resonance cases for TE polarized plane wave excitation under normal
incidence. The transmittance and phase spectra were reused in Fig. 7.7, but presented in a way that is
more conducive to the comprehension of the disorder-induced phase transition [31].
First, consider the transmittance and phase spectra of the overlapping resonance case for increasing
wavelengths (Figs. 7.6a,c). For the array and perturbed array, the transmittance remains relatively
high, while the phase shows normal dispersion and a cumulative phase change of about −2π. For the
uniform-type metasurfaces, the transmittance reaches near zero at the resonance wavelength, the phase
exhibits anomalous dispersion, and the cumulative phase change is almost zero. Even more so, the
hard-core uniform type shows a slightly higher transmittance at resonance than soft-core uniform.
When this behavior is viewed from the perspective of increasing positional disorder (in the sequence
of: array, perturbed array, soft-core uniform, hard-core uniform), it may seem paradoxical that the
transmittance at resonance first reduces but then increases, or that the phase spectrum is greatly
insensitive to disorder until it suddenly switches from normal to anomalous dispersion.
However, this paradox can be resolved by considering a parametric representation of the transmission
coefficient spectrum t(λ) in the complex plane (Fig. 7.7a). With increasing positional disorder, t(λ)
contracts towards a point on the positive real half-space. To aid the visualization of this contraction,
one may focus on a single wavelength (e.g. marks of identical color) and mentally connect all four
metasurface types with a curved line. Hence, along the curve that corresponds to the resonance
wavelength (λ ≲ 1.4 µm), the transmittance first decreases, becomes zero for a critical degree of
positional disorder, and then increases. As the contracting t(λ) crosses the origin of the complex plane,
the phase abruptly transitions from normal to anomalous dispersion, and the cumulative phase change
of about −2π suddenly becomes zero. This disorder-induced phase transition was first demonstrated
in the course of this thesis [31], where metasurfaces similar to the perturbed array were used to
continuously tune the degree of positional disorder, and the winding number of t(λ) was used to
distinguish between four distinct phase states in a phase diagram that relates positional disorder with
the spectral detuning of the electric and magnetic dipole resonances.
In the separate resonance case (Figs. 7.6b,d), increasing positional disorder always increases the
transmittance at the resonance wavelengths, while the phase spectra flatten and the phase remains in
the anomalous dispersion regime.
Similarly to the preceding discussion, this behavior is best understood in the complex plane (Fig. 7.7b).
The array possesses a t(λ) that does not encompass the origin of the complex plane, which corresponds
to a phase state that already exceeds the critical degree of positional disorder. Consequently, any
increase in positional disorder drives the system only further away from the phase transition, and the
previously mentioned effects can be observed.
The reflectance and diffuse scatterance spectra of the separate resonance case show that at the resonance
wavelengths (Figs. 7.6f,h), increasing positional disorder reduces the reflectance and increases the
diffuse scatterance. However, even for maximal positional disorder (hard-core uniform), the lowest
reflectance still amounts to about 5% and the highest diffuse scatterance only to about 60%.
This is in stark contrast to the reflectance and diffuse scatterance in the overlapping resonance case
(Figs. 7.6e,g): The reflectance at the resonance wavelength is zero for all metasurface types, and the
diffuse scatterance approaches one near the critical degree of positional disorder (soft-core uniform).
As the wavelength is tuned away from the resonance, the diffuse scatterance reduces significantly. For
example, nearly 80% of the incident light passes undisturbed through the soft-core uniform metasurface
at λ = 1.6 µm. This demonstrates the wavelength-selective diffuser functionality of the disordered
metasurfaces, which could be further engineered with carefully tailored higher-order multipoles [44].
A more fundamental explanation for why the transmission coefficient behaves in the described manner
will be given in Sec. 7.3.3, and the question of how the metasurfaces redistribute the incident energy
along the diffuse directions will be addressed in Sec. 7.4.

55



7. Optical Properties of Positionally Disordered Huygens’ Metasurfaces

−π − π
2 0 π

2 π
0

0.5

1

Phase φ

Tr
an

sm
itt
an

ce
T

Array
Perturbed array
Soft-core uniform
Hard-core uniform

µ̊φ, µT at λ = 1.38 µm
µ̊φ, µT at λ = 1.52 µm
µ̊φ, µT at λ = 1.35 ... 1.41 µm

(a)

(b)

(c)

Array Perturbed a. Soft-core u. Hard-core u.
1.
38

µm
1.
52

µm
1.
38

µm
1.
52

µm
λ

:
Ex

pe
rim

en
t

Si
m
ul
at
io
n

1 mm

100 µm

Fig. 7.8 | Transmittance and phase profiles. (a) Experimental and (b) simulated transmittance T (r) and phase φ(r) profiles
(color-coded via (c)) of all metasurface types (column titles) for the overlapping resonance case with resonant (λ = 1.38 µm)
or off-resonant (λ = 1.52 µm) excitation (row titles) by a TE polarized plane wave under normal incidence. Each square depicts
one profile with side lengths of (a) 2 mm or (b) 125 µm. (c) Color map, where marks indicate the spatial means µ̊φ, µT of
experimental profiles: Circles and crosses relate to (a). Dots correspond to error bars in Figs. 7.6a,c (profiles not shown).

−π − π
2 0 π

2 π

Phase φ (rad)

10-110110-1101
0

0.5

1

Marginal PDF f(T )

Tr
an

sm
itt
an

ce
T

10-1

101

10-1

101

M
ar
gi
na

lP
DF

f
(φ

)

−π − π
2 0 π

2 π

Phase φ (rad)

10-1 101

Marginal PDF f(T )
10-1 101

Array
Perturbed array
Soft-core uniform
Hard-core uniform

Kernel density estim.
Normal distribution
µ̊φ, µT at λ = 1.38 µm
µ̊φ, µT at λ = 1.52 µm

10-2

10-1

100

101

102

PD
F

f
(φ

,T
)

(a)

(c)

(e) (b)

(d)

(f)

EXPEXP

EXP

SIM SIM

SIM

Fig. 7.9 | Probability density functions (PDFs) of transmittance and phase profiles. (a,b) The maximum maxτλ fτλ(φ, T )
of the PDFs fτλ of all metasurface types τ (colors) for the overlapping resonance case with resonant (λ = 1.38 µm) or
off-resonant (λ = 1.52 µm) excitation (marks) by a TE polarized plane wave under normal incidence. (c–f) Marginal PDFs,
which means definite integrals of fτλ(φ, T ) along φ or T , where shaded areas result from kernel density estimates and solid
lines show (c,d) wrapped and (e,f) folded normal distributions with matching means and variances. This figure shows both
(a,c,e) experimental (EXP) and (b,d,f) simulated (SIM) data.

56



7.3. Zeroth-order transmission and reflection

7.3.3. Spatial statistics for normal incidence
This section presents spatial statistics of the zeroth-order transmission coefficient and the effective dipole
moments of all metasurface types for the overlapping resonance case with resonant (λ = 1.38 µm)
or off-resonant (λ = 1.52 µm) excitation by a TE polarized plane wave under normal incidence.
The following paragraphs make use of statistical quantities that are based on the standard normal
distribution (Appendix A.4), and of a theoretical model that explains the optical response of disordered
Huygens’ metasurfaces on the basis of their effective dipole moments (Appendix A.5).

Figures 7.8a,b show experimental and simulated transmittance T (r) and phase φ(r) profiles, where
Fig. 7.8c associates each tuple (φ, T ) with a unique color. Marks indicate the spatial means (µ̊φ, µT )
of experimental profiles for resonant and off-resonant (circles and crosses; Fig. 7.8a) or nearly-resonant
(dots; also shown as error bars in Figs. 7.6a,c) excitation. The sole purpose of the latter is to visualize the
wavelength sensitivity near the resonance. Although the experimental profiles show minor artifacts due
to imperfections in the fabrication and measurement system, they appear spatially very homogeneous
even on length scales well below 1 mm. In the simulations, t(r) was sampled with a spatial resolution
of about λ/3, and spatial low-pass filters were applied that simulate the limited numerical aperture
(NA = 0.25) and the camera pixel size (5 µm, square) of the experimental setup. Since the simulations
show speckle patterns with a characteristic feature size of about 10 µm, it can be expected that the
experimental profiles just barely resolved such features.

To quantify the spatial variations in the profiles, kernel density estimates of their two-dimensional
probability density functions (PDFs) f(φ, T ) were constructed, marginal PDFs were computed by
integrating f(φ, T ) over the full domain of either φ or T , and normal distributions with matching
means and variances were evaluated to verify that the kernel density estimates indeed represent normal
distributions. Figures 7.9a,b show experimental and simulated PDFs, where metasurface types are
color-coded, and excitation wavelengths and mean values are indicated by marks. The differences
between experiment and simulation in terms of the mean values are mainly due to a slight mismatch
in the resonance wavelengths, which can also be seen in Figs. 7.6a,c near the excitation wavelengths.
The marginal PDFs of the phase f(φ) (Figs. 7.9c,d) closely resemble wrapped normal distributions,
and the variances in the simulated phase agree well with the experiment. The marginal PDFs of the
transmittance f(T ) (Figs. 7.9e,f) slightly deviate from a folded normal distribution, and the variances
in the simulated transmittance are systematically smaller than in the experiment. However, this is most
likely due to experimental imperfections. With these differences in mind, one may still accept that the
simulations reliably and accurately predict the optical response of disordered Huygens’ metasurfaces.
This is an important aspect in the following discussion, since certain quantities, such as the induced
effective dipole moments, are only accessible via simulations.

Figure 7.10 reveals correlations in the spatial statistics and examines the influence of positional disorder.
In Figs. 7.10a,b, the spatial means µT and standard deviations σ̊φ, σT were extracted from Fig. 7.9
and displayed as scatter plots. Figure 7.10a relates σT with σ̊φ, where for off-resonant excitation, both
σT and σ̊φ increase with increasing positional disorder. For nearly-resonant excitation, the array and
perturbed array exhibit a positive correlation between σT and σ̊φ, but in the case of soft-core uniform
and hard-core uniform, σ̊φ increases almost independently of σT . For resonant excitation, σ̊φ is higher
the closer a metasurface is to the disorder-induced phase transition. However, the primary cause for
this high σ̊φ is not positional disorder, but simply a vanishing µT . Figure 7.10b shows that σ̊φ and µT

are strongly correlated and almost independent of positional disorder: As µT decreases to zero, the
phase approaches a uniform distribution and, therefore, σ̊φ increases exponentially.
This has two implications. On the one hand, the high similarity in the σT -σ̊φ-dependency of the array
and perturbed array suggests that they perform similarly well along the zeroth order, which is most
likely due to experimental imperfections in the array that yield a directional scatterance similar to the
perturbed array. Hence, it seems feasible to use the perturbed array as a direct substitute for the array
in wavefront-shaping applications that require both transmittance and phase modulations, where the
ability to tune the degree of positional disorder replaces the need to precisely vary the particle geometry.
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Fig. 7.10 | Correlations in the spatial statistics of Huygens’ metasurfaces. (a,b) The standard deviation of experimental phase
profiles with respect to the (a) standard deviation and (b) mean of corresponding transmittance profiles. (c) Mean (marks) and
standard deviation (error bars) of simulated effective electric and magnetic dipole moments of 100 nanocylinders. (a–c) Circles
and crosses indicate resonant (λ = 1.38 µm) and off-resonant (λ = 1.52 µm) excitation, dots show additional measurements
near the resonance. (d) Simulated diffuse scatterance in dependence on the size of the soft-core uniform metasurface in
multiples of the lattice constant a = 0.8 µm. The abscissa approximately equals the number of nanocylinders per axis. Solid
lines and shaded areas show themean and standard deviation, respectively, of 8 (λ = 1.38 µm) and 4 (λ = 1.52 µm) realizations
of the metasurface. (e,f) A different representation of (c) that reveals the complex-valued vector components of all dipole
moments for (e) resonant and (f) off-resonant excitation. Dots indicate less important components with near-zero means and
standard deviations (not shown for clarity) that are comparable to the other vector components. All dipole moments were
normalized with respect to the maximum possible dipole moments (p0, m0) of a spherical particle (cf. Appendix A.5).

The use of identical particles may not only be favorable in self-assembly strategies, but also in mask-
based lithography systems. On the other hand, since different particle distributions can yield the same
zeroth-order transmission coefficient but a vastly different directional scatterance, one can not only
optimize the transmission around the zeroth order, but also explicitly design the energy transport
along other directions. The important aspect is here that the directional scatterance of a disordered
metasurface is mostly determined by the local neighborhood of a particle, whereas that of a pixelated
device based on the array metasurface type is limited by the pixel size.
The size of such a neighborhood may be estimated from Fig. 7.10d, which shows the simulated diffuse
scatterance of the soft-core uniform metasurface in dependence on its size. Roughly 52 to 102 particles
may be sufficient to yield an optical response that is comparable to an infinitely large metasurface.

