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Abstract: Data fusion aims to provide a more accurate description of a sample than any one source
of data alone. At the same time, data fusion minimizes the uncertainty of the results by combining
data from multiple sources. Both aim to improve the characterization of samples and might improve
clinical diagnosis and prognosis. In this paper, we present an overview of the advances achieved
over the last decades in data fusion approaches in the context of the medical and biomedical fields.
We collected approaches for interpreting multiple sources of data in different combinations: image to
image, image to biomarker, spectra to image, spectra to spectra, spectra to biomarker, and others. We
found that the most prevalent combination is the image-to-image fusion and that most data fusion
approaches were applied together with deep learning or machine learning methods.

Keywords: data fusion; ultrasonography; single photon emission computed tomography; positron
emission tomography; magnetic resonance imaging; computed tomography; Raman spectroscopy;
MALDI imaging; mammography; fluorescence lifetime imaging microscopy; deep learning; ma-
chine learning

1. Introduction

Data fusion refers to the combined analysis of data sets that contain multiple types of
data. The main reason for this approach is a comprehensive characterization of the sample,
which is often not possible with a single data type or a single analytical method alone. For
example, malignant tumors are difficult to detect with one measurement method, e.g., data
type, due to various reasons such as low specificity and low benign predictability [1]. So,
data fusion makes it possible to obtain extended information about a sample, leading to a
better prediction, e.g., to a more accurate diagnosis of a patient. This review summarizes
different data fusion schemes based on deep learning and classical machine learning ap-
proaches over multiple measurement techniques including ultrasonography, single photon
emission computed tomography, positron emission tomography, magnetic resonance imag-
ing, computed tomography, Raman spectroscopy, MALDI imaging, mammography, and
fluorescence lifetime imaging microscopy.

Generally, data fusion can be classified into three categories: pixel-level, feature-
level, and decision-level fusion. Pixel-level fusion is a direct process that combines the
data from multiple sources. Fusion at the feature level utilizes machine learning and
statistical approaches for combining the features extracted from different data types. The
combination of variables, which are associated with decision rules, is referred to as decision-
level fusion. Typically, the data fusion process of biomedical data involves a number
of preprocessing steps, such as temporal and spatial alignment, noise and background
removal, dimensionality reduction, and handling of missing data [1].

Various algorithms are employed in biomedical image fusion experiments resulting
in an improved prediction of properties of biomedical specimen, thereby the enhanced
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effectiveness of clinical functions are demonstrated [2]. In pixel-level fusion, the pixels of
the images should overlap with each other and carry information about the same sample
regions. For example, microscopic and macroscopic images can be fused, whereas the
combination between ultrasound images and a mammogram is more problematic because
it is impossible to co-register pixels. This results from a highly different scale and field of
view of both imaging techniques. The process of feature fusion entails extracting features
from different image modalities before performing the fusion itself. Feature-level fusion
reduces data preprocessing, including the alignment of the image data. The methods used
for traditional data fusion are fuzzy logic, wavelet transforms, neural networks, support
vector machines, and morphological approaches [2]. Besides these classical approaches,
deep learning methods with multiple inputs can be used that fuse features in the network.

Combining data on high-level, or decision-level fusion also requires feature extraction.
From the extracted features, the local-level decisions/predictions are made. In the decision-
level fusion, these decisions/predictions are fused to form a decision/prediction for the
fused data. Here, an overview of image fusion can be found in Figure 1.
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the decision achieved with a single modality alone. Adapted with permission from reference [3],
2021, Elsevier.

There are three main sections in this review paper. A brief introduction of data fusion
and different data fusion methods are offered in Section 1. Multiple data types including
ultrasonography, single photon emission computed tomography, positron emission tomog-
raphy, magnetic resonance imaging, computed tomography, Raman spectroscopy, MALDI
imaging, mammography, and fluorescence lifetime imaging spectroscopy are widely used
for the data fusion technique. An overview of these different data types is covered in
Section 2. Lastly, the techniques and algorithms based on deep learning and machine
learning as well as the combination of multimodal data: image, spectra, biomarkers, etc.
are discussed in Section 3.

2. Overview of Data Types

Ultrasonography, single photon emission computed tomography, positron emission
tomography, magnetic resonance imaging, computed tomography, Raman spectroscopy,
MALDI imaging, mammography, and fluorescence lifetime imaging microscopy are the
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most popular imaging modalities employed in different organ investigations. These vari-
eties of modalities are used in lung disease investigation, bone marrow inspection, prostate
cancer detection, breast area projection for breast cancer, brain imaging conduction [2], and
oral cancer identification [4].

From the perspective of application levels, we can group these imaging modalities
in different levels: screening, diagnostic, cellular, or molecular. The screening techniques
detect diseases earlier and make the monitoring of potential health risks possible. Di-
agnostic techniques narrow down the diagnosis and help physicians to create the most
effective treatment plans that improve patient outcome. Additionally, at the cellular level,
the specific responses onto stimuli or local changes are detected, which helps to obtain
better understanding of the diseases in the academic research context. In the clinical context,
cellular-level techniques make it possible to differentiate specific tumor types or to detect
and visualize margins of different tissue types. Selected techniques can even detect changes
on a molecular level, going even deeper into the analysis of patient samples. In such cate-
gorizations, most techniques can operate in multiple levels. Thus, cellular response is often
used as a diagnostic marker and many techniques are used for screening and diagnostic
purposes with only minor adjustments. Hence, information, received from different sources
at different levels can be fused and play a significant role in academic research and clinical
contexts. In general, getting the information on a molecular level makes the techniques and
the results more interesting in basic research. So, depending on how expensive and fast the
technique is, it can also be transferred to clinical contexts. Additionally, for clinical contexts
it is important to have robust and stable techniques. Thus, different types of data can be
combined to provide a better characterization of diseases. A brief introduction of all the
data types is presented below.

