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ABSTRACT

Recent developments in microscopic imaging led to a better understanding of intra- and

intercellular metabolic processes and, for example, to visualize structural properties of

viral pathogens. The developments in microscopy have greatly enriched and accelerated

the pace of development in many other scientific disciplines. While the number of funda-

mentally different microscopy techniques has changed little in recent years, many have

been greatly enhanced by numerical methods. Even approaches whereby a theoretical

imaging problem is first solved using an algorithm and then an existingmicroscopy system

are adapted or a new microscopy system is developed. While the variety of microscopy

techniques represented in laboratories is slowly expanding fluorescence widefield as well

as fluorescence confocal imaging techniques are the most widely used.

Existingmicroscopy techniques do not have to be completely replaced, but can be readily

improved and renewed by partial extension of the setup and/or appropriate processing

of the data. In this thesis, the imaging process of the above mentioned fundamental

microscopy techniques is treated holistically to highlight general strategies and maximise

their information content. Poisson or shot noise is assumed to be the fundamental noise

process for the given measurements.

A stable focus position is a basic condition for e. g. long-term measurements in order

to provide reliable information about potential changes inside the field of view (FoV).

While newer microscopy systems can be equipped with hardware autofocus, this is not

yet the widespread standard. For image-based focus analysis, different metrics for ideal,

noisy and aberrated, in case of spherical aberration and astigmatism, measurements are

presented. The experience gained in-silico is evaluated on real measurement data acquired

using a 3D-printed microscope. The measured samples are 1) inorganic patterns and 2)

fixed, non-living Henrietta Lacks Cervical Cancer (HeLa) cells.

A stable focus position is also relevant in the example of 2-photon confocal imaging and

at the same time the situation is aggravated in the given example, the measurement of the

retina in the living mouse. In addition to the natural drift of the focal position, which can

be evaluated by means of previously introduced metrics, rhythmic heartbeat, respiration,
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unrhythmic muscle twitching and movement of the mouse kept in artificial sleep are

added. A dejittering algorithm is presented for the measurement data obtained under

these circumstances. Further, in-silicodata relevant to this biological example are generated,

the dejitter algorithm is evaluated on the simulated and later on real measurement data.

The step from confocal to Image Scanning Microscopy (ISM) is achieved by simply

replacing the detection pinhole by a detector array, e. g. a camera. Instead of just mea-

suring the intensity by signal integration through the detection pinhole, the brightness

distribution at the detector is correlated with the location information of the different

camera pixels. Using the additional information about the sample distribution obtained in

this way, a method for reconstructing 3D from 2D image data is presented in the form of

thick slice unmixing. This method can further be used for suppression of light generated

outside the focal layer of 3D data stacks and is compared to selective layer multi-view

deconvolution. To reduce phototoxicity and save valuable measurement time for a 3D

stack, the method of zLEAP is presented, by which omitted (Nyquist sampled) Z-planes

are subsequently calculated and inserted. The results are evaluated on in-silico as well as

on measurement data acquired on the commercially available Zeiss Airyscan.

ZUSAMMENFASSUNG

Durch Entwicklungen in der mikroskopischen Bildgebung konnten intra- und interzel-

luläre Stoffwechselprozesse besser verstanden und z. B. strukturelle Eigenschaften von

viruellenKrankheitserregern sichtbar gemachtwerden.Die EntwicklungenderMikroskopie

haben die Entwicklungsgeschwindigkeit vieler anderer wissenschaftlichen Disziplinen

stark bereichert und beschleunigt. Während sich die Anzahl grundlegend verschiedener

Mikroskopietechniken in den letzten Jahren kaum geändert hat wurden viele Techniken

stark mittels numerischer Methoden erweitert. Mittlerweile rückt sogar der Software-

First Ansatz in den Vordergrund, wobei ein theoretisches Bildgebungsproblem zuerst

mittels eines Algorithmus gelöst und anschließend ein existierendes Mikroskopiesystem

angepasst oder ein neues Mikroskopiesystem entwickelt wird. Während sich die in den

v



Laboren vertretene Vielfalt an Mikroskopietechniken langsam erweitert hat sind insbeson-

dere die grundlegenden Techniken derWeitfeld- sowie konfokalen Fluoreszenzbildgebung

noch immer am weitesten verbreitet.

Bestehende Mikroskopietechniken müssen nicht vollständig ersetzt werden, sondern

können durch eine partielle Erweiterung des Aufbaus und/oder eine geeignete Verar-

beitung der Daten leicht verbessert und erneuert werden. In dieser Arbeit wird der Abbil-

dungsprozess der oben genannten grundlegenden Mikroskopietechniken ganzheitlich

behandelt, um allgemeine Strategien aufzuzeigen und ihren Informationsgehalt zu max-

imieren. Für die Modellierung des Messprozesses wird von Poisson- oder Schrotrauschen

als fundamentalen Rauschprozess ausgegangen.

Eine stabile Fokusposition ist eine Grundbedingung für z. B. Langzeitmessungen um

verlässliche Aussagen über die Veränderungen im Sichtfeld (field of view (FoV)) treffen

zu können. Während neuere Mikroskopiesystem mit hardware Autofokus ausgestattet

werden können ist dies noch nicht der überall verbreitete Standard. Zur bildbasierten

Fokusanalyse werden verschiedene Metriken für ideale, verrauschte und spherisch sowie

astigmatisch aberrierte Messungen vorgestellt. Die in-silico gewonnenen Erfahrungen wer-

den an mittels 3D-gedruckten Mikroskops aufgenommenen, realen Messdaten evaluiert.

Die vermessenen Proben sind hierbei 1) anorganische Muster und 2) fixierte, nicht mehr

lebende (HeLa-) Zellen.

Die Frage einer stabilen Fokusposition ist auch am Beispiel einer konfokalen 2- Pho-

tonenbildgebung relevant und gleichzeitig ist die Situation am gegebenen Beispiel, der

Vermessung der Retina in der lebenden Maus, verschärft. Zusätzlich zum natürlichen

Drift der Fokusposition, der mittels vorher eingeführten Metriken evaluiert werden kann,

kommen rhythmischer Herzschlag, Atmung, unrhythmisches Muskelzucken und Bewe-

gung der im künstlichen Schlaf gehalten Maus hinzu. Für die unter diesen Umständen

gewonnenen Messdaten wird ein Dejitteralgorithmus vorgestellt, für dieses biologische

Beispiel relevante in-Silico Daten generiert und der vorgestellte Dejitteralgorithmus an

Simulations- sowie realen Messdaten evaluiert.

Der Schritt von der konfokalen hin zur Bildrastermikroskopie (Image Scanning Mi-

croscopy (ISM)) gelingt durch simples Ersetzen des Detektionspinholes durch ein Detek-

torarray, z. B. eine Kamera. Dadurch wird statt bloßer Intensitätsmessung mittels Signalin-

tegration durch das Detektionspinhole die am Detektoranliegende Helligkeitsverteilung

mit derOrtsinformation der verschiedenenKamerapixel korreliert.Mittels der so gewonnenen
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zusätzlichen Information über die Probenverteilungwirdmit demThicksliceUnmixing ein

Verfahren zur Rekonstruktion von 3D aus 2D Bilddaten vorgestellt. Dieses Verfahren kann

weiterhin zur Unterdrückung von Licht, das außerhalb der fokalen Schicht erzeugt wurde,

von 3D-Datenstacks verwendet werden und wird mit einer selektiven Schicht Multi-

view Entfaltung verglichen. Zur Reduktion von Phototoxizität und sparen von wertvoller

Messzeit für einen 3D-Stack wird das Verfahren des zLEAP vorgestellt, durch welches

ausgelassene (Nyquist gesampelte) Z-Ebenen nachträglich ausgerechnet und eingefügt

werden. Die Ergebnisse werden an In-Silico sowie am Zeiss Airyscan aufgenommenen

Messdaten evaluiert.
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1
GENERAL INTRODUCT ION

Physicists are made of atoms. A physicist is an attempt by an

atom to understand itself.

— Michio Kaku

1.1 motivation

Microscopy is a cornerstone of everyday research and production in a wide range of

different disciplines. It can be used to resolve structures that lie far below the spatial

resolution limit and spectral and dynamic sensitivity of the eye. It thus enables more

detailed analysis of microscopic processes and opens up space for new questions and

insights. For example, for structural analysis of cancer cells resolutions well below 500 nm

are required, but field of view (FoV)s of at least 1 cell, i.e. ≥ 10µm, are necessary [1].

Once the general mapping of such an object is achieved, functional and time-dependent

properties can be investigated. The goal of this work is to assure imaging-quality of the

recorded data, e. g. for structural analysis of the sample, and to optimize existing methods.

Abbe’s mathematical analysis of diffraction-limited resolution of optical systems has

allowed to predict and analyze limiting effects of optical components [2]. Remarkably,

Abbe established a resolution limit, based on physical parameters of the optical system and

assuming the absence of any aberrations, which surpassed all other existing approaches at

the time and is still valid today. Abbe’s resolution limit describes the support-boundaries

of the transfer function of the analyzed optical system and can neither be exceeded

nor worsened by aberrations. Hence, it is a fundamental limit that allowed to replace

the hitherto common „trial and error“method by precise precalculations and led to the

production of high-quality optical-imaging devices.

The development of new optical and electrical components led to the advent of mi-

croscopy systems using wavelengths beyond the spectral sensitivity (VIS) of the eye,

380 nm − 750 nm [3], e. g. electron microscope. However, only microscopy techniques

with application in VIS are relevant to this work. The development of the confocal mi-

3



4 general introduction

croscope by Marvin Minsky in 1957 revolutionized fluorescence widefield imaging by

introducing optical sectioning [4]. Minsky used a divergent arc lamp and thus did not

work in 4f configuration (see Section A.4), but already used dichroic mirrors, a detection

pinhole and sample scanning. He illuminated a small volume of the sample partial co-

herently and imaged it onto a detection pinhole while using the same objective lens for

illumination and detection. The discovery and subsequent commercial proliferation of the

laser in 1960 led to changes in confocal design to 4f or 6f (Köhler illumination) systems.

Since then, confocal systems are mostly operated in laser scanning mode, which is why

they are also referred to as Confocal Laser Scanning Microscopy (CLSM).

In 1988 Sheppard describes how the detection pinhole together with the detector could

be replaced by an array of (point-like) detectors and suitably summed [5], i. e. Pixel Reas-

signment (PiRe). Müller & Enderlein published the first working experimental implemen-

tation of Image ScanningMicroscopy (ISM) in 2010 [6]. Steady advances of this technology

brought parallelized approaches with analog processing (2013: instant Structured Illumi-

nation Microscopy (iSIM) [7], Re-Scan [8], Optical-Photon-Reassignment (OPRA) [9],

2015: spinning-disk ISM [10]) as well as digital processing (2013: spinning-disk ISM [11],

2016: REfocusing after SCanning using Helical phase engineering (RESCH) [12]). The

major advantage of ISM over classical CLSM is that the pinholing effect is maintained by

the individual (point) detectors while no light is blocked by a physical pinhole. By reas-

signment, the additionally detected photons can be suitably combined and this leads to a

superconcentration effect, since more photons are reassigned to the same pixel position

than would have been the case in widefield or CLSM [13].

Although the confocal microscope was established as the gold standard in the bio-

logical community quickly after its discovery, new solutions in the form of microscopy

systems have evolved in parallel to address increasingly challenging questions. Methods

of fluorescence microscopy have been (further) developed with particular success. They

can be divided into linear and non-linear methods with respect to the sample response

to the excitation field. Non-linearity is usually achieved by saturation or excitation of

higher harmonics in the sample response, which is why almost any linear system can be

directly converted into a non-linear system. Furthermore, the methods can be divided into

wide-field and scanning methods, such as the CLSM. Most methods agree on the fact that

the axial dimension is recorded as a (z-/axial-) stack slice by slice. Despite all further and
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new developments, the CLSM is still a standard system in many laboratories. This can

be explained, among other things, by its design, ease of calibration, ease of modification,

comparatively low construction costs and wide availability of equipment and protocols.

In order to modify existing ISM setups and to use their data more efficiently through

improved computational reconstruction, a deep understanding of the underlying theoret-

ical approaches is necessary. This knowledge will be conveyed in the following sections

and the nomenclature used will be introduced step by step.

For a better understanding of the advance made in this thesis a foundation of the

theory of image formation and interaction of light with matter is important. The main part

of the thesis uses predominantly high-level descriptions and abbreviations of imaging

operators. A brief compilation of fundamental equations, derivations and assumptions

will be presented. The aim of this section is to describe the imaging process in the case

of fluorescent imaging. For this purpose, suitable field propagators are first introduced

for propagation e. g. from the sample through the optical measurement system to the

detector. Further, necessary technical terms and equations for the used setup geometries

(e. g. ISM) as well as resolution criteria are presented.

For a more thorough derivation see Appendix A and the splendid work by Mertz [14],

Goodman [15] and Born & Wolf [16].

1.2 useful equations and formalism

The Fourier-Transformation throughout this thesis and is defined as:

forward: 𝐹 ( ⃗𝑘) ≡ ℱ {𝑓 ( ⃗𝑥)} ( ⃗𝑘) ≡ (2𝜋)−3/2 ∫
ℝ3

𝑓 ( ⃗𝑥) 𝑒−𝑖�⃗� ⃗𝑥𝑑 ⃗𝑥 (1.1)

backward: 𝑓 ( ⃗𝑥) ≡ ℱ−1 {𝐹 ( ⃗𝑘)} ( ⃗𝑥) ≡ (2𝜋)−3/2 ∫
ℝ3

𝐹 ( ⃗𝑘) 𝑒𝑖�⃗� ⃗𝑥𝑑 ⃗𝑘 (1.2)

and 𝑖 = √−1 the imaginary unit. Further, the convolution operation ⊗ is defined as:

[𝑓 ⊗ 𝑔] (𝑥) ≡ ∫
ℝ3

𝑓 ( ⃗𝑥′)𝑔( ⃗𝑥 − ⃗𝑥′)𝑑 ⃗𝑥′ (1.3)

The convolution is typically interpreted to span thewhole 3D real space and hence ⊗ = ⊗ ⃗𝑥.

If the operation is limited to a different domain, e. g. the lateral 2D plane, then this is

marked by a representative vector of this domain, hence e. g. by appending ⃗𝜒 on the

operator to form ⊗ ⃗𝜒.
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For an arbitrary set 𝑥1, 𝑥2, … , 𝑥𝑛, 𝑛 ≥ 3 of realizations of a random variable 𝑋 the symbol

∀ means that a statement holds for all elements (here: realizations of 𝑋) taken from this

set.

For two discrete, jointly distributed random variables 𝑋, 𝑌 with random distributions

𝑃𝑋, 𝑃𝑌 and at least partially non-zero joint distribution 𝑃𝑋𝑌 the adopted nomenclature

is [17]:

Expectancy 𝔼 {𝑋} = ∑
𝑥

𝑋 ⋅ 𝑃𝑋 (𝑋 = 𝑥) (1.4)

Variance 𝕍 {𝑋} = (𝔼 {𝑋})2 − 𝔼 {𝑋2} (1.5)

Standard Deviation 𝕊 {𝑋} = √𝕍 {𝑋} (1.6)

Co-Variance 𝕎 {𝑋, 𝑌} = 𝔼 {[𝑋 − 𝔼 {𝑋}] [𝑌 − 𝔼 {𝑌}]} (1.7)

Within this thesis, the words expectancy and mean will be used interchangeably. The

extension to complex random variables is straightforward [18].

To determine the distance Δ𝑀 = 𝑀(1) − 𝑀(2) between two images or matrices 𝑀(1),

𝑀(2) the 𝑙𝑝 norm [19] is used in this work:

∥Δ𝑀∥𝑝
𝑝 ≡ ⎡⎢

⎣

𝑁(i)

∑
𝑖

∣Δ𝑀𝑖∣
𝑝⎤⎥
⎦

1/𝑝

(1.8)

with 𝑁(i) the number of pixels of used. The distance Equation 1.8 thus determines the 1/𝑝

exponentiated sum of the 𝑝 exponentiated amounts of all pixels of the difference matrix

Δ𝑀. Note, that even though 𝑀 is a (potentially N-dimensional) matrix it is flattened in

Equation 1.8 for brevity.

1.3 the imaging process

In most of this thesis’ analyses the sample as well as the imaging process will be treated

as 3D while the detector axially cuts out one slice of the incident field, i. e. sharp in-focus

image information together with Out of Focus (0oF) blur is measured.

The spreading of the response signal of an illuminated point-like sample through-out

the optical system can be characterized by the Amplitude Point Spread Function (APSF)

in case of coherent or Point Spread Function (PSF) ℎ in case of incoherent, e. g. fluorescent,

light. The Fourier transformed APSF is called Amplitude Transfer Function (ATF) and
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Figure 1.1: Fourier-Relations in 3D. a,b,g,h) in Fourier space and c-f) in real space coordinates.

ATF at cut a) 𝑘𝑧 = 0, b) 𝑘𝑦 = 0; APSF at cut c) 𝑧 = 0, d) 𝑦 = 0; PSF at cut e) 𝑧 = 0,

f) 𝑦 = 0; OTF at cut g) 𝑘𝑧 = 0, h) 𝑘𝑦 = 0. d) shows the half-opening angle 𝛼 of

the objective lens and h) the missing cone in magenta. All panels are normalized to

individual maximum and have a gamma of 0.5. log10(1 + ℎ̃) normalization is applied

to g+h) beforehand.

the Fourier transformed PSF is called Optical Transfer Function (OTF) ℎ̃. For analysis of

transferable Fourier spatial frequencies by an optical system the extent of the non-zero

region of the OTF, the so called OTF support supp {ℎ̃}, is of high-interest. For a more

detailed introduction see Section A.2.

In the following ⃗𝑥 = [𝑥, 𝑦, 𝑧] is the continuous 3D spatial coordinate vector, ⃗𝜒 = [𝑥, 𝑦]

is the lateral coordinate vector, ⃗𝑘 = [𝑘(x), 𝑘(y), 𝑘(z)] is the 3D spatial frequency vector and

⃗𝜅 = [𝑘(x), 𝑘(y)] is the lateral spatial frequency vector.

Given a fluorescent density distribution 𝑆 ( ⃗𝑥(0)), typically called sample, residing at a

position 𝑧 = 𝑧(0) and being excited with an excitation intensity distribution 𝐼(ex) ( ⃗𝑥(0))

the emitted irradiance 𝐼(0) ( ⃗𝑥(0)) = 𝐼(ex) ( ⃗𝑥(0)) ⋅ 𝑆 ( ⃗𝑥(0)) at 𝑧 = 𝑧(0) can be measured if the

sample is axially (Z-) scanned. The propagation of irradiance 𝐼(0) through the optical

detection system can be modeled by convolution (Equation 1.3) of 𝐼(0) with the detection

system’s PSF ℎ(det), thereby yielding the measurable Z-scanned irradiance distribution at

𝐼(1) 𝑧 = 𝑧(1):

𝐼(1) ( ⃗𝑥(1)) = [ℎ(det) ⊗ 𝐼(0)] ( ⃗𝑥(1)) (1.9)
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Fourier transformation of Equation 1.9 yields the Fourier frequency spectrum of the

irradiance distribution at the detector at 𝑧 = 𝑧(1):

̃𝐼(1) ( ⃗𝑘) = ℎ̃(det) ( ⃗𝑘) ̃𝐼(0) ( ⃗𝑘) (1.10)

Note, that in Equation 1.10 the spectrum at every ⃗𝑘 is calculated by a point-wise multipli-

cation of the OTF ℎ̃(det) with the emission spectrum ̃𝐼(0) ( ⃗𝑘(0)) = [ ̃𝐼(ex) ⊗�⃗�
̃𝑆] ( ⃗𝑘(0)).

Figure 1.1 displays the relation between 3D APSF (a+b), ATF (c+d), PSF (e+f) and

OTF (g+h) in case of a single lens. The first and third column are defined in Fourier

space while the second and forth column use real space. The half objective lens’ opening

angle 𝛼 is visualized in panel d). Panel h) demonstrates the basic information transfer

problem of a single lens at low lateral spatial frequencies, the so-called missing cone.

The OTF support supp {ℎ̃} is axially not extended and hence these frequencies cannot

be distinguished/resolved. This leads to 0oF blur by low-frequency information (e. g. a

fluorescent plane) not only of adjacent but of all axial slices of the Z-stack. Naively, every

wave that can be detected by an optical system is automatically resolved. In fact, this

statement is wrong in many respects. The core idea was already formulated by Ernst-

Abbe [2]. He finds that to resolve a scattering object through a lens / optical system, at

least two diffraction orders must be intercepted and interfered. Classically, the ballistic

field (0th order) and the ±1(st) order of scattering are often used here. While Abbe in

case of illuminating the sample without an angle (=central illumination) finds the lateral

resolution limit 𝑑(Abbe central) = 𝜆
NA , it is the case of „extreme oblique illumination“ [2]

that became famous and the lateral limit he found is:

𝑑(Abbe,coherent) =
𝜆

NA(cond) + NA(det) (1.11)

𝑑(Abbe) =
𝜆

2NA (1.12)

where NA = 𝑛 sin(𝛼), 𝑛 is the immersion medium and 𝛼 is the half aperture angle of

the microscope objective. Equation 1.11 is also called „Abbe’s diffraction limit“ in case

of coherent and Equation 1.12 in case of incoherent (e. g. fluorescent) imaging, because

it describes the maximum resolvable spatial frequency of a diffraction limited optical

system. Thus the maximum lateral frequency 𝑘(Abbe) or lateral cut-off frequency 𝑘(C) in

Fourier space can be derived via:

𝑘(C) ≡ 𝑘(Abbe) =
2𝜋

𝑑(Abbe) (1.13)
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The limit can be partially overcome using a priori assumptions about the sample type,

distribution, or behavior (see Section 1.7). The systems analyzed in this thesis mainly use

a highly coherent illuminating laser that is mostly focused on an (incoherently interacting)

fluorescent sample (see Section 1.5).

Limit Name Measure

Airy Unit 𝑑(1AU) = 2.44 𝑑(Abbe)

FWHM 𝑑(FWHM) ≈ 1.02 𝑑(Abbe)

Sigma Gauss 𝜎(cG) ≈ 0.42 𝑑(FWHM)

Table 1.1: Resolution measures. Set of resolution measures used within this thesis. Inspired

by [20] and [21].

The exact formulation of the circumstances around the measuring apparatus as well as

the sample are essential for the definition of a suitable resolution measure. The measures

used in this thesis are given in Table 1.1 and based on the assumptions of a simultaneous

measurement, no statistical recalculation and unknown but equally bright sample structure. One

Airy unit 𝑑(1AU) is the disc-diameter of the central non-zero region, i. e. from the −1(st) to

the +1(st) minimum, of the PSF. 𝑑(FWHM) is the diameter of the in-focus PSF central peak

at half of its maximum value. 𝜎(cG) is the standard deviation standard deviation 𝕊 {ℎ(G)}

of a Gaussian ℎ(G) that fits the in-focus (i. e. 2D) PSF ℎ in case of adaptive offset clipping

w. r. t. the PSF maximum.

For an ideal or non-noise limited imaging process the Full Width at Half Maximum

(FWHM) is an established measure for comparison and typically bead or line-samples

are used for characterization. In case of noise-limited imaging the cut-off frequency is

predominantly determined by the noise-floor. Here, Fourier-Ring-Correlation [22] for

estimation of the cut-off frequency is a promising approach. If the underlying statistics

for describing the photon nature can be represented by a Poisson-process the general

noise-limitation can be overcome by simply collecting more photons (see Section 1.7).
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1.4 widefield- and confocal imaging

Building on the findings in the previous sections, any optical system can be described

for both coherent (Equation A.51) and incoherent imaging (Equation A.52) using the

respective PSF or OTF. Since most imaging methods in the context of this work use

fluorescent samples, henceforth incoherent imaging will be described.

During image recording, the intensity distribution 𝐼(1) (Equation 1.35) present in the

detector plane is time- and space integrated (i. e. discretized) and converted into digital

units. Thus, for a simplified description, the sample is viewed as consisting of a set of

discretized voxels. The forward model appropriate for the imaging method of interest can

straightforwardly be transferred to the discretized representations of the sample 𝑆, the

system PSF ℎ and the ideal (i. e. noise-free) measured image

(

𝑀, which represents the

discretized version of 𝐼(1) in case of an axial sample scan.

In case of fluorescence widefield microscopy (i. e. non-scanning) mode the ideal image

(

𝑀 directly follows from Equation 1.9 and Equation 1.30 as:

(

𝑀 (WF) ( ⃗𝑥(1)) = ∫ 𝑑 ⃗𝑥(0) ℎ(WF) ( ⃗𝑥(1) − ⃗𝑥(0)) 𝑆 ( ⃗𝑥(0)) = [ℎ(WF) ⊗ 𝑆] ( ⃗𝑥(1)) (1.14)

This mode is called Widefield Microscopy (WF). The continuous convolution operation

of the forward model (Equation 1.9) can be approximated as:

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑀 = H ⋅ ⃗𝑆 (1.15)

(

𝑀 𝑙 = ∑
𝑚

𝐻𝑚𝑙 ⋅ 𝑆𝑚 ∀𝑙 (1.16)

where the 3D ideal image

(

𝑀 and sample 𝑆 have been flattenend into 1D-vectors ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑀 ∈ ℝ𝑙

and ⃗𝑆 ∈ ℝ𝑚 such that the multiplication with the kernel matrix H ∈ ℝ𝑚×𝑙 could be

written more compact. Equation 1.16 is a component-wise representation of Equation 1.15.

The change from fluorescence WF to CLSM imaging is accomplished by focusing the

illumination and scanning the sample laterally to store spatially resolved brightness

information per scan position. For fluorescence CLSM, together with the assumption

of the sample being a 3D-stack of thin slices Equation 1.9 can be used. The pinhole is

located in the detector plane and assumed to have no axial extent. Thus the 3D pinhole

function 𝐵( ⃗𝜒(1), 𝑑𝑧) of infinitesimal axial extent 𝑑𝑧 will be used as a 2D function 𝐵( ⃗𝜒(1)). By

changing the lateral extent and position of the pinhole, the actual imaged confocal focal
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volume size and position, i. e. imaged volume of the sample, can be changed. A detector

located directly behind the pinhole thus detects the spatially summed (integrated) flux:

Φ(1) = ∫ 𝑑2 ⃗𝜒(1) 𝐵 ( ⃗𝜒(1)) 𝐼(1) ( ⃗𝑥(1)) ∣𝑧(1)=0

Φ(1) = Φ(ex) ∭ 𝑑2 ⃗𝜒(1)𝑑2 ⃗𝜒(0)𝑑𝑧(0)𝐵 ( ⃗𝜒(1)) ℎ(det) ( ⃗𝜒(1) − ⃗𝜒(0), 𝑧(0))

⋅ ℎ(ex) ( ⃗𝜒(0), 𝑧(0)) 𝑆 ( ⃗𝜒(0), 𝑧(0)) (1.17)

where 𝐼(ex) ( ⃗𝑥(0)) = Φ(ex)ℎ(ex) ( ⃗𝑥(0)) and Φ(ex) = ∫ 𝑑3 ⃗𝑥𝐼(ex)( ⃗𝑥). Since in this imaging

method the spatial sample information is lost, due to the lateral integration, the sample

must be scanned such that an image is gained by correlation of scanning positions with the

measured fluxes. Through a scanning unit, the illumination is scanned and the detection

is simultaneously descanned, thus with Equation 1.17 the ideal CLSM image

(

𝑀 (CLSM)

and respective effective PSF ℎ(CLSM) as well as OTF ℎ̃(CLSM) are obtained according to:

(

𝑀 (CLSM) ( ⃗𝑥(s)) = Φ(ex) ∫ 𝑑3 ⃗𝑥(0) ℎ(CLSM) ( ⃗𝑥(0) − ⃗𝑥(s)) 𝑆 ( ⃗𝑥(0))

= Φ(ex) [ℎ(CLSM) ⊗ 𝑆] ( ⃗𝑥(s)) (1.18)

ℎ(CLSM)( ⃗𝑥(0) − ⃗𝑥(s)) = ∫ 𝑑2 ⃗𝜒(1)𝐵 ( ⃗𝜒(1) − ⃗𝜒(s)) ℎ(det) ( ⃗𝜒(1) − ⃗𝜒(0) − ⃗𝜒(s), 𝑧(0) − 𝑧(s))

⋅ ℎ(ex) ( ⃗𝜒(0) − ⃗𝜒(s), 𝑧(0) − 𝑧(s))

= [[𝐵 ⊗2𝐷 ℎ(det)] ℎ(ex)] ( ⃗𝑥(0) − ⃗𝑥(s)) (1.19)

ℎ̃(CLSM)( ⃗𝑘) = [(�̃� ℎ̃(det)) ⊗3𝐷 ℎ̃(ex)] ( ⃗𝑘) (1.20)

Note that ℎ(ex) and ℎ(det) are completely sum normalized to 1 and can be interpreted

as excitation and detection probability density functions. Hence, their product ℎ(CLSM)

resembles their joint probability density function which is the product of the two. While

Equation 1.17, before the integration due to detection, still reveals information about the

spatial distribution of the sample, Equation 1.18 only holds a brightness value at one scan

position and needs to be correlated e. g. with the positions of a scanning process.

Unlike in case of the incoherent WF system the OTF is a convolution of excitation

and detection OTF (Equation 1.20), which could even double the OTF-support supp {ℎ̃}

in the case of a (theoretically) Stokes shift free fluorescence. Similarly, it can be seen

that a finite-size pinhole cannot change the maximum possible Fourier support, but can

only manipulate the transfer efficiency of individual frequencies. Combining pinholes

of different shapes/sizes can be found to enhance the relative contrast of individual

frequency bands to each other thereby increasing perceived resolution [23]. A single
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spatially extended pinhole can only degrade the overall transfer contrast, compared to

the ideal transfer when using a 𝛿-like pinhole, with the limiting case being a completely

open pinhole which is the so-called scanned Widefield (sWF) case.

For the OTF support supp {ℎ̃(CLSM)}, we find the lateral 𝜅(Abbe) as well as axial 𝑘(Abbe)
𝑧

maximum frequency to be:

𝜅(Abbe,CLSM) =
4𝜋NA
𝜆(h) , 𝜆(h) =

𝜆(ex) 𝜆(det)

𝜆(ex) + 𝜆(det) (1.21)

𝑘(Abbe,CLSM)
𝑧 =

4𝜋NA (1 − cos 𝛼)
𝜆(h) sin 𝛼

(1.22)

where 𝜆(h) is the harmonic sum of 𝜆(ex) and 𝜆(det) [24]. Unlike the WF 3D PSF ℎ(WD)

(Equation 1.14), whose axial intensity profile is very different from the lateral distribution,

the CLSM 3D PSF ℎ(CLSM) (Equation 1.19) can be analyzed fundamentally well by only

using its central (1st) Airy-unit and approximating it with a 3D Gaussian blob1. In doing

so, one finds that the lateral standard deviation 𝜎(CLSM,lat) of this approximation is at most
√2 smaller than 𝜎(WF,lat). Given, that 𝜎 can be converted into FWHM (Table 1.1) the same

argument holds for the FWHM, even though the support of the OTF doubles.

By using the pinhole in the confocal microscope, high axial sectioning, due to 0oF

rejection, is exchanged for efficient use of the intensity distribution arriving at the detector.

To be able to detect all photons, in Image Scanning Microscopy (ISM) the single detector

is replaced by a detector array (e. g. a camera) and the physical pinhole is omitted. This

changes Equation 1.18 to:

𝑀(ISM)
𝑎 ( ⃗𝑥(s), ⃗𝑥(a)) ≡ Φ(1)

𝑎 ( ⃗𝑥(s), ⃗𝑥(a))

Φ(1)
𝑎 ( ⃗𝑥(s), ⃗𝑥(a)) ≡ Φ(ex) [ℎ(CLSM)

𝑎 ⊗ 𝑆] ( ⃗𝑥(s), ⃗𝑥(a)) (1.23)

ℎ(ISM)
𝑎 ( ⃗𝑥(s), ⃗𝑥(a)) = [ℎ(det)

𝑎 ⋅ ℎ(ex)] ( ⃗𝑥(s), ⃗𝑥(a)) (1.24)

ℎ(det)
𝑎 ( ⃗𝑥(s), ⃗𝑥(a)) = [𝐵𝑎 ⊗ ℎ(det)] ( ⃗𝑥(s)) (1.25)

Note, that Equation 1.18 can be derived from Equation 1.23 by restricting to the center

pinhole only, e. g. in the case of 𝑁(a) pinholes thus choosing 𝑎(c) = ⌊𝑁(a)

2 ⌋ and ⃗𝑥
(⌊ 𝑁(a)

2 ⌋)
= 0.

Here ⌊⋅⌋ selects the lower rounded integer. In Equation 1.25, 𝐵𝑎 was introduced to be

able to model the differences of the individual camera pixels (e. g. shape and detection

efficiency). For the simulations all camera-pixels where assumed to be of equal shape and

efficiency.

1 A repeated convolution of a function 𝑓 (1) with a second function 𝑓 (2) converges towards a Gaussian shaped

result 𝑓 (3), see central limit theorem [17].
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The OTF support supp {ℎ̃(ISM)} of ISM is identical to the support supp {ℎ̃(CLSM)} of the

CLSM system, but so far we have only detected additional 0oF information by means of

neighboring pixels and thus rather reduced the foreground/background ratio. Interpreting

ℎ(CLSM) again as a joint-probability density function and asking where to find the most

likely position of the fluorescent emitter given excitation ⃗𝑥(s) and detection position ⃗𝑥(a),

this can be determined using a Center of Mass (CoM) (see Equation 3.5) approach. Once

these positions are known, the information stored at the detector positions can be shifted

back to the most likeli emission positions with a summation over all views afterwards.

This processing strategy is called PiRe and the final image 𝑀(rISM) can be calculated to:

𝑀(rISM) ( ⃗𝑥(s)) = ∑
𝑎

𝑀(ISM)
𝑎 ( ⃗𝑥(s), ⃗𝑥(a)) ⊗ 𝛿 ( ⃗𝑥(s) − 𝑚(ISM) ⃗𝑥(a)) (1.26)

ℎ̃(rISM) ( ⃗𝑘(s)) = ∑
𝑎

[ℎ̃(det)
𝑎 ⋅ ℎ̃(ex) ⋅ 𝑒𝑖𝑘𝑚(ISM)𝑥(a)] ( ⃗𝑘(s)) (1.27)

with the effective reassigned ISMOTF ℎ̃(ISM) ( ⃗𝑘(s)) and 𝑚(ISM) the reassignment shift factor.

Under the assumption, that the effective PSF ℎ(ISM)
𝑎 ( ⃗𝑥(s), ⃗𝑥(a)) (Equation 1.24) of each

view can be suitably approximated for a practical measurement processes by a Gaussian

distributionwith negligible errors, all ℎ(det)
𝑎 and ℎ(ex) can be defined by aGaussian function.

Then, if additionally 𝜆(ex) = 𝜆(em) the most probable emission position is ⃗𝑥(m,a) = ⃗𝑥(a)/2,

corresponding to a shift factor of 𝑚(ISM) = 0.5. A brief demonstration of PiRe in case of

simple transition from CLSM to ISM by using a camera instead of a Photo-Multiplying

Tube (PMT) is given in Section 4.2.1.

The reassignment can be applied fully analog/optical [9] or digital [6] and leads to a

densification of the photon distribution which is also called superconcentration [13]. Since

the theoretical description by Sheppard in 1988 [5], many different ISM configurations

have evolved, such as e. g. parallelization by multi-focal scanning and descanning with

two Digital Micromirror Devices (DMDs, [25]), deeper sample penetration using 2-

photon single-focus [26], video-framerate imaging [10], or 3D reconstruction using 2D

measurements and detection-psf manipulation [12].
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Figure 1.2: Jablonski Diagram for an exemplary set of transitions for 4 states of an excitable

fluorophore. 𝑆0, 𝑆1, 𝑆2 are the electronic singlet and 𝑇1 triplett states. Radiationless

Vibrational Relaxation (VR) and Internal Conversion (IC) are marked with red and

blue, while the quantum-mechanically forbidden Intersystem Crossing (ISC) is dis-

played in purple. 𝑘(a) marks the absorption rate of incoming photons while 𝑘(f) and

𝑘(p) are the radiative de-excitation (fluoroscence and phosphorescence) processes.

The vibronic levels are drawn in slight grey and examplarily named in case of 𝑆0
0 to

𝑆2
0. Inspired by [27].

1.5 fluorescence

For modelling the imaging process the Born approximation (Section A.8) is used, since its

assumptions are approximately fulfilled in case that the emitted light is spatio-temporarily

incoherent, meaning that the mutual interference of the sample response reduces to a

delta peak (see Equation A.50). Fluorescence fulfills these requirements and thus the

derivations made in Section 1.3 for Fourier-Optics can be directly applied to describe the

imaging process of a fluorescent sample.
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For describing light-matter interaction in case of photon absorption and emission of

multi-atomic molecules the Jablonski diagram will be adopted as simplified model [27].

Section A.9 provides a more detailed discussion on the assumption and implications of

Jablonski diagrams.

Here, a valence electron can be excited from the ground state 𝑆0
0 to a higher energy state

𝑆𝑘
𝑗 by supplying the appropriate discrete energy Δ𝐸0,𝑘

0,𝑗 . The upper indices here describe

the vibrational level - and are often not directly noted - while the lower indices denote the

electronic level or general energy state. Rotational states are omitted.

For a 4-state system, the absoprtion (a) of a photon of suitable wavelength excites

a valence electron from the ground state 𝑆0
0 to an excited electronic state, 𝑆4

2, with the

absorption rate, 𝑘(a):

𝑘(a)( ⃗𝑥) = 𝜂(a)( ⃗𝑥)𝐼(ex)( ⃗𝑥) (1.28)

and 𝜂(a) ( ⃗𝑥) the fluorophore optical absorption cross-section. The spatial dependence

is typically omitted, i. e. 𝑘(a)( ⃗𝑥) → 𝑘(a). The electron does not fall directly back to the

ground level 𝑆0
0, but the excited system lowers its energy through vibrational relaxation as

well as interactions with the environment (often referred to as Stokes shift). The excited

system will generally relax to the ground vibrational level in the lowest excited electronic

state, from where other electronic transitions, e.g. fluorescence, can take place (Kasha’s

Rule) [27]. In this example, the electron initially falls back to the vibronic ground level

of 𝑆1 (i.e., 𝑆0
1) without radiation within about 𝑡 = 10−11 s due to Vibrational Relaxation

(VR) and Internal Conversion (IC), i. e. 𝑆4
2 ⟶ 𝑆3

1 ⟶ 𝑆0
1. This state is stable for a short

time 𝒪 (𝑛𝑠). The electron can relax to the ground state non-radiatively via fluorescence-

quenching IC or via emission of a photon with Δ𝐸0,𝑙
1,0 as fluorescence (f) with the emission

rate ⟨𝑆1⟩ ⋅ 𝑘(f). Here, 𝑘(f) = 1/𝜏(f) is the emission rate constant and 𝜏(f) the fluorescent

lifetime. Note, that the total radiative lifetime is anti-proportional to the sum of radiative,

non-radiative and Intersystem Crossing (ISC), but will not be discussed further here. A

forbidden transition via spin-flip into the energetically more favorable and slightly more

stable triplet state 𝑇𝑚
1 is also possible, although this process occurs much less frequent

than the previous two processes and on longer time scales (ms). The transition from the

triplet state 𝑇0
1 to 𝑆3

0 can be radiationless and is called ISC. ISC takes a comparably long

time as the transition probability is low due to spin restrictions. In the case of a radiative

transition, one speaks of phosphorescence (p). All these and further non-accounted-for
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processes (e. g. bleaching or Förster-Resonance Energy Transfer (FRET)) finally result in

a fluorescence flux Φ(F) [𝑊] which can be described by:

Φ(F) = 𝑄(e)𝜂(F)𝐼(ex) (1.29)

with 𝑄(e) the fluorophore quantum efficiency, 𝜂(F)/ [𝑐𝑚2] the absorption cross-section

of the fluorophore and 𝐼(ex)/ [𝑊/𝑐𝑚2] the local illumination intensity. Here, 𝐼(ex) was

assumed to be small enough such that the fluorescent flux Φ(F) can be modelled as a linear

function in 𝐼(ex). Φ(F) can be converted to the fluorescence emittance 𝐼(F) per unit-depth

𝑑𝑧/ [𝑚] by multiplication with the local concentration per Z-slice 𝐶(F) ( ⃗𝜒, 𝑑𝑧) / [𝑐𝑚−2] to:

𝐼(F) ( ⃗𝜒, 𝑑𝑧) = Φ(F)𝐶(F) ( ⃗𝜒, 𝑑𝑧)

= 𝐼(ex) ( ⃗𝜒, 𝑑𝑧) 𝑆(F) ( ⃗𝜒, 𝑑𝑧) (1.30)

by using the voluminetric (thin-slice) local fluorescence response 𝑆(F) = 𝑄(e)𝜂(F)𝐶(F) with

Equation 1.29.

According to the previous descriptions, an excitation spectrum consisting of many

narrow peaks and an emission spectrum shifted towards longer wavelengths due to the

Stokes shift can be expected. In most practical measurement cases, however, in the Region

of Interest (ROI) not one molecule in isolation, but many molecules of the same kind are

surrounded by solvents and other molecules, which determine the local and overall envi-

ronment in near as well as in far distance. At rest and under constant external conditions,

an equilibrium state is formed for this mixture of molecules to be analyzed, in which most

of the similar fluorophores are in one of the possible vibronic levels of the ground state 𝑆0,

typically 𝑆0
0. Local excitation of some molecules changes many environmental parameters

and the dynamical system tries to return to equilibrium. In this process, different eigen-

states (vibronic levels) are successively adopted until the system transitions locally to a

more stable ground state, before the local reactivity is neutralized again and the system

falls back to the ground state 𝑆0. Time-scales and set of transition states chosen depend

additionally on the solvent relaxation.

Quantum mechanically, the transition from singlet to triplet states is forbidden for

an isolated molecule consisting of light atoms, but the pertubation of its own electron

distribution by the interactionswith the surroundingmolecules allows for such a transition.

If themolecule contains a heavy atom the spin-orbit coupling could enhance the probability

of a transition. The spin flip back to the singlet state is again forbidden, which is why this
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state is relatively long-lived [28]. Finally, this superposition of possible pathways, different

local environments and especially the influence of the solvent / different neighboring

particles results in the smearing and shifting of the single peaks to a continuous spectrum.

If the fluorophore would have been one isolated molecule in vacuum and would have

created an entangled statewith the exciting field, then the phase and orientation-relation to

the excitation-field would be continuous and a coherent description of the process would

be possible. Due to the random interaction with and pertubations by the environment

this phase-relation is lost and the fluorescent response to the incoming field can be

approximated as incoherent or phase-unrelated. The average coherence time is in the range

of 𝜏(f)
coh ∝ 𝑓 𝑠 [14] whereas typical detector speeds are orders of magnitude slower. This

allows for modelling the measurement process as a pure incoherent summation of non-

temporally coherent fluorescent events. The absorption efficiency of an exciting electron

by a fluorophore depends further on orientation of the fluorophore with respect to the

incoming polarization of the exciting field [29]. Fluorescence (as well as phosphorescence)

typically can be assumed to be spatially incoherent aswell, as the polarized light sent out by

each individual fluorophore (with its respective orientation) is not measured individually

but as an ensemble of wave-fronts emerging from many different fluorophores at different

spatial positions.

In this work, unless otherwise mentioned, the representative dye for simulations and

further analyses will be Alexa-488 [30]. This dye is pH stable and exhibits low photo-

bleaching. The dye has several relevant absorption bands, but in this workmainly 1-photon

processes are analyzed whereby excitation wavelengths between 400 𝑛𝑚 − 800nm are

relevant. Accordingly, excitation and emission around the maxima 𝜆(ex) = 490nm and

𝜆(em) = 525nm will be used.

1.6 signal, noise and similarity

The quantum nature of light leads to fluctuations in the discrete conversion of a photon to

electron during a detection process which is called shot noise. The measurement process

can also be formulated as asking the question: „What is the probability that 𝐾 = 𝑘 photons
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were measured in the time interval Δ𝑡 = 𝑇?“. The Poisson statistic 𝒫 of a random variable

𝐾 answers this question:

𝒫 {𝜇𝐾} ≡ 𝑃𝐾(𝐾 = 𝑘|𝜇𝐾) =
(𝜇𝐾)𝑘

𝑘! 𝑒−𝜇𝐾 (1.31)

with 𝐾 = 𝑘 realizations, i. e. measured photons, of the Poisson distributed random variable

𝐾 with expectancy 𝜇𝐾. The random variable 𝐾 is discrete (i. e. realizations 𝑘 ∈ ℕ+), but

the mean 𝜇𝐾 ∈ ℝ+
0 is continuous. The formulation 𝑃𝐾 (𝐾 = 𝑘 ∣ 𝜇𝐾) means: the probability

of measuring 𝐾 = 𝑘 > 0 photons given the mean 𝜇 > 0 of the random process takes the

value 𝜇𝐾.

While shot-noise can be viewed as multiplicative noise in the conversation from a contin-

uous field distribution into a discrete charge distribution, construction-related additional

multiplicative and additive noise sources are added in the processing of this charge. Pro-

vided that these additional noise sources or random variables 𝑋(i) aremutually independent,

they can be holistically and suitably normalized as a random variable 𝑋 = ∑𝑖 𝑋(i) whose

probability distribution can be described by Gaussian probability density by means of the

central limit theorem [17]:

𝒢 {𝜇𝑋, 𝜎2
𝑋} ≡ 𝑝𝑋 (𝑋 = 𝑥 ∣ 𝜇𝑋, 𝜎2

𝑋) =
1

√2𝜋𝜎2
𝑋

exp
⎧{
⎨{⎩

−
(𝑥 − 𝜇𝑋)2

2𝜎2
𝑋

⎫}
⎬}⎭

(1.32)

and hence 𝔼 {𝑋} = 𝜇𝑋 and 𝕍 {𝑋} = 𝜎2
𝑋 are the mean and variance of this distribution.

For this thesis shot noise is assumed to be the significant noise source. For a deeper

introduction see Section A.11 and for a comparison between Gaussian and shot noise see

Section A.12.

The Signal-to-Noise Ratio (SNR) generally describes the relationship between the

power of signal 𝐿(signal) and noise 𝐿(noise). The definition of signal and noise depends on

the objective of the analysis process. In the context of this work, signal 𝐿(signal) is defined

as the measured mean intensity 𝔼, discretized and amplified as the count 𝐾 (per pixel

or scanning position) of the photon flux at the detector Φ(T)(𝑡) (see Equation A.67 for

further details), but note that intensity and definition can change if 0oF is taken into

account. The noise 𝐿(noise) on the other hand describes the average fluctuation around the

mean intensity (i. e. signal) and is measured by the standard deviation √𝕍. While in real

space the mean also gives a real number, i. e. 𝔼 ∈ ℝ, in Fourier space it could be 𝔼 ∈ ℂ.
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Figure 1.3: Forward-Simulation Example Upper row shows maximum normalized real space

images with 𝛾 = 0.2 for 2a), else 𝛾 = 1. Lower row shows Fourier space magnitude

of images with log10(1 + ∣𝑀∣ / ∣max𝑀∣)𝛾 normalization and 𝛾 = 0.5. 1) spokes2d

target. 2) WF PSF at 𝑑(SPL,lat) = 50nm, 𝑁𝐴 = 1.4, 𝑛(im) = 1.518, 𝜆(em) = 488nm,

𝑁(pix) = [181, 181]. 3) WF image of 1a) (convolved with PSF 2a)). 4) Poisson noise

added with 𝑁(Phot) = 100. Theoretical OTF-support limit 𝑘(Abbe,WF) is shown as a

white, the noise induced cut-off frequency 𝑘(C) as an magenta circle.

However, since the SNR is to be used as a real measure and for the variance 𝕍 ∈ ℝ+

holds, a general real SNR of a random variable 𝐾 can be defined as:

SNR (𝐾) =
𝐿(signal) (𝐾)
𝐿(noise) (𝐾)

=
|𝔼 {𝐾}|
√𝕍 {𝐾}

∈ ℝ0
+ (1.33)

In real space, for a Poisson-distributed random variable 𝐾 such an SNR can be increased

by measuring more photons (Equation 1.34), i. e. increasing the mean:

SNR(𝒫) =
𝜇𝐾

√𝜇𝐾
= √𝜇𝐾 (1.34)

A brief 2D fluorescence WF simulation to display the difference between the theoretical

maximum size of the OTF support supp {ℎ̃} limited by 𝑘(Abbe) and the actual achieved

cut-off frequency 𝑘(C), where for 𝑘 ≥ 𝑘(C) the signal is indistinguishable from the noise

floor, follows. As simulation parameters a lateral pixel sampling of 𝑑(SPL,lat) = 50nm,

objective lens 𝑁𝐴 = 1.4, oil immersion with refractive index 𝑛(im) = 1.518, emission

wavelength 𝜆(em) = 515nm, measured pixel area 𝑁(meas) = [𝑁(x), 𝑁(y)] = [181, 181]

and 𝑁(Phot) = 100 as expected photon-count were used to simulate a noisy image of the
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spokes2d2 target. Figure 1.3 displays the simulation results. The spokes2d (Figure 1.31a)

target is convolved with the simulated PSF (2a) to yield the ideal image (3a). Finally,

Poisson noise is applied to the simulation (4a). The lower row of Figure 1.3 shows the

respective Fourier space representation of the upper row image in the same column.

The theoretical limit of the OTF-support supp {ℎ̃}, given by 𝑘(Abbe,WF) = 1/𝑑(Abbe) ≈

22/ (𝜇𝑚), is highlighted with a white circle in the Fourier-images b) of Figure 1.3. The

Fourier noise-floor 𝜎(WF) in case of the given WF imaging is calculated as an average of

pixels where 𝑘 ≥ 𝑘(Abbe,WF) holds. The effective noise-cutoff frequency 𝑘(C) is calculated

as the frequency for which on average ∣ℎ̃(𝑘)∣ ≈ 𝜎(WF) for 𝑘 ≥ 𝑘(C) holds and is marked

with a magenta circle. In this simulation 𝑘(C) = 11/ (𝜇𝑚).

Thus noise leads to the fact that high frequencies of the image spectrum cannot be

resolved, although they are measured with ideal imaging. However, reconstruction meth-

ods such as deconvolution can limit or even eliminate this degradation, see Section 1.7.

The information collected from the sample is low-pass filtered by the transfer function of

the system before it can be detected. During measurement the spatio-temporal continuous

intensity distribution at the detector is time-averaged into temporal bins of length 𝑇 and

measured according EquationA.52 as 𝐼(1) ( ⃗𝜒), which is subject to furthermanipulations by

the analog-digital-processing units until the final image 𝑀 is stored. In case of amulti-pixel

detector, each pixel has its own shape and detection efficiency and hence the discretized

photon-count at the 𝑘-th pixel can be described by [31]:

𝑀𝑘 = ∫
ℝ2

𝑑 ⃗𝜒 𝐼(1) ( ⃗𝜒) ⋅ 𝐷𝑘 ( ⃗𝜒) (1.35)

𝐷𝑘 ( ⃗𝜒) = ∫ 𝑑 ⃗𝜒𝑘𝜂𝑘 𝐴𝑘 ( ⃗𝜒𝑘) 𝛿 ( ⃗𝜒𝑘 − ⃗𝜒) (1.36)

where 𝜂𝑘 is the photon-conversion factor, 𝐴𝑘 ( ⃗𝜒) is the pixel-shape and 𝛿 ( ⃗𝜒 − ⃗𝜒𝑘) the

position of the k’s pixel within the detector coordinates. Analog to Equation 1.25 in this

thesis all pixels are assumed to have the same form- and photon-conversion factor, hence

𝜂𝑘 ≡ 𝜂 and 𝐴𝑘 ≡ 𝐴.