Lastly, to understand how positional disorder affects Huygens’ metasurfaces on a more fundamental
level, the magnitudes of the effective electric and magnetic dipole moments of 100 nanocylinders of each
metasurface type were simulated, and their mean and standard deviation was evaluated (Fig. 7.10c).
For off-resonant excitation, the mean and variance of all dipole moments is small, but the electric dipole
moments are stronger than the magnetic dipole moments. Hence, all metasurface types are weakly
scattering and show a zeroth-order response that is effectively the same as for an array composed of
electric dipoles. For resonant excitation, the mean and variance of all dipole moments is larger than
for off-resonant excitation, but the majority of particles approximately satisfies the Kerker condition
(mean values close to the gray diagonal line). An increase in positional disorder reduces the magnitudes
of the induced dipole moments, but the majority of particles still sustains Huygens sources.
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7.4. Directional scatterance

Figures 7.10e,f show the complex-valued vector components of the dipole moments from Figure 7.10c.
The spatial mean and standard deviation of the dominant vector components (py,eff ,mx,eff) are indicated
by half-filled marks and error bars. Dots show less important components that vanish in average. Their
standard deviation is comparable to that of the dominant components, but was not shown for clarity.
As outlined in Appendix A.5, the zeroth-order transmission t and reflection r coefficient of an ordered
Huygens’ metasurface, excited by a y-polarized plane wave, can be modeled as

t = 1− 3π
k2A

(︃
py,eff
p0
− mx,eff

m0

)︃
r = − 3π

k2A

(︃
py,eff
p0

+ mx,eff
m0

)︃
py,eff
p0

+ mx,eff
m0

!= 0 (7.1)

where A is the unit cell area, k is the wavenumber of the background medium, the leading 1 in t
relates to the incident wave, the remaining terms relate to the scattered wave, and the equation with
the exclamation mark represents the Kerker condition, in which case r = 0 and |t| = 1. For resonant
excitation, it is known that t = −1 [44], which implies that the induced effective dipole moments must
generate a scattered wave that exceed the incident wave by a factor of two in amplitude and is shifted
by π in phase (t = 1 + 2 eiπ = −1). In other words, the induced dipole moments are so strong that they
not only cancel the incident wave, but fully replace it by a phase-shifted version of itself. Ultimately,
this still only results in an unspectacular phase shift of the incident wave, but this perspective will be
the key to understand the influence of positional disorder in Huygens’ metasurfaces.
In general, the zeroth-order optical response of any metasurface is intimately linked to the zeroth-order
Fourier component of its scattered wave. However, since this Fourier component is simply the area
average of the scattered wave, it is reasonable to estimate the zeroth-order transmission t and reflection r
coefficient of a disordered Huygens’ metasurface via

t ≈ 1− 3π
k2

⟨︃
py,eff
p0
− mx,eff

m0

⟩︃

A

r ≈ −3π
k2

⟨︃
py,eff
p0

+ mx,eff
m0

⟩︃

A

⟨︃
py,eff
p0

+ mx,eff
m0

⟩︃

A

!≈ 0 (7.2)

where ⟨·⟩A denotes the area average across the entire metasurface, the less important vector components
were readily excluded as they vanish in average, and the equation with the exclamation mark requires
the Kerker condition to be fulfilled only in average. Figure 7.10e shows that for resonant excitation,
all metasurface types fulfill the Kerker condition in average, which results in r ≈ 0. However, since
increasing positional disorder decreases the effective dipole moments in their magnitude, |t| can now
deviate from 1 (recall Fig. 7.7a). Hence, for resonant excitation and a critical degree of positional
disorder, it is possible to obtain t = 0, which corresponds to a situation where the magnitudes of
the induced effective dipole moments equal exactly one half of that in the array (compare array and
soft-core uniform in Fig. 7.10e). In other words, the zeroth-order component of the scattered wave
interferes destructively with the incident wave (t = 1 + eiπ = 0).

In summary, uniform positional disorder allows one to tune the magnitudes of the electric and magnetic
dipole moments in a way that maintains the Kerker condition in average. Hence, for resonant excitation,
the zeroth-order reflectance remains zero while the transmittance can be tuned at will. When this
feature is combined with more general particle distributions, it seems feasible to design the directional
scatterance of perfect optical diffusers, which will be thematized in Sec. 7.4.

7.4. Directional scatterance
This section first presents the simulated directional scatterance of the disordered metasurface types
(Sec. 7.4.1), and then the experimental directional transmittance of all metasurface types (Sec. 7.4.2).
It is important to note that a strict comparison of simulated and experimental results is not possible,
since the simulations assume a homogeneous background, whereas the experiments involve reflections at
air/substrate interfaces and other technical complications. Hence, the simulations should be understood
as an ideal model that provides a theoretical understanding of the involved physical processes, whereas
the experiments assess the performance of the fabricated metasurfaces with respect to the ideal situation.
The presented data shows the overlapping resonance case with resonant (λ = 1.38 µm) or off-resonant
(λ = 1.52 µm) excitation by a TE or TM polarized plane wave for normal and oblique incidence.
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Fig. 7.11 | Simulated scatterance for TE polarized excitation. The (a,b) directional QΩ, (c,d) polar Qθ and (e,f) sectorial Q(θ)
scatterance of the perturbed array, soft-core uniform and hard-core uniform metasurface type for the overlapping resonance
case with (a,c,e) resonant (λ = 1.38 µm) or (b,d,f) off-resonant (λ = 1.52 µm) excitation by a TE polarized plane wave incident
under θin ∈ {0°, 30°, 60°}. Column and row titles indicate all parameter combinations. In (a,b), ky > 0 shows transmission
and ky < 0 reflection. In (e,f), QTM shows the contribution of cross-polarized light to Q = QTE + QTM. All wavenumbers are
normalized with respect to the magnitude of the wavevector k0 in silicon dioxide.
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7.4. Directional scatterance

7.4.1. Simulated results

Figure 7.11 shows the simulated scatterance of the disordered metasurface types for TE polarized
excitation with incidence angles of θin = {0°, 30°, 60°} and ϕin = 0°, where all propagation angles are
measured in silicon dioxide. Since the directional scatterance QΩ(k) in Figs. 7.11a,b is mirror-symmetric
with respect to the kx-kz-plane, the directional transmittance QT

Ω is displayed only for ky > 0 and the
directional reflectance QR

Ω only for ky < 0. Figure C.1 shows the same for TM polarized excitation.

For resonant excitation and normal incidence, the directional scatterance QΩ (Fig. 7.11a) of the uniform-
type metasurfaces is highly uniform along the azimuthal angle, while that of the perturbed array
shows a weak azimuthal dependency. As the incidence angle increases, the uniform-type metasurfaces
transmit slightly more light along directions perpendicular to the incident wave, while the perturbed
array scatters increasingly more light along regular directions. The same trends can be observed for
off-resonant excitation (Fig. 7.11b), with the exception that already at normal incidence, most light is
scattered along regular directions. Note that the regular directions can also be seen as peaks in the
polar scatterance Qθ (Figs. 7.11c,d), or as jumps in the sectorial scatterance Q(θ) (Figs. 7.11e,f). For
example, the height of the step Q(θin) represents the fraction of the incident energy that is contained
within the zeroth order in transmission.

For resonant excitation and an increasing incidence angle, the polar scatterance (Fig. 7.11c) of the
uniform-type metasurfaces remains almost unchanged and comparable to a Hertzian dipole for up to
about θin ≤ 30°. The perturbed array performs similarly well at normal incidence since it adequately
suppresses the zeroth orders (cf. Fig. 7.11e). At larger incidence angles, however, the polar scatterance
of the perturbed array significantly reduces along diffuse directions as the higher diffraction orders of
the underlying array become available as new radiation channels. These diffraction orders can be seen
as additional peaks in the polar scatterance, and are not present in the uniform-type metasurfaces.
Interestingly, for large transmission angles θ ∈ [45°, 90°], the polar scatterance of all disordered
metasurface types even exceeds that of a Hertzian dipole and is comparable to a Lambertian surface.
However, this surplus in transmission also implies less energy in reflection.

For resonant excitation and an increasing incidence angle, the sectorial scatterance (Fig. 7.11e) further
reveals that the fraction of cross-polarized light QTM(180°) decreases faster in the perturbed array
than in the uniform-type metasurfaces.

In summary, a redistribution of energy from diffuse directions towards regular directions can be observed
as the incidence angle increases, or as the excitation wavelength is tuned away from the resonance.
However, with an anisotropic particle distribution and a deliberate spectral detuning of the electric
and magnetic dipole resonances at normal incidence, it may be possible to optimize a metasurface for
any other incidence angle. More generally, it should be possible to fine-tune the directional scatterance
via the particle distribution and/or the introduction of higher-order multipoles.

Perfect optical diffuser Although the presented metasurfaces were not specifically designed as diffusers,
the soft-core uniform metasurface appears to come very close to the definition of a wavelength-selective
perfect optical diffuser: The small jumps in Fig. 7.11e indicate a strong suppression of scattering along
regular directions and thus a high diffuse scatterance (Fig. 2.1d), the wavelength-selective diffuser
functionality can be seen by comparing Figs. 7.11a,c,e with Figs. 7.11b,d,f, the insensitivity with respect
to the incidence angle and polarization can be observed by comparing Fig. 7.11a with Fig. C.1a, and
from Figs. 7.11c,e it is evident that the metasurface roughly acts as a Lambertian surface.
Since these results were obtained with a nearly-hyperuniform isotropic particle distribution and a
nearly-critical degree of positional disorder, it seems feasible to maximize the diffuse scatterance and
to shape the directional scatterance towards a Lambertian surface via the particle arrangement.
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Fig. 7.12 | Experimental scatterance for TE polarized excitation. The (a,b) directional QΩ, (c,d) polar Qθ and (e,f) sectorial
Q(θ) scatterance of the array, perturbed array, soft-core uniform and hard-core uniform metasurface type for the overlapping
resonance case with (a,c,e) resonant (λ = 1.38 µm) or (b,d,f) off-resonant (λ = 1.52 µm) excitation by a TE polarized plane
wave incident under θin ∈ {0°, 10°, 20°}. All graphs show transmission (kz ≥ 0, θ ≤ 90°). Column and row titles indicate all
parameter combinations. All wavenumbers are normalized with respect to the magnitude of the wavevector k0 in air.
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7.4.2. Experimental results

Figure 7.12 shows the experimental scatterance of all metasurface types for TE polarized plane wave
excitation with incidence angles of θin = {0°, 10°, 20°} and ϕin = 0°, where all propagation angles
are measured in air. More precisely, it is the directional transmittance that was measured in the
back-focal-plane imaging setup (Sec. 6.2). Figure C.2 shows the same for TM polarized excitation.

Note that the directional scatterance in Figs. 7.12a,b covers different regions of the k-space for different
incidence angles. The reason for this is that the metasurfaces were rotated with respect to the optical
axis of the experimental setup as to achieve oblique incidence. Also note that the array should ideally
exhibit only one Dirac-delta-like peak, but the transfer function of the collecting microscope objective
broadened the zeroth-order peak and multiple reflections from the substrate led to the emergence
of a secondary peak. However, the microscope objective (Mitutoyo NIR HR 50X, 0.65 NA) was in
fact nearly diffraction-limited, and it is due to the clipped logarithmic color scale that one might
vastly overestimate the full width at half maximum of the zeroth-order peak (kFWHM/k0 ≈ 0.005 at
λ = 1.38 µm).
Furthermore, in the following discussion, it must be kept in mind that scattered waves with polar
angles of about θ ≥ 44° experienced total internal reflection at the substrate-air interfaces. These
secondary waves might have been scattered multiple times by the metasurface or could have exited the
substrate on its sides. Since this is a non-trivial effect that was not considered in the simulations, the
experimental and simulated propagation angles were intentionally not renormalized with respect to
a common medium as to prevent misleading comparisons. However, this issue appears to be rather
a technological complication than a fundamental limitation, which could be lifted by designing the
directional scatterance of an embedded metasurface such that it vanishes for angles that would otherwise
undergo total internal reflection, or more trivially, by operating the metasurface in an index-matched
environment. The ability to tailor the reciprocal space with positional disorder has already been
demonstrated with hyperuniform plasmonic metasurfaces [92], and more recently also with hyperuniform
dielectric metasurfaces for which the first-order Born approximation applies [10]. However, although
it is already possible to generate particle distributions with prescribed statistics via the collective
coordinate method (Sec. 4.2), which would immediately determine the directional scatterance in the
first-order Born approximation, it remains the question of how to efficiently and accurately predict the
optical response of Huygens’ metasurfaces from their spatial statistics. Consequently, the following
experimental results were not optimized for a specific directional scatterance, but may nonetheless be
seen as a first step towards the realization of perfect optical diffusers.