2.1. Ultrasonography

Ultrasonography is a screening level [5] non-invasive, radiation-free, cost-effective,
and real-time medical imaging technology that is widely used in gynecology and echocar-
diography. It is a low-cost imaging technique compared to other medical imaging tech-
nologies. Due to the low resolution of images created by reflecting ultrasound waves,
ultrasound images are contaminated by numerous types of noise. This negatively affects
the tissue features [6]. Several filtering techniques have been used to reduce speckle noise
in medical ultrasonography, including median filters, wiener filters, adaptive filtering
techniques, and transform-based techniques such as Fourier transform, wavelet transform,
and Hilbert transform [7].

2.2. Single Photon Emission Computed Tomography (SPECT)

SPECT is a noninvasive way of analyzing cerebral blood flow (as an indirect marker
of neuronal activity) and can be used for research and clinical diagnosis (monitoring brain
and heart diseases and infections) [8]. This technique provides information on the cellular
or molecular level [5]. In SPECT imaging, increasing sensitivity without sacrificing image
quality is the most challenging problem. In order to improve the resolution and image
quality, post-processing techniques must be used to reduce the signal noise [9].

2.3. Positron Emission Tomography (PET)

Positron emission tomography, commonly called PET imaging or PET scan, is an
incredibly valuable form of nuclear medicine imaging. This type of molecular imaging [5]
has a plethora of functions in radiology research for brain diagnostics and treatment.
By demonstrating the effects of fixed motion in image restoration and enhancing the
design of the detector, a unified approach to lowering limits is commonly used. A unique
understanding of the imaging of molecules is often desired as an advantage of positron
emission tomography images [10].
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2.4. Computed Tomography (CT)

Computed tomography, also called CT scan, is a popularly used screening technique
for obtaining 3D images of body organs [5]. Earlier lung cancer detection is possible by
the application of a model based on CT scan images [11]. Image processing techniques
for CT scans include median filtering, thresholds, pre-processing, image erosion, and
feature abstraction design [11]. It provides a higher level of contrast resolution and is less
expensive, but it exposes patients to a higher level of radiation.

2.5. White Light Microscopy

Microscopy is progressively used in biological research and clinical practice to achieve
information on the cellular and molecular level [12]. The method has the ability to observe
a wide range of biological activity in living cells. However, it has a lower resolution and
can only be used with the presence of light. In clinical pathology, it is used for imaging
large areas rapidly and nondestructively in 3D and core biopsy [13].

2.6. Macroscopic Imaging

Digital cameras are commonly used to keep track of samples and make documentation
easier. Anyone can easily acquire photos of the suspected body part, which makes this
technique the most accessible nowadays. These images, which are non-uniformly lit, are
known as macroscopic images [14]. They can be used in both application schemes for
screening and diagnostics. These images are helpful in development management because
they allow easy comparison when detecting changes in shape, size, or color that indicate
the presence of early symptoms of malignancy.

2.7. Mammography

Mammography remains the most effective screening [15] test for detecting breast
cancer in women [16]. Mammographic images are difficult to work with because of their low
signal-to-noise ratio, which is typically 5–6 dB, equating to a noise level of 3–4 gray levels
in intensity [16]. It is an effective tool to reduce the risks of undergoing chemotherapy and
dying from breast cancer. However, it involves small amounts of radiation and sometimes
it leads to overdiagnosis [17].

2.8. Magnetic Resonance Imaging (MRI)

MRI is a medical imaging technique that scans the body using radio waves and it is
mostly utilized in the field of radiology. This diagnostic technique provides valuable infor-
mation on the screening level [5] for disease identification. It is an established diagnostic
method for detecting cancer, heart disease, bone, and muscular abnormalities. Medical
professionals can use MRI technology for the early detection of brain tumors [18].

2.9. MALDI-IMS

Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS)
is an emerging analytical technique. The technique is based on the ionization of sample
molecules and enables the fast detection of various biomolecular species in both biofluids
and tissues [19]. The ability to correlate molecular data with conventional histology contain-
ing the information of the spatial area of analytes after the mass spectrometric measurement
is a significant advantage of MALDI-IMS. It can also be used to distinguish between cancers
of different subtypes, stages, or degrees of metastasis, which is important for developing a
personalized, individually designed treatment regimen [19]. In clinical contexts, MALDI
is used for bacteria classification [20]. Although MALDI-IMS is more commonly used in
basic research, it also has a potential for clinical application [21]. Moreover, Figure 2 shows
mass spectrum generation.
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2.10. Fluorescence Lifetime Imaging Microscopy (FLIM)

FLIM is a fundamental tool for biomedical imaging which provides high-resolution
images of molecular contrast in living specimens. FLIM acquires not only morphological
but also functional information about a tissue by measuring fluorophores’ lifetimes over
time, which can be used to determine the state and malignancy of a sample [23]. It has
applicability for both the research and diagnosis of the skin, brain, mouth, etc. [24]. It is
more reliable than intensity-based approaches since fluorescence lifetime does not depend
on concentration, sample absorption, or thickness [25]. In Figure 3, fluorescence lifetime
imaging of mouse is seen.
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Figure 3. Fluorescence lifetime of mouse. The fluorescence lifetime image of A549-tumor in mouse
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jection. (b) Fluorescence lifetime (heatmap) of mouse abdomen acquired 90 min after intravenous
injection of LS-288. (c) FLIM maps of the weighted mean fluorescence lifetime. Reprinted with
permission from reference [25], 2020, Datta et al., doi:10.1117/1.JBO.25.7.071203.