The precision of the discrete representation of 𝐼( ⃗𝑥) increases with the amount of sam-

pling pixels usedmaking the use of higher and higher polynomials for data-fitting possible.

It is even more remarkable that a bandlimited signal, as is the typical case in microscopy,

2 The spokes2d target is a binarized version of a radial-sinusoidal in 2D.
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can be reconstructed perfectly if sampled at twice the frequency of its band-limit. This is

called Shannon-Nyquist limit and can be written as:

𝑘(Ny) =
𝑘(SPL,lat)

2 ≥ 𝑘(Abbe) (1.37)

where 𝑘(Abbe) is the Abbe or maximum possible frequency of the linear bandlimited signal,

𝑘(SPL,lat) is the sampling frequency and 𝑘(Ny) is the Nyquist limit. Especially it predicts

that under the assumption of a bandlimited signal a too low sampling leads to aliasing,

meaning that high-frequencies are mirrored back into lower frequencies. See Section A.13

for a one and a two dimensional example.

In order to find an objective measure of measurement data comparability, the first

question to ask is what kind of transformation is preferred. That is, should dimensionality

of the (potentially n dimensional) measurement data be reduced (e. g. 1D or 2D), keep

its dimensionality or even increase to n+m dimensions? In the case of this work, for

convergence testing of deconvolution algorithms or reconstruction quality comparisons, a

one-dimensional image representation was chosen, i. e. a 2D/nD image is thus mapped to

a real number.

For the comparison of the similarity of two images 𝑀(1) and 𝑀(2), the Pearson corre-

lation coefficient, in this work denoted as Normalized Cross Correlation (NCC) 𝐶, was

chosen [32]:

𝐶 (𝑀(1), 𝑀(2)) = ∑
𝑙

𝑀(1,c)
𝑙 ⋅ 𝑀(2,c)

𝑙 ∈ ℝ[−1,1] (1.38)

𝑀(i,c)
𝑙 =

1
√𝑁(l) − 1

𝑀(i)
𝑙 − 𝔼 {𝑀(i)}

√𝕍 {𝑀(i)}
(1.39)

and 𝑁(l) the numbers of pixels of the image. Here, two images/stacks are reduced by

their mean value, normalized by their repective standard deviation before the (pixel-

wise) correlation is calculated. Two images are said to be NCC close if 𝐶 → 1, because

then not only high-similarity but positive correlation is given. 𝐶 → −1 stands for high

similarity but anti-correlation, thus the two images only differ by sign. Images are called

𝑁𝐶𝐶 independend if 𝐶 → 0. The sensitivity to (sub-) pixel shifts can be both good and

insufficient. Good, if the images should overlap pixel-wise exactly and relative intensity

changes should be compared. Insufficient, if the two very identical images are shifted by

𝑛 (sub-) pixels w. r. t. to each other. If the images have no inherent symmetry w. r. t. to
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𝑛 (sub-) pixel shift-operations, then the NCC measure might tend towards zero 𝐶 → 0

even though they are similar. Within this thesis, a reconstruction that achieves a NCC of

𝐶 ≥ 0.9 will be accepted as a reconstruction of high quality.

1.7 inverse modelling

The last chapters have laid the foundation for the description of the imaging process,

conditions on detectors as well as the generation of noise. In this chapter, an abstracted

forwardmodel is established and basic approaches and limits of invertibility are presented.

With Weighted Averaging in Fourier Space (WAVG) an approximately SNR-optimal

recombination of multiple images and with 1/𝑂𝑇𝐹, Wiener Deconvolution (WD) and

Richardson-Lucy Deconvolution (RL) different deconvolution schemes are outlined.

The imaging equation found for a fluorescent ISM (Equation 1.23) can be reformulated

as:

𝑀𝑎 = 𝒫 {ℎ𝑎 ⊗ 𝑆} = ℎ𝑎 ⊗ 𝑆 + 𝒩𝑎 (1.40)

𝑀𝑎 = ℎ̃𝑎 ̃𝑆 ̃𝑙 + �̃�𝑎 (1.41)

𝑀𝑎𝑙 = ∑
𝑚

𝐻𝑎𝑙𝑚 𝑆𝑚 + 𝒩𝑎𝑙 (1.42)

where 𝒩𝑎 is a specific value drawn from the specific noise distribution given a sample 𝑆,

�̃�𝑎 is the respective value drawn from the according noise distribution in Fourier space

and 𝒩𝑎𝑙 is the spatially-vectorized 1D-representation of 𝒩𝑎. All functional dependencies

have been omitted. While ℎ ⊗ 𝑆 is an ideal imaging process without any variance, the

real measured values are resembled by a draw from a Poisson-distributed (𝒫) random

variable with mean 𝜇𝑎𝑙 = ∑𝑚 𝐻𝑎𝑙𝑚 𝑆𝑚 per pixel and detector (Equation 1.42). Hence,

every image yields only limited and subjective information about a sample. The question

is: „How much information about 𝑆 can be recovered from the measured image 𝑀 given

a set of assumptions?“ In case only Poisson-noise is present in the image 𝑀 the 𝒩𝑎 ̃𝑙 holds

the same constant for all frequencies.

Note, that the partial derivative of Equation 1.42 with respect to the parameters 𝑆𝑛 is:

𝜕𝑆𝑛
𝜇𝑙 = 𝜕𝑆𝑛

∑
𝑚

𝐻𝑙𝑚𝑆𝑚 = ∑
𝑚

𝐻𝑙𝑚 (𝜕𝑆𝑛
𝑆𝑚) = ∑

𝑚
𝐻𝑙𝑚 𝛿𝑛𝑚 = 𝐻𝑙𝑛 (1.43)
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Every imaging process can be viewed as taking a sample from the ground-truth hence

representing a subjective view on reality. While 𝑃𝐾𝑙
(𝐾𝑙 = 𝑘𝑙 ∣ 𝜇𝑙) asks the question: „How

likely is it to measure the realization 𝑘𝑙 of a random variable 𝐾𝑙 given an unknown param-

eter 𝜇𝑙?“, an atomic likelihood function

ℒ𝑙 (𝜇𝑙 | 𝑘𝑙) = 𝑃𝐾𝑙
(𝐾𝑙 = 𝑘𝑙 ∣ 𝜇𝑙) can be introduced that asks: „How likely was a parameter-

realization 𝜇𝑙 under a given measurement 𝑘𝑙?“. Note the subtle difference that 𝑃𝐾𝑙
is a

probability distribution of the random variable 𝐾𝑙 and thus describes the probability of

a measurement while the likelihood function describes the (basic) parameters 𝜇𝑙 [33].

Hence, ℒ𝑙 (𝜇𝑙 | 𝑘𝑙) is not derived from 𝑃𝐾𝑙
(𝐾𝑙 = 𝑘𝑙 ∣ 𝜇𝑙) via Bayes Theorem (Equation 1.54),

but is the same w. r. t. notation while emphasizing the parameters instead of the measure-

ments.

The joint likelihood-function ℒ for a set of individual measurements can then be de-

scribed by:

ℒ (�⃗� | ⃗𝑘) = 𝑃�⃗� ( ⃗𝑘 | �⃗�) (1.44)

=
𝑁−1
∏
𝑙=0

𝑃𝐾𝑙
(𝐾𝑙 = 𝑘𝑙 ∣ 𝜇𝑙) (1.45)

with �⃗� = (𝜇0, 𝜇1, … , 𝜇𝑁𝜇
) the parameter vector and ⃗𝑘 = (𝑘0, 𝑘1, … , 𝑘𝑁−1) the measure-

ment vector (=pixel-values of measured image). By variation of parameters �⃗� a (local)

maximum of Equation 1.45 and thereby a most-likely estimate ̂�⃗� that might have given

rise to the measured ⃗𝑘 can be found. The found estimate ̂�⃗� is not necessarily connected

to the real ground truth which gives rise to further support the calculations by using

e. g. regularizers (Equation 1.55). Note that while Equation 1.44 still includes the case

of dependent random variables 𝐾𝑙 Equation 1.45 uses independent variables. Given that

Equation 1.45 is a positive function, its negative natural logarithm ln can be minimized

instead:

𝔏 (�⃗� | ⃗𝑘) = − lnℒ (�⃗� | ⃗𝑘) (1.46)

From the assumed model Equation 1.40 we know that the actual parameter 𝑆𝑚 is hidden

in 𝜇𝑙 = ∑𝑚 𝐻𝑙𝑚 𝑆𝑚 (Equation 1.16) and hence we need to find the optimal estimator ̂𝑆𝑚

that minimizes 𝔏. In case an analytic relation between the optimization function 𝔏 and

the estimator 𝑆𝑚 is given, the minimum can be found by analyzing its first and second

derivative.
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As explained above and in Section A.11 the object information degrades through the

imaging process. According to the imagingmodel given in Equation 1.41, it is reasonable to

think of reconstruction by direct inversion of the forward model, but this so-called 1/OTF

deconvolution either amplifies high spatial frequencies and particular noise strongly or

strongly low-pass filters the image. An in-depth explanation of these issues is provided in

Section A.18.

Instead, a better approach is to assume an information-limited measurement process

where it can be conjectured that the best possible estimator ̂𝑆𝑙 of each individually mea-

sured image pixel 𝑙 is Gaussian distributed around the original object distribution 𝑆𝑙.

Solving the log-likelihood problem Equation 1.46 for this conjecture leads to the filter-

function

𝑊 =
ℎ̃∗

∣ℎ̃∣
2

+ Γ
, Γ =

𝔼 {∣̃𝒩∣
2
}

∣ ̃𝑆∣2
(1.47)

which reconstructs an estimate of ̂𝑆 of the sample distribution according to ̂𝑆 = ℱ−1 {𝑊𝑀}

from the measured image 𝑀. The found filter Equation 1.47 is an optimal solution within

the assumptions and is called WD [34]. The complex conjugation of the OTF in the

numerator inverts any PSF conditional object shifts and reverts a potential asymmetry.

Generally problematic is the determination of the regularization parameter Γ for which

both original object spectrum ̃𝑆 and the noise spectrum ∣̃𝒩∣
2
are necessary. In the case of

the so-called generalized Wiener filter Γ = 𝑐𝑜𝑛𝑠𝑡. is set. Setting Γ/ℎ̃∗ ≡ 𝜀, the filter found

is equal to the regularized 1/𝑂𝑇𝐹 solution Equation A.83 in the domains ∣ℎ̃∣ ≠ 0. For the

derivation see Equation A.87.

Imaging methods with parallel acquisition of multiple viewing angles on the sample

distribution offer the possibility of individual as well as combined processing. In the

context of the processing methods presented so far, the different views of the SNR-optimal

weighted OTFs are subsequently simply summed together into one resulting view. A

suitable combination of all images with weights 𝜔𝑎 for all Fourier pixels ̃𝑙 can be found

according to Equation 1.41 as:

𝑀(wa)
̃𝑙 = ∑

𝑎
𝜔𝑎 ̃𝑙𝑀𝑎 ̃𝑙 (1.48)
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The processing that yields the image 𝑀(wa)
𝑙 = ℱ−1 (𝑀(wa)

̃𝑙 ) is called Weighted Averaging

in Fourier Space (WAVG) [35]. The weights 𝜔𝑎 are found to be:

𝜔𝑐 = ℎ̃𝑐�̃�−2
𝑐 (1.49)

with the variance 𝕍 {ℎ̃𝑐} = �̃�−2
𝑐 . Note the difference of Equation 1.49 to Equation 1.47.

While the weights are mainly influenced by the PSF as before in case of Wiener-Filtering

the normalization is with respect to their individual variance. The SNR-optimal recombina-

tion 𝑀(wa) has a non-uniform noise-spectrum as opposed to the assumed noise-spectrum

according to the forward model Equation 1.40. By utilization of Equation A.92 and Equa-

tion 1.49 noise normalization can be achieved via:

𝑀(nwa) =
𝑀(wa)

√𝕍 {𝑀(wa)}
(1.50)

𝕍 {𝑀(wa)} = ∑
𝑎

ℎ̃2
𝑎�̃�−2

𝑎 (1.51)

This processing is called noise normalizedWeightedAveraging in Fourier Space (nWAVG).

With Equation 1.48 a noise-normalizedOTF ℎ̃(nwa) can now be introduced (formore details

on the derivation see Section A.20):

ℎ̃(nwa) = ∑
𝑎

𝜔𝑎ℎ̃𝑎 = ∑
𝑎

[ℎ̃𝑎�̃�−1
𝑎 ]

2
(1.52)

Assuming a set of independent-Poisson distributed random variables, i. e. each mea-

sured pixel, with distribution 𝑃𝐾𝑙
(𝐾𝑙 = 𝑘𝑙 ∣ 𝜇𝑙) (Equation A.65) an extremum of the log-

likelihood 𝔏 of the Maximum Anterior Likelihood (MAL) problem w. r. t. the parameters

𝑆𝑛 can be found according to:

𝜕𝑆𝑛
𝔏 = −𝜕𝑆𝑛

ln ⎡⎢
⎣

𝑁−1
∏
𝑙=0

𝑃𝐾𝑙
(𝐾𝑙 = 𝑘𝑙 ∣ 𝜇𝑙)⎤⎥

⎦
!= 𝕆𝑛 (1.53)

with the partial derivative according to Equation 1.43 and the zero-matrix

𝕆 ∈ ℕ𝑁(l)/2×𝑁(l)/2. Using the solution of Equation 1.53 iterative schemes can be used

to reconstruct an estimate ̂𝑆 of the original object distribution. The derivation of the RL

update scheme is given in Section A.21 as an example.

In the Bayesian world-view, all events are always assumed possible even though their

probability is very close to zero. The belief about the stochastic system can be updated by

using Bayesian inference:

𝑃 (�⃗� | ⃗𝑘) =
𝑃 ( ⃗𝑘 | �⃗�) 𝑃 (�⃗�)

𝑃 ( ⃗𝑘)
(1.54)
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where 𝑃 (�⃗� | ⃗𝑘) is the posterior (conditional) probability distribution and 𝑃 ( ⃗𝑘 | �⃗�) the

anterior (conditional) probability distribution.Note that𝑃 ( ⃗𝑘) = ∫ 𝑑�⃗�𝑃 ( ⃗𝑘 | �⃗�) 𝑃(�⃗�) in case

of continuous random variables. The principle can be transferred to likelihood functions

and thus a posterior likelihood ℒ(post) can be derived from an anterior likelihood ℒ(ant)

by multiplication with a prior 𝑃(�⃗�) and normalization to the measurement 𝑃( ⃗𝑘). Hence,

the Maximum A Posteriori likelihood (MAP) is the same as the MAL (Equation 1.44) for

assumption of uniform prior and ignoring the normalization factor (denominator).

Depending on the shape of the anterior likelihood-function the imaging problem might

not have a global minimum, might not converge towards the global minimum due to ℒ

having a rough likelihood-landscape or will only find a locally optimal solution that is by

far not the best solution available. For an ill-posed problem a uniform prior seems like

an unlikely assumption and thus more biased beliefs about the reality of the forward-

problem are typically implemented. By this, the ill-posed problem tends to become more

convexified and convergence towards a more stable solution seems possible. It follows for

log-posterior likelihood 𝔏(post):

𝔏(post) (�⃗� | ⃗𝑘) = − lnℒ(post)

= − ln
ℒ(ant) ( ⃗𝑘 | �⃗�) 𝑃(�⃗�)

𝑃( ⃗𝑘)

= ln𝑃( ⃗𝑘) − lnℒ(ant) ( ⃗𝑘 | �⃗�) − ln𝑃(�⃗�) (1.55)

While many priors 𝑃′(�⃗�) ≡ ln𝑃(�⃗�) exist, Total Variation (TV) [36], Good’s Roughness

(GR) [37] and Gradient Square (GS) will be mainly used within this thesis. With 𝜕 ⃗𝑒𝑑

being the derivative along the 𝑑th spatial unit-vector3 ⃗𝑒𝑑 of the sample estimate ̂𝑆 (�⃗�) the

chosen priors are defined according to:

TV: 𝑃′(TV) (�⃗�) = √∑
𝑑

∣𝜕 ⃗𝑒𝑑
̂𝑆 (�⃗�)∣

2
(1.56)

GR: 𝑃′(GR) (�⃗�) = ∑
𝑑

(𝜕 ⃗𝑒𝑑
̂𝑆(�⃗�))

2

̂𝑆(�⃗�)
(1.57)

GS: 𝑃′(GS) (�⃗�) = [𝑃′(TV) (�⃗�)]2 (1.58)

Note, that �⃗� is space depended and thus an implicit function of ⃗𝑒𝑑. While TV uses the

square-root of the 𝑙2-norm and enforces sparsity of the gradient GR favors a smooth /

curved, hence rather non-sparse, result. GS favors smoother changes than TV, because

3 For a 2D image 𝑑 ∈ {0, 1} and e. g. 𝜕 ⃗𝑒𝑑=0
is typically denoted as 𝜕𝑥.
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the squaring leads to a stronger amplification of bigger derivatives (i. e. bigger local

changes) and hence a bigger loss. During the imaging process the sample-information

is low-pass filtered by the PSF and thus information about higher frequencies 𝑘 ≥ 𝑘(C)

is lost. The imaging process further degrades due to the influence of noise. While the

sample distribution has a (potentially infinite) frequency support, the imaging process

(in the best case) is diffraction limited and thus has a limit support. Hence, the size of the

domain of the inverse problem, i. e. non-zero frequencies of ̂𝑆, might be fundamentally

bigger than the support of the calculated solution, i. e. 𝑀′ after application of the forward

model on ̂𝑆, leading to a potentially vast set of frequencies (i. e. 𝑘 ≥ 𝑘(C)) that do not

influence the calculated solution at all. Any of the three presented regularizers deforms

the non-influencing high-dimensional sub-space of the domain such that it forms a rather

convex shape of which a (potentially global and stable) minimum could be found.

In this thesis, only one of the 3 presented regularizers is used at a time, and the choice

is made based on the analyzed sample.

For all deconvolution operations in this work, the multi-view 3D forward model Equa-

tion 1.40 was used, including the cases 1) single-view as limiting case on 1 angle (i. e.

𝑁(a) = 1) and 2) single Z-slice (i. e. 𝑁(z) = 1). The Poisson distribution (Equation A.65)

was applied as noise model. The Poisson distribution is defined only for positive real

expectancy values 𝜇𝐾 ∈ ℝ+, which is why a positivity constraint was used. To ensure

positivity, the forward model is extended by a preobject ̂𝑆(pre) which is updated in each

iteration step of the deconvolution and from which the reconstructed object ̂𝑆 is obtained

via squaring ̂𝑆 = [ ̂𝑆(pre)]
2
. Thus, the domain of the object ̂𝑆 is restricted to the non-negative

half-space and can even be restricted to the positive half-space by adding an 𝜖 ∈ ℝ, pre-

serving all conditions for the Poisson noise model over the iterative update process. The

gradients of constraints and priors required for this model were taken directly from the

InverseModeling [38] toolbox. The Limited-memory Broyden-Fletcher-Goldfarb-Shanno

algorithm (L-BFGS-B) [39] from the Scipy [40] package was used for minimization since

it can be used to perform parameter determination efficiently even on limited hardware

(see Section 1.8).

The deconvolutions used in this work is assigned the naming shown in Table 1.2. In

the last column of Table 1.2 the used data axes are represented with symbols for a simple

visualization of the dimensionality of the reconstruction problem. The 3D spatial axes are

named 𝑋, 𝑌, 𝑍, the one dimensional flattened representation of the detection pixel axis
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Abbr. Result

name

Deconvolution dimensionality

DEC 𝑀(DEC) single-view 𝑋𝑌𝑍 ⟶ 𝑋𝑌𝑍

cDEC 𝑀(cDEC) single-view with CLSM preprocessing 𝐴𝑋𝑌𝑍 ⟶ 𝑋𝑌𝑍

prDEC 𝑀(prDEC) single-view with PiRe preprocessing 𝐴𝑋𝑌𝑍 ⟶ 𝑋𝑌𝑍

2d3dDEC 𝑀(2d3dDEC) multi-view 𝐴𝑋𝑌 ⟶ 𝑋𝑌𝑍

mDEC 𝑀(mDEC) multi-view 𝐴𝑋𝑌𝑍 ⟶ 𝑋𝑌𝑍

amDEC 𝑀(amDEC) multi-view 𝑁𝐴𝑋𝑌𝑍 ⟶ 𝑋𝑌𝑍

Table 1.2: Deconvolution Abbreviations. Overview of naming given to the used deconvolution

approaches throughout this thesis.

is named 𝐴 and the axis of non-linear fluorescence is named 𝑁 to account for a different

saturation levels. For example,𝑋𝑌𝑍𝐴 ⟶ 𝑋𝑌𝑍means that a 4Dmulti-viewdataset of three

spatial dimensions 𝑋𝑌𝑍 and multi-view axis 𝐴 is combined to reconstruct a 3D sample

distribution with axes 𝑋𝑌𝑍. The 2D case 𝑋𝑌𝐴 ⟶ 𝑋𝑌 is always included as limiting case

and is therefore not mentioned further. In this thesis typically the following parameters

will be adjusted to tune reconstruction quality of the single-view DEConvolution (DEC):

iteration number 𝑁(iter) and regularization weight 𝛾.

For data sets that cannot be processed at once on the Graphics Processing Unit (GPU),

a tiling algorithm has been included. The stack is first divided into matching tiles of size

𝑁(tile) with a mutual overlap of Δ ⃗𝑥(olap). After sequential processing of the tiles, they are

reassembled in a weighted manner using a Hann windowing function [41]. For use in

this thesis, the existing online package tiler [42] was jointly developed.

1.8 hardware and toolboxes

A laptop (T470p, Lenovo) serves for all data processing of the presented thesis. Relevant

specifications are given in Table 1.3. The used abbreviations are: Central Processing Unit

(CPU), Random-Access Memory (RAM), Storage (STO), Graphics Processing Unit (GPU)

and Operating System (OS).
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Component Specification Product Name, Vendor

CPU 4x 2.90 GHz Core i7-7820HQ, Intel

RAM 32 GB DDR4 at 2400MHz M471A2K43CB1-CRC, Samsung

STO 512GB SSD M.2 NVMe MZVLW512HMJP-000L7, Samsung

GPU 2GB GDDR3 64bit GeForce 940MX, NVIDIA

OS Manjaro Linux Manjaro 21.2.5, Manjaro Community

Table 1.3: Processing System Specifications. Overview of hardware specifications of the used

laptop (T470p, Lenovo).

All code relevant to this thesis was written in the higher-level programming language

Python [43] and is largely contained in the toolbox MicroPy [44], which was created

as part of my PhD. Simulations were realized with Numpy [45] as well as the toolbox

NanoImagingPack [38] based on it, which was jointly developed within our working group.

For deconvolutions, the toolbox InverseModelling [38] is used, which uses tensorflow [46]

as interface for data processing on the GPU. As part of my PhD, InverseModelling was

also advanced. Since the hardware resources of the laptop used are very limited, some

algorithms were equipped with tiled processing, for which the Python package tiler [42]

was collaboratively advanced.





2
METR ICS FOR SOFTWARE AUTOFOCUS

The first principle is that you must not fool yourself and you are

the easiest person to fool.

— Richard P. Feynman

2.1 motivation

Since the achievable resolution of a microscope, in the case of diffraction limited imaging,

depends on the NA of the objective lens (Equation 1.12), it is important to use to the

full extent. If the plane of fluorescent emission is outside the first focal length of the

lens, it will not be the optimal NA. Even though by definition the NA should increase

for emission in the region between the lens and the first focal plane, propagation of the

focal planes within and the influence of the effective appertures of the optical system are

difficult to predict across the complete setup and on average the effective NA of the lens

is reduced. Due to the inherent Out of Focus (0oF) rejection of Confocal Laser Scanning

Microscopy (CLSM) setups, the signal obtained here is more sensitive to an accurate focus

position than e. g. in the case of Widefield Microscopy (WF) systems. Although sample

signals can still be measured using WF in the presence of focus drift, the Point Spread

Function (PSF) degrades quadratically1 with NA with increasing axial distance from the

focal position, making suitable processing increasingly difficult for highly noisy images.

Thus, the position of the focus should be appropriately chosen and held stable over the

length of the measurement interval or, in the case of a longitudinal study, over multiple

measurement intervals.

As part of the You.See.Too.(UC2, [47]) project, a WF incubator microscope was built

(among others) using a plug-in, 3D printed cube system. The built microscope is inexpen-

sive and can be operated in (LED white light) transmission and (fluorescence) reflection

mode. For a longitudinal long term study cell growth should be analyzed for which a

stable field of view (FoV) and focus position is required. In order to be able to implement

1 Use trigonometric identities on Equation 1.22 for verification.

31
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these requirements as easily as possible without changing the existing setup, the imple-

mentation by means of a software solution was chosen. In preparation for potential use

in the printed microscope [47], various metrics were analyzed in Section 2.2, a scoring

system was established, and verified using an inorganic as well as organic sample.

2.2 dataset, metrics and scoring model

In this section, for a 3D-printed fluorescence WF microscope a manually chosen Z-slice

𝑧 = 𝑧(0) of an axially thin 3D sample shall be kept in focus over a long time-period.

Therefore an algorithm to evaluate the focus quality will be presented and useful metrics

will be compared for their applicability under different circumstances.

While the derivation of Equation 1.9 as a model for the 3D-imaging process is based

around multiple assumptions the translation invariance of the system PSF ℎ is particularly

crucial. Even though the condition might be fulfilled for the analog imaging system, it can

be violated again during the acquisition by the electro-mechanical apparatus. Assuming

that the signal-conversion behaviour is sufficiently described by Section A.11 the finally

measured PSF depends on the apparatus inherent distortions.

The precision requirements of the optical components always depend on the aimed

resolution for a given wavelength and imaging mode. Diffraction-limited imaging means

the effective Optical Transfer Function (OTF) cutoff-frequency is governed by the lim-

its due to the wave nature of light and not by the noise-level or system-aberrations. If

diffraction-limited imaging is secured, the best imaging quality of the given optical system

can be achieved.

Analogous to the requirement for the optical elements, requirements can thus also be

placed on the electromechanical components such that the diffraction-limited imaging can

be recorded reproducibly. Especially in the case of a 3D scanning geometry, reproducible

voxel distances that fulfill the Nyquist-Shannon limit (Equation 1.37) are mandatory. Both

the lateral/axial step size and the temporal position stability of the X-Y(-Z) stage represent

the essential basic requirement for a reliable record of the in-focus field distribution [48].
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Both Hardware Autofocus (HAF) and Software Autofocus (SAF) modules can be used

to implement an autofocus mechanism. The review by Bian et al. [49] summarizes various

approaches and a brief summary of their findings is given in Section C.2. In this thesis a

set of metrics that could be used with SAF approaches will be analyzed, since these can

be implemented into any existing setup without additional costs.

Of all analysed metrics Tenenbaum Gradient (TEN) and Variance (VAR) are two easy

to implement filters that provide stable focus measures for a broad range of high- and low

Poisson noise as well as amount of aberration. The following steps will be used to proof

this conjecture. 1) a set of useful in-silico datasets is introduced. 2) The metrics used for

evaluation are introduced and the general scoring model is demonstrated. 3) The metrics

are comparedwith respect to three different parameters - optimization independent speed,

noise-level, level of spherical aberration and astigmatism - using the introduced scoring

model in Section 2.3. 4) The results are applied to experimental data on example of a

test target and fluorescent Henrietta Lacks Cervical Cancer (HeLa) cells in a 3D printed

microscope in Section 2.4.

The simulated optical system follows a epi-fluorescence WF microscope setup. Basic

parameters are lateral 𝑑(SPL,lat) = 80𝑛𝑚 and axial 𝑑(SPL,ax) = 80𝑛𝑚 sampling, NA = 1.4,

𝜆(em) = 520𝑛𝑚 and stack size 𝑁 = [𝑁(x), 𝑁(y), 𝑁(z)] = [64, 64, 64]. The maximum ex-

pected photon count of each stack was normalized to max {𝑀} = 1000 and then used as

mean 𝜇𝐾 for application of the Poisson distribution. The entire simulation is based on

scalar considerations, which means that e. g. further influences on the focal position due

to polarization changes were not considered.

For in-silico analysis two different targets were generated, see Figure 2.1. The panel-

columns are a) a Z-slice at the in-center slice 𝑧 = 32, b) a Y-slice at 𝑦 = 32, c) the noisy

fluorescenceWF image of a) and d) the noisy fluorescenceWF image of b). In the first row,

the spokes2d target is demonstrated. It is very suitable for resolution and reconstruction

testing due to its radial geometry. This 2D target is placed in the center of an empty

3D volume to simulate a very thin slice object. In the second row, a 3D target called

obj3d is used, which is included in the NanoImagingPack [38]. The 3D target obj3d can

be understood as a spherical (inflated) cell with nucleus intersected by a rod. obj3d is

sufficiently sparse and thus can be used even to evaluate methodologies without sufficient

0oF rejection.
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Figure 2.1: Autofocus In-SilicoDatasetsData-sets displayed row-wise. columns from left to right:

a) object in-focus cut at 𝑧 = 32 (center), b) object lateral cut at 𝑦 = 48 (lower quarter)

for upper and 𝑦 = 32 (center) for lower row, c) noisy-, but aberration-free image

in-focus cut of the WF image of a) at 𝑧 = 32 and d) image lateral cut at 𝑦 = 32. Rows:

1) spokes2d target, 2) obj3d. All images are normalized to their individual maximum.

Two of themost common (Seidel-) aberrationswere chosen as representatives for further

analysis. Namely, spherical and astigmatic aberrations, represented by Zernicke Polynomi-

als [50] 𝑍0
4 and 𝑍−2

2 , where the upper indexmarks the degree of the azimuthal components

and the lower index the degree of the radial components.The aberrated 3D-PSF ℎ(aber)( ⃗𝑟)

is calculated via Equation 2.3 by calculating the 2D Amplitude Transfer Function (ATF) ̃𝑎

(Equation 2.1), application of the aberration phase-map 𝑊 (Equation 2.2), skalar Fourier-

Slice-Propagation to calculate 0oF slices via application of the Fourier-Shift-Theorem along

z, inverse Fourier-transformation and finally taking the absolute square:

̃𝑎(aber)( ⃗𝜅) = 𝑒𝑖𝑊( ⃗𝜅) ̃𝑎( ⃗𝜅) (2.1)

𝑊( ⃗𝜅) = 𝑐(spher)𝑍0
4( ⃗𝜅) + 𝑐(astig)𝑍−2

2 ( ⃗𝜅) (2.2)

ℎ(aber)( ⃗𝑟) = ∣ℱ {𝑒𝑖𝑘𝑧Δ𝑧 ̃𝑎(aber)( ⃗𝜅)}∣
2

(2.3)

where 𝑐(spher), 𝑐(astig) ∈ ℝ. It will be demonstrated that 𝑐(spher) = 1 already marks a rather

severe degree of aberration. While spherical aberrations are laterally symmetric but axially

asymmetric, astigmatism is rather both laterally and axially asymmetric and hence a

comparison is of value.

The final goal of this section (Section 2.2) is obtaining an automated evaluation of image

sharpness of a 3D stack 𝑀, consisting of 𝑁(z) slices around the in-focus Z-slice, of a thin

object. Therefore, a set of (2D) sharpness metrics Ψ that reduce a 2D image to a single
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number, i. e. the 3D stack is projected onto a 1D Z-dependend curve, and sub-sequent

quality measures 𝑞(i) that evaluate the results of Ψ (𝑀) further. Finally, the results of the

𝑞(i) are weighted and combined to a total score 𝑄.

The sharpness metrics Ψ used for calculation can be divided into:

• differential: Brenner (BRE), Tenenbaum Gradient (TEN) and Total Variation (TOV)

• correlative: Symmetric Vollath F4 (VS4), Vollath F5 (VO5)

• statistical: Maximum (MAX) and Variance (VAR)

• spectral: Kristans Entropy (KEN) and Shannon Entropy (SEN)

Function definitions are given in Section B.1. To distinguish the different metrics the

naming: Ψ(TEN), on example of TEN, will be adopted.

In best case, for a 3D focus stack 𝑀 around a thin object the application of the sharpness

metrics leads to a high value for the in-focus slice and low value for 0oF slices. Hence,

the resulting Z-dependend curve Ψ (𝑀) is expected to exhibit 1 maximum (at the in-

focus Z-position) and falling edges towards both ends of the Z-scan range. For automatic

evaluation of this behavior a set of quality measures 𝑞(i) is selected, see [51–53]:

• accuracy Distance of calculated to actual in-focus plane; 𝑞(accu) ≡ 𝑞(0)

• N(falseM) Number of additional (false) in-focus planes; 𝑞(Nfalse) ≡ 𝑞(1)

• range Region of monotonic falloff around the central in-focus plane; 𝑞(range) ≡ 𝑞(2)

• Full Width at Half Maximum (FWHM) of the sharpness curve; 𝑞(FWHM) ≡ 𝑞(3)

The results of the quality measures 𝑞(i) are thresholded by factor 𝑢 with

𝑀 >= 𝑢 ⋅ max (𝑀) to be in the ranges given in Equation 2.4:

𝑞(0) ∈ [0, 𝑁(z)/2] , 𝑞(1) ∈ [0, 𝑁(z)/4] , 𝑞(2) ∈ [0, (𝑁(z) − 1)/2] , 𝑞(3) ∈ [0, 4𝑁(z))

(2.4)

where the upper bound will be called 𝑞(lim) and thus the normalization :

̄𝑞𝑖 = 1 −
𝑞𝑖

𝑞(lim) , 𝑖 ∈ {0, 1, 2, 3} , ̄𝑞𝑖 ∈ [0, 1] (2.5)
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M Ψ(𝑀) 𝐹(SG) (Ψ) ̄𝑞(i) (𝐹(SG)) 𝑄( ̄𝑞)

Figure 2.2: Autofocus Processing flow The Input 3D-stack 𝑀 is sharpness filtered by a sharpness

metric Ψ and the resulting 1D curve afterwards smoothed by a SGF 𝐹(SG). The filtered

curve is then evaluated by a normalized evaluation measure ̄𝑞(i) (Equation 2.5) and

finally a total score 𝑄 is calculated as a weighted combination of all ̄𝑞(i).

can be applied. Note, that the notation […] means lower and upper limit are contained,

while […) does not contain the upper limit. The automated score-evaluation 𝑄 based on

the sharpness-metrics Ψ relies on the reliable determination of the in-focus slice within

the measured 3D stack 𝑀, i. e. the global maximum in the 1D sharpness curve. To avoid

erroneous maxima-pickup due to a high noise-content in the input Z-stack an as-good-

as-possible maximum-position preserving filter is applied before the normalized quality

measures ̄𝑞(i) are applied and the score 𝑄 is calculated. While the simplest noise reduction

can be achieved by low-pass filtering, eg via convolution with a Gaussian Function (GF)

(Equation 1.32), this operation tends to shift localmaxima. The Savitzky-Golay Filter (SGF)

𝐹(SGF) approximates a local sample distribution within a window of uneven size by a

polynomial function. Even though the first implementations used least-squares algorithm

to find the optimal weighting prefactors of the fitting-polynomial [54] a convolution-

kernel based implementation is used. The crucial benefit of SGF as compared to GF are

its multiple passbands, the high band-flatness and the very slowly rising attenuation

towards high frequencies. This allows for input-smoothing while preserving position and

amplitude of data-peaks (e. g. edges) [55]. In this thesis, two parameter of the filter are

used: the window size 𝑤(SGF) and the polynomial order 𝑝(SGF). While the former defines

the kernelsize of the filter the polynomial order defines the degree of the polynomial to

be fitted to the data. In this work, 𝑤(SGF) ∈ {5, 6, … , 13} and 𝑝(SGF) ∈ {3, 4. … , 7} are found

to be appropriate.

The final score 𝑄 is calculated as a weighted combination of the quality measures ̄𝑞(i)

𝑄 ( ̄𝑞) =
3

∑
𝑖=0

𝜔𝑖 ̄𝑞(i) (2.6)



2.2 dataset, metrics and scoring model 37

with the weights 𝜔𝑖. The weights are chosen to represent the importance of the quality

measures ̄𝑞(i) with respect to the characteristics to be displayed by the sharpness-metrics

and are normalized to one with respect to the 𝑙1 norm. Within this work they were chosen

as:

𝜔 ≡ [𝜔0, … , 𝜔3] = [
1
2,

1
6,

1
4,

1
12] (2.7)

‖𝜔‖1
1 = 1

to emphasize the importance of finding the correct maximum position (= 1/2) over the

accuracy (= 1/6) and free range (= 1/4) while considering the FWHM (= 1/12) only

peripherally. A flow-graph of the final score calculation is displayed in Figure 2.2.

The calculation process of 𝑄 is carried out exemplary in case of the Ψ(TEN) for 3 different

imaging scenarios on the spokes2d target (Figure 2.1) and displayed in Figure 2.3. In the

following, the 3 exemplary simulations will be abbreviated as (I),(II), or (III), just as in

Figure 2.3. The 3 simulations can be described as testing for a high noise level (I), near

ideal imaging (II), and amixture of aberrated imaging as well as increased noise level (III).

The 3D-stacks 2b)+d) in Figure 2.3 are calculated by convolving the system-PSF 2a)+c)

with the target-object 1) according to Equation 1.40 while having only 1 view (hence:

𝑁(a) = 1). The Ψ(TEN) transforms the 3D-stack into a 1D Z-curve and thereby associating

one sharpness-value with each Z-position as displayed in 3) (blue line). This 1D-curve is

then 𝐹(SGF)-filtered (orange line) and fitted with an offset-extended Lorentzian function

according to Equation 2.8:

𝑓 (Lor) (𝑥, 𝜇, 𝜎, 𝐴0, 𝐴) = 𝐴
𝜎

𝜎2 + (𝑥 − 𝜇)2 + 𝐴0 (2.8)

where 𝜇 is the center of this symmetric function, 2 ⋅ 𝜎 is the FWHM, 𝐴 the amplitude, 𝐴0

the offset and 𝑥 the 1D-coordinate. Note that with this definition ∥𝑓 (Lor)∥1
1 ≠ 1 follows. The

FWHM (cyan dashed lines) is used as a measure of maximum emphasis because a steep

slope and other invariant areas allow for finding the maximum easier.

The scoring algorithm (Figure 2.2) automatically determines major and minor maxima

based on the 𝐹(SGF) filtered data in order to calculate the number of false maxima as well

as the unique/free area around the major maxima. For this, a generic maxima-searching

routine is used in conjunction with a relative threshold (purple) to exclude practically

irrelevant minor maxima (red dot without x). All maxima found (red dot with black x)

are used for further calculation. The threshold-factor was chosen as 𝑢 = 0.07, yielding
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(I) 𝑁𝑃ℎ𝑜𝑡 = 5, 𝑐(spher) = 0, thresholded with 𝑢 = 0.07.

(II) 𝑁𝑃ℎ𝑜𝑡 = 1000, 𝑐(spher) = 0, thresholded with 𝑢 = 0.07.

(III) 𝑁𝑃ℎ𝑜𝑡 = 100, 𝑐(spher) = 0.5, thresholded with 𝑢 = 0.07.

Figure 2.3: Autofocus Quality Assessment Data-Flow for 3 different PSF-scenarios (I)-(III) us-

ing TEN metric. 1) the object, a spokes2d target. 2a)+b) X-Y-slice (𝑧 = 𝑁(z)/2) and

2c)+d) X-Z-slice (𝑦 = 𝑁𝑦/2) of the PSF (left) and resulting image (right). Images

of 1-2) use the same colorbar showing the normalized magnitude 𝑀/max (𝑀). 3)

calculated sharpness measure (blue), 𝐹(SGF)-filtered sharpness measure (orange) and

Lorentzian-fitted 𝐹(SGF)-filtered measure (green) from 2b)+d). The main-maxima

(central black x), detected Maxima (red dot), selected maxima (black x), calculated

FWHM (blue arrow and vertical lines) and free-range (magenta line) are displayed

as well as the rejection threshold limit (violet dashed line). From these results the

score-values displayed in Table 2.1 are calculated. Horizontal axis shows axial 𝑍/(𝑛𝑚)

position and vertical axis the normalized magnitude 𝑀/max (𝑀).
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Accuracy #False Max Free Range FWHM Total

(I)nn 0.0394 11.0000 7.5000 3.5098 -

(II)nn 0.0004 0.0000 31.5000 2.9493 -

(III)nn 0.2249 1.0000 19.0000 4.3649 -

(I) 0.9988 0.3125 0.2381 0.9726 0.6920

(II) 1.0000 1.0000 1.0000 0.9770 0.9981

(III) 0.9930 0.9375 0.6032 0.9659 0.8840

Table 2.1: Scoring results. Calculated scores for the 3 different scenarious in Figure 2.3 for TEN-

metric. Indices with appended „nn“mark the non-normalized scores and hence no

total-score is calculated for these rows.

all side maxima being above the boundary line in the case of (I), no side maxima in the

case of (II) and 1 side maxima in case of (III). The distance from the main maxima to the

nearest side maxima on both sides is called the free range (magenta dashed line) and

may well be asymmetric, as seen in (I). If there are no side maxima, the global limits

(size of the image stack) are used. For automated evaluation, the main maxima of the

simulated PSF ℎ(aber) are calculated using Ψ(VO5). Wherever possible these maxima- or

focus-positions are then curated manually for reasonability.

The scores calculated from the filtered data are listed in Table 2.1. The first 3 rows have

an „nn“in the identifier and are not yet normalized according to Equation 2.5, so no total

score can be calculated. The last 3 lines are already normalized and a score according to

Equation 2.6 was calculated. In the case of (I),(II),(III) 11, 0 and 1 minor maxima were

found, yielding a free range of 7.5, 31.5 and 19.0. The accuracy is comparably solid for all

examples due to the extremely thin sample (=2D). It is noticeable that the aberrations have

a larger influence than the number of photons on the determination of the FWHM, since

it is clearly larger in the case of (III) than (I). Finally, weighted according to Equation 2.7,

we obtain the respective total score 𝑄 where (II) as an almost ideal case is also close to

the maximum value 1, while the strongly noisy case (I) is even clearly below (III).

Especially the strong weighting of the false maxima and the free range lead to the

weak evaluation of (I) compared to (III). This can be influenced by the choice of the

threshold, strength and type of the smoothing function (here 𝐹(SGF)) as well as the type

of extreme search. Since the ground truth is not known in the practical measurement
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process, a reliable but strict measure should already be chosen in the simulation. Since the

configuration (III) is very close to the real experiment, the chosen parameter configuration

is to be accepted as suitable.

2.3 metrics evaluation on in-silico data

In this section the performance of the presented sharpness metrics will be characterized

by 1) computational speed as well as 2) variation of noise, spherical aberration and

astigmatism level.

For temporal evaluation (1), even and odd images with side length factor 𝑣 were

evaluated according to:

�⃗�(even) = [𝑁(x), 𝑁(y), 𝑁(z)] = [2𝑣, 2𝑣, 2𝑣] (2.9)

�⃗�(uneven) = [2𝑣, 2𝑣 − (𝑣 − 1), 2𝑣 − 2 ⋅ (𝑣 − 1)] (2.10)

with uniform fill (=non-sparse) generated. The code written in Python was measured

with the standard „timeit“package. 1 repetition consists of 𝑁(eval) = 1 evaluations of the

data with the same sharpness-metric and the (python) garbage collector turned off. The

resulting time 𝑡/(𝑠) was divided by 𝑁(eval) to regain the time per evaluation. This process

was repeated 𝑁(repeat) = 7 times. According to the developer side, only the minimum

value of the resulting vector of 𝑁(repeat) entries should be used as lower-bound to the

possible performance of the algorithm on the system [56]. Still, the mean value is used as

system-offsets are rather in the region of the system clock-speed, but the relevant times

are multiple orders above this threshold. The results are displayed in Figure 2.4. The two

panels display the log10 of the minimum time min (𝑡) needed for the processing of the

stack of size 𝑁 generated for the left panel with 𝑣 according to Equation 2.9 and for the

right panel with 𝑣 according to Equation 2.10. The two metrics Ψ(TEN) and Ψ(VAR) of the

conjecture (Section 2.2) are shown in bold. The region highlighted in gray is dominated by

general function-inherent processes of data preparation, i.e., functional overhead. These

processes do not scale with the amount of data, or only to a very limited extent. From

𝑣 = 4, i.e. images with e. g. of size [16, 16, 16] and thus 𝑁 = 212 = 4096 in the case of cubic

data stacks, the algorithm relevant processes dominate and thus the speed is data limited.

Although all implemented metrics require different preprocessing, yielding a different

offset in the gray region, they all follow roughly the same trajectory and are roughly in the
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Figure 2.4: Computational Speed Quantification of the sharpness-metrics for a) cubic and b)

non-cubic input. Each data-point resembles the calculated mean-value for 𝑁(eval) = 1

evaluations and 𝑁(repeat) = 7 repetitions for each sharpness metric. The grey region

marks the preparation-overhead dominant region while the bright region marks the

calculation-dominant region.

range 𝑂(𝑁 log(𝑁)). Stack sizes comparable to further in-silico simulations below lie in the

range 𝑣 = 6, while stack sizes of practical realizations are even in the range 𝑣 = 9, so e. g.

𝑁 = [25, 211, 211] = [64, 2048, 2048]. For the practically relevant range 𝑣 = 9, the Ψ(MAX)

with 𝑡(MAX) = (0.149 ± 0.002)𝑠 is the fastest and the Ψ(SEN) with 𝑡(SHA) = (8.848 ± 0.137)𝑠

is the slowest. The thickly marked Ψ(TEN) (blue) and Ψ(VAR) (cyan) metrics are around

the mean of all metrics, with Ψ(VAR) with 𝑡(VAR) = (0.457 ± 0.023)𝑠 about 3.91× faster than

the Ψ(TEN) metric with 𝑡(TEN) = (1.787 ± 0.027)𝑠.

Using the spokes2d target as an example, the scoring performance of the metrics w. r. t. I)

variation of the noise and spherical aberration level simultaneously (Figure 2.5I) as well

as II) spherical aberration and astigmatism level (Figure 2.5II) follows. On example of

Figure 2.5I the graphic will be explained. The Y-axis shows the mean value 𝑁(Phot) = 1.5𝑏

with 𝑏 ∈ {0, 1, … , 19} used for application of the Poisson noise in the maximum pixel of

the simulated image-stack 𝑀. On the X-axis the pre-factor 𝑐(spher) ∈ {0, 0.05, … , 1.0} used

for the phase-map calculation of the ATF in terms of spherical aberration (Equation 2.2)

is given. Scoring results are color coded and thus a result of 𝑄 = 1 is colored yellow

while a score of 𝑄 = 0 is dark blue. In case of II) pre-factor 𝑐(spher) is on the Y-axis

while on the X-axis the astigmatism pre-factor 𝑐(astig) (Equation 2.2) is displayed with

𝑐(astig) ∈ {0.0, 0.1, … , 2.0}.
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Figure 2.5: Metric Scoring with Combined Simulation Parameter Variation. Scoring results of

sharpness metrics using spokes2d thin object (Figure 2.1 0𝑎) − 𝑑)) for a) different

noise levels 𝑏 ∈ [0, 20] with Δ𝑏 = 1 and 𝑐(spher) ∈ [0.0, 1.0] with Δ𝑐(spher) = 0.05. b)

Different spherical 𝑐(spher) ∈ [0.0, 1.0] with Δ𝑐(spher) = 0.05 and 𝑐(astig) ∈ [0.0, 2.0]

with Δ𝑐(astig) = 0.1 thresholded with 𝑢 = 0.14.

The simulation Figure 2.5I demonstrates the broad reliability of Ψ(VO5) and Ψ(VAR) for

relatively lowphoton levels (𝑁(Phot) ≈ 1) and yet high spherical aberrations (𝑐(spher) ≥ 0.6)

with scores 𝑄 ≥ 0.6. Comparable scoring is achieved by Ψ(TEN), Ψ(TOV), Ψ(VS4), and Ψ(KEN)

only in the range 𝑐(spher) ≤ 0.5 while Ψ(SEN) achieves high scoring 𝑄 ≥ 0.7 only at high

photon levels (𝑁(Phot) ≥ 15).

Analysis of the simultaneous use of spherical aberrations and astigmatism shows reliable

usability (𝑄 ≥ 0.7) of Ψ(VO5) and Ψ(VAR) over almost the entire simulation parameter

range, see Figure 2.5II. Ψ(TEN), Ψ(TOV), and Ψ(SEN) only achieve 𝑄 ≥ 0.6 for 𝑐(spher) ≥ 0.7

and 𝑐(astig) ≥ 1.1, respectively. All metrics, except Ψ(MAX), achieve a scoring around

𝑄 ≥ 0.9 for 𝑐(spher) ≤ 0.5 and 𝑐(astig) ≤ 1.1. As noted previously, the scoring of Ψ(KEN)

suffers from the local sensitivity of the metric already for 𝑐(astig) ≥ 1.3.

Note, that Ψ(KEN) and Ψ(SEN) probably detect the main maximum (sub-pixel) more

accurately than e. g. Ψ(VO5), but their high sensitivity to side maxima lowers the overall

scoring achieved and thus their reliability for automated focus measurements.



2.4 metrics evaluation on experimental data 43

The scoring-algorithm was tested for susceptibility to a selection of image degradation.

It can be reliably used for keeping the sample in-focus or just tracking of the focus. Focus

tracking is directly possible, because the scoring algorithm is invariant under Z-translation.

For an in-depth individual analysis of the influence of the noise, spherical aberration and

astigmatism on the scoring of the sharpness metrics see Section B.2.

Based on the tests, it was found that Ψ(VAR), Ψ(TEN) and Ψ(VO5) provide a good mix of

temporal performance and robust implementation at low noise as well as high aberration

levels.

2.4 metrics evaluation on experimental data

The experimental setup is a slight variation of the UC2 fluorescence microscope (infinity)

setup [47] and shown in Figure 2.6I. A fiber coupled laser-diode at 𝜆(ex) = 635 𝑛𝑚 (150mW,

Micost, China) is expanded with a telescope system using a iPhone lens of 𝑓 (L1) = 3 𝑚𝑚

and an achromatic lens with 𝑓 (L2) = 26.5 𝑚𝑚 therewith leading to a magnification of the

beam-diameter by 𝑀 = 𝑓 (L2)/𝑓 (L1) ≈ 9×. The collimated beam is then focused onto the

Back Focal Plane (BFP) of the 100×, 1.25𝑁𝐴 oil objective (Zeiss, Germany) by a plano-

convex tube lens 𝑓 (TL) = 75 𝑚𝑚 (Thorlabs, UK). On its way the beam passes a fluorescent

filter cube using 740 IY long-pass filter (Comar, UK) and 650/25 (Chroma, Germany)

bandpass filter. Alternatively the setup can be used in transmission with an overhead

LED-array or desk-lamp. For lateral positioning the UC2-Micronstage and UC2 Z-Stage

( [47]) are used. The emitted fluorescence (or transmitted led/bright-light) is finally

focused with another tube lens onto an CSI Alvium 1800 C-158 (Allied Vision, Germany)

mono-chrome CMOS sensor controlled by a SBC Jetson Nano (Nvidia, USA).

