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Abstract: The question of how energy resources can be efficiently used is likewise of fundamental
and technological interest. In this opinion, we give a brief overview on developments of harvesting
solar energy across different length scales and address some strategies to tackle economic and
ecological challenges, in particular with a view to sustainability and toward a circular economy.
On the mesoscopic scale, the emergence of thermodynamic laws in open quantum systems is of
central importance and how they can be employed for efficient quantum thermal machines and
batteries. The broad tunability of band gaps in quantum dot systems makes them attractive for
hybrid photovoltaic devices. Complementary, machine learning-aided band gap engineering and the
high-throughput screening of novel materials assist with improving absorption characteristics. On the
device scale, hybrid concepts of optical control via metasurfaces enable a multitude of functionalities
such as a directed re-emission of embedded photoluminescent materials or field enhancement effects
from nanostructures. Advanced techniques in computational nanophotonics concern a topology
optimization of nanostructured layers together with multiobjective optimization toward specific light
management tasks. On the industrial level, modern manufacturers explore 3D printing and flexible
solar cell platforms obtained from roll-to-roll technologies. The remote control of solar parks through
applications via the Internet of Things opens up new strategies to expand to difficult terrain where
human interaction is only required to a limited extent.

Keywords: heat engines; photovoltaic absorbers; energy storage; sustainability; energy-efficient
industry

The second law of thermodynamics states that heat cannot be entirely converted
into work entailing, thus, an upper bound on energy conversion. While mesoscopic
heat engines [1–3] may operate near Carnot efficiency, they are notoriously lacking a
high power output. Away from such quasi-reversible conditions, the heat flow [4,5] and
therewith the power generation exhibit an upper bound as well, suggesting control knobs
for their optimization [6,7]. In the case of solar energy harvesting, the conversion efficiency
regarding conventional single-gap solar cells is limited, as established by Shockley and
Queisser [8], to roughly 31%. Multiple-gap devices may extract up to 70% from the solar
energy under normal sunlight exposure turning it to electrical work [9]. While single-
junction devices are known to achieve efficiencies near the Shockley–Queisser limit as in
the case of gallium arsenide thin-film solar cells [10,11], Geisz et al. [12] reported recently
that multi-junction devices using III–V compound semiconductors can feature efficiencies
of about 39 % under normal sunlight and about 47% under high optical concentration.

Such advances in solar energy conversion toward its theoretical limits are an important
step for photovoltaics (PV) as key technology for renewable energy harvesting. However,
the importance of further increasing the operational lifetime [13,14] and conversion ef-
ficiency of PV devices under varying climatic and seasonal weather conditions [15,16],
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reducing their fabrication costs across the whole value chain, and considering aspects
of recycling [17,18] in their overall environmental footprint cannot be underestimated.
This demands a joint effort of different scientific communities starting from atomic-scale
material science up to industrial-scale system optimization [19]. Bridging these scales plays
a vital role in the future success of novel photovoltaic technologies and requires novel
multiscale modeling and characterization approaches.

The exploration of novel materials on the mesoscopic scale is a promising route
to improve material response [20] and discover innovative material concepts such as
perovskites solar cells [13,21,22], spectral conversion in rare-earth doped thin films [23],
and conductive nitrides [24,25] exploiting plasmonic effects with reduced absorption losses.
Such hybrid concepts allow boosting intrinsically low quantum efficiencies in solar energy
devices. As an example, energy conversion processes such as up- and down-conversion, as
illustrated in Figure 1 for crystalline silicon c-Si, make light far beyond the (double) band
gap of the base material accessible to photovoltaic devices through multi-photon processes.
Quantum dot photoluminescence as well as emission by rare-earth doped glasses [23] are
great candidates to serve as spectral converters in novel layers. It is projected for standard
crystalline silicon solar cells that layers with spectral converters or nanoparticles can add
another 2 to 3 percentage points to the energy conversion efficiency further enabling
thin-film technologies and increasing their competitiveness with conventional as well
as other regenerative energy sources [19]. The characterization of material systems and
interfaces involving photon, electron, and plasmon dynamics as well as the study of intrinsic
transport and absorption rates are of particular interest. High-throughput computational
design [26,27], machine learning optimized property prediction [28–30], and screening [31]
supplements the band gap engineering [32,33].
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Figure 1. Solar irradiance S according to the global standard spectrum AM1.5g together with the
solar power absorbed by undoped crystalline silicon Ac−Si bulk material. The (indirect) band gap
energy Eg of silicon is highlighted together with the double band gap edge. Spectral converters allow
re-emitting light toward the photo-active spectral region of a solar cell. The transfer of energy to
higher (up-conversion) or lower (down-conversion) energies via multi-photon processes can boost
absorption in the solar cells when re-emitting light closer to the Si band gap edge employing quantum
dots, rare earths and other materials.

On the device scale, promising photo-active materials are combined with particles,
metamaterials and surfaces, adding concepts of optical control to light harvesting in order
to exploit scattering, waveguiding and local field enhancement effects [34,35]. Nanoparticle
fabrication techniques [19,36] have made tremendous advances in the past decades, in
chemical synthesis (etching), lithography, self-assembly through (laser) annealing, and
nanoimprint [37]. Typically, self-assembly and chemical synthesis strategies yield random
nanoparticle distributions at reduced costs, while lithography techniques allow for high
precision in geometrical size, shape, and placement within nanometer resolution. Near-
field effects play an important role when exploiting nanostructured surfaces within solar
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cells. Engineering their interface is necessary in order to generate high local fields at
both absorption and re-emission energies. Ultimately, metasurfaces with a multitude of
functionalities such as the directed re-emission of embedded photoluminescent materials
would be highly beneficial. The integrated electro-optical modeling of solar cells needs to
address doped semiconductors and interaction effects between free carriers, such as free
carrier absorption [25]. Components in large-scale, electro-optical devices and photonic
circuits are subject to interaction phenomena stemming from light–matter coupling at the
nanoscale. The study of integrated semi-classical theories addressing electron–electron,
electron–photon and electron–phonon interactions is essential for an accurate description
of applications with nanoscale features and complex mesoscale dynamics while at the same
time maintaining feasible computational times.