2.11. Vibrational Spectroscopy

In medical diagnostics, vibrational spectroscopy involving Raman spectroscopy and
infrared spectroscopy (IR) are measurement techniques that may play a vital role. Raman
spectroscopy analysis has the potential to extract medical and metabolic information [26].
It is also a highly promising technique in biological applications due to its lack of sensitivity
to water [27]. IR spectroscopy uses the absorption of infrared light by molecular bonds
to detect vibrations in the sample. The method is effective for investigating changes in
the structure, function, and composition of tissues, cells, and biomolecules [28]. Fourier
transform infrared spectroscopy (FTIR) is a form of IR spectroscopy for obtaining informa-
tion about the presence of neoplasic, changes in biopsies, identifying bacteria, and types
of arthritis [29]. Vibrational spectroscopy provides information on both cellular [30] and
molecular [5] levels. These techniques are more often used in basic research [31], but they
have tremendous potential in clinical contexts too. However, the measurements have to be
further standardized before it can be routinely applied to clinical application.

2.12. Biomarkers

Biomarkers are a broad subcategory of medical signals that can be effectively observed
or measured and whose accuracy and reproducibility can be measured [32]. Different
types of biomarkers have clinical accountabilities in conducting treatment decisions and,
depending on their subcategory, can be either diagnostic, prognostic, or predictive. The
discovery of biomarkers is an important research task that involves many methods, such
as proteomics and metabolomics [33]. In the scope of this manuscript, we only overview
the usage of single biomarkers that are already routinely used in clinical applications, so
they are represented as univariate data or multivariate data with a low number of variables.
Combining different biomarkers in such a scope leads to only a slight increase in data
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dimensionality and can be studied via multivariate data analysis methods, rather than data
fusion approaches. On the other side, combining biomarkers with image and spectral data
is less trivial and is described in the respective subsections of Section 3.

3. Different Data Fusion Techniques

Combining multiple data sources using data fusion schemes, aims to improve the
extraction of the information from the different modalities and to increase the reliability of
the interpretation. A data fusion can decrease prediction errors and increase the reliability
of the results. The data fusion schemes being discussed in this study have their advantages
and disadvantages. In the following Figure 4, we review a combination of multivariate
data of different dimensionality orders and univariate data where we explore how the data
are combined pairwise.
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3.1. Data Fusion of Image Data

Researchers use data fusion techniques to achieve better outcomes in detecting differ-
ent diseases as multiple modalities can contribute more sufficiently than a single modality.
Images can be combined in multiple ways: deep learning-based function, spatial domain,
or frequency domain, for instance. One of the image data fusion goals is to create images
that are more understandable to humans and machines alike. In Figure 5, we can see how
different image fusion techniques are used.

The combination of multivariate data of the second order of dimensionality (e.g.,
image data) can be seen from Figure 4A. Different types of medical images of human cells
and organs indicate different kinds of details and features. Several combinations, e.g.,
ultrasound with mammogram, CT with MRI, and many more combinations perform well
operating on different fusion levels, such as pixel-level, feature-level, and decision-level
data fusion. Examples of some combinations can be seen in Figure 6.



Molecules 2022, 27, 7448 8 of 21
Molecules 2022, 27, x FOR PEER REVIEW 8 of 21 
 

 

 
Figure 5. Image fusion techniques. Image fusion approaches with spatial and frequency domains 
indicate a variety of techniques and algorithms. Adapted with permission  from reference [35], 2021, 
Springer Nature. 

The combination of multivariate data of the second order of dimensionality (e.g., 
image data) can be seen from Figure 4A. Different types of medical images of human cells 
and organs indicate different kinds of details and features. Several combinations, e.g., 
ultrasound with mammogram, CT with MRI, and many more combinations perform well 
operating on different fusion levels, such as pixel-level, feature-level, and decision-level 
data fusion. Examples of some combinations can be seen in Figure 6. 

 
Figure 6. Data fusion as a result of different types of images. (A) Ultrasound and mammogram 
image fusion to detect breast cancer. (B) CT and MRI image fusion to provide high spatial quality 
of anatomical information and functional details of the diseases. (A) is reprinted with permissions 
from reference [36]. (B) is adapted with permissions from reference [37], 2008, Elsevier. 

In the context of medical diagnosis, there are many types of research that investigate 
image data fusion. Mishra et al. [38] studied a pixel-level fusion, where they applied a 
wavelet-based method and measured the fusion performance with a root mean square 
error (RMSE) and peak signal-to-noise ratio (PSNR) parameters. This technique yields 
promising results in terms of a lower RMSE and higher PSNR. Muzammil et al. [39] also 
described an approach on the same types of images utilizing a different method, the 
convolutional sparse image decomposition, at the pixel level. In another study, 

Figure 5. Image fusion techniques. Image fusion approaches with spatial and frequency domains
indicate a variety of techniques and algorithms. Adapted with permission from reference [35], 2021,
Springer Nature.