As biological test sample for fluorescence fixedHeLa-cells with Alexa Fluor 647 (AF647)

antibody-stained micro-tubules are analysed. Figure 2.6II1-2) show two different ROI

within the sample. The images are Z-slice-wise max-normalized for visibility. Images in

the upper row show an X-Y-slice at individual 𝑧 = 𝑧(cut). The used positions are shown as

gray lines per panel image in the row below. Vise versa: all images in the lower row are

shown as X-Z-slice at 𝑦 = 𝑦(cut) where the used cut position is shown as gray lines per

panel image in the row above. For testing the filters on an edgy, anorganic but supposedly

known sample two different ROI of the non-transparent USAF target (Thorlabs, UK;
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Figure 2.6: Experimental Evaluation of Focus Metrics. (I) Schematic drawing of the

experimental setup using a 3D printed epi-fluorescence WF microscope. (II)

Measured datasets: 1+2) HeLa cells at different Region of Interest (ROI)s, 3+4)

USAF target at different ROIs. Upper row: X-Y-slice at individual 𝑧 = 𝑧(cut) (gray lines

per panel image in the lower row), lower row: X-Z-slice at 𝑦 = 𝑦(cut) (gray lines per

panel image in upper row). The images are Z-slice-wise max-normalized for better

visibility. (III)-(VI) Sharpness metrics results of the 4 3D-stacks II1-4) .

Figure 2.6II3-4) are used in transmission mode, i. e. is illuminated with the LED from

above and the light that propagates through the holes of the target is filtered and detected.

The HeLa-cells on the other hand are excited with a laser in epi-fluorescence mode from

below. During measurement the illuminating LEDwas slightly tilted w. r. t. the optical axis
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Figure 2.7: Prefiltering of Experimental Data. (I) Gaussian-prefiltered data using increasing

(lateral) Sigmas 2) − 5) of 𝜎(G) ∈ {1, 2, 5, 10} pixels. 1) is reprint of non filtered data.

Upper row: real space images, lower row: Fourier space representation. (II)-(V)

Sharpness metrics results of Gaussian-prefiltered data 2-5).

of the microscope to demonstrate the metrics behavior, see object-tilt in Figure 2.6II3+4b).

For both sample types two Z-stacks are acquired at the respective two different (lateral)

ROIs.

Even though the samples can be assumed to be thick (w. r. t. the analyzed volume)

a position where the sample exhibits the most features over a rather big ROI can be

(manually) found at 𝑧(mf) ∈ 11, 109, 13, 15 for the individual stacks. Before applying the

metrics, the background was subtracted from the stacks and the individual Z-slices were

normalized to their individual sums.
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The slices at 𝑧(mf) are chosen to represent the in-focus slice of interest that shall be

found by the sharpness metrics. The panels Figure 2.6IV to Figure 2.6VII display the

results after application of the sharpness metrics on the individual Datasets 1-4. Again,

the metrics Ψ(TEN) and Ψ(VAR) are shown in bold to highlight them according to the

conjecture Section 2.2. Surprisingly, for dataset 1 (𝑄(SEN) = 0.95 and 1.86𝜎 above average,

Figure 2.6IV,see note2) and 3 (𝑄(SEN) = 0.88, about 1.42𝜎 away from the average) the

sharpness metric Ψ(SEN) finds 𝑧(mf) achieves the highest score, while Ψ(VO5) or Ψ(VAR)

deviate by at least about two Z-slices. For dataset 2, Ψ(KEN) performs best with being about

1.13𝜎 above the scoring average and finds the correct maximum position, while Ψ(TEN) or

Ψ(VO5) deviate by two Z-slices. In dataset 4, especially Ψ(TEN) and Ψ(VAR) find the correct

maxima positions, where Ψ(TEN) scores about 1.01𝜎 above the average and therewith is

highest. The susceptibility of the filters to edges caused by noise is particularly evident in

the 0oF (or low contrast) of dataset 3 and 4.

In the case of Figure 2.6IIa, the influence of prefiltering will be demonstrated with a

spatial 2D GF. The filter is applied on every Z-slice individually and the lateral isotrope

kernel sizes are chosen to be 𝜎(G) ∈ [0, 1, 2, 5, 10] pixels, 0 meaning that for the first image

no GF was applied, and their influence on the in-focus Z-slice (top row) of Figure 2.7I as

well as its Fourier transform (bottom row) is demonstrated. The sharpness metrics with

the highest scores when being applied to the GF filtered images, i. e. Figure 2.7I2-5), are:

𝑄(SEN) is 0.98𝜎, 𝑄(MAX) is 0.79𝜎, 𝑄(BRE) is 0.71𝜎 and 𝑄(BRE) is 0.86𝜎 above the respective

filtered images scoring averages. No clear correlation could be found between GF filter

kernel size and standard deviation of the scores 𝑄.

Since especially high frequency information not or only very slightly present in the

image can strongly influence the results of edge-based filters, a simple denoising prior to

sharpness estimation leads to more reliable results of the differential filters or simplistic

filters like Ψ(MAX). For all other filters (Figure 2.7II-V), these pre-filtering processes have

little influence until the kernel size significantly reduces the usable frequency information

(𝜎(G) ≈ 10). Thus, in context of the spatial dimensions of the presented experiment a

2 The way of writing means 𝑄(SEN) = 0.95, but can be expressed in terms of mean 𝔼 {𝑄(i)} and standard

deviation 𝜎(Q) over all scoring results 𝑄(i) with 𝑄(SEN) = 𝔼 {𝑄(i)} + 𝑏 ⋅ 𝜎(Q). For the scoring results in

Figure 2.6IV 𝔼 {𝑄(i)} = 0.62 and 𝕊 {𝑄(i)} = 𝜎(Q) = 0.18, thus 𝑄(SEN) is 1.86× the standard deviation above

the average.
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simple denoising bymeans of Gaussian pre-filtering with kernel size 𝜎(G) = 2 is suggested

to still allow for a sharpness curve Ψ of small FWHM while more reliably finding the

correct maximum.

2.5 conclusion and outlook

In this chapter, different sharpnessmetricswere implemented in Python and their behavior

with respect to different maximal amount of photons as well as aberration levels was

investigated. For the evaluation, a scoring function 𝑄 was established, which is based

on a weighted average of the distance between found focal plane and ground truth, the

number of erroneously determined maxima, the distance between major as well as minor

maxima and the Full Width at Half Maximum (FWHM) of the Lorentzian that is fitted to

the sharpness curve.

For thin samples (2D layer), in the case of spherical and astigmatic aberrations, especially

Tenenbaum Gradient (TEN), Variance (VAR) and Vollath F5 (VO5) perform reliably. The

analysis of the combination of spherical aberrations and different photon levels shows

that Kristans Entropy (KEN) is the best choice at very low photon levels, but VAR, VO5

and TEN achieve the best overall performance.

The temporal performance analysis shows that KEN is about 2 orders of magnitude

slower compared to VO5 or VAR. This is due to the necessary DCTs whereby the spectral

methods generally entail higher hardware requirements. While the determination of VO5

and VAR is based on the execution of native C code, TEN is not yet optimized for this,

yielding a slight performance offset to e. g. VAR.

The presented code is available in a Python and C mixed implementation and could

still be fully transferred to C in the future to be adapted and optimized to the target

hardware [44].

A justification of the choice of threshold parameters 𝑢 and weighting factors 𝜔 was

given, but an analysis of further influencing parameters as well as deeper investigation

of the calculation formula of these would be interesting to enable an even more stable

evaluation.
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For thin samples, in case of unfavorable sampling (due to e. g. too coarse sampling) or

two nearly identical slices the focus lies in-between two axial slices. This could in principle

lead to erroneous determination of two (or more) instead of one focus layer. The use of

axial subpixel sampling or using the center of the fitted Lorentzian solves this problem

and thus the scoring model can be used reliably.

The implementation of a part of the presented scoring algorithm was tested for a

3D-printed LED-based transmission microscope in a cell incubator [57]. Although the

samples studied in the publication, living differentiating macrophages, cannot generally

be considered to be thin samples, this analysis shows that the term thin sample in the case of

sharpness metrics refers to the relationship between sample thickness and axial resolution.

Again, good results were obtained with TEN and VAR, but the Z-stage was sufficiently

stable (invariant) for experiment duration such that refocusing was not necessary. Thus,

while extending the presented scoring algorithm into a complete auto-focusing routine is

straightforward it was not further investigated.

With the presented scoring model a 3D sample object can now be converted into a 1D set

of metric-numbers using a chosen sharpness metric Ψ. A potential 3D Drift of the sample

object over time can be tracked by Normalized Cross Correlation (NCC) comparison of

the calculated sharpness numbers of each time point. This approach requires little storage

and hence empowers limited hardware such as a Raspberry PI especially when using

methods like TEN, VAR and VO5, whereby TEN can be used to reduce the necessary

RAM further while keeping CPU load low.

As a global resumee taking 𝑄 ≥ 0.7 can be assumed to be a reasonable and justifyable

level for keeping the focus position and therewith choosing a useful metric for a given

situation. The demonstrated analysis can thus be used as a guide on which metric to be

used when.



3
J I TTER CORRECT ION

If you only read the books that everyone else is reading, you can

only think what everyone else is thinking.

— Haruki Murakami

3.1 motivation

For this section it is assumed that while the focus is kept reliable stable the quality of

the recording is reduced by spontaneous sample position changes. The goal is to be able

to reconstruct few pixel size fluorescent structures on the retina of a living mouse using

2-photon Confocal Laser Scanning Microscopy (CLSM). Due to the comatose state of

the mouse this is generally possible, but spontaneous muscle twitching, breathing and

general drifting movements cause random pixel and line offsets (jitter). The present jitter

problem is modeled as a one-dimensional problem for the case of no or small gaze angle

changes of the mouse, simulated and confirmed by means of available experimental

data. The case of a large change in viewing angle is excluded from the definition of jitter

and classified as global drift. While comparatively large fluorescently stained structures

(e. g. blood vessels) can be tracked even despite jitter or change of viewing angle and

thus motion-induced distortions are potentially easier to fix, the reconstruction of few

pixel-sized structures (excitable at a different wavelength than the blood vessels) such as

e. g. mouse retina infiltrating T helper cells becomes impossible. In this section, a method

to counteract the jitter using trackable structures (e. g. blood vessels) and afterwards

applying deconvolution to allow for a reliable observation of the few pixel sized structures

of interest (i. e. T helper cells) is presented. To measure the mouse-retina in-vivo using

a 2-photon fluorescence CLSM1 the mouse-body not only needs to be fixed and the

imaging optics to be adapted to the refractive properties of the mouse eye, but the residual

movement of the anesthetized mouse needs to be taken care of.

1 For the purposes of this thesis the imaging model of 2-photon is not further discussed, because it is simply

implemented as CLSM with a squared excitation Point Spread Function (PSF) ℎ(ex,2P) = [ℎ(ex,CLSM)]2.

49
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Despite suitable sample preparation and first Z-stack preprocessing motion artifacts

can still occur depending on the object being analyzed as well as the imaging methodol-

ogy. In Widefield Microscopy (WF) imaging, e. g. in the case of Structured Illumination

Microscopy (SIM), such artifacts can occur in feature-sized image sections (e. g. an entire

cell) if the motion velocity of the object being analyzed is greater than a limiting temporal

sampling frequency of the imaging method (including reconstruction) [58]. In the case

of CLSM or Image Scanning Microscopy (ISM) imaging geometries objects can thus be

distorted on a point-by-point and line-by-line basis. Distortions in the measured image

can further occur due to spontaneous vibrations or errors in the scanning mechanics.

While spontaneous compressions of an object along a line (and without a temporal

series ofmeasurements) can be corrected onlywith difficultywithout previous knowledge,

the offset of individual lines as well as of blocks can be corrected.

The spokes2d (Figure 2.1a+b) target will be used as in-silico simulation target, because

it can be thought as a strong abstraction of the blood vessels emanating from the optic

nerve on the retina and further exhibits a broad range of spatial frequencies which can be

used to demonstrate the relative influence of jitter w. r. t. the underlying structures size.

In particular, over the axial extend of the imaging PSF the retina blood vessels change

their shape only slightly which will be exploited in the algorithm to use them for drift

correction and basic dejittering.

In this section, line-by-line offsets in the case of CLSM geometry will be modeled and

simulated. For the correction of these offsets an algorithm is presented and evaluated

on experimental in-vivo mouse-retina data. Finally, the data will be deconvolved and

compared to uncorrected deconvolved data.

3.2 imaging model for movement correction

For modeling purposes, it is assumed that the spontaneous movements of the object can

occur at any time, but only along the slow scanning axis, i. e. from line 𝑚 to 𝑚 + 1. The

distortions of the object happen erratically but slower than the line-by-line scan speed,

and the object undergoes a uniform offset and return to the initial position over a set of

lines. This excludes e. g. whole image jumps, which however can also be detected with

cross correlation approaches and lead to a reduction of the usable field of view (FoV).
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Compressions/Distortions (along X) within the lines are not modeled, since under usual

CLSM (non-spinning disk) pixel-dwell times of a few 𝜇𝑠 and scan geometries of e. g.

1024 × 1024 the scan of a line is in the range of 𝑚𝑠. Assuming Nyquist-correct sampling for

e. g. a 2-photon fluorescent CLSM system at NA = 0.28, 𝜆(ex) = 900nm, 𝜆(em) = 608nm

and 𝑛(im) = 1.33 water gel, the maximum allowed samling is 𝑑(SPL,lat) ≈ 402nm,

𝑑(SPL,ax) ≈ 7548nm and a typical scan-volume is about 𝑁(z) = 30 pix meaning 𝐹𝑂𝑉(z) ≈

226 𝜇m and 𝑁(y) = 𝑁(x) = 997 pix meaning 𝐹𝑂𝑉(x) = 𝐹𝑂𝑉(y) ≈ 401 𝜇m. Thus the pixel

scan speed is about 𝑣(scan) ≈ 402nm/5 𝜇𝑠 ≈ 80 𝜇𝑚/𝑚𝑠. Mammalian monocytes are used

as a small, structured reference object that is close to e. g. T helper cells. They average

about ≈ 10 𝜇m ( [59]) in size and move e. g. in the case of rapid infiltration during wound

closure of a mouse skin at about 𝑣(mono) ≥ 12 𝜇𝑚/𝑚𝑖𝑛 ≈ 0.2nm/𝑚𝑠 [60]. Thus, local

distortions arising from the motion of these cells are negligible in the context of scan speed

(𝑣(scan)/𝑣(mono) ≈ 4 ⋅ 105) and achieveable resolution (𝑑(SPL)/2). Drifts along several lines,

on the other hand, can be generated by movement of the whole object or errors in the

scan arrangement and shall be considered further here. The proposed model focuses on

lateral distortions because the axial extent of the PSF ≈ 18× is larger than the lateral extent

and thus the considered distortions are negligible at the axial scale. Row-wise distortions,

i. e. along the X-axis from 𝑙 to 𝑙 + 1, are potentially relevant and can be represented via a

two-dimensional jitter model. However, in the context of the experimental data analyzed

in this work, simulation and correction using a one-dimensional model proved sufficient.

The above distortions occur randomly and are called jitter. Under the above assumptions,

the forward model for this process can be described by Equation 3.1

𝑀 = 𝒫 {𝐷(1D) ⊗ (ℎ ⊗ 𝑆)} (3.1)

𝐷(1D)(𝑥) =
𝑁(z)

∑
𝑛=0

𝑁(y)

∑
𝑚=0

𝛿𝑚𝑛(𝑥 − ̂𝑥𝑚𝑛) (3.2)

where 𝐷(1D)(𝑥) is a one-dimensional convolution kernel describing row-wise shifts of a 3D

stack and ̂𝑥𝑚 are randomly drawn from a uniformdistribution in [0, ̂𝑥(lim)]. The sum over Z

and Y resembles that jitter can be distributed over all lines (Y) of each slice (Z) of thewhole

Z-stack. Note, that the sample is scanned pixel-wise and thereby convolvedwith the system

PSF. If the imaging process is thought as imaging every scanning position individually

(Equation 1.17) the jitter has to be added as a line-wise shift before convolution with the

system PSF to include the random sample movement. Adding this additional shift to each
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Figure 3.1: Forward Data-Flow of movement-correction on example of a 𝑁(z) = 16 thick set of

copies of spokes2d object. a-c) linearly Z-drifted raw-object at 𝑧−4, 𝑧(0), 𝑧2. d-f) 2-photon

CLSM, Z-drifted, jittered image of a-c. g) mean-projection along z of the jittered stack.

h-o) display of processing steps on example of slice 𝑧(0). h) image after drift correction

𝑀(dcor), i) correlation map in X-direction 𝐿𝑙′𝑚′𝑛′, j) rectangular windowed correlation

map 𝐿(win)
𝑙′𝑚′𝑛′, k) mask from linewise maxima 𝐵𝑙′𝑚′𝑛′ found from windowed correlation

map, l) dilated maxima 𝐵(dil)
𝑙′𝑚′𝑛′, m) multiplied with correlation map 𝐿(dil)

𝑙′𝑚′𝑛′, n) center

of mass 𝐿(1D)
𝑚′𝑛′, o) dejittered image 𝑀(dej)

𝑙′𝑚′𝑛′. p-r) dejittered and deconvolved results ̂𝑆𝑙𝑚𝑛

of d-f). NCC results printed in lower right box of panels b,e,h,o and q.

scanning step and scanning over the whole image, as was demonstrated for derivation of

the CLSM forward model (Equation 1.18), the integrals can be rewritten such that the

jitter can be included as an additional convolution after the sample was convolved with

the system PSF, but before measurement and thus application of the noise model.

3.3 algorithm and its evaluation on in-silico data

For the reconstruction it is assumed that the image data remain in the same focus volume

(w. r. t. the object) over the entire measurement stack according to Section 2.2 and have

been processed according to Section A.14. Flat-fielding and sum normalization of the

individual images allow pixel-value bias and thus systematic error in shift determination

to be avoided. Based on this, the novel movement correction algorithm is applied.
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On example of a linear lateral drifted Z-stack of spokes2d targets the algorithm will

be explained. For a pseudocode-implementation see Algorithm 2. The description is

supported by Figure 3.1. In brief, Figure 3.1 a-g) display a set of steps to create the in-silico

dataset with: a-c) the drifted dataset at different slices 𝑧 ∈ {𝑧(-4), 𝑧(0), 𝑧(2)}, d-f) the jiterred

noisy imaged Z-stack of the target at the same Z-positions and g) the mean projection

along Z of the jittered Z-stack. From h-o) steps of the movement correction algorithm on

example of the central Z-slice 𝑧 = 𝑧(0) are shown. The stack is h) lateral drift corrected,

i) a 1D correlation map along X of the image Z-slice with the mean projection from g)

is calculated and j) a rectangular window is applied to the 1D correlation map. Then k)

the linewise maxima of j) are determined and extended using binary dilation thereby l)

creating a dilated-maximamask of k). Themask is thenm)multiplied with the correlation

map i) and the n) a Center of Mass (CoM) (see Equation 3.5) is calculated linewise along

X of l). Finally, the CoM positions are used to shift back each line individually yielding

o) the dejittered Z-slice. The last column p-r) shows the deconvolution results of the

dejittered Z-stack at the same Z-slices as a-c). In the following, the individual processing

steps will be explained in detail.

For data generation, each Z-slice of the sample is shifted along X for 𝑠(lin,x) pixels and Y

for 𝑠(lin,y) pixels according to Equation 3.3, i. e. for the e. g. 5th Z-slice the sample is shifted

by 𝑠(lin,x) = 10 and 𝑠(lin,y) = 5 pixels from its original position at Z-slice 𝑧(0). Afterwards,

jitter is generated from the spokes2d (Figure 3.1a-f) to demonstrate the algorithm. A

2-photon fluorescence CLSM system with the above optical parameters is simulated.

The imaging volume is 𝑁 = [𝑁(x), 𝑁(y), 𝑁(z)] = [256, 256, 16] pix with a pixelpitch of

𝑑(scan) = [200, 200, 3500]nm. There will be Poisson noise with 𝑁(Phot) = 10 expected

photons in the maximum voxel, a linear drift according to Equation 3.3 as well as random

jitter. The jitter is added by the following procedure: 1) the amount 𝑁(y,jit) of Y-lines

affected by the jitter is randomly drawn from a uniform distribution over the range

[0, 0.1] ⋅ 𝑁(y) of all available Y-lines. 2) 𝑁(y,jit) affected lines 𝑦(jit)
𝑚 are drawn from the

uniform integer distribution [0, 𝑁(y) − 1] and 3) the shifted distance 𝑠(jit,x)
𝑚 of each 𝑦(jit)

𝑚 is

drawn randomly from the uniform distribution ̂𝑥 = [0, 0.05] ⋅ 𝑁(x). A local retardation, i. e.

a 1D blur-kernel 𝜎(jit,y)
𝑚 along Y-direction, is applied and its size randomly drawn from a

uniform distribution [−4, 4] pixels. See Algorithm 1 for a pseudo-code like notation of the

described algorithm.
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Figure 3.2: Comparison of Reference Projection for (I) linear (𝑠 ∈ [−16, −14, … , 14]) and (II)

non-linear sample drift of reference spokes2d stack. a) mean-projection of non-jittered

and non-drifted image. b) Mean-projection of non-jittered but drifted image, c)

mean- d) median- e) 2D-sequential Savitzky-Golay Filter (SGF) (𝑤(SGF) = 5)

prefiltered median- f) SGF (𝑤(SGF) = 7) prefiltered median-projection of jittered,

drifted and preprocessed image 𝑀𝑙𝑚𝑛. NCC results are displayed in lower right box

in each panel.

From the Z-stack 𝑀𝑙𝑚𝑛 an axial reference projection 𝑀(ref)
𝑙𝑚 (Figure 3.1g) is determined

and used to correct the axial drift by finding the shift value between the reference pro-

jection and each Z-slice using the positional offset of the maximum of the 2D image

correlation between the two compared images. From the drift-corrected data stack 𝑀(dcor)
𝑙𝑚𝑛

(Figure 3.1h), an updated reference 𝑀(ref’)
𝑚𝑛 is determined. Since based on the reference

𝑀(ref’)
𝑚𝑛 a line in 𝑀(dcor)

𝑙𝑚𝑛 can be detected as jitter, special care has to be taken in determining

a representative reference. Two different scenarios will be demonstrated. 1) linear drift

(see Figure 3.2I) and 2) non-linear drift (see Figure 3.2II). The individual lateral shifts

w. r. t. to the axial position 𝑧 are chosen as:

𝑠(lin)(𝑧) = [𝑠(lin,x), 𝑠(lin,y)] = [2 ⋅ (𝑧 − 𝑧(0)), 𝑧 − 𝑧(0)] (3.3)

𝑠(nlin)(𝑧) = [[𝑠(nlin,x), 𝑠(nlin,y)] = [0.9 ⋅ (𝑧 − 𝑧(0))1.3, 0.2 ⋅ (𝑧 − 𝑧(0))1.5] (3.4)

for the linear 𝑠(lin) and non-linear 𝑠(nlin) case. The effect of the different shift on the reference

projection calculation is demonstrated in Figure 3.2. The processing-steps of subfigures

(I) and (II) are identical and will be explained on example of (I). a) shows the mean-

projection of the non-jittered and non-drifted 3D image-stack and b) the mean-projection

of non-jittered but linear drifted image (Equation 3.3). c-e) show the Z-projection 𝑀(ref)

of the jittered and drifted Z-stack 𝑀 using a c) mean- d) median- e) 2D-sequential SGF
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with window size 𝑤(SGF) = 5 prefiltered median- f) SGF with 𝑤(SGF) = 7 prefiltered

median-projection for calculation of the reference 𝑀(ref). (II) uses a Z-stack of spokes2d

targets drifted non-linearly according to Equation 3.4.

Edges and jitters are more uniform in the mean projection than in the median projection,

but are more blurred and thus are more difficult to determine for correlation. Preliminary

processing with an SGF of chosen window size 𝑤(SGF) reduces the amount of noise in

the projection, reducing random noise correlations between individual slices and the

projection. For symmetric lateral drifts about an axial center position of a axially slowly

changing structure, like is the case for blood vessels abstractly demonstrated by a Z-

stack generated from a slice-by-slice laterally shifted spokes2d target, median-projection

is favored. The same procedure nevertheless leads to comparable findings for nonlinear,

axially asymmetric drifts according to Equation 3.4 in Figure 3.2II. Note that the offset of

Figure 3.2IIb is asymmetric due to shift-dependent security padding in contrast to e. g.

Figure 3.2Ib.

In the following dejittering step a bounding-shield of a few multiples of the lateral

𝐹𝑊𝐻𝑀 is added to the outside of the image to reduce wrap-around artifacts by Fourier-

based operations. The correlation map 𝐿𝑙′𝑚′𝑛′ is calculated by computing a 1D correlation

of each drift-corrected Z-slice of 𝑀(dcor) individually with the calculated 2D reference

image 𝑀(ref) along X-direction. The correlation map 𝐿 may have multiple, highly extended

correlation maxima in pathological cases (e. g. periodic objects) or large maxima-shifts

due to highly offset lines (e. g. due to noise). To reduce this effect, local 1D windowing

along X around the center, i. e. a 1D rect-function (Figure 3.1j), is multiplied thus limiting

the influence of maxima at far stretched X-positions from the center. Optionally, instead

of the rect-function a 1D Gaussian-function can be used to select the central region with

an attenuated window rather then just cutting it out. Within the central region of the

correlation map 𝐿 line-wise correlation maxima 𝐿(max)
𝑙′𝑚′ (Figure 3.1k) are selected.

Optionally, (1D) SGF filtering of the data set can be performed beforehand to reduce

the influence of high-frequency noise in determination of the maximum position. Then,

a mask is generated from the selected maxima via application of a dilation operation in

X-direction (Figure 3.1l) and multiplied with the correlation map 𝐿𝑙′𝑚′𝑛′ thereby yielding

the selection 𝐿(dil’)
𝑙′𝑚′𝑛′ (Figure 3.1l). To undo the line-wise jitter along X the offset of the

line-wise maximum from the line-center position in 𝐿(win)
𝑙′𝑚′𝑛′ is determined via 1D Center of

Mass (CoM) (Figure 3.1n) calculation 𝐿(1D)
𝑚′𝑛′ along X-direction according to:
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(II) Deconvolutions.
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Figure 3.3: Dejittering and Deconvolution Comparison. (I) Dejittering (displayed at 𝑧−4) of

linear lateral drifted data and (II) of regularized single-view DEConvolution (DEC)

(Table 1.2) in case of linear lateral drift. (I)a) non-drifted, non-jittered noise-free

raw-image, b) jittered and drifted image, c-h) dejittered images 𝑀(dej) after

application of c) CoM of mutual line-wise correlation without window, d) CoM

using Gaussian window (𝜎(G) = 30 𝑝𝑖𝑥), e) CoM using rect windowed (windowsize

Δ𝑥 = 30 𝑝𝑖𝑥), f) SGF just using no-window but direct maxima, g) SGF using a

rect-window with CoM or h) SGF using Gaussian-window with CoM to b). (II)a)

ground-truth 𝑆, b) image 𝑀(raw), c) dejittered and drift-corrected image 𝑀(dej), d-f)

DEC with regularizers d) TV, e) GR, f) GS. NCC results are displayed in lower right

box in each panel.

𝐿(1D)
𝑚′𝑛′ =

∑𝑥 𝑥 ⋅ 𝐿(dil’)
𝑙′𝑚′𝑛′

∑𝑥 𝐿(dil’)
𝑙′𝑚′𝑛′

(3.5)

A comparison of some possible dejittering configurations is demonstrated in Figure 3.3I.

Here, a) is a Z-slice at 𝑧 = 𝑧(-4) of the linear drifted (Equation 3.3) ideal noise-free and

non-jittered 3D image and b) shows a) after application of noise and jitter. c-h) show

individually processed results of b) where different filters and search routines where

combined for comparison. c-h) show dejittered images 𝑀(dej) using c) CoM of mutual line-

wise correlation without window, d) CoM using Gaussian window with 𝜎(G) = 30pix),

e) CoM using rect window of size Δ𝑥 = 30 pix, f) SGF just using no-window but direct

maxima, g) SGF using a rect-window with CoM and h) SGF using Gaussian-window

with CoM.
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The line shifts in Figure 3.3Ib are better reduced in this case by a completely open win-

dow (Figure 3.3Ic) or only unattenuated by rect function bounded window (Figure 3.3Ie)

than by a Gaussian-attenuated window (Figure 3.3Id), since this better incorporates the

tails of the correlation function. Since this is not considered a robust implementation

for pathological configurations, as described above, a combination of SGF, Gaussian-

windowing, and CoM computation (Figure 3.3Ih) is proposed. The results Figure 3.3If-h,

i. e. the combination of SGF without window and with rect- or Gaussian-windowing,

all provide reliable and comparable results and the combination Figure 3.3Ih can be

recommended for general processing.

The determined shifts for line-wise dejittering are then applied to the Z-stack (Fig-

ure 3.1o) and the results are deconvolved on a laptop (for specifications see Section 1.8)

with DEC using Total Variation (TV) regularization with 𝛾(TV) = 10−2.5 where conver-

gence is reached around 𝑁(iter) = 180 (Figure 3.1p-r).

The parameters used for the DEC were determind via a simple parameter-search as

follows. The tested regularizers are TV (Equation 1.56), Good’s Roughness (GR) (Equa-

tion 1.57) and Gradient Square (GS) (Equation 1.58), see Figure 3.3II. Here, a) shows

the spokes2d target used as ground-truth 𝑆 for the parameter-search, b) the image 𝑀(raw),

c) the dejittered and drift-corrected image 𝑀(dej) and d-f) the 2D DEC reconstructions
̂𝑆𝑚𝑛 with regularizers d) TV with 𝛾(TV) = 10−2.5, e) GR with 𝛾(GR) = 10−2.5, f) GS with

𝛾(GS) = 10−3.5. The ground-truth a) is an edged target which is smooth along its struts.

Of the three priors compared, the TV is the most likely to have a local smoothing but

edge-texturing property.

On example of TV, the dependence of the DEC result on the choice of the regularization

parameter is shown in Figure 3.4. Here, a) is the ground-truth spokes2d target, b) is the

noisy jittered and c) the noisy dejittered image. d-m) show 2D DEC results for different

𝛾(TV) = 10−𝑚 for 𝑚 ∈ [−1, −0.5, … , 3.5] where convergence was reached around 𝑁(iter) ≤

200 iterations. The NCC (Equation 1.38) best agreement of the reconstruction ̂𝑆 with

the ground-truth 𝑆 (Figure 3.4a) for 𝛾(TV) = 0.01 (Figure 3.4j) and thus 𝐶 = 0.89. For

comparison, the same parameter search in case of using GS regularization is given in

Section C.3.
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Figure 3.4: TV-Deconvolution Parameters. Results ̂𝑆𝑙(0)𝑚𝑛 of processing and tiled deconvolution

of a) 3D obj, b) jittered image, c) dejittered image d-m) using TV regularizer with

𝛾(TV) ∈ 101, 100.5, … , 10−3.5. NCC results are displayed in lower right box in each

panel.

The search for suitable parameters depends on many factors like the used update proce-

dure (here: Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS-B)),

regularizers or the features mainly expected in the image. The parameter hyperspace

search is its own big field of research.

In Figure 3.5 a brute-force two-dimensional search is demonstrated, where the parame-

ters were varied in the ranges: iteration number 𝑁(iter) ∈ {1, 4, … , 94} and the regulariza-

tion parameter 𝛾 = 10−𝑚, 𝑚 ∈ {−3, −2.5, … , 1}. To speed up the search, tiled-processing

was omitted here and only a subimage of size 𝑁 = [128, 128, 16] around the center pixel

was used. This is the area that is significantly degraded by the imaging process compared

to the raw data, yielding a slightly lower correlation result as compared to the results of

the complete stack, see Figure 3.4. All three sub-images of Figure 3.5 show a surface-plot

where on the X-axis the iteration number 𝑁(iter), on the Y-axis the log10 of the parameter

𝛾 and on the Z-axis the NCC result is plotted. The NCC result is further color coded from

darkblue (𝐶 = 0.2) to red (𝐶 = 0.8). The resulting 2D surface in case of TV shows that
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Figure 3.5: 2D-Search for Optimal Parameters. NCC results of 2D-Parameter search for decon-

volution of dejittered spokes2d stack using 3 regularizers TV,GR,GS with 𝑁(iter) ∈

{1, 2, … , 10, 15, … , 100, 120, … , 200}, 𝛾 = 10−𝑚 with 𝑚 ∈ {−5.5, −5.0, … , 0.0}. TheNCC

is color coded from darkblue (𝐶 = 0.2) to red (𝐶 = 0.8).

only a few iterations 𝑁(iter) suffice for convergence towards the maximum NCC, shown in

dark red. The NCC looks like a Gaussian centered on the optimal 𝛾(TV) = 𝛾(max), i. e. it

decreases fast for 𝛾(TV) ≠ 𝛾(max).

A maximum search using the determined NCC values gives e. g. for TV the optimal

configuration: 𝛾(TV,max) = 10−2.5 and 𝑁(iter,TV,max) = 43 thereby achieving a correlation of

𝐶(max) ≈ 0.77. The minimum 𝐶(min) ≈ 0.271 for this simulation is found at 𝛾(TV,min) = 10

and 𝑁(iter,TV,min) = 94. The difference is remarkable. Table 3.1 lists all found minimum and

maximum parameters for the three analyzed metrics. The NCC similarity of all simulated

and processed images with respect to the ground-truth on example of the central Z-slice

𝑧(0) are directly written into the panel images, see Figure 3.1b,e,h,o,q. While the dejittering

algorithmprovides the basis for a proper deconvolution it only increasesNCC similarity by

2.5%. Subsequent deconvolution DEC achieves denoising by creation of a target estimate

𝑁𝐶𝐶(max) 𝑁(max)
𝐼𝑡𝑒𝑟 𝛾(max) 𝑁𝐶𝐶(min) 𝑁(min)

𝐼𝑡𝑒𝑟 𝛾(min)

TV 8.82e-01 1.80e+02 3.16e-03 1.47e-01 2.00e+02 1.00e+00

GR 8.67e-01 2.00e+02 1.00e-02 1.85e-01 1.80e+02 3.16e-06

GS 8.67e-01 2.00e+02 1.00e-03 1.65e-01 8.00e+01 1.00e+00

Table 3.1: Extrema of 2D-Search Parameter Search. Iteration number 𝑁(iter), regularization pa-

rameter 𝛾(TV) for their respective minumum and maximum NCC w. r. t. to parameter

search Figure 3.5 are listed.
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(I) (II)

Figure 3.6: Mouse Experiment Setup. (I) Basic sketch of the imaging setup. The image shows a

FoV of 1.5 mm ×1.5 mm. (II) Overlay of iso-rendering of completely processed

channels, blood-vessels in green, microglia in magenta.

̂𝑆 while emphasizing smooth surfaces and clear edges with the chosen TV prior thereby

increasing NCC similarity further by 13.4% and hence reconstructing an image of high

quality (see Section A.11).

3.4 correction of in-vivo mouse retina data

Using 2-photon fluorescence-based mouse retinal imaging, the proposed algorithm, al-

ready tested on in-silico data, is evaluated. The goal is to reconstruct a more reliable image

w. r. t. to shape and position of mouse-eye invading microglia, see magenta structures in

the reconstructed two color overlay result Figure 3.6I. Therefore, two color channels are

employed, one for measuring large supportive and axially slowly changing structures and

one for the microglia, which are sparsely distributed small structures.

The data were recorded by Daniel Bremer at the German Rheumatism Research Center

(DRFZ) in Berlin on a 2-photon microscope setup built by Ruth Leben [61]. The setup is

shown in Figure 3.6II. A Ti:Sa femtosecond laser is used to excite at 𝜆(ex) = 900nm and

a set of two Photo-Multiplying Tube (PMT) detectors is used to measure in the regions

𝜆 = [525 ± 25, 593 ± 20]nm. The scan unit, scan lens as well as the objective are project
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specific developments of LaVision Biotec. The objective has 4× magnification at 0.28NA

with water gel immersion and 6mmworking distance. The objective is well matched to the

aperture of the 0.32NA mouse eye opened with dilated pupils. By using water immersion,

a significant portion of aberrations generated by the mouse eye could be reduced. The

theoretically correct Nyquist sampling is 𝑑(Ny,lat) ≈ 400nm and 𝑑(Ny,ax) ≈ 7.5 𝜇m. To fit a

sufficient Region of Interest (ROI) of the retina into the limiting FoV of 994 𝑝𝑖𝑥 × 994 𝑝𝑖𝑥

the measurement was sampled at lateral pixel pitch 𝑑(SPL,lat) = 1.5 𝜇m, i. e. 3.8× the lateral

Nyquist limit, thereby achieving a lateral FoV of 1.5 mm×1.5 mm. Axial sampling had

to be reduced to 𝑑(SPL,ax) = 30 𝜇m, i. e. 4× of the axial Nyquist limit, due to technical

limitations to ensure a sufficiently high scanning speed. The pixel dwell time was 1.6 𝜇𝑠. In

the mouse eye, microglia were labeled with eGFP, measured at 𝜆(em1) = 525nm, and blood

pathways were labeled with sulforhodamine 101, measured at 𝜆(em2) = 593nm. During

measurements, the mouse was fixed via a rotatable and tiltable mount and anesthetized

by isoflurane inhalation. The degree of anesthesia could be regulated with the absolute

amount of inhalate. A large amount of inhalation leads to a strong anesthesia which

noticeably reduces the amount of jitter. In this condition, however, irregular, strong changes

in the angle of view of the mouse eye (spontaneous muscle contractions) occurred which

led to a spontaneous shift of the FoV about the size of the FoV. If the inhalation intensity

is too low, the mouse is sufficiently awake such that spontaneous muscle contractions did

not occur and the FoV remains the same over the entire measurement period. In this case,

however, the pulse as well as the respiration of the mouse is significantly higher and thus

more jitter is present in the image.

The presented dejitter and processing algorithm is based on finding a reference and

aligning the stack to it. Accordingly, dominant structures in the data are necessary to use

them as dejitter scaffolds. In the case of the mouse eye, the large blood vessels can serve

as basic structures. The algorithm is first applied entirely to the yellow (𝜆(em2) = 593nm)

channel data stack, i. e. blood vessels. The processing of the raw data is shown using the

pink-labeled ROI in Figure 3.7I on example of three different Z-slices 𝑧(-5), 𝑧(0) and 𝑧(3).

The raw data (Figure 3.7IIa-c) are first drift-corrected (Figure 3.7IId-f), then dejittered

(Figure 3.7IIg-i), and finally deconvolved (Figure 3.7IIj-l). The reference was calculated

by median selection after SGF application to the data-set. For dejittering, a Gaussian

window with 𝜎(G) = 80 𝑝𝑖𝑥, dilation 𝐷 = 80 𝑝𝑖𝑥, no SGF prefiltering and the proposed

CoM approach was used. For deconvolution, DEC with a GR prior with 𝑁(iter) ≤ 200
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Figure 3.7: Processing Retina Stack. (I) raw data of Channel 1 (blood vessel) at 𝑧(0) with

magenta marked ROI. (II) a-c) Raw-data of ROI shown at at Z-slices 𝑧−5, 𝑧0, 𝑧3. The

next columns always are processing results of the previous columns. d-f) axial-drift

corrected, g-i) dejittered, j-l) DEC processed with GR prior.

and 𝛾(GR) = 10−2.5 and DEC (Table 1.2) was used. The deconvolution parameters where

directly transferred from the results of the parameter-search for the spokes2d target, see

Figure 3.5. Note, that due to the coarse sampling deconvolution was implemented for

denoising and contrast enhancement rather then resolution gain.

The measured raw mouse-retina Z-stack 𝑀(mouse) was minimum subtracted (up to an

𝜖 ∈ ℝ+), normalized by its standard deviation 𝜎(mouse) and multiplied by the standard

deviation 𝜎(spokes) of the spokes2d target. Thus, the image was normalized according to:

𝑀′(mouse) =
𝑀(mouse) − min (𝑀(mouse)) + 𝜖

𝜎(mouse) 𝜎(spokes) (3.6)

which allowed to use the same parameters for DEC.

The effect of the drift correction can be visually perceived by comparison of the distance

of the blood vessel structure to the reference-line, see Figure 3.7IIc+f). Lateral drift correc-

tion values are in the range of 𝑠(drift) ≤ 8.6 𝑝𝑖𝑥, which is less than 1% of e. g. pixels along

X-direction. Lateral jitter shifts were slightly greater 𝐿(1D)
𝑚′𝑛′ ≤ 20.1 𝑝𝑖𝑥, but were 1.34 𝑝𝑖𝑥 at

the median and 1.85 𝑝𝑖𝑥 at the arithmetic mean.
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Figure 3.8: Raw-Data and Deconvolution Result Comparison. Max-Projection of (upper row)

full-lateral FoV and (lower row) same ROI as Figure 3.7. Stacks: a-b) Raw and c-d)

processed blood vessels. e-f) raw and g-h) processed microglia.

Shift values determined using blood vessels were applied directly to microglia. A color-

overlay of a 3D iso-surface representation of the two processed channels is shown in

Figure 3.6I where the viewing angle is set to 90deg w. r. t. the first Z-slice (thus it looks

slightly like a maximum projection). Here, the spatial distribution of microglia entering

the intraocular space from the optic nerve (center of image) can be observed. In Figure 3.8

a max-projection of the raw and processed data-stacks is given. The upper row shows the

full images before (a+c) and after processing (c+g). The lower row shows the ROI (see

Figure 3.7I) of the upper row. The lower row is normalized according to [𝑀/max𝑀]0.3

to demonstrate the effects of the reconstructions especially in the background.

Comparing b) with d) demonstrates the effect of dejittering. Now, the blood-vessels

have a more smooth surface which seems more reasonable and closer to the ground-

truth. Thus, reconstructions based on the dejittered data can be trusted more like e. g.

the shape of the lines in the background of d). The deconvolution further led to better

distinguishability between fore- and background due to its denoising, optical sectioning

and and surface leveling effect. Comparing f) with h) demonstrates clearly the gain in

distinguishability between fore- and background. Particularly the microglia cell in the

lower right is more defined. The grid pattern in the back of g+h) is a remnant of Hann-

windowed recombination of the image after tiled processing with 20% overlap and needs

to be improved further in future versions.
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3.5 conclusion and outlook

Axial drifting, jitter and low-pass filtering can complicate the analysis and interpretation

of measured image data and thus generate misinterpretations. Semantic data analysis

using axial projections can produce double images due to drifting and jitter, which can

lead to interpretation artifacts. In addition, the low-pass filtering inherent in imaging

reduces the intensity of high spatial frequencies and thus the clear distinction between

signal and background becomes more difficult the higher the frequencies.

To propose and demonstrate a suitable strategy to address these effects for a given real-

world measurement problem, the in-silico object spokes2d was used as data-representitive

for blood vessels and a forward simulation including the jitter process was first created.

Suitable parameters for strength and type of lateral drift for each individual Z-slice

as well as number, strength and abruptness of jitter along X-direction were presented

and remedied by a proposed processing algorithm. Calculation of the reference image

using 2D SGF filtering and median projection proved to be successful. For dejittering

the combination of SGF prefiltering with line-wise CoM (along X-direction) calculation

on a Gaussian-window for shift determination proved to be particularly suitable. For

subsequent deconvolution, DEC together with priors TV, GR, and GS were tested, with

TV being found to be a more suitable prior in the case of the spokes2d target due to its

tendency to have sharp edges.

The proposed correction algorithm was finally applied to an in-vivo 2-photon fluo-

rescence CLSM two-color mouse retina Z-stack. The analysis and correction were first

performed for the blood vessels and thus lateral drifts were determined. By normalizing

the Z-stack via minimum-subtraction and standard deviation based rescaling to the stan-

dard deviation of the in-silico data set, the deconvolution parameters from the simulation

could be adopted. All determined shifts and used parameters of the blood vessels could

be applied directly to the microglia Z-stack, allowing them to be processed appropriately,

despite very low signal levels.

The advantage of dejittering during post-processing is difficult to see when comparing f)

with h) due to the very detached and noisy structures, but can be estimated indirectly via

the change from b) to d). In such a reference-less highly noisy case as f) greater confidence

in the dataset can be established by the presented regularization.
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For future developments making the toolbox more robust against axial jumps, including

stretches or jitter along the Y-axis (i. e. slow scan direction) and improving the flow to

work completely on GPU (not only the deconvolution) would be adviseable.





4
TH ICK SL ICE UNMIX ING (TU)

Children of infinity, always gazing to our past. We are dust of

the stars.

— Ville Friman

4.1 motivation

In Image Scanning Microscopy (ISM), multiple viewing angles from the same object are

recorded in parallel during the scanning process using a detector array (Section 1.4), each

detector pixel yielding a seperate view of the sample. By lacking a detection-side pinhole,

the photon loss occurring in the detection process can be reduced. Detector-side spatially

resolved photon detection enables further processing capabilities.

In this section, the fundamental property of ISM as compared to the Confocal Laser

Scanning Microscopy (CLSM) scheme of having more information about the investigated

sample available for further analysis processes by using a pixelated camera instead of a

single-pixel detector will be exploited. Existing widely used ISM processing methods such

as Pixel Reassignment (PiRe) (Equation 1.26) process the available data linearly, allowing

higher lateral resolution to be achieved. Nevertheless, the lack of optical sectioning cannot

be remedied. In this section, a novel linear approach named Thick slice Unmixing (TU)

will be presented to not only allow for optical sectioning by post-processing, but to even

reconstruct a 3D sample-distribution from 2D multi-view measurements. Thus, 1) the

basic idea of ISMwill be explained furtherwith a simulation and afterwards from a slightly

changed forward-model the TU will be derived. 2) optimal multi-view DEConvolutions

(mDECs) and TU parameters will be determined. 3) properties of TU w. r. t. Out of

Focus (0oF) rejection and 3D reconstruction will be analyzed. 4) The processing strategy

LEAve-out z-Planes (zLEAP) will be presented.

67
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Figure 4.1: Basic ISM-Setup. (I) ISM schematic. Excitation beam ℎ(ex) is colored blue and

emission ℎ(det) from two different lateral positions are colored orange and green. (II)

Uni-rectangular detector shape of 3 × 3 pixels. Center of ℎ(ex) is aligned with central

pixel of detector. ℎ(det) from (I) are displayed accordingly. (III) X-cut through 𝑦 = 𝑦(0)

and 𝑧 = 𝑧(0) for 3D Simulation of the ISM Point Spread Function (PSF) according to

(II). The shift is marked with s.

4.2 theory and methods of tu

4.2.1 Derivation of TU

The schematic structure of a scanning ISM is shown in Figure 4.1I. The illumination emitted

by the laser is reflected at a Beam Splitting Element (BS), scanned by a Galvanometric

Mirror pair (GM) positioned at a plane conjugate to the Back Focal Plane (BFP) of the

objective lens, and the illumination is thus sequentially focused at different lateral scan

positions. In Figure 4.1I one scan position is demonstrated and the the excitation light is

colored blue. Some of the fluorescence emitted from the excited volume is collected back

by the objective lens, descanned by the GM, propagates through the BS, and is focused

on the camera (here electron-multipliying Charge-Coupled Device (emCCD)) using a

focusing lens (L). Note that a tube lens and a scanning lens between GM and objective lens

were omitted for simplicity of the drawing. Figure 4.1II shows the descanned excitation

PSF ℎ(ex) on the central pixel (blue) and two exemplary detection PSFs ℎ(det) (orange

and green) in the case of a rectangular pixel distribution unit cell for one scan-position
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1. Observe, that the corresponding sample volume of most probable detection for the

two detection pixels are shown with orange and green in the focal plane of Figure 4.1I.

Figure 4.1III shows the 1D slice at 𝑧 = 𝑧(0) and 𝑦 = 𝑦(0) of a 3D spatial simulation of the

ISM PSF model (Section 1.4) for one scan position.

The effect of the PiRe shift factor (Equation 1.26) is demonstrated using the central

pixel and its forth neighbor along the horizontal view-direction, for simplicity: X-direction.

The selected parameters are: excitation wavelength 𝜆(ex) = 563 nm, emission wavelength

𝜆(em) = 580 nm, numerical aperture of the objective 𝑁𝐴 = 0.7, isotropic lateral sampling

𝑑(SPL,lat) = 20 nm, axial sampling 𝑑(SPL,ax) = 60 nm, and isotropic detector pixel pitch

𝑑(Cpitch) = 100 nm in scan coordinates. Both ℎ(ex) and ℎ(det) are max-normalized for

visualization. ℎ(ex) is shown dashed in blue and its center coincides with the center of the

central pinhole from Figure 4.1II, thus its maximum along X-direction is at ̂𝑥(ex) = 0nm.

The detection PSF ℎ(det) of the selected pinhole is shown in dashed orange2. It has its

maximum at ̂𝑥(det) = 400 nm. The pinholes are simulated as 𝛿-peaks, giving ℎ(ISM) directly

as the product of excitation and detection PSF (Equation 1.24). ℎ(ISM) has its maximum

at almost ̂𝑥(ISM) = 200 nm, rounded to full pixels in the simulation, and is drawn with

magenta. Being the product of ℎ(ex) with ℎ(det) it is much smaller than either of the

excitation or detection PSF, since a molecule has to both be excited and detected to appear

in the recorded data. The distance between the excitation and emission maxima is given

by Δ𝑥 = ̂𝑥(det) − ̂𝑥(ex).

Themost likely position of the detected fluorophore emission in this example is at ̂𝑥(ISM),

but is stored at position ̂𝑥(ex)+ ̂𝑥(det). To correct for this effect, the distance 𝑠(ISM) = ̂𝑥(ISM) − ̂𝑥(ex)

is determined in case of the PiRe processing and the shift factor 𝑚(ISM) = 1 − 𝑠(ISM)/Δ𝑥

is calculated above (Equation 1.26)3. With 𝑚(ISM) at hand, all detector pixel positions

can be shifted back to the most probable emission position4 (in scan coordinates) and

1 Due to the setup geometry the illumination is first scanned by the GM and afterwards descanned. If the

optical axis of excitation and detection beam-path match and are centered on the central camera pixel 𝑎(0),

then 𝑎(0) is always the conjugated position w. r. t. to the scan position of the illumination beam.
2 The detection probability of all (ideal) camera pixels is equally high and its sum over all pixels is normalized

to 1.
3 For calculation of 𝑚(ISM) the distance between e. g. the central and neighboring pixels in scan coordinates

must be known.
4 The extension of the calculation of 𝑚(ISM) in the case of non-isotropic detector pixel unit cells is straightfor-

ward.
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afterwards summed up. In this thesis, this shift-back and sum-up processing is called

Pixel Reassignment (PiRe). In the given example, the shift distance5 is 𝑠 = 𝑚(ISM) ⋅ ̂𝑥(det)

and so 𝑠 = 0.5 ⋅ 400 nm= 200 nm. In the case of ISM, an image consists of many scan

positions where for each one the above explanation applies.