Overall, the experimental directional scatterance (Figs. 7.12a,b) shows the same dependency on the
incidence angle and the excitation wavelength as in the simulations (Figs. 7.11a,b). Moreover, the
experimental directional scatterance of the uniform-type metasurfaces is also more isotropic and has
higher values along diffuse directions than it is the case for the perturbed array.

For resonant excitation and large polar angles, the experimental polar scatterance (Fig. 7.12c) of the
uniform-type metasurfaces appears similar to a Hertzian dipole, which can be seen as a constant offset
with respect to the Hertzian dipole curve. However, the sectorial scatterance (Fig. 7.12e) suggests that
the uniform-type metasurfaces hardly exceed 25% hemispherical transmittance. The perturbed array
shows a much higher hemispherical transmittance, but this is due to a high zeroth-order transmittance.
The lower hemispherical transmittance in the experiments than in the simulations may be explained
by secondary waves that are mainly scattered back into the hemisphere associated with reflection, or
that are guided to the sides of the substrate.

Nevertheless, the experimental results show that the fabricated uniform-type metasurfaces strongly
suppress the zeroth-order transmittance, scatter similarly to a Hertzian dipole, tolerate a wide range of
incidence angles, and are wavelength-selective.
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8. Holograms Based on Positionally Disordered
Huygens’ Metasurfaces

8.1. Design strategies
This chapter presents the first experimental realization of pixelated holograms with positionally
disordered Huygens’ metasurfaces and aims to answer the following two interrelated questions: As
compared to ordered Huygens’ metasurfaces, (i) can positional disorder help reducing the pixel size
and (ii) how does the scattering from within a pixel affect the holographic image? This may be seen as
a first step towards metasurface holograms with truly inhomogeneous positional disorder.
In general, the design of a hologram can be split into two steps. On the one hand, the IFTA (Sec. 5.3)
can find a pixelated transmission coefficient profile that will produce a given holographic image. On
the other hand, electromagnetic field solvers (Sec. 5.1) can simulate the transmission coefficient of a
given particle arrangement. Hence, it remains the question of how to assign each pixel the correct
particle arrangement. One possibility is to parameterize the particle arrangement and to establish a
lookup table that relates each parameter combination with the resulting transmission coefficient. Then,
the IFTA finds the most optimal transmission coefficient for each pixel, and each pixel is associated
with one entry of the lookup table that contains the most similar transmission coefficient. However,
this inexact matching generally leads to deviations from the most optimal solution found by the IFTA.
The presented IFTA can overcome this issue if the lookup table is provided via the discrete constraint.
Another possibility is to use inverse design methods to find particle arrangements that exactly yield the
transmission coefficients suggested by the IFTA. Although the adjoint method can efficiently solve such
inverse problems [212, 213], its numerical implementation can be so intricate that the use of lookup
tables remains more practical. In this thesis, all holograms were generated using lookup tables.
The most significant drawback of this two-step design approach is that it does not take into account how
neighboring pixels may influence each others transmission coefficient due to electromagnetic coupling
near the pixel boundaries. This seems to be an intrinsic problem that could only be overcome with
electromagnetic field simulations of larger pixel neighborhoods. Nevertheless, the sub-pixel feature of
the presented IFTA can still account for scattering that originates from within each pixel. Moreover, if
the particle arrangements are designed such that the coupling across the pixel boundaries is weakened,
it may be possible to reduce the pixel size or the strength of unaccounted-for scattering that originates
from the pixel boundaries. This aspect will be revisited in the following discussion.
Due to time limitations in this thesis, it was unfortunately not possible to establish how exactly the
optical response of positionally disordered Huygens’ metasurfaces depends on their particle statistics.
Since a haphazard parameterization of the structure factor and/or pair correlation function might not
discover all possible transmission coefficients, the presented disordered holograms were not generated
with the collective coordinate method, but instead based on arrays with random vacancy defects, which
means square arrays of particles from which a given percentage of particles is removed at random.
To address the questions about the impact of positional disorder on the performance of a hologram,
several holograms were fabricated that all produce the same target image (Table 8.1d) in a specific
distance behind the hologram when illuminated by a normally-incident monochromatic plane wave.
More precisely, three hologram types (Table 8.1c) were devised that are distinguished by their pixel
layout, which means by the way the particles are arranged within each pixel. Each hologram type
was realized with five different pixel sizes (Table 8.1b), and in accord with the design considerations
mentioned in Sec. 5.3, the hologram size and image distance were made to depend on the pixel size,
such that the image size, pixel count, relative intensity, and image resolution are identical for all
holograms (Table 8.1a). This allows for a fair comparison of all hologram types and pixel sizes, where
any deviations from the expected image quality can only be caused by unaccounted-for scattering.
Figure 8.1 illustrates the transmission coefficients and pixel layouts of all holograms.
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(a) Fixed parameters

Wavelength λ 1.42 µm
Image size simg 10 mm
Pixel count shol/Λ 310
Relative intensity Ir 0.75
Image resolution ∆r 55.34 µm
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(b) Dependent parameters

Pixel size Λ 5.04 8.16 10.37 12.78 16.52 µm
Hologram size shol 1.56 2.53 3.21 3.96 5.12 mm
Image distance d 60.70 98.26 124.94 153.97 199.03 mm

(d)
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Table 8.1 | A summary of design parameters. All holograms have identical (a) fixed parameters and produce the same
(d) target image, but each hologram possesses only one set of (b) dependent parameters and one (c) hologram type. The
scanning electron micrographs in (c) illustrate randomly-chosen 3-by-3 pixel neighborhoods of fabricated holograms for a pixel
size of 8.16 µm. See Sec. 5.3 for details on the involved symbols and design considerations.
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Fig. 8.1 | Constraints of all hologram types and pixel sizes. Visualizations of discrete constraints with simulated zeroth-order
transmission coefficients (white points) of the (a) infinite array, (b) defective array, and (c) finite array hologram type for all
pixel sizes (column titles). All graphs use the same (d) colormap. The constraint in (a) does not change with the pixel size and
is hence shown only once. (e) The zeroth-order transmission coefficient of the infinite array in dependence on the radius and
lattice constant of its nanocylinders, where the 37 white points are the same as in (a). (f) A composition of all 37 pixels of size
8.16 µm that are present in (b), where each point represents a nanocylinder and the transmission coefficient of each pixel is
color-coded. The left-most column in (f) corresponds to the 6 white points in (c).
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8.1. Design strategies

The particles in each hologram were the same embedded nanocylinders as described in the previous
chapters (overlapping resonance case in Sec. 7.2; fabrication details in Sec. 6.1), but the following
distinctions apply according to the used hologram type:

Infinite array Each pixel consisted of a truncated array of identical nanocylinders with a radius of
r ∈ [150, 300] nm and a lattice constant of a ∈ [0.61, 0.98] µm. However, the transmission
coefficients were simulated for infinite arrays using the finite element method (Fig. 8.1e), which
means that the finite pixel size is completely ignored during the design process. This hologram
type represents a common state-of-the-art approach (cf. [23, 24]) and serves as an ordered
reference case. Moreover, this hologram type produces amplitude-and-phase holograms.
All holograms of this type were generated using the same 37 discrete transmission coefficients
(Fig. 8.1a) that were obtained from Fig. 8.1e via reduction by distance (Sec. 5.3), where the
target set formed a hexagonal grid. The initial hologram was a parabolic phase profile that
focuses the incident wave into the image plane.

Defective array Each pixel consisted of a truncated array of identical nanocylinders with a radius of
r = 245 nm and a lattice constant of a ∈ {0.61, 0.75, 0.78, 0.81, 0.83, 0.86} µm, where random
vacancy defects were introduced with a defect ratio of up to 80%, and a four-fold symmetry was
enforced to further suppress backscattering [44, 214]. Moreover, the two outermost columns and
rows of particles in each pixel were slightly shifted by typically less than 4% of the lattice constant
(cf. Fig. 8.1f) in an attempt to suppress the coupling of neighboring pixels. The shifts were
determined from exhaustive simulations of all possible pixel pairs by comparing the transmission
coefficients of a pixel pair with those of the individual pixels. The transmission coefficients of all
finite-sized pixel layouts were simulated using the T-matrix method. Hence, in this hologram type,
the finite size and the coupling of neighboring pixels are partially taken into account. Moreover,
this hologram type produces amplitude-and-phase holograms.
For each pixel size of this type, first a temporary hologram was generated that made use of all 78
transmission coefficients (6 variations of the lattice constant; 13 variations of the defect ratio).
Then, the 37 most-frequently occurring transmission coefficients of this temporary hologram were
extracted via reduction by prevalence (Sec. 5.3), and subsequently used to generate the final
hologram. Figure 8.1b indicates that as the pixel size is reduced, the simulated transmission
coefficients cover an ever smaller region in the complex plane due to the increasing influence
of the pixel’s finite size. For example, the difference in the spread of the discrete transmission
coefficients is more drastic for pixel sizes of 5.04 µm and 10.37 µm than for 10.37 µm and 16.52 µm.
The initial hologram was a parabolic phase profile that focuses the incident wave into the image
plane, and a minimum of four sub-pixels per axis were used in the hologram generation.

Finite array This hologram type is a subset of the defective array type and contains only those pixel
layouts that have a defect ratio of 0%. Hence, it serves as another ordered reference case.
Moreover, this hologram type produces phase-only holograms.
For each pixel size of this type, all 6 lattice constant variations (Figure 8.1c) were used to generate
the final hologram. The initial hologram consisted of random phase values, since numerical
experiments indicated that this typically maximizes the image quality of phase-only holograms.

Note that the infinite array and defective array hologram types have the same number of unique
transmission coefficients and both produce amplitude-and-phase holograms, which furthers a fair
comparison of their performance. However, the finite array contains a substantially smaller number
of unique transmission coefficients, which represents a smaller information capacity that generally
manifests in a lower image quality. Moreover, phase-only holograms typically produce a large number
of isolated zeros in the electric field, which are difficult to remove and lead to stagnation in the iterative
Fourier transform algorithm [215]. Hence, it can be expected that the image quality of the finite array
is generally worse than that of the other hologram types. Nevertheless, comparisons with simulations
and the defective array may still allow for an assessment of the influence of positional disorder on the
hologram performance.
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Fig. 8.2 | Intensity images for all hologram types and pixel sizes. Simulated and experimental intensity images of the
(a) infinite array, (b) defective array, and (c) finite array hologram type for all pixel sizes (column titles). The intensity in each
subplot is normalized with respect to its 99th percentile. Overlays display the ZNCC of each image with respect to the target
image. Each image has an actual side length of 10 mm and originates from an (a,b) amplitude-and-phase or (c) phase-only
hologram. The experimental data in (a) is dominated by systematic errors. See Table 8.1 and Fig. 8.1 for further details.
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8.2. Experimental results