Molecules 2022, 27, x FOR PEER REVIEW 8 of 21 
 

 

 
Figure 5. Image fusion techniques. Image fusion approaches with spatial and frequency domains 
indicate a variety of techniques and algorithms. Adapted with permission  from reference [35], 2021, 
Springer Nature. 

The combination of multivariate data of the second order of dimensionality (e.g., 
image data) can be seen from Figure 4A. Different types of medical images of human cells 
and organs indicate different kinds of details and features. Several combinations, e.g., 
ultrasound with mammogram, CT with MRI, and many more combinations perform well 
operating on different fusion levels, such as pixel-level, feature-level, and decision-level 
data fusion. Examples of some combinations can be seen in Figure 6. 

 
Figure 6. Data fusion as a result of different types of images. (A) Ultrasound and mammogram 
image fusion to detect breast cancer. (B) CT and MRI image fusion to provide high spatial quality 
of anatomical information and functional details of the diseases. (A) is reprinted with permissions 
from reference [36]. (B) is adapted with permissions from reference [37], 2008, Elsevier. 

In the context of medical diagnosis, there are many types of research that investigate 
image data fusion. Mishra et al. [38] studied a pixel-level fusion, where they applied a 
wavelet-based method and measured the fusion performance with a root mean square 
error (RMSE) and peak signal-to-noise ratio (PSNR) parameters. This technique yields 
promising results in terms of a lower RMSE and higher PSNR. Muzammil et al. [39] also 
described an approach on the same types of images utilizing a different method, the 
convolutional sparse image decomposition, at the pixel level. In another study, 

Figure 6. Data fusion as a result of different types of images. (A) Ultrasound and mammogram
image fusion to detect breast cancer. (B) CT and MRI image fusion to provide high spatial quality of
anatomical information and functional details of the diseases. (A) is reprinted with permissions from
reference [36]. (B) is adapted with permissions from reference [37], 2008, Elsevier.

In the context of medical diagnosis, there are many types of research that investigate
image data fusion. Mishra et al. [38] studied a pixel-level fusion, where they applied a
wavelet-based method and measured the fusion performance with a root mean square
error (RMSE) and peak signal-to-noise ratio (PSNR) parameters. This technique yields
promising results in terms of a lower RMSE and higher PSNR. Muzammil et al. [39] also
described an approach on the same types of images utilizing a different method, the
convolutional sparse image decomposition, at the pixel level. In another study, Tamilselvan
et al. [40] combined pixel-level fusion with transform-based fusion and pyramid-based
fusion employing MRI and CT images. They used multiple parameters, and based on
the tentative results, some parameters, such as the mean difference, standard deviation,
average difference, and RMSE were the smallest, while the entropy, PSNR, and mutual
information were the largest. According to their experiment, they mentioned that it is likely
to have an improved outcome when using a dual-tree complex wavelet transform method
to diagnose MRI and CT images.
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From the previous discussion, we see that there are many investigations on pixel-
level fusion using MRI and CT images but there are some studies also that investigated
feature-level fusion over the same types of data. Rajkumar et al. [41] explained a feature-
fusion technique for more accurate pathological information from MRI and CT images and
they applied contourlet transform and redundancy discrete wavelet transform algorithms;
according to the result of the investigation, they noticed that the redundancy discrete
wavelet transform algorithm provides adequate information using an entropy metric
and the contourlet transform performed great in terms of overall cross-entropy metrics.
It is obvious to mention that there have been more studies on combining CT and MRI
images. A weighted average fusion technique on MRI and CT images was applied by
Agrawal et al. [42]. Their study included the dual-tree complex wavelet transform method
and they proposed an innovative technique for estimating the parameters of the wavelet.
According to them, a new method of fusion using convolutions of meridian distributions
in the wavelet domain provided the best results compared to other methods. There is
another research study on MRI and CT images where Nandeesh et al. [43] compared a
fusion strategy using curvelet transform, discrete wavelet transform, principal component
analysis, and stationary wavelet transform techniques. The performance of fusion was
evaluated with the RMSE, entropy, PSNR, and mutual information. The output of the
evaluation indicated that the curvelet transform method improves fusion performance as
the curvelet transform can discover features from the direction of edges and has a great
ability to analyze and track crucial image attributes. Kavitha et al. [44] also investigated
a fusion technique to improve the image content by fusing images such as CT and MRI
images to provide precise information to the doctor and clinical treatment. The images
were decomposed using integer wavelet transforms and then the wavelet coefficients were
fused using a neuro-fuzzy algorithm