Since for PiRe all camera pixels are shifted back toward the central pixel 𝑎(0) and the

total PSF of a laterally shifted detector pixel is asymmetric, it is important to accurately

determine the central camera pixel 𝑎(0), otherwise asymmetric ISM PSFs may result and

thus the reconstruction may suffer qualitative degradation. A brief simulation of the

change of the lateral shape of the in-focus ISM PSF as a function of the camera pixel used

is shown in Section D.1.

For determination of the lateral shift factor, mainly 3 different methods have been

implemented in this work. Method 1) takes a (theoretically) calculated shift factor and

applies it to all detector pixels according to given unit vectors of the camera pixel unit cell

in the detector plane. This method is robust to any noise, but requires precise knowledge

of the detector geometry and an accurate shift factor. Method 2) is called nearest and

determines the respective distance of the two closest neighboring detector pinholes along

the individual basis vectors of the detector unit cell to the central detector pinhole 𝑎(0) by

determining themaximumof the correlation of these neighboring pinholeswith the central

detector pinhole. The unit vectors determined in this way are then applied to all remaining

detector pinholes. Method 3) is called complete and also uses the determination of the

maximum of the correlation of different pinholes to the central pinhole, but calculates it

for all detector pinholes individually. While nearest is statistically less susceptible to noise

compared to complete, complete does not require any further assumptions about the detector

geometry. Method 1 requires less system resources by means of Central Processing Unit

(CPU) and Random-Access Memory (RAM) than nearest, which again requires less than

complete. For the use cases in this work, especially due to the independence from the

theoretical shift factor determination, nearest was used.

In Section 1.7 different schemes for reconstructing an object estimate ̂𝑆 were presented.

While direct methods like 1/OTF (Section A.18) or Wiener Deconvolution (WD) (Sec-

tion A.19) are directly applicable, iterative solutions like Poisson-likelihood maximizing

single-view DEConvolution (DEC) using Limited-memory Broyden-Fletcher-Goldfarb-

5 Due to differences in the lateral extent between ℎ(ex) and ℎ(det) normally 𝑚(ISM) ≠ 0.5, but here only a

pixel-exact simulation is demonstrated leading to 𝑚(ISM) = 0.5.
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Shanno algorithm (L-BFGS-B) (Section 1.7) naturally require significantlymore processing

time and ressources. Themethods above have been presented only for single-view datasets.

For datasets with multiple views, Signal-to-Noise Ratio (SNR)-optimal recombination

in case of Weighted Averaging in Fourier Space (WAVG) (Section 1.7) has already been

discussed. The aforementioned iterative DEC routine can be extended to multi-view data

by extending the forward model with an indvidual PSF for each view. In contrast, the WD

directly sums up all views before deconvolution due to the linearity of WD.

For the imaging process a 3D forward model with a 2D in-focus selection (i. e. axial

position of sample w. r. t. the nominal focus position of the objective lens) at 𝑧 = 𝑧(0)

(Equation A.58) is assumed. The goal is to reconstruct an estimate ̂𝑆 of a 3D sample

distribution from a 2Dmulti-view ISM single Z-slice measurement of the object. Using the

Fourier slice theorem [15], the discretized forwardmodel (Equation 1.42) formeasurement

of an in-focus slice 𝑧 = 𝑧(0) can also be expressed as:

𝑀𝑎𝑙𝑚 = ℱ−1
(2𝒟)

⎧{
⎨{⎩

∑
𝑛

[ℎ̃𝑎 ̃𝑙�̃�𝑛
̃𝑆 ̃𝑙�̃�𝑛 + �̃�𝑎 ̃𝑙�̃�𝑛]

⎫}
⎬}⎭

= ℱ−1
(2𝒟) {𝑀𝑎 ̃𝑙�̃�}𝑙𝑚 (4.1)

where the summation along the axial spatial frequency axis, indexed by ̃𝑛, equals the

selection of the slice 𝑧 = 𝑧(0) in real space. ̃𝑙, 𝑚 are the indices of the discrete lateral Fourier

spatial frequencies, 𝑙, 𝑚 are the indices of the lateral real space positions and 𝑎 is the index

of the detector pixel represented as a flattened array to account for arbitrary (2D) detector

geometries.6 For better readability the lateral frequency indices will be dropped, thus

e. g. 𝑀𝑎 ̃𝑙�̃� ⟶ 𝑀𝑎 and the equations have to be evaluated individually for each individual

selection of ̃𝑙 and 𝑚.

While 𝑀𝑎 in Equation 4.1 is a 2D spatial frequency distribution, ̃𝑆𝑛 represents the

complete 3D object, again for all pairs ̃𝑙, 𝑚 individually. In Equation 1.41 the forward-

model uses a point-wise multiplication of the Optical Transfer Function (OTF) ℎ̃ with the

Fourier spectrum ̃𝑆 of the object in case of a complete 3D dataset or integration along the

̃𝑛 axial frequency if a 2D Z-slice is measured. In Equation 4.1 on the other hand a matrix

product between ℎ̃ and ̃𝑆, i. e. a summation along ̃𝑛, is assumed for the forward model.

6 Note that not for every 𝑙, 𝑚 there exists an assigned ̃𝑙, �̃�, but rather the indices are meant to visualize the

axes they belong to, so in case of 𝑚 or �̃� the Y- or �̃� axis respectively.
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The goal is to determine an inversion-matrix ℎ̃† to reconstruct an estimate of the sample

distribution ̂̃𝑆 via inversion of the forward-model Equation 4.1, analog to the approach

demonstrated in Section A.18, according to:

̂̃𝑆𝑛 = ∑
𝑎

ℎ̃†
𝑎𝑛𝑀𝑎 (4.2)

In general, the problem is ill-posed due to the band limitation of ℎ̃ along 𝑘(z), the noise

�̃� and the shape of the matrices, but can become well-posed and thus solvable by in-

troducing a regularization. Assuming that the matrix ℎ̃ has bounded support 𝑠𝑢𝑝𝑝 (ℎ̃),

the reconstruction is performed only within this support, and 𝑆𝑁𝑅 (𝑠𝑢𝑝𝑝 (ℎ̃)) ≫ 1 in

this domain, the noise term �̃� in Equation 4.1 can be neglected. Thus the regularized

minimization problem can formulated as [62]:

ℒ𝑎 ( ̂̃𝑆; 𝑀𝑎) = ∥∥∥∥
∑
𝑛

ℎ̃𝑎𝑛
̂̃𝑆𝑛 − 𝑀𝑎

∥∥∥∥

2

2
+ 𝛾(TU) ∥ ̂̃𝑆∥

2

2
(4.3)

with 𝛾(TU) as the Tikhonov regularization parameter. With the choice 𝛾(TU) > 0, Equa-

tion 4.3 is well-posed [62]. The problem was made convex, thus a global minimum exists

and a 𝛾(TU) can be found which minimizes ℒ𝑎. The regularizing pseudo-inverse ℎ̃† that

solves Equation 4.3 can be computed efficiently using Singular Value Decomposition

(SVD) [63]. In the SVD formalism, the mapping matrix ℎ̃ is computed as a linear combina-

tion of two unitary transformation matrices 𝑈,𝑉 (rotations on ℝ) and a diagonal forward

matrix Ξ, which holds the Singular Values (SV)s, i. e. square roots of the eigenvalues of

ℎ̃∗
𝑎𝑛ℎ̃𝑎𝑛 [62], according to:

ℎ̃†
𝑎𝑛 = ∑

𝑏
𝑈𝑎𝑏 ∑

�̃�
[Ξ𝑏�̃�𝑉∗

�̃�𝑛] (4.4)

Together with Equation 4.3 the diagonal entries of the forward matrix Ξ are:

Ξ𝑛𝑛 =
𝜉𝑛

|𝜉𝑛|2 + 𝛾(TU) (4.5)

with 𝜉𝑛 the SVs of Ξ, which are sorted in descending order, hence 𝜉 (max) = 𝜉 (0). Using

Equation 4.5 it is easy to see that with the choice of the regularization paramater 𝛾(TU) a

lower bound to the effectively influencing SVs can be set. Thus 𝛾(TU) directly influences

the conditioning number Θ (Equation 4.6) of the problem, which can be upper bounded

by |𝜉 (min)| ≪ √𝛾(TU), since mostly 0 < 𝛾(TU) ≪ 1 holds.

Θ(ℎ̃†) =
|𝜉 (max)|
|𝜉 (min)|

>
|𝜉 (max)|

√𝛾(TU)
(4.6)



4.2 theory and methods of tu 73

In this thesis, reconstructions whose regularization parameter 𝛾(TU) lies on the order

of O (1/Θ (ℎ̃)) (Equation 4.6) are considered to be unregularized. In this case, only

numerical instabilities as well as inaccuracies in the determination of the OTF support

are corrected. Parameter choices of 𝛾(TU) ≫ 1/Θ (ℎ̃) are called regularized. For a brief

discussion on the rank of the OTF matrix see Section D.2.

By means of 𝜖(mask) the relative minimum value w. r. t. ∣ℎ̃ ( ⃗𝑘 = 0)∣ frequency of the OTF

and thus the support cutoff spatial frequency 𝑘(C) to be used for the reconstructions is

set. While 𝑁(𝜉 lim) limits the absolute maximum number of SVs (Equation 4.5) to be used

for inversion, Δ𝜉 (rel) gives an alternative to allow for all SVs 𝜉 which satisfy the condition

𝜉 ≥ Δ𝜉 (rel) ⋅ 𝜉 (0). Since the pseudo-inverse is computed according to Equation 4.4 for all

lateral spatial frequencies (indexed by ̃𝑙, 𝑚) individually, the respective magnitudes of the

individual SVs 𝜉𝑛 as well as the size of the matrices ℎ̃𝑎𝑛 vary, since a different amount of

Z-slices lies within the OTF support 𝑠𝑢𝑝𝑝 (ℎ̃) at different lateral frequencies.

The reconstruction is called Thick slice Unmixing (TU), because ̂̃𝑆 is reconstructed with

an axial (3D) extent from a 2D Z-slice.

4.2.2 Deconvolution Parameter Search

For comparison of the TU results with according deconvolution results using mDEC and

multi-view DEConvolution with 2D to 3D reconstruction (2d3dDEC) in Section 4.2.3,

first the simulation parameters and the effects of the different reconstruction schemes on

the parameter choices will be demonstrated in this section.

The effective ISM PSF is calculated according to Equation 1.24 with NA = 1.42,

𝑛(im) = 1.52, 𝜆(ex) = 561 𝑛𝑚, and 𝜆(em) = 580 𝑛𝑚. Parameters are chosen to roughly match

the experimental parameters in Section 4.3. Hence the necessary Nyquist sampling upper

bound is 𝑑(Ny,ax) = 145 𝑛𝑚, 𝑑(Ny,lat) = 50 𝑛𝑚 and one lateral airy unit of the detection PSF

has the size of 𝑑(1AU,lat) = 498 𝑛𝑚. Theoretically, it is sufficient to choose the sampling

distances for the scan matching the Nyquist limit of the scanning PSF ℎ(ex) and for the

detection matching the Nyquist limit of ℎ(det). In this simulation, however, the much

more restrictive Nyquist limit of the effective PSF is chosen and thus the sampling used is

𝑑(SPL,lat) = 42.17nm and 𝑑(SPL,ax) = 100 nm. The camera-pixels have a rectangular unit-cell

and the pitch in sample coordinates is isotropic 𝑑(Cpitch) = 84 𝑛𝑚 or roughly 0.17×𝑑(1AU,det)
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Figure 4.2: 2D Deconvolution Parameter Search (I) for a) 𝑧(0) slice of obj3d displayed for the b)

central detector-pinhole 𝑎(0). Results for optimal parameters in case of DEC with

priors c) TV, d) GR and e) GS are displayed. NCC similarity is displayed in the lower

right corner of each tile. (II) NCC results for whole tested parameter range and

regularizers used in (I).

of 1 𝐴𝑈 of the detection PSF ℎ(det). Of all camera pixels, an active Region of Interest (ROI)

of 5 𝑝𝑖𝑥 × 5 𝑝𝑖𝑥 or 0.84 𝐴𝑈 × 0.84 𝐴𝑈 of the detection PSF ℎ(det) around the center pixel,

defined by the center of the excitation PSF ℎ(ex), is used. Even though a bigger active on-

camera pixel-area would allow to reconstruct even deeper Z-slices of the sample7 and thus

a coverage of a lateral region of 1.5 − 2 𝐴𝑈 would be preferable, the parameters are chosen

to demonstrate the influence of the active on-camera pixel-area on the reconstruction. The

object obj3d (Figure 2.1 m-p) is scanned three dimensionally leading to a 4D data set of

size 𝑁 = [𝑁(a), 𝑁(x), 𝑁(y), 𝑁(z)] = [25, 64, 64, 32]. Furthermore, Poisson noise is applied

to the normalized image such that a maximum pixel has 𝑁(phot) = 10.

Effects of finding the optimal iteration number 𝑁(iter) have already been presented

in Section 3.3, so in this section the focus is placed on finding the ideal regularization

parameters 𝛾 for the used regularizers Total Variation (TV), Good’s Roughness (GR)

and Gradient Square (GS), see Section 1.7. The Normalized Cross Correlation (NCC)

Equation 1.39 is again used as a measure for reconstruction quality. All detector pinholes

𝑁(a) are utilized.

Reconstructions from a 2D (e. g. 𝑧 = 𝑧(0)) to a full 3D stack are particularly relevant for

comparability to 3D reconstructions using the TU algorithm (Section 4.2.1).

7 Because even more information can be acquired from the more displaced views.
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In order to use comparable regularization parameters for all further reconstructions,

all images 𝑀 used for reconstruction are reduced to the pixel sum of the reference stack

∑𝑁
𝑎𝑙𝑚𝑛 𝑀(ref) as well as normalized by the number of Z-slices to be reconstructed 𝑁(z,recon).

For the 2D mDEC reconstruction only the 𝑧(0)-slice of the simulated multi-view Z-stack

is used. The results for this case are shown in Figure 4.2I, with all images normalized

to their individual maximum. Here, the lateral cuts at 𝑧(0) of a) the ground-truth 𝑆, b)

the noisy non-aberrated image 𝑀0 and the 2D mDEC reconstructions in case of c) TV,

d) GR and e) GS are shown. The regularization factors 𝛾 are found via an NCC-based

maximum search, shown in Figure 4.2II. The NCC maximum for TV and GR precedes the

plateau (𝛾(2D) ∈ [10−8, … , 10−5]) but differs only slightly from it. Thus, in most cases of

this reconstruction example, regularization is hardly advantageous to reconstruction. The

optimal 𝛾(2D)s found are �⃗�(2D) = [𝛾(TV), 𝛾(GR), 𝛾(GS)] = [10−8, 10−5, 10−8] with which

the NCC maxima ⃗𝐶(2D) = [𝐶(TV), 𝐶(GR), 𝐶(GS)] = [0.91, 0.92, 0.91] and thus a high-quality

reconstruction is achieved. The maximum number of iterations was set to 𝑁(iter) = 200

for all deconvolutions and convergence was reached within this bound.

The same analysis procedure for 2d3dDEC as well as 3DmDEC reconstruction is shown

in Figure 4.3. In Figure 4.3I the upper row shows a lateral-cut at the 𝑧 = 𝑧(0) and the

lower row an axial cut at 𝑦 = 𝑦(0). a+b) shows the ground-truth and c+d) the noisy

but aberration-free image of the central detector pixel 𝑀0. In e+f,i+j,m+n) the results of

2d3dDEC reconstruction, i. e. reconstruction of a 3D-sample distribution from only the

in-focus 𝑧 = 𝑧(0) slice, for all three regularizers are displayed. g+h,k+l,o+p) display the

results of 3D mDEC using the complete Z-stack 𝑀. In case of 2d3dDEC, Figure 4.3II-4.3III

and for 3D, mDEC Figure 4.3IV the NCC similarity of the reconstructed thick slice to

the ground truth as a function of the regularization parameter 𝛾 is displayed. While

Figure 4.3II uses the entire Z-stack for NCC calculation, Figure 4.3III uses a reduced axial

range of Δ𝑧 = ±4 Z-slices.

Due to the mirror symmetry property of the PSF at 𝑧(0), the iterative 2d3dDEC recon-

struction (Figure 4.3 f,j,n) is equally mirror symmetric with respect to 𝑧(0). The limited

axial extent of the PSF further leads to that relevant information from more distant Z-

slices (e. g. 𝑧(16)) do not contribute to the measured slice, or only as a nearly constant

background. Thus, the reconstructed stack seems limited to a small range Δ𝑧 = ±4 around

𝑧(0) even though the reconstruction accounted for the full 32 Z-slices. The NCC results are

given in case of 1) utilizing the full reconstructed Z-range (Figure 4.3II) and 2) only using
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Figure 4.3: 3D Deconvolution Parameter Search on an example of the obj3d target. (I) Upper

row lateral slice (at 𝑧(0)) lower row axial slice (at 𝑦0). a+b) RAW object c+d) image

of central pixel 𝑎(0). e-p) Results of mDEC with e-h) TV, i-l) GR and m-p) GS prior

where left column (eg e+f) of each 4-image block (eg e-h) uses 2d3dDEC

reconstruction and right column (eg g-h) 3D mDEC reconstruction. 3D NCC

similarity is displayed in lower right corner of upper row tiles. NCC results using

complete Z-range in case of (II) 2d3dDEC and (IV) 3D mDEC search. (III) shows

NCC results for comparison of 2d3dDEC with ground-truth within a limited Z-range

of Δ𝑧 = ±4 around central slice.

a limited Z-range of Δ𝑧 = ±4 around 𝑧(0) for calculation of the NCC (Figure 4.3III). In

case of 1), e. g. two local maxima of the NCC of TV are found with the bigger maximum at

log10 (𝛾(2D3D,TV)) = −0.5 while in case of 2) one maximum at log10 (𝛾(2D3D,TV)) = −2.5

is found. Visual comparison of the two results shows that the found maximum of 1) leads

to an over-regularized reconstruction where the the high axial regularization together

with the approximate symmetry of the used obj3d leads to more pixels ≠ 0 that can be

positively correlated thereby yielding a comparatively higher NCC result even though
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the resolution gain is not optimal.8 Thus, for the NCC evaluation on the limited Z-range

Δ𝑧 = ±4 the parameters �⃗�(2D3D) = [10−2.5, 10−2, 10−4.5] with ⃗𝐶(2D3D) = [0.90, 0.92, 0.93]

are found. For pixel normalization, the factor 𝑁(z,recon) = 𝑁(z) = 32 was used.

The complete 3D reconstructionmDEC (g+h,k+l,o+p) can reliably recover the entire ob-

ject and finds the maxima �⃗�(3D) = [10−3, 10−3.5, 10−5.5] with ⃗𝐶(2D3D) = [0.96, 0.98, 0.98].

4.2.3 Properties of TU

The simulation parameters and 3D sample used in this section are the same as in Sec-

tion 4.2.2. Here, a 3D thick slice sample estimate ̂𝑆𝑙𝑚𝑛 from a measured Z-slice 𝑀𝑎𝑚𝑛 at

𝑧(0) is reconstructed. The simulated image dataset 𝑀𝑎𝑚𝑛 consists of 𝑁(M) = [25, 64, 64, 1]

pixels9, while the multi-view 3D PSF dataset used for reconstruction consists of 𝑁(h) =

[25, 64, 64, 32] pixels.

A parameter search for TU, where a 3D thick slice object estimate ̂𝑆(TU) is reconstructed

from a 2D multi-view measurement 𝑀𝑎𝑚𝑛, is shown in Figure 4.4. The graphic is meant

to be read column-wise. The 1st and 3rd row show a lateral cut at 𝑧(0) while the 2nd and

4th show an axial cut at 𝑦0. While in the upper two rows the reconstruction results with

minimal NCC, within the given simulation range, in the lower two rows the results with

maximumNCCare displayed. The parameterswere varied in the range: 𝜖(mask) = 10−0.5−𝑏,

𝛾(TU) = 10−5−𝑏, 𝑁(𝜉 lim) = 1 −2𝑏 and Δ𝜉 (rel) = 10−1−𝑏 for basic steps 𝑏 ∈ [0, , 0.5, … , 5]. In

the first four columns one of the four parameters relevant for the TU algorithm is always

varied, while the others remain fixed at the basic settings 𝜖(mask) = 10−5, 𝛾(TU) = 10−8.5,

𝑁(𝜉 lim) = 100, and Δ𝜉 (rel) = 0, thus imposing no significant constraint on the SVs. The

varied parameters per column are: a-d) 𝜖(mask), e-h) 𝛾(TU), i-l) 𝑁(𝜉 lim) and m-p) Δ𝜉 (rel).

NCC was calculated for the axial thick slice of [𝑧(-3), 𝑧(-2), … , 𝑧(3)] to anylize how close

the reconstruction is to the original 3D sample distribution around the central Z-slice.

Nevertheless, Figure 4.4I displays the entire reconstructed Z-stack. For comparison, multi-

view deconvolution in case of q-r) 2d3dDEC and 3D s-t) mDEC using GS regularization

8 Note, that a bigger active on-camera pixel-area could remedy this problem by allowing to reconstruct a

bigger 3D volume.
9 Note, that the axis order is 𝑁(M) = [𝑁(M,a), 𝑁(M,x), 𝑁(M,y), 𝑁(M,z)].
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Figure 4.4: Thickslice Parameter Search on example of obj3d. (I) Results of found parameters

yielding (first 4 columns of) row1+2) minimal NCC, row3+4) maximal NCC.

Parameters varied are a-d) 𝜖(mask), e-h) 𝛾(TU), i-l) 𝑁(𝜉 lim) and m-p) Δ𝜉 (rel).

Multi-view deconvolutions q+r) 2d3dDEC and s-t) 3D mDEC are depicted for visual

comparison. NCC similarity is displayed in lower right corner of each tile. (II) NCC

results of TU reconstruction for individually varied parameters 𝜖(mask), 𝛾(TU), 𝑁(𝜉 lim)

and Δ𝜉 (rel). Individual parameter values are derived from steps 𝑏 ∈ [0, 5] with step

size Δ𝑏 = 0.5.

with 𝛾(2D3D) = 10−5 = 𝛾(3D) was calculated. Figure 4.4II shows a plot of the NCC results

in case of TU reconstruction for the four varied parameters of Figure 4.4I as a function of

the step parameter 𝑏.

Optimal parameters found for reconstruction of the sample obj3d are 𝑁(max)
𝜉 = 25,

𝜉 (max) = 9.5 ⋅ 10−4, 𝜉 (min) = 1.12 ⋅ 10−15, thus the conditioning number is Θ = 8.5 ⋅ 1011

and the problem is regularized as 𝛾(TU) ≫ 1/Θ. Here, 𝜉 (max) and 𝜉 (min) as well as the

conditioning number Θ (Equation 4.6) are calculated for each lateral spatial frequency

individually.
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Figure 4.5: 0oF Rejection Comparison.(I) comparison of 0oF rejection and image reconstruction

quality for different methods using all available views. Processing methods are: a)

𝑀(sum), b) 𝑀(ISM), c) 𝑀(wavg), d) 𝑀(nwavg), e) 𝑀(wd), f) 𝑀(tu), g) 2D 𝑀(mDEC), h) 3D

𝑀(mDEC)(𝑧 = 𝑧(0)) with selection of central slice. NCC similarity to ground-truth is

displayed in lower right corner of each tile.

While 𝜖(mask) and 𝛾(TU) have the largest impact on reliable unmixing, the relative im-

pact due to the constraint on SVs is almost imperceptible. The reconstruction matrix is

highly rank-reduced, thus SVs (≡ large Θ) drop rapidly and only the first two SVs (see

𝑁(𝜉lim) Figure 4.4II) have a significant impact on reconstruction quality and stability (Fig-

ure 4.4II). Thus, the reconstruction is dominated by limiting OTF support and Tikhonov

regularization.

The reconstructions are symmetric around the slice 𝑀(0) measured at 𝑧(0) and recon-

struct the sample only around a limited range 𝛿𝑧. The symmetry is because TU tries to

distribute the measured frequency components of 𝑀 (at 𝑛(0)) of a given lateral position

over all frequencies 𝑘(z) of ̂𝑆 by clever weighting. Since ℎ is axially symmetric this leads

to the fact that the weights are also distributed uniformly and symmetrically around

𝑛(0). The axial limitation depends on the number of pinholes used, so that the inversion

problem is well defined, the information content per pinhole (i. e. the angle of the view)

and the SNR. Views further away from the central detector pixel allow the acquisition of

more distant sample volumes and thus a more complete image of the investigated volume.

If only individual slices (or regions) are to be reconstructed rather than an entire stack,

the inverse ℎ̃†
𝑎𝑛 can be computed according to Equation 4.2 only for a specific ̃𝑛 = ̃𝑛(0).

Thus, the necessary numerical effort can already be reduced by the axial dimension
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and a performance boost can be achieved. By using a full 3D forward model, but only

reconstructing a single axial slice 𝑧(0), 0oF are removed from the reconstructed slice and

inherently regularized.

In Figure 4.5 a selection of reconstruction methods w. r. t. their 0oF rejection capability is

compared. The simulation parameters remain unchanged. The methods used are: a) direct

summation of all views 𝑀(sum), b) PiRe 𝑀(ISM), c) WAVG 𝑀(WAVG), d) noise normalized

Weighted Averaging in Fourier Space (nWAVG) 𝑀(nWAVG), e) WD ̂𝑆(WD), f) TU ̂𝑆(TU) with

limitation to one central slice, g) 2D ̂𝑆(mDEC), h) 3D ̂𝑆(mDEC) with subsequent selection

of 𝑧(0). The NCC similarity was determined only for the 𝑧(0) slice. While a-e,g) use 2D

forward model with 2D multi-view dataset and PSF at 𝑧(0), f+h) use a 3D forward model.

Here, f) uses only the central spatial frequency 𝑘(z)
0 of the multi-view 3D OTF while 3D

mDEC utilizes the full 3D PSF. The comparison shows that the deconvolutions (e-h)

tend to achieve the NCC-better results, with the mDEC and TU processings in particular

achieving reconstructions of high quality (see Section A.11).

For a more in-depth analysis in case of 21 different active detector-pixel-configurations,

see Section D.3. By means of simulation it was shown that the detector pixel pitch has

influence on the reconstructability of a thick slice. Within the same simulation parameters,

an optimal pixel pitch of 𝑑(Cpitch) = 3 ⋅ 𝑑(SPL,lat) ≈ 126 nm could be obtained for the

target obj3d for TU and of 𝑑(Cpitch) = 𝑑(SPL,lat) ≈ 42 nm for 3D mDEC. For details, see

Section D.4. In particular, it turns out that not every camera pixel has the same importance

in the case of a 3D thick slice reconstruction. Should a limitation of the used detector

elements be necessary for faster data readout, data volume limitation or cost limitation

when building a dedicated detector array, it was found that especially the central pinhole is

of essential importance. In addition, to achieve sufficient thick slice reconstruction quality

in a sparse axial region around the measured slice 𝑧(0), the direct four neighbors (vertical

and horizontal) are of particular importance. For more details see Section D.5.

4.2.4 zLEAP

In the previous sections, it was illustrated how a 3D thick slice can be reconstructed from a

2D slice using the available views of the ISMmeasurement. However, the axial thickness of

the reconstructible thick slice is 1) limited to region Δ𝑧 around the position of themeasured
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2D slice at 𝑧(0) due to the finite axial extent of the PSF. Further, due to the symmetry around

the central slice 𝑧(0) of the PSF ℎ, it is 2) indistinguishable to the algorithm in the case of

an ideal (axially symmetric) PSF whether an image information has come from above or

below the slice at 𝑧(0). One possibility to achieve the aforementioned algorithmic axial

discrimination 2) is to use an aberrated PSF in order to create an axial asymmetry. Among

the manifold possibilities, two methods should be mentioned here. First, manipulation of

the excitation PSF by using a cylindrical lens has become standard in 3D single molecule

localization microscopy (SMLM) microscopy [64] and can easily be adopted to other

setup geometries like ISM. Second, manipulation of the detection PSF using phase mask

e. g. to generate a single or double helix in REfocusing after SCanning using Helical phase

engineering (RESCH, [12]). While the former method can be easily inserted into existing

setups at low cost, the latter method is more costly and complex. Since phase masks can

be used to generate arbitrary patterns, a extended 3D thick slice is reconstructed from a

2D slice using the example of slight spherical aberrations and strong astigmatism.

In order to 1) reconstruct a larger Δ𝑧 area without changing the experimental setup and

2) achieve local axial asymmetry the demonstrated TU will now be extended by recording

𝑁(p) additional images 𝑀(p) at positions 𝑧 = 𝑧(p). Thus, e. g. by measuring an image at

every 3rd Z-position of an available 3D PSF of axial extent 𝑁(z) = 32, if the measurement is

centered around 𝑧(0), an image would be recorded at {𝑧(-6), 𝑧(-3), 𝑧(0), 𝑧(+3), 𝑧(+6)} and af-

terwards this extended input Z-stack 𝑀(3) is used for reconstruction of a bigger connected

region within the available axial extent of PSF.

For zLEAP processing, all recorded image Z-slices are interpreted as additional set

of views of the same sample and thus are concatenated along the detector axis 𝐴, i. e. a

new data set 𝑀′
𝑎′𝑙𝑚 of the form 𝑁 = [𝑁(𝑎′), 𝑁(x), 𝑁(y)] with 𝑁(𝑎′) = 𝑁(𝑎) ⋅ 𝑁(z) is created.

The same is done for the PSFs, thus a new effective multi-view PSF ℎ′
𝑎′𝑙𝑚𝑛 is created of

the form 𝑁 = [𝑁(𝑎′), 𝑁(x), 𝑁(y), 𝑁(z)]. Finally, TU is used to reconstruct the estimate ̂𝑆(TU)

from the dataset 𝑀′ and ℎ′ where the image information of the 𝑀(p) is now used to solve

the symmetry problem of TU and additionally fill the regions in-between the 𝑀(p). This

approach coined the name zLEAP to the presented method, as it jumps at measurement

time over non-selected Z-slices, but reconstructs them at processing time. Note, that

ℎ′ scales with 𝑁(z) for every new Z-slice that is used for the thick slice reconstruction

zLEAP. For comparison of the reconstruction performance a similar approach in case of

mDEC is implemented. Here, an empty data volume 𝑀″ of same size as the PSF ℎ, i. e. of
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Figure 4.6: zLEAP 3D-Reconstruction from Thickslice for different axial spacings Δ𝑧. (I) 1st

row: summed axial PSFs for central Pinhole, 2nd row: TU 3rd row: mDEC, all

3D-Volumes cut at 𝑦 = 𝑦(0). The axial pitch Δ𝑧 is written in lower right corner of

upper row tiles. The NCC results are plotted in the lower right corner of tiles from

the lower two rows. (II) Calculated NCC for all tested Δ𝑧 pitches for TU (magenta)

mDEC (lime) reconstruction.

size 𝑁 = [𝑁(𝑎), 𝑁(x), 𝑁(y), 𝑁(z)], is created and filled with the measured images 𝑀(p) at

𝑧 = 𝑧(p). Then, 3D mDEC with a chosen prior and PSF ℎ reconstructs a full 3D thick slice

estimate ̂𝑆(mDEC). For calculation of the loss an additional mask is fed to the algorithm

that limits the loss calculation to the Z-slices 𝑧(p) that are filled with image data 𝑀(p).

For the simulation the same parameters as before are used and thus the 3D object 𝑆

and noisy image of the central view 𝑀0 is given in Figure 4.3I. For the given target and

simulation parameters the NCC improvement by using more then the central five views

is negligeable and thus for this reconstruction only the central five views, i. e. central

view and left-right-top-bottom direct neighbors, were used, see Section D.3 for further

information. Thus, the stack size is 𝑁(𝑎) = 5, 𝑁(x) = 𝑁(y) = 64 and 𝑁(z) = 32.

The dependence of the reconstruction quality of the whole 3D thick slice on the number

and axial spacings of the PSFs used is shown in Figure 4.6. For the comparison of 3DmDEC

to TU, an optimal set of mDEC as well as TU parameters was determined for the case

Δ𝑧 = 1 and used for all Δ𝑧 spacings. The PSFs summarized in 𝑁(𝑎′) were sum-normalized
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to one for each Δ𝑧 and the corresponding image stacks were subsequently multiplied to

the sum value of the full reference 3D Z-stack divided by the number of reconstructed

Z-slices 𝑁(z). In Figure 4.6I each column has a different number of Z-slices Δ𝑧 from one

axial measurement 𝑧(1) to the next axial measurement at 𝑧(2) which are denoted in the

lower right box of each tile with name a), i. e. the upper row. Hence, e. g. in case of the

first column all axial slices are used for reconstruction while in the second column only

every 2nd Z-slice symmetrically positioned around the center slice 𝑧(0) were used. For the

first row, the 3D PSFs in case of the central detector pixel 𝑎(0) are shifted to the Z-slices

𝑧(p) selected for measurement and are summed up axially to display the spatial extent

covered by this imaging scenario. The plots are given as an axial cut at 𝑦(0). The second

row shows the TU and the third row the mDEC based zLEAP reconstruction results. The

NCC similarity to the 3D ground-truth image is shown in the lower right box of each tile.

Figure 4.6II shows the NCC as function of the distance Δ𝑧 to the next measured Z-slice as

1D plot for a range of Δ𝑧 ∈ {1, 2, … , 16}.

While Figure 4.6I1a-c) demonstrate the best possible reconstructions with the given

techniques, the difference between TU and mDEC is particularly noticeable in the bumpi-

ness at the upper and lower end of the big spherical shell. In the displayed summed PSF

profiles, which are not used for any calculation but just for visualization, a structuring

effect becomes apparent starting from the 3rd column, but can already be seen clearly

in the 4th column of Figure 4.6I. The same axial rippling like in 4a) is visible in the TU

reconstruction 4b) thereby leading to a noticeable decrease of NCC similarity. The effect

is weak in 4c). By comparison of the reconstructions of column 2-4 with column 1 it

can be stated by visual impression that for the given simulation only measuring every

third Z-slice leads to a sufficiently good reconstruction in case of TU processing. This is

in agreement with the in Section A.11 given definition of a high quality reconstruction.

In case of mDEC even measuring every 6th Z-slice is still acceptable, see green curve of

Figure 4.6II.

The reconstruction is NCC-optimal when every single Z-slice was used and decreases

almost continuously for increasing distances and thus a decreasing number of Z-slices

used (Figure 4.6II). The case Δ𝑧 = 16 corresponds to recording only the central slice 𝑧(0).

Using only the central five views for reconstruction and together with additional Z-planes

that are spaced within Δ𝑧 ≤ 5 the inversion problem Equation 4.3 is overdetermined or

exact while in case of Δ𝑧 > 5 it is underdetermined leading to a smaller reconstructable
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axial thick slice than in the calculations of Δ𝑧 ≤ 5 and thus increasingly worse NCC

results. This can be countered by using more lateral view 𝑁(A), but still does not lead to

reconstructions with NCC ≥ 0.9 and is thus not further included for consideration here.

The comparison demonstrates how TU can be used to reconstruct PSF and noise-

limited axial slices. Since in practical applications 3D datasets should be recorded, but the

phototoxic load on the sample should be kept low, TU and mDEC suggest that recording

every 4th Z-slice, or about 2.7× the axial Nyquist-limit of the system PSF ℎ𝐼𝑆𝑀, still allows

for a NCC similarity to the ground-truth of 𝐶 ≥ 0.9 (Figure 4.6II).10 This leads further to

at least 2× faster stack acquisition and 2× reduction in data size while allowing for the

same reconstruction quality.

Finally, a performance comparison between 3D mDEC and TU demonstrates the fast

reconstruction performance of TU needing ≈ 2𝑠 for processing a [5, 128, 128, 64] Z-stack

while mDEC needed ≈ 22𝑠 for the same task. On the other hand, TU needed (peak

amount) ≈ 34× as much RAM for this processing than mDEC needed on the Graphics

Processing Unit (GPU) memory. For an in-depth analysis see Section D.6.

4.3 tu experiments on the airyscan system

The processing strategies presented in Section 4.2.1 will be evaluated in this section using

data measured by means of the commercially available Zeiss Airyscan confocal scanning

system LSM 880.

Thus, this section addresses the following issues: 1) determination of experimental PSF

and comparison of 3D TU with multi-view deconvolution results using different PSFs, 2)

comparison of 0oF rejection capability of TU with deconvolution-based methods, and 3)

comparison of 3D reconstruction capability of TU with deconvolution-based methods.

4.3.1 Airyscan Setup

Introduced by Zeiss in 2014, the LSM 880withAiryscan extension is a commercial confocal

scanning unit with ISM image acquisition capability [65]. The detailed setup is given

in [65] and is not reprinted here, because its basic shape does not differ much from

10 Note, that the PSF ℎ has to be sampled at least at the Nyquist limit for this result to hold true.
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Figure 4.1I except that a hexagonal detector, called Airyscan detector, is used instead of the

depicted emCCD. For its basic detector pixel distribution see Figure 4.7II. Instead, a short

description will be given. Two laser lines can be injected simultaneously or sequentially.

A GM scans the angles of the BFP of the objective, creating a lateral offset of the focus

in the conjugate image plane, i. e. in the sample. The objective is a Zeiss 1.42NA, 63×

plan apochromat DIC, which was used with 𝑛(im) = 1.52 immersion oil (applied to the

cover-slip). An intermediate pinhole including a focus and defocus lens pair removes

coarse 0oF light before excitation light is blocked further by a detection filter wheel. The

focal spot changes its size depending on the used wavelength as well as lens. In order to

normalize the first 1.25 Airy Unit (AU) of the detection wavefront to the diameter of the

detector array, mechanically adaptable magnifying optics are built in. The detector array

consists of 32 Gallium-Arsenide Phosphate (GaAsP) Photo-Multiplying Tubes (PMTs)

that can be read and processed individually. In total, the scanning system can record a

field of view (FoV) of 512 × 512 pixels at 13 𝑓 𝑝𝑠, which corresponds to an average pixel

dwell time 𝑡(pix) ≈ 0.3 𝜇s.

4.3.2 Measuring and Comparison of Airyscan PSF

For the characterization of an incoherent imaging system, the PSF as well as the associated

transfer function is particularly suitable. Once these are known, post-processing steps

such as the presented TU or mDEC can be applied. The system PSF of the Airyscan system

is now 1) determined directly from a recorded multi-view Z-stack of 100 𝑛𝑚 sized beads,

2) a 3D Savitzky-Golay Filter (SGF) fit of 1) and 3) simulated based on the parameters of

the (optical) components and manual adjustments after comparing to the experimental

PSF. The three PSFs will then be used for zLEAP TU and mDEC processing of a ROI of a

measured experimental dataset. Finally, the results are compared w. r. t. reconstruction

quality and one PSF will be chosen to be used for further processings within this section.

Alexa568 (Thermofisher, Invitrogen) stained 100 𝑛𝑚 beads with oil immersion were

used for experimental determination of the PSF. In Figure 4.7, first the selected beads (see

Figure 4.7I), second the determined effective detector pixel positions (see Figure 4.7II)

and finally a comparison of the zLEAP and mDEC reconstructions w. r. t. to the used PSFs

(see Figure 4.7III) are displayed for the central detector-pixel. For the reconstructions
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Figure 4.7: Airyscan PSF Comparison. (I) Selected Beads for calculating the average system-

PSF shown at slice 𝑧 = 14. ROI sizes are color marked: small (magenta), middle

(green) and large (turquoise). (II) Calculated 𝑑(ISM)
𝑎 positions of all views (complete)

and via calculation using pinholes 1 and 6 (nearest). Positions are displayed in scan

coordinates. Nominal rings are color coded. (III) Upper row: X-Y-slice at (1) 𝑧 = 12

and (2-3) 𝑧 = 14. Lower row: X-Z-slice at (1) 𝑦 = 32 and (2-3) 𝑦 = 50. (1) PSF a+d)

measured, b+e) Savitzky-Golay Filtered and c+f) simulated. (2) zLEAP TU and (3)

zLEAP mDEC reconstructions using (1a-c) PSFs.

every 2nd, ı.e. 𝑝 = 2, Z-slice was used. Figure 4.7III is divided into blocks of three columns

and 2 rows (a-c,d-f) each. The columns of the blocks are linked by means of e. g. 1a+d)

are cuts of the experimental PSF that is used to calculate 2a+d) TU and 3a+d) mDEC

reconstruction. The same follows for the second and third columns in each case and is

discussed in more detail below.
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In the considerations of this work, the PSF is assumed to be translationally invariant

(Table A.2). Thus, determination at the top or bottom of the image will result in an

identical PSF. To account for these assumptions, compensate for axial offsets as well as

local distortions, and obtain a better SNR, different beads were selected distributed over

the entire FoV and then averaged, see Figure 4.7I. The beads are extracted with a ROI of

𝑁(roi,s) = [16, 16, 41] (magenta), 𝑁(roi,m) = [40, 40, 41] (green) and 𝑁(roi,l) = [64, 64, 41]

(turquoise). Due to the lateral expansion of the PSF during axial defocusing, edge effects

of the smaller ROIs become noticeable. Here, the largest ROI achieved the best results, so

that further comparisons and processing was performed with this one. The total system

PSF of the central detector pixel, determined in the presented way, differs slightly from the

actual PSF because it has already been folded with the 100 𝑛𝑚 beads. Figure 4.7III shows

an X-Y cut (1a) as well as X-Z cut (1d). The particular PSF is then smoothed and denoised

by using a SGF (see Section 2.2), with window-size 𝑤(SGF) = 5 pix and 𝑝(SGF) = 2, see

Figure 4.7III (1b+e). Based on the visual impression, the experimental PSF exhibits a

slight axial tilt and spherical aberrations. Incorporating these findings into the synthetic

PSF calculation leads to a reducedNA = 1.3 and application of slight spherical aberrations

with 𝑐(spher) = 0.1 (Equation 2.2), see Figure 4.7III (1c+f). Comparison with the measured

PSFs shows a smaller axial extent of the simulated PSF.

In order to determine the simulated PSF not only for the central but all detector pixels

(see Figure 4.1III), the individual actual distance of the detector pixels from the central

pixel in sample coordinates is needed. First, the methods complete and nearest are used to

determine the maximum position 𝑑𝑎 of each view ℎ(ISM)
𝑎 . Then, assuming a shift factor of

𝑚(ISM) ≈ 1/(1 + (𝜆(em)/𝜆(ex))2) according to Roth et al. [9] a guess of the original detector

position is constructed via (1 − 𝑚(ISM)) ⋅ 𝑑𝑎. Finally, a parameter-search tries to minimize

the distance between the determined effective pixel positions 𝑑(nearest)
𝑎 (see below) and

the view positions of the simulated ℎ(ISM).

Two methods are presented. 1) By the maximum and Center of Mass (CoM) (Equa-

tion 3.5) preserving property of SGF, the effective pixel distances 𝑑(complete)
𝑎 (position of

the maximum of the non-deformed ℎ(ISM)
𝑎 ) of all views are first determined by correlating

each individual detector pixel with the central pixel. The positional deviation of the cor-

relation maximum from the central pixel is then assigned to 𝑑(complete)
𝑎 , see Figure 4.7II

(complete, orange). 2) nearest limits the correlation-based search to two pixels located close

to the central pixel, which are expected to still have a high SNR. Using correlation of
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pixel 1 and 6 to the central detector pixel 0 (see Figure 4.7II), the basis vectors for the

distribution of detector pixels are determined. The distances 𝑑(nearest)
𝑎 for all other pixels

are calculated by using the basis vectors and by knowing the basic hexagonal structure

of the detector, i. e. the indexed positions of the pixels w. r. t. the hexagonal unit-cell, see

Figure 4.7II (nearest, black).

Single detector pixels can be combined according to their nominal position and distance

to the central pixel, leading to rings which are color coded in Figure 4.7II. Ring 1 (blue)

only contains the central pixel, ring 2 (turquoise) contains pixels 1-6, ring 3 (pastel green)

contains pixels 7-18 and ring 4 (pale green) contains pixels 19-31.

A comparison of the calculation results shows a subpixel exact match of 𝑑(nearest)
𝑎 and

𝑑(complete)
𝑎 for ring 2, but up to half a sample pixel separation in ring 4. In ring 1 − 3

𝑑(complete)
𝑎 ≤ 𝑑(nearest)

𝑎 tends to hold, while in ring 4, more local offsets thwart the estimation

of a global trend. For further processings the effective pixel distances 𝑑(nearest)
𝑎 are used.

Using zLEAP (see Figure 4.7III (2a-f)) and zLEAP-like multi-view deconvolution with

𝑝 = 2 (see Figure 4.7III (3a-f)) of the ROI in the sample further investigated in the coming

sections (see Figure 4.8I), the usability of the measured (1a+d), filtered (1b+e) as well

as calculated PSF (1c+f) for subsequent post-processing methods is visually evaluated.

Since the ground truth is unknown, the processing methods are run for a sequence of

reconstruction parameters and a subjectively appropriate result is selected. While the

reconstructions using measured and filtered experimental PSF are of high quality they

show axial striations (see Figure 4.7III2d+e) where each Z-position at which a measured

image 𝑀(p) was available for reconstruction is brighter than the intervening reconstructed

regions. This effect is more severe with smaller ROI-sizes used for PSF determination.

The reconstructions using the simulated PSF (1c+f) suffer less from axial striations while

achieving a comparable quality to the mDEC reconstruction (3c+f). Among the mDEC

reconstructions (3a-f) the results 3c+f) using the simulated PSF look subjectively best.

Thus, for further processing the simulated PSF (1c+f) was used.
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Figure 4.8: 2DReconstructions of TOMM20. (I) Reconstruction results of TOMM20 at 𝑧 = 14 for

a) PiRe, b) WD and c) PiRe deconvolution. White box marks ROI. (II) reconstruction

results on ROI of (I) at slice 𝑧 = 14. a) open CLSM at 1.25 𝐴𝑈, b) CLSM at 0.6 𝐴𝑈

pinhole size, c) PiRe at full 1.25 𝐴𝑈 pinhole size, d) WAVG e) nWAVG, f) generalized

WD, g) confocal single-view DEConvolution (cDEC), h) pixel reassigned single-view

DEConvolution (prDEC), i) 0oF using TU (oofTU) j) 2D to 3D TU k) zLEAP using

every 2nd image-Z-slice. l-o) multi-view deconvolutions using: l) 𝑧 = 14 slice and

2D PSF, m) 2D slice and 3D PSF, n) like k), o) full 3D image and PSF. Images are

normalized to their individual maximum local density (or amplitude, respectively).

NCC results are displayed in the lower right corner of each panel.

4.3.3 Comparing TU and Deconvolution - Out-of-Focus Rejection of TOMM20

An Alexa568 labelled import receptor subunit TOMM20 in the outer membrane of mito-

chondria ofHuman BoneOsteosarcoma Epithelial Cells (U2OS) cells is used as experimen-

tal data. The rawmulti-viewZ-stackwas stored as 16bit uint, consists of𝑁 = [32, 400, 400, 41]

pixels and was recorded at 5 𝑓 𝑝𝑠 imaging speed. A cut of the processed multi-view 3D
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data-stack at 𝑧 = 𝑧(14) is shown in the case of (a) PiRe11 (Figure 4.8Ia), WD (Figure 4.8Ib),

and prDEC (Figure 4.8Ic) processing. The white box marks the ROI used henceforth for

comparisons. Because the labelled structure TOMM20 is located in the outer membrane of

the mitochondria, the goal of the reconstructions is to obtain the lowest-noise, continuous,

thin cell borders possible from the noisy, filled cell structures. In the 3 methods compared,

PiRe (Ia) shows almost no such separation of mitochondria body and membrane, WD (Ib)

and prDEC (Ic) succeed better. prDEC (Ic) shows a stronger axial sectioning, whereby in

comparison to the WD (Ib) the contrast to the background is larger and altogether fewer

structures are contained in the same Z-slice. Thus, prDEC (Ic) is chosen as the subjectively

closer to reality and thus better reconstruction.

The 0oF rejection ability is tested using methods that require knowledge of the PSF (IId-

o) and those that do not (IIa-c), see Figure 4.8II which shows the ROI of Figure 4.8I. For

NCC based reconstruction parameter determination, the subjectively best reconstruction

using full multi-view deconvolution mDEC was chosen and used as ground truth. For

input only the in-focus 𝑀(14) slice at 𝑧(14) was used while for processing, depending on

the method, 2D or 3D multi-view PSFs were used. Suitable reconstruction parameters

were determined automatically for all methods in a predefined range. For open CLSM,

the images of all detector pixels are summed (Figure 4.8IIa), whereas for CLSM only

the inner detector pixels in the diameter of 0.6 𝐴𝑈 are summed (Figure 4.8IIb). PiRe

(Figure 4.8IIc) uses all detector pixels, but shifts them beforehand to their most likely

emission position (Equation 1.26). WAVG (Figure 4.8IId), nWAVG (Figure 4.8IIe), WD

(Figure 4.8IIf) and mDEC (Figure 4.8IIg+h,l-o) use all detector pixels, TU (Figure 4.8IIi-

k) limit the number of pinholes used to the number of Z-slices to be reconstructed, i. e.

𝑁(a) != 𝑁(z), so as not to overdetermine the system of equations used to compute the

inversion matrix (Equation D.1). In the case of 0oF rejection using TU (for comparison

named oofTU) and associated mDEC (for comparison named oofDEC), this means that

only one Z-slice of the PSF and image was used, i. e. a 2D mDEC.

In subjective visual comparison, mDEC (Figure 4.8IIo) gives the best reconstruction,

but differs only slightly fromWD, cDEC (Figure 4.8IIg), prDEC (Figure 4.8IIh), 2DmDEC

(oofDEC, Figure 4.8IIl), and zLEAP mDEC (zleapDEC, Figure 4.8IIn). The TU recon-

structions achieve mutually similar reconstructions whose 0oF rejection is comparable

11 For calculation see Equation 1.26. Shifts are determined as described in Section 4.3.2.
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Figure 4.9: Radial Frequency Sums of TOMM20 Reconstructions. (I) Radial sums of 2D (see

Figure 4.8) and (II) 3D (see Figure 4.8) reconstructions. The calculated modulus is

displayed log-normalized while all curves are normalized to same 0-frequency value.

to mDEC, but the reconstructed thickness of the membrane structures is larger. The TU

reconstructions TU (2d3dTU) and zLEAP are on average as NCC similar to mDEC as

cDEC and prDEC. Subjectively, 2D mDEC sharpens the sample slightly more than 3D

mDEC with similar 0oF rejection, subject to the above criteria, but retains more existing

details in the same focal plane, which in mDEC have already been moved to other Z-slices.

The 2D TU reconstruction (oofTU), on the other hand, appears to reconstruct about the

same number of object features as the other TU reconstructions in the same Z-slice, but

tends to sharpen the image less than e. g. zleapTU.

A comparison of the lateral Fourier frequency moduli supports the above findings, see

Figure 4.9I. The graphs are normalized to the same total photon number (𝑀(| ⃗𝑘| = 0))

so that the relative distribution of available photons at each spatial frequency can be

compared. For spatial frequencies 𝑘𝑥 ≤ 1.5 ⋅ 𝑘(Abbe), the amplitude distributions of the

deconvolutions and the TU reconstructions are similar, while for 𝑘𝑥 > 1.5 ⋅ 𝑘(Abbe) the TU

tends to assign less weight to the high frequencies and for 𝑘𝑥 > 3 ⋅ 𝑘(Abbe) even approach

the amplitude distribution of the WAVG (WA). The distribution of 2D deconvolution

results (oofDEC) illustrates the higher degree of sharpness of this reconstruction noted

earlier, as its amplitudes for 𝑘𝑥 ≥ 1.5 ⋅ 𝑘(Abbe) are above those of all other amplitudes, while

the reconstructed image still looks subjectively reasonable (Figure 4.8II l). The amplitude



92 thick slice unmixing (tu)

distribution of prDEC is above the amplitude distribution of cDEC for 𝑘𝑥 ≥ 1 ⋅ 𝑘(Abbe), but

further away from mDEC for 𝑘𝑥 ≤ 1.5 ⋅ 𝑘(Abbe) which results in a lower NCC similarity of

prDEC to mDEC than cDEC.