8.2. Experimental results
Figure 8.2 shows simulated and experimental intensity images and their zero-normalized cross correlation
ZNCC (Eq. (5.15)) for all hologram types and pixel sizes. The experiments were conducted in a setup
similar to that in Fig. 6.1, but without any lenses and by placing the camera (Xenics Xeva-1.7-640-TE3;
square pixels with 20 µm side length) directly into the hologram’s image plane.
Unfortunately, the experimental data of the infinite array (Fig. 8.2a) is dominated by systematic errors
that were introduced during fabrication. The electron-beam lithography system did not correct for
the proximity effect, which is the overexposure of dense structures due to scattered electrons. Since
several pixels of the infinite array possess high filling fractions, which means a large nanocylinder radius
paired with a small lattice constant (bottom right corner of Fig. 8.1e), their radii turned out larger
than anticipated and their transmission coefficients changed considerably. As a result, the holograms
scattered less light out of the incident wave, and the recorded images were dominated by the diffraction
pattern of the square aperture that surrounds each hologram. However, note that the chosen design
parameters did indeed lead to a nearly constant simulated ZNCC for all pixel sizes. Hence, if the
proximity effect is properly taken into account, future experimental measurements of the infinite array
will be able to quantify by how much the image quality deteriorates due to unaccounted-for scattering
from the pixel boundaries as the pixel size is reduced.
Nevertheless, the fabrication process was optimized for a filling fraction that corresponds to r = 245 nm
and a = 0.80 µm, which was ideal for the defective array and finite array (Figs. 8.2b,c). The simulated
and experimental ZNCC of these hologram types are in good agreement and only decrease with the
pixel size due to the inherently less favorable distributions of available transmission coefficients in the
complex plane (cf. Figs. 8.1b,c).
The defective array (Fig. 8.2b) shows a slightly lower ZNCC in the experiments than in the simulations.
Unfortunately, it is difficult to identify the main cause for this observation. For smaller pixel sizes, the
presence of speckles in supposedly dark regions of the target image is an indication for scattered light
that was not accounted for in the design, which means that it must originate from the pixel boundaries
or residual fabrication errors. For larger pixel sizes, the lower ZNCC is likely due to the presence of
interference artifacts in the image centers. To understand this, one may imagine that the image is
formed by the superposition of two waves, namely the diffraction of the incident wave at the square
aperture (background wave) and the wave generated by the hologram (scattered wave). Since the
interference artifacts are reminiscent of Newton’s rings, it is likely that either the background wave or
the scattered wave obtained a small global phase shift or a slightly curved wavefront. This may be
due to fabrication tolerances in the particle geometry, deviations from the refractive index data that
was used in the simulations, or due to the fact that in the experiments, the incident wave is better
described by a Gaussian beam than by a plane wave.
Remarkably though, as the pixel size is reduced from 10.37 µm over 8.16 µm to 5.04 µm, the experimental
ZNCC of the infinite array roughly reduces in steps of 0.10, whereas that of the defective array only
reduces in steps of about 0.03, which in turn could indicate that the defective array might indeed
successfully suppress scattering from the pixel boundaries and thus allow for smaller pixel sizes. Also
note that even for the smallest pixel size of the defective array, the experimental and simulated ZNCC
are not only very similar but also rather large, which indicates that the image quality is mainly limited
by the available transmission coefficients. Considering that the defective array does not make use of all
spatial degrees of freedom due to the four-fold symmetry and the underlying array, it might be possible
to obtain a wider range of transmission coefficients with a more general type of positional disorder.
The finite array (Fig. 8.2c), on the other hand, sometimes even shows a larger ZNCC in the experiments
than in the simulations. However, this is likely only a statistical effect due to the presence of strong
speckles in the images. These speckles are typically more blurry in the experiments than in the
simulations, which leads to a slightly smaller spatial standard deviation of intensities and thus to a
slightly larger ZNCC. Hence, while phase-only holograms might not be useful for the study at hand,
they demonstrate that the unaccounted-for scattering is less notable in the presence of speckles.
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Although this study may be inconclusive about the influence of scattering from within a pixel on the
image quality, it still addresses the issue of the pixel size and reveals the usefulness of positional disorder
in holographic applications. In particular, Fig. 8.2b suggests that if the systematic experimental errors
are corrected, a pixel size of about 8 µm, which corresponds to about 102 particles per pixel, could
already be large enough to widely overcome the unaccounted-for scattering. Moreover, the high image
quality obtained via the defective array, and the complications encountered in the fabrication of the
infinite array, demonstrate that positional disorder is a valuable alternative design parameter in the
realization of amplitude-and-phase holograms.

Lastly, future studies that investigate the influence of a pixel’s scattering profile on the performance of
holographic devices may benefit from positionally disordered Huygens’ metasurfaces that are operated
at or near the disorder-induced phase transition. This provides nearly-Lambertian scattering profiles
and naturally suppresses the transmission of the incident wave along the zeroth order, which could be
used to enhance the numerical aperture and the intensity homogeneity of in-line holograms and related
imaging applications.
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9. Conclusion and Outlook
The high complexity of disorder, and the theoretical and technological complications that it entails,
may seem a mere nuisance at the first glance, but on the second sight, it quickly becomes apparent
that it is the very complexity that harbors novel physical phenomena. Furthermore, since research
has only just started to unravel these phenomena, more profound studies on disordered structures will
certainly continue to be well worth their effort for many years to come.

This thesis aims to provide a basic theoretical understanding and an experimental characterization of
the optical effects that can be observed in positionally disordered Huygens’ metasurfaces. Moreover,
the presented metasurfaces demonstrate their applicability as wavelength-selective optical diffusers,
wavefront-shaping devices, or holograms.

With the modifications and extensions made to the numerical methods in Chapter 4, it is possible to
generate homogeneous particle distributions with prescribed short-range and long-range order. Although
the collective coordinate method is much more general and versatile, Matérn-type distributions can
be easier to implement and are, in some situations, faster to generate. With the presented collective
coordinate method it is also possible to synthesize a pixelated metasurface, where each pixel contains
a distinct homogeneous particle distribution, and discontinuities near the pixel boundaries can be
avoided by filling the pixels sequentially while keeping previously generated particles fixed.
Future research could generalize the collective coordinate method to generate truly inhomogeneous
particle distributions, which would eliminate the need for pixelation, thus avoid detrimental boundary
effects, and perfectly align with the theoretical description of the optical response of a particle cluster:
If the effective multipole moments of one particle are mostly determined by its nearest neighbors,
then it should be possible to tune the effective multipole moments in each particle of the cluster
via the spatial degrees of freedom that are available in the short-range order, while the long-range
order determines the collective farfield response of the entire cluster. Ultimately, a combination of the
collective coordinate method and the local-coordinate T-matrix method could yield a very powerful
inverse design method, which in turn would facilitate systematic studies on how exactly the optical
response of a positionally disordered Huygens’ metasurface depends on its particle statistics.

In Chapter 5, the iterative Fourier transform algorithm was extended by the possibility to apply
constraints on the transmission coefficients of a hologram. The proposed discrete constraint forces the
optimizer to only consider a predefined finite set of transmission coefficients, which is of advantage in
situations where it would otherwise be impossible or too demanding to find or fabricate a nanostructure
that exactly yields the (arbitrary) transmission coefficient requested by the optimizer. Moreover, it
was shown how a set of provided transmission coefficients can be reduced to contain only the most
significant ones, and how sub-pixel information can be included as to account for scattering effects
that originate from within a pixel.

The zeroth-order transmission and reflection of positionally disordered Huygens’ metasurfaces was
presented in Sec. 7.3. More specifically, in Sec. 7.3.1, experimental transmittance spectra for oblique
incidence showed that the generalized Brewster effect in the array can be used to obtain a device
that only transmits for a specific incidence angle. The uniform-type metasurfaces, on the other hand,
showed a high insensitivity with respect to the incidence angle and polarization of the incident wave,
which allows a device to accept more complex electromagnetic input fields.
In Sec. 7.3.2, the disorder-induced phase transition in the transmission coefficient was investigated on
a rather phenomenological level: At the resonance wavelength and for a critical degree of positional
disorder, the zeroth-order transmittance equals zero and the phase abruptly changes from normal to
anomalous dispersion. At the same time, however, the zeroth-order reflectance remains zero, which
implies that all light must be scattered along diffuse directions. Away from the resonance wavelength, a
very low reflectance and a high transmittance were observed. This confirmed the wavelength-selective
diffuser functionality of positionally disordered Huygens’ metasurfaces.
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9. Conclusion and Outlook

Section 7.3.3 presented spatial statistics of optical properties for normal incidence. While experimental
measurements of the transmission coefficient profiles confirmed that disordered Huygens’ metasurfaces
are suitable for wavefront-shaping applications, simulations of the induced effective dipole moments
supported the presented theoretical model that explains the manifestation of the disorder-induced
phase transition.

The question of how positionally disordered Huygens’ metasurfaces redistribute incident light across
the diffuse directions was answered in Sec. 7.4. Here, simulations and experimental measurements of
the directional scatterance showed that the uniform-type metasurfaces possess a scattering profile that
is comparable to a Lambertian surface, is almost independent of the incident polarization, and can be
maintained for incidence angles of up to about 30°.
It is expected that the directional scatterance of a positionally disordered Huygens’ metasurface can
be fine-tuned via the particle distribution and/or the introduction of higher-order multipoles.

The experiments in Chapter 8 confirmed that disordered Huygens’ metasurfaces are also suitable for
holographic applications. In particular, the experimental performance of disordered holograms matched
the simulated performance of ordered holograms. Unfortunately, a direct experimental comparison
was not possible due to systematic fabrication errors in the ordered holograms, which were caused
by the need to vary the nanocylinder radius and the neglect of the proximity effect. However, this
circumstance ironically demonstrates that positional disorder is not only a valuable degree of freedom
in the design, but that it can also permit the use of simpler and less error-prone fabrication protocols.

In summary, this thesis documents several intriguing properties of disordered Huygens’ metasurfaces,
discusses them on the basis of a simple theoretical model, and provides adapted numerical methods
that may serve as a foundation for future investigations. In future, it would be most delightful to obtain
an answer to the profound question of how exactly the optical response of a positionally disordered
Huygens’ metasurface depends both on the particle statistics and higher-order multipole moments.
Aside from its high intellectual value, this knowledge will certainly also enable the realization of truly
inhomogeneous Huygens’ metasurfaces with fully tailored directional transmission and reflection.
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A. Definitions and Derivations
A.1. Directional scatterance of ideal scatterers
Inspired by Lambert’s cosine law dI(θ, ϕ) ∝ I0 cos(θ) dΩ and the intensity dI(θ, ϕ) ∝ I0 cos2(θ) dΩ of
a Hertzian dipole that is oriented perpendicular to the polar axis [176], the directional scatterance of a
Lambertian surface (superscript L) and that of a Hertzian dipole (superscript H)

QL
Ω(θ, ϕ) = 1

2π QH
Ω(θ, ϕ) = 3

4π |cos(θ)| (A.1)

were found by comparing their directional intensity with Eq. (3.82) and choosing the proportionality
factors such that the total scatterance is correctly normalized to Q = 1. With this, the azimuthal and
polar scatterance read as

QL
ϕ(ϕ) = 1

2π QH
ϕ (ϕ) = 1

2π (A.2)

QL
θ (θ) = sin(θ) |cos(θ)| QH

θ (θ) = 3
2 sin(θ) cos2(θ) (A.3)

and the sectorial scatterance

QL(θ) =
{︄1

2 sin2(θ) θ ≤ π
2

1− 1
2 sin2(θ) θ > π

2
QH(θ) = 1− cos3(θ)

2 (A.4)

satisfies QL,H(︁π
2
)︁

= 1
2 and QL,H(π) = 1.

A.2. Spherical vector wave functions
Orthogonality conditions The orthogonality conditions of the spherical vector wave functions are
based on the orthogonality conditions of the following functions [216, 1.17.ii, 14.17.iii]

� 2π

0
ei(m−m′)ϕ dϕ = 2πδm,m′ (A.5)

� π

0
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� ∞

0
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2k2 δ
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and on the following special integrals
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which can be solved with the help of Eq. (B.22) and the following identities

Pm
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m
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n′ Pm

n ] (A.10)
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(A.11)

where the arguments of the associated Legendre polynomials were omitted for readability.
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A. Definitions and Derivations

To avoid the need of evaluating differentials or dealing with undefined expressions at r = 0, the spherical
Bessel and Hankel functions can be simplified to [216, 10.51]:

zn(kr; i)
kr

= zn−1(kr; i) + zn+1(kr; i)
2n+ 1 (A.12)

[r∂r + 1] zn(kr; i)
kr

= (n+ 1) zn−1(kr; i)− n zn+1(kr; i)
2n+ 1 (A.13)

Lastly, the following identity for spherical Hankel functions of the first kind

Im
[︂
zn±1(x; 3)zn(x; 3)

]︂
= ±x−2 x ∈ R (A.14)

relies on the cross-product identity jn+1(z) yn(z)− jn(z) yn+1(z) = z−2 for z ∈ C [216, 10.50].

Multipole expansion based on impulse response In order to find a representation of Iδ(r− r′) in
terms of the spherical vector wave functions, the following ansatz can be made

Iδ
(︁
r− r′)︁ = 2

π
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m=−n

� ∞
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where am
n and bm

n are vector functions that need to be determined. By dot-multiplying this equation
from the right with Mm

n (r′; k′, 1) or Nm
n (r′; k′, 1), integrating over all r′ and using Eqs. (3.103,106),

the sought-for vector functions are found to equal:
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n (r; k, 1) (A.16)

Similarly, it can be assumed that
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and after inserting this expression into
[︁
∇2 + k2

b
]︁
G(r, r′) = −Iδ(r− r′) and comparing the series terms

on both sides, it is found that:
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However, since
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M holds by definition (similarly for N), it follows that:
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With this, the explicit form of G(r, r′) is now known, but since the k-integral is difficult to treat
numerically, it is best to perform it analytically. To this end, two types of integrals that originate from
Mm

n (r; k, 1) Mm
n (r′; k, 1)→ IM and Nm

n (r; k, 1) Nm
n (r′; k, 1)→ IN must be evaluated [38]:
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0
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k2 − k2
b

dk (A.21)

Note that in the process of determining IN , the spatial derivatives of the form [r∂r + 1] were pulled out
of the k-integral. These integrals can be solved with the help of the residue theorem and the following
identities and large-argument approximations [216, 10.47.v, 10.52]
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)︁
eiz

z′z
for z →∞ (A.24)

where z, z′ ∈ C.
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A.2. Spherical vector wave functions

It is important to note that h(1)
n (z) jn(z′) vanishes sufficiently quickly on the upper half-space only if

z/z′ ≥ 1. With this, the integrals are first extended over the entire real axis by expressing jn(kr) in
terms of spherical Hankel functions. Then, the complex integration path needed in the residue theorem
is closed over the upper half-space to yield

IM = 1
2

� ∞

−∞
h(1)

n (kr) jn
(︁
kr′)︁ k2

k2 − k2
b

dk = i
π

2 kbh
(1)
n (kbr) jn

(︁
kbr

′)︁ for r ≥ r′ (A.25)

IN = 1
2

� ∞

−∞
h(1)

n (kr) jn
(︁
kr′)︁ 1

k2 − k2
b

dk = i
π

2
1
kb
h(1)

n (kbr) jn
(︁
kbr

′)︁ for r ≥ r′ (A.26)

where the singularity at k = 0 can be lifted and therefore does not contribute, and the positive and
negative poles k = ±ks are chosen to lie within and outside of the integration path, respectively, before
the detours around the poles are contracted. Alternatively, one may argue that ks has an infinitesimally
small positive imaginary part such that the negative pole does not contribute. Ultimately, this allows
the Green’s dyadic to be written in a substantially simpler form

G
(︁
r, r′)︁ = ikb

∞∑︂

n=1

n∑︂

m=−n

[︂
Mm

n (r; kb, 3) Mm
n (r′; kb, 1) + Nm

n (r; kb, 3) Nm
n (r′; kb, 1)

]︂
(A.27)

which, however, is only valid for r ≥ r′.