Many authors also paid attention to fusing MRI and SPECT data. Tan et al. [45]
proposed an image fusion approach using a neural network fusion strategy where they
tested the fusion result using MRI and SPECT. Other than CT, MRI, SPECT, and PET, there
has been research on fusing other image data too. To mention some of them, a feature-level
fusion technique was offered with combining pairs of magnetic resonance imaging such
as T1, T2, and proton density brain images by Singh et al. [46] and to overcome the shift
variance problem of discrete wavelet transforms, they used redundant discrete wavelet
transforms. Adali et al. [47] also employed a similar fusion strategy with transposed
independent vector analysis and the joint independent component analysis methods to fuse
data from electroencephalography, structural MRI, and functional MRI. Along with the
mentioned combinations of data fusion, according to the studies, Raman spectra, MALDI-
IMS, microscopy, mass spectrometry, etc. are also popular measurement techniques in
the field of data fusion to achieve precise information about diseases. Bedia et al. [48]
illustrated an image fusion method in the combination of MALDI, infrared microscopy,
and RGB images. They analyzed these fused images implementing a multivariate curve
resolution alternating least squares (MCR-ALS) technique into biological tissue analysis.
Piqueras et al. [49] also found MCR-ALS to be a better method for simplifying external
spectral and spatial information and they tested their investigation of image fusion on
different combinations such as MIR with Raman and MSI with Raman data. Accounting
for the multi-component and global sparse representations of source images, Liu et al. [50]
also described a pixel-level medical image fusion technique using convolutional sparsity
analysis. Through different combinations of microscopy and IMS, Van de Plas et al. [51]
described an imaging modality that predicts the molecular distribution of tissue samples.
They used a partial least-squares (PLS) technique to model the distribution of measured
values from both images when spatially paired. Figure 7 illustrates how cross-modalities
can be applied to tissue samples using mass spectrometry and microscopy data.
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Figure 7. Fusion of microscopy and imaging mass spectrometry (IMS) to deliver microscopy’s spatial
resolution and chemical specificity of IMS, that is combining two different modalities to make more
accurate decision as single predicted modality. Reprinted with permission from reference [51], 2015,
Springer Nature.

In data fusion, the combination of images and edges are also seen in a similar way
as the image data fusion in Figure 4A. To combine the edge characteristics of sub-images,
Wang et al. [52] presented a study to conduct pixel-level image fusion by using wavelet
transformation algorithms to integrate multi-modal images and compared the fusion
effect on MRI and PET images. The comparison experiments were conducted using three
methods: high-pass filtering, weighted averaging, and traditional wavelet fusion. Moreover,
according to the explanation of the feature-based data fusion approach which was proposed
by Zhang et al. [53], they decomposed images from the source into two layers, detail layers
and base layers, employing a local binary pattern method to obtain features in low-levels.
Using saliency detection, the detail and base layers of the low-level features were used to
construct weight maps. The map was adjusted by the fusion of both layers for continuing
spatial stability among their corresponding layers and the images from the source. Then,
the final output fused image was created by recombining mentioned layers appending the
Laplacian pyramid, the discrete wavelet transforms, and the non-subsampled contourlet
algorithms. In the investigation, they used nine pairs of medical images, e.g., MI-1, MI-2,
MI-9 in testing image sets. The result of the testing image set MI-1 applying different
algorithms with their proposed method is demonstrated in Figure 8.

Image fusion techniques have been advanced with the invention of hybrid methods.
Hybrid imaging is the fusion of multiple imaging modalities to generate a new technique.
A new and powerful modality comes into force when the advantages of the fused imaging
technologies are combined. The hybrid approach improved diagnostic precision and
lowered radiation exposure. Vitor et al. [54] studied that, in comparison to well-established
PET/CT, PET/MRI offers a number of benefits, including excellent contrast and resolution
and less ionizing radiation. PET/MRI is thus a potential technique for oncologic imaging of
several locations, including the brain, head, neck, and liver. In another study, Sandulescu
et al. [55] investigated the combination of anatomic and molecular imaging modalities. They
mentioned real-time virtual sonography that combines ultrasound to contrast-enhanced
CT/MRI. However, hybrid methods have some limitations as well. Most of the information
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offered by PET and SPECT is functional and may not always be immediately related to
anatomical structures that are clearly identified. A significant drawback of these imaging
methods is the absence of high-contrast anatomical information in the SPECT or PET
data [56].
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In general, the fusion of images aims to combine information from different imaging
techniques applied to the same sample. The fused image will be more efficient in delivering
information and for further image processing techniques. However, the images fused at low
levels may produce spatial distortion, which is a negative factor for further processing. The
low-level image data fusion requires precise co-registration, which is especially challenging
if any manipulations with the sample are required between the measurements.