4.3.4 Comparing TU and Deconvolution - 3D Reconstruction of TOMM20

Using the complete 3D data set of the sample already used in Section 4.3.3, the recon-

struction capability of the TU (2d3d) and zLEAP is now compared in Figure 4.10 with the

other methods presented. Here, the graphic consists of 2× two rows, where always the

upper one row shows a lateral cut at 𝑧(14) and the lower row an axial cut at 𝑦(15). Every

method of the comparison is presented in two rows of one column each, i. e. with two

panel images.

Again, with an appropriate choice of parameters, the mDEC is used as ground truth for

the NCC based automated parameter determination of the other methods. TU (2d3dTU)

(Io+p) and 2d3dDEC (Is+t) reconstruct a 3D estimate ̂𝑆 of the 3D object from the single

𝑧(14) slice using the 3D PSFs of all detector pixels. Finally, zLEAP, TU and complete mDEC

use every other Z-slice, i. e. 𝑝 = 2, of the measured image stack along with the entire 3D

PSF for reconstruction of the 3D object distribution.

While the non-deconvolution methods (a-h) are axially very smeared out, all other

methods succeed in better sectioning. But again visually the WD as well as variants of

mDEC (Ii-n,u-x) appear very similar. However, axial sectioning is best for 3D mDEC (Ix)

and zLEAP deconvolution (zleapDEC, Iv), which also makes them quite NCC similar,

although zleapDEC uses only half the Z-slices compared to mDEC. prDEC has some

axial reconstruction artifacts (e. g. right edge of In), resulting in a lower NCC similarity to

mDEC (Figure 4.10) than cDEC, yet edges are more prominent in prDEC and better axial

sectioning is achieved. This is also confirmed by the significantly higher modulus values

of prDEC for 𝑘𝑥 ≥ 1.5 ⋅ 𝑘(Abbe) (Figure 4.9II).

The TU (2d3dTU, Io+p) as well as the 2d3dDEC (Is+t) confirms the theoretical ex-

pectations and simulation results (Section 4.2.3). Although the simulated PSF is slightly

spherical aberrated it is not asymmetric enough and thus both algorithms distribute axial
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Figure 4.10: 3D Reconstructions of TOMM20. Reconstruction results of ROI (see Figure 4.8I).

First and third row show an X-Y-slice at 𝑧(14), second and forth show an X-Z-slice at

𝑦(15) of the respective reconstruction methods. a+b) CLSM at 0.6 𝐴𝑈 pinhole size,

c+d) PiRe at full 1.25 𝐴𝑈 pinhole size, e+f) WAVG g+h) nWAVG, i+j) generalized

WD, k+l) cDEC, m+n) prDEC, o+p) 2D to 3D TU q+r) zLEAP using every 2nd

image-Z-slice. s-x) multi-view deconvolutions using: s+t) 2D slice and 3D PSF, u+v)

like q+r), w+x) full 3D image and PSF. Images are normalized to their individual

maximum local density (or amplitude, respectively). NCC results are displayed in

the lower right corner of the 1st and 3rd row.

information approximately symmetrically around the central reconstruction slice. Due to

this vague and axially significantly extended reconstruction, both methods achieve an

approximately similar NCC to mDEC of 𝐶(2d3dTU) = 𝐶(2d3dDEC) ≈ 0.6.

In the case of zLEAP, TU achieves an 0.8 NCC similarity to mDEC while zleapDEC

achieves 0.9. In particular the axial sectioning of zleapDEC is better than TU. In the

unmixing process of TU, parameter selection must be used to decide between lateral

sharpness with good axial sectioning versus a smooth axial amplitude transition. The

selected parameters achieve the maximum possible NCC similarity to mDEC, but a weak

axial step pattern is discernible which hints where input Z-slices where placed.
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It has been shown that TU-based zLEAP can accelerate the measurement process

and reduce the data set to be recorded without significant loss in image quality while

maintaining fast processing and low implementation overhead.

4.4 conclusion and outlook

For the presented method TU makes use of the additional views of the sample which are

encoded into the different detector pixels. The additional sample information is used for

0oF rejection, reconstruction of an axial thick slice from 2D multi-view data, and data

reduction by measuring each 𝑝th slice using zLEAP were tested with a set of simulations.

zLEAP thereby lowers the phototoxic load on the sample, increases the data acquisition

speed by 2×, and reduce the stack size by 2× in case 𝑝 = 2. All investigated reconstruction

methods achieved the NCC best result when all detector pixels were used. Since already

by using the five central pixels about 98% in case of deconv3D of the achieved NCC

maximum was achieved, this suggests a reduction of the amount of required pinholes

used for reconstruction in favor of reduced memory requirements.

The additional information from the different views can also be used to achieve a

better SNR via PiRe allowing to recover higher nonlinear orders of fluorescence in satu-

rated excitation imaging as compared to CLSM schemes. For an extensive analysis, see

Section E.1.

The findings of the simulations were confirmed experimentally using data of fluorescent

beads and stained U2OS cells acquired with a Zeiss Airyscan LSM880 setup.

Overall, it is shown that the TU reconstructions do not provide NCC optimal recon-

structions with respect to mDEC, which was subjectively chosen on the example of the

experimental data presented, but do provide a remarkable reconstruction quality with

consistently fast processing.

In contrast to excitation and emission PSF manipulation-based methods, TU does

not require further modifications of the measurement setup and can be used directly.

However, due to the axial symmetry of the PSF used, TU cannot distinguish, in the case

of only one measured Z-slice, whether 0oF influences originate from above or below the

Z-slice under consideration. In this case, TU can be used for 0oF-rejection as the precise

assignment of the 0oF to other Z-slices is irrelevant. By measuring further Z-slices and
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using them for reconstruction, the necessary asymmetry can be generated indirectly here,

thus enabling the distinguishability of the axial position of the object information. Due to

the direct usability of TU without PSF-manipulation, the NA of the measurement setup is

not degraded, can be fully used and the system transfer efficiency is not reduced. Although

the reconstruction by deconvolution used for comparison yields overall more stable and

NCC better results, TU can be used performantly on the CPU and without complicated

setup steps. Also the parameter search for TU turns out to be more compact than for the

used deconvolution. For further analysis the influence of the detector pixel shape factor on

the detector mask choice is interesting. The presented method zLEAP can also be applied

laterally, which allows further time and measurement savings.

TU was implemented in Python using the 𝐶-optimized Numpy interface. TU is cur-

rently not fully but only partially processed in parallel despite its excellent suitability for

parallel processing. The implementation of deconvolution on the GPU, on the other hand,

uses all CUDA units of the entire card simultaneously. Due to the GPU RAM limitation,

memory-consumption-optimized deconvolution methods have been applied, while TU

currently does not yet optimally use memory resources. Optimization of memory usage

and parallelization of the unmixing process of TU is conceivable by strict use of Cython as

well as adaptation to 𝐶 standards or direct implementation in 𝐶 and is left as an outlook for

future engineering. To overcome the fast increasing necessary RAM for calculation of the

unmixing matrix, using Hierarchical Data Format Version 5 (HDF5) [66] containers and

therewith directly calculating on the system storage might further increase the methods

versatility.





5
CONCLUS ION

Something unique, something imperishable formed in my head.

An artful structure of words and sentences, which materialized

like an extraterrestrial creature of strange beauty in my thinking

- and spoke to me, in immaculate verses. It was [...] a gift from

the stars.

— Walter Moers

The microscopy landscape is in a constant state of change. New labs are being built and

equipped with the latest imaging methods, old labs are being upgraded, imaging centers

are offering their services across labs and systems can now even be rented out. Existing

microscopes are not immediately discarded, but still serve as workhorses and continue to

be used as a reference or gold standard. Widefield Microscopy (WF) and Confocal Laser

Scanning Microscopy (CLSM) type systems still make up the majority of the currently

existing and used microscopy systems. Also, in terms of price, these are currently still

more affordable than state-of-the-art high-end microscope systems.

Many new microscopy methods are based on fundamentally the same geometries as in

the case of WF or CLSM setups. The understanding, analysis, and improvement of these

basic methods can also be extended to novel methods where appropriate, making them

of particular interest.

The goal of this work was to consider microscopy systems holistically and across

methods. This was done by starting with the fundamental problem of focus quality

and loss and continuing with a comparatively shallower problem of data reliability due to

jitter effects. Finally, after identifying ways to increase data reliability in the case ofWF and

CLSM, a method was presented to get more out of existing Image Scanning Microscopy

(ISM) 2D data without changing the setup or purchasing extra large computational

systems.

In chapter 2, the presented software autofocus represents a possibility to keep the actual

focus position by evaluation and subsequent classification of the recorded data w. r. t. the

proposed quality measure 𝑄. The presentedmetrics were stress tested in terms of required

97
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computational power and time as well as susceptibility to system aberrations. The results

can be easily applied to existing setups by processing the recorded images live on the

computer and, according to the obtained value 𝑄, the focus position can be evaluated and

adjusted. However, this process may be slow, but this can be remedied by system extension

using Field Programmable Gate Array (FPGA). The presented method was tested for 2D

and 3D object distributions. Since the captured images are reduced to a single value 𝑄,

in the case of a 3D stack all acquired images must first be completely recorded and each

slice evaluated. The advantage of this approach is that the similarity of different slices

and therefore the system drift can be determined by comparing the slicewise 𝑄 values

and not by correlating the entire 3D stacks. This can significantly save system resources.

However, in case of a rapid change of the sample between two consecutive temporally

spaced measurement points, e. g. due to cell genesis or strong contrast change, the method

has its limitations and hardware based methods have to be resorted to. In the future, the

method may be directly transferred to Neural Networks (NN) to e. g. address the problem

of rapid image content change and provide augmented feedback directly in a live view of

the measurement using one-shot applications.

In chapter 3, the task of removing imaging artifacts due to random (micro) movements

of a mouse eye was accomplished using a novel dejitter algorithm. The algorithm was

adapted to the specific problem and uses a correlation-based measure with respect to an

existing coarse continuous structure for finding global drift as well as local, line-by-line

correction. Random jitter occurs not only on the living organism under consideration, but

in any measurement situation, since measurement devices are always connected to their

environment and even the best vibration-free mounting cannot completely dampen strong,

spontaneous oscillations. Thus, the presented dejitter algorithm has a further and more

general field of application. In the future, it is conceivable to use some output parameters

of the dejitter algorithm as a measure for assessing the reliability of the recorded data

both live and in post-processing.

In chapter 4, the deconvolution method of Thick slice Unmixing (TU) is presented. It is

based on a 3D forward model together with ISM imaging, where the different detector

pixels measure different projections of a 3D volume of the observed sample (views). Thus,

by knowing or simulating the 3D system Point Spread Function (PSF), a 3D distribution of

the sample can be reconstructed based on the different views. Three application scenarios

for TU were presented. In scenario one, TU is used for Out of Focus (0oF) rejection.
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Due to a compact formulation of the TU equations on only one slice to be reconstructed

based on a single-slice multi-view dataset of a three-dimensional sample, only a few

computational steps are needed here, which allows the method to be used on hardware

with low computational power. In particular, computational power can be saved by limiting

the imaging model in the reconstruction to include only a small axial region around the

considered Z-slice. In Scenario two, a 3D volume is reconstructed from a 2D multiview

dataset. For comparison, existing deconvolution methods were extended to include the

ability to compute a 3D stack from a 2D multi-view dataset. Although the Maximum

A Posteriori likelihood (MAP)-based deconvolution results have on average a higher

Normalized Cross Correlation (NCC) similarity to the used in-silico ground-truth the

differences to the the volume-reconstructing TU results are small.

LEAve-out z-Planes (zLEAP) was presented as scenario three, in which only every 𝑝𝑡ℎ

slice is recorded and intervening slices are reconstructed as best as possible by knowing

the multi-view 3D system PSF and including the full Z-scan multi-view information in

the model. The results compared to the original dataset as well as deconvolution are

of surprisingly good quality, as both computational approaches, model complexity and

implementation complexity are significantly lower than in the case of MAP-based de-

convolution. zLEAP is particularly intended for the use case of Nyquist correct imaging

with every second slice omitted. Here, every intermediate slice can be reconstructed and

thus the Nyquist correctly sampled image is gained while the phototoxic sample load is

significantly reduced. While the MAP-based deconvolution scales with 𝑁 log (𝑁)1 with

the number of Z-slices the inversion matrix of TU scales proportionally to the number

of views used per Z-slice, which could lead to a quadratic dependence on the number

of Z-slices. Thus, the presented implementation of TU is comparatively performant only

up until a Z-stack size or amount of views threshold. Unlike other implemented decon-

volution methods, TU does not require Graphics Processing Unit (GPU) to run in a

time-performant manner, does not require cumbersome (driver) setup as well as costly

computer components, and can be used straightforward in the form of matrix multiplica-

tion. The strength of TU lies in its reusability use in case of stable imaging parameters and

PSFs for different measurement data, since here the inversion matrix has for each spatial

frequency to be computed only exactly once thereby saving computational time for all

1 Due to properties of Fast Fourier Transform (FFT) calculation.
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consecutive applications. The easy manageability of TU could also be seen as another user

advantage, since only a few parameters have to be set here for a robust reconstruction.

For future developments, the parallelization and optimization of the view usage in the

inversion matrix determination is of particular importance, since this can once again

significantly save system resources and accelerate the processing. Thus TU can be still

more competitive compared to existing MAP-based deconvolution methods.

For the presented processing methods a complete own Python toolbox MicroPy [44]

was created and further toolboxes (InverseModelling [67], NanoImagingPack [38], tiler [42],

UC2-Software-GIT [68]) were actively advanced and supported in collaborative develop-

ment.

The presented post-processing based enhancements to the entire optical system are

directly applicable and have a direct impact on image acquisition quality (autofocus),

reliability of measurement data (dejitter) and quality of the 3D reconstruction (TU). In

particular, the zLEAP use case of the TU method can noticeably reduce scan duration

and recording volume. All methods/reconstructions were implemented on a laptop using

the CPU or its dedicated small GPU, allowing any researcher in e. g. biomedical imaging

not only to extend their existing methods without changes to the ISM setup, but also to

process the acquired data directly on their laptop. The present work demonstrates how

a holistic improvement of the measured data can be achieved by a set of well chosen

imaging optimizations.



A
APPENDIX : GENERAL INTRODUCT ION

a.1 green’s identity

Here Green’s second identity is invoked to connects the bound volume-integral of volume

V of a set of differentialable functions with their surface-integral A [69]:

∭
𝑉

𝑑3 ⃗𝑥 (𝐸( ⃗𝑥)∇2𝐺( ⃗𝑥) + 𝐺( ⃗𝑥)∇2𝐸( ⃗𝑥)) = ∬
𝐴

𝑑2 ⃗𝜒 (𝐸( ⃗𝑥)𝜕�⃗�𝐺( ⃗𝑥) + 𝐺( ⃗𝑥)𝜕�⃗�𝐸( ⃗𝑥)) (A.1)

where ⃗𝑛 marks the surface-normal on 𝐴 that points away from the volume 𝑉.

a.2 helmholtz-equation

To describe light and matter interaction the Maxwell-Equations (Equation A.2 - A.5)

( [70]):

∑
𝑚𝑛

𝜖𝑙𝑚𝑛𝜕𝑚𝐻𝑛 = 𝜕𝑡𝐷𝑙 + 𝑗𝑙 ,with:𝑙, 𝑚, 𝑛 ∈ {𝑥, 𝑦, 𝑧} (A.2)

∑
𝑚𝑛

𝜖𝑙𝑚𝑛𝜕𝑚𝐸𝑛 = −𝜕𝑡𝐵𝑙 (A.3)

∑
𝑙

∇𝑙𝐷𝑙 = 𝜌 (A.4)

∑
𝑙

∇𝑙𝐵𝑙 = 0 (A.5)

with 𝐸𝑚 ≡ 𝐸𝑚( ⃗𝑥, 𝑡) electric vector, 𝐻𝑚 ≡ 𝐻𝑚( ⃗𝑥, 𝑡) magnetic vector, 𝐷𝑚 ≡ 𝐷𝑚( ⃗𝑥, 𝑡) elec-

tric displacement, 𝐵𝑚 ≡ 𝐵𝑚( ⃗𝑥, 𝑡) magnetic induction and 𝑗𝑙 electric current density,

will be used. 𝜕𝑚 are the partial derivatives with respect to the 3 spatial dimensions

∑𝑚 𝜕𝑚 = 𝜕𝑥 + 𝜕𝑦 + 𝜕𝑧 and 𝜕𝑡 is the time-derivative.

Assuming time-harmonic (=sinusoidal) waves, very slowly - with respect to the period of

interaction with fields - moving bodies and isotropic material, the following material equations

are obtained:

𝑗𝑚 = 𝜁 (cond)𝐸𝑚 (A.6)

𝐷𝑚 = 𝜁 (elec)𝐸𝑚 (A.7)

𝐵𝑚 = 𝜁 (magn)𝐻𝑚 (A.8)
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where 𝜁 (cond) is the n, 𝜁 (elec) the electric permittivity and 𝜁 (magn) themagnetic permeability.

Typically these are tensors, but it suffices to assume them to be constants within the

framework of this thesis. Taking the 𝑐𝑢𝑟𝑙 = ∇× = ∑𝑜 𝜖𝑝𝑜𝑙𝜕𝑜 of Equation A.3 yields for the

left side of the equation

𝜖𝑝𝑜𝑙𝜕𝑜 (𝜖𝑙𝑚𝑛𝜕𝑚𝐸𝑛) = ∑
𝑜𝑙𝑚𝑛

𝜖𝑝𝑜𝑙𝜖𝑙𝑚𝑛𝜕𝑜𝜕𝑚𝐸𝑛

= ∑
𝑜𝑙𝑚𝑛

𝜖𝑙𝑝𝑜𝜖𝑙𝑚𝑛𝜕𝑜𝜕𝑚𝐸𝑛

= ∑
𝑜𝑚𝑛

(𝛿𝑝𝑚𝛿𝑜𝑛 − 𝛿𝑝𝑛𝛿𝑜𝑚) 𝜕𝑜𝜕𝑚𝐸𝑛

= ∑
𝑜

(𝜕𝑜𝜕𝑝𝐸𝑜 + 𝜕𝑜𝜕𝑜𝐸𝑝) (A.9)

where the assumption that the observed region is source-free (𝑟ℎ𝑜 = 0) and 𝜁 (elec) ≠ 0

non-vanishing and hence from A.7 the relation:

∑
𝑙

∇𝑙𝐷𝑙 = ∑
𝑙

∇𝑙(𝜁 (elec)𝐸𝑙) = ∑
𝑙

(𝐸𝑙∇𝑙𝜁 (elec) + 𝜁 (elec)∇𝑙𝐸𝑙)

∑
𝑙

∇𝑙𝐸𝑙 = ∑
𝑙

𝐸𝑙
∇𝑙𝜁 (elec)

𝜁 (elec) = ∑
𝑙

𝐸𝑙∇𝑙 ln [𝜁 (elec)] (A.10)

was used.

Under the assumption that themagnetic permeability is spatially homogeneous (𝜁 (magn) =

0) the right side of Equation A.3 yields:

∑
𝑜𝑙

𝜖𝑝𝑜𝑙𝜕𝑜 ∑
𝑚𝑛

𝜖𝑙𝑚𝑛𝜕𝑚𝐸𝑛 = ∑
𝑙𝑜

𝜕𝑡 [𝐻𝑙𝜖𝑝𝑜𝑙 (𝜕𝑜𝜁 (magn)) + 𝜁 (magn)𝜖𝑝𝑜𝑙𝜕𝑜𝐻𝑙]

= ∑
𝑜𝑙

𝜁 (magn)𝜖𝑝𝑜𝑙𝜕𝑜𝐻𝑙 (A.11)

Assuming charge- and current-free field-regions and combining the A.9 and A.11 yields the

wave-equation for e. g. the 𝐸𝑚 field [16]:

∑𝑚 Δ𝑙𝑚𝐸𝑚 = 𝜁 (elec)𝜁 (magn)

𝑐 𝜕2
𝑡 𝐸𝑙 − ∑𝑚𝑛𝑜𝑝 𝜖𝑙𝑚𝑛 (𝜕𝑚 ln 𝜁 (magn)) (𝜖𝑛𝑜𝑝𝜕𝑜𝐸𝑝)

− ∑𝑚 ∇𝑙 [𝐸𝑚 (𝜕𝑚 ln 𝜁 (magn))]
(A.12)

Assuming a monochromatic, time-harmonic external field with time-dependence exp {−𝑖𝜔𝑡}

and 𝜔 = 𝑘 ⋅ 𝑐, the electric field 𝐸𝑚 (and respective 𝐻𝑚) can be described as:

𝐸(𝑟𝑒𝑎𝑙)
𝑚 ( ⃗𝑥, 𝜔) = ℛ𝑒 {𝐸𝑚( ⃗𝑥, 𝜔) ⋅ 𝑒−𝑖𝜔𝑡} (A.13)

and ℛ𝑒 being the real-part selector of a complex quantity. Assuming that 𝜁 (magn)( ⃗𝑥), the

magnetic permeability, is approximately constant over the spatial extend of 1𝜆 of the exterior

field its spatial derivative 𝜕𝑚 ln 𝜁 (elec) ∝ 0 and thus the compontens of the differential
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equation Equation A.12 decouple. It suffices to do a scalar derivation for one vectorial

component, because the extension for all components is similar and straightforward.

While omitting the 𝜔-dependency Equation A.12 reduces to the Helmholtz-Equation:

Δ𝐸( ⃗𝑥) = −𝑘2𝑛2( ⃗𝑥)𝐸( ⃗𝑥) (A.14)

where Δ = 𝜕2
𝑥 + 𝜕2

𝑦 + 𝜕2
𝑧 is the 2nd derivative or Laplace operator and e. g. 𝜕2

𝑥 = 𝜕2/𝜕2𝑥 the

Einstein notation. By splitting the scalar field 𝐸( ⃗𝑥) = 𝐸(i)( ⃗𝑥) + 𝐸(s)( ⃗𝑥) into the illuminating

field 𝐸(i)( ⃗𝑥) and the scattered field 𝐸(s)( ⃗𝑥) and introducing the scalar scattering potential

𝐹(s)( ⃗𝑥) = − 1
4𝜋𝑛2

0
𝑘2 (𝑛2( ⃗𝑥) − 𝑛2

0) Equation A.14 can be split into a homogeneous and an

inhomogeneous part:

(Δ + 𝑘2) 𝐸(i)( ⃗𝑥) = 0 (A.15)

(Δ + 𝑘2) 𝐸(s)( ⃗𝑥) = −4𝜋𝐹(s)( ⃗𝑥)𝐸( ⃗𝑥) (A.16)

where 𝑛0 is the homogeneos refractive index of the surrounding medium and 𝑛 the

refractive index-distribution of the sample. Equation A.15 can directly be solved via the

Ansatz 𝐸(i)( ⃗𝑥) = 𝑒𝑖�⃗� ⃗𝑥 and thus the Fourier-relation:

𝐸(i)( ⃗𝑥) = ℱ−1 {�̃�( ⃗𝑘′)} ( ⃗𝑥) (A.17)

= ∫
ℝ3

𝑑 ⃗𝑘′�̃�( ⃗𝑘′)𝑒𝑖�⃗�′ ⃗𝑥 (A.18)

allows to represent the analysed field via a superposition of a plane-wave spectrumwhich,

in case of the plane-wave solution 𝐸(i), reduces to a delta-peak �̃�(i)( ⃗𝑘 − ⃗𝑘′) = 𝛿( ⃗𝑘 − ⃗𝑘′).

Only vectors ∣ ⃗𝑘∣ = 2𝜋𝑛
𝜆 that fulfill the requirement:

∣ ⃗𝑘∣ = 𝑘2
𝑥 + 𝑘2

𝑦 + 𝑘2
𝑧 (A.19)

are valid solutions (wave-vectors) to Equation A.15. Within a bounded region ⃗𝑘 can be

complex and thereby frequencies bigger ∣ ⃗𝑘∣ are valid, but these so called evanescent waves

are spatially fast decaying. Hence, only waves with real-valued solutions to Equation A.19

can propagate to far distance and are thus called propagating waves.

The inhomogeneous Equation A.16 still contains the complete 𝐸( ⃗𝑥)-field on its right

side which makes an analytic solution - without any further assumptions impossible.

A standard way to study the response of an analysed set of differential equations is by

hitting it gently with a small hammer thereby exciting all possible harmonics within the
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equations’ response range. The same can achieved in case of differential equations by

applying the Green’s operator 𝐺( ⃗𝑥) which changes Equation A.16 to:

(Δ + 𝑘2) 𝐺( ⃗𝑥 − ⃗𝑥′) = −4𝜋𝛿( ⃗𝑥 − ⃗𝑥′) (A.20)

Combining Equation A.16 and Equation A.20, applying Green’s Second Identity Equa-

tion A.1 and making the particular choice Equation A.21 for the Green’s function leads to

Equation A.23:

𝐺( ⃗𝑥 − ⃗𝑥′) =
𝑒𝑖𝑘| ⃗𝑥− ⃗𝑥′|

| ⃗𝑥 − ⃗𝑥′|
(A.21)

𝐸(s)( ⃗𝑥) = ∭
𝑉

𝑑3 ⃗𝑥′ 𝐹( ⃗𝑥′)𝐸( ⃗𝑥′)
𝑒𝑖𝑘| ⃗𝑥− ⃗𝑥′|

| ⃗𝑥 − ⃗𝑥′|
(A.22)

= [𝐺 ⊗ 𝑆] ( ⃗𝑥) (A.23)

Note that 𝑘 = 2𝜋𝑛
𝜆 in Equation A.21 is the environment (𝑛) dependend spatial-frequency

belonging to the wavelength 𝜆 and should not be confused in general with the spatial

frequency-vector ⃗𝑘, yet. In case of propagating(=non-evanescent) monochromatic fields,

with ⃗𝜅 = (𝜅𝑥, 𝜅𝑦), the condition |𝜅| < 𝑘 is fulfilled and then 𝑘 = | ⃗𝑘| is correct. Even though

Equation A.22 looks like a solution it is still not tractable, because the complete field 𝐸( ⃗𝑥′)

is still contained on the right side of the equation. By interpreting Equation A.22 as a

convolution (⊗), Equation A.23 is found and allows to understand the Green’s function

as a propagator of the new scattered field 𝑆( ⃗𝑥) ≡ 𝐹( ⃗𝑥)𝐸( ⃗𝑥). Instead of finding a model

for the field-scattering interaction let us first take a break and analyse the propagation of

fields through a given optical system.

a.3 rayleigh-sommerfeld diffraction

Deriving the field distribution at a far point 𝑃1 = 𝑥(1) = ( ⃗𝜒(1), 𝑧(1)), with ⃗𝜒(1) = (𝑥(1), 𝑦(1)),

from a source at 𝑃0 = ( ⃗𝜒(0), 𝑧(0)) can be achieved by applying Huygen’s wavelet theory

where every wave-front can be assumed to be the starting point of a set of new spherical

waves that can mutually interfere. For a source-free region between 𝑃0 (in plane 0) and 𝑃1
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Figure A.1: Coordinate Systems used to describe the field propagation between a plane (0) with

a point 𝑃(0) and a plane (1) with a point 𝑃(1).

(in plane 1) (see Figure A.1) it can be shown that the field-propagation can be described

by:

𝐸(1) ( ⃗𝑥(1)) = 𝐸(1) ( ⃗𝜒(1), 𝑧(1)) = ∬ 𝑑2 ⃗𝜒(0)𝐷 ( ⃗𝜒(1) − ⃗𝜒(0), 𝑧(1) − 𝑧(0)) 𝐸(0) ( ⃗𝑥(0))

(A.24)

𝐸(1) ( ⃗𝜒(1), 𝑧(1)) = [𝐷 ⊗ 𝐸(0)] ( ⃗𝑥(1)) (A.25)

𝐷 ( ⃗𝜒, 𝑧) = −𝜕𝑧(0) [𝐺 ( ⃗𝜒, 𝑧) − 𝐺 ( ⃗𝜒, 𝑧 − 2𝑧(1))]𝑧(0)=0 (A.26)

with ⃗𝜒 ≡ ⃗𝜒(1) − ⃗𝜒(0), 𝑧 ≡ 𝑧(1) − 𝑧(0) and 𝑧(0) = 0 evaluated after the derivation. The

assumptions of a finitely bounded field 𝐸(0), which is not influenced by the bounding-edges,

a homogeneous medium and a forward-propagating wave - meaning 𝑧(1) > 𝑧(0) were made.

Coining this situation as free-space the Green’s function Equation A.21 can be used yielding:

𝐷( ⃗𝜒, 𝑧) = ⎛⎜
⎝

1
𝑘 ∣ ⃗𝑥(1) − ⃗𝑥(0)∣

− 𝑖⎞⎟
⎠

𝑘𝑧
𝜋 ∣ ⃗𝑥(1) − ⃗𝑥(0)∣

𝑒𝑖𝑘∣ ⃗𝑥(1)− ⃗𝑥(0)∣

∣ ⃗𝑥(1) − ⃗𝑥(0)∣
(A.27)

= (
1

𝑘| ⃗𝑥|
− 𝑖)

𝑘𝑧
𝜋| ⃗𝑥|

𝑒𝑖𝑘| ⃗𝑥|

| ⃗𝑥|
(A.28)

with ⃗𝑥 = ⃗𝑥(1) − ⃗𝑥(0). In the bounding case of 𝑘| ⃗𝑥| ≫ (2𝜋)−1 it becomes apparent that the

propagator shifts the phase by 𝑖 = 𝑒
𝜋
2 which is the crucial difference of secondary sources

(=fields) to primary sources (=scatterers, absorbers, emitters).
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Assuming only radiating fields (=being far away from the sample), allowing only small

lateral devitions from the optical axis (| ⃗𝑥| → 𝑧) and applying the Taylor-expansion around

⃗𝜒0 = 0:

| ⃗𝑥| = √𝑧2 + ⃗𝜒2 = 𝑧√1 + (
⃗𝜒

𝑧 )
2

∝ 𝑧 (1 +
⃗𝜒2

2𝑧2 ) (A.29)

for the | ⃗𝑥| in the exponential leads to the Fresnel-Propagator 𝐷(F):

𝐷(F)( ⃗𝜒, 𝑧) = −𝑖
𝑘

2𝜋𝑧𝑒𝑖𝑘𝑧𝑒𝑖 𝑘
2𝑧 ⃗𝜒2

(A.30)

Inserting Equation A.30 in Equation A.24 finally yields the Fresnel-approximation:

𝐸(1) ( ⃗𝜒(1), 𝑧(1)) = 𝐷(𝐹′) ( ⃗𝜒(1), 𝑧) ℱ ⃗𝜒
⎧{
⎨{⎩

𝐸(0)′ ⎛⎜
⎝

𝑧 ⃗𝜒(0)′

𝑘 , 𝑧(0)⎞⎟
⎠

⎫}
⎬}⎭

( ⃗𝜒(1), 𝑧(0)) (A.31)

𝐷(𝐹′) ( ⃗𝜒(1), 𝑧) ≡ −𝑖𝑒𝑖𝑘𝑧𝑒𝑖 𝑘
2𝑧 ⃗𝜒(1)2

(A.32)

𝐸(0)′ ⎛⎜
⎝

𝑧 ⃗𝜒(0)′

𝑘 , 𝑧(0)⎞⎟
⎠

≡ 𝐸(0) ⎛⎜
⎝

𝑧 ⃗𝜒(0)′

𝑘 , 𝑧(0)⎞⎟
⎠

𝑒−𝑖 𝑘
2𝑧 ⃗𝜒(0)2

(A.33)

(A.34)

where the coordinate-rescaling ⃗𝜒(0)′ ≡ ⃗𝜒(0)− ⃗𝜒(1)

𝑧 under the integral was used for reduction.

Further ℱ ⃗𝜒 is 2𝐷 Fourier-Transform with respect to 𝜒. Interestingly, instead of the typical

Fourier-component representation of the field in terms of k-frequencies the field at ⃗𝜒(1)

rather represents the field composed of spatially distributed plane waves. Instead of

having to invoke two Fourier-transforms aswould be the case for the free-space propagator

Equation A.35:

𝐷(free)(𝑧) = 𝑒𝑖𝑘𝑧𝑧 =
⎧{{
⎨{{⎩

𝑒𝑖𝑧√𝑘2−𝜅2 , |𝜅| < 𝑘

0 , else
(A.35)

the Fresnel-Propagator only needs a single transformation.

The Fraunhofer approximation 𝐷(FH) Equation A.36 can be derived from Equation A.24

by limiting 𝐸(0) to a maximum radius 𝜒(0,𝑚𝑎𝑥) and assuming very far distances such that

| ⃗𝑥| ≫ 𝑘| ⃗𝜒(0)|2, hence yielding:

𝐸(1) ( ⃗𝜒(1), 𝑧(1)) = 𝐷(FH) ( ⃗𝜒(1), 𝑧) ℱ ⃗𝜒
⎧{
⎨{⎩

𝐸(0)′ ⎛⎜
⎝

𝑧 ⃗𝜒(0)′

𝑘 , 𝑧(0)⎞⎟
⎠

⎫}
⎬}⎭

( ⃗𝜒(1), 𝑧(0)) (A.36)

𝐷(𝐹𝐻) ( ⃗𝜒(1), 𝑧) ≡ −
𝑖𝑧

𝑥(1) 𝑒𝑖𝑘𝑧 (A.37)
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a.4 lens, 2f & 4f

With these tools in hand the field propagation through an optical system can be calculated

as follows - for ease of explanation assuming 2D-fields only:

1. propagate field (plane) from 𝑧(0) a distance 𝑠(0) = 𝑧(1) − 𝑧(2) to the entrance pupil at

𝑧(2) of the optical system

2. have the field interact with the optical system

3. propagate field from the exit-pupil 𝑧(2)′ a distance 𝑠(1) = 𝑧(1) − 𝑧(2)′ to the plane of

measurement at 𝑧(1)

The simplest configuration in case of free-space propagation (where there is no system

in-between) was demonstrated in the former section and is coherent with this approach.

An object of particular interest is the propagation through a lens. For a thin lens, the

lens-curvature is small compared to the lens diameter and the field’s lateral entry and

exit-coordinates do not change ⃗𝜒(1) ≈ ⃗𝜒(1)′. Hence it can be described with a complex-

valued pupil function 𝑃( ⃗𝜒), 𝑓 the focal length and Φ = 𝑘√𝑓 2 + 𝜒(1)2 the locally introduced

phase change dependend on the lens-shape and material. The transmission through a

thin lens is then given in Equation A.38 and by Taylor-expanding Φ only until the 1st

order Equation A.39 can be derived:

𝐸(1)′ ( ⃗𝑥(1)) = 𝑃 ( ⃗𝜒(1)) 𝑒−𝑖Φ( ⃗𝜒(1))𝐸(1) ( ⃗𝑥(1)) (A.38)

= ℱ−1
2𝐷 {�̃�} ( ⃗𝜒(1)′)𝑒−𝑖 𝑘

2𝑓 ⃗𝜒(1)
𝐸(1) ( ⃗𝑥(1)) (A.39)

with 𝑃 ( ⃗𝜒(1)) 𝑒−𝑖Φ( ⃗𝜒(1))𝑒−𝑖 𝑘
2𝑓 = ℱ−1

2𝐷 {�̃�} ( ⃗𝜒(1)′). To calculate the propagation of a field from

−𝑧(0) before the lens until a distance 𝑧(1), hence propagating the field by a total distance

of 𝑧 = 𝑧(1) + 𝑧(0) the above mentioned algorithm is applied and evaluated in case of

Fresnel-approximation thereby yielding:

𝐸(1) ( ⃗𝜒(1), 𝑧(1)) = 𝐷(lens)( ⃗𝜒(1), 𝑠(1), 𝑠(0)) ∫ 𝑑2 ⃗𝜒(0)�̃� (
𝑘(1)

𝑠(1) ⃗𝜒(1) +
𝑘(0)

𝑠(0) ⃗𝜒(0)) 𝐸(0)′( ⃗𝜒(0), 0)

(A.40)
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Here, different immersion media in front 𝑛(0) and after the lens 𝑛(1) were taken into

account which led to different 𝑘(0) and 𝑘(1). The replacements

𝐷(lens)( ⃗𝜒(1), 𝑠(1), 𝑠(0)) = −
𝑘(0)

𝑠(0) 𝑒𝑖(𝑘(1)𝑠(1)+𝑘(0)𝑠(0))𝑒𝑖 𝑘(1)

𝑠(1) 𝜒(1)2
(A.41)

𝐸(0)′( ⃗𝜒(0), 0) =𝑒𝑖 𝑘(0)

2𝑠(0) 𝜒(0)2
𝐸(0)( ⃗𝜒(0), 0) (A.42)

were used for simplification and to introduce the lens-propagator 𝐷(lens) to propagate from

one plane at 𝑠(0) to a plane at 𝑠(1). Adding a second lens with focal length 𝑓 (1) (𝑓 (0) is the

focal length of the first lens), placing the two lenses such that their focal-planes coincide,

and placing the input field at the front-focal plane of the first lens, a 4f-configuration is

constructed. Hence a second propagator over the distance 𝑠(1) = 2𝑓 (1) is added to the first

lens with the propagation distance 𝑠(0) = 2𝑓 (1). Hence, applying Equation A.40 again for

the second lens leads to:

𝐸(1)( ⃗𝜒(1), 2𝑓 (1) + 2𝑓 (0)) = 𝐷(4f)(𝑓 (0), 𝑓 (1)) ∫ 𝑑2 ⃗𝜒(0)�̃� (
𝑘(1)

𝑓 (1) ⃗𝜒(1) +
𝑘(0)

𝑓 (0) ⃗𝜒(0)) 𝐸(0)( ⃗𝜒(0), 0)

(A.43)

with the 4f propagator 𝐷(4f) as:

𝐷(4f)(𝑓 (0), 𝑓 (1)) = −
𝑘(0)𝑘(1)

4𝜋𝑓 (0)𝑓 (1) 𝑒𝑖(𝑘(0)𝑓 (0)+𝑘(2)𝑓 (0)′+𝑘(2)𝑓 (1)′𝑘(1)𝑓 (2)) (A.44)

Equation A.43 has the typical shape of a homogeneous Fredholm-integral equation of 1st

kind with the kernel �̃�, the unknown function 𝐸(0) und the measurable/known function

𝐸(1) [71]. It describes the system-response (kernel) to an incoming signal. By rescaling

the pupil-function �̃� according to Equation A.45 the integral can be simplified into a

convolution Equation A.46:

𝑎 ( ⃗𝜒) = (
𝑘(0)

2𝜋𝑓 (0) )
2

�̃� (−
𝑘(0)

𝑓 (0) ⃗𝜒) (A.45)

𝐸(1) ( ⃗𝜒(1)) =
1

𝑀2 𝐷(4f)(𝑓 (0), 𝑓 (1)) [𝑎 ⊗ 𝐸(0)] (
⃗𝜒(1)

𝑀 ) (A.46)

where 𝑀 = −(𝑛(0)𝑓 (1))/(𝑛(1)𝑓 (0)) is the system magnification and 𝑎 the 2D Amplitude

Point Spread Function (APSF) of the analysed 4f-system. This equation can be simplified

by assuming that all three different zones consist of the same surrounding medium 𝑛 and

that the front and back-focal planes of each lens are identical. Further, if the Abbe-Sine

condition is fulfilled (=constantmagnification overwhole FOV) invariance under translation
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of the system-response function can be approximately assumed. Note that the derivation

discusses plane-to-plane trasport and hence 2D in-plane solutions are derived. The full

3D-solutions around the planes of interest/focus can be calculated from the in-plane

solutions via different propagation approaches and will be introduced in Section A.6.

Hence we saw that a lens is not only a fast Fourier-transformator (Equation A.31), but

that the field at a displaced position 𝑧(1) can be described as a convolution of the incoming

field at 𝑧(0) with the APSF a (Equation A.46).

a.5 coherent and incoherent imaging

In the derivation of the Helmholtz-Equation (Equation A.14) the time-harmonic 𝑒𝑖𝜔𝑡 term

was omitted and shall be viewed again. All system (e. g. 4f-configuration) responses are

assumed to be static while the incoming and outgoing fields are allowed to change with

time. A intensity measurement of the incoming light-field means to temporal average it

for the measurement duration Δ𝑡 = 𝑇 due to the limitations of detectors. By adding time 𝑡

as variable to Equation A.46 it follows:

𝐼(1)( ⃗𝜒) = ⟨∣𝐸(1)( ⃗𝜒, 𝑡)∣2⟩ =
1
𝑇 ∫

𝑡+𝑇

𝑡
𝑑𝑡′𝐸(1)( ⃗𝜒, 𝑡′ − 𝜏′)𝐸1∗( ⃗𝜒, 𝑡′ − 𝜏″) (A.47)

= ∬ 𝑑2 ⃗𝜒′𝑑2 ⃗𝜒″𝑎 ( ⃗𝜒 − ⃗𝜒′) 𝑎∗ ( ⃗𝜒 − ⃗𝜒″)

⋅
1
𝑇 ∫

𝑡+𝑇

𝑡
𝑑𝑡′𝐸(0)( ⃗𝜒′, 𝑡′ − 𝜏′)𝐸(0)∗( ⃗𝜒″, 𝑡′ − 𝜏″)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≡𝐽( ⃗𝜒′, ⃗𝜒″)…mutual intensity

(A.48)

Note that 𝑡 − 𝜏 marks the time delay necessary to propagate through the optical system

characterized by 𝑎( ⃗𝜒). The introduced mutual coherence is a measure of spatial coherence

of the propagated field. The behaviour of 𝐽 can further be described by limiting it to the

two cases that will be used within this thesis, namely (1) quasi-monochromatic (Δ𝜆 ≪ 𝜆,

but not Δ𝜆 = 0) and (2) incoherent fields 𝐸. In case of (1) the field is completely self-

correlated and distant points within the field still have a phase-relation with each other

and hence still can interfer. In case (2) on the other hand no two points of the field have a

continuous phase-relation with each other and hence only self-interference of a point is

possible thereby yielding:

(1) 𝐽(𝑐𝑜ℎ)( ⃗𝜒′, ⃗𝜒″) = 𝐸(0)( ⃗𝜒′)𝐸(0)∗( ⃗𝜒″) (A.49)

(2) 𝐽(𝑖𝑛𝑐)( ⃗𝜒′, ⃗𝜒″) = 𝐼(0)( ⃗𝜒′)𝛿2( ⃗𝜒′ − ⃗𝜒″) (A.50)
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Inserting these mutual intensity functions into Equation A.47 the relations

(1) 𝐼(1)( ⃗𝜒) = ∣[𝑎 ⊗ 𝐸(0)] ( ⃗𝜒)∣2 (A.51)

(2) 𝐼(1)( ⃗𝜒) = [|𝑎|2 ⊗ 𝐼(0)] ( ⃗𝜒) (A.52)

can be found. Remarkably, a coherent field can be propagated with a coherent propaga-

tor, namely the 𝑎 or APSF, while an intensity distribution (no phase information left) is

propagated by an intensity-propagator ℎ, the so called Point Spread Function (PSF). By

Fourier-transforming these operators the Amplitude Transfer Function (ATF) ̃𝑎 (Equa-

tion A.54 ) and the Optical Transfer Function (OTF) ℎ̃ can be found.

ℎ( ⃗𝜒) = ∣𝑎 ( ⃗𝜒)∣2 (A.53)

̃𝑎( ⃗𝜅) = ℱ(2𝐷) {𝑎 ( ⃗𝜒)} (𝜅) (A.54)

ℎ̃( ⃗𝜅) = ℱ(2𝐷) {ℎ ( ⃗𝜒)} (𝜅) (A.55)

Already at this state it can be seen that retrieving the PSF in case of incoherent imaging

a)

y
x

b) c) d)

0.2

0.4

0.6

0.8

1.0

Figure A.2: Fourier-Relations in 2D. a) ATF, b) APSF, c) PSF, d) OTF.

(Equation A.52) can be achieved by e. g. imaging a sparse set of infinitesimal small points

(beads, quantum dots, gold nanoparticles) that can be described as 𝛿-combs for 𝐼(0) and

averaging over the resulting shifted PSFs according to Equation A.52. In case of the APSF

(Equation A.51) regaining the necessary phase-information needs many assumptions

about the nature of the system and the incoming field as well. Yet it can be reconstructed

by using an iterative phase-retrieval approach, if possible at all.
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a.6 3d-imaging

Intuitively, a simple but reasonable strategy for extending a given 2D-model to 3D is to

assume that in case of the 2D-model the in-focus sample-plane (typically 𝑧(0) = 0) is imaged

onto the detector plane. Then by adding a free-space propagation either to the sample or

detector in ±𝑧 direction the in-focus solution can be extended to Z-planes 𝑧 ≠ 𝑧(0).

According to the presented strategy for the transition from 2D to 3D a defocus-operation

in terms of convolution of the 2D APSF with the Rayleigh Sommerfeld Field Propagator 𝐷

(Equation A.28) directly leads to the 3D APSF 𝑎 ( ⃗𝜒, 𝑧) ≡ 𝑎 ( ⃗𝑥) Equation A.56, where ⃗𝜒 is

the lateral 2D and ⃗𝑥 the 3D coordinate vector. In case of Fourier space representation the

ATF ̃𝑎 ( ⃗𝜅) is multiplied by the Fourier transformed Rayleigh Sommerfeld Field Propagator

�̃� thereby yielding the 3D ATF ̃𝑎 ( ⃗𝑘) Equation A.57, where ⃗𝜅 is the lateral 2D and ⃗𝑘 the

3D frequency vector.

𝑎 ( ⃗𝑥) = [𝐷 ( ⃗𝜒, 𝑧) ⊗2𝐷 𝑎 ( ⃗𝜒, 0)] (A.56)

̃𝑎 ( ⃗𝑘) = ℱ ⃗𝜒 {𝑎} = �̃� ( ⃗𝜅, 𝑧) ̃𝑎 ( ⃗𝜅, 0)

= 𝑒𝑖𝑧√𝑘2−𝜅2 ̃𝑎 ( ⃗𝜅, 0) (A.57)

In Equation A.57 the particular choice 𝐷 = 𝐷(free) (Equation A.35) was used in Equa-

tion A.57. The ATF ̃𝑎 ( ⃗𝑥) can be interpreted as a 3D imaging pupil. It is crucial to bear

in mind that according to the presented strategy the defocus was solely modeled into

the APSF 𝑎 which in turn is assumed to plane-wise interact with the sample. mutual inde-

pendence of different planes of the sample by means of coherence and absorption/emission

is assumed. In case of coherent imaging this assumption is typically heavily violated as

will be discussed further in Section A.8, but can be used for description of incoherent

processes with great success. For example, the incoherent 3D-image of a 3D-sample in

the detector-plane can be described via:

𝐼(1) ( ⃗𝜒(1), 0) = ℎ ( ⃗𝜒(1), +𝑧(1)) ⊗2𝐷 𝐼(0) ( ⃗𝜒(0), 0) ≡ [ℎ ⊗2𝐷 𝐼(0)] ( ⃗𝜒(1), +𝑧(1)) (A.58)

where 𝐼(0) is a 2D intensity distribution at plane 0 at 𝑧(0) = 0 and accordingly 𝐼(1) is a

2D intensity distribution at plane 1 at 𝑧(1) = 𝑧, see Figure A.1. The points 𝑃(0) and 𝑃(1) in

Figure A.1 demonstrate how a point is not only free-space propagated but also displaced
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Topic Approximation

Helmholtz-Equation monochromatic, time-harmonic (=sinusoidal) external field/waves;

very slowly moving bodies as compared to the time-window of interac-

tion with surrounding fields; isotropic material; specific conductivity,

electric permittivity and magnetic permeability are constants; charge-

and current-free field-regions

in-focus finitely bounded; no influence by the bounding-edges; homogeneous

medium over at least 1𝜆 spatial extent; forward-propagating waves;

APSF invariance under translation; system responses are static over time,

while in-/out-going fields can change; APSF plane-wise interacts with

sample; mutual independence of different sample-planes

measurement far-away distance; finite temporal resolution of detector

Table A.2: Approximations. Brief overview of all applied approximations for the derivation of

the 3D-APSF, ATF, PSF and OTF.

when going from one plane to another through the optical system. The identity (≡)

displays an alternative way of writing the functional dependencies of the first equality of

Equation A.58 in a more loose but easier to read manner.

The result is remarkable, as it states that if the sample can be described as a 3D-stack

of individual axially-displaced planes (slices) and such a stack can be acquired by (e. g.

successive) 3D-measurements. Equation A.58 generalizes to Equation 1.9.

a.7 scalar high-NA imaging

In the last sections the basic foundation for light-propagation and optical systems was set.

The concept of a system-transfer function was introduced by using sequential application

of the Rayleigh-Sommerfeld integral or its approximations (mainly: Fresnel). Especially a

(semi-) convex lens in 2f 12 or 4f 3 configuration generates the very far away Fraunhofer-

pattern, which can be described as a Fourier-Transform of the incoming front-focal plane

1 i. e. 2f before and 2f after one lens
2 Only directly true if Abbe-sine condition is fullfilled.
3 i. e. 2 subsequent lenses with matching focal planes and imaging from first to last focal plane
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field-distribution (Fraunhofer-approximation of the Rayleigh-Sommerfeld diffraction

integral), into its back-focal (Fresnel-Approximation) plane (Equation A.31). Note that

this is only true for imaging of the intensities in both lens configurations, but does not hold

for the phases in case of the 2f configuration4. While various approximations have been

made to derive how a field propagates through a given system (see Table A.2), the question

remains: How to properly model such a system without the particular assumptions of

paraxiality5 or measuring at a far away distance? In Equation A.24 the incoming 3D-field

distribution 𝐸(0)( ⃗𝑥) is projected onto a superposition of 2D-wavefronts that reaches the

entrance pupil of the optical system at 𝑧(0) and is then propagated to a distant plane at

𝑧(1). Here the assumption of a finite sized pupil and effects of the pupil onto the incoming

field (as introduced by Equation A.38) can directly be included into the pupil function 𝑃:

𝐸(1) ( ⃗𝑥(1)) = ∬ 𝑑2 ⃗𝜒(0)𝑃( ⃗𝜒(0))𝐷 ( ⃗𝜒(1) − ⃗𝜒(0), 𝑧(1) − 𝑧(0)) 𝐸(0) ( ⃗𝑥(0)) (A.59)

Equation A.59 is still exact within the framework of the Sommerfeld-Rayleigh integral for

a (locally) homogeneous surrounding medium. Assuming a uniform circular pupil in paraxial

approximation yields:

𝑃 ( ⃗𝜒(0)) =
⎧{{
⎨{{⎩

1 , 𝜒2 < NA

0 , else
(A.60)

and a uniform incoming light distribution (𝐸(0)( ⃗𝜒(0)) = 1, e. g. a plane wave-front 𝑧 ≫ 𝜆

away from a 𝛿-like emitter) Equation A.59 can be solved to the jinc function [70]:

𝐸(1) ( ⃗𝜒(1), 𝑧(1) = 0) =
𝐽[1] ( ⃗𝜒 𝜔)

⃗𝜒 𝜔
≡ jinc ( ⃗𝜒 𝜔) (A.61)

with 𝐽[1] being the Bessel-Function of 1st kind and 𝜔 ≡ 𝑘NA. Note that 𝐽[1] is a periodic

function whose period is 𝜔(−1). Equation A.60 is the in-focus solution (at position 𝑧(1) = 0)

for an optical system whose entrance- and exit-pupil can altogether be described with a

non-apodized, hard edged circular pupil. The full 3D-field distribution 𝐸(1) (𝑥(1)) around

the focus can be calculated by applying the free-space propagator Equation A.35.