Farfield along the polar axis To obtain farfield approximations of the spherical vector wave functions
along the polar axis (cos(θ) = ±1, ϕ = 0), it is necessary to investigate the corresponding limits of the
associated Legendre polynomials (cf. Eqs. (B.23,24))

lim
cos θ→±1

∂θΨm
n P

m
n (cos θ) = (±1)n Ψ−1

n

1
2 [δm,−1 − δm,1] (A.28)

lim
cos θ→±1

m

sin θΨm
n P

m
n (cos θ) = ∓ (±1)n Ψ−1

n

1
2 [δm,−1 + δm,1] (A.29)

where it is convenient to readily account for Ψm
n (Eq. (3.99)). Large-argument approximations of

expressions involving the Hankel function of first kind (see [217] and [216, 10.52])

lim
r→∞

zn(kr; 3) ≈ i−n−1 e
ikr

kr
(A.30)

lim
r→∞

zn(kr; 3)
kr

≈ 0 (A.31)

lim
r→∞

[r∂r + 1] zn(kr; 3)
kr

≈ i−n e
ikr

kr
(A.32)

indicate that in the farfield, the radial dependency of each spherical vector wave function takes the
shape of a spherical wave. With this, the farfield approximations of the spherical vector wave functions
(Eqs. (3.100,101)) along the polar axis can be written as

lim
r→∞

cos θ→±1
Mm

n (r; k, 3) ≈ ∓i∓nΨ−1
n

eikr

kr

1√
2
[︁
δm,−1 ĉ∓ + δm,1 ĉ±]︁ (A.33)

lim
r→∞

cos θ→±1
Nm

n (r; k, 3) ≈ i∓nΨ−1
n

eikr

kr

1√
2
[︁
δm,−1 ĉ∓ − δm,1 ĉ±]︁ (A.34)

where the unit vectors ĉ+ and ĉ− are defined as:

ĉ± = θ̂ ± iϕ̂√
2

ĉ∓ × ĉ± = ±ir̂ ĉ∓ · ĉ± = 1 ĉ± · ĉ± = 0 (A.35)
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A. Definitions and Derivations

These vectors resemble the Jones vectors of circularly polarized waves, and since θ̂ = ±x̂ and ϕ̂ = ŷ
along the polar axis, one may associate ĉ+ with left-circular and ĉ− with right-circular polarization.
Note that only the multipoles with azimuthal orders of m = ±1 are able to generate non-vanishing
electromagnetic fields in the farfield along the polar axis. Consequently, based on Eq. (3.115), the
polarization state of an arbitrary scattered field in the farfield along the polar axis is fully characterized
by a sum of such circularly polarized waves.
In analogy to Eqs. (3.123,124), the differential energy flux along the polar axis may be defined as

dP±
s

dΩ = lim
r→∞

cos θ→±1

1
2 Re

{︂[︂
Es ×Hs

]︂
· r̂
}︂
r2 (A.36)

where the upper signs indicate forward direction (θ = 0) and the lower signs backward direction (θ = π),
and the differential scattering cross section along the polar axis follows as

dC±
s

dΩ = 1
I0

dP±
s

dΩ I0 = |E0|2 nb
2c0µ0µb

(A.37)

where I0 is again the incident intensity of an arbitrarily polarized plane wave. After evaluating all
previously defined expressions, it is found that:

dC±
s

dΩ = 1
2k2

b

⎡
⎣
⃓⃓
⃓⃓
⃓

∞∑︂

n=1
i∓nΨ−1

n

(︂
a−1

n ∓ b−1
n

)︂⃓⃓⃓⃓
⃓

2

+
⃓⃓
⃓⃓
⃓

∞∑︂

n=1
i∓nΨ−1

n

(︂
a1

n ± b1
n

)︂⃓⃓⃓⃓
⃓

2
⎤
⎦ (A.38)

If the scattered field only contains dipolar contributions, this simplifies to

dC±
s

dΩ = 3
8πk2

b

[︃⃓⃓
⃓a−1

1 ∓ b
−1
1

⃓⃓
⃓
2

+
⃓⃓
⃓a1

1 ± b1
1

⃓⃓
⃓
2
]︃

(A.39)

and it can be concluded that in this case, the differential scattering cross section only vanishes along
the polar axis if the multipole coefficients satisfy a−1

1 = ±b−1
1 and a1

1 = ∓b1
1.

A.3. Radial structure factor and pair correlation function
The radial structure factor S(k) and the radial pair correlation function g(r) can be defined as the
average of S(k) and g(r) with respect to the full solid angle. To avoid repetitions in the following
discussion, f may stand for either S or g, and u for k or r, respectively. Given that the unit vector û
is expressed in terms of D-dimensional spherical coordinates [218]

û =
D∑︂

d=1
êd cos(ϕd)

d−1∏︂

i=1
sin(ϕi) (ϕ1, . . . , ϕD−1) ∈ [0, π]D−2 × [0, 2π] ϕD = 0 (A.40)

where êd is a Cartesian basis vector, the radial function f(u) can be defined as

f(u) = 1
ΩD

�
f(uû) dΩ ΩD = 2πD

2

Γ
(︂

D
2

)︂ dΩ = dϕD−1

D−1∏︂

i=2
sini−1(ϕD−i) dϕD−i (A.41)

where ΩD is the full solid angle of a D-dimensional sphere and dΩ is the corresponding unit solid angle.
In two dimensions, the radial function can be written as

f(u) = 1
2π

� 2π

0
f(u [cos(ϕ) ê1 + sin(ϕ) ê2]) dϕ (A.42)

which is simply the average along the azimuthal angle ϕ = ϕ1.
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A.4. Probability density functions
The standard f̄ , folded f̌ , and wrapped f̊ normal distributions of a random variable x ∈ D (cf. [219])
may be defined as

f̄(x;µ, σ) = 1√
2πσ2

exp
(︄
−(x− µ)2

2σ2

)︄
D = ]−∞,∞[ (A.43)

f̌(x;µ, σ) = f̄(x;µ, σ) + f̄(x;−µ, σ) D = [0,∞[ (A.44)

f̊(x;µ, σ) =
∞∑︂

n=−∞
f̄(x;µ− 2πn, σ) D = [−π, π] (A.45)

where the folding and wrapping is meant in a quite literal sense. The folded normal distribution mirrors
and adds the part of the standard normal distribution that lies on the negative half-space onto the
positive half-space. The wrapped normal distribution splits the standard normal distribution modulo
2π and adds up all periods. Hence, the folded and wrapped normal distributions are suitable for the
description of amplitudes and angles of normally distributed quantities. Note that the wrapped normal
distribution turns from a standard normal distribution into a uniform distribution as the standard
deviation σ increases.
The first raw moment (mean) µx and the second central moment (variance) σ2

x of x are defined as

µx =
�
D
xf(x) dx ≈ 1

N

N∑︂

n=1
xn (A.46)

σ2
x =

�
D
(x− µx)2f(x) dx ≈ 1

N

N∑︂

n=1
(xn − µx)2 (A.47)

where f is an arbitrary probability density function and the estimates require N samples xn of x.
The mean µx and variance σ2

x of the folded normal distribution are related to the mean µ and variance
σ2 of the underlying standard normal distribution via a transcendental system of equations

µx =

√︄
2σ2

π
exp

(︃
− µ

2σ2

)︃
+ µ erf

(︃
µ√
2σ2

)︃
(A.48)

σ2
x = σ2 + µ2 − µ2

x (A.49)

where erf(·) is the error function.
The circular mean µz of the wrapped normal distribution is not defined as the first raw moment of x,
but instead as the first raw moment of the complex number z = eix:

µz =
�
D
eixf̊(x;µ, σ) dx = e− σ2

2 +iµ ≈ 1
N

N∑︂

n=1
eixn (A.50)

The mean angle µ̊x and the circular variance σ̊2
x of x are derived from µz via

µ̊x = µ = arg(µz) σ̊2
x = σ2 = −2 ln(|µz|) (A.51)

and are defined to be identical to the mean µ and variance σ2 of the underlying standard normal
distribution.
In this thesis, each kernel density estimation of a two-dimensional probability density function f(x, y)
used the following uncorrelated bivariate standard normal distribution as kernel

f(x, y) ≈ 1
N

N∑︂

n=1
f̄(x;xn, hx) f̄(y; yn, hy) (A.52)

where (xn, yn) are N samples of (x, y), and the constants hx and hy are carefully-chosen kernel
bandwidths. The sum was evaluated with a fast nonuniform Fourier transformation, and the result
was folded or wrapped whenever f was expected to be a folded or wrapped normal distribution.
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A.5. Disordered Huygens’ metasurfaces
The discussion in this section was mainly developed by Rahimzadegan [28], can also be found in [32],
and was replicated here to support the interpretation of data shown in this thesis.

Effective dipole moments The maximum electric p0 and magnetic m0 dipole moment that can be
induced in a spherical particle equals to

p0 = 6πiE0ε

k3 m0 = 6πiE0
k3Z

(A.53)

where E0 is the amplitude of an incident plane wave that excites the sphere, and k and Z =
√︁
µ/ϵ are

the wavenumber and impedance of the homogeneous background medium. These moments will serve
as normalization constants.
In a particle cluster, the effective electric peff and magnetic meff dipole moment of a particle can be
computed from its effective electric a1,eff and magnetic b1,eff multipole coefficients (n = 1) [220]

peff = −iε
√

6π
k3 F1 · a1,eff meff = −i

√
6π

Zk3 F1 · b1,eff F1 = 1√
2

⎛
⎜⎝

1 0 −1
−i 0 −i
0
√

2 0

⎞
⎟⎠ (A.54)

where the dipole moment vectors are given in a Cartesian standard basis (x, y, z), the elements in the
multipole coefficient vectors are arranged in the sequence of increasing azimuthal orders m = −n, . . . , n,
and the matrix F1 represents a basis transformation from spherical to Cartesian coordinates.

Ordered Huygens’ metasurfaces The zeroth-order transmission t and reflection r coefficient of an
array of dipolar particles, that is excited by a y-polarized plane wave, can be written as [221]

t = 1− 3π
k2A

(︃
py,eff
p0
− mx,eff

m0

)︃
(A.55)

r = − 3π
k2A

(︃
py,eff
p0

+ mx,eff
m0

)︃
(A.56)

where A is the unit cell area, and py,eff and mx,eff are vector components of the effective dipole moments
in each particle. In an ordered Huygens’ metasurface, the effective dipole moments satisfy the Kerker
condition py,eff/p0 = −mx,eff/m0 for all wavelengths, which results in r = 0, and |t| = 1 due to energy
conservation. At the resonance wavelength, the effective dipole moments take on their maximum values
py,eff/p0 = k2A/(3π) and mx,eff/m0 = −k2A/(3π), and generate a scattered wave that exceeds the
incident wave by a factor of two in amplitude and is shifted by π in phase (t = 1 +2 eiπ = −1). In other
words, the scattered wave not only cancels the incident wave, but also replaces it by a phase-shifted
version of it. Lastly, note that if the particles support only one of the two dipole types at the resonance
wavelength, it follows that |r| = 1 and t = 0.

