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SUMMARY 

 The main thematic area of the present thesis is the development and application of 
bioinformatics pipelines, namely whole-genome sequence (WGS) analysis and 
transcriptome profile analysis. These pipelines were applied to study the fungal pathogen 
Aspergillus fumigatus (Manuscripts I, III, and IV) and the early human immune 
mechanisms activated in response to different types of pathogens (bacteria, fungi, and co-
infections) in sepsis patients (Manuscript II). 

A. fumigatus is currently the deadliest airborne fungal pathogen causing different 
degrees of severity depending on the immune status of the patient. Invasive aspergillosis 
(IA), commonly caused by A. fumigatus, poses a high mortality rate of up to 50% for 
patients with immune impairment and up to 100% for patients infected by triazole resistant 
A. fumigatus. I initially studied 300 global A. fumigatus genomes (including 252 genomes 
newly sequenced in my study) to understand better the genomic differences between 
environmental and clinical strains (Manuscript I, Nature Microbiology, 2021, co-first 
author). The results showed that using pan-/core-genome analysis, only 69% of total 
identified genes were shared among all 300 A. fumigatus genomes. Furthermore, 
phylogenetic tree analysis demonstrated a cluster of clinical A. fumigatus isolates that 
possess accessory genes related to transmembrane transporters and proteins with iron-
binding activity. Genome-wide association studies (GWAS) also revealed the most relevant 
nucleotide variants associated with clinical A. fumigatus strains and virulence factors. 

Recent studies suggested that the triazole antifungal resistance in A. fumigatus 
could be derived from either fungicide used in agriculture or developed in-host during 
treatment. To understand the effects of agricultural fungicide on A. fumigatus genomes, we 
sequenced 64 A. fumigatus isolates from conventional and organic farms in Germany 
(Manuscript III, mBIO, 2020, co-author). The population structure of A. fumigatus from 
agricultural and organic farms was further analyzed based on nucleotide variants. The 
results showed that even though fungicides significantly reduced the azole susceptibility of 
A. fumigatus strains in the farms, they did not affect the genetic structure of the investigated 
64 A. fumigatus isolates. 

Moreover, genome-scale metabolic models (GEMs) of 252 A. fumigatus strains 
were reconstructed based on the analyzed whole-genome sequences to address the 
influence of genomic variations on the metabolic capacities of clinical and environmental 
strains (Manuscript IV, in preparation, co-author). The results revealed that 77% of the 
metabolic reactions were shared among all strain-specific GEMs, while 25 reactions were 
able to differentiate environmental and clinical strains. The potential impact of the 
metabolic characteristics of the clinical strains was further evaluated in connection with the 
lung microbiome in cystic fibrosis patients. Our analyses proposed that clinical strain-
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related models were growing at a higher rate on media related to cystic fibrosis patients 
with a confirmed A. fumigatus infection. 

Sepsis is a life-threatening organ dysfunction due to inappropriate host response to 
infections, with a mortality rate of up to 56%. Early recognition of sepsis and immediate 
management are necessary to reduce the mortality rate. However, early pathogen detection 
is still a challenging problem. The transcriptome profiles of elective surgery patients before 
the diagnosis of sepsis were analyzed in my thesis to study the early-activated human 
immune mechanisms related to pathogens’ invasion (Manuscript II, in preparation, first 
author). Compared to bacterial infection, a fungal infection is more difficult to diagnose at 
an early stage. Therefore, the transcriptome profiles of 100 surgery patients, 51 patients 
who developed sepsis (35 bacteria sepsis, 3 fungal, 5 co-infected by bacteria and fungi, and 
8 unidentified pathogens), and 49 patients that remained infection-free after surgery 
(controls), were comparatively analyzed. Gene co-expression patterns and network analysis 
among pathogen-induced sepsis revealed part of the signature immunity pathways and 
genes that respond specifically to different pathogens. These genes are promising to be 
predictive biomarkers for identifying causative pathogens in sepsis patients and should be 
further studied in the future. 

The comparative genomic and transcriptomic analyses applied in my thesis have 
significantly improved our understanding of fungal pathogenicity as well as the pathogen-
specific immune response mechanisms of the human host. Next to a number of novel 
insights, my work included in this thesis has generated a large number of new hypotheses 
based on big-data analysis, offering to the scientific community the possibility to design 
exciting new research to confirm them in future experimental studies and bring us closer to 
actual precision medicine for infectious diseases. 
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ZUSAMMENFASSUNG 

Das Hauptthema der vorliegenden Arbeit ist die Entwicklung und Anwendung von 
Bioinformatik-Pipelines, insbesondere die Ganzgenomsequenzanalyse (WGS) und die 
Transkriptom-Profilanalyse. Diese Pipelines wurden zur Untersuchung des Pilzerregers 
Aspergillus fumigatus (Manuskripte I, III und IV) und von frühzeitigen menschlichen 
Immunmechanismen, die als Reaktion auf verschiedene Arten von Krankheitserregern 
(Bakterien, Pilze und Co-Infektionen) bei Sepsis-Patienten aktiviert werden (Manuskript 
II), eingesetzt. 

A. fumigatus ist derzeit der tödlichste über die Luft übertragene Pilzerreger, der je 
nach Immunstatus der Patienten unterschiedliche Schweregrade aufweist. Die invasive 
Aspergillose (IA), die häufig durch A. fumigatus verursacht wird, hat eine hohe 
Sterblichkeitsrate von bis zu 50 % bei Patienten mit Immunschwäche und bis zu 100 % bei 
Patienten, die mit triazolresistenten A. fumigatus infiziert sind. Ich habe zunächst 300 
globale A. fumigatus-Genome untersucht (darunter 252 Genome, die in meiner Studie neu 
sequenziert wurden), um die genomischen Komponenten zwischen Umwelt- und 
klinischen Stämmen besser zu verstehen (Manuskript I, Nature Microbiology, 2021, Co-
Erstautor). Die Ergebnisse zeigten, dass unter Verwendung der Pan-/Kerngenomanalyse 
nur 69 % der insgesamt identifizierten Gene von allen 300 A. fumigatus-Genomen 
gemeinsam genutzt wurden. Darüber hinaus zeigte die phylogenetische Baumanalyse einen 
Cluster klinischer A. fumigatus-Isolate, welcher akzessorische Gene besitzt, die mit 
Transmembrantransportern und Proteinen mit eisenbindender Aktivität zusammenhängen. 
Genomweite Assoziationsstudien (GWAS) zeigten auch die wichtigsten 
Nukleotidvarianten, die mit klinischen A. fumigatus-Stämmen und Virulenzfaktoren 
assoziiert sind. 

Jüngste Studien deuten darauf hin, dass die Resistenz von A. fumigatus gegen 
Triazole entweder auf den Einsatz von Fungiziden in der Landwirtschaft oder auf die 
Entwicklung im Wirt während der Behandlung zurückzuführen sein könnte. Um die 
Auswirkungen landwirtschaftlicher Fungizide auf die Genome von A. fumigatus zu 
verstehen, haben wir 64 A. fumigatus-Isolate aus konventionellen und ökologischen 
Landwirtschaftsbetrieben in Deutschland entnommen und ihre Genome sequenziert 
(Manuskript III, mBIO, 2020, Co-Autor). Die Populationsstruktur von A. fumigatus aus 
landwirtschaftlichen und ökologischen Betrieben wurde anhand von Nukleotidvarianten 
weiter analysiert. Die Ergebnisse zeigten, dass Fungizide zwar die Häufigkeit von Azol-
empfindlichen A. fumigatus-Stämmen in den Betrieben deutlich verringerten, die 
genetische Struktur der untersuchten 64 A. fumigatus-Isolate jedoch nicht beeinflussten. 

Darüber hinaus wurden genomweite Stoffwechselmodelle (GEMs) von 252 
A. fumigatus-Stämmen auf der Grundlage der analysierten Ganzgenomsequenzen 
rekonstruiert, um den Einfluss genomischer Variationen auf die Stoffwechselkapazitäten 
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klinischer und umweltbedingter Stämme zu untersuchen (Manuskript IV, in 
Vorbereitung, Co-Autor). Die Ergebnisse zeigten, dass 77 % der Stoffwechselreaktionen 
bei allen stammspezifischen GEMs vorhanden waren, während 25 Reaktionen in der Lage 
waren, Umwelt- und klinische Stämme zu unterscheiden. Die potenziellen Auswirkungen 
der metabolischen Eigenschaften der klinischen Stämme wurden im Zusammenhang mit 
dem Lungenmikrobiom von Mukoviszidose-Patienten weiter untersucht. Unsere Analysen 
ergaben, dass Modelle, die sich auf klinische Stämme beziehen, auf Medien von 
Mukoviszidose-Patienten mit einer bestätigten A. fumigatus-Infektion eine höhere 
Wachstumsrate aufweisen. 

Sepsis ist eine lebensbedrohliche Organfunktionsstörung, die auf eine 
unangemessene Reaktion des Wirts auf Infektionen zurückzuführen ist und eine 
Sterblichkeitsrate von bis zu 56 % aufweist. Die frühzeitige Erkennung einer Sepsis und 
eine sofortige Behandlung sind notwendig, um die Sterblichkeitsrate zu senken. Der 
frühzeitige Nachweis von Krankheitserregern ist jedoch nach wie vor ein schwieriges 
Problem. In meiner Dissertation wurden die Transkriptom-Profile von Patienten mit 
elektiven Eingriffen vor der Diagnose einer Sepsis analysiert, um die früh aktivierten 
menschlichen Immunmechanismen im Zusammenhang mit der Invasion von 
Krankheitserregern zu untersuchen (Manuskript II, in Vorbereitung, Erstautor). Im 
Vergleich zu einer bakteriellen Infektion ist eine Pilzinfektion in einem frühen Stadium 
schwieriger zu diagnostizieren. Daher wurden die Transkriptom-Profile von 100 
chirurgischen Patienten, 51 Patienten, die eine Sepsis entwickelten (35 bakterielle Sepsis, 
3 Pilzinfektionen, 5 Koinfektionen mit Bakterien und Pilzen, und 8 nicht identifizierte 
Erreger), und 49 Patienten, die nach der Operation infektionsfrei blieben (Kontrollen), 
vergleichend analysiert. Die Koexpressionsmuster der Gene und die Netzwerkanalyse bei 
der durch Krankheitserreger ausgelösten Sepsis zeigten einen Teil der charakteristischen 
Immunitätswege und Gene, die spezifisch auf verschiedene Krankheitserreger reagieren. 
Diese Gene sind vielversprechende prädiktive Biomarker für die Identifizierung der 
verursachenden Erreger bei Sepsispatienten und sollten in Zukunft weiter untersucht 
werden. 

Die vergleichenden Genom- und Transkriptomanalysen, die in meiner Dissertation 
angewandt wurden, haben unser Verständnis der Pathogenität von Pilzen sowie der 
erregerspezifischen Immunantwortmechanismen des menschlichen Wirts erheblich 
verbessert. Neben einer Reihe neuer Erkenntnisse hat meine Arbeit im Rahmen dieser 
Dissertation eine große Anzahl neuer Hypothesen auf der Grundlage von Big-Data-
Analysen hervorgebracht, die der wissenschaftlichen Gemeinschaft die Möglichkeit bieten, 
aufregende neue Forschungsarbeiten zu konzipieren, um sie in künftigen experimentellen 
Studien zu bestätigen und uns der eigentlichen Präzisionsmedizin für Infektionskrankheiten 
näher zu bringen. 
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CHAPTER I INTRODUCTION 

1. Genomic Data - New Challenges in Biological Research 

With a growing number of sequencing data according to the advancement of 
sequencing technologies, bioinformatics study has become more important in biological 
research. The amount of releasing genomes has triggered new opportunities in biological 
studies that were not previously possible such as discovering new genes [1], building new 
genomes of unknown organisms [2], and identifying disease-associated gene markers [3]. 

Whole-genome analysis was initiated even before releasing the first draft of the 
human genome sequence. There were complete genome sequences from a group of model 
organisms that possess less complicated and smaller genomes than humans, such as 
bacterial and fungal genomes [4]. The genomic data were openly stored and shared through 
online databases. For example, Blackwell et al. recently gathered bacterial sequences from 
the European Nucleotide Archive (ENA) and assembled them into 661,405 bacterial 
genomes [5]. Similarly, more than thousands of the fungal genomes were sequenced and 
stored in several resources, such as MycoCosm, which also hosts the 1,000 Fungal 
Genomes Project [6], FungiDB [7] and Ensembl Fungi [8]. In this chapter, the sequencing 
data generated by new sequencing technologies, data processing, data analysis, and 
interpreting in the biological contexts are introduced in the following sections. 

 

1.1 Sequencing Technologies – The Powerful Technology for Genomic Data 

Over Over the last decades, sequencing technologies have been developed to 
increase efficiency and reduce time and cost. The first-generation sequencing technology, 
or “Sanger Sequencing”, was developed by Sanger and his team in the 1970s [9]. The 
complete human genome was first sequenced by this sanger sequencing and published in 
the same year with the Human Genome Project in 2001 [10,11]. This method synthesized 
DNA sequences by using the “chain-terminating dideoxynucleotides” technique. It has the 
advantages of high accuracy sequencing and can achieve long read lengths up to ~1,000 bp 
[12]. However, due to its relatively high cost, this technology was replaced by second-
generation sequencing or more commonly called next-generation sequencing (NGS). 

NGS technology uses a “clonal amplification” technique which supports massively 
parallel sequencing and real-time signal detection [13,14]. Therefore, NGS technology has 
a significant advantage of rapidly producing massive sequencing data. Sequencing 
platforms of this generation were developed by several companies, including 454 
sequencing from Roche [15], Illumina [16] and SOLiD or small oligonucleotide ligation 
and detection system from Applied Biosystems [17]. Owing to the exponential reduction 
of NGS cost and sequencing time, the larger human genome project called the “1,000 
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Genomes Project” was started in 2007 [18]. Using NGS platforms, over 2,500 individual 
healthy people worldwide were sequenced to investigate genetic variations in the human 
population [18,19]. The genetic variants from this project have been used for genotype 
imputation in Genome-wide Association Studies (GWAS) in variant-associated diseases 
such as coronary artery disease (CAD) [20], type 2 diabetes [21,22] and recent pandemic 
disease COVID-19 [23]. However, the read lengths generated by these platforms were 
considerably short (~25-700 bp), which posed significant challenges in the subsequent 
genome assembly [24–26]. 

To overcome the limitation of short-read platforms, ‘The third-generation 
sequencing’ platforms were developed to sequence single DNA molecules in real-time 
[13,24]. This technology was first invented by HeliCos BioSciences [27] and followed by 
‘single-molecule real-time (SMRT)’ from PacBio [28]. SMRT PacBio is capable of 
sequencing reads up with a length of more than 20 Kb [26]. This platform has excellent 
potential for de novo genome assembly as well as the identification of structural variants 
(SVs) [29]. Albeit SMRT PacBio can generate long-reads, the accuracy per base is still 
lower than short-reads [26]. Therefore, this platform has an explicit limitation in detecting 
small variants such as single-nucleotide variants (SNV) [24]. 

 

Figure 1: The first-, second-, and third-generation sequencing technologies. The first-
generation sequencers generate sequences by synthesis. “Dideoxynucleotides” are tagged 
by fluorescence. Then, they are sequentially added, and the signals of the presented 
nucleotides are detected. Second-generation or next-generation sequencing (NGS) uses 
massively parallel sequencing to achieve high throughput and high accuracy of base 
detection. While the third-generation sequencing generates long reads at high throughput 
by using single-molecule-based method. This figure is based on the figure from 
Ronholm et al. (2016) [24]. 

In 2014 the “MinION” sequencer was released by the Oxford Nanopore 
Technologies [30,31]. In contrast to other platforms, the MinION comes with new concepts 
of sequencing technologies. The nanopore technology of MinION can distinguish a single 
nucleotide on ssDNA from its electronic and chemical characteristics, while other 
platforms require secondary labeling signals [25,31]. The MinION has a USB device size 
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that can perfectly connect to a USB port and process on a personal computer [14]. Besides, 
the MinION can generate “ultra-long” sequences up to 200 Kb DNA [14,26]. Nonetheless, 
while Illumina’s sequences have an error rate of less than 1%, long sequences show about 
15-30% error rates [14,24]. 

 

1.2 Applications of Sequencing Technologies - WGS becomes more feasible in 
microbiology 

Due to the great advantages of NGS, a large amount of genomic data has been 
generated through three main processes, including targeted gene sequencing (TGS), whole-
exome sequencing (WES), and whole-genome sequencing (WGS) [32,33]. While WGS is 
a DNA sequencing of the entire genome of the organisms, WES and TGS are more specific 
by definition. 

TGS and WES were designed to capture regions/genes of interest. As the 
sequencing regions are focused, TGS can generate ultra-high depth sequencing up to more 
than 1,000x [34,35], beneficial for rare variant detection [36]. WES generates a coverage 
depth of 100x by average, showing better quality of SNV detection than WGS, with a mean 
coverage depth of 30x [37]. While TGS data are more manageable, accurate, and easier to 
interpret than WES and WGS data, the sequencing data from WES and WGS are more 
uniform and widespread [38–41]. More completed sequences from WES and WGS allow 
the detection of complex variations such as Structural Variants (SVs) or Copy Number 
Variants (CNVs) [41]. While TGS data are limited to identifying variants by the genes 
covered in panels, WES and WGS allow discovering the new variants in novel candidate 
genes [33]. Moreover, the almost complete genome sequences from the WGS technique 
also allow for building the new genome from unknown organisms, known as de novo 
assembly [33,41,42]. Keepers et al. showed that the WGS method could identify 2-4 times 
more fungal species than the TGS method from the same environmental fields [43]. Table 
1 shows the summary of the advantages and disadvantages of TGS, WES, and WGS. 

Table 1: Advantages and disadvantages of TGS, WES, and WGS [33] 

Sequencing 
Techniques Advantages Disadvantages 

Targeted gene 
sequencing 
(TGS) 

• Sequences several genes 
• The most cost-effective 
• The least time processing 
• Detect the most significant 
variants 

• The most accurate technique 

• Only sequences regions/genes 
in the targeted panel 

• Lacking the ability to discover 
new genes 

• Low coverage of intronic 
regions 
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Whole-exome 
sequencing 
(WES) 

• Sequences >90% coding exons 
• Lower cost than WGS 
• Can discover new genes 

• Low coverage of pseudogenes 
and GC–rich regions 

• Poor detection of SVs 
• Intronic variants can be missed 
• Higher cost than TGS 
• Less accuracy than TGS 

Whole-genome 
sequencing 
(WGS) 

• Sequences all coding and non-
coding regions 

• Can detect mutations in intronic 
or regulatory regions 

• Most effective for SV and CNV 
detection 

• More consistent coverage of 
sequences 

• Can discover new genes  
• Less false-positive rate than 
WES 

• Identifies the most non-
significant variants 

• Highest cost 
• Highest error rate 
• The most time consuming 

 

 As each sequencing technology has different advantages and limitations, the 
sequencer and sequencing techniques are mainly chosen depending on the applications of 
the sequences. For example, we performed second-generation sequencing with Illumina 
platforms to generate whole-genome sequences of A. fumigatus in manuscripts I, III, and 
IV to achieve high accuracy and unbiased genome sequences. Likewise, whole 
transcriptome sequences of the human host in manuscript IV were generated using the 
Illumina microarray, further introduced in part 2 – Transcriptomic Data. 

 

1.3 Comparative Genomics - The Comprehensive Analyses of WGS 

Various bioinformatics tools and algorithms have been developed to analyze WGS 
from NGS technology, from raw sequencing reads to biological interpretation. The 
bioinformatics workflow for NGS data analysis comprises three main parts, including (i) 
raw data detection and analysis, (ii) whole-genome assembly and variant detection, and 
(iii) variants annotation (Figure 2) [44]. In addition, whole-genome sequences can be 
assembled either depending on a reference genome sequence or reference-free, de novo 
assembly methods [44,45]. 

The first part of the NGS study is generating sequencing data, commonly done by 
the sequencing companies. First, the NGS machines generate sequencing reads. Then the 
built-in base-calling software will obtain bases by detecting the intensities of bases in the 
machines [46]. To access base-calling quality, a quality score per base is measured using a 
phred-like algorithm and reported an error probability as a logarithmic based score [47]. 
Phred scores ≥ 20 represent error rates £ 1% or base accuracy ≥ 99%, which are considered 
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high-quality scores [48]. The most popular quality control (QC) tool, such as FastQC, will 
report the quality and statistics of sequence data [49]. Trimming tools such as 
Trimmomatic [50] and Trim Galore [51] will remove adapters and low-quality bases 
from sequence reads. 

 

 

Figure 2: An overview of the NGS bioinformatics workflow. The workflow contains three 
main parts: the primary, secondary, and tertiary analysis. The primary data analysis is 
generating high-quality sequencing data. The secondary analysis includes the 
reconstruction of whole-genome sequences and calling variants. The tertiary includes the 
variant annotation and downstream analysis. This figure is based on the figure from 
Pereira et al. (2020) [44]. 

 

1.3.1 Reference-based Genome Assembly and Variant Identification 

The The primary purpose of read mapping is to find the actual location of short-
reads on a large reference genome and quantify the sequence similarity between short-reads 
and the reference [44,52]. Once individual short-reads are aligned on the reference, the 
sequence differences, such as single nucleotide variants (SNVs), Insertions/Deletions 
(InDel), and structural variants (SVs), could be identified by variant calling. In 
manuscripts I and III, I assembled A. fumigatus genomes using the reference-based 
method and A. fumigatus Af293 as a reference genome. The Af293 was a clinical strain 
and was the first complete genome sequence of A. fumigatus. The genomic variants 
between our genomes and the Af293 genome were detected and analyzed (manuscripts I 
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and III). Compared to the de novo assembly method, this alignment requires less 
computational resources and processing times. However, the error rates from base calling 
or mapping mismatches are considerable problems for variant identification. Furthermore, 
the limitation of this method is that it can fail to identify (i) multi-region mapped reads or 
(ii) mismapped reads [53]. 