When stepping away from the paraxial approximation, hence allowing for bigger lateral

angles of the illumination/detection beam and thus ⃗𝜒(0) ≪ 𝑧 is no longer valid, polariza-

tion effects on the resulting 3D-vector field in-focus distribution become noticeable. Within

4 e. g. imagine the image of a parallel incoming wave in 2f configuration.
5 Paraxiality is typically a wording used in geometrically optics where the light propagation is characterized

by using propagating rays. In case of paraxiality only small angles between the rays and the optical axis are

allowed, thus allowing for the approximation sin𝛼 ≈ 𝛼.
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the general framework of super-resolution microscopy many systems rely on high-NA

objectives with 1.4NA and e. g. oil-immersion 𝑛(oil) = 1.518. Here the half aperture angle

of the objective lens is 𝛼 = arcsin( NA
𝑛(oil) ) ≈ 67∘. For example, there will be two opposing

spatial frequencies6 in the objective lens’ Back Focal Plane (BFP) at ±0.42 ⋅ 𝑑(BFP), where

𝑑(BFP) is the objective lens’ BFP diameter, for which the focus of an incoming plane-wave

meets under an angle of 𝜃(crit) = 90∘. These two beams cannot interfere due to a missing

spatial overlap. Therefore, the degree and spatial extend of interference of the interfering

beams - coming from opposing sides of the optical axis - depends on their lateral position

and thus the focal spot gets deformed.

Even though this was only a qualitative explanation it displays the potentially severe

discrepancy of using high-NA objectives together with the paraxial approximation. The

linearity of the Helmholtz equation (Equation A.14) allows to treat the Laplace operator as

separable and hence only limit the analysis to 1 field-direction at a time. In this thesis the

high-NA scalar case is considered, but transition to vectorial treatment is straightforward

and could be added at anytime if necessary.

a.8 born approximation

In Section A.6 field propagation, based on the homogeneous Helmholtz equation Equa-

tionA.15 led to the derivation of Fourier-imaging theory for arbitrary imaging systems. The

inhomogeneous Helmholtz equation Equation A.16 in case of interaction with coherently

scattering/absorbing matter will briefly be analysed.

Since the scattered field 𝐸(s) depends directly on the complete field 𝐸 in Equation A.16

an analytical solution leads to an infinite (self-recursive) series of 𝐸 and thereby needs

additional assumptions for tractability. Without much further restriction and for arbitrary

matter distributions, direct Maxwell solvers can compute the matter-field interactions in a

small volume of space enclosing the matter distribution. Typical Finite Difference Time

Domain (FDTD) algorithms discretize space and time and thus can solve Equation A.16 on

a discrete grid for a large frequency range for virtually arbitrary matter-field interactions

(e. g. nonlinear media) simultaneously, but require large computational capacities and

time [72]. Since the field is computed on all points in space, wrap-around artifacts can

6 This even holds true for a whole ring around the zero frequency.
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arise due to the finite domain size (computer memory limited), which can be reduced by

introducing a perfectly absorbing boundary surface. The Discrete Dipole Approximation

(DDA), on the other hand, assumes a distribution composed of individual dipoles in a

constant medium instead of an arbitrary sample distribution and solves Equation A.16

in the frequency domain for 1 frequency at a time. The field distribution calculated in

the medium composed of dipoles can then be propagated into the external space and

the near and far field can be derived from it. This method is already significantly more

resource-efficient, but also entails significantly greater restrictions with respect to material

properties and structure [72]. Note that both FDTD and DDA can achieve the same

performance depending on the calculation parameters [73]. Further developments for

the efficient calculation of the field distribution around the scattering medium could be

achieved by the suitable discretization of the Green’s function [74].

Another possibility is to divide the medium into individual layers, calculate the field

distribution per layer 𝐸(l) with the result of the propagated field distribution from the

previous layer as an incoming wave 𝐸(l) = 𝐷(𝑑𝑧) ⊗ 𝐸(l-1). The method is susceptible to

strong refractive index changes at interfaces, backscattering, and an appropriate choice of

propagation distance 𝑑𝑧 between layers.

Assuming that the matter distribution is only weakly scattering that is, 𝑛(𝑥) − 𝑛0 ≈ 𝛿𝑛

holds for very small 𝛿𝑛, 𝐸 ≈ 𝐸(i) can be assumed for the right-hand side of Equa-

tion A.23 [16] and it follows:

𝐸(s)( ⃗𝑥) = −4𝜋 [𝐺 ⊗ (𝐹(s) 𝐸(i))] ( ⃗𝑥) (A.62)

with the scalar scattering potential 𝐹(s)( ⃗𝑥) = − 1
4𝜋𝑛2

0
𝑘2 (𝑛2( ⃗𝑥) − 𝑛2

0) (see Equation A.16)

and ⊗ being the 3D-convolution. The total field 𝐸( ⃗𝑥) = 𝐸(i)( ⃗𝑥) + 𝐸(s)( ⃗𝑥) is the sum of

the ballistic field 𝐸(i) and the scattered field 𝐸(s) and can be calculated directly. With

application of the far-field approximation the interaction with the medium can be directly

incorporated into the established Fourier imaging framework Equation 1.9, since the weak

scattering property allows individual thin slices to be considered asmutually independent.
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a.9 the jablonski diagram

The possible excitation states of an atom can only be described exactly in the case of

hydrogen by means of the harmonic oscillator approach. Atoms with higher atomic

numbers can only be described approximately. For molecules, the harmonic oscillator

approach is not realistic for several reasons. On the one hand, bonds cannot break despite

arbitrarily large energies, and on the other hand, two atomic nuclei can come too close to

each other under very small energetic expenses [28]. The introduction of the anharmonic

oscillator solves this problem. Restricting the solutions of the anharmonic oscillator to

zero and first order, we obtain the Morse potential [28]. For a diatomic molecule, the two

first electronic states (𝑆0, 𝑆1) have a different center of charge, i. e. the central point of

symmetry of their spatial charge distribution differs between 𝑆0 and 𝑆1. The lower level

𝑆0 is called Highest Occupied Molecular Orbital (HOMO) and the upper level 𝑆1 Lowest

Unoccupied Orbital (LUMO). If the total spin of the excited and the paired electron

remaining unexcited in the lower level 0, i.e. they are oriented in opposite directions,

a singlet state exists. In this state, the spatial overlap of the electron wave functions is

particularly large, which means that more energy must be expended for excitation than in

configurations with a smaller overlap, such as the triplet state. Here, the two electrons

have the same spin orientation, which separates their wave function spatially (fermion

property). The triplet state ismore stable and due to the selection rule of emission generally

longer-lived than the singlet state [75]. Due to the approximately 1000x greater weight of

the nucleus compared to the electrons, the Born-Oppenheimer approximation can be used

and thus the wave function of the nucleus can be described separately from the electrons.

Thus, the change of the electronic state can be considered instantaneous with respect to

the motion of the nucleus (depicted as a straight arrow in Figure 1.2). According to the

Franck-Condon principle, transitions with large overlap of their vibronic wavefunctions

are more likely than those with smaller overlap [27].

A set of time scales for transitions within a molecule in case of photon absorption and

emission are summarized in Table A.3.
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Transition t order

Decoherence-Time (a) fs

Vibrational Relaxation (VR) ps

Internal Conversion (IC) ps

Fluorescence (f) ns

Intersystem Crossing (ISC) ns

Phosphorescence (p) ms

Table A.3: Time-scale overview for relevant transitions displayed in Figure 1.2 [27].

a.10 detectors

In this work, three main detector technologies were used, and their operation and general

parameters are briefly described below.

PMT In a Photo-Multiplying Tube (PMT) incoming photons are converted into Electron

(𝑒−) at the (e. g. Gallium-Arsenide Phosphate (GaAsP)-) entrance-window and then

accelerated by the surrounding static E-field towards a set of concave dynodes. By hitting

the dynodes each time more 𝑒− are emitted by secondary emission thereby leading to

an overall amplification of up to 107 for each incoming photon. The created current can

than be measured or converted into voltage, depending on the Analog-Digital-Conversion

Unit (ADC). While multiple-parameters influence the tube notably, especially the entry

windowmaterial, the amount of dynodes and the potential between them are of particular

interest. Changing the latter can be used to optimize the amplification while minimizing

noise-gain, i. e. minimizing the chance of amplifying electron-emission events that where

not induced by incoming photons. On the other hand, changing the window-material

allows to optimize for response-time or wavelength-dependend sensitivity. Further unde-

sired effects are split into additive noise, where the Signal-to-Noise Ratio (SNR) changes

proportional to the photon-influx, or multiplicative noise, where SNR is independend

of a change in photon-influx. Dark-current, an additive noise-source, happens due to

e. g. after-pulsing (e. g. light emission by dynodes), field-emission (due to high-fields

between dynodes), thermal-emission (spontaneous emission of a valence-electron due to

temperature depending potential energy) or radioactive decay (e. g. of the glass material).

While the average effect of this noise-source can be diminished by simple subtraction
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the uncertainty of the measurement is increased. Avalanche noise, a multiplicative noise-

source on the other hand, occurs during carrier and lattice interaction at the dynodes

where, if energy of the hitting carrier is high enough, more second carriers than intended

(according to dynode design) are generated thereby leading to a bigger amplification

and hence variance in the measurement. Due to geometry and material, the relative gain

by electron multiplication is subject to variations which increase the relative inaccuracy

(= variance) of the measurement current prediction per photon measurement. Finally,

before converting into digital units by using an ADC, the 𝑒− are converted to voltage. Even

though the additive conversion variance (Johnson noise) scales anti-proportionally with

the used impedance, too high impedances should not be used as they might influence the

device response time together with the system inherent capacitances. The typical quantum

efficiency of a GaAsP-PMT around 𝜆 = 540nm is 𝑞(PMT) ≈ 40% where measurements at

20 ns (electron transit time) pixel dwell-time are possible in the case of linear-focusing

design and continuous (non-counting) mode [76].

(em)CCD A Charge-Coupled Device (CCD) consists of multiple detectors arranged

on a rectangular grid. There are photon conversation pixels and read-out registers. These

can vary in number and position depending on the type of device (e. g. full-frame, frame-

transfer, interline). Incoming photons are converted into 𝑒− per pixel and shifted to the

read-out register after the end of the exposure time. Depending on the type, the pixels can

be exposed further during the transfer, which can result in smearing. The accumulated

charge per pixel is converted pixel by pixel into voltage via the readout register, amplified

and converted into discrete units by ADC. Overexposure, i. e. utilization of more than

the available dynamic range of the pixels, can lead to 𝑒− jumping over to adjacent pixels’

wells which after readout can be seen as blooming, i. e. brighter regions with lower

contrast [77]. In the case of an electron-multipliying Charge-Coupled Device (emCCD),

electron multiplication due to avalanche ionization is added before the voltage conversion.

emCCD cameras are ideal for high contrast (= ==low or no background) imaging at

moderate imaging speeds, e. g. 30 frames per second (fps), due to their read-noise of up to

< 1 𝑒−/𝑝𝑖𝑥 as Root-Mean-Square (RMS) of the read-noise distribution . For slow imaging

and existing background, long integration times are necessary, causing dark-noise to

accumulate. Due to the low dark-noise level of CCDs compared to emCCDs or Scientific-
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Metaloxide Semiconductor (sCMOS), they are preferred here [14]. In back-illuminated

configuration, (em)CCDs achieve a quantum efficiency over 90%. Common emCCDs

have 1024 × 1024 pixels with a pixel-pitch of 13 𝜇m ×13 𝜇m [78].

sCMOS In a sCMOS an incoming 𝑒− creates an electron-hole pair in the depletion region

of p-n-transistor which get amplified and accumulated within capacitors directly on the

individual pixels. The pixel values are thus pre-amplified, which can significantly reduce

the relative read noise arising at the horizontal read-out registers (row). sCMOS achieve

down to RMS 1.6 𝑒− (at 100 fps) at 0.006 𝑒−/𝑝𝑖𝑥 at −30 ∘C cooling [79]. The presence of a

microlens array (=1 lens per pixel) can increase quantum efficiency allowing QEs of up to

≥ 80% to be achieved. Hence, sCMOS are ideal for fast measurements with background

present and weak (≥ 4 𝑝ℎ𝑜𝑡𝑜𝑛𝑠/𝑝𝑖𝑥𝑒𝑙) signals. Typical detectors have about 2048 × 2048

pixels at 6.5 𝜇m ×6.5 𝜇m pixel pitch [80].

a.11 shot noise

The quantum nature of light leads to fluctuations in the discrete conversion of photon to

electron during a detection process. The measured photons during an detection interval

𝑇 are thus a sequence of discrete-time events 𝛿(tl) ≡ 𝛿(𝑡 − 𝑡𝑙), whose temporal resolution

depends on the temporal response of the detector 𝑅(T)(𝑡). A random variable 𝐾, which

equals the amount of photons detected in a time interval 𝑇:

𝐾 = ∫
𝑇

𝑑𝑡 ∑
𝑙

[𝑅(T) ⊗ 𝛿(tl)] (𝑡) (A.63)

can be described by its statistical (=time-averaged) mean 𝜇𝐾 ≡ 𝔼 {𝐾} and variance

𝜎2
𝐾 ≡ 𝕍 {𝐾} according to [14]:

𝐾 = 𝜇𝐾 + 𝜎2
𝐾 (A.64)

The measurement process can also be formulated as asking the question: „What is the

probability that 𝑘 photons were measured in the time interval Δ𝑡 = 𝑇?“. The Poisson

statistic 𝒫 answers this question:

𝒫 {𝜇𝐾} ≡ 𝑃𝐾(𝐾 = 𝑘|𝜇𝐾) =
(𝜇𝐾)𝑘

𝑘! 𝑒−𝜇𝐾 (A.65)
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with 𝐾 = 𝑘 realizations, i. e. measured photons, of the Poisson distributed random vari-

able 𝐾. The random variable 𝐾 is discrete (i. e. realizations 𝑘 ∈ ℕ+) and thus the con-

tinuous mean 𝜇𝐾 ∈ ℝ+ can be obtained by using its discrete probability distribution

𝑃𝐾 (𝐾 = 𝑘 ∣ 𝜇𝐾):

𝜇𝐾 = ∑
𝑘

𝑘𝑃𝐾 (𝐾 = 𝑘 ∣ 𝜇𝐾) (A.66)

where the formulation 𝑃𝐾 (𝐾 = 𝑘 ∣ 𝜇𝐾) means: the probability of measuring 𝐾 = 𝑘 > 0

photons given the mean 𝜇 > 0 of the random process takes the value 𝜇𝐾. The events

measurable at the detector depend on both its temporal response 𝑅(T)(Equation A.63) and

its physical properties, such as e. g. the absorption cross section 𝜂(D). Thus, the photon-flux

Φ(𝑡) of the incoming Electro-Magnetic (EM) waves measurable by the detector can be

described by Φ(D)(𝑡) ∝ 𝜂(D)Φ(𝑡) and hence what can be measured by the detector within

𝑇 is:

Φ(T)(𝑡) = [𝑅(T) ⊗ Φ(D)] (𝑡) (A.67)

Most sources (e. g. laser) are subject to temporal fluctuations that last longer than the

time scale 𝑇 relevant for the measurement process at the detector. The counts 𝐾 are not

independent of the measurable flux Φ(D) at the detector whereby for the description of 𝐾

the conditional probability 𝑃𝐾 (𝐾 ∩ Φ(T)) and thus

𝑃(𝑘) = ∫
∞

0
𝑑𝜙𝑃𝐾 (𝐾 = 𝑘 ∣ 𝜇𝐾 = Φ(T)) 𝑝Φ(T) (Φ(T) = 𝜙) (A.68)

must be used. Here 𝑃(𝑘) is still a discrete probability distribution while 𝑝Φ(T) describes a

continuous probability density. To both the normalization:

∑
𝑘

𝑃𝐾 (𝐾 = 𝑘) = 1 = ∫
𝜙

𝑑𝜙 𝑝Φ(T) (Φ(T) = 𝜙) (A.69)

applies. Note: Equation A.65 follows from Equation A.68 assuming 𝑝Φ(T) (Φ(T) = 𝜇𝐾) ≈ 1.
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Figure A.3: Distance Poisson and Gauss-Distribution (a) Difference Δ𝑃 of Poisson 𝒫 and

Gaussian 𝒢 distribution, i. e. Δ𝑃 = 𝒫 − 𝒢, are plotted at discrete integer-points 𝑘 for

different means and variances 𝜇𝐾. (b) The log10 of l2-norm (Equation 1.8) of the

distance of the Poisson- and Gauss distribution for different 𝜇𝐾 within the

sampling-range of [0, 200].

a.12 gaussian noise

Interestingly, as displayed in Figure A.3, the relative 𝑙2-distance ∥Δ𝑃∥2
2 (Equation 1.8)

with Δ𝑃 = 𝒫 − 𝒢 between Gaussian 𝒢 (Equation 1.32) and Poisson 𝒫 (Equation A.65)

distribution7 is already smaller than 10−2 for 𝜇𝐾 ≥ 30 and thus the two can be used

interchangeably if thereby simplification in further analysis can be achieved.

a.13 aliasing and undersampling

For example, if the function is a standard cosine as

𝑓𝑛(𝑇) = 𝑎(𝑇) ⋅ cos(2𝜋
𝑛
𝑇)

7 Note, that the Gaussian distribution is continuous in its random variable while the Possoin distribution is

discrete. Hence, the comparison of the two is evaluated on an integer domain only.
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Figure A.4: Aliasing in 1D-case. Left (Real space): set of Cosine-Functions with different periods.

Sampling points are marked with blue. Right (Fourier space): Fourier-Transform of

the same functions, but reduced to the given sampling points. Hence: Fourier-Space

consists of only 5 pixels.

with 𝑇 period and 𝑎(𝑇) amplitude. If this function is eqidistal sampled with 𝑑𝑠𝑎𝑚𝑝𝑙𝑒 = 1,

taking 𝑁 = 5 sampling points and 𝑎 = 1 then it results for different values of 𝑇:

Sampling Points: 𝑛 ∈ [0, 1, 2, 3, 4]

𝑓𝑛(𝑇 = 4) = 𝑐𝑜𝑠(0.5𝜋𝑛) = [1, 0, −1, 0, 1]

→ ̃𝑓𝑘 = [−0.2, −1.2, 0.4, −1.2, −0.2]

𝑓𝑛(𝑇 = 2) = 𝑐𝑜𝑠(𝜋𝑛) = [1, −1, 1, −1, 1]

→ ̃𝑓𝑘 = [1.4, −0.6, 0.4, −0.6, 1.4]

𝑓𝑛(𝑇 = 1.33̄) = 𝑐𝑜𝑠(1.5𝜋𝑛) = [1, 0, −1, 0, 1]

→ ̃𝑓𝑘 = [−0.2, −1.2, 0.4, −1.2, −0.2]

𝑓𝑛(𝑇 = 1) = 𝑐𝑜𝑠(2𝜋𝑛) = [1, 1, 1, 1, 1]

→ ̃𝑓𝑘 = [0, 0, 2.2, 0, 0]

showing that 𝑓𝑛(𝑇 = 1.33̄) and 𝑓𝑛(𝑇 = 4) have the same values at the sampling points

and are thus assigned to the same Fourier-frequencies. Note that while 𝑛 ∈ [0, 1, ..., 4]

it is 𝑘 ∈ [−2/𝑁, −3/𝑁, ..., 0, ..., 2/𝑁 − 1]. For better visualization amplitudes of 𝑎 =

[1, 0.5, 0.25, 0.125] for various periods 𝑇 were used in Figure A.4.

Typical microscopic measurements will be represented as a list of 2D images. An

example will be given for an imaged (low-pass filtered) spokes2d in Figure A.5. Imaging

parameters are according to Section A.11 where 𝑁(pix) = [256, 256] and for a) the pixel-
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Figure A.5: Undersampling Ra-Re) Real-space images normalized to individual maximum, Fa-

Fe) modulo of Fourier-Space images with normalization log10 (1 + 𝑙𝑟𝑉𝑀). While Ra

and Fa represent the original image with 𝑑(SPL,lat) = 30nm pixelpitch, Rb-Re) and Fb-

Fe) represent sub-sampled images with pixel-pitches of 𝑑(SPL,lat) = [2, 3, 4, 5] ⋅ 30nm

and therewith simulate a set of detectors with different pixel-pitches and sizes. The

cyan circle marks the OTF-support limit, the magenta circle the sampling frequency

of the image.

pitch is 𝑑(SPL,lat) = 30nm. The further images b-e) are generated by rectangular sub-

sampling where the image is locally summed with a mask of size b) 2 × 2, c) 2 × 3, d) 4 × 4

and e) 5 × 5 thereby reducing the resulting image size. The OTF cutoff frequency 𝑘(C,WF)

is displayed with a cyan circle while the magenta-circle displays the sampling limit of the

image 𝑘(SPL,lat). For Ra-c) 𝑘(C,WF) < 𝑘(SPL,lat) and the images are properly sampled while

for Rd-e) 𝑘(C,WF) > 𝑘(SPL,lat) and the images are under-sampled. A unique reconstruction

under the latter (Rd-e) circumstances of the sample is impossible as high-frequencies

are measured as lower-frequencies in the image. In real space the under-sampling is

represented by an increasing pixelation and thus loss of resolution.

a.14 flat-fielding und unitless images

For this section aswell as the upcoming sections SectionA.15 and SectionA.16 a simple con-

focal setup with high numerical aperture 𝑁𝐴 = 1.4, excitation wavelength 𝜆(ex) = 488nm

and emission wavelength 𝜆(em) = 510nm is assumed. Hence, the analysed images are

scanned images and the counts represent detected photon emissions of the sample. In a

natural 3D-sample wave-matter interaction processes like scattering, absorption or emis-
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sion influence the effective system PSF and Out of Focus (0oF) information is present

in the in-focus slice (Equation A.58). While 0oF light might not be present in very thin

or non-scattering objects, the 2D in-focus (𝑧 = 0) intensity distribution 𝐼 of an ideal

3D-imaging process of a 3D sample on at the 2D detector can be approximated as:

𝐼( ⃗𝜒) = 𝐼(signal)( ⃗𝜒) + 𝐼(bg)( ⃗𝜒) (A.70)

Typically the in-focus signal 𝐼(signal) consists of higher-frequencies and changes rather

quickly laterally and axially, while the 0oF information 𝐼(bg) (=background) is composed

of low-frequencies and changes rather slow w. r. t. the lateral field of view (FoV) and

axial step-size. The used wording „rather“is quite imprecise, but cannot be made clearer

without stating the used imaging method and hence whether inherent background-

suppression exists. While in case of Confocal Laser ScanningMicroscopy (CLSM) imaging

the background 𝐼(bg) can be locally confined to the region of the axial spread of the CLSM-

PSF (Equation 1.22) it has to be extended to the whole volume of 3D-sample in case of a

Widefield Microscopy (WF) system due to the missing axial sectioning.

Background can be assumed to be constant over the FOV at a given in-focus 𝑧 = 𝑧𝑙 and

can e. g. simply be estimated by:

• subtracting the mean of a Gaussian fitted to the lower frequencies of the histogram

of the measured image from the image

• subtracting the mean calculated from low variance regions

Imperfections (physical trade-offs) of the detecting device during the amplification and

read-out process lead to additional, mostly uncorrelated noise which typically is approx-

imated by zero-mean Gaussian white noise. To avoid clipping on low-voltages, hence

to reduce measurement bias due to missing sensitivity of the device, typically a voltage

offset is applied to each sensor-element. This offset can be modeled into the imaging

process (Equation 1.40) as additional term 𝑔𝑎 which is a combination of the noise-free

voltage-offset and the zero-mean Gaussian white noise. Hence, 𝑔𝑎 can be assumed to be

Gaussian distributed with 𝜇(𝑔𝑎) as the voltage-offset.

A brief simulation of flat-fielding scenarios is displayed in Figure A.6. Here, 2D-WF-

imaging of a 2D-sample (𝑆)was applied andhence constant background at 𝐼(bg) = max (𝐼(illu)) /10

was added (Equation A.70), then Poisson-noise applied and finally the detector offset
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Figure A.6: Flat-Fielding Simulation to display effect of flat-fielding pre-processing on different

levels of misaligned illumination and sizes. a) is the Sample while f),k) are examples

of dark-image and background-intensity. 3 different illumination 𝜇𝐼, 𝜎 𝐼 combinations

are compared. b)-e) illumination 𝐼(illu,1), measured image 𝑀(1), flat-fielding corrected

image 𝑀(flat,1) and masked image 𝑀(flat,1) ⋅ 𝑚(big) for 𝜇𝐼 = (0, 0), 𝜎 𝐼 = (20, 20). g)-j)

display the same for 𝜇𝐼 = (10, 15), 𝜎 𝐼 = (50, 50) and l)-o) for 𝜇𝐼 = (15, 35), 𝜎 𝐼 =

(100, 120). 100 bright- (Sample=unit-plane) and dark-images where acquired and

averaged. The image size usedwas 128×128 pixels of size 60nm×60nm andNA = 1.4

at 𝜆 = 488nm.

and noise added (Equation 1.40). The spokes-target serves as sample. The flat-field and

offset-corrected image 𝑀(flat) is calculated according to:

𝑀(flat) =
𝑀 − 𝑀(dark)

𝑀(bright) − 𝑀(dark) 𝑀(bright) − 𝑀(dark) (A.71)

where 𝑀(bright) is the average of all brightfield images taken without sample and 𝑀(dark)

the average of all images taken without any illumination. The corrected image finally is

rescaled by the average of difference of the averages of dark and bright-field images.

The simulation shows that naive flat-fielding of non-uniform illuminated samples (un-

der condition of aberration-free PSF) can lead to severe amplification of non-signal regions,

see borders of A.6 d) and its value range ≈ [0, 100]. Even in case of more equal illumi-
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nation g) the flat-fielded image still displays non-uniform radial brightness distribution

and enhanced noise (compare i) with j) as well as value range ≈ [0, 2]). Even though g)

does not suffer too much of noise-amplification at the borders due to a bigger and more

equal illumination (value-range of i) ) it is this time offset by 𝜇𝐼 = (15, 35) pixels and

thus higher noise amplification in the top-left as compared to the bottom-right corners

becomes visible. Note that by limiting the FoV (e)-o)) even for severely bad illumination

flat-fielding can be applied.

a.15 binning and interpolation

During experiment design, particular care is taken to ensure that the pixel pitch used for

detection satisfies at least the Nyquist criterion (Equation 1.37) for the assumedmaximum

frequency of image given aberration limited imaging. However, this criterion can be

significantly exceeded by using a much smaller pixel pitch (higher maximum frequency

𝑘). Thus, due to the lower light yield per pixel on average the SNR of the imaging becomes

worse. If an sCMOS camera was used for detection e. g. multiple pixels can be combined

before conversion to digital units and thus readout noise is added only once (to the

virtual, larger pixel). However, the photon noise remains the same. Since binning can be

understood as a simple summation of the individual pixels, the SNR (Equation 1.33) per

super-pixel according to Equation 1.40 is as follows:

𝑆𝑁𝑅 (𝑁(bin)) =
𝔼 {∑𝑁(bin)

𝑙=0 𝑀𝑙}

𝕍 {∑𝑁(bin)

𝑙=0 𝑀𝑙}

=
∑𝑁(bin)

𝑙=0 𝔼 {𝑀𝑙}

∑𝑁(bin)

𝑙=0 𝕍 {𝑀𝑙} + ∑𝑙≠𝑚 𝕎 {𝑀𝑙, 𝑀𝑚}

=
𝑘

√𝑘 + 𝑁(bin) ⋅ (𝜎(read))2 + ∑𝑙≠𝑚 𝕎 {𝑀𝑙, 𝑀𝑚}
(A.72)

using independence between pixels with respect to the measurement process and zero-

mean property of additional noise. 𝑁(bin) is the number of pixels used for binning. In

case of digital binning (=during pre-processing) 𝕎 {𝑀𝑙, 𝑀𝑚} ≠ 0, while it vanishes

and 𝑁(bin) = 1 in the denominator if binning happens before voltage-conversion and

digitalization (=read-out). Otherwise, 𝑁(bin) ≥ 1 and thus the SNR gets worse.
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Many interpolation schemes exist and come with their very individual costs. The in-

formation content acquired by the imaging system is limited by the sampling frequency

(Equation 1.37) and no information beyond this limit can be regained without any prior-

assumptions about the sample and particularly not by simple interpolation. Still, interpo-

lation is used in everyday research to enlarge images and e. g. fit to varying display sizes

and pixel-densities or to smoothen transitions and so on. In the case of image-processing

routines, special attention must be paid to the influence of interpolation methods on pixel

statistics and thus on error/variance propagation. While in iterative standard procedures

such as e. g. linear, bi-linear or bicubic only mutual neighboring pixels contribute global

interpolations such as FFT-based methods use all pixels. The consequences of this pro-

cedure will be briefly described using the example of 1) simple linear 2× and 2) Fourier

interpolation.

1) Linear interpolation is a local, invertible and analytic interpolation-operation. For

two neighbors such an interpolation scheme can be written as:

𝑀𝑚 =
⎧{{
⎨{{⎩

𝑀𝑚 𝑚 ∈ 𝕀(l)

1
2(𝑀𝑚−1 + 𝑀𝑚+1) 𝑚 ∈ 𝕀(m)\𝕀(l)

(A.73)

where the original-image indices 𝑙 ∈ 𝕀(l) are mapped to 𝑚 ∈ 𝕀(m) with size ∣𝕀(m)∣ = 2 ⋅ ∣𝕀(l)∣

and hence 𝑙 are even indices in the new image. Assuming Poisson-noise only the statistics

of the support-nodes (where 𝑙 ∈ 𝕀(l)) stay unaltered while for the new created nodes

𝑚 ∈ 𝕀(m)\𝕀(l) it follows:

𝔼 {𝑀𝑙} =
1
2 (𝜇𝑙 + 𝜇𝑙+1)

𝕍 {𝑀𝑙} =
1
4 (𝜇𝑙 + 𝜇𝑙+1)

𝑆𝑁𝑅(𝑀𝑙) = 𝔼 {𝑀𝑙} /√𝕍 {𝑀𝑙} = √𝜇𝑙 + 𝜇𝑙+1 (A.74)

Hence local linear interpolation has an averaging effect and (for Poisson distributed

random-var) interpolated pixels have increased SNR.

2) Fourier-Interpolation is achieved by Fourier-transforming the input image𝑀 = ℱ {𝑀},

padding 0’s around 𝑀 and back-transforming it 𝑀(pad) = ℱ {𝑀(pad)} in Fourier-space

(continuous case)

𝑀(pad)( ⃗𝜒′) = ℱ {ℱ {𝑀} ( ⃗𝜅) ⋅ rect ( ⃗𝜅 | supp (𝑀))} (A.75)

𝑀(pad)( ⃗𝜒′) = √2 | ⃗𝜅|
𝜋 (𝑀( ⃗𝜒) ⊗ sinc( ⃗𝜅 ⋅ ⃗𝜒)) (A.76)
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where the window-function rect added zeros to the support of 𝑀 according to:

rect ( ⃗𝜅 | supp (𝑀)) =
⎧{{
⎨{{⎩

1, ⃗𝜅 ∈ supp (𝑀) ≡ ⃗𝜅𝑀

0, 𝑒𝑙𝑠𝑒
(A.77)

The statistical properties of such a convolution operation (Equation A.76) can be written

in matrix notation, using 𝑅𝑙𝑚 as the resampling-kernel (here: sinc), as:

𝑀𝑙 = ∑
𝑚

𝑅𝑙𝑚𝑀𝑚

𝔼 {𝑀𝑙} = ∑
𝑚

𝑅𝑙𝑚𝜇𝑚 (A.78)

𝕍 {𝑀𝑙} = ∑
𝑚

𝑅2
𝑙𝑚𝜇𝑚 (A.79)

The convolution kernel is non-zero over the whole image and hence all pixels have a

(diminishing) correlation. The resulting covariance matrix is of size 𝑁(cov) = 𝑁 × 𝑁 with

𝑁 being the number of pixels of 𝑀. For big image stacks working with the full 𝑁(cov)

covariance-matrix is highly inefficient. According to Equation A.79 the variance then scales

with the square of the convolution kernel and thus, in case of a fast vanishing kernel, only

a small neighboring region (e. g. 1Airy Unit (AU) of the PSF could be 5 × 5 pixels and

hence COV is 25 × 25 pixels) is a reasonable approximation.

Assuming two ideal, noise-free imageswith only 1 bead per image (and zero everywhere

else) that are displaced by 1/4 pixel w. r. t. each-other, sub-pixel shifting needs to be applied

to perfectly match the two images. This can be achieved by Fourier-shifting with a sub-

pixel-phase, but if therefore a 4-fold interpolation is introduced according to EquationA.76,

the side-lobes of the sinc not only spread over the whole image, but introduce negative

values and hence change the assumed (underlying) statistic.

a.16 fourier-selective filtering

Under the assumption of band-limited information systematic errors, e. g. like pickup of

the field of the mains voltage due to poor shielding of the electronic components, could

manifest with a strong modulus at frequencies outside the OTF-support. Unwanted con-

tributions of this type are called pickup-noise. With Fourier-masking based methods like

lowpass-filtering and selective frequency-filtering this contributions can be suppressed.
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Figure A.7: Fourier-Filtering strategies: Single Frequency- and Band suppression. Continua-

tion of the simulation from Section A.14. a)-f) show the Real- and d)-l) the Fourier-

images. a)+g) overlay of noisy image and pickup-noise, b)+h) annealed out-of-band

pick-up, c)+i) annealed in-band pickup, d)+j) low-pass filtered until OTF-support

maximum, e)+k) high-pass filtered from OTF-support maximum, f)+l) low-pass

filtered and in-band pickup annealed. OTF-support is displayed with cyan, effective

(ideal) image-support with magenta and the pick-up noise positions are highlighted

with lime.

Continuing the simulation from Section A.14 pickup-noise inside and outside the OTF-

support has been added to the sample (see Figure A.7) and is marked with lime-green

circles while the OTF-support is marked with a cyan-circle. While local annealing (hor-

izontal pick-up in b)+h), vertical in c)+i) ), i. e. replacing the values at certain Fourier

frequencies with e. g. 0, can cure particular sinusoidal patterns in the image. Detecting

and isolating these peaks can be difficult and within the OTF-support of the image, i. e. in-

band annealing, can lead to loss of sample information. The combination of local- in-band

annealing and low-pass filtering (f) + l)) already provides a reasonable cleanup of the

image. e) displays the covariance introduced by this global (Fourier-based) processing.

Even though no sample-information is left in the resulting image (compare k)) the object

can still be recognized due to correlated noisy pixels, i. e. the covariance of two mutually

neighboring pixel is unequal to zero. If such a high-pass filtering happened prior to the

detection, e) would mostly consist of white uncorrelated noise. Due to this effect and the

additional possibility to recover out-of-band information pre-processing measures should

be used with care to not interfer with further processing steps [81].
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a.17 ml of scaled gaussian

The same analysis as for Poisson will be investigated for Gaussian distributed random-

variables (Equation 1.32). Two interesting cases can be analysed. 1) The gaussian distribu-

tion as limit to the spatially independent Poisson-distribution (multiplicative) 2) spatially

independend additive Gaussian noise.

In case of 1) 𝜎(G)
𝑙 = √𝜇𝑙 and thus it follows:

𝔏′𝑛 = 𝜕𝑆𝑛
𝔏 = −𝜕𝑆𝑛

ln⎛⎜
⎝

𝑁−1
∏
𝑙=0

1
√2𝜋𝜇𝑙

exp{−
1

2𝜇𝑙
(𝑘𝑙 − 𝜇𝑙)

2}⎞⎟
⎠

= −𝜕𝑆𝑛

𝑁−1
∑
𝑙=0

(−
ln (2𝜋𝜇𝑙)

2 −
1

2𝜇𝑙
(𝑘𝑙 − 𝜇𝑙)

2)

= −
𝑁−1
∑
𝑙=0

⎛⎜
⎝

−
2𝜋

4𝜋𝜇𝑙
𝜕𝑆𝑛

𝜇𝑙 −
2 (𝑘𝑙 − 𝜇𝑙) 𝜇𝑙 − (𝑘𝑙 − 𝜇𝑙)

2

2𝜇2
𝑙

𝜕𝑆𝑛
𝜇𝑙

⎞⎟
⎠

=
1
2

𝑁−1
∑
𝑙=0

⎛⎜
⎝

𝜇−1
𝑙 + 2 (

𝑘𝑙
𝜇𝑙

− 1) − (
𝑘𝑙
𝜇𝑙

− 1)
2
⎞⎟
⎠

𝜕𝑆𝑛
𝜇𝑙 , 𝜇𝑙 ≠ 0

=
1
2

𝑁−1
∑
𝑙=0

(𝜇−1
𝑙 + 2𝑏𝑙 − 𝑏2

𝑙 ) 𝐻 𝑛
𝑙 , 𝑏𝑙 ≡

𝑘𝑙
𝜇𝑙

− 1

= 𝐻𝑙𝑛𝑆′
𝑙 (A.80)

!= 0

with the partial derivative Equation 1.43 and 𝑆′
𝑙 = (𝜇−1

𝑙 + 2𝑏𝑙 − 𝑏2
𝑙 ). Equation A.80 could,

in continuous coordinates, also be written as a convolution such that:

𝔏′ ( ⃗𝑥) = [ℎ𝑇 ⊗ 𝑆′] ( ⃗𝑥) (A.81)

where the flip of the summation index of H in Equation A.80 corresponds coord-flipped

PSF ℎ𝑇 = ℎ (− ⃗𝑥).

a.18 1/otf deconvolution

As explained inSection A.11 the object information degrades through the imaging pro-

cess. According to the imaging model given in Equation 1.41, it is reasonable to think of

reconstruction by direct inversion of the forward model:

̃𝑆(1/otf)
𝑘𝑙

= ℎ̃−1
𝑎 𝑘𝑙

𝑀𝑎𝑘𝑙
= ̃𝑆 + ℎ̃−1

𝑎 𝑘𝑙
�̃�𝑎𝑘𝑙

(A.82)
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where ℎ̃−1 is the inverse OTF. This approach partially succeeds for noise-free images

(̃𝒩𝑎𝑘𝑙
= 0) in case of limiting processing to the OTF-support, i. e. only allowing 𝑘 ≤ 𝑘𝐶.

In the noisy case, however, row and column rank of the PSF matrix are equal to column

and row number and the actually degraded PSF kernel is filled with random, potentially

informationless values. This leads to a strong amplification at regions of weak transfer

strength of the OTF when multiplying the image with the inverse OTF. Due to these

two influences, a simple inversion of the imaging model fails and alternative strategies

become necessary. Another obvious approach is to reduce the gain of the high frequency

components of the OTF support by introducing a regularization parameter 𝜀 according to:

̃𝑆(1/otfr)
𝑘𝑙

=
⎧{{
⎨{{⎩

(ℎ̃𝑎 𝑘𝑙
+ 𝜀)

−1
𝑀𝑎𝑘𝑙

≈ ̃𝑆𝐶 + (ℎ̃𝑎 𝑘𝑙
+ 𝜀)

−1
�̃�𝑎𝑘𝑙

, ∣ℎ̃∣ > 𝜀

0, ∣ℎ̃∣ ≤ 𝜀
(A.83)

where the latter approximation is true for a thresholded support of size 𝐶 of 𝑆 where

𝜀/ℎ̃𝑎 𝑘𝑙
≪ 1. 𝜀 regularizes the problem by reducing the effective size of the OTF support,

i. e. 𝑘(C,1/OTF) ≤ 𝑘(C) as the OTF is set to 0 for modulo-values smaller than 𝜀, and thus the

actual effect of deconvolution.

a.19 wiener deconvolution

Assuming an information-limitedmeasurement process, it can be conjectured that the best

possible estimator ̂𝑆𝑙 of each individual measured image pixel 𝑙 is Gaussian distributed 𝒢𝑙

around the original object distribution 𝑆𝑙 and with Equation 1.32 here can be written as:

𝒢𝑙 = 𝐴 𝑒
−

∣�̂�𝑙−𝑆𝑙∣
2

2𝜎2
𝑙 (A.84)

where 𝔼 {𝐺𝑙} = 𝑆𝑙 and 𝕍 {𝐺𝑙} = 𝜎2
𝑙 are mean and variance of the Gaussian. The log-

likelihood problem for an N-fold measurement process can then be written as:

lnℒ = ln
𝑁

∏
𝑙

𝒢𝑙 =
𝑁

∑
𝑙

ln(𝒢𝑙) = −
𝑁

∑
𝑙

∣ ̂𝑆𝑙 − 𝑆𝑙∣
2

2𝜎2
𝑙

(A.85)

Introducing a normalized log-likelihood function 𝐿 = − lnℒ/2𝜎2
𝑋 and interpreting the

sum over all possible evaluations as the expected value 𝔼, we obtain:

𝐿 = 𝔼 {∣ ̂𝑆𝑙 − 𝑆𝑙∣
2
} = 𝔼 {∣ ̂̃𝑆𝑘𝑙

− ̃𝑆𝑘𝑙
∣
2
} ≡ �̃� (A.86)
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where for the second step Parseval-Plancherel’s identity [82] was used. A filtering function

𝑊 is to be found which reconstructs the object distribution as best as possible using the

measured image according to:

̂̃𝑆 = 𝑊𝑀 = 𝑊 [ℎ̃ ̃𝑆 + �̃�] (A.87)

where here and in the following all indices 𝑘𝑙 have been omitted for easier readability. For

Equation A.86 thus results:

�̃� = 𝔼 {∣[𝑊ℎ̃ − 1] ̃𝑆 + 𝑊 �̃�∣
2
} (A.88)

�̃� = ∣ ̃𝑆∣2 [𝑊ℎ̃ − 1] [𝑊ℎ̃ − 1]
∗

+ ∣̃𝒩∣
2

𝑊𝑊∗ − 2ℜ𝔢 {𝔼 {[𝑊ℎ̃ − 1] ̃𝑆𝑊∗ �̃�∗}}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0

(A.89)

The last summand of Equation A.89 represents the expected value of the product of the

uncorrelated random variables ̃𝑆 and �̃� which equals 0. Applying the expected value to

the remaining summands and taking 𝜕𝑊∗/𝜕𝑊 = 0 of complex derivatives into account,

the filter-function 𝑊 can be determined from �̃� via extrema search, i. e. derivation of �̃�

w. r. t. to 𝑊 and solving for 𝑊:

0 !=
𝜕�̃�
𝜕𝑊

= ∣ ̃𝑆∣2 [𝑊∗ ∣ℎ̃∣
2

− 1] + 𝑊 𝔼 {∣̃𝒩∣
2
}

𝑊∗ =
ℎ̃∗ ∣ ̃𝑆∣2

∣ ̃𝑆∣2 ∣ℎ̃∣
2

+ 𝔼 {∣̃𝒩∣
2
}

(A.90)

The found filter function 𝑊 Equation A.90 can be further reduced and finally leads to the

Wiener Filter Equation 1.47.

a.20 weighted averaging in fourier space

In the following 𝑘𝑙 will be omitted for the ease of readability. To determine the real-valued

SNR (Equation 1.33), the expected value (??) and variance (Equation 1.5) of Equation 1.48

are first determined:

𝔼 {𝑀(wa)} = ∑
𝑎

𝜔𝑎𝔼 {𝑀𝑎} = ∑
𝑎

𝜔𝑎ℎ̃𝑎 ̃𝑆 (A.91)

𝕍 {𝑀(wa)} = ∑
𝑎

𝜔𝑎𝜔∗
𝑎𝕍 {�̃�𝑎} + ∑

𝑎
∑
𝑏≠𝑎

𝜔𝑎𝜔∗
𝑏Ξ̃𝑎𝑏 (A.92)
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with covariance (Equation 1.7) Ξ𝑎𝑏 ≡ 𝕎 {𝑀𝑎, 𝑀𝑏}. Given that 𝕍 {𝑀𝑎} = �̃�2
𝑎 the SNR can

be calculated according to:

𝑆𝑁𝑅 =
∣𝔼 {𝑀(wa)}∣

√𝕍 {𝑀(wa)}
= ∑

𝑎

𝜔𝑎ℎ̃𝑎 ̃𝑆

√∑𝑎 𝜔𝑎𝜔∗
𝑎 �̃�2

𝑎 + ∑𝑎 ∑𝑏≠𝑎 𝜔𝑎𝜔∗
𝑏Ξ̃𝑎𝑏

(A.93)

The maximum of this measure can be determined by extrema search for the weights 𝜔𝑐.

0 !=
𝜕𝑆𝑁𝑅
𝜕𝜔𝑐

= ℎ̃𝑐 ̃𝑆𝕍 {𝑀(wa)} − ∑
𝑎

𝜔𝑎ℎ̃𝑎 ̃𝑆 ⎡⎢
⎣
𝜔𝑐�̃�2

𝑐 + ∑
𝑏≠𝑐

𝜔𝑏Ξ𝑐𝑏
⎤⎥
⎦

(A.94)

Where symmetry of the covariance was used and the assumption that 𝜔𝑐 is hermitian
was made thereby omitting the factor 1/2 in the negative summand. After inserting
Equation A.92 and sorting we obtain:

ℎ̃𝑐
⎡⎢
⎣
∑

𝑎
∣𝜔𝑎∣2 �̃�2

𝑎 + ∑
𝑎

∑
𝑏≠𝑎

𝜔𝑎𝜔𝑏Ξ̃𝑎𝑏
⎤⎥
⎦

= ⎡⎢
⎣
𝜔𝑐�̃�2

𝑐 + ∑
𝑏≠𝑐

𝜔𝑏Ξ𝑐𝑏
⎤⎥
⎦

∑
𝑎

𝜔𝑎ℎ̃𝑎 (A.95)

For the two sides of Equation A.95 to be equal their prefactors (𝑐-terms) and their sums

(𝑎-terms) must be the same, so e. g. if:

ℎ̃𝑐 ∑
𝑎

∣𝜔𝑎∣2 �̃�2
𝑎 = 𝜔𝑐�̃�2

𝑐 ∑
𝑎

𝜔𝑎ℎ̃𝑎 (A.96)

ℎ̃𝑐 ∑
𝑎

∑
𝑏≠𝑎

𝜔𝑎𝜔𝑏Ξ̃𝑎𝑏 = ⎡⎢
⎣
∑
𝑏≠𝑐

𝜔𝑏Ξ𝑐𝑏
⎤⎥
⎦

∑
𝑎

𝜔𝑎ℎ̃𝑎 (A.97)

Assuming that the different views 𝑎 are independed all Ξ𝑐𝑏 = 0 vanish and hence from

Equation A.96 directly the weights Equation 1.49 follow.



134 appendix: general introduction

a.21 ml of poisson and the richardson-lucy deconvolution

In case of indepedent Poisson-distributed random-measurements 𝑃𝐾𝑙
(𝐾𝑙 = 𝑘𝑙 ∣ 𝜇𝑙) (Equa-

tion A.65) it follows for the derivative 𝜕𝑆𝑛
of 𝔏 w. r. t. the parameters 𝑆𝑛:

𝜕𝑆𝑛
𝔏 = −𝜕𝑆𝑛

ln ⎡⎢
⎣

𝑁−1
∏
𝑙=0

𝑃𝐾𝑙
(𝐾𝑙 = 𝑘𝑙 ∣ 𝜇𝑙)⎤⎥

⎦

= −𝜕𝑆𝑛

𝑁−1
∑
𝑙=0

ln
⎧{
⎨{⎩

𝜇𝑘𝑙
𝑙

𝑘𝑙!
𝑒−𝜇𝑙

⎫}
⎬}⎭

= −𝜕𝑆𝑛

𝑁−1
∑
𝑙=0

[𝑘𝑙 ln {𝜇𝑙} − ln {𝑘𝑙!} − 𝜇𝑙 ln {exp}]

= −
𝑁−1
∑
𝑙=0

[
𝑘𝑙
𝜇𝑙

𝜕𝑆𝑛
𝜇𝑙 − 0 − 𝜕𝑆𝑛

𝜇𝑙]

= ∑
𝑙

𝐻𝑙𝑛 [𝟙𝑙 −
𝑘𝑙
𝜇𝑙

] = ∑
𝑙

𝐻𝑙𝑛 [𝟙𝑙 −
𝑘𝑙

∑𝑚 𝐻𝑙𝑚𝑆𝑚
] (A.98)

!= 𝟘𝑛

with the partial derivative according to Equation 1.43, the (diagonal) unit-matrix 𝟙 ∈

ℕ𝑁𝑙/2×𝑁𝑙/2, i. e. the diagonal is filled with ones, and 𝟘 a diagonal-matrix of the same shape

as 𝟙, but filled with zeros. Equation A.98 is again a convolution, but this time by using a

summation about the first index which corresponds to convolution with a flipped PSF

ℎ(− ⃗𝑥) in continuous notation. Even if ℎ (or its matrix representation H) is known an

analytic solution for the optimal ̂𝑆 is difficult to find. Hence iterative algorithms can be

used to find an approximate solution. In case 𝔏 is a convex function a global minimum

exists and it can be found by using duality formulations of 𝔏 to convert it to another

problem-type solveable by highly efficient linear or quadratic problem solvers. Proving

whether the problem is convex tends to be rather difficult [83]. It is beyond the scope

of this thesis to dwell further on convexity and existance of solutions to a given inverse

problem in optics and thus the reader is referred to e. g. [62].

Two standard iterative schemes are Gradient Descent (GD) and Fixpoint Iteration (FI).

For each iterative step 𝑟 + 1, the unknown parameter 𝑆(r+1) is estimated from the previous

step with an update formula. For GD the idea is to start with a random or mean (of the

input data) initialization of the parameter 𝑆(0) and iteratively update the guess 𝑆(r) by
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using the the gradient thereby converging towards the desired optimal solution . The

update scheme:

𝑆(r+1) = 𝑆(r) − ℎ𝜕𝑆𝑛
𝔏(r) (A.99)

𝑆(r+1) ⟶
𝑙→∞

̂𝑆 if 𝜕𝑆𝑛
𝔏(r) ⟶

𝑙→∞
0 (A.100)

tends towards the optimal estimator ̂𝑆 in case that the gradient 𝜕(𝑆𝑙)𝔏 (approximately)

vanishes. By choosing the stepsize ℎ a tradeoff between speed and convergence is achieved.

While a bigger ℎ allows for bigger steps along the derivative direction 𝜕𝑆𝑛
𝔏𝑟 it could

overshoot around the optimum, but given the step-size never reach it and thus reducing

the degree of convergence. It can be exchanged by inserting a line-search per step and

hence have a variable step-size.