Within computational nanophotonics, a multitude of numerical approaches are avail-
able each with its very own advantages and disadvantages [38]. Electrodynamics is in
itself multiscalar from isolated nanoparticles to large-area, multi-layered devices. One
major aim in multiscalar, integrated modeling of electro-optical devices is to maintain
the computational advantages and availability of existing analytic and numerical tools.
Spectral tuning of the scattering properties of nanostructured surfaces is vital to avoid
detrimental effects due to absorption in additional front surface layers. Nanoparticles are
efficient subwavelength scatterers improving the light trapping effect and, in particular,
metal nanoparticles provide large local fields enhancing charge carrier generation, absorp-
tion, and light-induced effects from other nanostructures such as spectral conversion and
photoluminescence. Purely optical modeling is challenged by the mutual electronic interac-
tion of doped semiconductor layers, nanoparticles and other photo-active nanostructures,
mesoscale electron dynamics and thermal effects that are not captured in classical electro-
dynamics and standard techniques. A key task is, thus, the integration of electro-optical
effects and combined electro-optical coupling. Semi-classical approaches toward mesoscale
electron dynamics allow maintaining the advantages of nanophotonic modeling through
extended theories [39,40]. Topology optimization [23,41] together with multiobjective opti-
mization [42,43] allow specifying light trapping goals toward broadband absorption for
solar technologies. Imprint and template technologies [37] enable the mass fabrication of
optimized surface morphology designs at strongly reduced costs once an optimized design
has been found. Beyond the performance optimization of photovoltaic devices, the aging
due to solar irradiation [44,45] and its mitigation [13,46] is an active field of research having
an impact on the materials eventually used.

Large-area additive manufacturing schemes such as 3D printing and roll-to-roll tech-
nologies [47] for both solar concentrators [48] and solar cells themselves [49–51] have
increased the accessibility to renewable solar energy applications at an industrial level.
Dealing with solar cell modules in both private households and on corporate property, the
storage and power distribution of renewable energies pose major challenges [52,53]. Here,
next to highly efficient solar cell modules, novel battery technologies are needed [54–56].
Solar parks placed in deserts or facilities on mountain ranges and other locations providing
optimum geographical solar irradiation in barely developed areas can strongly benefit from
the practical advances being made in connection with remote facility control and the Internet
of Things [57]. The dramatic reduction of on-site staff necessary to run, control and maintain
such facilities enables building regenerative energy factories in remote areas. Combining
local performance monitoring with the Internet of Things allows automated, in situ error
correction and feedback control systems that are manageable with little human interaction.

The effective recycling of solar cell modules fully or partially is an ongoing challenge
concerning all scales which starts with material choice, continues with module produc-
tion and extends toward the end of their operational lifetime [17]. Nowadays, the high
efficiency and stability of solar cell technologies are tied to the usage of toxic compounds,
non-recyclable and scarce materials, and research into the sustainability of these technolo-
gies is still modest. Ideally, future research efforts will jointly aim toward a circular PV
economy, i.e., manufacturing of solar cells from recycled materials, avoidance of waste
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during the production process, increasing the possibility to repair or refurbish aging cells,
as well as reusing parts in remanufacturing strategies [18]. Some PV technologies allow
extending the cell’s lifetime where, e.g., the rehydration of electrolyte-based platforms such
as dye-sensitized solar cells [58,59] would enable their continued usage in agriculture or
outdoor settings.

We wish to highlight some advances in photovoltaic technologies bringing together
different scientific communities as recently published in the special issue Advances in
Photovoltaic Technologies from Atomic to Device Scale that we guest edited. Indium phos-
phide nanodisk array coatings for thin-film silicon based solar cells are proposed by
Kjellberg et al. [60] as an antireflective layer with the purpose of improving the solar cell’s
absorption efficiency in the visible spectrum. The coatings themselves enable the genera-
tion of minority carriers being accessible for charge extraction. Building-integrated photo-
voltaics considers PV devices as construction and design elements imposing further require-
ments on their functionality and aesthetics. Against this background, Amores et al. [61]
investigate titanium dioxide nanoresonator arrays for solar cell glass covers in order to
integrate structured coloring into the devices as well as to reduce the UV transmittance. The
latter targets the enhancement of the devices’ lifetime expectancy. Yang et al. [62] present a
novel approach to prepare high-quality perovskite photoelectric devices by incorporating
cesium lead iodide quantum dots. The authors experimentally prove that the quantum dots
can passivate defects in the perovskite’s active layer, improving its morphology and there-
with the device’s performance. Furthermore, the environmental stability of the perovskite
film is increased. Last but not least, Jian and Cao [63] discuss how to identify parameters
of photovoltaic devices from measured current–voltage characteristics by mapping them
to an effective model. This allows a comparison of the performances of distinct setups
on equal footing under environmental conditions and enables to infer temperature and
irradiation effects.

We hope the special issue related to this opinion piece is inspiring and instrumental
for further research on photovoltaic devices.
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