The most common genetic variant is the single nucleotide variant (SNV), a single 
nucleotide substitution in individual genomes compared to the reference genome. SNVs 
that are presented in at least 1% of the populations are called single nucleotide 
polymorphisms (SNPs) [54]. The variants that occur in the protein-coding regions can 
result in (i) synonymous or no changing in amino acid translations, (ii) nonsynonymous or 
amino acid sequence changes, or (iii) nonsense or the amino acid changing to stop codon 
leading to truncation of the protein sequences [55]. Insertion/deletion (InDel) is the 
insertion or deletion of a short DNA sequence (<1Kb) in sequencing read compared to the 
reference [56]. These variants will change the length of the DNA sequence in a reading 
frame or frameshift, resulting in the mistranslation of protein sequences [57,58]. The large 
DNA sequences (>1Kb) that cause genome sequence rearrangements are known as 
structural variation (SV), including balanced variants, such as inversion and translocation, 
and unbalanced variants or copy number variation (CNV) [56,59]. 

Variant annotation is a further step to annotate and predict variant effects on 
protein-coding genes. Furthermore, a statistical method such as a genome-wide association 
study (GWAS) can be applied to identify phenotype-associated genomic variants. 

Sequence alignment/mapping 

Sequence alignment is a ubiquitous and fundamental procedure that compares two 
or more biological sequences, including DNA, RNA, or protein sequences. Whole-genome 
sequence alignment is end-to-end (global) alignments of DNA short-reads on a closely 
related reference genome. Since 2000, more than 60 whole-genome sequence 
aligners/mappers have been developed for high-throughput sequencing (HTS) data [60]. 
However, the two most robust and common mappers, BWA [61] and Bowtie2 [62], were 
developed using the “Burrows-Wheeler Transform (BWT)” algorithm, which has 
advantages of speed and memory-efficiency [63–65]. Briefly, BWT transforms the 
reference sequence by fragmenting the whole genome into subsequences. The 
subsequences are then sorted and stored in the indexing table. Finally, the entire short-reads 
are aligned against the reference subsequences. This study used BWA as a high-accuracy 
mapping tool to map A. fumigatus short-reads against the Af293 reference genome. 

Variant calling 

Variant calling is a step of identifying nucleotide changing position compared to 
the reference genome [66]. Among all available variant calling tools, the most widely used 
is Genome Analysis Tool Kit (GATK). GATK yields the best overall performance 
of SNV detection by using a Bayesian model to identify the true variants from base calling 
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or mapping errors [67]. Furthermore, when applying mapped read pre-processing and low-
quality variant filtering from the GATK framework, the variant quality can reach >99% 
accuracy [68,69]. GATK also outperformed other variant callers to detect more complicated 
variants such as InDels [70–72]. Moreover, this tool kit also showed the best performance 
in detecting variants in metagenome data [73]. In addition, GATK has an integrated variant 
annotation tool, snpEff [74]. Therefore, GATK was chosen to call variants of A. fumigatus 
sequences in this study. 

Structural variants (SVs) are considerably more difficult to detect accurately and 
less common than small ones. However, larger variants have greatly impacted genetic 
functions [75,76]. Therefore, several tools have been developed to detect CNV, the most 
common SV impacting mRNA expression level [77]. Most CNV detection algorithms are 
based on imbalanced mapped reads on the reference genome [78]. These methods showed 
different advantages and limitations among them. In this study, the most flexible software 
Control-FREEC, which can detect CNV with/without control samples [79], was used to 
detect CNVs of A. fumigatus genomes. This tool also showed good performance in 
detecting CNV from WGS and WES data [80]. Moreover, it is available to analyze CNV 
in various organisms with different ploidy [78,79]. 

 Variant annotation 

Variant annotation is a key step in linking the detected variants to biological 
context. To predict the functional effects of called variants, several variant annotations have 
been developed, such as the most widely used tools ANNOVAR [81], ENSEMBL’s 
Variant Effect Predictor (VEP) [82] and snpEff [74]. However, snpEff 
has shown a higher accuracy of variant prediction (>94%) compared to ANNOVAR (~80%) 
[83], which was used in this thesis. SnpEff can also annotate SNP and InDel variants on 
coding and non-coding region [44,84]. 

 

1.3.2 De novo assembly and Gene Prediction 

An alternative genome assembly method, de novo assembly, has been primarily 
used when the reference genome is unavailable [44]. However, scientists recently noticed 
that a single reference genome is insufficient to represent the whole population [85]. In 
2018, a study by Garcia-Rubio et al. showed the variable of called variants in A. fumigatus 
when using different reference genomes, Af293 and A1163 [86]. Their results also showed 
that these two reference strains belong to different lineages of A. fumigatus in a 
phylogenetic tree [86]. In this thesis, I also assembled 300 global A. fumigatus genomes 
using the de novo assembly method to overcome the limited materials of a single reference 
genome. In manuscript I, 300 A. fumigatus de novo assembled genomes were used to 
study pan-/core-genomes. In manuscript IV, 252 A. fumigatus de novo assembled 
genomes from Germany were used to build strain-specific genome-scale metabolic models 
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(GEMs) by Mohammad and Chen. These studies extended our understanding of genomic 
variations of A. fumigatus at genomic and metabolic levels. Compared to the read mapping 
method, this method provides more advantages for discovering comprehensive structural 
variants and functional components. However, the small variant detection is more 
challenging than reference-based assembly methods, as the variants could be indicated as 
sequencing errors [87]. 

De novo assembly 

The main purpose of de novo genome assembly is to create a consensus genome 
sequence from the random short-reads [88]. The sequencing reads are merged based on the 
overlapped nucleotides to form the longer contiguous DNA sequences called “contigs” and 
merged “contigs” to “scaffolds” [89]. The most effective de novo assembly algorithm is 
the de Bruijn graph-based algorithm that can build the genome sequence from millions of 
short-reads [90]. This algorithm will construct the DNA sequence graph based on sequence 
similarity or overlapped based on the exact length of subsequences (K-mer) [91]. Several 
assemblers have been developed based on the de Bruijn graph algorithm, such as VELVET, 
SOAPdenovo, and IDBA. Among all assemblers, IDBA showed the overall best genome 
assembling for NGS data [92]. Furthermore, the de novo assembly method is extended by 
using a closely related reference genome as a guidance genome, outperforming the 
assembly method without using the reference genome [92]. 

To assess the quality of assembled genomes, the most commonly used metric is 
N50 [93]. N50 is calculated by sorting the contigs based on their lengths. The shortest 
length that contains 50% of genome length is the N50 value. Large N50 values reflect better 
assemblies as the genome is better combined. However, N50 is unable to provide more 
genome information. Therefore, other statistical metrics and genome information such as 
contig lengths, genome coverage, and predicted genes should be estimated to assess the 
assembled genome quality [94,95]. The quality assessment tool for genome 
assemblies (QUAST) is one of the most comprehensive quality assessment tools for 
de novo genome assembly [95]. QUAST provides complete metrics of contig sizes, 
misassemblies, genome elements, and functional prediction [95]. In addition, the 
Benchmarking Universal Single-Copy Ortholog (BUSCO) is another 
tool that has been used to measure the completeness of assembled genomes from expected 
gene content estimation [96]. 

Gene prediction and annotation 

Gene prediction is the following step to identify which regions of the assembled 
genome contain coding genes. Two main strategies are used to predict and annotate genes 
in the newly assembled genomes, including (i) empirical or sequence similarity-based gene 
finding and (ii) the ab initio or de novo gene finding methods [97,98]. Several gene 
predictors have been successfully developed using a probabilistic Hidden Markov Model 
(HMM) for training gene sequence prediction [97,98]. For example, a transcript-based tool 
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AUGUSTUS uses the HMM to train RNA-seq data from the close species [99], while ab 
initio gene predictor GENEMARK-ES uses the HMM to train the query sequences 
themselves as known as the “self-training” method [100] for more accurate gene prediction. 
However, there is no “gold standard” for gene prediction software. Therefore, another 
strategy for gene prediction is combining results from different gene predictors to increase 
the total power and accuracy of gene prediction and annotation [98]. EVidenceModeler 
(EVM) is a predicted gene result combining software that weights and combines the results 
from several gene predictors to provide high-quality and reliable gene prediction results 
[101]. In this study, the EVM was used to combine the results from AUGUSTUS and 
GENEMARK-ES, following funannotate, a eukaryotic genome annotation pipeline 
[102]. Then, the predicted genes are translated to protein sequences. Next, the translated 
protein sequences are searched for similar protein sequences from available protein 
databases such as the protein families (PFAM) [103], the Universal Protein Knowledgebase 
(UniProt) [104] and the Kyoto Encyclopedia of Genes and Genomes (KEGG) [105,106] 
databases. Finally, the protein functions are assigned based on high similarity scores. 

 

1.3.3 Genetic Diversity and Genome Evolution 

 Genome-wide variant detection from WGS allows us to understand evolutionary 
genetics. Many strategies have been used to study genome evolution and population 
structure, including analyses based on nucleotide variations (manuscripts I and III) and 
pan-genome analyses based on gene presence-absence variation (manuscript I). 

Population structure 

Genetic structure among populations, including intra-species and inter-species, is 
one of the important methods for evolutionary biology analysis. The most common and 
fundamental method is using statistical methods to estimate the levels of nucleotide 
changes within (intra-) and between (inter-) populations of organisms. Tajima’s D [107], 
linkage disequilibrium (LD) [108] and nucleotide diversity (π) [109] are the most 
commonly used for intra-population genetic variations, and Wright’s fixation index (Fst) 
[110], which they calculate the genetic differences based on nucleotide variations, for inter-
population. 

Pan-/Core-genome analysis 

The pan-genome analysis is the comprehensive method of genomic diversity 
estimation. Pan-genome represents a complete set of orthologous and unique genes in a 
specific population. Orthologous genes or orthologs are groups of genes that share the same 
function in different species, and they evolved from the same ancestor by speciation [111]. 
Therefore, they are essential keys to understanding the evolutionary history of genes and/or 
genomes of interest. In pan-genome analysis, orthologous genes include “core” genes or 
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genes found in all genomes and “accessory” or “dispensable” genes or genes found in some 
genomes [112]. The unique genes are genome-specific genes [112]. 

In order to identify orthologous genes, the pairwise relationship based on sequence 
similarity between genes is calculated. Then, the genes with high similarity scores are 
clustered as an orthologous group (OG). Several tools have been developed based on the 
“Markov Clustering Algorithm (MCL)” model, the most widely used gold standard 
algorithm of orthologous gene clustering [113]. OrthoFinder was also developed using 
MCL with phylogenetic trees to cluster the orthologous groups [114]. Compared to other 
tools that have the bias from protein lengths, OrthoFinder can better cluster orthologous 
proteins which different lengths [114]. Once the genes are clustered, core genes, accessory 
genes, and unique genes are identified due to the presence of genes in the population. 

Genome-wide association study (GWAS) 

To evaluate the association between variants and phenotype, a genome-wide 
association study (GWAS) is the most effective statistical method to identify the genetic 
variants that are responsible for phenotypic differences. GWAS employs a linear model to 
calculate the correlation between variants and phenotypes and tests the significance of 
variants based on the assumption that the variant (or SNP) does not affect the phenotype 
[115]. As a comprehensive screening tool for whole-genome variants in a large population, 
GWAS is more powerful than conventional mapping approaches such as Quantitative Trait 
Locus (QTL) mapping [116,117]. However, the limitation of GWAS is that it requires a 
very large sample size in order to reduce false-positive results [118]. Therefore, some 
software, such as EMMAX [119] and GEMMA [120], use a linear mixed model (LMM) instead 
of a simple linear model to correct the population structure effects. 

Recently, larger-scale GWAS has been developed, called “panGWAS”. Pan-
GWAS employs the GWAS concept but screens for absent/present genes associated with 
the phenotypes of interest [121]. 

Phylogenetic tree construction 

The most powerful and popular process to study evolutionary relationships among 
different genomes is phylogenetic tree reconstruction. The phylogenetic tree is constructed 
based on the closely or highly diverged genomes. The tree consists of branches representing 
the distance between genomes and nodes representing the genomes of interest. There are 
two types of phylogenetic trees; rooted and unrooted trees [122]. A rooted tree is more 
beneficial than an unrooted tree because it can reveal the most common ancestor genomes 
in the tree. To construct the rooted tree, another genome from a close species needs to be 
included. However, the rooted genome should be different from the genomes in the study. 
For example, A. fischeri, a closely related species of A. fumigatus, was used as a rooted 
genome in the trees in this thesis (manuscripts I and III). 
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The reconstruction of the phylogenetic tree comprises two main steps (i) multiple 
sequence alignment and (ii) phylogenetic tree construction. First, multiple sequence 
alignment (MSA) will compare and equalize the length of genomes. To construct the 
phylogenetic trees, there are two main approaches, including (i) distance-based and (ii) 
character-based (tree-searching) methods [122,123]. The main algorithm that uses 
distance-based is the neighbor-joining method [124]. This method will calculate the 
distance matrix of pairs of sequences. It is fast and computationally efficient compared to 
character-based methods [123,124]. It is also applicable for close genome studying [124]. 
However, if the genomes present high genetic variations, it could affect the accuracy of 
genetic distance estimation [123]. The maximum likelihood (ML) is the most popular 
algorithm for the character-based method [125]. ML evaluates the relative probability 
between genomes, while those with higher probability (likelihood) are likely to be closer 
than the lower probability genomes [125]. 

To control the accuracy of phylogenetic trees, bootstrapping is applied to estimate 
the confidence interval of each pair of genomes in the trees. The bootstrapping scores range 
from 0 to 100% and are assigned to the final tree [123,126]. The bootstrap value close to 
100 represents high confidence that the genomes are closely related. In this thesis, an 
ultrafast bootstrap approximation approach (UFBoot) [127] that is more robust and time-
efficient than the standard bootstrapping method was used to calculate the clade support of 
the trees.  
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2. Transcriptomic Data - From Genome to Gene Functions 

Genomic data alone is insufficient for understanding the molecular functions of 
genetic elements. Transcriptomics or genome-wide expression profiling studies the totality 
of RNAs, which is a transcriptional level of genome linking genotypes with phenotypes in 
specific tissues or cell types at particular conditions or time points [128]. Furthermore, 
transcriptome analysis can explain how genetic variants alter gene functions [129]. 

To study the transcriptome data, there are three important steps, including (i) 
transcriptome data generation, (ii) estimating gene expression levels, and (iii) 
normalization of gene expression data and identifying the differentially expressed genes 
(DEGs). In addition, as genes do not function independently, downstream analyses and 
interpretations such as gene network analyses and functional annotation are performed 
based on sets of genes or DEGs [130].analyses and functional annotation are performed 
based on sets of genes or DEGs [130]. 

 

2.1 Transcriptome data Generation 

The two leading technologies for whole-transcriptome profiling are microarray 
technology and RNA-sequencing (RNA-seq) technology. In both technologies, RNA is 
extracted from samples and converted to complementary DNA (cDNA). cDNA is analyzed 
through NGS technology (RNA-seq) or microarray technology for gene expression level 
detection (Figure 3). However, there are different advantages and disadvantages between 
these technologies. 

Microarray technology is the well-established high-throughput transcriptome 
profiling technology that can provide massive transcriptome data from isolated RNA. In 
this technology, RNA is reversed into cDNA and labeled with sequence tags (targets) that 
correspond to genes on the array (probes) [131]. The signals from probe-target 
hybridization are detected for measuring the abundance of cDNA. As microarray 
technology has been used for decades, transcriptome data of over 5,000 organisms 
generated by microarray technology has been published and stored in the public database 
“Gene Expression Omnibus (GEO)” [132,133]. However, as this technology is an array-
based method, the limitation of this technology is detecting RNA from only known gene 
sequences. However, this technology is flexible to customize the array for narrow specific 
RNA, saving cost and time. Moreover, it can generate reliable, reproducible, and high-
quality transcriptome data [134]. Therefore, it is still a choice for the transcriptome 
profiling of protein-coding genes in model organisms and direct comparisons of the 
transcriptome profiling from the same array platform. 

On the other hand, RNA-seq has become more standard for transcriptome profiling. 
This technology can provide more comprehensive genome-wide expression profiles by 
sequencing cDNA converted from the whole transcripts, including transcripts of novel 
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genes. The RNA-seq reads are mapped on the reference genome. Then, gene expression 
levels are calculated by counting mapped reads on gene regions. More than 95% of the 
published RNA-seq data were generated by the Illumina short-read sequencing technology 
and stored on the Short Read Archive (SRA) database [135,136]. 

 According to the GEO database, around 200 studies of sepsis microarray data were 
available, but less than 100 studies in the SRA database with RNA-seq generated 
transcriptome profiles. Since more data and studies were available, the transcriptome 
profiles of human hosts were generated using microarray technology in manuscript II. 

 

Figure 3: Microarray and RNA-sequencing (RNA-seq) technologies. The complementary 
DNA (cDNA) converted from RNA will be detected for the differences in expression levels 
between two samples/conditions. Microarray will label cDNA with fluorescent probes. The 
relative amount of gene expression levels will be detected by measuring fluorescence. 
RNA-seq will fragment cDNA and generate short-read sequences by using NGS 
technology. The sequences then are aligned against the reference genomes. The expression 
levels are calculated from the number of reads presented on genes. This figure is based on 
the figure from [137]. 

 

2.2 Normalization and Differentially Expressed Genes (DEGs) Identification 

Normalization is the most important pre-processing step for transcriptome data 
analysis. Normalization aims to eliminate the experimental and technology biases for 
accessing the actual gene expression levels, resulting in comparable and reliable expression 
levels [138,139]. Microarray data normalization is done by balancing the detected color 
signals between genes and samples, which allows a comparison of gene expression between 
different datasets [140]. Then the normalized expression data is further studied for 
“differentially expressed genes (DEGs)”. 

One of the primary purposes of transcriptomics is “differentially expressed gene 
(DEG)” analysis [141]. DEG analysis is the first step toward understanding the biological 
functions in different phenotypic conditions. DEG analysis is statistical testing that 
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identifies the most responsible genes in different biological conditions, such as health and 
diseases, based on gene expression differences [130,141]. Firstly, the fold-change (FC) of 
each gene or a gene expression level change between conditions is estimated. Then, 
statistical methods have been used to estimate gene expression changes’ significance in 
response to different conditions. In this study, the Linear Models for Microarray 
Data (limma) [142], a flexible and robust DEG analysis package in R software [143] 
that can analyze DEGs from microarray and RNA-seq data, was used to normalize the 
expression levels and analyze DEGs in manuscript II. 

 

2.3 Gene co-expression Analysis and Functional Annotation 

In biology, genes do not function independently. Genes that are expressed similarly 
in different conditions tend to be involved or co-regulated in the same biological pathways 
[144]. Therefore, to understand the biological meanings of significant DEGs, one is to 
extract the genes with similar expression patterns by using clustering algorithms such as 
the hierarchical or K-means clustering algorithms. 

Besides, the network analysis, including gene co-expression and protein-protein 
interaction (PPI) networks, is increasingly used to study the system level of gene/protein 
functions and their interactions [145,146]. The networks comprise nodes representing 
genes/proteins and edges representing relationships between genes/proteins [147]. The 
most standard model that is widely used to reconstruct biological networks is the “scale-
free” network, which can introduce the highly connected nodes or “hub” nodes [146,148]. 
Hubs or highly connected nodes, in this case -genes or proteins- are considered the most 
critical keys in biological functions as they interact with most genes/proteins in the network 
[149]. 

Gene expression matrix analysis 

Gene expression matrix analysis is the most fundamental approach to discovering 
similarly expressed genes, as it compares the similarities or differences of expression 
patterns between genes and samples [150]. A gene distance matrix is firstly built by 
calculating the similarities/differences of pair genes between different conditions or sample 
groups using a distance matrix, such as the Euclidean distance method [150,151]. Then, the 
clustering methods, such as hierarchical clustering and k-means clustering, group the small 
distance genes into the same clusters [144,150]. In vice versa, the clusters of samples could 
be identified based on the similarity of gene expression patterns between samples. 

Gene co-expression network 

A gene co-expression network is considered the most powerful tool to estimate the 
gene correlations within and between modules in the network based on the expression 
patterns. The gene co-expression networks are categorized based on edge representative 
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values, including “signed” or “unsigned” networks and “weighted” or “unweighted” 
networks [149]. Genes can have either positive or negative correlations. In “unsigned” 
networks, correlation values are represented as absolute values [149,152]. Thus, negatively 
and positively correlated genes are considered to have interactions with each other. 
“Signed” networks assign the negative correlation as low correlation values (<0.5) and 
positive correlation as high values (>0.5) [149,152]. 

Weighted networks represent the strength of gene correlation as continuous values 
from 0 to 1, while un-weighted networks represent the correlation as 0 or 1, representing 
no connection or genes are connected [149,153]. The most commonly used tool for gene 
co-expression analysis is the Weighted Gene Co-expression Network 
Analysis (WGCNA) [153]. This tool has been used widely for finding the trait-
associated modules and hub genes in the identified network. The networks are built based 
on hierarchical clustering (HC) and tree-cutting thresholds. Then, Pearson’s correlation is 
applied to compute the correlation between genes within and between modules. 
Furthermore, this method constructs the topological overlap matrix (TOM) to weigh edge 
scores based on the common correlated genes [153]. 

By using absolute values in the “unsigned” network, genes that are positively and 
negatively correlated could be mixed, resulting in misinterpretation of biological meaning. 
In contrast, the “signed” network can better separate positive and negative correlated genes, 
resulting in more specific biological meaning interpretation. Moreover, for a more robust 
result, a signed weighted network was used to construct a gene co-expression network in 
manuscript II. 

Protein-protein interaction network 

Protein-protein interaction (PPI) network represents the big picture of gene function 
interactions at the protein level [154]. The network is built by using known interactions 
from experimental or computational analyses in PPI databases [154]. For example, Search 
Tool for the Retrieval of Interacting Genes/Proteins (STRING) is one of the most popular 
and vast databases of PPI that integrates protein-protein association information from high-
throughput experiments, databases, literature, and computational predictions [155]. In 
manuscript II, the PPI network was also constructed based on the derived interactions 
from the STRING database. 