Disordered Huygens’ metasurface If the dipolar particles are then brought into an arrangement with
uniform disorder, the zeroth-order transmission and reflection coefficient may be estimated via

t ≈ 1− 3π
k2

⟨︃
px,eff
p0

+ my,eff
m0

+ py,eff
p0
− mx,eff

m0

⟩︃

A

(A.57)

r ≈ −3π
k2

⟨︃
px,eff
p0
− my,eff

m0
+ py,eff

p0
+ mx,eff

m0

⟩︃

A

(A.58)

where ⟨·⟩A denotes the area average of the effective dipole moments in all particles. However, for
resonant excitation, experimental and numerical evidence suggests that certain effective dipole moments,
or combinations thereof, vanish in average:

⟨︃
px,eff
p0

⟩︃

A

≈ 0
⟨︃
my,eff
m0

⟩︃

A
≈ 0

⟨︃
py,eff
p0

+ mx,eff
m0

⟩︃

A

≈ 0 (A.59)
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The effective dipole moments that are cross-polarized (px,eff and my,eff) with respect to the y-polarized
incident wave are due to local random anisotropy in the particle arrangement. Hence, it can be expected
that these moments follow a mean-free normal distribution. The sum term py,eff/p0 +mx,eff/m0, on
the other hand, vanishes in average since increasing positional disorder mainly reduces the magnitudes
of the effective dipole moments (Fig. 7.10c), but leaves their values in a relationship that still satisfies
the Kerker condition (Fig. 7.10e). In other words, the majority of the particles still sustain Huygens
sources, but they do not radiate as strongly as in the ordered case.
Hence, for resonant excitation, the transmission and reflection coefficients reduce to:

t ≈ 1− 3π
k2

⟨︃
py,eff
p0
− mx,eff

m0

⟩︃

A

(A.60)

r ≈ 0 (A.61)

Figure 7.6e demonstrates a very low reflectance over the entire spectrum and, in particular, r = 0
exactly at the resonance wavelength λ = 1.38 µm. Furthermore, since increasing positional disorder
reduces the magnitude of the effective dipole moments in average (Fig. 7.10c), it is possible to obtain
t = 0 at resonance for a critical degree of positional disorder (Fig. 7.7a). More precisely, the average
magnitude of the effective dipole moments must reduce to one half of that in the ordered case, such
that the zeroth-order component of the scattered wave cancels the incident wave (t = 1 + eiπ = 0).
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B. Numerical Methods
B.1. Computation of spherical Bessel functions
Spherical Bessel functions of integer order n ∈ Z≥0 satisfy for z ∈ C [216, 10.51]:

zn−1(z)− 2n+ 1
z

zn(z) + zn+1(z) = 0 (B.1)

nzn−1(z)− (2n+ 1) z′
n(z)− (n+ 1) zn+1(z) = 0 (B.2)

Downward recurrence is stable for jn and j′
n:

jn(z) = n+ 2
z

jn+1(z) + j′
n+1(z) (B.3)

j′
n(z) = n

z
jn(z)− jn+1(z) (B.4)

Upward recurrence is stable for yn and y′
n:

yn(z) = n− 1
z

yn−1(z)− y′
n−1(z) (B.5)

y′
n(z) = yn−1(z)− n+ 1

z
yn(z) (B.6)

While the upward recurrences for yn and y′
n can be initialized with known analytic expressions for

small orders, the downward recurrences for jn and j′
n require a secondary method for the computation

of large-order initial values. One possibility is to utilize the logarithmic derivative of jn
j′

n(z)
jn(z) = n

z
− jn+1(z)

jn(z) (B.7)

and to evaluate the resulting continued fraction

j′
n(z)
jn(z) = n

z
+

∞

K
i=1

−1
[2 (n+ i) + 1] z−1 b0 +

∞

K
i=1

ai

bi
= b0 + a1

b1 + a2
b2 + · · ·

(B.8)

with the Lentz-Thompson algorithm [222] to obtain an initial value for the ratio j′
n/jn. After completing

the recurrence with this ratio as initial value, all intermediate results can be renormalized by comparison
with j′

0/j0 or other small-order identities. For reference, the first few orders read as

j0(z) = sin(z)
z

j1(z) = −j′
0(z) (B.9)

j′
0(z) = z cos(z)− sin(z)

z2 j′
1(z) = sin(z) + 2j′

0(z)
z

(B.10)

y0(z) = −cos(z)
z

y1(z) = −y′
0(z) (B.11)

y′
0(z) = z sin(z) + cos(z)

z2 y′
1(z) = −cos(z)− 2y′

0(z)
z

(B.12)

and the point z = 0 must be treated analytically:

lim
z→0

jn(z) = δn,0 lim
z→0

yn(z) = −∞ (B.13)

lim
z→0

j′
n(z) = 1

3δn,1 lim
z→0

y′
n(z) = +∞ (B.14)

lim
z→0

1
z
jn(z) = +∞δn,0 + 1

3δn,1 lim
z→0

1
z
yn(z) = −∞ (B.15)

With this, the numerical values for all jn, j′
n and yn, y

′
n are now available up to a desired order n.
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B.2. Computation of associated Legendre polynomials
The following discussion is restricted to associated Legendre polynomials Pm

n (cos θ) of integer order
n = 0, 1, . . . and integer degree m = −n, . . . , n on the real-valued domain θ ∈ [0, π] (see [216, 14]).
The following upward recurrence is stable for negative m = −(n−2),−(n−3), . . . , 0 with n = 2, 3, . . .:

Pm
n (cos θ) = −2m− 1

tan θ P
m−1
n (cos θ)− (n−m+ 2) (n+m− 1)Pm−2

n (cos θ) (B.16)

Initial values for this recurrence can be generated with the help of the following two identities

P−n
n (cos θ) = 1

n!

(︃sin θ
2

)︃n

(B.17)

P−(n−1)
n (cos θ) = cos(θ)P−(n−1)

(n−1) (cos θ) (B.18)

which may as well be computed recursively by iterating over n = 1, 2, . . . with:

P−n
n (cos θ) = 1

n

(︃sin θ
2

)︃
P

−(n−1)
(n−1) (cos θ) P 0

0 (cos θ) = 1 (B.19)

P−(n−1)
n (cos θ) = cos(θ)P−(n−1)

(n−1) (cos θ) (B.20)

Once all Pm
n with negative m are obtained, the corresponding derivatives ∂θP

m
n can be computed by

iterating over n = 1, 2, . . . and m = 0,−1, . . . ,−n with:

∂θP
m
n (cos θ) = n

tan θP
m
n (cos θ)− n+m

sin θ Pm
n−1(cos θ) ∂θP

0
0 (cos θ) = 0 (B.21)

Note that Pm
n = 0 for |m| > n. Moreover, since all recurrence relations exhibit singularities at sin θ = 0,

the following special points must be treated analytically:

lim
cos θ→±1

Pm
n (cos θ) = (±1)n δm,0 (B.22)

lim
cos θ→±1

∂θP
m
n (cos θ) = (±1)n 1

2 [δm,−1 − n (n+ 1) δm,1] (B.23)

lim
cos θ→±1

m

sin θP
m
n (cos θ) = − (±1)n+1 1

2 [δm,−1 + n (n+ 1) δm,1] (B.24)

The positive and negative m are connected via

Pm
n (cos θ) = (−1)m (n+m)!

(n−m)!P
−m
n (cos θ) (B.25)

which, once again, can be evaluated recursively for each n = 1, 2, . . . by iterating over m = 1, . . . , n
and performing the following mapping from negative to positive m:

am
n = − (n−m+ 1) (n+m) am−1

n a0
n = 1 (B.26)

Pm
n (cos θ) = am

n P
−m
n (cos θ) (B.27)

∂θP
m
n (cos θ) = am

n ∂θP
−m
n (cos θ) (B.28)

With this, the numerical values for all Pm
n and ∂θP

m
n are now available up to a desired order n.

B.3. Simulation of planar multilayer systems
Consider a planar multilayer system consisting of ℓ = 1, . . . , L layers of linear, isotropic, homogeneous
media with refractive indices nℓ, where the outermost layers extend to infinity. The layers are separated
by i = 1, . . . , L+ 1 interfaces, where the outermost interfaces represent the input and output plane and
only account for additional phase terms due to propagation within the outermost layers. The position
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vector is parameterized in the form of r(t, d) = t + dn̂, where the plane t · n̂ = 0 is oriented parallel to
the interfaces, and the base point of an interface ri = r(0, di) lies in a distance of di with respect to
the origin. The layers are enumerated in ascending order along the direction of n̂ such that the phase
φℓ = kℓ (dℓ+1 − dℓ) cos(θℓ) has a positive imaginary part for forward-propagating waves. The incident
wavevector k1 points towards the first interface, which means that the incidence angle is limited to
Re θ1 ∈

[︁
0, π

2
]︁
. Moreover, with the reflections of the plane wave unit vectors from Eqs. (3.53,54), it is

possible to express reflected plane waves in terms of:

MRk(r) = Mk(t) e−ikd cos(θ) NRk(r) = −RNk(t) e−ikd cos(θ) (B.29)

In each layer, the electric field and its associated magnetic field consist of a superposition of forward-
propagating and reflected, TE and TM polarized, plane waves

Eℓ(r) = {AℓMkℓ
(r− rℓ) +BℓMRkℓ

(r− rℓ+1) + CℓNkℓ
(r− rℓ) +DℓNRkℓ

(r− rℓ+1)} (B.30)

Hℓ(r) = {AℓNkℓ
(r− rℓ) +BℓNRkℓ

(r− rℓ+1) + CℓMkℓ
(r− rℓ) +DℓMRkℓ

(r− rℓ+1)} −inℓ

c0µ0µℓ
(B.31)

where Aℓ, Bℓ, Cℓ, Dℓ ∈ C are arbitrary electric field amplitudes that remain to be determined. Note
that the spatial dependency separates into Eℓ(r) = Eℓ(dn̂) eikℓ·t and Hℓ(r) = Hℓ(dn̂) eikℓ·t. When
these expressions are inserted into the boundary conditions of Maxwell’s equations (Eqs. (3.27,28)), it
is found that the spatially-dependent term exp(i (kℓ − kℓ+1) · t) must equal a constant, which is only
possible if the tangential wavevector components P∥ (kℓ − kℓ+1) = 0 are conserved throughout the
multilayer system. Moreover, since the “magnitude” k2

ℓ = k2
ℓ is fixed, it immediately follows that the

polar propagation angles are related via Snell’s law nℓ+1 sin(θℓ+1) = nℓ sin(θℓ) and that the wavevectors
and unit vectors of refracted plane waves satisfy

kb =
[︃
P∥ + nb cos(θb)

na cos(θa)P⊥

]︃
ka M̂kb

= M̂ka N̂kb
=
[︃ cos(θb)

cos(θa)P∥ + na

nb
P⊥

]︃
N̂ka (B.32)

where a and b stand for any two layers of the system. To determine the electric field amplitudes, it
suffices then to consider the electromagnetic fields on either side at the base point of an interface:

Eℓ(rℓ+1) =
{︂[︂
Aℓ e

iφℓ +Bℓ

]︂
M̂kℓ

+
[︂
Cℓ e

iφℓ −DℓR
]︂

N̂kℓ

}︂
(B.33)

Hℓ(rℓ+1) =
{︂[︂
Aℓ e

iφℓ −BℓR
]︂

N̂kℓ
+
[︂
Cℓ e

iφℓ +Dℓ

]︂
M̂kℓ

}︂ −inℓ

c0µ0µℓ
(B.34)

Eℓ+1(rℓ+1) =
{︂[︂
Aℓ+1 +Bℓ+1 e

iφℓ+1
]︂

M̂kℓ+1 +
[︂
Cℓ+1 −Dℓ+1 e

iφℓ+1R
]︂

N̂kℓ+1

}︂
(B.35)

Hℓ+1(rℓ+1) =
{︂[︂
Aℓ+1 −Bℓ+1 e

iφℓ+1R
]︂

N̂kℓ+1 +
[︂
Cℓ+1 +Dℓ+1 e

iφℓ+1
]︂

M̂kℓ+1

}︂ −inℓ+1
c0µ0µℓ+1

(B.36)

Since the TE and TM components of a plane wave are orthogonal, the tangential boundary conditions
of Maxwell’s equations (Eq. (3.27)) separate into four unique equations

TE:
(︄

1 1
1 −1

)︄
·
(︄

1 0
0 eiφℓ+1

)︄
·
(︄
Aℓ+1
Bℓ+1

)︄
=
(︄

1 0
0 ηℓ cos(θℓ)

ηℓ+1 cos(θℓ+1)

)︄
·
(︄

1 1
1 −1

)︄
·
(︄
eiφℓ 0
0 1

)︄
·
(︄
Aℓ

Bℓ

)︄
(B.37)

TM:
(︄

1 1
1 −1

)︄
·
(︄

1 0
0 eiφℓ+1

)︄
·
(︄
Cℓ+1
Dℓ+1

)︄
=
(︄ ηℓ

ηℓ+1
0

0 cos(θℓ)
cos(θℓ+1)

