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Abstract: Malignant melanoma is a very aggressive tumour 

with the ability to metastasize at an early stage. Therefore, 

early detection is of great importance. Multiphoton 

tomography is a new non-invasive examination method in the 

clinical diagnosis of skin alterations that can be used for such 

early diagnosis.

In this paper, a method for automated evaluation of 

multiphoton images of the skin is presented.

The following features at the cellular and subcellular level 

were extracted to differentiate between malignant melanomas, 

lesions, and healthy skin: cell symmetry, cell distance, cell 

density, cell and nucleus contrast, nucleus cell ratio, and 

homogeneity of cytoplasm. The extracted features formed the 

basis for the subsequent classification. Two feature sets were

used. The first feature set included all the above-mentioned 

features, while the second feature set included the significantly 

different features between the three classes resulting from a 

multivariate analysis of variance. The classification was

performed by a Support Vector Machine, the k-Nearest 

Neighbour algorithm, and Ensemble Learning.

The best classification results were obtained with the Support 

Vector Machine using the first feature set with an accuracy of 

52 % and 79.6 % for malignant melanoma and healthy skin, 

respectively.

Despite the small number of subjects investigated our results 

indicate that the proposed automatic method can differentiate 

malignant melanoma, lesions, and healthy skin. For future 

clinical application, an extended study with more multiphoton 

images is needed.

Keywords: skin neoplasm, nevus, skin cancer diagnosis, 

multiphoton fluorescence microscopy, biomedical image 

processing, machine learning

1 Introduction

Malignant melanoma is a highly aggressive tumour 

metastasising at an early stage and potentially leading to death. 

For this reason, early detection of malignant melanoma and 

differentiation from other skin lesions is of great importance 

for treatment and prognosis. The gold standard for the 

diagnosis of malignant melanoma is a visual inspection of the 

whole body, which requires the appropriate experience of the 

physician. Abnormalities are further investigated by 

dermoscopy and clarified with a biopsy with subsequent 

histopathological analysis of the removed tissue [1].

Multiphoton tomography is a new non-invasive 

examination method in the clinical diagnosis of skin lesions

based on the specific excitation of endogenous fluorescent 
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molecules in the skin and enables high-resolution examination 

of human skin at a subcellular level without damaging the 

surrounding tissue [2-5]. It is thus also called an optical biopsy. 

The manual interpretation of the multiphoton data is tedious 

because extensive data must be evaluated.

Therefore, we propose a method for automated evaluation 

of multiphoton images to support medical staff. 

2 Methods

2.1 Data

The autofluorescence datasets of six subjects were used, two 

subjects with healthy skin, two subjects with lesions, and two 

subjects with malignant melanoma. Images were recorded

using the multiphoton tomograph MPT flex ™ (JenLab 

GmbH, Berlin, Germany) [6].

Figure 1: left) and malignant 
right).

To ensure a balanced distribution of the three classes, seven 

autofluorescence images were selected from malignant 

melanoma, lesions, and healthy skin. Reliably recognizable 

cell structures in different layers of the epidermis were used. 

Subsequently, the contours of the cell cytoplasm and nuclei 

were manually annotated. Due to the different tissue 

characteristics, there were finally 348 annotated cells of 

malignant melanoma, 476 cells of lesions, and 707 cells of 

healthy skin.

2.2 Feature Extraction

Based on previous publications, the following anatomical 

characteristics were used for differentiation: architectural 

order, variance of cell shape, size of intercellular distance, 

separability of cell and nucleus, size of nucleus, and 

homogeneity of cytoplasm [7-9]. Table 1 lists the established 

anatomical characteristics and the features that were calculated 

in the annotated fluorescence images using image processing.

Table 1: Anatomical characteristics and the extracted features 
used to distinguish malignant melanoma, lesions, and healthy skin.

Anatomical Characteristics Extracted Features

Architectural order Cell symmetry, Cell distance, 
Cell density

Variance of cell shape Cell symmetry

Cell distance, Cell density

Cell separability Cell contrast

Nucleus separability Nucleus contrast

Nucleus cell ratio

Homogeneity of cytoplasm Haralick texture feature 
homogeneity

The extracted features were calculated on the multiphoton 

images as follows:

To describe the cell symmetry, the symmetry axes of the 

cell were determined by a principal component analysis. We 

defined a horizontal symmetry axis as the one which 

corresponds to the orientation of the eigenvector with the 

largest eigenvalue. A vertical symmetry axis is defined 

correspondingly orthogonal to it. To calculate the scalar 

symmetry values of a cell in the vertical and horizontal 

directions, the respective ratio of the two cell pixel subsets 

located laterally to the symmetry axis was calculated. The cell 
distance was calculated using Delaunay triangulation. The 

distance values were obtained from the Euclidean distances of 

the adjacent cell centres for the resulting triangulation grid. 

The cell density was calculated by the ratio of the pixels within 

the cell cytoplasm and nuclei and the total number of image 

pixels. The cell and nucleus contrasts were calculated using a 

mean gradient estimation along a border area of the cell 

respectively the nucleus. The nucleus cell ratio was described 

by the ratio of the pixels of the nucleus to the pixels of the cell

cytoplasm. The homogeneity of cytoplasm was calculated by 

the Haralick texture feature of homogeneity on the cytoplasm 

of each cell.