Functional enrichment analysis 

Functional enrichment analysis is performed to understand the changes in 
biological functions of the sets of genes, such as DEGs. In order to perform functional 
enrichment analysis, the set of genes is searched in biological annotation/pathway 
databases, such as Gene Ontology (GO) [156] and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways [157], which are the large and common databases. GO terms 
comprise three main categories of biological annotation, including biological process (BP), 
molecular function (MF), and cellular compartment (CC) [156]. BP represents the 
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biological objectives or the extensive processes of gene groups involved with several genes 
and their function [156]. MF represents the biochemical activities of genes, and CC 
represents the intracellular parts that express the genes [156]. In contrast, KEGG represents 
the gene interaction in the biological pathways [106]. 

Furthermore, enrichment tools perform statistical testing to indicate the 
significantly enriched terms/pathways. There are several enrichment tools developed based 
on two main strategies, which are (i) “overrepresentation analysis (ORA)” and (ii) “gene 
set scoring” or “gene set enrichment analysis (GSEA)” [158]. ORA uses hypergeometric 
or one-sided Fisher’s exact test to evaluate the significantly overrepresented gene set in 
biological terms [159]. The p-values are corrected using the false discovery rate (FDR) 
[158,160]. On the other hand, GSEA will start by ranking the expression levels of a whole 
gene set. Genes are grouped based on their expression pattern. Then, the different enriched 
terms between each group are estimated using a weighted Kolmogorov Smirnov (WKS) 
[159]. 

In this thesis, the functional enrichment of DEGs was performed using the ORA 
strategy to enrich the specific biological meaning for pathogen-specific genes in sepsis 
patients from GO and KEGG databases (manuscript II). 
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3. Application of genomics and transcriptomics in human infectious 
diseases 

Over the past decades, bioinformatics has been successfully used to study the 
molecular mechanisms of several human disorders, including infectious diseases, which 
are diseases caused by infectious agents such as viruses, bacteria, or fungi [161]. The 
sequencing of human and pathogen genomes drives our understanding of human 
susceptibility to diseases, microbial identification, microbial pathogenesis, as well as the 
development of new treatments [162]. 

The first GWAS was applied to a fungal infection study by Kumar et al. in 
candidemia patients [163]. They identified three genes associated with antifungal defense 
from over 200 candidemia patients [163]. In another study by Méric et al., they performed 
the pan-genome analysis of 415 Staphylococcus epidermidis. They built a phylogenetic tree 
of S. epidermidis based on core genes, corresponding to 72% of the average genome size 
[164]. The tree suggested that each S. epidermidis had an equal ability to cause disease, as 
there was no prominent cluster of clinical isolates [164]. However, they also performed a 
panGWAS analysis, revealing more than 600 infection-associated genes [164]. The 
functions of those genes are involved in pathogenicity mechanisms such as cell toxicity, 
biofilm formation, and methicillin resistance [164].  

More studies employed the phylogenetic tree to investigate the evolutionary 
relationship of human pathogens, for example, a study by Reid et al. [165]. They 
constructed a phylogenetic tree of Escherichia coli based on 7 housekeeping genes [165]. 
Their tree showed that the virulence factors in E. coli lineages evolve in parallel, supporting 
the evolution of virulence by natural selection [165]. Another example from Kiss et al. 
studied the evolution of fungal hyphae and multicellular [166]. As a result, they could 
identify more than 400 novel gene families with evolutionary relationships to the fungal 
hyphae, an important property for the invasion of several fungi [166]. Furthermore, 
Kim et al. applied a network-based approach to study methicillin-resistant Staphylococcus 
aureus (MRSA) [167]. Their results provided virulence-associated genes and suggested 
novel drug target genes for MRSA [167]. 

In addition, transcriptome profiling of blood samples from humans has been used 
to get insights into the complex mechanisms of the host’s response to pathogens. For 
example, a recent study by Dissanayake et al. studied the transcriptomic response to 
different respiratory viruses, which were Rhinovirus (RV), influenza A virus (IAV), and 
influenza B virus (IBV) [168]. They found that chemokine- and interferon-related genes 
responded to all viruses [168]. Moreover, the virus-specific gene such as ICAM5 that 
strongly responded to RV was also observed [168]. Another study by Parnell et al. 
compared gene expression profiles of H1N1 influenza A pneumonia, bacterial pneumonia, 
noninfective systemic inflammatory response syndrome (SIRS) patients, and healthy 
controls [169]. Using DEG analysis, clustering method, and immune cell deconvolution, 
their results revealed that T-cell-related immune pathways are dominantly responding to 
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the influenza virus [169]. At the same time, neutrophil-related genes were dominantly 
expressed in bacterial infection [169]. As well as a study by Sweeney et al. used 
unsupervised clustering to study bacterial sepsis transcriptome profiles [170]. They found 
three subtypes of bacterial sepsis [170]. They also performed GO enrichment analysis to 
understand the differences among the three sepsis subtypes [170]. One subtype showed a 
significant correlation with the inflammatory signaling pathway [170]. One was 
significantly related to adaptive immunity and interferon signaling [170]. The third cluster 
was significantly related to blood coagulation pathways. 

Gene and protein networks have been widely used to identify the potential 
biomarker genes for sepsis. For example, Zeng et al. identified diagnostic biomarker genes 
that progressively dysregulated across controls, sepsis, and septic shock patients [171]. 
Furthermore, they also found a decreasing in several immune cells in sepsis patients [171]. 
Using PPI network analysis, Zhai et al. can also identify signature genes for sepsis and 
septic shock patients [172]. Another study by Tong et al. identified diagnostic biomarker 
genes to distinguish systemic inflammatory response syndrome (SIRS) with no infection, 
sepsis, and septic shock patients [173]. 
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4. Computational workflow for Genome and Transcriptome Data 
Analyses in this thesis 

In this present thesis, I developed two bioinformatics workflows, which are “whole-
genome sequence (WGS) analysis” and “transcriptome profile analysis”. The WGS 
analysis workflow was applied in manuscripts I, III, and IV, to study A. fumigatus 
genomes (Figure 4). At the same time, the transcriptome profile analysis was used to 
characterize the human immune mechanisms responding to different types of pathogens 
(manuscript II, Figure 5). 

 

4.1 Whole-genome sequence (WGS) analysis workflow 

Aspergillus fumigatus is the most important airborne fungal pathogen. A. fumigatus 
causes different kinds of disease depending on the host's immune status [174]. In 
immunocompromised patients, A. fumigatus can cause invasive aspergillosis (IA), which 
poses a high mortality rate of up to 50% for immunocompromised patients [175,176]. The 
mortality rate can rise to 100% for patients infected with triazole-resistant A. fumigatus 
[177,178]. Recent studies suggested that the triazole antifungal resistance in A. fumigatus 
could be derived from either fungicide used in agriculture or in-host development during 
treatment [179]. Therefore, it is essential to understand the effects of agricultural fungicide 
on A. fumigatus genomes and the genetic variations between environmental and clinical 
A. fumigatus strains. 

To understand the virulence mechanisms of A. fumigatus, a collection of 
bioinformatics tools that have been used to study fungal genomes were designed and 
applied to study 300 global Aspergillus fumigatus genomes. This WGS analysis workflow 
was designed for fungal genomes generated by the NGS technology. The workflow consists 
of quality assessment and whole-genome assembly using reference-based and de novo 
methods. The variants, including SNP/InDels and CNV, were detected and annotated the 
effects on the reference genes. The workflow also includes pan-/core-genome analysis and 
phylogenetic tree reconstruction. The meaningful variations that respond to phenotypic 
differences are detected using GWAS and panGWAS analysis. This workflow was applied 
to study 300 global Aspergillus fumigatus genomes. 
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Figure 4: The whole-genome sequence analysis workflow. The workflow will use the 
FastQ files, which are raw sequencing data generated by NGS platforms as input. Blue 
boxes represent the quality control steps. Whole-genome assembly is performed using 
reference-based (orange, manuscript I and III) and de novo assembly (yellow, 
manuscript I and IV). The variant calling and pan-/core-genes analysis are performed. 
The genetic variants and pan-/core- analysis are further analyzed in downstream analysis 
(green). 

 

4.2 Transcriptome profile analysis workflow 

Sepsis is a life-threatening organ dysfunction due to inappropriate host response to 
infections, the most common cause of death among hospitalized patients in the intensive 
care unit (ICU) [180,181]. The mortality rates of sepsis are higher than 15% and can rise 
to 56% when patients present septic shock, while males have a higher mortality rate than 
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females [182,183]. Recently, early recognition of sepsis and immediate management can 
reduce the mortality rate. However, early pathogen detection is still a challenging problem 
due to the lack of effective biomarkers [184,185]. Furthermore, compared to bacterial 
infection, a fungal infection is more difficult to diagnose at an early stage [186]. Therefore, 
gene expression data analysis is a practical approach to studying the differences in 
immunity mechanisms and identifying potential gene markers to detect bacterial and fungal 
pathogens in an early stage of infection. 

In this thesis, another workflow of transcriptome or gene-expression data analysis 
was designed to study the differences in immune responses to bacteria, fungi, and co-
infection of bacteria and fungi in sepsis patients. The workflow was divided into pre-
processing and downstream analysis (Figure 5). Pre-processing analysis includes quality 
assessment and DEG analysis. Once DEGs are determined, the differences in biological 
functions are interpreted by gene clustering, network constructions, and gene set 
enrichment analysis. This workflow also can estimate the hub genes from gene co-
expression and PPI networks to identify potential biomarkers for pathogen-specific sepsis 
patients. 

 

Figure 5: The microarray data analysis workflow. The relative gene expression levels 
generated by microarray technology are used as the input for this workflow. In quality 
steps, the expression levels are normalized between arrays. The whole-transcriptome 
profiles are observed by deconvolution and PCA analysis. DEG analysis is performed to 
identify the most differential gene expressions between different conditions. DEG list is 
further analysed to study the co-expression pattern using matrix and networks. The 
functional interpretation is performed by gene set enrichment analysis. Hub genes are also 
identified from network analysis. 
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CHAPTER II OBJECTIVES 
This thesis aimed to implement bioinformatics approaches, including whole-

genome and transcriptome analyses, to extend the knowledge of fungal pathogenicity and 
human immune responses to infectious microbes. During my research, state-of-art 
genomics methods were established and employed to generate new hypotheses and reveal 
genes and/or mechanisms that are important factors for A. fumigatus colonization and 
proliferation in the human host. In parallel, I successfully applied an array of computational 
methods (transcriptomics, network biology, and machine learning) to find pathogen-
specific biomarkers for the early diagnosis of sepsis caused by bacteria, fungi, or 
concomitant presence of both. 

The 3 research papers (2 published and one in preparation) that form part of this 
thesis aim to study the genetic diversity of A. fumigatus among different environments and 
overcome the limitations of using the A. fumigatus reference genome by generating a pan-
genome using 300 globally distributed A. fumigatus strains. These studies served as the 
foundation to answer the following questions: 

1. Which are the genomic similarities and differences among A. fumigatus strains of 
varied origins? 

2. Which are the evolutionary relationships among A. fumigatus isolated within 
Germany and global strains? 

3. Are there different evolutionary paths among A. fumigatus environmental and 
clinical strains, and how do they relate to drug resistance? 

4. How does fungicide treatment affect the structure of A. fumigatus genomes? 
5. Do the genetic differences between environmental and clinical A. fumigatus change 
their metabolic capacities and their ability to colonize the human host? 

 Another paper (in preparation) of my thesis put the focus on the early transcriptomic 
responses of the human host to a pathogen aiming to identify important immunity 
mechanisms and gene biomarkers specific to bacterial and/or fungal infections in sepsis 
patients. The study aimed to answer the following questions using blood samples from 
patients up to 7 days before the clinical diagnosis of sepsis: 

1. Which are the common and different immune mechanisms activated in response to 
bacterial and fungal infections? 

2. Which are the key genes that regulate those immune mechanisms? 
3. Are those key genes sufficient to detect the type of pathogen (bacteria, fungal, or 
co-infection) at an early stage of infection? 
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CHAPTER III RESEARCH PUBLICATIONS 

List of Research Publications 
 This present thesis comprises four research publications: two first-author 
manuscripts, including one published (manuscript I) and one in preparation (manuscript 
II), and two co-author manuscripts, including one published (manuscript III) and one in 
preparation (manuscript IV). 
 
Manuscript I:  

Barber, A.E., Sae-Ong, T., Kang, K. Seelbinder B., Li J., Walther G., Panagiotou 
G., Kurzai O. Aspergillus fumigatus pan-genome analysis identifies genetic variants 
associated with human infection. Nat Microbiol 6, 1526–1536 (2021). 
https://doi.org/10.1038/s41564-021-00993-x 

 
Manuscript II: 

Sae-Ong, T., Schäuble S., Garcia Lopez, A., Lukaszewski R.A., Singer A., 
Panagiotou G., Transcriptomic analysis of presymptomatic sepsis patients reveals 
pathogen-specific host immune responses [Manuscript in preparation] 

 
Manuscript III: 

Barber A.E., Riedel J., Sae-Ong T., Kang K., Brabetz W., Panagiotou G., Deising 
H.B., Kurzai O. 2020. Effects of agricultural fungicide use on Aspergillus fumigatus 
abundance, antifungal susceptibility, and population structure. mBio 11:e02213-20. 
https://doi.org/10.1128/mBio.02213-20 

 
Manuscript IV: 

Mirhakkak, M.H., Chen, X., Sae-Ong, T., Xu, L., Heinekamp, T., Kurzai, O., 
Barber, A., Brakhage, A., Boutin, S., Schäuble, S., Panagiotou, G., A pan-genome 
resembling genome-scale metabolic model platform of 252 Aspergillus fumigatus 
strains reveals growth dependencies from the lung microbiome [Manuscript in 
preparation] 
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Manuscript I 
 

 

Overview 

In the first publication, we aimed to answer the questions related to genomic 
similarities and differences among global A. fumigatus strains and the evolutionary 
differences between environmental and clinical strains. Therefore, 300 A. fumigatus 
genomes were re-assembled using reference-based and de novo genome assembly methods. 
The results suggested the high diversity of A. fumigatus genomes, in which only 69% of 
discovered genes were shared among all strains. Furthermore, we can observe the genomic 
differences between environmental and clinical strains. 
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Diseases caused by the mould Aspergillus fumigatus are a 
major cause of human morbidity and mortality1,2. Invasive 
aspergillosis is particularly problematic in immunocom-

promised patients, resulting in a mortality rate of up to 50%3,4. 
Treatment of infections caused by A. fumigatus relies on triazole 
antifungal drugs. However, resistance to these frontline therapies 
is increasing, and the mortality rate for resistant infections is 25% 
higher than susceptible infections5,6. Although the most frequently 
identified resistance mutations occur in the cellular target of the tri-
azoles—that is, cyp51a—up to 30% of the resistant isolates have no 
identifiable resistance mechanisms7, complicating the recognition 
and treatment of these problematic infections.

While the host immune status is an important determinant in 
the development of aspergillosis, the substantial phenotypic vari-
ability observed among A. fumigatus isolates indicates that intra-
species diversity also plays a role in the disease8–14. This includes 
marked differences in virulence in animal models9,10,14, fitness under 
hypoxia9, growth under chemical stress(es)11, nutritional heteroge-
neity12 and induction of host inflammatory mediators8. As an indi-
cator of the genomic diversity underlying the phenotypic variability 
observed in A. fumigatus, genomic comparisons between the refer-
ence strains Af293 and A1163 reveal tracts of variable gene content 

between the two15, and 7% of Af293 genes are not present in A1163 
(FungiDB). Despite this variation, previous studies of A. fumiga-
tus have largely only analysed genomic information in the context 
of the reference genome and were limited to the genetic material 
present in Af293 due to the technical challenges of de novo eukary-
otic genome analysis16–19. In addition, most of the isolates that have 
been sequenced to date are of clinical origin, thereby obscuring the 
genomic relationship between environmental isolates and those 
causing human disease.

In this study we constructed de novo genome assemblies of 
300 A. fumigatus genomes (n = 217 environmental isolates and 
n = 83 clinical isolates) and used them to define the pan-genome 
of this important human fungal pathogen as well as the relation-
ship between environmental and clinical isolates. We also leveraged 
the power of genome-wide association studies (GWAS) to identify 
genomic variation associated with human infection and triazole 
resistance, revealing a new range of therapeutic targets to combat 
these life-threatening infections.

Results
De novo assembly of 300 A. fumigatus genomes. In this study we 
used reference-guided and de novo assembly methods to analyse 

Aspergillus fumigatus pan-genome analysis 
identifies genetic variants associated with  
human infection
Amelia E. Barber1,8,9, Tongta Sae-Ong2,9, Kang Kang! !2, Bastian Seelbinder! !2, Jun Li! !3,4, 
Grit Walther5, Gianni Panagiotou2,6 ✉ and Oliver Kurzai1,5,7 ✉

Aspergillus fumigatus is an environmental saprobe and opportunistic human fungal pathogen. Despite an estimated annual 
occurrence of more than 300,000 cases of invasive disease worldwide, a comprehensive survey of the genomic diversity pres-
ent in A. fumigatus—including the relationship between clinical and environmental isolates and how this genetic diversity con-
tributes to virulence and antifungal drug resistance—has been lacking. In this study we define the pan-genome of A. fumigatus 
using a collection of 300 globally sampled genomes (83 clinical and 217 environmental isolates). We found that 7,563 of the 
10,907 unique orthogroups (69%) are core and present in all isolates and the remaining 3,344 show presence/absence of 
variation, representing 16–22% of the genome of each isolate. Using this large genomic dataset of environmental and clinical 
samples, we found an enrichment for clinical isolates in a genetic cluster whose genomes also contain more accessory genes, 
including genes coding for transmembrane transporters and proteins with iron-binding activity, and genes involved in both car-
bohydrate and amino-acid metabolism. Finally, we leverage the power of genome-wide association studies to identify genomic 
variation associated with clinical isolates and triazole resistance as well as characterize genetic variation in known virulence 
factors. This characterization of the genomic diversity of A. fumigatus allows us to move away from a single reference genome 
that does not necessarily represent the species as a whole and better understand its pathogenic versatility, ultimately leading 
to better management of these infections.

NATURE MICROBIOLOGY | VOL 6 | DECEMBER 2021 | 1526–1536 | www.nature.com/naturemicrobiology1526
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Diseases caused by the mould Aspergillus fumigatus are a 
major cause of human morbidity and mortality1,2. Invasive 
aspergillosis is particularly problematic in immunocom-

promised patients, resulting in a mortality rate of up to 50%3,4. 
Treatment of infections caused by A. fumigatus relies on triazole 
antifungal drugs. However, resistance to these frontline therapies 
is increasing, and the mortality rate for resistant infections is 25% 
higher than susceptible infections5,6. Although the most frequently 
identified resistance mutations occur in the cellular target of the tri-
azoles—that is, cyp51a—up to 30% of the resistant isolates have no 
identifiable resistance mechanisms7, complicating the recognition 
and treatment of these problematic infections.

While the host immune status is an important determinant in 
the development of aspergillosis, the substantial phenotypic vari-
ability observed among A. fumigatus isolates indicates that intra-
species diversity also plays a role in the disease8–14. This includes 
marked differences in virulence in animal models9,10,14, fitness under 
hypoxia9, growth under chemical stress(es)11, nutritional heteroge-
neity12 and induction of host inflammatory mediators8. As an indi-
cator of the genomic diversity underlying the phenotypic variability 
observed in A. fumigatus, genomic comparisons between the refer-
ence strains Af293 and A1163 reveal tracts of variable gene content 

between the two15, and 7% of Af293 genes are not present in A1163 
(FungiDB). Despite this variation, previous studies of A. fumiga-
tus have largely only analysed genomic information in the context 
of the reference genome and were limited to the genetic material 
present in Af293 due to the technical challenges of de novo eukary-
otic genome analysis16–19. In addition, most of the isolates that have 
been sequenced to date are of clinical origin, thereby obscuring the 
genomic relationship between environmental isolates and those 
causing human disease.

In this study we constructed de novo genome assemblies of 
300 A. fumigatus genomes (n = 217 environmental isolates and 
n = 83 clinical isolates) and used them to define the pan-genome 
of this important human fungal pathogen as well as the relation-
ship between environmental and clinical isolates. We also leveraged 
the power of genome-wide association studies (GWAS) to identify 
genomic variation associated with human infection and triazole 
resistance, revealing a new range of therapeutic targets to combat 
these life-threatening infections.

Results
De novo assembly of 300 A. fumigatus genomes. In this study we 
used reference-guided and de novo assembly methods to analyse 

Aspergillus fumigatus pan-genome analysis 
identifies genetic variants associated with  
human infection
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Grit Walther5, Gianni Panagiotou2,6 ✉ and Oliver Kurzai1,5,7 ✉

Aspergillus fumigatus is an environmental saprobe and opportunistic human fungal pathogen. Despite an estimated annual 
occurrence of more than 300,000 cases of invasive disease worldwide, a comprehensive survey of the genomic diversity pres-
ent in A. fumigatus—including the relationship between clinical and environmental isolates and how this genetic diversity con-
tributes to virulence and antifungal drug resistance—has been lacking. In this study we define the pan-genome of A. fumigatus 
using a collection of 300 globally sampled genomes (83 clinical and 217 environmental isolates). We found that 7,563 of the 
10,907 unique orthogroups (69%) are core and present in all isolates and the remaining 3,344 show presence/absence of 
variation, representing 16–22% of the genome of each isolate. Using this large genomic dataset of environmental and clinical 
samples, we found an enrichment for clinical isolates in a genetic cluster whose genomes also contain more accessory genes, 
including genes coding for transmembrane transporters and proteins with iron-binding activity, and genes involved in both car-
bohydrate and amino-acid metabolism. Finally, we leverage the power of genome-wide association studies to identify genomic 
variation associated with clinical isolates and triazole resistance as well as characterize genetic variation in known virulence 
factors. This characterization of the genomic diversity of A. fumigatus allows us to move away from a single reference genome 
that does not necessarily represent the species as a whole and better understand its pathogenic versatility, ultimately leading 
to better management of these infections.
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the genomes of 300 A. fumigatus isolates, representing environmen-
tal and clinical isolates from different locations across the globe. 
Among these, 188 samples were novel environmental and clinical 
isolates from Germany that were sequenced as part of this study. The 
remaining 112 isolates, including 64 isolates that were sequenced 
by us in a previous study20, were pulled from public data reposito-
ries as raw sequence data. Our overall dataset was comprised of 217 
environmental isolates and 83 clinical isolates from Europe, Asia, 
North America, South America and the International Space Station 
(Supplementary Data 1). Forty-three of 294 isolates were resis-
tant to one or more medical triazoles, as determined by European 
Committee on Antimicrobial Susceptibility Testing (EUCAST) 
broth microdilution21. Azole susceptibility data were not available 
for six isolates. We generated de novo genome assemblies of these 
300 isolates using paired-end Illumina sequencing to facilitate the 
unrestricted analysis of genomic diversity in A. fumigatus. The mean 
number of contigs in our assemblies was 948 and the mean N50, a 
marker of genome contiguity representing the weighted median con-
tig length, was 145,494 base pairs (bp; Supplementary Table 1 and 
Supplementary Data 1). The mean genome size of our assemblies 
was 28.6 Mb (range, 26.9–30.8 Mb), with an average of 9,408 open 
reading frames (ORFs) per isolate and a range of 9,169 to 11,231. 
Using BUSCO as a measure of genome completeness, we found that 
an average of 97% of the expected single-copy orthologues were 
found and present as single copies in our genome assemblies.