Now, taking Bayes theorem Equation 1.54 and reinterpreting 𝑃( ⃗𝑘 | �⃗�) = ℎ( ⃗−𝑥) ⊗ 𝑀 as

imaging-probability distribution as well as the original sample distribution as 𝑃(�⃗�) = 𝑆(r)

it follows:

𝑆(r+1)
𝑛 =

(∑𝑙 𝐻𝑙𝑛𝑘𝑙) 𝑆(r)
𝑛

∑𝑚 𝐻𝑛𝑚 𝑆(r)
𝑚

(A.101)

with 𝑃( ⃗𝑘) = ∑�⃗� 𝑃( ⃗𝑘 | �⃗�)𝑃(�⃗�), see [84]. The update scheme converges to the solution in

case of

𝑆(r+1)

𝑆(r) ⟶
𝑙→∞

1 (A.102)

and is called Richardson-Lucy Deconvolution (RL) [85]. It was shown that the scheme

converges towards the ML-optimal estimator, if existent [86].





B
APPENDIX : METR ICS FOR SOFTWARE AUTOFOCUS

b.1 metrics for software autofocus

The selection of image sharpness measures as well as a short interpretation of their

meaning is given for Section 2.2. The sharpness metrics Ψ used for the comparison are a

selection from the analyses in the supplement of [87], from where the categorization was

also adopted. Additional categories such as „histogram“-based or „intuitive thresholds“as

in [49] were not added.

The image stacks used in the main section are mostly 4D or 5D datasets, e. g. 𝑑𝑖𝑚 (𝑀) =

[𝑋, 𝑌, 𝑍, 𝒫𝑝𝑜𝑖𝑠, 𝒜𝑠𝑝ℎ𝑒𝑟], however, the metrics ∀𝑛, 𝑜, 𝑝 of the dataset 𝑀𝑙𝑘𝑚𝑛 are applied, al-

lowing the simplified description 𝑀𝑙,𝑚 = 𝑀𝑙𝑚 to be used to calculate the metrics. The

comma is introduced to conveniently represent any shifts, e. g. along the 𝑥 direction by

1 pixel via 𝑙 + 1, where 𝑁𝑀 represents the number of pixels in each 2D slice 𝑀𝑙𝑚. By

normalizing to the pixel number of each individual image 𝑀𝑙,𝑚, the calculation is image

size independent.

b.1.1 Differential Measures

Differential measures are the computationally simplest measures in this comprehension as

only summations and simple image shifts are involved. They are derivative-based, where

the derivatives are represented by simple addressing shifts (e. g. 𝑀𝑙+1,𝑚) using difference

quotient. Thus, Equation B.1 represents the central difference quotient representation of

the first derivative along the X-direction, where mostly Δ𝑥 = 0.5 is set.

𝜕𝑥𝑀 ≈
𝑀𝑙+1,𝑚 − 𝑀𝑙−1,𝑚

2Δ𝑥 (B.1)

By using the first or second derivatives (along arbitrary spatial directions) of the image,

especially edges can be emphasized. The basic idea of differential filters is that in-focus

elements have especiallymany high frequencies and thus sharp edges compared to defocus

elements.

137
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Brenner Stresses the edge-enhancing property of the first derivative by squaring it [88].

Although this implementation of the measure only uses the first (central) derivative along

1 direction it can work quite reliably if samples can be assumed to display features in

equal amounts and sizes towards all (lateral) directions.

𝐵𝑅𝐸(𝑀) =
1

𝑁𝑀
∑
𝑙𝑚

{𝑀𝑙,𝑚−1 − 𝑀𝑙,𝑚+1}2 (B.2)

Tenengrad Originally „Tenenbaum gradient“ [89] it is the sum of a convolution of the

image with two different kernels, namely the horizontal Sobel 𝑆𝐵𝐻 and the vertical Sobel

kernel 𝑆𝐵𝑉 [90], which allow to calculate a more stable isotropic gradient efficiently.

𝑇𝐸𝑁(𝑀) =
1

𝑁𝑀
∑
𝑙𝑚

(𝑆𝐵𝐻𝑙𝑚(𝑀) + 𝑆𝐵𝐻𝑙𝑚(𝑀)) (B.3)

𝑆𝐵𝐻𝑙𝑚(𝑀) = 𝑀𝑙+1,𝑚−1 + 2𝑀𝑙+1,𝑚 + 𝑀𝑙+1,𝑚+1

− 𝑀𝑙−1,𝑚−1 − 2𝑀𝑙−1,𝑚 − 𝑀𝑙−1,𝑚+1

𝑆𝐵𝑉𝑙𝑚(𝑀) = 𝑀𝑙−1,𝑚+1 + 2𝑀𝑙,𝑚+1 + 𝑀𝑙+1,𝑚+1

− 𝑀𝑙−1,𝑚−1 − 2𝑀𝑙,𝑚−1 − 𝑀𝑙+1,𝑚−1

Total Variation Typically Total Variation is used to e. g. calculate a linear measure for

the distance between a measurement and a model. The same idea can be reinterpreted as

a measure for sharpness along the individual X- and Y-direction [36]. The filter is non-

differentiable, but pseudo isotropic as diagonals are not explicitely taken into account.

𝑇𝑂𝑉(𝑀) =
1

𝑁𝑀
∑
𝑙𝑚

√(𝑀𝑙+1,𝑚 − 𝑀𝑙−1,𝑚)2 + (𝑀𝑙,𝑚+1 − 𝑀𝑙,𝑚−1)2 (B.4)

b.1.2 Correlative Measures

Correlative measures are based on self-similarity assumptions within an image. While

typically a correlation can be expressed as a product using Fourier-Transformations Equa-

tion B.5 correlative measures are trying to identify

𝑀 ⋆ 𝑀′ = ℱ−1 {ℱ (𝑀) ⋅ ℱ (𝑀′)∗ (−𝑘)} (B.5)

The Vollath metrics used here are based on the approach that neighboring pixels differ

only by their relative amplitude and the local, (potentially) uncorrelated noise. Vollath

has presented 2 combination metrics, F4 and F5, which are independent of the (additive)

noise terms as well as the image mean [91].



B.1 metrics for software autofocus 139

Symmetric Vollath F4 The differences between neighboring pixel values are weighted

by the local amplitude, causing the filter to reach higher values as the edge sharpness

or number of edges increases. Pixel values around the mean, on the other hand, hardly

contribute to the filter value. Even though lower frequencies are weighted less than higher

spatial frequencies the highest frequencies of the image-frequency-support are damped

as well.

𝑉𝑂4(𝑀) =
1

𝑁𝑀
(𝑉4𝐴(𝑀; 1, 0) + 𝑉4𝐴(𝑀; −1, 0) …

+ 𝑉4𝐴(𝑀; 0, 1) + 𝑉4𝐴(𝑀; 0, −1)) (B.6)

𝑉4𝐴(𝑀; Δ𝑙, Δ𝑚) =
∣∣∣∣
∑
𝑙𝑚

𝑀𝑙,𝑚 (𝑀𝑙+Δ𝑙,𝑚+Δ𝑚 − 𝑀𝑙+2Δ𝑙,𝑚+2Δ𝑚)
∣∣∣∣

Vollath F5 This metric increases less and less as the image becomes sharper and the

relative weighting of the Fourier components actually decreases steadily, making this

metric more suitable for flat or smooth edges.

𝑉𝑂5(𝑀) =
1

𝑁𝑀
⎛⎜
⎝

∑
𝑙𝑚

𝑀𝑙,𝑚𝑀𝑙+1,𝑚 − 𝔼 {𝑀}⎞⎟
⎠

(B.7)

b.1.3 Statistical Measures

Statistical measures operate on statistical properties of the underlying image. Histogram

properties like maximum, minimum or median are typical as well as statistical moments

like mean, variance or kurtosis. Maximum Assuming that the sharpest edges and thus

the largest localization of brightness are present at the focus, the maximum provides

a measure to detect this point. It is obviously susceptible to offset (e. g. due to local

fluctuating illuminances) as well as noise (e. g. pick-up, hot-pixels or cosmic noise).

𝑀𝐴𝑋(𝑀) = 𝑚𝑎𝑥(𝑀𝑙𝑚) (B.8)

Variance Although the normalized variance 𝑁𝑉𝐴 = 𝕍{⋅}
𝔼{⋅}2 is more independent of image

size and image detail (e. g. at varying magnification) [92] stable results can already be

achieved with the direct variance. For an image stastically normalized to 𝔼 {𝑀} = 0, the

variance reduces to the total mean of the pixel squares of the image and thus the mean

square deviation of the image from 0.

𝑉𝐴𝑅(𝑀) =
1

𝑁𝑀
∑
𝑙𝑚

∣𝑀𝑙𝑚 − 𝔼 {𝑀}∣2 (B.9)
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b.1.4 Spectral Measures

Spectral Measures operate on representations of the input data in alternative bases or

spaces. As basic basis decompositions, instead of the Fourier transform ℱ {⋅} used so far,

the discrete cosine transformation (DCT) ℱ𝒞 {⋅} is used here, where the DCT is defined

according to Equation B.10.

𝑀𝑙 =
𝑀𝑁−1
∑
𝑚=0

cos((𝑛 +
1
2)

𝜋𝑘
𝑁 ) (B.10)

Kristan’s Entropy Combines a sum-normalized-to-1 DCT of the input image with Bayes

entropy function 𝐻2 = 2 (1 − ∑𝑙 𝑝2
𝑙 ), with 𝐻 being the resulting entropy measure and 𝑝𝑙

the probabilities of the according pixel-values. It assumes that an image when increasing

focus tends from having low-frequencies only towards a uniform amplitude distribution

across the DCT-space. While any entropy function would suffice, the choice of Bayes

entropy suppresses the influence of uniformly distributed (e. g. Poisson) noise in lower

DCT-frequencies. The measure is inherently independent to brightness variations between

images and higher frequencies outside the assumed or calculated image-support are

left-out. The described procedure is applied for every tile of the non-overlapping tiles

𝑀(tiled) of each picture. Fast implementations of DCT are used eg for JPEG compression

in consumer digital cameras, where the tiling is typically chosen to be quadratic and of

size 𝑁tile
𝑀 = 24 = 16 which results into limiting the DCT-support to a radius of 𝑟0 = 6 as

chosen originally [93]. Still, within this research better results where achieve with only

changing the tile-size slightly to 𝑁tile
𝑀 = 23 = 8 and choosing 𝑟0 = 2. Finally, the mean of

the tiles yields the resulting measure .

𝐾𝐸𝑁(𝑀) = −𝔼
⎧{{
⎨{{⎩

1 −
∑𝑙+𝑚<𝑟0

ℱ𝒞 {𝑀(tiled)}
2

𝑙𝑚

(∑𝑙+𝑚<𝑟0
ℱ𝒞 {𝑀(tiled)}

𝑙𝑚
)

⎫}}
⎬}}⎭

(B.11)

Shannon Entropy Based on Kristan’s approach, this measure is a normalized DCT-based

version of Shannon Entropy, which is a measure of the energy of a distribution. The

calculation can be understood as the product of significance (prefactor) and uncertainty

(log term), where the logarithm is secured to the range (0, ∞) [87].

𝑆𝐸𝑁(𝑀) = −
2
𝑟2
0

∑
𝑙+𝑚<𝑟0

∣𝐸𝑁𝑇(𝑀)𝑙,𝑚∣ 𝑎𝑏𝑠𝑙𝑜𝑔2 [𝐸𝑁𝑇(𝑀)𝑙,𝑚] (B.12)

𝐸𝑁𝑇(𝑀)𝑙,𝑚 =
ℱ𝒞 {𝑀}𝑙,𝑚

𝐿2 (ℱ𝒞 {𝑀}𝑙,𝑚)
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TOV 1.00 1.00 1.00 0.97 1.00

MAX 1.00 1.00 1.00 0.96 1.00

VAR 1.00 1.00 1.00 0.98 1.00

VS4 1.00 1.00 1.00 0.98 1.00

VO5 1.00 1.00 1.00 0.98 1.00

KEN 1.00 1.00 1.00 0.98 1.00

SEN 1.00 1.00 1.00 0.97 1.00

Figure B.1: 2D Noise testing of the sharpness metrics using spokes2d thin object (Figure 2.1

0𝑎) − 𝑑)). a) Surface plot display of resulting (non-filtered) sharpness values per

metric for different Photon-counts 𝑁(Phot) and Z-positions, thresholded with

𝑢 = 0.07. b) Scoring Results 𝑄 for each metric Ψ with exemplary score-calculation

display at position 𝑏 = 0.3 (black dotted line) and hence 𝑁(Phot) ≈ 11.

b.2 further metric performance evaluation

In this section first the behavior w. r. t. noise, spherical aberrations and astigmatism will

be analyzed individually.

Using the spokes2d target as an example, the metrics are first tested with respect to

noise level stability. The (pixel-wise) expected value 𝜆 desired for the application of

Poisson noise was calculated by normalizing the simulated 3D stack to its 3D maximum

and subsequent multiplication with the photon level. Photon levels were calculated via

𝑁(Phot) = 1.5𝑏 with 𝑏 ∈ [0, 20) and thus 𝑁(Phot) ∈ [1, 2217). The metric results are shown

in Figure B.1I as a 3D-surface plot. The scoring is listed using the example of noise level
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𝑏 = 3 (𝑁(Phot) ≈ 3) in Figure B.1III. The calculated scores for all noise levels and metrics

are shown in Figure B.1𝑏). Despite extremely low photon counts 𝑁(Phot), most metrics

already reach a score 𝑄 ≥ 0.6, whereas Ψ(KEN) and Ψ(VAR) can already predict the exact

maxima position almost reliably with a score of 𝑄 ≈ 1. While Ψ(VO5) (by definition) and

Ψ(KEN) (by appropriate choice of filter mask size 𝑟0 = 2) can maintain good contrast

between maximum and background even in the low photon range, the contrast of the

other metrics improves proportionally with increasing 𝑁(Phot). The maximum metric can

generally be identified as hardly suitable, since it does not determine a clear maximum

in the case of low 𝑁(Phot), the contrast remains low even for high 𝑁(Phot) and the scoring

converges slower than the other metrics towards 𝑄 ≈ 1.

The spherically aberrated PSFs required for the simulation are shown in Figure B.2. Due

to an increasing level of aberration the PSF quality degrades strongly thereby giving the

impression that instead of one central focus position the position of highest brightness and

local sharpness splits into two (or more) slices above and below the nominal focus. The

application of a sharpness metric Ψ will lead to a 1D Z-curve with two (or more) maxima.

The evaluation measures ̄𝑞(i) then will result in a very low score 𝑄 as they base their

calculations on one central maximum and not axially shifted multiple maxima. Hence

even though the sample might still be in perfect focus (even though the system PSF is

severely aberrated) the scoring algorithm might state that its not. This could happen

to a sample that is a set of axially (𝑑 ≥ 𝑑(1AU,ax)) spaced thin objects as well. Here the

scoring algorithm would be used to assure that the measured individual slices stay at

their respective focus position.

To take these effects into account the algorithm is extented to the application with

multiple maxima. To keep this as reproducible as possible, the focus positions were calcu-

lated directly by applying the Ψ(VO5) sharpness filter onto the generated PSFs, subsequent

𝐹(SGF) filtering, and determination of the maxima positions and thresholding (𝑢 = 0.07).

The resulting list of focal slices is then manually compared to the optical impression and

inserted as a lean dashed line in Figure B.2 and used for further scoring calculations.

Assuming a thin sample axially centered in the measured 3D-stack, the presented scoring

algorithm together with the just this determination of focal positions is usable. For non-

axially centered as well as extended samples, an offset in the calculation of the forward

model and thus a changed focus position can occur. However, an error arising here can be

limited by the final manual focus position check. It can be seen that the focus position for
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Figure B.2: Aberrated PSFs for different levels of spherical aberration severeness 𝑐(spher) ∈

[0.0, 1.0] with step-size of Δ𝑐(spher) = 0.05 and direction of increase is sorted alphabet-

ically 𝑎) → 𝑢). The simulated PSF is normalized to fulfill ∑ ℎ = 1 and for displaying

purpose only a X-Z-cut at 𝑦 = 𝑁𝑦/2, with 𝜎 = 0.2 and hence ℎ → ℎ0.2 for visibility of

side-orders, is given. Magenta dashed lines mark the focus position.

an increasing measure of spherical aberrations initially remains unchanged at the same

Z-position (𝑓𝑧 = 𝑁𝑧/2 = 32), moves to 𝑓𝑧 = 33 from 𝑧 = 12, and then splits into 2 positions

of best focus, which finally lie around positions 𝑓𝑧1
= 28 and 𝑓𝑧2

= 35. Even if the definition

of a clear focus position is difficult in case of such strong aberrations, the determined split

of the focus positions agrees with the theoretically expected division of the caustics, i. e. a

distant focus for small angles (=E-field close to the optical axis) and a near focus for big

angles (=E-field far from the optical axis) w. r. t. the objective lens arises ( [94], p.21ff).

As shown in Figure B.3II, the performance of most of the metrics is uniformly high

in this noise-free aberrated case and starts to drop uniformly from 𝑐(spher) = 0.6. Ψ(MAX)

at 𝑐(spher) = 0.35, Ψ(KEN) at 𝑐(spher) = 0.4 as well as Ψ(SEN) at 𝑐(spher) = 0.45 drop off

earlier. This is due to the choice of the weighting of the score parameters Equation 2.7, the

limited pixel accuracy of the calculation as well as filter-inherent differences regarding

the sharpness of the expression of a maximum. The threshold-factor here was chosen

to be 𝑢 = 0.14 because otherwise the maximum-search routine would have found too
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Figure B.3: Spherical Aberration testing of the sharpness metrics using spokes2d thin object

(Figure 2.1 0𝑎) − 𝑑)) for different degrees of severity 𝑐(spher) ∈ [0.0, 1.0] with steps of

Δ𝑐(spher) = 0.05 and Z-positions, thresholded with 𝑢 = 0.14. a) Surface plot of

resulting (non-filtered) sharpness values per metric. b) Scoring Results 𝑄 for each

metric Ψ with c) exemplary score-calculation display at position 𝑐(spher) = 0.85

(black dotted line).

many irrelevant side maxima e. g. in the case of Ψ(KEN) and thus biased the evaluation1.

Around 𝑐(spher) ≈ 0.5 the aberration level starts to induce a (sub-pixel) shift to the nominal

focus-position which might already be detected by Ψ(KEN) and Ψ(SEN), but not yet by

the Ψ(VO5) (used for reference focus-position estimation) or manually, thus inducing

decreasing levels of precision as compared to the other metrics. This can be understood

1 While it is tempting to only use the biggest maximum it is not a reasonable option here as the behavior of

the different sharpness metrics w. r. t. to noise and aberration shall be studied and therefore eventual side-

maxima of the sharpness Z-curve are relevant. Further, the algorithm shall be ready to use for multi-focus

applications.
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Figure B.4: Astigmatic Aberration testing of the sharpness metrics using spokes2d thin object

(Figure 2.1 0𝑎) − 𝑑)) for different degrees of severity 𝑐(astig) ∈ [0.0, 2.0] with steps of

Δ𝑐(astig) = 0.1 and Z-positions, thresholded with 𝑢 = 0.14. a) Surface plot of resulting

(non-filtered) sharpness values per metric. b) Scoring Results 𝑄 for each metric Ψ

with exemplary score-calculation display at position 𝑐(astig) = 1.6 (black dotted line).

as false positive result as these metrics seem to perform better than the reference data-set,

but the calculated score is lower. The focal positions than finally split into two peaks with

increasing contrast w. r. t. to surrounding Z-slices and finally manifest at position and

contrast that seem to yield the same detectability for most (5 out of 9) of the metrics.

In case of astigmatism Figure B.4 nearly all metrics perform equally well and mostly

range around the maximum score. A deviation from maximum scoring can be observed

for all metrics at 𝑐(astig) ≥ 1, where awave-front deformation of bigger than 1𝜆 (𝑐(astig) ≥ 1)

induces a shift and split of the focal-plane that can be detected reliably from 𝑐(astig) = 1.3
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Figure B.5: 3D Noise testing of the sharpness metrics using Obj3d sparse thick object (Figure 2.1

3𝑎) − 𝑑)). a) Surface plot display of resulting (non-filtered) sharpness values per

metric for different Photon-counts 𝑁𝑃ℎ𝑜𝑡 and Z-positions, thresholded with 𝑢 = 0.07.

b) Scoring Results 𝑄 for each metric Ψ with exemplary score-calculation display at

position 𝑏 = 0.3 (black dotted line) and hence 𝑁𝑝ℎ𝑜𝑡 ≈ 11.

on. The limitations in pixel-accuracy and sensitivity to this split and shift lead to the slight

performance variation of the individual metrics. As usual Ψ(MAX) is rather unreliable and

Ψ(VS4) is strongly influenced due to side-maxima.

b.3 score evaluation of a 3d sample

All simulations performed in Section 2.3 evaluated the usability of the scoring algorithm

to hold the focus position in the case of a thin sample in different noise and aberration

scenarios. Now, testing the metrics and scoring on a sparse but thick in-silico sample

obj3d (Figure 2.1 3𝑎) − 𝑑)), follows and is displayed in Figure B.5. Here, not 1 but many

slices are intendend to be in-focus at the same time. Therefore, the procedure here is now
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different: In the case of a thick 3D sample, the metrics are used to determine a Z-curve

characteristic of the sample distribution. The sample obj3d used for the simulation has the

most features in the central Z-slice, which results in the largest score 𝑄 when applying the

sharpness metrics. Starting from the central Z-slice, the amount of pixels that are part of

an edge, decreases. The sample intersects a fluorescent rod at 𝑧 = 𝑧(F). However, since this

rod has very little features its effect on the result of the sharpness metrics is rather small.

Therefore, the presented scoring algorithm can be directly applied to this thick sample as

well, since there is a central maximum and none, or only one side maximum (due to the

fluorescent rod) is expected. For the calculation of 𝑄, the plane 𝑧 = 𝑧(0) was allowed as

the only focus and no side maxima/foci.

Ψ(VAR) and Ψ(VO5) achieve a reliable scoring of 𝑄 ≥ 0.8 for 𝑙𝑜𝑔10(𝑁𝑃ℎ𝑜𝑡) ≥ 0.7. For higher

photon-counts Ψ(TEN) (𝑙𝑜𝑔10(𝑁𝑃ℎ𝑜𝑡) > 1.9) and Ψ(KEN) (𝑙𝑜𝑔10(𝑁𝑃ℎ𝑜𝑡) > 1.5) perform

reliable (𝑄 ≈ 0.8), while most of the others need rather high photon levels to achieve the

same scoring.
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c.1 haf and saf comparison

A brief summary of the findings of Bian et al. [49] follows.

In the field of Hardware Autofocus (HAF), confocal pinhole detection and triangulation

with line-detector seem to have gained acceptance in principle. In the case of confocal

pinhole detection, the reflection signal is focused on a pinhole via a beam splitter with an

extra lens and then integrated with a photo detector (e. g. PMT, Avalanche Photo Diode

(APD)). The reflection at different boundary layers, e. g. the air-glass transition in case of

air lenses, is used as reference and a whole Z-stack has to be recorded to obtain a reliable

statement about the type and position of the reflection. In the triangulation method, an

additional illumination and detection unit is attached to the microscope. Here, only half

the BFP of the objective is illuminated, such that the interfacial back-reflection (e. g. at

the front of the cover-slip) has a lateral offset to the illumination. The detection path is

adjusted such that the back-reflection is centered on a quadrant photo-diode and the

difference signal resulting from the measured photovoltages disappears. If there is an

axial offset of the sample, there is a lateral offset in the diode array plane and the difference

signal is different from 0. A further development of this approach includes an additional

lens group for analog correction of the optical offset (=desired focus position) set by the

user to the reference focus position as well as a CCD line sensor with which the lateral

profile can be recorded per axial position. In case of a defocus, the PSF maximum shifts

towards the defocus direction. The upgraded (i. e. line-sensor and lens-group added)

method is more expensive and more complex to integrate than the diode-array based

method, but allows to adjust for arbitrary focus position offsets prior to the measurement.

Thus, HAF methods are not automatically compatible with arbitrary sample chambers

and measurement methods, but can mostly be adapted to them. However, due to their

sample independence they have the potential to be more stable than Software Autofocus

(SAF) methods. Since HAF e. g. only requires the detection (and degree) of a change in

149
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the position of the center-of-mass of an intensity distribution on the additional detector(-

array), very fast switching times with very low data streams can be achieved here, and

thus even an implementation despite severely limited computing power.

While HAF requires modifications of the existing experimental setup, a SAF can be

implemented directly into any automated measurement system with computer-based

control on the software side. SAF methods operate directly on the measured image data

and are thus highly dependent on the sample, recording quality, and noise. In addition,

inherently much more data must be recorded and processed, making the application of

complex algorithms or methods with large data stacks on limited hardware even partially

unusable. SAF approaches can be divided into classical (=focus map) and real-time

methods. Classical methods do not require any changes to the optical setup and can

therefore be used directly for any optical system. Real-time methods are based on the

metrics and algorithms of the classical methods and can be seen as hardware optimizations

for live applications of these. Five different methods Methods presented in [49] use: 1)

a second sensor to parallelize the sharpness metric evaluation for image acquisition, 2)

a beam-splitter array in the finite beam-path to evaluate different Z-regions in parallel,

3) a tilted sensor in the infinite beam-path to image different Z-regions in parallel on

one sensor, 4) phase detection which cuts out two opposing regions of the focussing

sensor lens’ BFP and estimates axial shift from the offset of the focused images of the

filtered regions and 5) illumination from different opposite spatial points and angles

using e. g. dual-led such that axial defocus leads to lateral defocus and thus double images.

Furthermore, deep-learning based approaches exist, which either determine the distance

to the optimal focus position from a defocus-stack or calculate an optimal (virtual) focus

image.

c.2 algorithms in pseudocode

For the algorithms described in Section 3.2, pseudocode notation is given in this section

to achieve an overview of the code flow. Algorithm 1 describes the in-silico jittered data

generation and Algorithm 2 describes the dejitter algorithm.



C.3 parameter search for gs deconvolution 151

Algorithm 1 In-Silico Datastack Generation.
1: drao ≡ „draw random amount of“

2: procedure 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑑𝑎𝑡𝑎(𝑁,NA, 𝜆(ex), 𝜆(em), 𝑑(pitch))

3: Generate PSF h = ℎ(ex) ⋅ ℎ(det) with ∑ ℎ = 1

4: Generate Sample S create 𝑁(z) copies of 𝑆(2D)

5: Calculate Image M = 𝒫 {ℎ ⊗ 𝑆}

6: Add jitter 𝑀(jit) = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑗𝑖𝑡𝑡𝑒𝑟(𝑀, …)

7: end procedure

8: procedure 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑗𝑖𝑡𝑡𝑒𝑟(𝑀, 𝑁(lines), Δ(lines), 𝑠(max), 𝑑(block))

9: Get Amount N(lines)
l drao lines to be shifted from [0, 𝑁(y) ⋅ 𝑁(lines)] per Z-slice

10: for all 𝑁(lines)
𝑙 do

11: Get Lines Llm drao line-numbers from range [0, 𝑁(y) ⋅ Δ(lines)]

12: Get shift slm drao shift for each line within [−𝑁(x) ⋅ 𝑠(max), 𝑁(x) ⋅ 𝑠(max)]

13: Get retardance s(ret)
lm drao lines around selected lines 𝐿𝑙𝑚 from [0, 𝑁(x) ⋅𝑑(block)]

14: Add retardance apply (smoothened) retardance along Y-direction

15: Apply X-Shiftmap using the generated (random retardance) shiftmap

16: end for

17: end procedure

c.3 parameter search for gs deconvolution

Like is demonstrated in Section 3.3 in case of Total Variation (TV) regularization a param-

eter search Figure C.1 in case of using Gradient Square (GS) regularization on the same

data as used in Figure 3.4 yields a maximum 𝐶 = 0.88 at 𝛾(GS) = 10−3.5. It is reasonable to

assume that although the regularization maximum has not yet been reached, the analyzed

region is close to it. The patterning visible in (d-g) is a residual of the tiling routine and

can be reduced by a different choice of padding parameters.
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Algorithm 2 Movement Correction
1: procedure 𝑑𝑒𝑗𝑖𝑡𝑡𝑒𝑟_𝑎𝑛𝑑_𝑠ℎ𝑖𝑓 𝑡(𝑀(raw)

𝑙𝑚𝑛 ,…)

2: Preprocess Mlmn ≡ 𝑝𝑟𝑒(𝑀(raw)
𝑙𝑚𝑛 )

3: Correct Axial Drift M(dcor)
lmn , 𝑀(ref)

𝑚𝑛 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑧𝑑𝑟𝑖𝑓 𝑡(𝑀𝑙𝑚𝑛)

4: Get Dejitter Shiftmap C(1D)
l′m′ = 𝑑𝑒𝑗𝑖𝑡𝑡𝑒𝑟_𝑤𝑖𝑡ℎ_𝑟𝑒𝑓 𝑒𝑟𝑒𝑛𝑐𝑒(𝑀(dcor)

𝑙𝑚𝑛 , 𝑀(ref’)
𝑚𝑛 )

5: Apply Shifts M(dej)
l′m′n′ = ℱ𝒮(𝑀(dcor)

𝑙′𝑚′𝑛′ , 𝐶(1D)
𝑙′𝑚′ )

6: Deconvolve M(decon)
lmn using 𝑡𝑖𝑙𝑒𝑑𝑑𝑒𝑐𝑜𝑛𝑣(𝑀(dej)

𝑙′𝑚′𝑛′, ℎ, ⃗𝑡)

7: end procedure

8: procedure 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑧𝑑𝑟𝑖𝑓 𝑡(𝑀𝑙𝑚𝑛)

9: Calculate Reference M(ref)
mn Z-stack using ’mean’,’median’ or ’SG’

10: Get slicewise Shifts s(lin) via 𝑎𝑟𝑔𝑚𝑎𝑥
𝑥

(𝑀𝑙𝑚𝑛 ⊛ 𝑀(ref)
𝑚𝑛 )

11: Apply Shifts Mlmn = ℱ𝒮(𝑀𝑙𝑚𝑛, 𝑠(lin)) using Fourier-shift theorem

12: end procedure

13: procedure 𝑑𝑒𝑗𝑖𝑡𝑡𝑒𝑟_𝑤𝑖𝑡ℎ_𝑟𝑒𝑓 𝑒𝑟𝑒𝑛𝑐𝑒(𝑀𝑙𝑚𝑛, 𝑀(ref)
𝑚𝑛 )

14: Damp Edges M(damp)
l′m′n′ of 𝑀𝑙𝑚𝑛 by adding onto outside

15: Get Correlation Map Ll′m′n′ via 𝑀𝑙′𝑚′𝑛′ ⊛𝑥 𝑀(ref)
𝑚′𝑛′

16: Multiply Window L(win)
l′m′n′ = Ω𝑙′𝑚′𝑛′ ⋅ 𝐿𝑙′𝑚′𝑛′ (’Gauss’ or ’Rect’ or ’None’)

17: if use Savitkzy-Golay pre-filter then

18: apply SG-filter L(win)
l′m′n′ = 𝑆𝐺(𝐿(win)

𝑙′𝑚′𝑛′)

19: end if

20: Find linewise Maxima L(max)
l′m′ = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑥
(𝐿(win)

𝑙′𝑚′𝑛′)

21: if use center of mass then

22: Create Binary Mask Bl′m′n′ set 1 at found 𝐿(max)
𝑙𝑚 and 0 elsewhere

23: Dilate Mask B(dil)
l′m′n′ = 𝑑𝑖𝑙𝑎𝑡𝑒(𝐵𝑙′𝑚′𝑛′)

24: Apply to Correlation Map L(dil)
l′m′n′ = 𝐵(dil)

𝑙′𝑚′𝑛′ ⋅ 𝐿(win)
𝑙′𝑚′𝑛′

25: Offset Correct L(dil’)
l′m′n′

26: Calculate 1D center of Mass C(1D)
l′m′

27: else

28: Use linewise Maxima C(1D)
l′m′ ≡ 𝐿(max)

𝑙′𝑚′

29: end if

30: end procedure
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Figure C.1: GS-Deconvolution lambdas. Results M(decon)
l=z(0),mn of processing and tiled deconvolu-

tion of a) 3D obj, b) jittered image, c) dejittered image d-m) using GS regularizer

with 𝛾(GS) ∈ 10, 100.5, … , 10−3.5.
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d.1 behaviour of ism psf

The system PSF ℎ is shown in Figure D.1II for a series of increasing x-shifts of the detection

PSF, with 𝛿𝑥 = 0.083 𝐴𝑈. The amplitude decreases rapidly in this case. A cut through

𝑦 = 15 is shown for the first 8 shifts (a-h,Figure D.1II) in Figure D.1I. The PSF becomes

more asymmetric for increasing shifts 𝑑𝑥. Thus, e. g. the left sidelobe for 𝑑𝑥 = 0.66 𝐴𝑈 is

larger than the right sidelobe and both in particular are larger than the central maximum

of the corresponding PSF.
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Figure D.1: DSAX FWHM Shift Dependence. (I) Linecuts through lateral ideal PSF at 𝑦 = 𝑦(c)

for different detectors spaced with 𝑑𝑥. (II) According shifted ideal 2D PSFs. While

a-h) are 2D representations of the respective linecuts in (I), i-t) are the further

spaced pinholes with individual increase of spacing by Δ𝑥 = 0.17 𝐴𝑈. Images are

individually max-normalized.
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d.2 rank of the otf matrix

In fluorescence Image ScanningMicroscopy (ISM) the PSF ℎ is a real-valued, (theoretically

unbounded) function and thus its Fourier transform ℎ̃ satisfies the continuous Hermitian

property ℎ̃∗(𝑘) = ℎ̃(−𝑘). In case of the presented forward model Equation 4.1 the discrete

OTF ℎ̃ not necessarily fulfills ℎ̃𝑇 = ℎ̃∗ due to the chosen sampling parameters and dataset

sizes. Yet, if the OTF ℎ̃𝑎𝑘𝑦
(∀𝑘𝑙, 𝑘𝑛) is square it is diagonalizable, has real eigenvalues, and

the lower triangular matrix can be generated from the upper triangular matrix by complex

conjugation [95]. From diagonalizability it follows that the trace of the square matrix ℎ̃𝑎𝑘𝑦

is the sum of its eigenvalues and thus its rank, if symmetric, can be estimated via:

𝑟𝑎𝑛𝑘(ℎ̃) ≥
(𝑡𝑟(ℎ̃))

2

𝑡𝑟(ℎ̃2)
(D.1)

It follows that its rank is not automatically bounded by half its number of lines.

d.3 out-of-focus rejection capability comparison

For the reconstruction of the in-focus slice (𝑧(0)), different methods are compared in Fig-

ure D.2 for 3 different choices of detector pinhole masks (Figure D.2II a,g,k). While direct

sum 𝑀(sum) = ∑𝑁(a)

𝑎 𝑀𝑎 (Figure D.2Ia-c) and Pixel Reassignment (PiRe) (Figure D.2Id-f)

can be used without additional information, the remaining methods always require the

effective system PSF ℎ(ISM). Weighted Averaging in Fourier Space (WAVG) (Figure D.2Ig-i)

requires an OTF support boundary parameter (𝜖(mask)). Noise normalized WAVG (Fig-

ure D.2Ij-l) and Wiener Deconvolution (WD) followed by summation (Figure D.2Im-o,

see Section A.19) additionally require a regularizing parameter for the normalization

step (𝛾). Thick slice Unmixing (TU) (Figure D.2Ip-r) additionally allows choosing the

number of Singular Values (SV)s to use (directly via 𝑁(𝜉 lim) or indirect via Δ𝜉 (rel)). Finally,

2D deconvolution using the in-focus slice and a 2D-PSF (Figure D.2Is-u) as well as 3D

deconvolution using the full 3D-stack and 3D-PSF (Figure D.2Iv-x) with selection of the

central slice 𝑧(0), which require a variety of other parameters depending on the choice of

the optimizer, are depicted. Provided that a constant shift factor is used for the PiRe, the
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Figure D.2: 0oF Rejection Comparison.(I) comparison of 0oF rejection and image

reconstruction quality for different methods (columns) and different pinholes:

upper row uses IIa), middle row uses IIg) and lower row uses IIk). Methods used

are a-c) 𝑀(sum), d-f) 𝑀(ISM), g-i) 𝑀(wavg), j-l) 𝑀(nwavg), m-o) 𝑀(wd), p-r) 𝑀(tu), s-u)

2D 𝑀(mDEC), v-x) 3D deconvolution 𝑀(mDEC)(𝑧 = 𝑧(0)) with selection of central slice.

Normalized Cross Correlation (NCC) similarity is displayed in lower right corner of

each tile. (II) Available masks for the 5 × 5 detector pixels. Active pixels are marked

yellow, inactive are black. (III) NCC results for all different methods (I) and all

available masks (II).

column-wise listing of a-v) can also be read as an ascending sorted list w. r. t. necessary

processing time, system resources and algorithmic complexity (for this, however, column

5 must be at the 3rd position).
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The reconstruction quality quantified by the NCC depends on the number and po-

sition of the used detector pinholes (Figure D.2III). Depending on the imaging device

more/bigger/faster pixels might cost exponentially more money or time and additionally

generates more data that needs to be processed. A balance between costs/computational

overhead and gain in reconstruction quality, especially if limited hardware is used for

processing, is thus desired. While an increasing number of used pinholes improves the

reconstruction quality of TU multi-view DEConvolution (mDEC), the NCC maximum

for the other methods is mostly reached for a balance case between number of pinholes

and distance to the central pinhole. This is the case for selection of the first pinhole ring

(e. g. Figure D.2IIb,c). TU and mDEC proceed very similarly and the average absolute

deviation is 𝔼 {𝐶(TU)/𝐶(mDEC)|} ≈ 2%. It can be further concluded that more pinholes lead

to a steadily higher NCC and thus better reconstruction quality. Nevertheless, especially

for pinmasks (Figure D.2II) b-f), the relative NCC changes are in the range of 1.55%, but

the numerical effort increases up to a factor of 5 (compare b and f) given that the used

amount of active pinholes is 5 times bigger for f instead of b. Here, the jump from pinhole

configuration a) to b) is much more rewarding. For a visual comparison in the case of

TU see Figure D.4. Thus, it is reasonable to assume that for the parameters used here,

reconstruction with pinhole configuration b) represents a good balance of numerical cost

and reconstruction quality1.

d.4 detector pixel pitch

The obvious question is whether there is an NCC optimal detector pixel pitch in the

context of w. r. t. the number of pinholes used as well as the lateral size of the system PSF

(Figure D.3). For this purpose, different lateral distances Δ𝑠 between the detector pinholes

(unidistal = equal distances in both lateral directions) are simulated and given in sample

coordinates, thus 1𝑝𝑖𝑥 = 𝑑(SPL,lat) ≈ 42 𝑛𝑚 ≈ 0.085 × 𝑑(1AU,det). A selection of the effective

PSFs of the 25 pinholes is shown for Δ𝑠 ∈ [1, 3, 5, 7] 𝑝𝑖𝑥 (Figure D.3I). Despite increasing

lateral pixel spacing, the pixel pitch was assumed unchanged to be 𝛿-like and thus any

pixel shape specific properties were not further included. With increasing spacing, the

1 Note, that this result further depends on the detector pixel pitch which here was 2/3 𝑑(1AU,eff) of the effective

system PSF.
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Figure D.3: Detector Pixel Pitch for unirectangular detector-pixelgrid with unit-vectors
̂⃗𝑥 = [Δ𝑠, 0]𝑇, ̂⃗𝑥 = [0, Δ𝑠]𝑇 for (II)Thickslice-Unmixing and (III) 3D Deconvolution.

(I) Effective PSF ℎ for all detector-pinholes for in-focus slice (𝑧(0)) and at different

spacings Δ𝑠 = a) 1, b) 3, c) 5, d) 7 pix. Spacings are displayed in white box on lower

right of each tile. PSFs are normalized to their total sum and rescaled by (𝑙𝑜𝑔10(ℎ))0.1.

amplitude decreases more radially symmetrically and there may also be amplification of

sidelobes due to overlap of ℎ(ex) with sidelobes of ℎ(det) (and vice-versa) and thus a strong

change of the effective PSF. For each detection geometry the forward model is calculated

again which always results in a local-varying noise distribution (with the same applied

statistics), which is especially obvious in the NCC of the reconstructions for detector

pinhole selection 𝑎(0) (=central pinhole).
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Figure D.4: Thickslice NCC Visualization for visual comparison of the NCC optimal result for

each individual pinmask as given in Figure D.2II.

d.5 pixel effectivity in tu

Camera systems with many pixels are available directly and relatively inexpensive, but

their pixel dwell time and register readout speed is on average significantly slower than

from PMT or APD arrays. In order to reduce the measurement times for recording the

multi-view ISM data, the transition to PMT arrays or the construction of a dedicated

detector array is an obvious choice. In contrast to a camera produced in large quantities,

the cost of such a custom array e. g. scales rapidly with the number of individual detector

elements, so a brief analysis of how many pixels are suitable using a rectangular detector

geometry will be given. The pinhole masks used are shown in Figure D.2II.

In the comparison number of pinholes over achieved NCC value, the central pinhole

(Figure D.2IIa) is unbeatable, but the configurations are subjectively a better choice, since

the achieved NCC is close to the maximum achievable NCC after TU processing in this

comparison and on top of that the axial distribution of the sample can be reconstructed

better due to the significantly larger view-angles.

Within thiswork, twodifferent existing detector geometrieswere used for reconstruction,

but construction of an own detector according to the simulated findings is left for future

work.
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𝑆𝑐𝑝𝑢[𝑀𝑖𝐵] 𝑅𝑔𝑝𝑢
𝑐𝑝𝑢 𝑆𝑔𝑝𝑢[𝑀𝑖𝐵] 𝑆𝑔𝑝𝑢[%] 𝑇𝑔𝑝𝑢[∘𝐶] 𝑡𝑒𝑥𝑡[𝑠] 𝑡𝑑𝑒𝑐[𝑠]

𝑁𝑧

0 0.00 3.00 0.00 0.15 71.00 0.00 0.00

2 0.12 1424.00 178.00 8.90 71.00 2.80 0.90

4 0.25 744.00 186.00 9.30 71.00 1.70 1.40

8 0.50 404.00 202.00 10.10 72.00 3.60 3.10

16 1.00 234.00 234.00 11.70 74.00 6.60 5.70

32 2.00 149.00 298.00 14.90 75.00 13.10 11.30

64 4.00 106.50 426.00 21.30 77.00 25.80 22.50

128 8.00 85.25 682.00 34.00 81.00 50.10 43.50

256 16.00 74.62 1194.00 59.60 83.00 101.80 87.40

512 32.00 60.16 1925.00 96.10 84.00 195.80 166.10

Table D.1: mDECGPU-RAMusage test. Input Image size 𝑁 = [𝑁(z), 128, 128], necessary storage

for image on RAM 𝑆𝑐𝑝𝑢 as datatype is 𝑓 𝑙𝑜𝑎𝑡32, storage used on GPU for processing 𝑆𝑔𝑝𝑢,

relative storage usage of GPU to total on GPU-available storage 𝑆𝐺𝑃𝑈[%], temperature

of GPU 𝑇𝑔𝑝𝑢, 𝑅𝑔𝑝𝑢
𝑐𝑝𝑢 = 𝑆𝑔𝑝𝑢/𝑆𝑐𝑝𝑢 ratio of memory on GPU vs RAM, time needed for

running the full optimization routine 𝑡𝑒𝑥𝑡 (excludes graph-buildup time and storage

allocation preparation on GPU) and time needed for on-GPU optimization including

copy-process to↔fromGPU 𝑡𝑑𝑒𝑐. First row is only for displaying the „empty“GPU-state

before first mDEC process.

d.6 performance comparison of tu and mdec

While the previous comparisons have demonstrated the reconstruction quality of TU com-

pared to mDEC, the memory and processing time requirements will be briefly discussed

here. The properties of the test system are given in Section 1.8.

Only the central pinhole for different scanning stack sizes 𝑁 = [𝑁(z), 128, 128] and a

relative border region Δ𝑏 = [Δ𝑏𝑧, Δ𝑏𝑦, Δ𝑏𝑥] = [0%, 10%, 10%] were used as the data set

for mDEC. The border is thereby plotted symmetrically around the existing data points,

i. e. are appended to the lateral slices on both sides about 6𝑝𝑖𝑥 each. The reconstruction

was fully 3D, i.e. from a 3D measurement dataset of 𝑁(p) = 𝑁(z) to a reconstructed 3D

object of axial size 𝑁(z). The performance measurements for the different input datasets

are displayed in Table D.1. 𝑆𝑐𝑝𝑢 marks the necessary memory of an array of size 𝑁 of
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𝑁𝛼′ 𝑆(theo)
𝑐𝑝𝑢 [𝑀𝑖𝐵] 𝑆(resid)

𝑐𝑝𝑢 [𝑀𝑖𝐵] 𝑆(peak)
𝑐𝑝𝑢 [𝑀𝑖𝐵] 𝑡(OTFu)[𝑠] 𝑡(unmixing)[𝑚𝑠]

𝑁𝑧

1 5 2 481 1008 11 8

2 10 6 487 1008 9 7

4 20 23 508 1008 10 13

8 40 86 588 1008 11 36

16 80 331 898 1384 12 126

32 160 1302 2117 4049 15 468

64 320 5164 6955 14659 18 2108

Table D.2: Thickslice RAM usage test. Input Image size 𝑁𝑀 = [𝑁(𝑎′), 1, 128, 128] and 𝑁ℎ̃ =

[𝑁(𝑎′), 𝑁(z), 128, 128]. 𝑆(theo)
𝑐𝑝𝑢 theoretically expected size on RAM of all recon-arrays

(𝑀, ℎ̃, ℎ̃†, ̂𝑆(TU)) together, 𝑆(resid)
𝑐𝑝𝑢 measured resident RAM-usage, 𝑆(peak)

𝑐𝑝𝑢 peak usage

during reconstruction including all array-overheads and 𝑡(unmixing) time needed for

unmixing. Datatype for real-space data was 𝑓 𝑙𝑜𝑎𝑡32, for fourier-space 𝑐𝑜𝑚𝑝𝑙𝑒𝑥64.

datatype 𝑓 𝑙𝑜𝑎𝑡32 on system Random-Access Memory (RAM), 𝑆𝑔𝑝𝑢 Graphics Processing

Unit (GPU) memory used, 𝑆𝐺𝑃𝑈[%] the relative used memory of GPU w. r. t. to total

available GPU memory, 𝑇𝑔𝑝𝑢 GPU temperature, 𝑅𝑔𝑝𝑢
𝑐𝑝𝑢 = 𝑆𝑔𝑝𝑢/𝑆𝑐𝑝𝑢 the ratio of used GPU

memory and system RAM, 𝑡𝑒𝑥𝑡 the time needed for running the full optimization routine

(excluding graph-buildup time and storage allocation preparation on GPU) and 𝑡𝑑𝑒𝑐

the time needed for on-GPU optimization including copy-process to↔from GPU. The

memory overhead for creating the Tensorflow graph (Section 1.8) used for the GPU

based mDEC can be read directly from the storage used on GPU 𝑆𝑔𝑝𝑢(𝑁(z) = 2), since

the memory required for the dataset is still significantly smaller even with all 13 copies

needed for the gradient calculations. Here the ratio of memory used on the GPU and on

system RAM is 𝑅𝑔𝑝𝑢
𝑐𝑝𝑢 /13 ≈ 110. The maximum dataset possible on the test system’s GPU

is 𝑁(gpu,max) = [512, 128, 128] pixels of 𝑓 𝑙𝑜𝑎𝑡32 datatype in real space and the processing

time required for this is ≈ 166 𝑠. As the data set size doubles, the relativememory overhead

reduces and the processing time 𝑡𝑑𝑒𝑐 roughly doubles.

The performance analysis of TU for a complete data set, i. e. for𝑁(𝑀) = [𝑁(𝑎′), 1, 128, 128]

and 𝑁(ℎ̃) = [𝑁(𝑎′), 𝑁(z), 128, 128], is shown in Table D.2. Here 𝑆(resid)
𝑐𝑝𝑢 measured resi-

dent RAM-usage, 𝑆(peak)
𝑐𝑝𝑢 peak memory usage during reconstruction including all array-
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overheads and 𝑡(unmixing) the time needed for the unmixing part of the TU routine. Since

for the test 𝑁(z,meas) = 𝑁(z) was chosen the necessary memory for the determination

of the inversion matrix scales with 𝒪 ([𝑁(z)]2). The theoretical expected memory re-

quirement 𝑆(theo) for the algorithm for the four arrays necessary for reconstruction, the

image 𝑀, the OTF ℎ̃, unmixing matrix ℎ̃†, and the reconstructed object ̂𝑆(TU), is above

the average (via the processing routine) memory 𝑆(resid) allocated to RAM starting at

𝑁(z) = 16, which is due to both sectional memory frees and partial swaps to cache. For

𝑁(z) ≤ 8 the size of the compiler including all program overheads necessary for the used

transformations can be read off (𝑆(resid) ≫ 𝑆(theo)). The approximately 4× overhead of the

maximum RAM required during the algorithm runtime 𝑆(peak) comes from the necessary

transformations and regularization masks. The necessary time 𝑡(OTFu) for computing the

unmixing matrix is dominated by the lateral image size for 𝑁(z) < 16. For the final time

𝑡(unmixing) necessary to reconstruct the image data, after determining the unmixing matrix

ℎ̃† once, 𝑡(unmixing) ≪ 𝑡(OTFu) holds. For 𝑁(z) = 64 even 𝑡(unmixing)/𝑡𝑑𝑒𝑐 ≈ 0.09 holds. Note

that 𝑡𝑑𝑒𝑐 ∝ 𝒪 (𝑁(z) log𝑁(z)) and 𝑡(unmixing) ∝ 𝒪 ([𝑁(z)]2).

Typical ISM mDEC stacks are of the order 𝑁 = [32, 1024, 1024, 40], in which case TU

can be used with significant time gains over mDEC.





E
APPENDIX : DSAX- I SM

e.1 motivation

Increasing the transferable information through the optical system by saturating the

fluorescent sample was already analysed in the basic case of confocal microscopy [96]. In

their work not only a way of describing the relation between illumination and saturated

fluorescent emission, but the weak illumination radiances that are already sufficient to

saturate the sample are mentioned. Since then, the approach has been further refined and

analyzed in various techniques. For example, in saturated patterned excitation microscopy

(SPEM), in which higher orders (in addition to the linear excitation grid) can be generated

for nonlinear structured illumination reconstruction due to the nonlinear interaction with

the sample, thus extending the 𝑠𝑢𝑝𝑝(𝑂𝑇𝐹) [97], [98]. The resolution gain in these articles

is achieved by order stitching during the reconstruction of the measured data. More

measurement images are needed according to the number of higher orders to be included.

Saturation leads to an effective excitation PSF broadening which can initially be consid-

ered a loss of resolution and thus to be avoided if possible [99]. In CLSM-based Saturated

Excitation Microscopy (SAX) however, it is the center that exhibits an emission depending

nonlinear on the excitation that higher resolution is realized. In SAX the exciting laser

light is modulated by an interferometric combination of two differently Doppler-shifted

beams (using Acousto Optical Modulator (AOM)s) to receive a sinusoidal temporal

intensity modulation e. g. at 𝑓 (ex) = 10 𝑘𝐻𝑧. The intensity is chosen such that it is suf-

ficiently high to saturate the sample, but not yet sufficient for multi-photon excitation.