)︄
·
(︄

1 1
1 −1

)︄
·
(︄
eiφℓ 0
0 1

)︄
·
(︄
Cℓ

Dℓ

)︄
(B.38)

where ηℓ = nℓ/µℓ. The normal boundary conditions of Maxwell’s equations (Eq. (3.28)) result in two
equations that are already contained in the preceding matrix equations. These matrix equations can
then be rearranged according to the following templates

Tab = S⋆
ab TE:

(︄
Ab

Bb

)︄
= Tab ·

(︄
Aa

Ba

)︄
TM:

(︄
Cb

Db

)︄
= Tab ·

(︄
Ca

Da

)︄
(B.39)

Sab = T⋆
ab =

(︄
tab rba

rab tba

)︄
TE:

(︄
Ab

Ba

)︄
= Sab ·

(︄
Aa

Bb

)︄
TM:

(︄
Cb

Da

)︄
= Sab ·

(︄
Ca

Db

)︄
(B.40)
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where the transfer matrix Tab transforms the electric field amplitudes of layer a into those of layer b, the
elements of the scattering matrix Sab represent transmission coefficients t and reflection coefficients r
in forward (subscript ab) and reverse (subscript ba) direction for the propagation from layer a to b,
and the star operator can be written as

A⋆ = 1
A22

(︄
det(A) A12
−A21 1

)︄
(B.41)

where A is an arbitrary matrix. Given that a, b, c are three consecutive layers, the combined transfer
matrix can be computed from the transfer matrices of the individual interfaces: Tac = Tbc ·Tab. While
such chained matrix products are particularly simple to perform, they can become numerically unstable
if certain elements of the transfer matrices are much larger in magnitude than others. This issue can
be avoided by making use of the fact that the elements of the scattering matrix are limited in their
magnitude due to energy conservation. The combined scattering matrix can be computed from

Sac = (S⋆
bc · S⋆

ab)
⋆ = 1

1− rbarbc

(︄
tabtbc rcb + det(Sbc) rba

rab + det(Sab) rbc tcbtba

)︄
(B.42)

with the scattering matrix of a single interface

TE: Sℓ,ℓ+1 =

⎛
⎜⎜⎜⎜⎝

2ηℓ cos(θℓ)
ηℓ cos(θℓ) + ηℓ+1 cos(θℓ+1) −ηℓ cos(θℓ)− ηℓ+1 cos(θℓ+1)

ηℓ cos(θℓ) + ηℓ+1 cos(θℓ+1)

ηℓ cos(θℓ)− ηℓ+1 cos(θℓ+1)
ηℓ cos(θℓ) + ηℓ+1 cos(θℓ+1)

2ηℓ+1 cos(θℓ+1)
ηℓ cos(θℓ) + ηℓ+1 cos(θℓ+1)

⎞
⎟⎟⎟⎟⎠
·
(︄
eiφℓ 0
0 eiφℓ+1

)︄
(B.43)

TM: Sℓ,ℓ+1 =

⎛
⎜⎜⎜⎜⎝

2ηℓ cos(θℓ)
ηℓ+1 cos(θℓ) + ηℓ cos(θℓ+1) −ηℓ+1 cos(θℓ)− ηℓ cos(θℓ+1)

ηℓ+1 cos(θℓ) + ηℓ cos(θℓ+1)

ηℓ+1 cos(θℓ)− ηℓ cos(θℓ+1)
ηℓ+1 cos(θℓ) + ηℓ cos(θℓ+1)

2ηℓ+1 cos(θℓ+1)
ηℓ+1 cos(θℓ) + ηℓ cos(θℓ+1)

⎞
⎟⎟⎟⎟⎠
·
(︄
eiφℓ 0
0 eiφℓ+1

)︄
(B.44)

where ηℓ = nℓ/µℓ, the left matrices are known as Fresnel’s equations, the right matrices are phase
terms due to propagation throughout the thickness of a layer, and the polar propagation angle θℓ is
fully determined by Snell’s law:

θℓ = arcsin
(︃
n1
nℓ

sin(θ1)
)︃

(B.45)

Note that θℓ is generally complex-valued if nℓ is complex-valued. If n1 and θ1 are real-valued, it is
necessary that nℓ sin(θℓ) is also real-valued, which is the same as requiring ImP∥kℓ = 0 as mentioned
in the derivation of Eqs. (3.56,57). On the other hand, if n1 is complex-valued and nℓ is real-valued,
θℓ can become complex-valued. To avoid the combination of real-valued nℓ and complex-valued θℓ,
one may persist on ImP∥kℓ = 0. Equation (B.45) automatically fulfills this condition if n1, θ1 ∈ R.
Otherwise, θℓ must be chosen such that tanh(Im θℓ) = − tan(arg(nℓ)) tan(Re θℓ).
Lastly, the transmittance T and reflectance R are defined as the ratio of the transmitted or reflected
intensity with respect to the incident intensity. For the special case of µ ∈ R, Eq. (3.71) provides an
expression for the intensity in each layer, where the spatial dependency along the normal direction is
readily contained in the phase terms of the scattering matrices. With this, the transmittance Tab and
reflectance Rab from layer a to b can be written as

Tab = pb Re(ηb cos(θb))
pa Re(ηa cos(θa)) |tab|2 Rab = |rab|2 pℓ =

{︄
1 TE
cosh(2 Im θℓ) TM

(B.46)

where a and b can be interchanged to yield Tba and Rba, and the polarization-dependency (pℓ ≈ 1) is
usually neglected in media with weak gain or loss (Im θℓ ≈ 0).
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B.4. Algorithmic determination of diffraction orders
This section presents a numerical method that determines the diffraction orders that can be excited in
an arbitrary two-dimensional lattice for a given range of polar and azimuthal incidence angles. Certain
simulation software require this information to perform parameter sweeps of the incidence angles. The
presented method also allows for a visual representation of the reciprocal space.
In a two-dimensional infinite lattice, the electromagnetic fields must satisfy periodic boundary conditions.
Given the electric field E and wavevector k of a plane wave, and the lattice vector Ri = (a1,a2) · i with
multi-index i = (i1, i2) ∈ Z2 and basis vectors a1, a2, the Floquet-Bloch boundary condition reads as

E(r + Ri) = E(r) ei[k+Kj]·Ri Kj ·Ri = 0 (mod 2π) (B.47)

where the reciprocal lattice vector Kj = (b1,b2) · j with multi-index j = (j1, j2) ∈ Z2 is given by the
(pseudo)inverse (b1,b2) = 2π[(a1,a2)−1]⊤. Without loss of generality, it can be assumed that k points
towards the origin of a spherical coordinate system with polar θ ∈

[︁
0, π

2
]︁

and azimuthal ϕ ∈ [−π, π]
angles, where the θ-axis coincides with the unit normal n̂ = (â1 × â2) / sin(ϕ2 − ϕ1) and the basis
vectors a1,a2 are specified in terms of their magnitudes a1, a2 and azimuthal angles ϕ1, ϕ2, which are
measured with respect to the same axis as ϕ and are restricted to (ϕ2 − ϕ1) ∈ ]0, π[ to avoid ambiguities.
With this, the tangential components of the main vectors can be written as

P∥k = −k sin(θ)
(︄

cos(ϕ)
sin(ϕ)

)︄
k = 2π

λ
n (B.48)

Ri =
(︄

cos(ϕ1) cos(ϕ2)
sin(ϕ1) sin(ϕ2)

)︄
·
(︄
a1 0
0 a2

)︄
· i (B.49)

Kj = 2π
sin(ϕ2 − ϕ1)

(︄
sin(ϕ2) − sin(ϕ1)
− cos(ϕ2) cos(ϕ1)

)︄
·
(︄ 1

a1
0

0 1
a2

)︄
· j (B.50)

where λ is the vacuum wavelength, n is the refractive index on the respective side of the lattice plane,
and P∥k is the projection of the wavevector onto the lattice plane (cf. Eq. (3.29)). Since P∥k is
preserved in planar systems (cf. Appendix B.3), this quantity represents both the incident wave and
the zeroth order of a diffracted wave. If the incident wave originates from another medium (ninc,θinc),
all θ angles must be computed from Snell’s law: n sin(θ) = ninc sin(θinc) (cf. Eq. (B.45)). In general,
the tangential wavevector component of a diffracted wave may be written as P∥kj = P∥k + Kj and its
normal component is restricted to (P⊥kj)2 = k2 − (P∥kj)2. For real-valued n, this readily shows that
the normal component is either purely real (propagating wave) or purely imaginary (evanescent wave).
For complex-valued n, one would have to define a threshold value to distinguish between diffraction
orders with weak and strong attenuation. However, it often suffices to simply use the real part of n in
the following method. With this, all diffraction orders j that satisfy (P∥kj)2 ≤ k2 can be regarded as
propagating waves, which can be written in a more concise form

U2
j (θ, ϕ) ≤ 1 θ ∈ [θmin, θmax] ϕ ∈ [ϕmin, ϕmax] λ, n, a1, a2, ϕ1, ϕ2 : constant (B.51)

by introducing the following vector functions and constants

Uj(θ, ϕ) = uj − sin(θ)
(︄

cos(ϕ− Σ)
sin(ϕ− Σ)

)︄
Σ = ϕ2 + ϕ1

2 (B.52)

uj = λ

n

(︄ 1
2 cos(∆) 0

0 1
2 sin(∆)

)︄
·
(︄

1 1
−1 1

)︄
·
(︄ 1

a1
0

0 1
a2

)︄
· j ∆ = ϕ2 − ϕ1

2 (B.53)

where uj is a transformed reciprocal lattice vector, and Uj(θ, ϕ) describes an annular sector around uj.
Hence, the intersection of this annular sector with the unit disk Uj ≤ 1 (cf. Eq. (B.51)) defines the
subset of incidence angles for which a fixed diffraction order j is considered to be a propagating wave.
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However, since the goal of this method is to determine whether a fixed diffraction order propagates
for any of the given incidence angles, it is not necessary to specify the resulting subset and it suffices
to test whether an intersection occurs. Moreover, it already suffices to test for each j if the point of
the annular sector that is closest to the origin is contained within the unit disk. To this end, it is
convenient to parameterize uj in terms of polar coordinates u, ψ ∈ R

uj(u, ψ) = u

(︄
cos(ψ)
sin(ψ)

)︄
u =

√︂
u2

j ψ = arctan
(︄
u2,j
u1,j

)︄
(B.54)

where the j-subscript of u and ψ is dropped for readability, and the problem of finding the point of the
annular sector that is closest to the origin can be stated as a constrained minimization problem

argmin
(θ,ϕ)

U2
j (θ, ϕ) θ ∈ [θmin, θmax] ϕ ∈ {x | isWithin(x;ϕmin, ϕmax)} (B.55)

from which it is found that the global minimum is located along the direction of ϕ0 = (ψ + Σ)[−π,π] in a
distance of sin(θ0) = u, and the following functions allow ϕ to wrap around its domain of definition:

isWithin(x; a, b) = a ≤ x ≤ b ∨ a > b ∧ (x ≤ b ∨ x ≥ a) (B.56)

(x)[−π,π] = x− 2π
⌊︃
x+ π

2π

⌋︃
(B.57)

If ϕ0 is not within the given interval, i.e. that the global minimum is not within the annular sector,
then there must be a constrained minimum at the interval limit closest to ϕ0:

cos(ϕcon − ϕ0) =
{︄

1 isWithin(ϕ0;ϕmin, ϕmax)
max{cos(ϕmin − ϕ0) ; cos(ϕmax − ϕ0)} otherwise

(B.58)

sin(θcon) = max{sin(θmin) ; min{sin(θmax) ; u cos(ϕcon − ϕ0)}} (B.59)

Finally, if the following inequality holds true, it follows that the currently selected diffraction order j is
a propagating wave for at least some of the given incidence angles:

u2 − 2u cos(ϕcon − ϕ0) sin(θcon) + sin2(θcon) ≤ 1 (B.60)

This inequality further suggests that only those diffraction orders need to be tested that lie within the
circle u ≤ 2, or within the more practical rectangle |j1,2| ≤ 2na1,2/λ.