To perform population genomic analyses, we aligned reads 
against the Af293 reference genome. We observed an average 
of 78,692 single nucleotide variants (SNVs) per isolate (range, 
23,029–149,537) or approximately three SNVs per kilobase 
(Supplementary Data 1). We also detected an average of 7,383 
short insertions or deletions (indels) per isolate (range, 2,528–
16,134). Of the 329,405 non-redundant SNVs identified among 
our isolates, 33% (107,779) were not described in FungiDB, release 
39. Together, this reveals a pronounced level of genetic diversity in 
A. fumigatus at the nucleotide level and considerably extends the 
previously recognised diversity.

The A. fumigatus pan-genome contains 7,563 core and 3,344 
accessory genes. To examine the full genomic diversity of A. fumig-
atus, we used our de novo genome assemblies to define and char-
acterize its pan-genome. The pan-genome is the collective gene set 
of a species and is composed of core genes found in all individu-
als and accessory genes that are not shared between all members of 
the species. We identified a total of 12,798 gene clusters that con-
densed into 10,907 non-redundant orthogroups. The A. fumigatus 
pan-genome was composed of a core genome of 7,563 orthogroups 
in all 300 isolates (69% of the pan-genome), 935 softcore ortho-
groups in >95% of the isolates (9% of the pan-genome), 1,367 shell 
genes in 5–95% of the isolates (13% of the pan-genome) and a cloud 
genome of 1,043 genes present in less than 5% of the isolates (10% of 
the pan-genome; Fig. 1a). Each isolate contained an average of 9,199 
orthogroups (range, 8,987–9,629) and an average of 1,636 ortholo-
gous accessory-gene clusters (range, 1,424–2,066), correspond-
ing to 16–22% of the total genome of the isolate. The pan-genome 
was closed—that is, the number of pan-genes did not substantially 
increase after the addition of approximately 250 genomes (Fig. 1b). 
Gene association analysis identified 53 co-occurring gene modules 
containing 2–251 genes (Fig. 1c).

The protein sequences of the core genes were significantly lon-
ger than the softcore or accessory genomes. The geometric mean 
of the length of the core genes was 436 amino acids compared 
with 310 amino acids for the softcore genes and 191 for the shell/
cloud genes (Fig. 1d). To examine the evolutionary forces work-
ing on the core and accessory genomes, we calculated the rate of 
non-synonymous-to-synonymous substitutions (dN/dS). The geo-
metric mean of the dN/dS ratio among all 10,907 pan-genes was 

0.53, with significant differences between the genome compart-
ments. The core genome showed the strongest evidence of nega-
tive or purifying selection (dN/dS = 0.49), whereas the softcore and 
accessory genomes had dN/dS ratios of 0.68 and 0.69, respectively 
(Fig. 1e). The lower dN/dS values for the core genes relative to the 
accessory genes indicate that they are under a higher degree of puri-
fying selection—although neither genome compartment is evolving 
neutrally, as indicated by ratios of less than one.

The core genome contained a higher proportion of proteins 
with annotated domains, as 85% of the core genes contained at 
least one annotated InterPro domain compared with 71% of the 
softcore genes and 51% of the accessory genes (Fig. 1f). The core 
genome was enriched for 3,140 Pfam domains—including protein 
kinase domains, transcription factor domains and ABC transport-
ers—whereas the accessory genome was enriched for 546 Pfam 
domains—including short-chain dehydrogenases and cytochrome 
P450 enzymes (Extended Data Fig. 1a). For Gene Ontology (GO) 
annotations, the core genome was enriched for protein binding, 
ATP binding, carbohydrate metabolic functions, signal transduc-
tion and 1,497 total annotations (Supplementary Data 2). The 
accessory genome was enriched for haem binding, response to oxi-
dative stress and 244 total GO annotations (Supplementary Data 2).

Many of the shell and cloud genes were located on the subtelo-
meric ends of chromosomes 1 and 7, as measured by their posi-
tion in Af293 (Extended Data Fig. 1b). Of the 10,907 orthologous 
gene clusters (homologous genes identified in different isolates) 
identified in the A. fumigatus pan-genome, 87% were present in 
Af293 (Supplementary Data 3). Overall, we identified an average 
of 494 genes per isolate that were absent in Af293 and a cumula-
tive 1,934 unique ORFs were not present in Af293. In summary, the 
core genome of A. fumigatus represented 69% of the total identified 
orthogroups and was distinct from the accessory genome in length, 
function and the strength of purifying selection.

Chronic disease isolates are more genetically diverse than iso-
lates from invasive disease and the environment. We examined 
the population genomics of isolates from the environment, invasive 
disease and chronic aspergillosis. Due to the lower number of iso-
lates in the chronic disease group, the environmental and clinical 
samples were downsampled to match the number of chronic dis-
ease isolates (n = 19). Interestingly, the isolates from chronic disease 
group were significantly more diverse at the nucleotide level than 
isolates from invasive disease or the environment, as measured by 
the nucleotide diversity (π) calculated across overlapping 5 kb win-
dows (Extended Data Fig. 2). In contrast, isolates from the invasive 
disease group showed less nucleotide diversity than isolates from 
the environment and chronic disease. The geometric mean of the 
genome-wide nucleotide diversity was 1.3 × 10−5 for the isolates 
from the chronic disease group, 8.3 × 10−6 for the environmental iso-
lates and 6.9 × 10−6 for the isolates from the invasive disease group.

The Af293-containing genetic cluster is enriched for clinical iso-
lates. In a phylogeny built from the coding nucleotide sequences 
of 5,380 single-copy orthologues, all 300 isolates formed a mono-
phyletic group that was clearly distinct from the related outgroups 
of Aspergillus oerlinghausenensis and Aspergillus fischeri (Fig. 2 
and Extended Data Fig. 3a). Isolates from Germany, collected and 
sequenced by us, intermixed with the globally sampled isolates from 
publicly available repositories, with no strong geographic cluster-
ing observed. We also found a high degree of congruence between 
the phylogeny built from the core genome sequence from de novo 
genome assemblies and phylogenies built using reference-guided 
SNV data from whole-genome SNVs and neutral loci (Extended 
Data Fig. 3b–d). Based on genome coverage at the MAT locus, 
we found an equal split of isolates of both mating types (n = 148 
MAT1-1 isolates and n = 149 MAT1-2 isolates; Fig. 2).
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To look for evidence of genomic recombination in A. fumigatus, 
we performed a neighbour-net analysis, a phylogenetic method that 
allows for the representation of conflicting genetic signals that result 
from sexual recombination or gene conversion. The neighbour-net 
tree built from core genes had a highly reticulated centre, which 
indicates a marked degree of conflicting genetic information in the 
phylogenetic network and is suggestive of abundant genetic recom-
bination in the species (Fig. 3a).

Discriminant analysis of principle components22 was used to 
identify seven as the best supported number of genetic clusters in our 
dataset based on our de novo, reference and pan-gene count-based 
approaches (Extended Data Fig. 4a–c). Cluster 6 had the largest 
number of isolates (n = 80), followed by cluster 2 (n = 53), cluster 5 
(n = 48), cluster 7 (n = 43), cluster 3 (n = 35), cluster 4 (n = 22) and 
cluster 1 (n = 19; Fig. 4a). Interestingly, cluster 5 was enriched for 
clinical isolates (Fisher’s exact test with Benjamini–Hochberg cor-
rection, P = 0.02). This cluster also contained the reference strain 
Af293, which is a clinical isolate from a patient who died of inva-
sive aspergillosis23. Together, we observed an enrichment for clinical  

isolates in one cluster as well as evidence of abundant genetic 
recombination in A. fumigatus.

Genetic cluster 5 contains more accessory genes and a distinct 
genomic profile. As genetic cluster 5 was statistically enriched for 
clinical isolates, we examined the genomes of each cluster to iden-
tify differences that might predispose the genetic background of 
cluster 5 towards human infection as well as characterize potential 
functional differences between the genetic clusters. Interestingly, 
clusters 5 and 2 contained significantly more accessory genes than 
the other clusters (Fig. 4a). The median number of accessory genes 
for cluster 5 was 1,965 compared with 1,895, 1,842, 1,882, 1,814 and 
1,790 for clusters 2, 3, 1, 7 and 6, respectively (Fig. 4a). Cluster 4 
had the smallest number of accessory genes, with a median of 1,749.

To predict the functional differences between the clusters, we 
calculated the abundance of Pfam domains and the frequency of 
GO annotations in the different clusters and compared the variance 
between clusters. A total of 170 GO annotations showed significant 
variation in their relative frequency between clusters (Fig. 4b and 
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Supplementary Data 4). Among these were an increased frequency 
of genes involved in oxidation–reduction processes, iron-ion bind-
ing, carbohydrate metabolic processes and proteolysis in cluster 5 
(Fig. 4c and Supplementary Data 4). Significant variation between 
clusters was observed for the abundance of 269 Pfam domains 
(Supplementary Data 4). Cluster 5 had an increased abundance of 
major facilitator superfamily transporters, amino-acid permeases 
and chitin-recognition proteins (Fig. 4d and Supplementary Data 4).

For the GO categories and Pfam domains that did not show a 
significant difference in copy number between the genetic clusters, 
we reasoned that there could still be functional differences due to 
the presence of high-impact variants such as frameshifts or the gain/
loss of stop codons. To examine this, we calculated the fraction of 
genes containing a high-impact variant(s) for each functional anno-
tation and compared the incidence across the clusters. A total of 945 
GO annotations contained significant differences in the incidence 
of high-impact variants between the clusters (Supplementary Data 
4). Among these were a reduced number of high-impact variants 
in chromatin organization and mismatch repair-annotated genes 
in clusters 5 and 2 (Fig. 4e). We also quantified the incidence of 
high-impact variants in Pfam domain-containing genes and iden-
tified 482 domains with significant differences between the clus-
ters (Supplementary Data 4). These included a reduced number of 
high-impact variants in cytochrome P450 enzymes and bZIP tran-
scription factors in clusters 2 and 5. In summary, we observed dis-
tinct genomic profiles between the genetic clusters of A. fumigatus, 

including a larger number of accessory genes in clusters 2 and 5 in 
addition to copy-number variation and incidence of high-impact 
variants in functional annotations such as Pfam domains and 
GO categories.

A. fumigatus exhibits variation in virulence-associated genes.
Using a database of 360 virulence- or fitness-associated genes for
A. fumigatus19,24–28 (Supplementary Data 5), we examined our 300
genomes for the presence/absence of these genes, changes in copy
number relative to Af293 and the incidence of high-impact vari-
ants (for example, frameshifts and nonsense mutations). This list
includes genes involved in metabolism, signalling, cell-wall biol-
ogy, secondary metabolism, stress responses and antifungal drug
resistance. Overall, these virulence-associated factors were well
conserved. No variation in copy number, presence/absence of genes 
or genetic alterations anticipated to have a high functional impact
was detected in 57% (205/360) of the genes. The remaining 155
virulence-associated genes had some degree of genetic variation
expected to affect gene function among our 300 genomes, which
can be visualized in Fig. 5 (full summary in Supplementary Data 5). 
Underscoring the fundamental role of these genes for the fitness of
A. fumigatus in the environment and the human host, most cases
of gene loss or high-impact genetic variation were uncommon and
observed in less than 5% of the isolates (n=121 genes). However,
the remaining 34 genes displayed more pervasive genetic variation,
including 76% of the isolates (229/300) showing frameshifts in the
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serine protease pr1 (Afu7g04930) and 71% of the isolates (213/300) 
showing high-impact variants in the putative sensor histidine kinase 
tcsB (Afu2g00660).

Overall, secondary metabolism genes showed the highest vari-
ability among the virulence-associated genes, with 59 genes either 
being absent or showing a predicted loss of function among the 300 
isolates. Interestingly, 97% of the isolates (292/300) possessed exten-
sively degraded copies of the non-ribosomal peptide synthetase 
nrps8 (also known as pes3 or Afu5g12730), a gene whose deletion 
showed increased virulence in a murine model of invasive aspergil-
losis29. We also observed variability in the biosynthetic gene cluster 
encoding fumagillin, including absence of the fumagillin tailoring 
enzyme fmaG in 89% of the isolates (267/300), the absence of fumR 
in 49% of the isolates (146/300) and a complete loss of the clus-
ter in three isolates (1%). Finally, we observed variants predicted to 
impact the biosynthesis of the immunosuppressive virulence factor 
gliotoxin in 6% of the isolates (17/300). These included high-impact 

variants in gliZ (n = 11 isolates); gliA (n = 5 isolates); gliP and gliF 
(n = 3 isolates each); gliI, gliT and gliJ (n = 2 isolates each); and glicC 
and gliG (n = 1 isolate each).

In addition to cases of gene loss, we observed cases of gene 
amplification in virulence-associated genes relative to Af293 and 
A1163. A total of 53 genes showed gene amplification, including 
5% of the isolates (n = 16) with increased copy number of the puta-
tive catalase-peroxidase cat2 (Afu8g01670), which is upregulated in 
response to neutrophils30. In addition, 5% of the isolates (n = 14) had 
increased copy numbers of the zinc transporter zrfC (Afu4g09560) 
and 3% (n = 10) had increased copy numbers of the putative ABC 
multidrug transporter Afu5g12720. In summary, although roughly 
half of the virulence-associated genes described to date were 
well conserved among the 300 genomes examined, we observed 
high-impact genetic variation in many virulence-associated genes, 
which could perhaps explain the wide range in virulence observed 
among A. fumigatus isolates.
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GWAS-identified fungal genetic variation associated with clini-
cal isolates. To better understand how the environmental saprobe 
A. fumigatus can cause disease in the non-native niche of the human 
lung, we performed a GWAS study to identify fungal variants asso-
ciated with clinical isolates relative to environmental isolates as 
well as fungal variants associated with the specific disease states of 
invasive and chronic disease (Extended Data Fig. 5a). Using a linear 
mixed model and a minor allele frequency (MAF) > 0.05, we iden-
tified 68 genomic positions with genetic variants associated with 
clinical isolates relative to environmental isolates (Supplementary 
Data 6). These variants included hits in 27 protein-coding genes, 
comprising both genes with established roles in virulence as well as 
uncharacterized ORFs (Supplementary Table 2). Among the genes 
previously implicated in the virulence of A. fumigatus were the 
sterol regulatory element binding protein srbA, which is involved 
in both growth in hypoxia and iron homeostasis31,32, the global 
transcriptional regulator pacC required for fungal invasion dur-
ing pulmonary infection33,34 and the transcription factor acuK that 
regulates gluconeogenesis and iron acquisition35. The analysis also 
identified variants in genes whose role in virulence is less estab-
lished, including a microtubule spindle protein (Afu2g16260), a heat 
shock-responsive protein (Afu4g04680), a putative polyketide syn-
thase (Afu6g13930) and histone H1 (Afu3g06070), which is upregu-
lated in conidia exposed to neutrophils (AspDB).

The virulence potential of A. fumigatus is influenced by the host 
and its underlying disease status. The factors critical for the estab-
lishment of invasive infection in a neutropenic lung are probably 
not the same as those required for long-term survival in the human 
lung, as in the case of chronic diseases such as cystic fibrosis and 
allergic bronchopulmonary aspergillosis. We thus performed asso-
ciation analysis for genetic variants associated with isolates from 
both invasive (acute) and chronic aspergillosis. There was a high 
degree of overlap between the genetic variants identified in this 
analysis and those from the analysis of all clinical isolates, regardless 
of the disease status of the host, but fewer variants and genes were 
identified for each underlying clinical disease (Extended Data Fig. 
5b). We identified 21 genomic positions with SNVs and short indels 
significantly associated with invasive aspergillosis (Supplementary 
Table 2 and Supplementary Data 6). Nine of the ten variants located 
in coding genes that were associated with invasive disease were 
shared with isolates from all clinical origins and included the tran-
scription factors acuK and pacC as well as the tubulin beta-2 sub-
unit tub2. Chronic disease had variants at five genomic positions, 
two of which were within coding genes: Afu2g03540, an orthologue 
of GPI-anchored cell protein cspA (Afu3g08990) and a l-cytosine 
transmembrane transporter (Afu6g14530; Supplementary Table 2 
and Supplementary Data 6).

Triazole target genes display distinct phylogenetic networks and 
imbalanced levels of stabilizing selection. The paralogous genes 
cyp51a (Afu4g06890) and cyp51b (Afu7g03740) encode the molecu-
lar targets of the triazoles. Despite this, most resistance mutations 

and mechanisms have been described in cyp51a. Triazole-resistant 
isolates were distributed throughout the phylogeny (Fig. 2). 
However, most isolates carrying the TR34/L98H allele of cyp51a 
were clustered near each other. The close genetic relationship 
between isolates carrying TR34/L98H is in agreement with previous 
work suggesting a single origin of this allele36.

To investigate the evolutionary features of the triazole targets, we 
built neighbour-net trees from the coding sequence of cyp51a and 
cyp51b plus 1,000 bp of the up- and downstream flanking sequences. 
A phylogenetic network built from cyp51a sequences showed multi-
ple splits (parallel bands), indicating conflicting genetic information 
among our isolates that could arise from recombination (Fig. 3b). 
Genetic recombination by isolates carrying the TR34/L98H allele is 
supported by its presence in isolates of both mating types (Fig. 2). 
By comparison, a neighbour-net tree of cyp51b, which is located on 
a different chromosome, did not show any conflicting genetic infor-
mation, as demonstrated by the lack of reticulation in the phyloge-
netic network (Fig. 3c). We also observed a reassortment of cyp51a 
genotypes in the tree constructed from cyp51b sequences relative 
to that constructed from cyp51a (Fig. 3b,c). In the tree constructed 
from cyp51a sequences, isolates carrying the TR34/L98H allele of 
cyp51a were located at five distinct points on the phylogenetic net-
work at positions that did not overlap with the positions of other 
cyp51a mutant alleles. In the network of cyp51b sequences, strains 
carrying the TR34/L98H allele were found only at two positions in 
the network that also contained other cyp51a mutant alleles.

To assess the selective forces working on cyp51a and cyp51b, we 
examined the dN/dS ratios of each gene. The dN/dS ratios of cyp51b 
were significantly lower than cyp51a (mean value of 0.01 and 0.27 
for cyp51b and cyp51, respectively), indicating that cyp51b is under 
a stronger degree of stabilization selection than cyp51a (Fig. 3d). 
Together, our results demonstrate higher levels of genetic disagree-
ment in the isolate sequences of cyp51a compared with cyp51b and 
that cyp51a is under less stabilizing selection than cyp51b.

GWAS-identified genetic changes associated with triazole resis-
tance. We subsequently performed variant-based GWAS to identify 
genomic changes associated with triazole resistance. Among the 
294 samples with available susceptibility data, 44 were resistant to 
one or more triazole. Of these, 15 contained mutations in cyp51a 
that have been previously shown to confer triazole resistance (for 
example, TR34/L98H and TR46/Y121F/T289A/G448S) and 29 were 
resistant by unknown mechanisms. When we performed a linear 
mixed-model GWAS using a MAF > 0.01, we identified 16 genomic 
positions associated with triazole resistance (Supplementary Table 
3 and Supplementary Data 6). These included the known TR34 and 
L98H variants in the triazole target enzyme cyp51a. However, we 
repeated our analysis using a MAF > 0.05 to give a more robust 
variant list with fewer false positives given that association studies 
with smaller datasets such as ours are underpowered for the detec-
tion of true associations with rare variants (Extended Data Fig. 5c). 
Using this more stringent criterion, we condensed our variant list 

Fig. 4 | Pan-genomic differences between the clusters of A. fumigatus. a, Number of accessory genes (right) present in the genomes of isolates belonging 
to each genetic cluster (left). Statistical significance was determined using a one-way analysis of variance and Tukey’s honest significance test (one-sided). 
The letters denote significances as a compact letter display where groups that are not significantly different from each other are indicated with the same 
alphabet letter; P!<!0.05. The bold line in the box-and-whisker plot indicates the 50th percentile, and the box extends from the 25th to the 75th percentiles. 
The whiskers denote the lowest and highest values within 1.5× the interquartile range. b, Heatmap showing the normalized abundance of GO annotations 
exhibiting significant variance in frequency between the clusters (bottom; n!=!127 GO annotations). Statistical significance was determined using one-way 
analysis of variance with Bonferroni’s correction (P!<!0.05). The mean number of genes containing each GO annotation across the 300 genomes is shown 
(top). Note the graph is on a log10 scale but the y-axis shows actual values. c, Genome copy number for select GO annotations from b across the clusters. 
d, Genome copy number for select Pfam annotations across the clusters. e, The incidence of high-impact variants (for example, frameshift and loss of 
start) relative to Af293 was analysed for GO annotations that did not contain significant copy-number variation between the clusters. A selected subset of 
GO categories with significant variation in the incidence of high-impact variants between the genetic clusters is shown. c–e, The boxes denote the mean 
(crossbar)!±!s.e.m. for the isolates of each cluster.
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to variants in three protein-coding genes (Extended Data Fig. 5d 
and Supplementary Table 3). These included a microtubule bundle 
protein (Afu2g16260), a FGGY-family kinase induced by heat shock 

(Afu4g04680) and its adjacent, uncharacterized ORF Afu4g04690. 
The role of these genes in triazole resistance is an exciting area to 
follow up on.
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Discussion
In this study we defined the pan-genome of A. fumigatus using 
300 genomes, including a large number of environmental isolates 
largely absent from previous analyses15–19. Compared with A. fumig-
atus, the human commensal and opportunistic pathogen Candida 
albicans was shown to have a lower level of pan-genomic diversity, 
with 91% of pan-genes present in all isolates37. In the same study, 
a proof-of-concept pan-genome for A. fumigatus was also built 
using genomic data from 12 isolates and 83% of the pan-genome 
was found to be conserved in all isolates37. By contrast, our find-
ings indicate that A. fumigatus has a much larger pan-genome and 
only 69% of the genes identified are present in all isolates; this dis-
crepancy in results is likely to be due to the limited number of iso-
lates included in the former study. In addition, the average BUSCO 
genome completeness of the assemblies used for their analysis 
was below 85%, suggesting that notable genetic content was unac-
counted for37. Future work utilizing chromosome-level assemblies 
of A. fumigatus isolates will allow for a finalized pan-genome of the 
species with additional information on the evolutionary dynamics 
of chromosomal organization.