3.2. Deep Learning in Data Fusion

A wide use of deep learning techniques is noticed while investigating different meth-
ods of data fusion over multiple measurement techniques. In this section, we will discuss
the applications of deep learning with a combination that is parallel to Figure 4A. A rep-
resentative architecture described by Gao et al. [57] provides a good summary of the
deep learning data fusion models. They mentioned different networks in their reviews
such as a sparse autoencoder, convolutional neural network, deep belief network, and
recurrent neural network. They note that the models are still in the preliminary stages,
so challenges remain. They named redundant parameters as the first challenge of deep
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learning models that leads to large time consumption during training on large datasets. The
second challenge was that all the semantic information in the multimodal data cannot be
captured by the multimodal deep learning models, and the inconsistent data distribution
was mentioned as the third challenge. In a different study, Huang et al. [58] investigated
pixel-based data fusion where they combined electronic health records and medical imag-
ing using a deep learning technique and mentioned that training a different deep learning
model takes too long, and thus is insufficient for online multimodal data applications.
Another pixel-based image fusion approach incorporating a deep learning method into
the process was explained by Rajalingam et al. [59] for the fusion of multimodal medical
images such as MRI, CT, and PET. They have used a convolutional neural network and
claimed faster data processing and optimal visualization as the result of their investigations.
Guo et al. [60] suggested a feature fusion-based deep learning network using eight sets
of images, resulting in image quality, speed, and computing power. For the fusion, their
proposed Hahn-PCNN-CNN network stated various issues such as image quality, handling
power, and speed as these are still the concern of all investigators. The suggested net-
work consisted of three modules: extraction of features, the fusion of features, and image
modernization. In addition to the above fusion techniques, Iqbal et al. [61] developed an
image fusion method, and they used two different CNN models and a long short-term
memory (LSTM) when working with four modalities of MRI images to identify brain tumor
delineation. As a result of their methodologies, the individual accuracy score for ConvNet
was found to be 75%, the LSTM-based network was 80%, and ensemble fusion was 82.29%
accurate. As part of further investigation, deep CNN and two transfer learning algorithms
were utilized by Pradhan et al. [62] in a data fusion strategy for combining histology and
IHC-stained images. The strategy offers numerous features of tissue-related relapses of
breast cancer and the disease stage as well. Figure 9 demonstrates the data fusion approach
using transfer learning with images of five stains as inputs to a pre-trained model.
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Figure 9. Data fusion approaches using transfer learning strategy. (a) Using a pre-trained DCNN as
feature extractor prior to classic machine learning. (b) Multi-input DCNN with pre-trained network
used as feature-extraction layers. Reprinted with permission from reference [62], 2021, Pradhan et al.

A CNN-based image data fusion method can effectively combine local features. How-
ever, this model fails to take the presence of long-range dependencies in the images into
account [63]. One approach to overcome such a limitation is a transformer—a model with
a self-attention mechanism that can weigh inputs according to their importance. Vibashan
et al. [64] developed the transformer-based multi-scale fusion strategy that takes into ac-
count both local and global contexts. They trained an auto-encoder to extract deep features
at various scales, then fused those multi-scale features utilizing a spatio-transformer fu-
sion strategy. The advantage of such a combination is that the local features captured
by CNN and the remote semantic and global information captured by transformers are
complementary to each other. Wang et al. [65] studied the benefits of CNN and transformer
combination in order to completely utilize both the global and the local information for
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improving the segmentation of 3D medical images. Applying deep learning-based data
fusion strategies to biomedical data, researchers face issues that are generally common
for such an approach as well as the issues specific to the analyzed data types and tasks.
Stahlschmidt et al. [66] reviewed the issues that generally arise when analyzing biological
data using multimodal deep learning techniques. They discuss issues related to insuffi-
cient data quantity, low quality, temporal characteristics (missing data), and poor model
interpretability. As a possible solution, they suggest joint representation learning as prefer-
able approach to make the interactivity of different levels of biomedical data and transfer
learning overcome the sample size limitations.

3.3. Data Fusion of Image and Biomarker Data

The use of biomarkers in the research of cancer and development of drugs is crucial,
and they are frequently used in clinical trials. Both imaging data and biomarkers are used
routinely in the clinical context, but even when used together, they are typically processed
separately and then interpreted by physicians. Alternatively, second-order multivariate
(image) data and univariate data (biomarker, other clinical information, etc.) can be
combined (see Figure 4B) using high-level data fusion approaches. While investigating
data fusion, Metsis et al. [67] discussed how to use gene expression and MRS data for
brain tumor classification. They used naive bayes for metabolites and a combination of
information gain and wrapper features for genes and obtained the highest accuracy 87.23%.
In another study, to measure lung cancer risk, Gong et al. [68] used serum biomarkers
that were extracted from samples of blood and CT images. For the segmentation of lung
nodules using a computer-aided diagnosis, they used a four-step segmentation method
and computed 78 imaging features from each nodule segment of CT images. The serum
biomarkers were used along with features of the CT images to build two support vector
machine (SVM) classifiers. The obtained results were validated by oversampling, relief
feature selection, and leave-one-out cross validation of the SVM classifiers on an overall
dataset. They used an information-fusion method for combining the predictions generated
by the two SVM classifiers with a focus on the improvement of computer aided diagnoses;
the method includes the minimum, maximum, and weighting average data fusion. By the
same token, Fu et al. [69] used multimodal information fusion models to combine serum
biomarkers with 3D lung CT images to analyze the types of pulmonary nodules: squamous
cell carcinoma, adenocarcinoma, inflammation, and benign.