2.3 Feature-based Classification

The classification of malignant melanoma, lesions, and 

healthy skin was based on the extracted features of the 

annotated fluorescence images. Three different classifiers

established in image processing were used: Support Vector 

Machine (SVM), k-Nearest Neighbour (kNN) algorithm, and 

Ensemble Learning. We used the implementations in the 

Classification Learner App of Matlab 2021a (The Mathworks,

Natick, USA).

cdbme_2022_8_2.pdf   46 8/29/2022   5:45:25 PM

46



Two different feature sets were employed as the learning 

sample for classification. The first feature set includes all the 

extracted features from Table 1. Feature set two includes a 

smaller number of features as it is limited to the features that 

show significant differences among the three classes. These 

significant different features were analysed with a multivariate 

analysis of variance (MANOVA) in IBM SPSS Statistics 27.0 

(IBM, Armonk, USA). The performed post hoc test showed 

that there were significant differences in the features of cell 

distance, homogeneity of cytoplasm, cell contrast, and cell 

density between the three classes. 

Due to the fact that the features were mainly calculated on 

the individual cells of the autofluorescence images, the 

classifier also made a class assignment for each cell. Since cell 

density was the only non-cell-specific feature, it had a special 

status. As a result, it was underrepresented in the learning 

sample, and thus this feature was not considered further in the 

classification. However, the global class assignment of the 

available image data was based on a physician's assessment of 

the overall image context.  

The training process of the classifiers was based on five-

fold cross validation, using six autofluorescence images from 

each of the three classes. The test of the trained classification 

models was then performed with the respective seventh 

autofluorescence images.  

3 Results 

Figure 2 shows the classification results with all features of the 

first feature set excluding cell density. The highest accuracy 

values were obtained for the SVM classifier, with the lesion 

class being the exception with the highest accuracy for the 

kNN classifier. 

 

 

Figure 2: Accuracy of test images of malignant melanoma, lesion, 
and healthy skin for the trained 
algorithm, and Ensemble Learning based on all features excluding 
cell density. 

Figure 3 provides the results of the classification based on the 

features that show significant differences between the three 

classes.  
 

 

Figure 3: Accuracy of test images of malignant melanoma, lesion, 
and healthy skin for the trained 
algorithm, and Ensemble Learning based on significantly different 
features excluding cell density. 

Comparing the results of the two feature sets, the classification 

using all features showed the best results with higher 

accuracies for all three classifiers. The comparison of the 

classifiers showed that the SVM provides the best results. It 

achieved the highest single cell classification accuracy with 

52 % and 79.6 % for malignant melanoma and healthy skin, 

respectively. 

4 Discussion 

The analysis of multiphoton images is a current research topic 

to gain deeper insights into disease patterns on a subcellular 

level. While the physician uses the image in its entirety to 

assign a diagnosis, we analyse the images at the individual cell 

level. In the fluorescence images of malignant melanoma, cells 

of a precursor lesion from which it may have developed and 

even healthy cells can also be found. Because analysis results 

strongly depend on which part of the skin, i.e. which part of 

the melanoma, is visible on the multiphoton image, current 

research focuses on obtaining a larger field of view. The stage 

of the disease also influences tissue alterations. A lesion can 

have characteristics of healthy skin as well as similarities with 

malignant melanoma. Depending on the type of lesion, healthy 

cells and even single cells closely resembling malignant 

melanoma may be present. Even in healthy skin, isolated 

abnormal cells may be seen. Due to the importance of early 

detection of malignant melanoma, even a comparatively small 

number of cells detected as cells of malignant melanoma or 

lesion, indicating disease of the skin, requires a more detailed 

evaluation by the dermatologist.  
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Better classification results were achieved using all 

features versus those features significantly different between 

all classes. Since all extracted features show significant 

differences between individual classes, this could be the 

reason why the inclusion of further features leads to better 

separation of individual classes. The inclusion of additional 

features could improve the classification results. 

The main limitation of the present work is the small 

number of subjects. The multiphoton datasets of two subjects 

each with healthy skin, lesions, and malignant melanoma are 

available. From these, 21 multiphoton images with a total of 

1531 cells are included in the classification. In addition to the 

small amount of data, the manual annotation of cells and nuclei 

is another source of uncertainty. Since the representation in 

multiphoton images is based on the distribution of endogenous 

fluorophores, an accurate reproduction of the morphology of 

anatomical structures is not possible. The contours of cells and 

nuclei can only be approximated in the images. Consequently, 

future work should include multimodal imaging. 

5 Conclusion 

The preliminary character of our study, which may have 

contributed in part to the low accuracy, does not allow for 

robust conclusions on future applications of the proposed 

methodology. Clearly, more data are needed. To address the 

problem of annotation of large datasets, a (semi-) automatic 

segmentation method can be used [10].  

Possible extensions of our approach include the automatic 

differentiation of other skin diseases. It may be useful to assess 

the multiphoton images based on their overall context rather 

than on single cell level only. The transfer of the single cell-

based features to a higher level of abstraction can be a first step 

to model the global context. This will contribute to the 

acceptance and wider use of multiphoton tomography in the 

clinical environment. 
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