Through pan-genomic analyses we discovered notable genetic 
variation in virulence factors that have largely only been studied 
in one or two reference strains. Although most of these cases were 
infrequent and observed in fewer than 5% of the isolates, some, 
such as pseudogenization of the non-ribosomal peptide synthetase 

nrps8 (or pes3), was observed in 97% of the isolates. The largest 
virulence-associated genetic variation was in secondary metabo-
lism genes, an observation in line with a previous study of 66 
isolates38. Both studies observed low-incidence variation in the glio-
toxin and fumagillin/pseurotin biosynthetic gene clusters as well 
as high-incidence variation in the fumigermin biosynthetic gene 
cluster. In addition, although our analysis quantified high-impact 
genetic changes in virulence determinants, there is almost certainly 
additional genetic variation that impacts fungal virulence that is dif-
ficult to predict on the global scale. The genomes generated here 
provide a valuable resource for addressing how intraspecies vari-
ability in virulence determinants affects infection.

We observed an enrichment for clinical isolates in genetic clus-
ter 5, suggesting that this genetic background might be more fit in 
the human environment. However, clinical isolates were distributed 
throughout the phylogeny, highlighting the overall fitness of A. 
fumigatus. In addition, this organism can take advantage of numer-
ous, diverging clinical diseases to establish an infection. We thus 
performed a genome-wide association study (GWAS) to identify 
fungal variants associated with clinical disease in general as well as 
acute and chronic disease, and identified largely overlapping gene 
sets. However, information on the underlying clinical disease was 
not available for all samples and the isolates from chronic disease 
represented a small fraction of the dataset. Future genomic analyses 
including additional samples from specific underlying diseases will 
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further illuminate the complex interplay between A. fumigatus and 
specific host disease environments.

The rising incidence of resistance to first-choice antifungals, the 
triazoles, is a major challenge for the management of A. fumiga-
tus infections. This problem is further complicated by up to 30% 
of the isolates having no identifiable resistance mechanism. We 
performed GWAS and identified 12 genes associated with triazole 
resistance. These hits included previously identified variants in the 
triazole target gene cyp51a as well as genes that had not been pre-
viously linked to triazole resistance. As a caveat, association stud-
ies are underpowered at detecting associations with rare variants. 
Accordingly, we only screened for association of genetic variants 
present in at least 1% and 5% of samples. Thus, there are potentially 
additional resistance-associated variants that were not identified by 
our analysis. This is perhaps the case for the HMG-CoA demeth-
ylase hmg1. Clinically observed mutations in this gene conferred 
triazole resistance to A. fumigatus following reconstruction in an 
isogenic background39. Although our analysis did not identify any 
variants of this gene associated with triazole resistance, manual 
examination uncovered three triazole-resistant isolates containing 
single non-synonymous substitutions in hmg1 (E306D, P309L and 
C369R). These variants were not considered in the GWAS due to 
their low prevalence in the dataset. However, the exact role these 
substitutions play in the resistance of this isolate is unclear, particu-
larly for one isolate that also contained cyp51a alterations associated 
with resistance (TR46/G448S). No variants were observed in hapE 
and cyp51b, two additional genes linked to triazole resistance.

In summary, this study provides a comprehensive view of 
the genetic diversity in this important human fungal pathogen. 
Characterization of the intraspecies diversity and moving away 
from a single reference genome that does not necessarily represent 
A. fumigatus as a whole will ultimately help us understand its meta-
bolic and pathogenic versatility.

Methods
A. fumigatus isolates analysed in this study. Of the 300 isolates analysed, 188 (49 
clinical and 139 environmental isolates) were newly sequenced as part of this study. 
!e 49 clinical isolates sequenced were collected by the German National Reference 
Center for Invasive Fungal Infections between 2014 and 2018. Bronchial alveolar 
lavage was the most frequent form of sample collection, representing 31% (15/49) of 
clinical isolates. !e remaining clinical samples were isolated from other pulmonary 
sources, such as sputum or bronchial secretions, and the exact site of isolation 
was unavailable for 10% (5/49) of the samples. !e 139 environmental isolates 
sequenced as part of this study were obtained from soil sampling of 11 farms in 
Germany between 2016 and 2018. Sixty-four of the remaining 112 isolates had been 
previously sequenced by us as part of a previous study20 (BioProject PRJNA595552), 
while 48 had been previously sequenced by other groups and data downloaded 
from the NCBI Sequence Read Archive. In total, the dataset was comprised of 213 
environmental isolates and 87 clinical isolates from Europe, Asia, North America, 
South America and the International Space Station. A detailed list of the isolates and 
their metadata characteristics can be found in Extended Data Fig. 1.

Antifungal susceptibility testing. The 188 novel isolates included in this 
study were screened for azole resistance using the agar-based VIPcheck Assay 
(Mediaproducts BV) based on EUCAST E.DEF 10.1 following the manufacturer’s 
protocol. Isolates that showed distinguishable germination and hyphal growth on 
any of the azole-containing wells were subjected to EUCAST broth microdilution 
(protocol E.DEF 9.3.2; ref. 21) to define the minimum inhibitory concentrations. 
Antifungal susceptibility in the clinical isolates was also assessed following 
EUCAST protocol E.DEF 9.3.2 and resistance was defined in both isolate sets 
using the EUCAST-established clinical breakpoints. Antifungal susceptibility data 
from published isolates were obtained from the source publications detailed in 
Supplementary Data 1.

Genome sequencing and quality assessment. Genomic DNA was extracted 
from isolates (cultured in Sabouraud Glucose broth at 37 °C with shaking) using 
a Quick-DNA fungal/bacterial miniprep kit (Zymo Research) following the 
manufacturer’s suggested protocol. Library preparation and Illumina 2 × 150 bp 
paired-end sequencing were performed on a NextSeq 500 v.2 by LGC Genomics 
(environmental isolates) and GeneWiz (clinical isolates). Raw FASTQ files were 
filtered for quality using the following steps: adaptor sequences were removed, 
bases with an overall quality score of <20 were trimmed and reads shorter than 

30 bp were removed. The remaining sequences were verified for quality using 
FastQC v.0.11.5 (Babraham Institute).

Reference-guided genome analysis. High-quality sequencing reads were aligned 
to the A. fumigatus Af293 reference genome v.2015-09-27 using BWA-MEM 
v.0.7.8-r779-dirty40. PCR duplicates were marked using MarkDuplicate from 
Picard v.2.18.25. Variant calling to detect SNVs and short indels was performed 
using the GATK Toolkit (v.4.1.0.0)41. Briefly, before variant calling, BAM files were 
recalibrated using GATK BaseRecalibrator, ApplyBSQ and an in-house dataset 
of known SNVs generated from the Af293 reference genome and SNVs present 
in FungiDB, release 39, with ≥80% read frequency and base call ≥ 20. Variant 
detection was performed using HaplotypeCaller and high-quality variants were 
identified using GATK best practices ( SN P: Q D < 2.0 || MQ < 40.0 || FS > 60.0 || MQ 
RankSum < −12.5 || ReadPosRankSum < −8.0; indel: QD < 2.0 || FS >  
200.0 || ReadPosRankSum < −20.0). For downstream analyses, individual VCF 
files were combined into a single file using bcftools v.01.1.1. Variant function 
was predicted using SnpEff v.4.3t42 and 1,000 bp as the cutoff for upstream 
and downstream flanking of the ORFs. To balance the analysis of high-quality 
variants with the potential bias introduced by true variants being discarded due 
to insufficient support, individual variants that failed the quality filter in a sample 
were included in the variant dataset if at least 95% of the total samples with a 
variant at that position passed the quality control. This hybrid-filtered variant 
dataset was used as the input for GWAS and genetic diversity analyses.

A. fumigatus has two mating types (MAT1-1 and MAT1-2), which are encoded 
within idiomorphic loci on chromosome 3 (refs. 43,44). The mating type was 
assigned by calculating the genomic coverage at Afu3g06160 and Afu3g06170 using 
the knowledge that MAT1-2 isolates, including the reference strain Af293, contain 
a truncated copy of the HMG box mating-type transcription factor (Afu3g06170) 
and an additional gene (MAT1-2-4; also known as Afu3g06160) that are absent 
in MAT1-1 isolates. Isolates showing zero coverage in the genomic region of 
Afu3g06160 following alignment to Af293 were assigned the mating type MAT1-1. 
Samples that were not assigned the mating type MAT1-1 were confirmed to be the 
mating type MAT1-2 through calculation of the genomic coverage at MAT1-2-1 
and MAT1-2-4. The ratio of coverage for MAT1-2-1 and MAT1-2-4 relative to the 
genome-wide depth of coverage was between 0.75 and 1.25 for all samples that 
were assigned the mating type MAT1-2.

Analysis of genomic diversity. Genomic diversity statistics were calculated based 
on SNV data generated as described earlier. The nucleotide diversity (π) was also 
calculated using VCFtools45 with a window size of 5,000 bp and a 500 bp step size. To 
ensure that differences in sample sizes between the isolate populations did not skew 
the results, environmental and clinical samples from the acute disease group were 
downsampled to match the number of isolates from chronic disease in the dataset.

De novo genome assembly and annotation. Genomes were assembled de novo 
using IDBA-hybrid v.1.1.3 with the Af293 reference genome as a guide46. The 
quality of the genome assembly was assessed using QUAST v.5.0.2 (ref. 47). 
Contigs that were shorter than 500 bp or possessing >95% identity and coverage 
overlap with other contigs were removed. Gene prediction and functional 
annotation were performed using Funannotate pipeline v.1.5.2-4cfc7f8 (ref. 48), 
integrating the following steps. Assemblies were masked for repetitive elements 
using RepeatMasker (v.4.0.8)49 using Dfam and RepBase repeat libraries50. Gene 
prediction was performed using EvidenceModeler v.1.1.1 (ref. 51), incorporating 
evidence data generated using GeneMark-ES52 (minimum gene length, 120 bp; 
and maximum intron length, 3,000 bp) and Augustus53 (training set, A. fumigatus). 
Gene models predicted to encode peptides shorter than 50 amino acids or 
transposable elements, or to include span gaps were removed. Transfer-RNA 
prediction was performed using tRNAscan-SE v.2.0 (ref. 54). Functional annotation 
was predicted using PFAM v.43 (ref. 55), MEROPS v.12 (ref. 56), dbCAN2 release 7.0 
(ref. 57) and BUSCO v.4.1.4 (ref. 58). KofamScan v.1.2.0-0 (ref. 59) was used to assign 
Kyoto Encyclopedia of Genes and Genomes orthologues to predicted protein 
sequences and InterProScan v.5.19 (ref. 60) was used to identify the protein families.

Pan-genome analysis. OrthoFinder was used to identify and cluster orthologous 
genes61. Clustering was performed on the protein sequences of the 300 A. fumigatus 
genomes analysed in this study. In addition, protein sequences from the reference 
strains Af293 and A1163 were added to improve the identification of the cluster 
functions. Orthologous gene clusters were assigned a gene identifier from Af293 if 
they grouped with a single sequence of Af293. If a cluster was not assigned a Af293 
gene identifier, but a single A1163 sequence was present, the cluster was assigned the 
gene identifier from A1163. Orthologous clusters that could not be grouped with a 
single Af293 or A1163 gene were queried against the NCBI RefSeq non-redundant 
protein database using DIAMOND using the following criteria: E-value cutoff of 
1 × 105, percent identity > 70%, minimum query coverage > 50% and minimum 
subject coverage > 50%. If at least 70% of the protein sequences in the cluster were 
assigned to any protein in the NCBI non-redundant protein database, the cluster 
name was assigned to the name of the RefSeq with the highest contribution. If only 
50–70% of the protein sequences in a cluster were assigned to the same protein, 
the matching sequences were assigned the name of the RefSeq match and the 
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remaining sequences were left unassigned. The remaining clusters without a match 
in Af293, A1163 or the non-redundant database were considered novel clusters 
and had putative functions assigned based on their Funannotate (KofamScan and 
InterProScan) prediction. For these clusters that were not present in Af293 or the 
non-redundant database, only clusters present in at least 5% of samples were included 
to limit false gene predictions. The pan-genome was defined based on gene presence/
absence variation in the approved cluster meeting the above criteria. Enrichment 
analysis was performed using a Fisher’s exact test with Bonferroni’s correction.

Whole-genome phylogeny. The core genome phylogeny (Fig. 2) was inferred from 
5,380 single-copy orthologous genes shared by the two reference strains Af293 and 
A1163, the 300 A. fumigatus genomes analysed in this study, the related species A. 
oerlinghausenensis and A. fischeri, which was used to root the tree. Orthologues 
were identified and clustered using OrthoFinder61. Cluster peptide sequences were 
aligned using MUSCLE v.3.8.1551 (ref. 62). The resulting peptide alignment was 
back-translated to a nucleotide sequence using PAL2NAL63 and concatenated. The 
phylogeny was inferred from this core nucleotide alignment using IQ-TREE 2 (ref. 
64). The ModelFinder Plus module of IQ-TREE 2 was used to identify GTR + F + R8 
as the best fitting substitution and site heterogeneity models for phylogeny 
construction. Branch support was computed using UFBoot2 ultrafast bootstraps65. 
ClonalFrameML66 was then used to account for recombination in the phylogeny 
and rescale branch lengths accordingly.

The SNV-based phylogenies (Extended Data Fig. 4c,d) were constructed by 
first filtering out loci that showed zero coverage in any sample. For the phylogeny 
constructed from neutral loci, fourfold degenerate sites were used. For both the 
non-zero coverage and neutral loci phylogenies, SNVs were concatenated and used 
as the input for IQ-TREE 2. As with the core nucleotide phylogeny, ModelFinder 
was employed and identified GTR + F + ASC + R8 as the best fitting model for the 
non-zero coverage phylogeny and TVM + F + ASC + R8 as the best fitting model 
for the neutral loci phylogeny. Branch supports were calculated using UFBoot2.

Genetic clusters were identified using discriminant analysis of principle 
components22. To create phylogenetic network trees with clearly visible branches 
and network structure, the genomes were downsampled by randomly selecting ten 
genomes per cluster, resulting in a total of 70 samples. Neighbour-net phylogenies 
were inferred and visualized using the R package phangorn (v.2.5.5)67 based on 
a similarity matrix of core nucleotide sequences for the whole-genome network 
phylogeny and nucleotide sequence alignment for the cyp51a and cyp51b genes with 
network phylogenies. The phylogenies were visualized using the R package Ggtree68.

Estimation of dN/dS. The protein-coding sequences of each gene cluster were 
aligned using MUSCLE v.3.8.1551 (ref. 62). PAL2NAL63 was then used to convert 
the resulting amino-acid alignment to a nucleotide alignment that records whether 
a base-pair substitution resulted in a synonymous or non-synonymous change. 
Finally, the CODEML package of PAML69 was used to calculate the dN/dS value of 
each orthogroup. Median values were used for comparison.

Gene co-occurrence in the pan-genome. Gene co-occurrence networks were 
computed using Coinfinder70 using a presence/absence matrix of the pan-genome 
and a significance cutoff of 0.05 by binomial exact test with Bonferroni’s correction. 
Networks were visualized using the R package igraph.

SNV-based GWAS and pan-GWAS. Before analysis, variant classes were assigned 
as follows: C, SNVs; G, insertions; D, deletions; and A, reference base. VCF files 
were converted to plink format using VCFtools45 and filtered using a MAF of 0.05, 
which resulted in 352,306 SNVs and 24,726 indels for analysis. Positions with a 
missingness, or the number of individuals where there was SNV information was 
available, of >1% were removed from the analysis. The GWAS was performed 
using the EMMA eXpedited (EMMAX) software package71, applying a linear mixed 
model with azole resistance (susceptible/resistant), source (environmental/clinical) 
or clinical disease (chronic/acute infection) as the phenotypic traits. The GEMMA, 
treeWAS and ECAT software packages were also tested in the framework of this 
project. EMMAX was ultimately selected over these tools because it accounted 
for sample structure the best, providing the least-inflated Q–Q plots (Extended 
Data Fig. 5a,c). Significant variants were determined using a cutoff of P < 0.01 
with false-discovery-rate correction. The pan-GWAS was performed using a 
presence/absence matrix of the orthologous gene clusters, where zero denoted 
absent gene clusters and one represented gene clusters that were present in the 
genome. Associations between pan-gene presence/absence, isolate source and azole 
resistance were calculated using Scoary v.1.6.16 (ref. 72).

Availability of isolates. The isolates that were sequenced in this study were 
submitted to and are publicly available in the Jena Microbial Resource Collection.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Raw FASTQ files for the isolates sequenced in this study were uploaded to 
the NCBI Sequence Read Archive and are publicly available under BioProject 

PRJNA697844. The accession numbers for the publicly available sequence data are 
listed in Extended Data Fig. 1. Annotated genome assemblies for sequence data 
generated in this study and for 64 isolates sequenced by us in a previous study20 
were submitted to NCBI GenBank and are available under the NCBI BioSample 
numbers listed in Extended Data Fig. 1. Datasets from FungiDB, release 39, are 
available at https://fungidb.org/fungidb/app/downloads/release-39/. The NCBI 
RefSeq non-redundant protein database v.22.01.08 is accessible at https://ftp.ncbi.
nlm.nih.gov/blast/db/cloud/2018-01-22/. Source data are provided with this paper.
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Extended Data Fig. 1 | The pan-genome of A. fumigatus. (A) Most frequently occurring Pfam domains among the core and accessory genomes. Values 
represent the total sum of domain-containing proteins among all 300 genomes. (B) Conservation of Af923 genes in the A. fumigatus pan-genome, arranged 
by chromosomal location in Af293. Each gene in Af293 is represented by a uniform-sized band that is coloured according to its prevalence among the 300 
isolates analysed. Genes not in Af293 and their relative frequency are depicted at the bottom.

NATURE MICROBIOLOGY | www.nature.com/naturemicrobiology



MANUSCRIPT I 
 

   38 

ARTICLES NATURE MICROBIOLOGYARTICLES NATURE MICROBIOLOGY

***
*** ***

1e−06

1e−05

1e−04

Invasive
disease

Environment Chronic
disease

π

Extended Data Fig. 2 | Nucleotide diversity (π) of A. fumigatus isolates from the environment, invasive disease and chronic disease. π was calculated 
using 5!kb sliding windows across with genome with a 500!bp step size. Due to the underrepresentation of isolates from chronic disease in the dataset, 
isolates from the environment and invasive disease were downsampled to match the number of isolates from chronic disease (n!=!19 isolates per group). 
The bold line in the box-and-whisker plot indicates the 50th percentile, and the box extends from the 25th to the 75th percentiles. The whiskers denote the 
lowest and highest values within 1.5 interquartile range. Statistical significance determined by two-sided Mann–Whitney U test with Bonferroni correction. 
*** represents P!<!0.001. Exact P-values are: chronic vs. environmental: P!=!97e-39; chronic vs invasive: P!=!1.6e-78; invasive vs. environmental: P!=!5.6e-14.
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Extended Data Fig. 3 | Phylogenies constructed from the genomes of 300 A. fumigatus using de novo assembled genomes and reference-base analyses. 
(a-b) Core genome phylogeny built from nucleotide coding sequence of 5,380 single-copy orthologous genes shared by all 300 A. fumigatus isolates,  
A. oerlinghausenensis and A. fischeri (alignment length = 9,178,893!bp). Panel a shows the phylogeny rooted with A. fischeri and depicts the scaled  
relationship between the two outgroups and the A. fumigatus samples. Panel b depicts this phylogeny unrooted and with outgroups removed for comparison 
to the other phylogenies. (c) Phylogeny from concatenated SNVs following read alignment to Af293 and variant calling (n!=!341,031 base pair). Genomic 
positions with zero coverage in any sample were removed from the alignment. (d) SNV-based phylogeny constructed from 4-fold degenerate (neutral) loci 
(n!=!35,052 base pair).
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Extended Data Fig. 5 | GWAS for variants associated with clinical isolates and triazole resistance. (a & c) Q–Q plots for association with isolate source 
(a; clinical vs. environmental) and triazole resistance (c; resistance to one or more triazole vs. susceptible to all examined; c). Four software were utilized: 
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overlap between GWAS for all clinical strains relative to environmental and significant genes specific to acute and chronic disease. (d) Venn diagram 
showing the gene overlap for association with triazole resistance when minor allele frequencies (MAF) of 0.01 and MAF 0.05 were used.
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Overview 

In manuscript II, we aimed to understand the different immune responses in sepsis 
patients to different types of pathogens, which will result in early detection based on gene 
regulation differences. Therefore, we applied the transcriptome data analysis method to 
study the gene expression profiles from pre-symptomatic sepsis blood. The results showed 
promising key genes regulating different immune mechanisms in sepsis patients infected 
by bacteria, fungi, and co-infection of bacteria and fungi. 
  