3.4. Data Fusion of Spectra Data

In both the medical and biomedical fields, hyperspectral imaging (HSI), which pro-
vides spectral and spatial information about samples at the same time, is receiving increas-
ing interest. Chemical components can be effectively represented by spectral information
and the spatial information can reveal the sample structure. Thus, the combination of spec-
tral and spatial information can improve the reliability of the disease analysis. Figure 4C
represents the combination of multivariate data of the first and second order. In the data
fusion context, there have been investigations on the combination of spectra with other
imaging modalities. Neumann et al. [70] explored (IR) Infrared spectroscopic imaging
and MALDI-IMS with a range of IR absorption bands where chemical sharpening of MS
images was possible. Thus, the optimum sharpening of ion images with minimal artifacts
was achieved. They were able to identify distributions of lipid, a functionally essential,
morphologically, and chemically complex tissue of the brain, thanks to the intrinsic spatial
agreement between these modalities. They employed the mid-level data fusion approach
for integrating information of chemicals and increasing the ability to distinguish struc-
turally relevant regions with k-means clustering. Because MALDI-IMS is a method of
ionization, there was no laser damage in the infrared images, allowing typical staining
methods. Another study by Attia et al. [71] described a method for monitoring the response
to infection by combining MALDI-IMS and MRI. Therefore, the combination of MALDI-IMS
and MRI allowed for the study of inflammation during infection for a biological approach.
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Research in the medical and biomedical aspects shows that the tissue samples are used in
scientific research to detect disease progression, drugs development, and improvement in
medical care. To integrate Raman micro spectroscopic imaging and (MALDI-IMS) matrix-
assisted laser desorption/ionization mass spectrometric imaging for tissue-based research,
Bocklitz et al. [72] built a computational approach where their results confirmed a spectral
histopathology based on Raman spectroscopy with MALDI-IMS and within the Raman
measured region. They used a PCA-LDA model to train tissue groups annotated by the
pathologist. Further tissue-based research was conducted by Rabe et al. [73] where they pre-
sented an integrated approach using MALDI-MSI and a non-destructive Fourier transform
infrared based on FTIR imaging for multimodal tissue analysis; their findings indicated that
MSI data acquisition and interpretation can be automatically guided by FTIR microscopy
without the need of a previous annotation of histopathological tissue. The combination of
MALDI-IMS with confocal Raman microscopy is an integral part of data fusion research.
An innovative approach of correlated imaging combining MALDI-IMS and confocal Raman
microscopy was introduced by Ahlf et al. [74] to investigate cell cultures of the operational
and chemical mixture inherent in 3D. The most chemically informative elements were
identified using principal component analysis and they were subsequently integrated using
the correlation of digital images. Each procedure of the primary components was shown
using the method, allowing them to be compared on comparable scales of spatial length.

Moreover, it is seen from the impact of data fusion investigations that, the data fusions
strategy plays a great role also in basic skin research, clinical dermatology, pharmacol-
ogy, and cosmetic research, as well as non-invasive blood detection. The study analyzed
by Caspers et al. [75] demonstrates the utilization of vivo confocal Raman spectroscopy
and confocal microscopy in conjunction with confocal scanning laser microscopy (CSLM).
Chen et al. [76] reported Raman and infrared Fourier spectroscopy diagnosis of thyroid
dysfunction in serum where they used a pattern recognition algorithm and PCA as the
best analytical model. According to them, the spectral fusion accuracy, particular infrared
spectral accuracy, and Raman spectral accuracy of SVM were 83.48%, 80%, and 78.26%,
respectively. Furthermore, research based on optical coherence tomography and Raman
spectroscopy was explained by Rangaraju et al. [77] and they have developed significant
efficacy in ex vivo skin, facilitating evaluation of the potential of coupled Raman spec-
troscopy and optical coherence tomography in vivo models. The combined efficacy of
RSOCT reported an overall mean accuracy of 85% and ROCAUC = 0.94 in identifying
injured wounds. Furthermore, Placzek et al. [78] explained the combination of the same
measurement technique for bladder cancer diagnosis, where the molecular and morpho-
logical features from the same location were acquired with co-registration, thus allowing
them to be correlated. Besides, in an investigation by Schie et al. [79], it is noticed that
a combination of Raman spectroscopy with different optical methods such as coherent
anti-Stokes Raman scattering microscopy, second-harmonic generation, autofluorescence
microscopy, stimulated Raman scattering (CARS) microscopy, spectroscopy, fluorescence
lifetime imaging, and others improve diagnostic performance and target cardiovascular
disease, inflammatory disease, and cancer.

To execute the data fusion strategy, these three kinds of data: fluorescence spectroscopy,
nuclear magnetic resonance spectroscopy, and liquid chromatography mass spectrometry
were framed as a tensor factorization and coupled matrix issue by Acar et al. [80]. They
discovered that utilizing the structure of low rank and higher-order data collections, tensor
factorization and the coupled matrix model may capture the basic factors successfully
during the period of structure revealing. The preliminary data revealed that there were
unshared and shared components, achieving 71.4% accuracy with some of the shared
factors in differentiating the two groups (with 63.6% sensitivity and 78.1% specificity).
Satish E. Viswanath et al. [81] investigated radiomics features from T2w MRI in vivo,
protein mass spectrometry features with histomorphometry features from histopathology,
and volumetric measurements from MRI and suggested that using kernel representations
with dimensionality reduction-based fusion could be the most successful. In Figure 10,
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the steps for dimensionality reduction-based multimodal data fusion are visualized. In
addition to the further research on fusion strategy, the pathophysiology of the brain was
evaluated by Porta Siegel et al. [82] using MRI and MSI to establish the correlation between
ex and in vivo molecular imaging modality. The modulation of insignificant peptides
and endogenous metabolites was assessed according to the disease status. In the MSI
community, it is observed that one of the major challenges is managing and interpreting
big data.
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Figure 10. Modality-specific scale and dimension differences are eliminated through knowledge
representation, which transforms each modality individually into a unified space. Resampling refers
to the generation of multiple representations and weighting considers individual characteristics of
the modalities. In order to achieve the best fused result from different modalities, complementary
information from every channel should be used. Reprinted with permission from reference [81], 2018,
Viswanath et al.