Wavelength dependency Equation (B.51) can also be solved for the wavelength λ(j, θ, ϕ)

λ

n
≤ sin(2∆)

cos(ϕ− ψ − Σ) sin(θ) +
√︂

1− sin2(ϕ− ψ − Σ) sin2(θ)
√︃(︂

j1
a1

)︂2
+
(︂

j2
a2

)︂2
− 2 j1j2

a1a2
cos(2∆)

(B.61)

where the secondary solution of the initial quadratic equation never takes effect and can thus be ignored.
Note that for strong dispersion (|∂λn| ≫ 0), this inequality must be solved numerically for λ. For the
special case of a square array (a1 = a2 = a, ϕ1 = 0, ϕ2 = π

2 ) it is found that

λ

n
≤ a

cos(ϕ− ψ′) sin(θ) +
√︂

1− sin2(ϕ− ψ′) sin2(θ)
√︂
j2

1 + j2
2

ψ′ = arctan
(︃
j2 − j1
j2 + j1

)︃
+ π

4 (B.62)

and if ϕ = ψ′ is aligned with the j1-axis (j2 = 0, ψ′ = 0) or j2-axis (j1 = 0, ψ′ = π
2 ), this reduces to

λ

n
≤ asin(θ) + 1

|j1,2|
(B.63)

where j1,2 is the diffraction order along the j1 or j2 axis.
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Visualization To visualize the region that contains all propagating diffraction orders for the given
incidence angle ranges, it is convenient to introduce a new parameterization such that U2

j = 1:

Uj(Ψ) =
(︄

cos(Ψ− Σ)
sin(Ψ− Σ)

)︄
(B.64)

Then, by solving Uj for j, all curves can be plotted in the Cartesian plane j ∈ R2:

j(Ψ, θ, ϕ) = n

λ

(︄
a1 0
0 a2

)︄
·
[︄(︄

cos(Ψ− ϕ1)
cos(Ψ− ϕ2)

)︄
+ sin(θ)

(︄
cos(ϕ− ϕ1)
cos(ϕ− ϕ2)

)︄]︄
(B.65)

The first vector in the square brackets represents an ellipse (the mapping of the unit disk into the
j-plane), and the second vector an elliptical annular sector (the mapping of the θ-ϕ-range). One may
imagine that the annular sector is stationary while the ellipse is shifted continuously across it. In this
picture, the sought-for region is the union of all ellipses. However, it suffices to find the boundary curve
of this region. As the boundary of the annular sector is traced out, Ψ must simultaneously be chosen
such that the tangential vector of the ellipse is always parallel to that of the annular sector. From the
tangential vectors ∂Ψj, ∂θj, ∂ϕj it is found that Ψ = ϕ if ϕ is varying, and that Ψ = ϕ− π

2 if θ is varying.
Table B.1 summarizes the parameter combinations that generate the main segments of the boundary
curve. As illustrated in Fig. B.1, the interior points can be removed by testing all points of the curve
against U2

j ≤ 1− ϵ for a small ϵ. Note that if n/λ is increased, the spacing of the underlying j-grid
increases uniformly while the shape of the curve remains. This generally means that less diffraction
orders can be excited. Hence, the distance of a diffraction order to the curve provides a visual cue to
whether the diffraction order will be excited if the wavelength is changed by a small amount.

# Ψ θ ϕ
start end start start end

1 ϕmin − 90° ϕmin θmax ϕmin
2 ϕmin ϕmax θmax ϕmin ϕmax
3 ϕmax ϕmax + 90° θmax ϕmax
4 ϕmax + 90° ϕmax + 180° θmin ϕmax
5 ϕmax + 180° ϕmin + 180° θmin ϕmax ϕmin
6 ϕmin + 180° ϕmin + 270° θmin ϕmin

1

2

3

4 5 6

-1 0 1 2
-1

0

1

2

j1

j 2

Table B.1 | The parameters of the main segments of the region that contains all propagating diffraction orders. A missing
“end”-value indicates that the parameter is held constant. The segments 3/4 and 6/1 are connected by straight lines. The graph
illustrates all segments (colored) and the boundary of the θ-ϕ range (black) for an incident wave with θ ∈ [30°,90°], ϕ ∈ [0°,90°],
n = λ = 1, and a skew lattice with ϕ1 = 0°, ϕ2 = 60°, a1 = a2 = 1.

-2 -1 0 1 2
-2

-1

0

1

2
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j 2

-2 -1 0 1 2
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1
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-2 -1 0 1 2
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-1

0

1

2

j1
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0

1

2

j1

(a) (b) (c) (d)

Fig. B.1 | A demonstration of the visualization. (a,b) Rectangular (ϕ2 = 90°) and (c,d) hexagonal (ϕ2 = 120°) lattices with
common parameters a1 = 0.8, ϕ1 = 0°, θinc ∈ [0°,90°], ϕinc ∈ [0°,90°], λ = 1, n = 1.45, and ninc = 1, except for (a,c) a2 = 0.8
and (b,d) a2 = 0.6. Red and gray dots indicate propagating and evanescent diffraction orders, respectively. Blue areas and
ellipses encompass the current set and the largest possible set of excitable diffraction orders, respectively.
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B.5. Computation of structure factor and pair correlation function
One major drawback in the numerical computation of the pair correlation function g(r) from the
microscopic structure factor S̃(k) via Eqs. (4.9,10) is that g must be sampled across the entire extent
of the bounding box that encloses all particle coordinates RN , while the required spatial resolution is
typically much smaller than the average pair distance of neighboring particles. This can demand large
amounts of memory and often one is not even interested in knowing g at very large pair distances,
or equivalently, knowing S with a very fine spectral resolution. In the following, it is explained how
g can be computed across a smaller spatial extent by taking into account aliasing effects in S̃, but
unfortunately, this approach turns out to be not very time-efficient.
Given the size w ∈ RD

>0 of a D-dimensional window that exactly divides the bounding box into a
rectangular grid of I ∈ ZD

>0 cells, the set Ri of particle coordinates Ri,n that are contained within a
cell with multi-index 0 ≤ i ≤ I− 1 can be written as

Ri =
{︁
Ri,1, . . . ,Ri,Ni

}︁
=
{︃

Rn

⃓⃓
⃓⃓ i =

⌊︃Rn

w

⌋︃
∧ n = 1, . . . , N

}︃
Ri+j◦I = Ri for j ∈ Z (B.66)

where Ni = |Ri| is the number of particle coordinates within cell i, and the rectangular grid must be
made I-periodic since the definitions of g and S̃ are only valid for homogeneous systems. With this,
the microscopic particle density ρ̃ from Eq. (4.10) can be written as

ρ̃(k) =
I−1∑︂

i=0
ρ̃i(k) e−ik·[w◦i] ρ̃i(k) =

Ni∑︂

n=1
e−ik·[Ri,n−w◦i] (B.67)

where ρ̃i is the microscopic particle density of cell i. In the following, these expressions are inserted
into S̃ from Eq. (4.10), and it is important to note that the amplitude square in the definition of S̃
is equivalent to an autocorrelation of ρ̃. Moreover, from Eq. (4.11) it can be seen that larger pair
distances produce higher instantaneous frequencies in S̃, which means that the largest pair distance
∆Rmax determines the required spectral resolution ∆k due to the Nyquist theorem ∆k ◦∆Rmax ≤ π.
Consequently, the domain of g can be reduced to −2w ≤ r ≤ 2w if all high-frequency contributions
to S̃ that would lead to aliasing are excluded, which can be achieved by considering only the nearest
neighborhood of each cell that yields a maximum pair distance of ∆Rmax = 2w.
More precisely, the number of sample points L, the actual spatial resolution ∆r, and the spectral
resolution ∆k are given by

L =
⌈︃ 4w

∆r′

⌉︃
∆r = 4w

L ∆k = 2π
4w (B.68)

where ∆r′ is the desired spatial resolution. With this, S̃ from Eq. (4.10) can be written as

S̃(k) = 1
N

I−1∑︂

i=0
ρ̃i(k)

I−1∑︂

j=0
ρ̃j(k) e−ik·[w◦(i−j)] Exact (B.69)

≈ 1
N

I−1∑︂

i=0
ρ̃i(k)

1∑︂

j=−1
ρ̃i+j(k) eik·[w◦j] Avoid aliasing (B.70)

≈ 1
N

I−1∑︂

i=0
|ρ̃i(k)|2 + 1

N

∑︂

j∈□

eik·[w◦j]
I−1∑︂

i=0
ρ̃i(k) ρ̃i+j(k) Separate neighborhood (B.71)

≈ 1
N

I−1∑︂

i=0
|ρ̃i(k)|2 + 2

N
Re

⎡
⎣∑︂

j∈△
eik·[w◦j]

I−1∑︂

i=0
ρ̃i(k) ρ̃i+j(k)

⎤
⎦ Uni-directional pairs (B.72)

where the box set □ = {i | −1 ≤ i ≤ 1 ∧ i ̸= 0} represents the index offsets that point to the nearest
neighbors of a cell, and the triangle set △ is implicitly defined via □ \ △ = −△, where the minus
operator negates all set elements −△ = {−i | i ∈ △}. Note that in higher dimensions D > 1, there
are multiple valid choices for the triangle set. For example, in two dimensions, one may choose
△ = {(1,−1), (1, 0), (1, 1), (0, 1)}, or △ = {(1, 0), (1, 1), (0, 1), (−1, 1)}, and so on.
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A more detailed discussion of each derivation step is in order:

Exact This expression is identical to Eq. (4.10), but its direct evaluation requires the same amount of
memory and its time complexity T1 = N |log10(ϵ)|D + IL [log2 L+ I] is always higher than the
time complexity T0 = N |log10(ϵ)|D + IL1

4 [log2(IL)− 1] of Eq. (4.10), where ε is the precision of
the fast nonuniform Fourier transformation, L is the total number of sample points, and I is the
total number of cells.

Avoid aliasing All pair distances that span over more than one adjacent cell are ignored as they would
cause aliasing in S̃. The approximate sign is kept as a reminder for this type of rejection of
high-frequency information, which has a similar effect as the convolution of S̃ with a low-pass
filter, or the multiplication of g with a box function.

Separate neighborhood In preparation for the next step it is convenient to separate the autocorrelation
of a cell from the cross-correlations with its nearest neighbors. In fact, if w is very large and one
is only interested in characterizing a given set of particle coordinates in an approximate sense, all
cross-correlations may even be ignored. Then, it suffices to use L/2 sample points, and all cells
can be processed independently. However, this approximation cannot be used in the collective
coordinate method, as it would completely decouple all cells.

Uni-directional pairs In the previous steps, pair distances that start and end in different cells are always
evaluated twice. Here, these pair distances are evaluated only once. This not only reduces the
computational effort, but also allows for an easier determination of the derivative of S̃ with respect
to a given particle coordinate. Note that not all ρ̃i need to be held in memory simultaneously, but
unfortunately, the time complexity of this expression T2 = N |log10(ϵ)|D +IL

[︂
log2 L+ 1 + 3D−1

2

]︂

is unlikely to out-perform T0 in any real-case scenario, as it would require I ≥ 8 · 43D
L3.

In summary, the direct evaluation of Eq. (4.10) is always the most efficient approach if sufficient
memory is available, and for completeness, the derivative of Eq. (B.72) with respect to a given particle
coordinate Ri,n can be written as

dS̃(k)
dRi,n

= − 2
N

k Im

⎡
⎣
⎛
⎝ρ̃i(k) +

∑︂

j∈△
ρ̃i+j(k) e−ik·[w◦j]

⎞
⎠ eik·[Ri,n−w◦i]

⎤
⎦ (B.73)

where intermediate results from Eq. (B.72) could be reused by rearranging the sum over j.
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C. Supplementary Data
In addition to the simulated (Fig. 7.11) and experimental (Fig. 7.12) scatterance for TE polarized
excitation, the following figures show the corresponding simulated (Fig. C.1) and experimental (Fig. C.2)
scatterance for TM polarized excitation.
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Fig. C.1 | Simulated scatterance for TM polarized excitation. The (a,b) directional QΩ, (c,d) polar Qθ and (e,f) sectorial Q(θ)
scatterance of the perturbed array, soft-core uniform and hard-core uniform metasurface type for the overlapping resonance
case with (a,c,e) resonant (λ = 1.38 µm) or (b,d,f) off-resonant (λ = 1.52 µm) excitation by a TM polarized plane wave incident
under θin ∈ {0°, 30°, 60°}. Column and row titles indicate all parameter combinations. In (a,b), ky > 0 shows transmission
and ky < 0 reflection. In (e,f), QTE shows the contribution of cross-polarized light to Q = QTE + QTM. All wavenumbers are
normalized with respect to the magnitude of the wavevector k0 in silicon dioxide.
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Fig. C.2 | Experimental scatterance for TM polarized excitation. The (a,b) directional QΩ, (c,d) polar Qθ and (e,f) sectorial
Q(θ) scatterance of the array, perturbed array, soft-core uniform and hard-core uniform metasurface type for the overlapping
resonance case with (a,c,e) resonant (λ = 1.38 µm) or (b,d,f) off-resonant (λ = 1.52 µm) excitation by a TM polarized plane
wave incident under θin ∈ {0°, 10°, 20°}. All graphs show transmission (kz ≥ 0, θ ≤ 90°). Column and row titles indicate all
parameter combinations. All wavenumbers are normalized with respect to the magnitude of the wavevector k0 in air.
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