   

 

   

 

Transcriptomic analysis of presymptomatic sepsis patients reveals pathogen-1 

specific host immune responses 2 

 3 

Tongta Sae-Ong1, Sascha Schäuble1, Albert Garcia Lopez1, Roman A Lukaszewski2, Mervyn 4 

Singer2,3,*, Gianni Panagiotou1,4,* 5 

 6 

*Corresponding authors 7 

E-mails: m.singer@ucl.ac.uk or gianni.panagiotou@leibniz-hki.de 8 

 9 

Affiliations: 10 
1Research Group Systems Biology and Bioinformatics, Leibniz Institute for Natural Product 11 

Research and Infection Biology-Hans Knöll Institute, Jena, Germany 12 
2Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College 13 

London, London, UK 14 
3Division of Critical Care and, NIHR University College London Hospitals Biomedical Research 15 

Centre, University College London Hospitals NHS Foundation Trust, London, UK 16 
4Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University 17 

of Hong Kong, Hong Kong, China 18 

 19 

Keywords: 20 

Sepsis, pathogen type, WGCNA, PPI, hub genes 21 

Abstract 22 

Sepsis is a life-threatening organ dysfunction, resulting from a dysregulated host immune 23 

response to infection. An early diagnosis and precise management within an hour significantly 24 

reduce mortality rates. Therefore, several studies aimed to identify biomarker genes for the 25 

effective diagnosis of sepsis. However, the diagnosis of the causative pathogens is still limited, 26 

which leads to inappropriate antimicrobial treatment. Our study aims to disentangle the 27 

heterogeneity of immune responses in pre-symptomatic sepsis patients infected by bacteria and/or 28 

fungi. We therefore investigated the differential expression of genes and pathways among 51 post-29 

operative sepsis patients, which developed sepsis by bacterial, fungal, and co-infection and 49 non-30 

infected patients, using blood samples up to 3 days before clinical manifestation. Using weighted 31 

gene co-expression, protein-protein interaction networks and machine learning, we were able to 32 

identify signatures of different pathogen-induced sepsis. Genes involved in NK-cell activation 33 

(MICA, SH2D1B) were higher expressed in bacterial sepsis. Genes involved in transcriptional 34 

processes (YBX, MAX) and genes associated to the progression of various pathogen infections 35 

(GFT2F2, RBM17, NEDD4 and AMPH) were highly expressed in fungal and co-infection sepsis, 36 

respectively. These pathogen-type specific signature genes and pathways could serve as potential 37 

biomarkers for diagnosis and/or prognosis allowing for early targeted therapies to reduce sepsis 38 

mortality. 39 
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Abstract 18 

Sepsis is a life-threatening organ dysfunction resulting from a dysregulated host immune 19 
response to infection. An early diagnosis and precise management within an hour significantly 20 
reduce mortality rates. Therefore, several studies aimed to identify biomarker genes for the 21 
effective diagnosis of sepsis. However, the diagnosis of the causative pathogens is still limited, 22 
which leads to inappropriate antimicrobial treatment. Our study aims to disentangle the 23 
heterogeneity of immune responses in presymptomatic sepsis patients infected by bacteria and/or 24 
fungi. Therefore, we investigated the differential expression of genes and pathways among 51 25 
post-operative sepsis patients, which developed sepsis by bacterial, fungal, and co-infection, and 26 
49 non-infected patients, using blood samples up to 3 days before clinical manifestation. Using 27 
weighted gene co-expression, protein-protein interaction networks, and machine learning, we were 28 
able to identify signatures of different pathogen-induced sepsis. SH2D1B gene involved in NK-29 
cell activation was higher expressed in bacterial sepsis. Genes involved in transcriptional processes 30 
(YBX, MAX) and genes associated with the progression of various pathogen infections (GFT2F2, 31 
RBM17, NEDD4, and AMPH) were highly expressed in fungal and co-infection sepsis, 32 
respectively. These pathogen-type specific signature genes and pathways could serve as potential 33 
biomarkers for diagnosis and/or prognosis, allowing early targeted therapies to reduce sepsis 34 
mortality. 35 
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Introduction 36 

Sepsis is a life-threatening organ dysfunction due to inappropriate host response to 37 
infections. Sepsis is the most common cause of death among hospitalized patients in the intensive 38 
care unit (ICU) (1, 2). The sepsis mortality rates are higher than 15% and can rise to 56% when 39 
patients present septic shock (3, 4). Besides, half of the survivors experience long-term outcomes 40 
by developing chronic critical illness (CCI) (5). Early recognition of sepsis and immediate 41 
management are able to reduce the mortality rate. Regarding the Surviving Sepsis Campaign (SSC) 42 
guidelines, empiric broad-spectrum antibiotic drugs should be given to sepsis patients within an 43 
hour of the disease recognition. The targeted antimicrobials should be applied after the pathogen 44 
has been identified (6). However, this nonspecific treatment has a low chance of successfully 45 
treating non-bacterial sepsis. At the same time, it can induce unnecessary disturbances of the gut 46 
microbiota, a vital component of our immune system (7). 47 

Over 60% of sepsis is initiated by bacterial infection, followed by fungal and viral 48 
pathogens, and approximately 20% of patients are co-infected by multiple pathogens (8, 9). Blood 49 
culture is a “gold standard” method for pathogen identification in sepsis (10). Common bacteria 50 
such as Escherichia coli can be reported within 24 hours (11, 12). However, the turnaround time 51 
could take longer than 36 hours for the uncommon pathogens (11, 12). At the same time, in 30% 52 
of blood samples, it was not possible to identify the causative pathogen due to negative cultures 53 
(8, 12). Due to the delay in turnaround time, around 30% of sepsis patients received inappropriate 54 
treatments when initial empirical drugs did not cover the causative pathogens or resistant strains 55 
involved (13–15). The inappropriate treatments, such as the initial use of antibiotics for a fungal 56 
pathogen, could also increase the mortality rate of sepsis, the risk of colonization and the 57 
development of antibiotic-resistant pathogen infections (13, 14, 16). Moreover, up to 20% of 58 
patients receiving at least one of the broad-spectrum antibiotic drugs experienced adverse drug 59 
events (ADEs) (17, 18). Therefore, rapid pathogen identification is crucial for targeted therapy. 60 

Expression levels of proteins such as Procalcitonin (PCT) and C-reactive protein (CRP) 61 
have been used as sepsis biomarkers (19, 20). However, pathogen detection is still challenging due 62 
to the lack of reliable pathogen-specific biomarkers (21, 22). Recently, gene expression profiling 63 
has been used to understand the immune response mechanisms and the pathogenesis of sepsis and 64 
to identify new sepsis biomarkers (23–25). In our study, we performed a meta-analysis of 65 
transcriptional data generated recently from sepsis patients and non-infected controls as part of a 66 
large prospective, multi-center study in patients undergoing elective major surgery, with daily 67 
blood sampling and data recording commencing pre-operatively and continuing up to two weeks 68 
after (Lukaszewski et al., 2022, in revision). We used here gene expression profiles from 100 69 
patients obtained up to a week before patients were diagnosed with sepsis to identify bacterial-, 70 
fungal- and co-infection-specific host response signatures. Gene co-expression and protein-protein 71 
interaction networks were constructed to identify the different pathogen-induced sepsis-associated 72 
genes. We also performed functional annotation to understand the relationship between the 73 
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immunity pathways and sepsis associated with the type of pathogens. Our results indicate that it is 74 
possible to identify early pathogen-specific biomarkers for targeted treatments that would improve 75 
the clinical outcome of sepsis. 76 

 77 

Results 78 

Patient recruitment with infection status 79 

An overview of the study design is given in Figure 1. In brief, blood samples from 100 80 
surgery patients were collected at pre- and post-operation time points.  Pre-surgery blood samples 81 
were taken prior to surgery (PreSurgery). After the operation, blood samples were collected daily 82 
until seven days, or upon hospital discharge, or before the patient was diagnosed with sepsis 83 
(BeforeDx). Blood samples were collected daily from the day patients were diagnosed with sepsis 84 
up to seven days after diagnosis (AfterDx). In total, we obtained 427 blood samples (Table S1), 85 
including 216 samples from 51 patients diagnosed with sepsis and 211 blood samples from 49 86 
non-infected controls. The 216 sepsis samples included 159 from bacterial sepsis (35 PreSurgery, 87 
110 BeforeDx and 14 AfterDx), 9 fungal sepsis (3 PreSurgery and 6 BeforeDx), 17 co-infections 88 
with bacteria and fungi (4 PreSurgery, 11 BeforeDx and 2 AfterDx), and 31 samples that 89 
microbiological analysis could not identify the pathogen (8 PreSurgery, 20 BeforeDx and 3 90 
AfterDx). Comparative blood samples were selected from non-infected surgery patients with 91 
whom they had matched clinical profiles with sepsis patients. Of total 211 comparators included 92 
149 bacterial comparators (34 PreSurgery, 102 BeforeDx and 13 AfterDx), 9 fungal comparators 93 
(3 PreSurgery and 6 BeforeDx), 20 co-infection comparators (5 PreSurgery, 12 BeforeDx and 3 94 
AfterDx) and 33 comparators for sepsis caused by un-identified pathogens (8 PreSurgery, 22 95 
BeforeDx and 3 AfterDx). 96 

 97 

Whole transcriptome profiles differentiate sepsis from non-infected patients but do not 98 
differentiate pathogen types 99 

After data preprocessing and quality assessment, we obtained the expression matrix for 100 
327 post-surgery samples (including before and after diagnosis of sepsis) to investigate the 101 
divergences of whole-transcriptome profiles in sepsis. A total of 30,646 transcripts corresponding 102 
to 18,010 genes (according to IlluminaHumanv4.db) were used in the downstream analysis. We 103 
first studied the differences between leukocytes in sepsis patients and comparators. 104 
Deconvolutions were performed to estimate leukocyte subpopulations between sepsis and 105 
comparators based on lymphocyte’s signature genes (Figure 2a; Table S2). The proportion of 106 
immune cells in the sepsis compared to non-infected comparators showed significant differences 107 
(Wilcoxon rank-sum test, FDR = 0.05). Whereas CD8 T cells (FDR = 0.002), naive B cells (FDR 108 
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= 0.002), resting NK cells (FDR = 0.004), CD4 memory activated T cells (FDR = 0.004) and 109 
activated dendritic cells (FDR = 0.004) had higher proportion in sepsis patients, memory B cells 110 
(FDR = 0.001), gd T cells (FDR = 0.005), CD4 memory resting T cells (FDR = 0.005) and 111 
neutrophils (FDR = 0.006) were relatively lower than comparators (Figure 2b). 112 

Similarly, a PCA analysis of the gene expression profiles between sepsis and comparators 113 
also showed a significant separation of the two groups (PERMANOVA, p-value < 0.001) (Figure 114 
2c). We subsequently explored the differences between the different types of pathogens -bacterial, 115 
fungal, co-infection- against their respective comparators. In all the sub-groups, a clear separation 116 
between the sepsis and controls was observed (p-value < 0.04, Figure 2d-2f). Interestingly, based 117 
on R2 values, the differences in the transcriptional profile were more pronounced in the fungal 118 
pathogen-induced sepsis, followed by the co-infection and the bacterial-induced sepsis. Un-119 
identified pathogen-induced sepsis also showed differences in the transcriptome profile compared 120 
to their comparators (p-value < 0.001, Figure 2g). Direct comparisons of the transcriptional 121 
profiles between the different types of pathogens showed no significant separation (Figure S2, p-122 
value > 0.05). However, the sepsis samples in those groups were not matched in terms of other 123 
clinical characteristics, which may introduce bias. 124 

 125 

Hierarchical clustering identified signature immune pathways of bacterial, fungal, and co-126 
infection-induced sepsis 127 

We used the transcriptomic profiles of 247 samples retrieved from patients after surgery 128 
but before sepsis diagnosis (BeforeDx) to identify pathogen-specific pre-diagnosis biomarkers of 129 
sepsis. Differentially expressed gene (DEG) analysis between sepsis and controls was performed 130 
using 110 bacterial infected sepsis samples versus 102 bacterial comparators, 6 fungal sepsis 131 
versus 6 fungal comparators, and 11 co-infection of bacterial and fungal sepsis patients versus 10 132 
co-infection comparators. In total, 990 DEGs were obtained (limma, FDR = 0.05 and |log2FC| > 133 
0.5) including 270 bacterial-related DEGs, 400 fungal-related DEGs and 464 co-infection-related 134 
DEGs (Figure 3a-3d, Table S3). Interestingly, only B4GALT5, IL4R, and KIF1B were up-135 
regulated, while HLA-DRA and HLA-DRB1 were down-regulated in all sepsis patients, 136 
independently of the type of pathogen (Figure 3a). We further inspected the top overexpressed and 137 
specific DEGs to each pathogen-induced sepsis. CD177, a neutrophil-specific gene, was a gene 138 
specifically up-regulated in bacterial infection. High expression of this gene was reported in severe 139 
bacterial infections before (26). The top up-regulated gene in fungal infection is SIGLEC1 (Sialic 140 
Acid Binding Ig-like Lectin 14). A recent study reported that SIGLEC14 recognizes lipid 141 
compounds produced by the fungal pathogen Trichophyton spp and modulated innate immune 142 
response. (27). Moreover, the top unique up-regulated gene in co-infection sepsis is TACSTD2 143 
(transmembrane glycoprotein Trop2). A study by  Lenárt et al., 2021 showed up-regulation of 144 
TACSTD2 gene in lungs infected with viruses, bacteria, and fungi (28).  145 
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Unsupervised hierarchical clustering (HC; k-means) was performed to group the 990 DEGs 146 
by their expression patterns and identified five major gene clusters (Figure 3e, Table S4). We 147 
performed a functional enrichment analysis of the genes in each cluster (Table S4). The top five 148 
GO terms of each cluster are shown in Figure 3e. The results show that genes in clusters 1 and 2, 149 
associated with glycerolipid synthesis pathway and neutrophil-mediated immunity, respectively, 150 
were higher expressed in sepsis patients than comparators, independently of pathogen type. In 151 
contrast, genes in clusters 3, 4, and 5 were expressed higher in comparators. These three clusters 152 
were associated with DNA packaging, co-translational protein pathway, and IFN-γ-mediated 153 
inflammatory response. The five clusters in the heatmap showed corresponsive results to DEGs 154 
analysis (Figure S3, Table S5). The 196 bacterial up-regulated DEGs and 191 co-infection up-155 
regulated DEGs were enriched in cluster 2 (hypergeometric distribution test, FDR < 0.001, Table 156 
S4) (Figure 3b,d,e), while the 274 down-regulated DEGs of co-infection induced sepsis were found 157 
in clusters 3 and 4 (FDR < 0.001; Figure 3d,e, Table S4).  The 145 fungal up-regulated DEGs were 158 
enriched in cluster 1, while the 255 down-regulated DEGs were enriched in cluster 5 (FDR < 159 
0.001; Figure 3c,e, Table S4). 160 

We used up-regulated and down-regulated DEGs from each comparison (bacterial DEGs, 161 
fungal DEGs, and co-infection DEGs) to perform the Gene Ontology (GO) and Kyoto 162 
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis (ORA; Figure S3, Table S4). 163 
We found that T cell receptor (TCR) signaling pathway-related terms such as “MHC class II 164 
protein complex”, “T cell receptor signaling pathway”, “antigen receptor-mediated signaling 165 
pathway”, “MAPK signaling pathway”, and “Calcium signaling pathway”, were common enriched 166 
terms for all types of pathogens. When looking into pathogen-specific pathways, the results 167 
showed that the immune-related pathways involving reactive oxygen species (ROS) were uniquely 168 
enriched in bacterial up-regulated DEGs, while bacterial down-regulated DEGs were enriched for 169 
IFN-!-related immune responses. We also found that histone acetyltransferase-related terms 170 
involved in gene transcription were uniquely enriched in fungal up-regulated DEGs. The 171 
respiratory chain complex assembly biological processes were uniquely enriched in fungal down-172 
regulated DEGs. Moreover, the interleukin-1 (IL-1) regulatory-related pathways were specifically 173 
enriched in co-infection up-regulated DEGs. Down-regulated DEGs of co-infection sepsis 174 
enriched for ribosomal RNA-related processes. The activation of these processes is involved in 175 
cellular proliferation and tissue repair in recovery sepsis patients (29). The co-expression and 176 
enrichment analysis results showed that each pathogen’s transcriptomic signature is associated 177 
with different immune-related pathways. 178 
  179 
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Weighted gene co-expression network analysis and protein-protein interaction network 180 
analysis reveal hub genes in bacterial, fungal, and co-infected-induced sepsis 181 

In addition, we constructed a gene co-expression network based on the expression levels 182 
of DEGs (see Methods for details; Figure S4, Table S3) using only the 127 pre-diagnosis sepsis 183 
samples (BeforeDx). Using the “Weighted Gene Co-expression Network Analysis (WGCNA)”, 184 
we detected eight gene modules (Figure S5-S6, Table S6). To highlight the signature gene modules 185 
of each pathogen group, we looked for DEGs unique to each pathogen in the gene co-expression 186 
modules (Table S6). WGCNA provided us with the higher infection group resolution with eight 187 
gene modules. However, the unique and shared gene modules among pathogens were consistent 188 
with the heatmap clusters. The 150 bacterial unique DEGs were significantly enriched in green 189 
(hypergeometric distribution test, FDR < 0.001, Figure S6a) and turquoise modules (FDR < 0.001, 190 
Figure S6b). Genes in these modules are functionally associated with neutrophil activation and 191 
ROS regulation. The 362 fungal unique DEGs were significantly enriched in black (FDR < 0.001, 192 
Figure S6c), yellow (FDR ≤ 0.001, Figure S6d), red (FDR ≤ 0.001, Figure S6e) and blue modules 193 
(FDR = 0.002, Figure S6f). The black module was enriched for antigen processing and presentation 194 
of exogenous antigen and MHC class II biological processes, whereas the yellow is functionally 195 
associated with the “nuclear receptor binding” pathway. The red and blue modules are enriched 196 
for co-translational related pathways such as “SRP-dependent co-translational protein targeting to 197 
membrane”, “protein targeting to ER”, and “establishment of protein localization to membrane” 198 
pathways. Moreover, the 339 unique DEGs of co-infection induced sepsis were significantly 199 
enriched in brown (FDR < 0.001, Figure S6g), pink (FDR = 0.002, Figure S6h) and blue modules 200 
(FDR = 0.015, Figure S6f). Genes in the brown module are related to DNA packaging pathways.  201 

We subsequently looked for hub genes and pathogen-associated genes using a module 202 
membership (MM) of 0.2 (with the FDR adjusted p-value of 0.05) and a gene significance (GS) 203 
of 0.2 (with the FDR adjusted p-value of 0.05) as cutoffs. A total of 172 DEGs were identified as 204 
hub genes and were associated with at least one pathogen-induced sepsis (Table S6). We also 205 
constructed a protein-protein interaction (PPI) network of DEGs to predict the relationship 206 
between DEGs at the protein level. Node degree centrality of each node was further calculated by 207 
Network Analyzer in Cytoscape. Using a degree of more than 10 as the cutoff (30), we identified 208 
255 hub genes in the PPI network (Table S7). A total of 42 genes were identified as hub genes in 209 
both PPI and WGCNA networks. PCA plots also showed that using the common hub genes 210 
improved the separation of the pathogen types (p-value < 0.001) (Figure 4a). However, the 211 
separation between bacterial- and fungal-induced sepsis was still not statistically significant (P-212 
value = 0.134; Figure 4b) compared to co-infection vs. bacterial, and co-infection vs. fungal sepsis 213 
(P-values < 0.001; Figure 4a-d). 214 

To evaluate the importance of common hub genes for discriminating the types of 215 
pathogens, we built classification models to distinguish (i) Bacterial vs. Non-bacterial sepsis, (ii) 216 
Fungal vs. Non-fungal sepsis, and (iii) Co-infection vs. Non-co-infection sepsis. Due to the small 217 
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number of samples in fungal and co-infection groups, prediction performance was evaluated using 218 
“Leave-One-Out Cross-Validation” (LOOCV). Since the majority of samples in our dataset were 219 
bacterial-induced sepsis, we reweighted the samples in the dataset to compensate for the class 220 
imbalance problem so that each class had the same total weight. The classification results showed 221 
high performances for all models with an area under the curve (AUC) greater than 91% and 222 
accuracies greater than 97% (Figure 4e-f, Table S8). Significant features (genes) were examined 223 
by using the “sigFeaturePvalue” function in “sigFeature” package with a p-value ≤ 0.05. 224 
Moreover, we calculated AUC from the receiver operating characteristic (ROC) curve for each 225 
hub gene using the “pROC” package. Table 1 shows significant feature genes with high 226 
classification performances from each model (sigFeature p-value ≤ 0.05, AUC > 0.7). 227 

Altogether, we found that the bacterial DEGs, GNLY, and HLA-DRB1 were significant 228 
features in the bacterial classification model, and they were also bacterial-associated genes in the 229 
WGCNA network analysis. The fungal DEGs HLA-DQB1, CLTA, ACSL, and RPS9 were 230 
significant feature genes of the fungal classification model and significantly associated with fungal 231 
sepsis in the WGCNA network analysis. A total of 16 co-infection DEGs were significant features 232 
for the co-infection classification model; among them, AMPH, SH2D1B, and MAX were associated 233 
with co-infection sepsis in the WGCNA network analysis. 234 

To examine the possible value of the signature genes for pathogen identification in sepsis 235 
patients, we used the 42 hub gene-based classification models to predict the infection status of 20 236 
“BeforeDx” samples from 8 unidentified pathogen sepsis patients. We separately applied the 237 
bacteria, fungal, and co-infection classification models to the set of patients with unknown 238 
pathogen sepsis. The bacterial models classified all sepsis patients as being induced by bacterial 239 
pathogens, whereas both the fungal and the co-infection models predicted those patients as non-240 
fungal and non-co-infection patients (Table S9). Our results suggest that a combination of hub 241 
gene expressions is promising as early pathogen predictive biomarkers in sepsis patients. 242 