From the discussion above, we observe multiple fusion techniques over the combina-
tions of spectra data with different modalities. There are also lots of studies that include
fusion techniques on the combination of spectra and spectra data that are depicted in Fig-
ure 4D. First, Bocklitz et al. [83] used two techniques for a mouse brain with MALDI-TOF
and Raman imaging. The use and interpretation of complementary data were possible
when both techniques were used together. They also showed how to interpret Raman spec-
tra using spectrum information from MALDI-IMS studies. Similarly, Ryabchykov et al. [84]
investigated a data fusion strategy to combine Raman spectroscopy with MALDI-IMS data.
They showed that in order to uncover more spectral information, the weighting of data was
required in the fusion of the data. Weighting techniques were evaluated by assessing the
data variance described by PCA and visualizing the PCA findings for each of the data types
and the combination of the data. In Figure 11, we can see the type of fusion architecture
that they proposed.
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Figure 11. Different types of fusion architectures (A) Centralized, in which both types of data are
analyzed together after pre-processing. (B) Decentralized, where both types of data are analyzed
and predicted individually. (C) Distributed, where both types of data are analyzed independently
and after that both outputs of analysis are analyzed again and a prediction is made. Reprinted with
permission from reference [84], 2021, Ryabchykov et al.

Generally, there are different approaches in data fusion of image to spectra. There
might be a combination of one image to multiple spectra and for multiple images to one
spectrum. In this case, high-level and mid-level data fusions become more convenient for
image-to-spectra data fusion.

3.5. Data Fusion of Spectra and Biomarker Data

The combination of multivariate data of the first order (spectra) and the univariate data
of the zero order (biomarker, other clinical information, etc.) has been depicted in Figure 4E.
An analysis of leukocytes can show whether the host is responding to specific viruses or
is dysregulated in cases of sepsis. Ramoji et al. [85] used Raman spectroscopy to describe
individual peripheral blood leukocytes in order to diagnose sepsis and infections and they
utilized known clinical scores, biomarkers, and blood counts as reference diagnoses. Based
on Raman data binary classification models, they were able to discriminate between the
infected and non-infected patients as well as patients with or without sepsis with accuracies
comparable to those attained with recognized biomarkers. For an initial data review and
to depict the spectral separation of the clusters, logistic regression analysis was utilized
by them. In terms of spectra and biomarker combination, Bro et al. [86] reported that
combining biomarkers with fluorescence spectroscopy from plasma samples ensures the
capacities for the prompt diagnosis of colorectal cancer rather than a single marker. Hence,
data fusion is important to identify diseases with different modalities. Spectroscopic
measures are usually delivering information on the cellular or molecular level. In the
researched in vitro experiments, biomarkers may also deliver the information about the
specific cellular response, which can then be effectively combined with the spectral data.
The situation is rather different in the context of in vivo experiments or in the clinical
context. It is possible to receive an overview in the form of two different perspectives of two
different levels when spectroscopic techniques that provide information on the molecular
level are combined with biomarkers that provide information about the patient in general.
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4. Summary and Outlook

In medical and biomedical diagnostics, data fusion techniques combine multiple types
of data for predictive tasks such as disease detection. Thus, data fusion combines differ-
ent data types/modalities and enhances the efficiency and accuracy of a prediction with
respect to the prediction using a single modality. Researchers use various data fusion
methods that act on different levels: pixel-level, feature-level, and decision-level. With
these data fusion techniques, information can be fused on different levels and different
information represented by different data can be used at the same time. Beside classical
machine learning, deep learning methods also gained significant popularity in data fu-
sion investigations because they facilitate a flexible fusing and provide promising results.
Besides, the fusion of data encounters numerous methodological challenges. The major
unresolved challenge of data fusion in the biomedical area is limited data. In order to
overcome the challenge of limited data, we need models that can be utilized with small
training datasets. One possible way of resolving the data-size issue can be addressed
by sophisticated augmentation strategies. It is also possible to reduce the complexity of
data-by-data standardization and the dimensionality reduction that can be handled by data
pre-processing and feature engineering, selection, or extraction. Another challenge is the
development of sample-size-planning (SSP) approaches suitable for multivariate and image
data. SSP is not trivial even for multivariate data [87], but in the case of combining different
data types, the complexity of the task increases even further. Additionally, data conflict can
be introduced in different data fusion schemes and sincere attention is needed to face the
challenges in data fusion. These challenges can be addressed with data adjustment, data
association, and data structure preparation. Nevertheless, these challenging circumstances
are acceptable because a comprehensive view of the sample can be gained.

This review paper presents studies on data fusion for different measurement tech-
niques and imaging approaches including ultrasonography, single photon emission com-
puted tomography, positron emission tomography, magnetic resonance imaging, computed
tomography, Raman spectroscopy, MALDI-IMS, mammography, and fluorescence lifetime
imaging microscopy. As the capability of data fusion is huge and depends on the task and
data types involved, systematic studies are needed. These systematic studies should clarify
which data fusion scheme, data fusion levels, and machine learning methods are optimally
suited to solve a given task. Additionally, larger datasets are needed to investigate data
fusion techniques and improve them. Besides the challenges, the gains achieved by data
fusion, e.g., the usage of different information to describe samples comprehensively, are
perfect for improving data-driven models in biomedical tasks.
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