The fluorescence-saturation causes higher temporal harmonics 𝑓 (NL,i) for 𝑖 ∈ 1, 2, … of

the modulation frequency 𝑓 (ex) in the emitted signal which can be separated from the

linearly responding fundamental signal using a lock-in amplifier driven at this harmonic

frequency. This achieves higher resolution [100]. Since we aim to follow the ideas of SAX,

we analyze our recorded data in the framework and nomenclature of SAX and extract

non-linear orders (𝑁𝐿) even though the data is acquired by recording images at three fixed

165
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illumination-intensity values rather than applying a continuous intensity modulation. As

shown below, our approach is better suited to low-noise scenarios while shrinking the

setup-complexity or in general improving the versatility of the method.

In dynamic saturation optical microscopy (DSOM), the fluorescence signal temporarily

sampled with high resolution and thus the sample fluorophore distribution is recon-

structed from the temporal course of the fluorescence response [101]. Using pulsed

excitation with a set of 𝑝𝑠-pulses and repetition-times in the 100 𝑚𝑠-range the influence of

the triplet state and hence the tendency towards bleaching can be reduced while sticking

to the SAX imaging scheme [102]. Infinite resolution is limited by photostability and

brightness. Regaining e. g. the second and third nonlinear fluorescence order1, can also

be achieved via the imaging scheme of differential Saturated Excitation (dSAX) [103].

With this method instead of excitation intensity modulation by using two AOMs and a

lock-in for post-detection extraction of higher harmonics, multiple images at different

excitation intensities were taken. Now, only one AOM together with a function generator

for excitation intensity switching is used and no lock-in is required anymore. The new

approach to increase SNR of dSAX by implementing a ISM imaging scheme has been part

of a joint publication [104]. In this thesis, the fundamentals of the approach and further

data processing will be presented.

e.2 theory and methods of dsax-ism

e.2.1 Two-State Saturated Fluorescence Model

For the fluorophores excited in the linear range it has been analyzed in the previous sections

howmuch information can be obtained from themeasured data. The reconstructable object

data are limited despite the use of assumptions (priors) about the original distribution

of the OTF support. By manipulating the imaging process or the imaging geometry, this

support can be changed. For the following sections, a nonlinear fluorophore response is

generated by saturated excitation. The model of the excitation behavior of a fluorophore

introduced in Section 1.5 is further simplified for the purposes of this section and thus

reduced to a two-state model. For modeling purposes, this corresponds to Figure 1.2

1 Wording and usage established in works concerning with SAX.
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without 𝑆(2), 𝑇(0) as well as the corresponding transitions. Thus, the ground state 𝑆(0),

the excited state 𝑆(1), the absorption rate 𝑘(a) (𝑆(0) ⟶ 𝑆(1)), and the fluorescence rate 𝑘(f)

(𝑆(1) ⟶ 𝑆(0)) remain. With 𝑁(0/1) being the number of molecules in the 𝑆(0/1) state from

the rate equation solutions Equation E.26 (see Section E.5) the fluorescent photonflux

Φ(F)(𝑡) (Equation 1.29) can be rephrased as:

Φ(F)(𝑡) = 𝑄(e)𝑘(f)𝑁(1)(𝑡)

𝑡→𝑡(e)
→ Φ(F) = 𝑄(e)𝑘(f)𝑁(1,e) =

𝑄(e)𝑘(f)𝑘(a)

𝑘(f) + 𝑘(a)
= 𝑄(e) 𝜏−1𝐼(ex)

𝐼(ex) + (𝜏𝜂(a))−1 ≡ 𝑄(e)Φ(F’) (E.1)

with 𝑘(a) the intensity dependent absorption rate (Equation 1.28), 𝜂(a) the fluorophore

optical absorption cross-section, 𝑘(f) = 𝜏−1 the emission rate constant, 𝜏 the excited state

lifetime, 𝑄(e) the fluorophore quantum efficiency and 𝐼(ex) the excitation intensity. Note

that 𝐼(ex) can be expressed in units of 𝑝ℎ𝑜𝑡𝑜𝑛𝑠/𝑐𝑚2/𝑠 by making use of the Planck-Einstein

relation 𝐸(ex) = ℎ𝜆𝑒𝑥/𝑐 with [𝐸] = 𝐽/𝑝ℎ𝑜𝑡𝑜𝑛, thereby converting 𝐽 → 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 and thus both

summands in the denominator of Equation E.1 have the same physical units for each

individual photon and molecule. The spatial dependence (e. g. Φ(F’)( ⃗𝑥)) is not visualized

in the equations above and only one type of fluorophore (i. e. only one 𝜏) with the same

absorption cross section over the whole object was assumed for the model. The degree

of saturation of a fluorophore 𝜓(max) at a given (maximum) intensity max(𝐼(ex)) can be

defined by Equation E.1 as:

𝜓(max) = 𝜏 ⋅ Φ(F’)(max(𝐼(ex))) (E.2)

According to Equation 1.30 by multiplying with the spatial sample-density distribution

𝐶(F)( ⃗𝑥) the final fluorescent emittance 𝐼(F) can be calculated:

𝐼(F) = Φ(F’)( ⃗𝑥)𝑄(e)𝐶(F)( ⃗𝑥) = [Φ(F’)𝑆′] ( ⃗𝑥) (E.3)

with 𝑆′ ≡ 𝑄(e)𝐶(F)( ⃗𝑥). For simulations in this chapter the nonlinearity of the sample

response is modelled into a modified illumination Φ(F’)( ⃗𝑥) according to Equation E.1.

A brief example for the paramaters in case of Fluorescein will be given based on [105] .

Here 𝜂(a) = 3.06 ⋅ 10−16 𝑐𝑚2/𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒, 𝜏 = 4.5 ⋅ 10−9 𝑠 yielding

𝐼(ex,S) ≈ 7.3 ⋅ 1023 𝑝ℎ𝑜𝑡𝑜𝑛/𝑐𝑚2/𝑠 where the assumption of a perfect conversion efficiency

𝑄(e) = 1 𝑝ℎ𝑜𝑡𝑜𝑛/𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 was used. In case of typical CLSM a Gaussian beam, i. e. a

beam with shape like a Gaussian distribution in its lateral profile, with e. g. waist radius
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𝑤0 = 250 𝑛𝑚 focused by an objective lens with NA = 1.25 and oil-immersion has a focus-

spot intensity of 𝐼(ex) = 5.1 ⋅ 105 𝑊/𝑐𝑚2. The example of Fluorescein was chosen as most

of the dyes used in this thesis are of type Alexa which was created from Fluorescein [30].

e.2.2 Reconstruction Scheme of dSAX-ISM

For intensities 𝐼(ex) ≪ (𝜏𝜂(a))−1 the transition Φ(F’) ⟶ 𝐼(ex) holds and the linear excitation

process studied so far in this chapter can be reconstructed. In the following, cases for the

range 𝐼(ex) = 𝒪 ([𝜏𝜂(a)]−1) are considered. One speaks of a saturated state when ≥ 50%

of the molecules are (permanently) in the excited state 𝑆(1), i.e. 𝑁(1,e) = 0.5𝑁. This will be

the case at the saturating excitation intensity 𝐼(ex,S):

𝐼(ex,S) = (𝜏𝜂(a))−1 (E.4)

and with Equation E.1 it follows Φ(F’) (𝐼(ex,S)) = (2𝜏)−1. A Taylor series expansion of Φ(F’)

around 𝐼(ex) = 𝐼(ex,S) yields:

Φ(F’) (𝐼(ex)) =
∞
∑
𝑛

1
𝑛!𝜕

(𝑛)
𝐼(ex) [Φ(F’)]𝐼(ex)=𝐼(ex,S) (𝐼(ex) − 𝐼(ex)

𝑠 )
(𝑛)

Φ(F’) (𝐼(ex) + 𝐼(ex,S)) = Φ(F’) (𝐼(ex,S)) +
∞
∑
𝑛=1

(−Γ)𝑛+1

(𝑛 − 1)! (𝐼(ex))𝑛 (E.5)

Γ𝑛 =
𝜏𝑛−1

[1 + 𝐼(ex,S)𝜏]𝑛 (E.6)

Equation E.5 can be further simplified by normalization and another coordinate transfor-

mation to:

̂𝐼(F’) ( ̂𝐼(ex)) ≡ Φ(F’) ( ̂𝐼(ex)) − Φ(F’) (𝐼(ex,S)) ≈ 𝑛Γ
∞
∑
𝑛=1

(−1)𝑛+1 ( ̂𝐼(ex))𝑛 (E.7)

̂𝐼(ex) ≡
Γ

𝑛√2𝜋𝑛
(

𝑒
𝑛) (𝐼(ex) − 𝐼(ex,S))

where Stirling’s approximation 𝑛! ≈ √2𝜋𝑛(𝑛/𝑒)𝑛 was used for simplifying the factorial.

According to Equation A.58, for a recorded image using a 2D detector at position 𝑧 = 𝑧(0):

𝑀 ∝ 𝐼(M)( ⃗𝜒) = [𝐼(F) ⊗ ℎ𝑑𝑒𝑡]𝑧=𝑧(0) ( ⃗𝜒) (E.8)

Due to linearity of the convolution operation (with ℎ𝑑𝑒𝑡) and multiplication (with 𝑆′)

further calculations only focus on the 𝐼(ex) terms. The goal of the next steps is to isolate

higher order fluorescent responses and thereby increase spatial image-resolution, i. e.

finding a scheme to individually isolate the (𝐼(ex))𝑛 terms.
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According to Equation E.5, the Taylor series expansion for a chosen excitation intensity

𝐼(ex) vanishes rapidly Γ𝑘+1 (𝐼(ex))𝑘 /(𝑘 − 1)! ⟶ 0 for increasing higher orders k and its

residual estimation 𝑅 ∝ 𝒪 ([𝐼(ex)]𝑘) vanishes for any chosen 𝑘 within this thesis. To e. g.

reconstruct the saturated fluorescent responses up to 𝑘 = 3, taking three images 𝑀(k) at

different excitation intensities 𝐼(ex k) (𝑘 ∈ [1, 2, 3]) equates to:

𝑀(1) ∝ ̂𝐼(ex1) (E.9)

𝑀(2) ∝ ̂𝐼(ex2) − ( ̂𝐼(ex2))2 (E.10)

𝑀(3) ∝ ̂𝐼(ex3) − ( ̂𝐼(ex3))
2

+ ( ̂𝐼(ex3))
3

(E.11)

By solving the system of equations, the 1𝑠𝑡 and 2𝑛𝑑 nonlinear fluorescence orders e. g. can

be obtained in terms of 𝑀(NL1) and 𝑀(NL2) [103]:

𝑀(NL1) =
̂𝐼(ex2)

̂𝐼(ex1)
𝑀(1) − 𝑀(2) (E.12)

𝑀(NL2) = ⎛⎜
⎝

̂𝐼(ex3)

̂𝐼(ex2)
⎞⎟
⎠

2

𝑀(NL1) −
̂𝐼(ex3)

̂𝐼(ex1)
𝑀(1) + 𝑀(3) (E.13)

Since the nonlinear orders can be extracted by linear combination of the measured data,

the method is named dSAX. Assuming a Gaussian-like illumination distribution 𝐼(ex), it

follows from Equation E.7 (or even more clearly Equation E.12) that the gain in resolution

over the unsaturated image scales with √𝑛. Note, that while the saturated images could be

directly used within e. g. a nonlinear iterative reconstruction like mDEC or the saturation

model could even directly be baked into a semi-blind deconvolution model, the existing

SAX and dSAX approaches try to extract these higher nonlinear orders 𝑀(NL1), 𝑀(NL2), …

in a linear manner. Thus, for comparability of existing works the theoretical and experi-

mental analysis within this thesis will focus around the reconstructibility of these higher

nonlinear orders.

Using the example of the two-state model derived in Section E.2.1, the influence of

saturation on the individual PSFs and OTFs is shown in Figure E.1. Optical parameters

chosen were NA = 1.3, 𝜆(ex) = 488 𝑛𝑚, 𝜆(em) = 520 𝑛𝑚. For the spatial image sampling

a strong undersampling of 𝑑(SPL,lat) = 10 𝑛𝑚 and 𝑑(SPL,ax) = 50 𝑛𝑚 was chosen for better

visualization. This gives 𝑑(Abbe,lat) = 198 𝑛𝑚 for the detection PSF ℎ(det) according to Equa-

tion 1.12 and thus by Table 1.1 𝑑(1AU,lat) ≈ 483 𝑛𝑚 and 𝑑(1AU,ax) ≈ 1715 𝑛𝑚. Accordingly, the

Abbe frequency in Fourier space according to Equation 1.13 is 𝑘(Abbe,lat) = 31.7 𝑟𝑎𝑑/𝜇𝑚 and

𝑘(Abbe,ax) = 8.9 𝑟𝑎𝑑/𝜇𝑚. Saturation parameters were calculated according to the Fluores-

cein example to𝜏 = 4.5⋅10−9 𝑠, 𝜂(a) = 3.06⋅10−16 𝑐𝑚2/𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒,𝑄(e)𝐶(F) = 3.215𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠/𝑐𝑚2
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Figure E.1: DSAX Saturation Curve. (I) Simulated saturation curve (golden) and applied

excitation intensity (black dotted) as log-log-plot. Chosen saturation intensities

(𝐼(ex1…3)) are displayed for reference. Calculated nonlinear first 𝐼(NL1)(green) and

second (blue) order 𝐼(NL2) and linear fits to the measured and calculated curves. (II)

Dependency of FWHM of measured images and extracted higher orders on the use

lateral reassignment shift-distance. Correlation based calculated shift-values and

achieved FWHM are displayed with a dotted line and a cross at its ends.

(per unit-depth 𝑑𝑧) chosen, giving 𝜓(max) = 1/2 at 𝐼(ex) ≈ 2800 𝑘𝑊/𝑐𝑚2. Figure E.1I

demonstrates the fluorescent signal 𝐼(F) (golden) over an excitation intensity range of

𝐼(ex) ∈ [1, … , 107] with step size Δ𝐼(ex) = 1000. For the reconstruction of the first and sec-

ond nonlinear orders, three different excitation intensities 𝐼(ex) must be chosen according

to Equation E.12 and Equation E.13. Analogous to the procedure of Nawa et al. [103], a

linear fit (fit 𝐼(F), see Figure E.1I) is applied to the saturated fluorescence curve log10(𝐼(F)),

in log-log representation. From the linear range of log10(𝐼(F)), the largest possible 𝐼(ex1) is

now chosen to achieve the lowest possible noise measurement signal. From the chosen

𝐼(ex1) and 𝐼(F1) = 𝐼(F)(𝐼(ex1)), the fluorescence curve 𝐼(F)(𝐼(ex) > 𝐼(ex1)) is used, according

to Equation E.12, to calculate the curve 𝐼(NL1). Another linear fit to log10(𝐼(NL1)) (green,

see Figure E.1I) allows us to estimate the linear range of log10(𝐼(NL1)) and thus choose the

largest possible 𝐼(ex2) with associated 𝐼(FNL1). With the tuple {𝐼(ex1), 𝐼(F1)}, {𝐼(ex2), 𝐼(FNL1)}

chosen in this way, it is now possible to extract 𝐼(F)(𝐼(ex) > 𝐼(ex2)) from the remaining
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ℎ(1) ℎ(2) ℎ(3) ℎ(𝑁𝐿1) ℎ(𝑁𝐿2)

FWHM/AU 0.77 0.81 0.91 0.67 0.62

ℎ(𝑖)/ℎ(1) 1.00 1.05 1.17 0.87 0.81

Table E.1: FWHM of dSAX-ISM PSF Simulation. Results are based on the chosen excitation

intensities of Figure E.1I.

fluorescence curve. According to Equation E.13 𝐼(NL2) can now be determined. A new

linear fit to the calculated curve log10(𝐼(NL2)) allows the choice of 𝐼(ex3). In the simulation,

𝐼(ex1) = 50 𝑘𝑊/𝑐𝑚2, 𝐼(ex2) = 200 𝑘𝑊/𝑐𝑚2, and 𝐼(ex) = 1000 𝑘𝑊/𝑐𝑚2 were chosen.

The lateral and axial PSFs broaden with increasing saturation by up to 17% in the

case of ℎ(3)/ℎ(1) simulation (see Table E.1). ℎ(NL1) and ℎ(NL2) were calculated according to

Equation E.12 and Equation E.13. The isolated nonlinear orders on the other hand achieve

a resolution gain of up to 19% in the case of ℎ(NL2).

The dependence of Full Width at Half Maximum (FWHM) on the selected shift vector

along the X-axis is shown in Figure E.1II. The simulation parameters remain unchanged,

with only the sampling adjusted to 𝑑(SPL,lat) = 40 nm, 𝑑(SPL,ax) = 100 nm and extenting

the detector to consist of [16, 16] pixels. The dashed lines mark location and FWHM after

determination of the shift value usingmethod 2. The deviation of the of the FWHM curves’

individual minimum from the X-marked shifts determined using method 2, although

the same FWHM is obtained, might indicate numerical inaccuracies of the correlation or

shift routine for subpixel shifts. Since no appreciable influence of this inaccuracy could

be detected in other simulation and processing scenarios, no deeper analysis of this

circumstance was performed. The values given in Figure E.1II also illustrate that the

optimal lateral shift values depend on the degree of saturation and offsetting. Thus, e. g.

the optimal shift values of ℎ(Iex3) and ℎ(NL2) differ by Δ𝑥(Iex3,opt)/Δ𝑥(NL2,opt) ≈ 73%. If

e. g. the shift value Δ𝑥(Iex3,opt) would be used for ℎ(NL2), the FWHM would be 143 𝑛𝑚

instead of 122 𝑛𝑚, resulting in a deviation of ≈ 17%. The order of reconstruction, 1) pixel

reassignment followed by 2) extraction of the nonlinear orders or 2) and then 1), has no

significant effect on the FWHM in this case, since the calculation (Equation E.13) is linear.
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Figure E.2: DSAX Comparison of Reconstruction Methods for High SNR. Reconstruction re-

sults of differential Saturated Excitation Image Scanning Microscopy (dSAX-ISM)

images. Upper row: applied to 𝑀(1), lower row: applied to 𝑀(NL2). a+b) WF, c+d)

CLSM at 1 𝐴𝑈 pinhole size, e+f) PiRe at 1 𝐴𝑈 pinhole size, g+h) WAVG i+j) noise

normalized Weighted Averaging in Fourier Space (nWAVG), k+l) generalized WD,

m+n) deconvolution of CLSM data (CmDEC), o+p) deconvolution of ISM data

(PmDEC), q+r) multi-view deconvolution , s) ground truth (=object), t) multi-view

deconvolution using all measured images 𝑀(i) for 𝑖 ∈ 1, 2, 3 (amDEC). Images are

normalized to their individual zero frequency.
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Figure E.3: Reconstruction of DSAX Data for High SNR. Fourier radial sum example for (I)

𝑀(0), (II) 𝑀(NL2).

e.2.3 Comparison of Reconstruction Methods on dSAX-ISM

Further processing by means of WAVG (Section 1.7) and a set of deconvolution techniques

will be applied to the dSAX-ISM data in case of high- and low-SNR. For legend entries

the following nomenclature is used: OBJ=object, Wiener=WD, WA = WAVG, WAN =

nWAVG, mDEC = mDEC and amDEC = multi-view DEConvolution using all available



E.2 theory and methods of dsax-ism 173

𝑀(1) 𝑀(2) 𝑀(3) 𝑀(𝑁𝐿1) 𝑀(𝑁𝐿2)

WF 0.78 0.76 0.71 0.82 0.83

CLSM 0.81 0.80 0.77 0.84 0.85

ISM 0.83 0.83 0.81 0.85 0.86

WA 0.78 0.77 0.76 0.81 0.82

WAN 0.84 0.83 0.83 0.86 0.87

Wiener 0.92 0.93 0.94 0.90 0.89

CmDEC 0.90 0.88 0.85 0.92 0.91

PRmDEC 0.93 0.92 0.90 0.92 0.91

mDEC 0.93 0.92 0.91 0.88 0.91

amDEC 0.87 0.87 0.87 0.87 0.87

(a)

𝑀(1) 𝑀(2) 𝑀(3) 𝑀(𝑁𝐿1) 𝑀(𝑁𝐿2)

WF 0.77 0.75 0.70 0.68 0.52

CLSM 0.80 0.79 0.77 0.67 0.50

ISM 0.82 0.83 0.81 0.69 0.52

WA 0.78 0.77 0.76 0.80 0.78

WAN 0.84 0.83 0.83 0.82 0.79

Wiener 0.88 0.89 0.90 0.83 0.79

CmDEC 0.87 0.87 0.85 0.81 0.77

PRmDEC 0.89 0.91 0.90 0.82 0.77

mDEC 0.90 0.91 0.90 0.82 0.77

amDEC 0.93 0.93 0.93 0.93 0.93

(b)

Table E.2: NCC Values of DSAX Processing. For processing of dataset (a) high-SNR (b) low-

SNR. Compared techniques abbrevations are: OBJ=object, Wiener=WD, WA = WAVG,

WAN = nWAVG, mDEC = mDEC and amDEC = mDECusing all available (saturated)

images 𝑀(i) for 𝑖 ∈ 1, 2, 3.

images (amDEC) using all available (saturated) images 𝑀(i) for 𝑖 ∈ 1, 2, 3. Thus in case

of amDEC only 1 reconstruction for the whole set of images exists. Simulation parameters

are the same as in the previous section.

Figure E.2 shows a comparison of the different reconstruction methods applied to 𝑀(1)

(top row) and 𝑀(NL2) (bottom row) in the case of high-SNR. The last column is isolated

and shows the underlying object and the amDEC reconstruction.

From the visual impression, almost all post-processed and non-post-processed results

based on the nonlinear third order 𝑀(NL2) (Figure E.2, lower row) isolated by means of

dSAX-ISM appear sharper, since the struts of the spokes2d target can be traced further

inwards, they are filled more evenly and their edge gradient appears steeper. Only in

the case of WD (g) a better result seems to be achieved by means of the dataset 𝑀(1)

(Figure E.2, upper row) used for comparison.

Calculation ofNCCby comparison to the simulation object (o) confirms this observation,

since all values of the last column (see Table E.2a) are larger than those of the first column,

except in the case of the WD. Since amDEC uses all underlying measurement data for
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Figure E.4: DSAX Comparison of Reconstruction Methods for Low SNR. Reconstruction re-

sults of dSAX-ISM images for low-SNR. Upper row: applied to 𝑀(1), lower row:

applied to 𝑀(NL2). Numbering and normalization analog to Figure E.2.
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Figure E.5: Reconstruction of DSAX Data for Low SNR. Fourier radial sum example for (I)

𝑀(0), (II) 𝑀(NL2).

multi-view deconvolution only one correlation value exists, but it was entered in all

columns. ISM always achieves NCC greater similarities to the object than CLSM at 1 𝐴𝑈

or WF. WD is the most NCC performant method in this reconstruction comparison.

A comparison of the amplitudes of the frequency components of the reconstructions

of 𝑀(1) (see Figure E.3I; Equation E.9) and 𝑀(NL2) (see Figure E.3II) does not suggest

the previous observation that WD reconstructs the data better than e. g. mDEC. The data

are normalized to 1000/𝑘0, with 𝑘0 their individual zero frequency. The plots suggest that

mDEC and amDEC are nearly identical to the original object spectrum until just below

𝑘𝑥 = 2𝑘(Abbe), and below that mDEC is closest to the original frequency distribution. For

𝑘𝑥 ≥ 2𝑘(Abbe), the amplitudes of the frequency spectra of all reconstructions drop below the

original object distribution.WhileWD,mDEC and amDEC are an estimate of the noise-free
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object, WAVG and nWAVG are still noise PSF-weighted summations of the measured data.

They are included in this comparison image to illustrate the noise-cutoff and frequency-

dependent decay of the OTF of the underlying imaging. For 𝑘𝑥 ≥ 2.5 ⋅ 𝑘(Abbe), WAVG

and nWAVG are negligible and thus above this limit the comparison of the frequencies

reconstructed by e. g. mDEC with the original frequency spectrum of OBJ are of particular

interest. In the case of 𝑀(NL2), nWAVG and WD are very similar in shape, while mDEC

and amDEC are much closer to the original frequency spectrum, see Figure E.3II. This

difference manifests itself only slightly in the calculated NCC values (Table E.2a), but in

the pictorial comparison (Figure E.2) by larger unevenness in the struts (areas of equal

pixel values) of the spokes2d target at WD compared to mDEC.

In the low-SNR case, a visual SNR gain of ISM (f) over CLSM (d) is noticeable, see

Figure E.4. However, the quality of the reconstructions based on the nonlinear 2𝑛𝑑 order

𝑀(NL2) is lower than the reconstructions of the non-saturated fluorescence data (top row).

This conjecture is supported by the determined NCC values, see Table E.2b. All re-

constructions achieve better results for the direct simulation data 𝑀(i) compared to the

extracted nonlinear orders 𝑀(NLi). ISM is also NCC-closer to the original object than

CLSM. amDEC and mDEC now achieve the NCC-best results here and are NCC-closer to

the original object than WD. In the case of 𝑀(NL2) processing, WD, WAVG, nWAVG and

mDEC achieve the sameNCC value of 0.78. This suggests that the frequency cut 𝑘(C,NL2) of

the underlying simulation data is lower than e. g. at 𝑀(0) and thus less frequencies can be

reconstructed from the noise floor. Figure E.5II supports this conjecture, as the normalized

amplitude values for all reconstructions (amDEC is displayed here for reference only)

run well below the distribution of the original frequency spectrum.

For a SNR comparison of CLSM-based dSAX and dSAX-ISM the reader is referred to

Section E.6.
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Figure E.6: DSAX Experimental Setup. Insert displays pulse-timing used.

e.3 dsax-ism experiments

e.3.1 dSAX-ISM Experimental Setup

The experimental setup is basically a CLSM setup extended by a camera (emCCD) and

AOM, see Figure E.6. A continuous wave laser (Sapphire-488 nm,Coherent) is used as the

light source. For precise intensity adjustment, two ND filters (ND1,ND2) follow after the

laser. For pulse length and intensity control, a AOM (AOM-405-AF1-J, IntraAction Corp.

with driver ME-405-J, IntraAction Corp.) is used. The beam is then focused onto a pinhole

(𝑑 = 50 𝜇m) using an achromatic lens 𝑓 (L1) = 50 mm (AC254-050,Thorlabs) where it gets

spatially cleaned and afterwards magnified by the telescope assembly using a second

lens 𝑓 (L2) = 150 mm 3× to fill the BFP of the objective lens. A beam splitter BS (BSN10R,

Thorlabs) reflects 10% of the excitation light onto a Photodiode (PD) (S3399, Hamamatsu

with amplifier C8366, Hamamatsu) to always measure the excitation intensity present. A

pair of galvanometric mirrors (6210HBR, Cambridge Technology) is centered around the

BFP of the scanning lens 𝑓 (SL) = 50 mm, allowing the angle of the beam in the BFP and thus

the lateral position of the excitation spot in the object plane to be changed. Due to the larger

focal length of the subsequent tube lens 𝑓 (TL) = 180 mm, the beam diameter is expanded
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3.6× and focused into the sample plane by means of an objective lens (UPlanSApo 60×,

1.30 Sil, Olympus Corporation). The fluorescent emission is collected through the same

objective, propagated back into the BFP of the SL using TL and SL, and descanned there.

A dichromatic short-pass beam splitter D1 (FF505-SDi01-25×36, Semrock) separates the

fluorescent emission from the excitation beam path. Another telescope, 𝑓 (L3) = 200 mm

and 𝑓 (L4) = 200 mm serves as a relay and for coarse 0oF filtering through the pinhole

(𝑑 = 50 𝜇m) located between the lenses. A further achromatic lens 𝑓 (L5) = 200 mm

ultimately focuses the beam onto a PMT (H7422-40, Hamamatsu), in the case of CLSM

use, or emCCD camera (proEM 1024B, Princeton Imaging) in the case of ISM. The PMT

is used to search for a suitable sample position. One pixel cycle, i.e. dwell, readout and

dead-time, of the camera requires 𝑡(Ccycle)5 ms. In sample coordinates, one lateral AU of the

detection beam has the size of 𝑑(1AU,sample) = 483 nm. With a system total magnification

of 𝑀(total) = 144 and the camera pixel pitch of 𝑑(Pcam) = 13 𝜇m, this corresponds to

𝑑(1AU,sample) ≈ 5.35 𝑝𝑖𝑥𝑒𝑙𝑠. The camera pixel pitch expressed in AU is thus approximately

𝑑(Pcam) ≈ 0.2 𝐴𝑈. To record the first three AU of the fluorescent emission, a central area of

the camera of 16 × 16 pixels is used.

Constant excitation in the nonlinear response regime of the fluorophores, in the case of

the presenting setup geometry, can easily lead to undesired side effects such as thermal

heat aggregation or bleaching [102, 106]. Since the degree of fluorophore saturation

depends on peak photon flux and less on flux duration (Equation E.1), a pulse-like

excitation is generated using a function generator (AFG3102C, Tektronics) with the AOM.

The confocal scanning unit is parked on a spatial position for the subsequent acquisition of

the three images (Equation E.13) necessary to reconstruct the third order in the dSAX-ISM

scheme, where one image is recorded at each of three different peak intensities (see insert

lower left of Figure E.6). During one recording cycle 𝑡(Ccycle) two rectangular pulses with

𝑡(Pw) = 80 𝜇𝑠 duration and 𝑡(Pp) = 1.3 𝜇𝑠 period are used.

e.3.2 Measuring the In-Sample Saturation Curve

In order to determine the appropriate excitation intensities for the particular sample, in

case of the dSAX-ISM scheme, the fluorescent response of the sample must first be studied

as a function of excitation intensity 𝐼(ex). Here, the voltage applied to the PD (PD, see
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Figure E.7: DSAX Experimental Saturation Curve. (I) Linear Fit to PD measurements.

Displayed as log-log-curve. (II) Saturation curve for Alexa-488 stained HeLa-cell.

Measured fluorescent response (magenta points), calculated first order (NL1, green

thick points) and second order (blue triangles) are displayed together with their

respective linear fits. (III) Logarithm of Measured images with a) constant excitation

intensity b) steps of increasing intensity. Chosen excitation intensities, 𝐼(ex1) (lime),

𝐼(ex2) (turquoise) and 𝐼(ex3) (magenta) for further DSAX-measurements are marked

with a ticked line.

Figure E.6) must be converted to the power present in the sample plane. To measure the

power in the sample plane, a longitudinal measurement is performed using a powermeter

(PM100D, Thorlabs). The measured power is converted to the applied intensity via the

theoretical focal spot size of 𝑑(1AU,exc) (Table 1.1) according to Equation E.14:

𝐼(ex,S) =
𝑃(ex,S)

𝜋 (𝑑(1AU,exc)/2)2 , [𝐼(ex)] =
𝑊

𝑐𝑚2 (E.14)

A linear fit to the intensity measurement series yields the relation Equation E.15:

𝐼(ex,S) =
1.38 ⋅ 105

𝑉 ⋅ 𝐼(ex,PD) + 1.39 ⋅ 102 𝑊
𝑐𝑚2 (E.15)

The fit including the measurement series is shown as a log-log plot for better visibility of

the used excitation intensity steps Δ𝐼(ex), see Figure E.7I.

Using Alexa488 phalloidin conjugate (A12379, ThermoFischer) stained Actin filaments

of Henrietta Lacks Cervical Cancer (HeLa) cells in an anti-photobleaching agent (Pro-

longGlass Antifade Mountant, ThermoFischer) as an example, the procedure will be
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(II)

𝑀(1) 𝑀(2) 𝑀(3) 𝑀(𝑁𝐿1) 𝑀(𝑁𝐿2)

CP 205 208 216 199 203

CLSM 222 228 241 216 237

ISM 219 224 234 206 201

Figure E.8: DSAX FWHM of PSF Measurements. (I) Acquired image. Selected beads are

marked with a magenta box. (II) Calculated FWHM from fitted PSF measurements.

All calculated sizes in 𝐴𝑈.

demonstrated. A second, similar PD after the BS in the detection beam-path is used to

measure the fluorescence response. A sample area filled as uniformly as possible with

stained object structure is imaged with a constant, low intensity 𝐼(F,const) (see Figure E.7III

a) as well as with an excitation intensity 𝐼(F,curve) (see Figure E.7III b) that increases every

four lines. The mean is calculated over four lines each for the ratio 𝐼(F,curve)/𝐼(F,const) and

plotted over the excitation intensity 𝐼(ex,S) in a log-log plot, see Figure E.7II. In particular,

since the SNR of the first image 𝑀(1) has a large influence on the overall SNR and the

nonlinear orders (Equation E.13) that can be reconstructed with it, 𝐼(ex1) must be taken

as close as possible to the boundary of the linear to nonlinear response range of the

sample. The procedure for finding these excitation irradiances and creating the fits is

described in Section E.2.2. For the present example, 𝐼(ex1) = 1.18𝑘𝑊/𝑐𝑚2 (green dotted),

𝐼(ex2) = 3.04𝑘𝑊/𝑐𝑚2 (turquoise dotted) and 𝐼(ex3) = 10.99𝑘𝑊/𝑐𝑚2 (magenta dotted), see

Figure E.7II.

e.3.3 Measurement of the dSAX-ISM PSF

Beads with 𝑑(Bead) = 100 nm (F8803, ThermoFisher scientific) in silicon oil were used to

determine the experimental PSF. The beads used are about half of one airy unit of the

effective PSF of a camera pixel 𝑑(1AU) (ℎ(ISM)
0 ) = 235 nm. A simulation with the present
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system parameters yields a FWHM, half of an AU, of 𝑑(FWHM) (ℎ(ISM)
0 ) = 152 nm for the

effective PSF and 𝑑(FWHM) (𝑀(ISM)
0 ) = 191 nm for the PSF convolvedwith the 100nm bead.

By using a bead of this size, the actual FWHM is broadened by 26%. Since in the following

the methodologies shall be compared relative to each other and not with absolute values,

this broadening influence is accepted in exchange for a better SNR, due to the larger

fluorescence volume.

The excitation intensities were chosen as 𝐼(ex1) = 91𝑊/𝑐𝑚2, 𝐼(ex2) = 263𝑊/𝑐𝑚2 and

𝐼(ex3) = 850𝑊/𝑐𝑚2. The images where processed w. r. t. extraction of non-linear higher

orders and CLSM/PiRe summation. From the reconstructed images a set of Region

of Interest (ROI)s containing single beads was selected (magenta boxes) and a bead-

representative calculated, see Figure E.8I. The bead-representatives (points) were then

fitted by a 2D Gaussian (respective line).The FWHM is calculated from the fitted Gaus-

sians using the relations Table 1.1, see Table E.3. Here, dSAX-ISM achieves a resolution gain

of 1 − 𝑑(FWHM) (𝑀(NL2,ISM)) /𝑑(FWHM) (𝑀(NL2,CLSM)) = 15% using ISM scheme compared

to CLSM at 1 𝐴𝑈 sized virtual pinhole. In case of ISM the achieved resolution of 𝑀(NL2)

is 2.6% better than for 𝑀(NL1). The dataset demonstrates, that despite the weak SNR of

the useable beads the ISM based dSAX-ISM reconstruction routine is able to improve

resolution by succesfully extracting the second higher order while this was not possible

with the SAX scheme where 𝑑(FWHM)(𝑀(NL1)) < 𝑑(FWHM)(𝑀(NL2)). Further, the overall

calculated FWHM

e.3.4 dSAX-ISM Measurement of a Biological Sample: HeLa cells

To analyze the method in biological cell material, a 2D multi-view image at 3 different

excitation intensities of actin filaments of HeLa (for staining and fixation see Section E.3.2)

cells were recorded. Instead of a PD in the detection beam-path, an emCCD camera

(Figure E.6) is now used for imaging. The recorded section of a HeLa cell is shown for

the central pinhole (CP), CLSM with 𝑑(pin,CLSM) = 1 𝐴𝑈 and PiRe with 𝑑(pin,ISM) = 1 𝐴𝑈

in Figure E.9.

Subsequently, the data were processed using deconvolution analogous to Section E.2.3.

Figure E.10 shows the results for 𝑀(0) (top row) and 𝑀(NL2) (bottom row) for the ROI

marked with a white rectangle in Figure E.9. Since amDEC (Figure E.10 t) is calculated
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Figure E.9: DSAX HeLa Image. Reconstructed 2nd order 𝑀(NL2) for a) central pinhole, b) CLSM

and c) ISM processing. Small boxes mark ROIused in Figure E.10.
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Figure E.10: DSAX Reconstruction of HeLa Actin Filaments. Reconstruction results of ROI (see

Figure E.9). Reconstruction results of dSAX-ISM images. Upper row: applied to

𝑀(1), lower row: applied to 𝑀(NL2). a+b) WF, c+d) CLSM at 1 𝐴𝑈 pinhole size,

e+f) PiRe at 1 𝐴𝑈 pinhole size, g+h) WAVG i+j) nWAVG, k+l) generalized Wiener

deconvolution, m+n) confocal single-view DEConvolution (cDEC), o+p) pixel

reassigned single-view DEConvolution (prDEC), q+r) mDEC , s) central pinhole

image, t) amDEC. Images are normalized to their individual zero frequency.

from all available views and images𝑀(1…3), it is used as a reference for theNCC calculation.

In particular, since for the nonlinear first and second order 𝑀(NL1…2) many of the available

detector pixels only contribute noise to the reconstruction, the same pinhole selection was

used for the multi-view deconvolutions as well as for the PiRe.

e.4 conclusion and outlook

The existing fluorophore saturation-based methodology dSAX was extended from CLSM

to ISM geometry, thereby coining the name dSAX-ISM, and the influence of different

processing was investigated.
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In the simulations, a theoretical resolution gain of ℎ(NL2) over ℎ(1) of about 11% in

low SNR case using the presented processing method was predicted. A simulation of

different deconvolution strategies led to the remarkable result, that in case of an in-focus

2D multi-view processing the NCC-quality of the single-view cDEC as well as prDEC

deconvolutions achieve about the same reconstruction quality like mDEC. Since only one

view is used instead of the available 25, larger measurement datasets can be processed

on more compact GPUs without compromising quality. In case of low-SNR scenarios,

reducing the amount of detector pixels led to better reconstruction results.

The theoretical analyses were implemented experimentally in a dedicated setup. Here,

it proved advantageous to select the excitation intensities tending to be from the already

adjacent nonlinear region to achieve better SNR. The dSAX-ISM scheme was able to

achieve a resolution gain for the extracted non-linear PSF ℎ(NL2) over ℎ(1) while dSAX did

not. The reconstruction quality of cDEC and prDEC could be confirmed experimentally.

It was shown that the extension of dSAX by ISM can extract a 𝑀(NL2) with higher

noise cutoff at the same excitation intensity. This allows comparatively lower excitation

intensities to be chosen, thus reducing phototoxicitywhilemaintaining the same resolution.

Extending dSAX with ISM leads to a decrease in scan speed compared to CLSM imaging

using PMT, but this could be compensated in the future by replacing the chosen emCCD

camera with single photon avalanche diode (SPAD) arrays, or a PMT array (as in the

commercial Zeiss Airyscan system). In future, a parameter search for an optimal SNR

and FWHM as a function of excitation intensity and using five-state model (including

triplet state and bleaching) could be helpful.

e.5 2 state derivation

For analysis of SAX instead of the schematic 4-state model introduced in Section 1.5 a

straightforward to implement 2-state model (Section E.2.1) is used. Assuming a lossless

system (i. e. number and availability of excitable molecules remains the same), the rate

equations are:

𝜕𝑡𝑁(0) = −𝑘(a)𝑁(0) + 𝑘(f)𝑁(1) (E.16)

𝜕𝑡𝑁(1) = −𝜕𝑡𝑁(0) (E.17)
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where 𝑁(0/1) denotes the number of molecules in the 𝑆(0/1) state. 𝑘(a)( ⃗𝑥) = 𝜂(a)( ⃗𝑥)𝐼(ex)( ⃗𝑥)

the intensity dependent absorption rate, 𝜂(a) the fluorophor optical absorption cross-

section, 𝑘(f) = 𝜏−1 the emission rate, 𝜏 the excited state lifetime, 𝑄(e) the fluorophor

quantum efficiency and 𝐼(ex) the excitation intensity. Furthermore, since the number of

molecules remains the same, Equation E.18 applies and we choose 𝑁(0) ≡ 𝑁, 𝑁(1)(0) ≡ 0,

since at the beginning of the excitation process all molecules are still in the ground state

𝑆0.

𝑁(0)(𝑡) + 𝑁(1)(𝑡) = 𝑁(0)(0) + 𝑁(1)(0) = 𝑁 + 0 (E.18)

Plugging Equation E.17 into Equation E.16 yields the condition at equilibrium 𝑡 = 𝑡(e):

𝑁(0)

𝑁(1) =
𝑘(f)

𝑘(a) (E.19)

ı.e. if more than two states would have been used within the model, eventual hidden-

states would vanish and a balanced relation of excitation vs spontaneous relaxation will

be established. By putting Equation E.19 into Equation E.18 we find:

𝑁(1,e) ≡ 𝑁(1)(𝑡 = 𝑡(e)) =
𝑘(a)

𝑘(a) + 𝑘(f) 𝑁 (E.20)

with Plugging Equation E.18 and Equation E.20 into Equation E.17 yields:

𝜕𝑡𝑁(1)(𝑡) = −𝑘(f)𝑁(1)(𝑡) + 𝑘(a)(𝑁 − 𝑁(1)(𝑡)) (E.21)

= 𝑎 (𝑁(1,e)(𝑡) − 𝑁(1)(𝑡)) (E.22)

with 𝑎 ≡ 𝑘(a) + 𝑘(f). Equation E.22 is a ordinary, inhomogeneous differential equation of

1st order and the individual solutions to the homogeneous 𝑁(1,H)(𝑡) and inhomogeneous

part 𝑁(1,P)(𝑡) are:

𝑁(1,H)(𝑡) = 𝐴 𝑒−𝑎𝑡 (E.23)

𝑁(1,P)(𝑡) = 𝑁(1,e) (E.24)

𝑁(1)(𝑡) = 𝑁(1,H)(𝑡) + 𝑁(1,P)(𝑡) (E.25)

which together with the starting condition 𝑁(1)(𝑡 = 0) = 0 and Equation E.25 yields:

𝑁(1)(𝑡) = 𝑁(1,e) (1 − 𝑒−𝑘𝑡) (E.26)
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Figure E.11: DSAX SNR Improvement by ISM. (I-II) radialsum profile over average images.

(III-IV) radialsum with moving average from 1 noisy image.

e.6 snr in dsax-ism

Previous SAX implementations are based on a CLSM measurement setup as described

in Section E.1. In this section, the combination of SAX with a ISM scheme, leading to the

dSAX-ISM method, to improve SNR will be explored. Thus, SAX and dSAX-ISM results

will be compared.
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Figure E.12: DSAX SNR Improvement Images.Images used for Figure E.11. (I) for high-SNR,

(II) low-SNR case. a) 𝑀(NL1)
𝐶𝐿𝑆𝑀, b) 𝑀(NL2)

𝐶𝐿𝑆𝑀 c) 𝑀(NL1)
𝐼𝑆𝑀 , d) 𝑀(NL2)

𝐼𝑆𝑀 . Per Image the upper

row: real space, lower row: Fourier transform of respective upper row image-parts.

In each for a)-d) left colum: simulated, noisy image; right: low-pass-filtered at

cut-off frequency of 𝑀(NL2).

In the simulation, some parameters have been changed compared to Section E.2.2 as

follows: the detector array now has [5, 5], the detector pixel pitch is 𝑑(pin) = 0.25 𝐴𝑈 and

the quantum efficiency fluorophore density product 𝑄(e)𝐶(F) is reduced by 100× for higher

SNR and increased by 10× for lower SNR. For noise statistics analysis, 100 realizations of

the same measurement process are performed.

For analysis of the SNR (Equation 1.33) improvement by the ISM over the CLSM

scheme, the cut-off frequency in Fourier space is investigated, see Figure E.11II. For this,

the images are Fourier transformed, the transforms are divided into radial bins and

averaged within them. Here 𝑁(bins) = 32, i.e. half of the lateral image size, was used. The

projection thus determined was then noise-normalized (noise-baseline, purple dashed

line) and the first value of 𝑀(NL2)
𝐶𝐿𝑆𝑀 (dark red curve) lying below the noise-baseline is

considered to be indistinguishable from the noise-floor. Therefore, the corresponding

cutoff frequency 𝑘(C,CLSM) (vertical red dashed line) is chosen one simulate frequency

point lower. Analogously, 𝑀(NL2)
𝐼𝑆𝑀 (dark blue curve) with 𝑘(C,ISM). The area, starting from

𝑘(C,CLSM) is colored in a lighter red tone, correspondingly the area starting from 𝑘(C,ISM) in
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𝑀(1) 𝑀(2) 𝑀(3) 𝑀(𝑁𝐿1) 𝑀(𝑁𝐿2)

CLSM 179 190 218 149 136

ISM 150 154 165 130 121

1-ISM/CLSM 16 19 24 13 11

Table E.3: DSAX FWHM of SNR Improvement by ISM. Calculated FWHM from simulated,

noise-free PSF. First two rows in 𝑛𝑚, last in %.

a lighter blue tone. Thus, it is directly evident which curve has a higher cutoff frequency.

From this cutoff area, the resolution and SNR improvement between the two schemes can

be read. The area from the highest cutoff frequency achieved is colored gray, indicating that

these frequencies cannot be distinguished from the noise floor for either technique. The

light gray curve in the upper part of the image indicates the underlying object spectrum

and is freely scaled.

The left column of Figure E.11 (i. e. (I),(III)) shows the results for the high-SNR sim-

ulation, the right column the results for lower-SNR simulation. For 100 realizations in

the high-SNR case, the cutoff frequencies are 𝑘(C,CLSM)/𝑘(C,ISM) = 0.83× (see Figure E.11I)

while for the low-SNR case for the cutoff frequencies 𝑘(C,CLSM)/𝑘(C,ISM) = 0.77× holds

(see Figure E.11II). 𝑘(C,ISM) ≈ 3𝑘(Abbe) for high-SNR and 𝑘(C,ISM) ≈ 2𝑘(Abbe) for low-SNR.

For e. g. 𝑘𝑥 ≈ 2𝑘(Abbe), the transfer ratio of the two techniques in the high-SNR case is

𝑀(NL2)
𝐼𝑆𝑀 /𝑀(NL2)

𝐶𝐿𝑆𝑀 ≈ 1.059× and in the low-SNR case at 𝑀(NL2)
𝐼𝑆𝑀 /𝑀(NL2)

𝐶𝐿𝑆𝑀 ≈ 1.007×.

In the case of evaluating a single noisy image, the maximum reconstructable cutoff

frequency decreases by 8% for ISM and 16% for CLSM in both noise analyses (see Fig-

ure E.11III, Figure E.11IV). In addition, moving averages 𝑀 were calculated for these

plots with a window-length 𝑤 = 4 𝑝𝑖𝑥𝑒𝑙𝑠 ≈ 0.67𝑘(abbe). In particular, due to the sharp

drop of the frequency curve to the respective cutoff frequency, the weighted averag-

ing gets a momentum and falls below the noise floor only at higher frequencies than

the non-averaged curves. In the case of high-SNR, the cutoff frequency of 𝑀
(NL2)
𝐶𝐿𝑆𝑀 is

𝑘(C,CLSM,avg) ≈ 3.47 ⋅ 𝑘(Abbe) and of 𝑀
(NL2)
𝐼𝑆𝑀 at 𝑘(C,ISM,avg) ≈ 3.63 ⋅ 𝑘(Abbe). The transfer ratio

at 𝑘𝑥 ≈ 2𝑘(Abbe) is 𝑀
(NL2)
𝐼𝑆𝑀 /𝑀

(NL2)
𝐶𝐿𝑆𝑀 ≈ 1.036×. For the low-SNR case, the cutoff frequency

of 𝑀
(NL2)
𝐶𝐿𝑆𝑀 is 𝑘(C,CLSM,avg) ≈ 1.98 ⋅ 𝑘(Abbe) and of 𝑀

(NL2)
𝐼𝑆𝑀 at 𝑘(C,ISM,avg) ≈ 3.14 ⋅ 𝑘(Abbe). The

transfer ratio at 𝑘𝑥 ≈ 2𝑘(Abbe) is 𝑀
(NL2)
𝐼𝑆𝑀 /𝑀

(NL2)
𝐶𝐿𝑆𝑀 ≈ 1.015×.
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The simulated data are shown in Figure E.12I for high-SNR and in Figure E.12II for

low-SNR. Each individual image, e. g. Figure E.12I a), consists of four subimages, all

normalized to their individual maximum. Top left: Image in real space, top right: SNR low-

pass filtered with the particular 𝑘(C), bottom row: Fourier transformed representations of

the top row. Hence the panels display: a) SNR from 100 realizations (see e. g. Figure E.11I)

for CLSM, b) same for ISM, c) one randomly chosen image from the 100 realizations

(see e. g. Figure E.11III) for CLSM, and d) same for ISM. Due to the higher SNR of ISM

compared to CLSM, the struts of the spokes2d target can still be well separated, especially

for smaller radii.

A comparison of the FWHM of simulated, noise-free PSFs shows the relative resolution

gain of ISM over CLSM, see Table E.3. For increasing saturation of PSF, the resolution

gain increases by up to 24% for 𝑀(3) by ISM, while it increases progressively less towards

higher reconstructed nonlinear orders. Thus, for 𝑀(NL2) only a resolution gain of 11% is

achieved.
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8. Talk (invited) | Group Seminar, Bowman-Lab, Bath University, 07/19,Bath, UK

9. Talk and Workshop (invited) | Janelia Research Campus (HHMI), 09/19,Loundoun

County, VA, USA

10. Talk and Workshop (invited) | UC2 Workshop for the NORMIC Association Oslo,

01/2020,Oslo, Norway

g.4 conducted workshops, challenges and hackathons

1. Challenge | UC2-Edu goes AR, Innovation Methods in Physics, 04/21, Jena, Germany

2. Workshop | Build your own microscopy using the open modular optical microscope toolbox

UC2, 5th NorMIC Workshop on Microscopy Image Processing, 01/20, Oslo, Norway



G.5 awards and scholarships 205

3. Workshop | Build your own microscopy using the open modular optical microscope toolbox

UC2 | Junior Scientist Workshop on Biological Optical Microscopy, 09/19, Loundoun

County, VA, USA

4. Challenge | VDI Photonik Akademie, 07/19, Jena, Germany

5. Hackathon | Build your own light-sheet microscopy-based on the open modular optical

microscope toolbox UC, The Day of Light, 05/19, Lichtwerkstatt, Jena Germany

g.5 awards and scholarships

1. Scholarship | 2010, Studienstiftung des deutschen Volkes

2. Scholarship Tokubetsu Choukousei | 2013, Reitaku University, Japan

3. Scholarship Joint Japan Research | 2018, Studienstiftung des deutschen Volkes and

RIKEN Japan

4. Innovation-Price | 2018, Leibniz Institute IPHT Jena

5. 1. price of Hot Stuff Award | 2019, Digital Innovation Hub Photonics (DIHP), Jena

6. Special honor for employee commitment | 2019, Leibniz Institute for Photonic Tech-

nology e.V., Jena, Germany

7. 8th Leibniz Founder’s Award | 2021, Leibniz Association, Berlin, Germany
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