 243 

Discussion 244 

In this unique study in terms of clinical design, we found that the human immune system 245 
in presymptomatic sepsis responded differently to bacteria, fungi, or co-infection. Of 990 genes 246 
expressed differently in presymptomatic sepsis patients depending on the causative agent, only 5 247 
responded significantly to all pathogen types. B4GALT5 (Beta-1,4-galactosyltransferase 5), IL4R 248 
(Interleukin 4 Receptor), and KIF1B (Kinesin Family Member 1B) were commonly up-regulated 249 
in all pathogen-associated groups. At the same time, Human Leukocyte antigen-DR genes, 250 
including HLA-DRA and HLA-DRB1, were common down-regulated genes. Previous studies 251 
reported that B4GALT5 and KIF1B were important up-regulated genes in sepsis (31, 32). HLA-252 
DRA and HLA-DRB1 genes are major histocompatibility complex (MHC) class II receptors, which 253 
are expressed by antigen-presenting cells (APCs) during infections (33). A recent study showed 254 
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the significantly reduced expression of the classical HLA class II and MHC class II regulator genes 255 
in post-operative sepsis patients (34). In addition, we also found that T cell receptor (TCR) 256 
signaling pathway-related GO terms were low expressed in all sepsis patients. TCRs recognize the 257 
antigens presented by MHC molecules on antigen-presenting cells (APCs) (35). The TCR 258 
regulated pathway had been reported as a poor prognosis related to a high mortality rate and septic 259 
shock in sepsis patients (36, 37). Moreover, the results from immune cell deconvolution revealed 260 
that sepsis patients had less APCs such as memory B cells and macrophages than comparator 261 
samples. Our study showed strong evidence supporting the TCR signaling pathway interacting 262 
with MHC class II was reduced, suggesting a poor prognosis in post-operative sepsis patients. 263 

The prospective nature of our clinical study allowed us to explore the transcriptomic 264 
signatures of the host induced by different types of pathogens before the clinical diagnosis of 265 
sepsis. The WGCNA and PPI analysis based on significant genes revealed potential pathogen-266 
specific genes in presymptomatic sepsis that may serve as predictive biomarkers for immediate 267 
appropriate antimicrobial drug administrations. Based on those genes, we developed machine 268 
learning models that suggested a number of genes as highly predictive of the type of pathogen 269 
involved in the deterioration of those patients. Among those, genes of great interest were highly 270 
expressed specifically to each pathogen, including SH2D1B, YBX1, MAX, GFT2F2, RBM17, 271 
NEDD4, and AMPH. 272 

SH2D1B (SH2 domain-containing 1B or Ewing’s sarcoma-associated transcript 2: EAT2) 273 
was a higher expressed gene in bacterial than co-infection sepsis. SH2D1B plays a vital role in NK 274 
cell activation, responding to tumor and infected cells (38, 39). Recently, a study by Duffy et al. 275 
found up-regulation of SH2D1B in mice with Mycobacterium tuberculosis infection (40). 276 
Nevertheless, in the same study, the expression of SH2D1B was decreased in humans with 277 
tuberculosis (40). Another study found the significant dysregulation of SH2D1B in mental diseases 278 
(41). However, the association between SH2D1B and fungal infection has not been observed. 279 

Y-box protein 1, or the nuclease-sensitive element-binding protein, is encoded by YBX1 or 280 
NSEP1 gene (42). It is an essential DNA and RNA binding protein that functions in several 281 
signaling pathways such as transcriptional and translational regulation, DNA reparation, pre-282 
mRNA splicing, mRNA packaging, cell proliferation, cell differentiation, and apoptosis (43). Y-283 
box protein 1 is considered an oncoprotein, as a higher expression of this protein is related to 284 
metastasis and poor prognosis in many cancer types (44, 45). This protein also showed a critical 285 
role in supporting viral replication, such as dengue virus (46) and human immunodeficiency virus 286 
(HIV) (42), which it was quantified as a new antiviral target. The up-regulation of this gene was 287 
found in antifungal drug (Amphotericin B; AMB) responsiveness (47). However, the effect of this 288 
protein on the antifungal drug is still unclear. Our study showed the higher expression of the YBX1 289 
gene in fungal sepsis while it was down-regulated in bacterial and co-infection sepsis. We also 290 
found that fungal DEGs were uniquely enriched in histone acetyltransferase-related pathways 291 
involved in transcriptional processes. While another transcriptional factor, MAX (MYC Associated 292 
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Factor X), was significantly decreased in co-infection sepsis patients compared to bacterial and 293 
fungal induced sepsis. The results suggested a high correlation of transcriptional processes in 294 
fungal sepsis patients. 295 

We also found highly expressed genes in co-infection sepsis, including GFT2F2, RBM17, 296 
NEDD4, and AMPH. NEDD4 (NEDD4 E3 Ubiquitin Protein Ligase) has an important role in 297 
pathogenesis. The high expression of NEDD4 is related to viral replication and disease 298 
progression, including SARS-CoV-2/COVID-19 (48–50). The study between NEDD4 and 299 
bacterial and fungal infection is still limited. However, recent studies found that the NEDD4 300 
functions involve bacterial infected cell clearance (51) and fungal killing (52). In contrast, another 301 
study reported that the increase of NEDD4 supports the survival of bacteria in macrophage cells 302 
(53). In our study, NEDD4 was up-regulated in sepsis-induced by all types of pathogens. However, 303 
it was significantly up-regulated in co-infection sepsis patients, supporting the relationship 304 
between this gene and pathogenesis. 305 

GTF2F2 and RBM17 were up-regulated in co-infection sepsis while down-regulated in 306 
bacterial and fungal sepsis compared to their comparators. GTF2F2 (General Transcription Factor 307 
IIF, Polypeptide 2 or TFIIF) functions involved in transcription elongation by binding to RNA 308 
polymerase II (Pol II) (54). This gene has been widely studied for the interaction with viral proteins 309 
causing pathogenesis of viral infection and autoimmune diseases such as HIV-1 (55), dengue virus 310 
(56) and SARS-CoV-2 (57). Another study by Wu et al. used PPI network analysis, suggesting 311 
GTF2F2 as a potential therapeutic target for sepsis (58). RBM17 encodes RNA-binding motif 312 
protein 17 or SPF45, which is a part of the spliceosome complex with an important role in mRNA 313 
splicing (59). Several studies showed that the overexpression of RBM17 indicated broad multidrug 314 
resistance to anticancer drugs (60). This gene was also found to support HIV-1 replication (61). 315 
Another study reported the overexpression of this gene in hepatitis B virus (HBV) infection (62). 316 
In conclusion, the results suggested that co-infection patients are more susceptible to viral infection 317 
than sepsis patients infected by one type of pathogen. 318 

Furthermore, AMPH (Amphiphysin), a nerve terminal-enriched protein in BAR (Bin-319 
Amphiphysin-Rvsp) protein superfamily, has functions involved in clathrin-mediated endocytosis 320 
and phagocytosis (63–65). The reduction of AMPH1 protein level was found in neurodegenerative 321 
diseases such as Alzheimer’s disease (AD) (66) and several cancer progressions, such as breast 322 
cancer (67), lung cancer (68) and osteosarcoma (69). The overexpression of AMPH was also found 323 
in tuberculous meningitis infection in brain tissue (70). In this study, AMPH was up-regulated in 324 
all sepsis patients compared to their comparators. However, it was significantly up-regulated in 325 
co-infection sepsis. Our findings showed that the overexpression of genes in co-infection patients 326 
suggested a poorer prognosis for patients with multidrug resistance and higher susceptibility to 327 
various pathogens infection than sepsis induced by sole bacteria or fungi. 328 
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 Our study also has limitations. As the transcriptomic data in presymptomatic sepsis were 329 
available here for the first time, the number of patients diagnosed with fungal or co-infection 330 
pathogens was significantly lower than bacteria-induced sepsis. Even though we could still identify 331 
with high statistical significance a large number of DEGs related to fungal and co-infection 332 
pathogens, the low number of patients posed challenges in developing machine learning models 333 
for simultaneous classification of the three types of pathogens. Nevertheless, the combination of 334 
potential genes/proteins and specific immune pathways identified in our study appear promising 335 
for differentiating as early as possible bacterial, fungal, and co-infection presymptomatic sepsis 336 
patients, and they should be further explored in more extensive clinical studies. 337 

 338 

Materials and Methods 339 

Microarray data generation and preprocessing 340 

Microarray data of 427 blood samples were generated as described previously 341 
(Lukaszewski et al., 2022, in revision). Briefly, Globin-reduced RNA (GlobinClearTM, 342 
ThermoFisher, Waltham, MA) was prepared from total RNA for each sample. RNA integrities 343 
were measured using a Bioanalyzer 2100 (Agilent, Santa Clara, CA), and concentrations were 344 
assessed using a NanoQuantTM (Tecan, Männedorf, Switzerland). cRNA was prepared by 345 
amplification and labeling using the Illumina® TotalPrepTM RNA Amplification Kit 346 
(ThermoFisher) and hybridized to Human HT-12v4 Beadarrays (Illumina®, San Diego, CA). 347 
Expression levels of RNA samples were analyzed with Illumina® HighScanHQTM. The Illumina® 348 
HighScanHQTM then imaged each chip with resulting intensities indicating the expression level of 349 
each probe’s corresponding gene. Finally, the chip data were preprocessed, and background 350 
corrected using GenomeStudioTM Software v2011.1 (Illumina®). The data is under embargo and 351 
available upon request to primary authors. 352 

A Principal Component Analysis (PCA) and boxplots of microarray data suggested a batch 353 
effect across datasets (ANOSIM; P-value < 0.001; Figure S1a-b). Therefore, batch deviation in the 354 
gene expression data from two different cohorts was removed by “ComBat” function of the “sva” 355 
package in R (71). A new PCA and boxplot indicated that batch effects had been removed (p-value 356 
= 0.99; Figure S1c-d). The transcriptome data were normalized using the 357 
“normalizeBetweenArrays” function of “limma” R package. The microarray probes were 358 
annotated to gene symbols and NCBI Entrez GeneIDs using the package ‘illuminaHumanv4.db’ 359 
(Version 1.26.0) (72). 360 

Principal Component Analysis (PCA) 361 

PCA method was applied to reduce the high-dimensional expression data into two-362 
dimensional spaces using the “prcomp” function in the R package “stats” (R version 4.0.3) (73). 363 
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Immune cell deconvolution analysis 364 

MySort tool (default version) implemented in an R function (74) was used to resolve the 365 
relative proportion of 21 lymphocytes based on the expression of signature genes using a linear 366 
regression model (62) (75).  367 

Differential gene expression analysis 368 

Normalized data were log2 transformed and assessed the differentially expressed genes 369 
(DEGs) by the Empirical Bayes method in the “limma” software package (Version 3.44.3) from 370 
Bioconductor in R (76). Then, a false discovery rate (FDR) adjusted p-value ≤ 0.05 and |log2(Fold 371 
change)| ≥ 0.5 were used as thresholds for identifying significant DEGs. 372 

We performed DEG analysis between different pathogen-induced sepsis patients vs. their 373 
comparators (bacterial sepsis vs. bacterial comparators, fungal sepsis vs. fungal comparators, and 374 
co-infection sepsis vs. co-infection comparators) used for downstream analysis. In addition, to 375 
control DEG analysis between samples, we also performed DEG analysis between comparators 376 
among different types of pathogens. The results showed no significant DEGs between control 377 
samples. 378 

Moreover, DEGs between different sepsis groups (bacterial vs. non-bacterial sepsis, fungal 379 
vs. non-fungal sepsis, and co-infection vs. bacterial/fungal sepsis) were also calculated as the 380 
additional DEGs for gene co-expression network, protein-protein interaction network, and 381 
machine learning analysis (Figure S4). 382 

Weighted gene co-expression network analysis (WGCNA) 383 

A total of 990 DEGs from bacterial/fungal/co-infection sepsis versus their comparators 384 
(Figure 3a-d) and 84 DEGs from direct comparisons between the different types of pathogens 385 
(Figure S4) were used to create a gene co-expression network. The network was built using the 386 
“weighted gene co-expression network analysis (WGCNA, Version 1.69)” (77) package. The soft-387 
thresholding power (β) of 5 was chosen by applying the scale-free topology criterion of r2 = 0.8 388 
(Figure S5a-b). The unsigned co-expression network of sepsis samples was constructed using the 389 
“blockwiseModules” function in the WGCNA package. An adjacency matrix was calculated and 390 
transformed into a topological overlap matrix (TOM). TOM dissimilarity was used to perform 391 
hierarchical clustering resulting in the gene modules. Similar modules were merged based on the 392 
minimum module size of 30 genes and minimum height for identifying modules at 0.25, resulting 393 
in eight final modules (Figure S5c). Module eigengene (MEs) values of each module were 394 
calculated to explain the maximum variation of the gene expression profile of a module. Gene 395 
pairs with adjacency values of 0.03 or higher were exported to Cytoscape (Version 3.7.1) (78) for 396 
visualization. 397 
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We calculated the Pearson’s correlation (r) between module eigengenes (MEs) and 398 
infection status to identify modules related to sepsis based on the types of pathogens. The sepsis-399 
associated genes were defined using the gene significance test (GS) and module membership test 400 
(MM). GS evaluates the significance of genes and infection status, while MM evaluates the 401 
significance of genes and MEs. In addition, the significance of modules and genes were also 402 
calculated using FDR correction. As criteria for associated modules, we used |r| 0.2 and FDR 0.05. 403 
The associated genes were chosen using |GS| 0.2, |MM| 0.2, and FDR 0.05. 404 

Protein-protein interaction (PPI) 405 

 To create the PPI network, all significant DEGs were uploaded to the Search Tool for the 406 
Retrieval of Interacting Genes/Proteins (STRING; string-db.org/) database (79). The degree of 407 
each gene was calculated by the “NetworkAnalyzer” implemented tool in Cytoscape. Genes with 408 
10 degrees or higher, were selected as hub genes from PPI analysis (30). 409 

Machine learning and significant gene evaluation 410 

 We employed a supervised machine learning algorithm, the weighted kernel Nearest 411 
Neighbor (wKNN) from “kknn” package (version 1.3.1) in R (80), to assess the performances of 412 
hub genes to differentiate the sepsis based on pathogen types. We set the tuning parameters for the 413 
maximum number of neighbors (kmax) of 5, distance function (d) of 1, and kernel functions 414 
(kernel) including “rectangular”, “biweight”, and “optimal”. The Leave-one-out cross-validation 415 
(LOOCV) was used to train and optimize sepsis classification models. To compensate for the 416 
imbalanced sizes of infection sepsis, we reweighted the classes of infection classes before training 417 
the models. The significant genes for each model were estimated using the support vector machine 418 
recursive feature elimination (SVM-RFE) algorithm and t-statistic from the “sigFeature” package 419 
(version 1.8.0) (81). 420 

Receiver operating characteristic (ROC) curve analysis 421 

 ROC curves and area under the curves (AUC) were used for (i) investigating the 422 
performance of classification models and (ii) evaluating the predictive values of significant genes 423 
from classification models. The ROC curves and AUC were calculated using “pROC” package 424 
(Version 1.18.0) (82). 425 

Functional annotation 426 

The DEGs of different pathogen-induced sepsis, heatmap clusters, and gene modules from 427 
the gene co-expression network were evaluated by GO enrichment analysis and a Kyoto 428 
Encyclopedia of Genes and Genomes (KEGG) (83) pathway enrichment analysis using the 429 
“clusterProfiler” package (Version 3.16.1) (84) in R. GO terms and KEGG pathways for genes 430 
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were obtained from the Bioconductor package “org.Hs.eg.db” (Version 3.11.4) (85). We selected 431 
the significant terms based on criteria of FDR ≤ 0.05 and two DEGs or more were involved. 432 

Statistical analysis 433 

ANOSIM and Adonis tests were performed based on the Bray Curtis metric using ‘vegan’ 434 
package (Version 2.5.7) (86). ANOSIM was employed to test statistical differences in gene 435 
expression profiles between two datasets. Adonis was used to testing for differences in gene 436 
expression levels between PCA clusters. All DEGs were clustered using the K-means algorithm. 437 
Heatmap was created using the ComplexHeatmap package (Version 2.4.3) (87). Figures were 438 
generated using the R package ‘ggplot2’ (Version 3.3.3), ‘VennDiagram’ (Version 1.6.20) (88), 439 
ComplexHeatmap, and enrichplot (Version 1.8.1) (89). 440 

 441 
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Table 1: Significant p-value and area under the curves of hub genes. 
Illumina ID Symbol Module P-value AUC 

Bacterial model 
ILMN_2096372 ALDH1A1 turquoise <0.001 0.755 
ILMN_1765796 ENO2 brown <0.001 0.71 
ILMN_1715169 HLA-DRB1 brown <0.001 0.79 
ILMN_1708779 GNLY blue 0.001 0.735 
ILMN_1701237 SH2D1B blue 0.007 0.718 
ILMN_2098126 CCL5 brown 0.019 0.708 
ILMN_1661266 HLA-DQB1 blue 0.02 0.703 
ILMN_2363426 MAX brown 0.022 0.704 

Fungal model 
ILMN_1661266 HLA-DQB1 blue <0.001 0.961 
ILMN_2374036 CTSL brown 0.003 0.719 
ILMN_2124769 YBX1 pink 0.004 0.876 
ILMN_1809583 CREBBP turquoise 0.004 0.738 
ILMN_2096372 ALDH1A1 turquoise 0.005 0.8 
ILMN_1771203 SMAD2 blue 0.007 0.921 
ILMN_1796409 C1QB brown 0.008 0.748 
ILMN_1812995 CTSL brown 0.008 0.747 
ILMN_1781906 RBM17 pink 0.012 0.832 
ILMN_2370882 ACSL5 blue 0.019 0.862 
ILMN_3285611 RPS9 red 0.03 0.833 
ILMN_1706546 MAX brown 0.033 0.707 
ILMN_1695420 CLTA black 0.04 0.813 

Co-infection model 
ILMN_2374036 CTSL brown <0.001 0.908 
ILMN_1812995 CTSL brown <0.001 0.869 
ILMN_2184184 ANXA1 turquoise <0.001 0.805 
ILMN_1715169 HLA-DRB1 brown <0.001 0.815 
ILMN_1706546 MAX brown <0.001 0.853 
ILMN_1745798 GTF2F2 turquoise 0.002 0.806 
ILMN_1654566 HSPA1L yellow 0.002 0.791 
ILMN_1703140 NEDD4 turquoise 0.002 0.772 
ILMN_1701237 SH2D1B blue 0.002 0.808 
ILMN_1753468 CD63 turquoise 0.003 0.762 
ILMN_1809583 CREBBP turquoise 0.003 0.786 
ILMN_1797341 ARID1A yellow 0.003 0.776 
ILMN_2363426 MAX brown 0.003 0.827 
ILMN_1708779 GNLY blue 0.004 0.777 
ILMN_1796409 C1QB brown 0.005 0.788 
ILMN_1765796 ENO2 brown 0.005 0.751 
ILMN_1724718 NCK2 brown 0.007 0.765 
ILMN_1693341 SNRPN brown 0.008 0.748 
ILMN_1704236 MAX brown 0.009 0.775 
ILMN_2096372 ALDH1A1 turquoise 0.01 0.704 
ILMN_1673357 SLA2 brown 0.013 0.762 
ILMN_2098126 CCL5 brown 0.013 0.79 
ILMN_1661945 SLIRP red 0.014 0.731 
ILMN_1733324 ITGB3 brown 0.018 0.725 
ILMN_1797074 EMG1 blue 0.019 0.731 
ILMN_1785902 C1QC brown 0.025 0.748 
ILMN_1778143 GRAP2 brown 0.03 0.721 
ILMN_1685834 AMPH blue 0.031 0.722 
ILMN_1773352 CCL5 brown 0.035 0.716 
ILMN_1781906 RBM17 pink 0.037 0.713 
ILMN_1748591 ODC1 pink 0.04 0.705 
ILMN_1783621 CMPK2 blue 0.042 0.711 
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Figure 1: An overview of the study workflow Blood samples were taken from surgery patients at PreSurgery, 
BeforeDx, and AfterDx. A total of 427 blood samples were diagnosed as bacterial/fungal/co-infection/un-
identified sepsis or their comparator. Microarray technology was used to examine gene expression patterns 
associated with surgery patients. All samples were used for quality assessment. The differences in transcriptomic 
profiles between sepsis and comparators were observed from post-operative samples. To identify the pathogen-
specific gene(s)/pathway(s), we performed DEG analysis, HC clustering, WGCNA, and PPI network analysis. 
PreSurgery, Pre-surgery samples; BeforeDx, samples were collected after surgery and before patients were 
diagnosed with sepsis; AfterDx, samples were collected after surgery and after patients were diagnosed with 
sepsis; PCA, principal component analysis; DEG, differentially expressed gene; HC, hierarchical clustering; 
WGCNA, Weighted Gene Co-expression Network Analysis; PPI, protein-protein interaction 
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Figure 2: Whole transcriptome profiles (a) Bar plots of the proportion of immune cell types in sepsis patients 
and comparators. (b) Volcano Plot of the differentially infiltrated immune cells between sepsis and comparators. 
Colors indicate different cell types. (c-i) PCA plots of all transcripts from patients after surgery. (c) PCA plot of 
sepsis patients vs. comparators. (d) PCA plot of bacterial sepsis vs. comparators. (e) PCA plot of fungal sepsis 
vs. comparators. (f) PCA plot of co-infection sepsis vs. comparators. (g) PCA plot of un-identified pathogen 
sepsis vs. comparators. 
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Figure 3: Differentially expressed gene analyses of BeforeDx samples (a) Heatmap of 990 significant DEGs 
of 247 BeforeDx samples classified into five clusters and their top five biological processes. (b-e) DEG analysis 
between different pathogen-induced sepsis vs. their comparators. Volcano plots showing DEGs between (b) 
bacterial sepsis vs. comparators, (c) fungal sepsis vs. comparators, and (d) co-infection sepsis vs. comparators. 
(e) The Venn diagram shows the overlapping DEGs among those three comparisons. 
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Figure 4: Hub gene performance evaluation (a-b) PCA plots of ‘BeforeDx’ sepsis patients based on 42 hub 
genes. (a) PCA plot of bacterial vs. fungal vs. co-infection sepsis. (b) PCA plot of bacterial vs. fungal sepsis (c) 
PCA plot of bacterial vs. co-infection sepsis (d) PCA plot of fungal vs. co-infection sepsis. (e) Receiver operating 
characteristic (ROC) curves and (f) confusion matrices of the binary classification model performance for three 
models, including bacterial vs. non-bacterial (orange), fungal vs. non-fungal (blue), and co-infection vs. non-
infection (green) models in ‘BeforeDx’ samples.  
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Figure S1: Microarray data before and after batch effect correction (a) PCA and (b) boxplots of microarray 
data before batch effect removal. (c) PCA and (d) boxplots of microarray data after batch effect removal. 
 
  
 

 

 
 
Figure S2: PCA plots of all transcripts from sepsis patients (a) PCA plot of bacterial vs. fungal sepsis. (b) 
PCA plot of bacterial vs. co-infection sepsis. (c) PCA plot of fungal vs. co-infection sepsis. 
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Figure S3: Functional annotation (a-f) Bar plots show the top 15 GO terms and top 5 KEGG pathways with the 
number of involved DEGs. (a) The top 20 enriched terms from up-regulated bacterial DEGs. (b) The top 20 
enriched terms from down-regulated bacterial DEGs. (c) The top 20 enriched terms from up-regulated fungal 
DEGs. (d) The top 20 enriched terms from down-regulated fungal DEGs. (e) The top 20 enriched terms from up-
regulated co-infection DEGs. (f) The top 20 enriched terms from down-regulated co-infection DEGs. 
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Figure S4: PCA plots of all transcripts from sepsis patients (a-d) DEG analyses between sepsis induced by 
different pathogens. (a) The Venn diagram shows the overlapping DEGs among three comparisons. Volcano plots 
showing DEGs between (b) bacterial vs. non-bacterial induced sepsis, (c) fungal vs. non-fungal induced sepsis, 
and (d) co-infection vs. non-co-infection induced sepsis.  
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Figure S5: WGCNA-based identification of co-expression modules for sepsis patients (a) Analysis of the 
scale-free indices for various soft-threshold powers (β). (B) Mean connectivity analysis of various soft-
thresholding powers. (c) Dendrogram of all differentially expressed genes clustering based on dissimilarity 
measurement (1-TOM). The branches and color bands represent the assigned module. 
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Figure S6: Eight gene modules from WGCNA Gene co-expression modules for (a) green, (b) turquoise, (c) 
black, (d) yellow, (f) red, (g) blue, (g) brown, and (h) pink. Node colors in the first row of each module indicate 
belonging DEGs to which pathogen-induced sepsis. For bacterial, fungal, and co-infection rows, visualize the 
gene expression changes and gene correlation between pathogen-induced sepsis compared to comparators. Nodes 
indicate the log2FC of genes in each module. Edges indicate the |Spearman’s correlation| ≥ 0.7 between genes in 
each module. 
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Overview 

In manuscript III, we aimed to understand the effects of agricultural fungicide on 
A. fumigatus genomes, abundance, and antifungal susceptibility. Therefore, we re-
assembled A. fumigatus genomes collected from organic and agricultural farms in Germany 
using a reference-based genome assembly method. The results showed that fungicide use 
in agriculture had no effect on genetic changes in A. fumigatus but reduced the population 
of susceptible A. fumigatus strains. 
 
  

Effects of Agricultural Fungicide Use on Aspergillus fumigatus
Abundance, Antifungal Susceptibility, and Population
Structure

Amelia E. Barber,a,b Jennifer Riedel,c Tongta Sae-Ong,a Kang Kang,a Werner Brabetz,d Gianni Panagiotou,a,e
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ABSTRACT Antibiotic resistance is an increasing threat to human health. In the
case of Aspergillus fumigatus, which is both an environmental saprobe and an oppor-
tunistic human fungal pathogen, resistance is suggested to arise from fungicide use
in agriculture, as the azoles used for plant protection share the same molecular tar-
get as the frontline antifungals used clinically. However, limiting azole fungicide use
on crop fields to preserve their activity for clinical use could threaten the global
food supply via a reduction in yield. In this study, we clarify the link between azole
fungicide use on crop fields and resistance in a prototypical human pathogen
through systematic soil sampling on farms in Germany and surveying fields before
and after fungicide application. We observed a reduction in the abundance of A. fu-
migatus on fields following fungicide treatment in 2017, a finding that was not ob-
served on an organic control field with only natural plant protection agents applied.
However, this finding was less pronounced during our 2018 sampling, indicating
that the impact of fungicides on A. fumigatus population size is variable and influ-
enced by additional factors. The overall resistance frequency among agricultural iso-
lates is low, with only 1 to 3% of isolates from 2016 to 2018 displaying resistance to
medical azoles. Isolates collected after the growing season and azole exposure show
a subtle but consistent decrease in susceptibility to medical and agricultural azoles.
Whole-genome sequencing indicates that, despite the alterations in antifungal sus-
ceptibility, fungicide application does not significantly affect the population struc-
ture and genetic diversity of A. fumigatus in fields. Given the low observed resis-
tance rate among agricultural isolates as well the lack of genomic impact following
azole application, we do not find evidence that azole use on crops is significantly
driving resistance in A. fumigatus in this context.

IMPORTANCE Antibiotic resistance is an increasing threat to human health. In the
case of Aspergillus fumigatus, which is an environmental fungus that also causes life-
threatening infections in humans, antimicrobial resistance is suggested to arise from
fungicide use in agriculture, as the chemicals used for plant protection are almost
identical to the antifungals used clinically. However, removing azole fungicides from
crop fields threatens the global food supply via a reduction in yield. In this study,
we survey crop fields before and after fungicide application. We find a low over-
all azole resistance rate among agricultural isolates, as well as a lack of genomic and
population impact following fungicide application, leading us to conclude azole use
on crops does not significantly contribute to resistance in A. fumigatus.
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ABSTRACT Antibiotic resistance is an increasing threat to human health. In the
case of Aspergillus fumigatus, which is both an environmental saprobe and an oppor-
tunistic human fungal pathogen, resistance is suggested to arise from fungicide use
in agriculture, as the azoles used for plant protection share the same molecular tar-
get as the frontline antifungals used clinically. However, limiting azole fungicide use
on crop fields to preserve their activity for clinical use could threaten the global
food supply via a reduction in yield. In this study, we clarify the link between azole
fungicide use on crop fields and resistance in a prototypical human pathogen
through systematic soil sampling on farms in Germany and surveying fields before
and after fungicide application. We observed a reduction in the abundance of A. fu-
migatus on fields following fungicide treatment in 2017, a finding that was not ob-
served on an organic control field with only natural plant protection agents applied.
However, this finding was less pronounced during our 2018 sampling, indicating
that the impact of fungicides on A. fumigatus population size is variable and influ-
enced by additional factors. The overall resistance frequency among agricultural iso-
lates is low, with only 1 to 3% of isolates from 2016 to 2018 displaying resistance to
medical azoles. Isolates collected after the growing season and azole exposure show
a subtle but consistent decrease in susceptibility to medical and agricultural azoles.
Whole-genome sequencing indicates that, despite the alterations in antifungal sus-
ceptibility, fungicide application does not significantly affect the population struc-
ture and genetic diversity of A. fumigatus in fields. Given the low observed resis-
tance rate among agricultural isolates as well the lack of genomic impact following
azole application, we do not find evidence that azole use on crops is significantly
driving resistance in A. fumigatus in this context.

IMPORTANCE Antibiotic resistance is an increasing threat to human health. In the
case of Aspergillus fumigatus, which is an environmental fungus that also causes life-
threatening infections in humans, antimicrobial resistance is suggested to arise from
fungicide use in agriculture, as the chemicals used for plant protection are almost
identical to the antifungals used clinically. However, removing azole fungicides from
crop fields threatens the global food supply via a reduction in yield. In this study,
we survey crop fields before and after fungicide application. We find a low over-
all azole resistance rate among agricultural isolates, as well as a lack of genomic and
population impact following fungicide application, leading us to conclude azole use
on crops does not significantly contribute to resistance in A. fumigatus.
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Aspergillus fumigatus is a globally distributed fungus responsible for an estimated
300,000 cases of invasive disease and more than 10 million cases of chronic and

allergic disease globally each year (1). Humans inhale the infectious particles, or spores,
on a daily basis but are actually an accidental host for the fungus, whose primary niche
is soil and decaying vegetation. Management and prophylaxis against aspergillosis
relies largely on the azole class of antifungals, with voriconazole and isavuconazole
recommended as the first-line therapy (2). Unfortunately, clinical resistance to the
azoles in A. fumigatus is an increasing problem, with some medical centers reporting
rates as high as 30% in specific patient populations and similarly high rates for
environmentally isolated A. fumigatus (3, 4). Regrettably, the mortality for resistant
infections is upwards of 90% in some patient populations (5–7). While resistance can
evolve during patient therapy (8, 9), the emergence of resistance in A. fumigatus has
mainly been linked to the use of azoles in agriculture, as structurally similar and
mechanistically indistinguishable compounds are heavily used for plant protection (10).
This resistance has been described as collateral damage, as A. fumigatus is not a plant
pathogen that is being directly targeted by fungicide treatments (11). The triazoles
were first released for agriculture in 1973, well before they were first introduced to
human medicine in the early 1990s, and are currently the most widely utilized anti-
fungal compound group in agriculture due to their systemic distribution in treated
plants, high efficiency, and broad spectrum of target pathogens (12, 13). Crops,
particularly cereals and fruits, are sprayed multiple times each growing season at a
recommended dose of 100 g/hectare to control powdery mildew, rust, septoria leaf
blotch, and other phytopathogenic fungi (14). Currently, there are 32 azoles commer-
cially available for plant protection (15) but only five in regular use in human medicine
(16).

The most common azole resistance mechanism in A. fumigatus occurs via mutations
in the target protein of azole fungicides, sterol 14!-demethylase (CYP51A, also called
ERG11), a key enzyme of the ergosterol biosynthesis pathway. In A. fumigatus, the
dominant resistance mechanism among both environmental and clinical isolates is a
34-bp tandem repeat (TR34) in the cyp51a promoter coupled with a leucine-to-histidine
substitution (L98H) in the amino acid coding sequence, the net effect of which is an
increase in gene expression as well as an alteration in both the stability of the target
enzyme and the interaction between the protein heme cofactor of cyp51a and the azole
ligand (17–19). Additional mutations that have been identified to confer azole resis-
tance in A. fumigatus include other variations of the tandem repeat, such as
TR46/Y121F/T289A and TR53, as well as other point mutations in the cyp51a coding
sequence (20, 21).

Disease-causing fungi are responsible for roughly 20% of crop yield loss, with a
further 10% loss postharvest (16), so the use of azoles is critical for securing the food
supply. However, this must be balanced against the need to preserve the activity of the
azoles for clinical use, and, as such, there is an urgent need to identify the contributions
of azole fungicide use on food crops to the development of resistance in A. fumigatus.
We address this through systematic soil sampling conducted on 10 agricultural sites in
Germany over a 3-year period, including conventionally managed fields applying azoles
fungicides as well as those practicing organic agriculture that do not use these
compounds. In the largest published A. fumigatus sequencing effort to date, and the
first to focus on the fungus in its natural niche, we also use whole-genome sequencing
(WGS) to examine the impact of azole fungicides on the population genetics of 64
agriculturally isolated A. fumigatus isolates.

RESULTS
Variable abundance of Aspergillus fumigatus on agricultural sites in Germany.

To examine the depth distribution of A. fumigatus in agricultural soils, we collected soil
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samples from a test field at 5-cm intervals down to a depth of 30 cm below the surface.
A. fumigatus was most abundant in the top 5 cm of soil and was not significantly
observed below a depth of 15 cm (Fig. 1A). As a result, only the top 5-cm layer of soil
was collected in subsequent soil samples.

FIG 1 Abundance of A. fumigatus in the soil of conventional and organic farms. (A) A. fumigatus (CFU/g) at various soil depths. n ! 10
samples per depth. (B) Estimated fungicide treatment rates and areas in Germany. The fraction of each district that is theoretically treated
with fungicides was calculated using land use and organic agriculture share data reported by the Statistical Office of Germany in
December 2016. Districts where no data on land use were available are shaded gray. (C and D) Abundance of A. fumigatus in the spring
as measured by number of CFU/g soil in the spring of 2017 (C) and 2018 (D). For 2017, boxplots represent n ! 50 soil samples per field
for farms A, B, C, E, F, H, and K and n ! 25 for farms D, G, and L. For 2018, n ! 50 soil samples per field for farms A, B, C, D, E, G, H, and
K and n ! 25 for farms F and L. (E) Comparison of the mean number of CFU/g soil on farms between 2017 and 2018.
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To identify whether our sampling areas are representative of azole and fungicide
usage for Germany as a whole, we calculated the fraction of each administrative district
that is theoretically treated with azoles in the context of agriculture using publicly
available data. Overall, 51% of Germany is designated agricultural land (see Materials
and Methods for data sources). However, not all this land is sprayed with azoles. For
example, meadow or pastureland is rarely treated with fungicides. Additionally, ap-
proximately 7% of agriculture in Germany utilizes organic farming and does not apply
azoles, with a range of 3 to 15% between the different federal states. Using land use
data on arable farmland and permanent crop areas for each district in Germany, we
calculated that the mean fraction of potentially azole-treated area in Germany is 32%
(for the districts where data are available), with a range of 1 to 68% (Fig. 1B). The
districts where we performed our soil sampling were almost all above the average for
Germany, with a mean of 52% potentially azole-treated hectares and a range of 30 to
65%.

To examine the inter- and intrafield variability in the density of A. fumigatus on
agricultural fields, soil samples were taken from nine conventional and eight organic
fields before the growing season in 2017. Conventional fields were also sampled again
after the vegetative period and application of azoles. In total, 2,875 soil samples were
taken between 2016 and 2018 (see Table S1 in the supplemental material). The
predominant crops being grown were cereals such as wheat and barley, but several
apple orchards were also sampled. Of the fields sampled during this period in 2017,
67% of the soil samples taken were positive for A. fumigatus, with a large range
between fields (28 to 100%) (Fig. 1C). We also observed a large degree of variation in
the mean number of CFU per gram of soil between different fields, with some fields
having 30! higher A. fumigatus density over others (0.7 to 18.8 CFU/g).

To examine the stability of A. fumigatus population sizes in agricultural soil, we
investigated the same farms a year later in the spring of 2018 and repeated the soil
sampling on eight conventional and seven organic fields. Due to crop rotation, it was
not possible to sample the same fields as the previous year, except for the apple
orchards on farms H and L. During the 2018 sampling period, an overall lower
proportion of samples were positive for A. fumigatus (51% with a range of 10 to 96%
between different fields) (Fig. 1D), but the mean number of CFU per gram for the 1,000
samples was similar to that of the previous year (5.18 CFU/g soil for 2017 compared to
5.74 CFU/g for 2018). As in the previous year, there was a large variability in the mean
number of CFU of A. fumigatus present between fields. When comparing the six apple
fields that were sampled over consecutive years, we did not observe a consistent trend
in the stability of A. fumigatus population size. Two fields showed similar levels of A.
fumigatus between 2017 and 2018, while two fields showed an increased abundance
between the years, and the remaining two fields showed a significant reduction in
abundance (Fig. S1A). To investigate potential factors that might support a higher
abundance of A. fumigatus, we compared the total organic carbon (TOC) content of a
random selection of samples with the number of CFU per gram for A. fumigatus, but we
did not detect a clear relationship between the two (Fig. S1B). Altogether, we observed
a nonuniform distribution of A. fumigatus in soil samples taken from the same field and
a large degree of heterogeneity between fields.

Variable effects of fungicide application on A. fumigatus abundance. To exam-
ine the impact of fungicide application and the azoles on A. fumigatus in agricultural
soil, we performed additional soil sampling on the conventional fields surveyed in the
spring at the end of the vegetative period and after several months of fungicidal crop
protection. A schematic illustration of the soil sampling and fungicide application
timelines for 2017 and 2018 can be found in Fig. S2A and B. Unfortunately, the
fungicide history for farms H and L was not available to us. Fields were typically treated
with fungicides twice during the growing period, and azoles were by far the most
dominant class of fungicide applied. Every application recorded contained at least one
azole. However, fungicides are often applied as commercially available cocktails of
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different chemicals, so other classes were also present in 0 to 55% of applications in
2017 and 2018 (summarized in Fig. S2C).

When comparing the amount of A. fumigatus on fields before fungicide application
to that after fungicide application and azole exposure, we detected a significant
reduction in the number of CFU per gram of soil on the majority of fields in 2017
(Fig. 2A), even though it is not being directly targeted as a plant pathogen. To
investigate whether this reduction in agricultural A. fumigatus populations was the
result of fungicide application and not a seasonal effect from comparing April to July,
monthly soil samples were taken from a conventional field and an organic field not
treated with azoles or other nonnatural fungicides as a control. Samples were taken
beginning in April, before azoles were applied to the conventional field, through the
harvest period in July, and then additional samples were taken in October and
November to allow for a period without fungicide application. From April to July, the
conventional field was sprayed with azoles every 3 to 5 weeks. When analyzing the
abundance of A. fumigatus on the organic field, we did not observe any significant
differences between the abundance recorded monthly between April and July
(Fig. 2B). However, the conventional field showed a significant reduction in abun-
dance between April and May, corresponding to the beginning of the azole
application period, and this reduction was maintained through the rest of the azole
application period (Fig. 2C).

When comparing A. fumigatus density before and after fungicide treatment in 2018,
we did not observe the same reduction in abundance, and most fields did not show
significant changes between the time points (Fig. 2D). In fact, only one of eight fields
sampled showed a statistically significant reduction in A. fumigatus abundance. Alto-
gether, the impact of fungicide application on A. fumigatus abundance was variable
between fields and more so between years, as other environmental factors also appear
to influence A. fumigatus population size in agricultural soil.

Reduced susceptibility to agricultural azoles in populations isolated after the
growing season and azole exposure. To assess the susceptibility of A. fumigatus to
commonly applied agricultural azoles, we screened 435 isolates from 2017 and 342
isolates from 2018 for their ability to grow at a set concentration of difenoconazole and
tebuconazole (approximately 20 isolates per field and sampling point). To limit poten-
tially clonal isolates from skewing the results, a maximum of two isolates per soil
sample were included for testing. As there are no established breakpoints for defining
resistance to these compounds in A. fumigatus, we selected concentrations that mim-
icked MIC90 values for these azoles (1 mg/liter for difenoconazole and 2 mg/liter for
tebuconazole). When examining conventional and organic farms in the spring, we
observed a wide range in the fraction of isolates per field that were able to grow when
challenged with agricultural azoles. For difenoconazole, this ranged from 10 to 55% per
field in 2017 (n ! 17 fields, 320 isolates in total) and 0 to 50% in 2018 (n ! 15 fields, 261
isolates in total) (Fig. 3A and Table S2). For tebuconazole, the rates ranged from 0 to
25% in 2017 and 0 to 20% in 2018 (Fig. 3B and Table S2). We did not detect any
significant differences in the rates between conventional and organic fields in the
spring or between fields growing different crops (cereals or apples).

Given the reduction in the A. fumigatus population size observed on most conven-
tional fields following fungicide application in 2017 and more variably on fields in 2018,
we wanted to examine the effect of fungicides on the local azole susceptibility
following the vegetative period and several months of fungicide application. We
observed an increase in the proportion of isolates that were able to grow at the test
concentrations of difenoconazole (1 mg/liter) and tebuconazole (2 mg/liter) for fields
sampled after azole exposure compared to the same field in the spring prior to azole
application (Fig. 3C and D and Table S3). We detected a 1.97-fold increase in the
proportion of isolates that were resistant to our test concentration of difenoconazole in
2017, with a range from "1.1- to 4.5-fold for individual fields (Fig. 3C). In 2018, this
increased to 2.84-fold, with a range of 1- to 4.5-fold increase for individual fields
(Fig. 3D). We also saw a similar increase in the fraction of isolates with reduced
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FIG 2 Abundance of A. fumigatus in the soil of conventional farms before and after the vegetative period and fungicide application.
(A and D) A. fumigatus (CFU/g) on conventional fields sampled in April, prior to the vegetative period and fungicide application
(orange), and in July, after the vegetative period and 3 months of fungicide application, including azole fungicides (gray) in 2017 (A)
and 2018 (D). *, P ! 0.05; **, P ! 0.01; ***, P ! 0.001; NS, not significant; determined by Mann-Whitney U test. (A) Boxplots represent
n ! 50 samples per field and time point for farms A, B, C, E, and H and n ! 25 samples for farms D and L. (D) n ! 50 samples per field
and time point for farms A, B, C, D, E, and H and n ! 25 samples for farm L. (B and C) A. fumigatus (CFU/g) during the months of April,
May, June, July, October, and November of a conventional field applying fungicides from May to July (C) and an organic field not
applying nonnatural fungicides (B). Bars represent means " standard errors of the means from 50 soil samples per month. No
significant difference was found in abundance between the months of April, May, June, and July for the organic field using a

(Continued on next page)
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susceptibility to our test concentration of tebuconazole after azole exposure compared
to that before. In 2017, we observed a 5.9-fold increase in the number of isolates that
were able to grow at the test concentration after azole exposure versus before
exposure, with a range of 0 to 25.0% for individual fields (Fig. 3E). In 2018, we detected
a more modest 1.9-fold, with a range of !5 to 18.2% for individual fields (Fig. 3F).

For the fields growing cereals, we were not able to sample the same fields over
subsequent years due to crop rotation and the fields not being in use the following
year. However, we were able to compare the same apple fields in both 2017 and 2018.
We tracked the local susceptibility to agricultural azoles in these fields over two
consecutive years at two time points, in the spring prior to fungicide application and
just prior to harvest after "3 months of fungicide application. The fraction of isolates
that were able to grow in the presence of 1 mg/liter difenoconazole or 2 mg/liter
tebuconazole was, in general, low in the spring and increased after fungicide applica-
tion (Fig. 3G and Table S3). Interestingly, in the spring of 2018, the proportion had
returned to a level comparable to what we observed in the spring of 2017, indicating
that the reduced susceptibility is transient and recedes when the selective pressure
imposed by fungicide is removed. In summary, we found a wide range of susceptibil-
ities to agricultural azoles between different fields but a consistent decrease in sus-
ceptibility following the growing season, fungicide application, and azole exposure.
However, this change is seemingly transient or reversible, and the A. fumigatus popu-
lations from fungicide-treated fields typically returned to what they were prior to
fungicide application by the following spring.

Resistance to medical azoles in agricultural A. fumigatus isolates. We next
examined our isolate collection for resistance to medical azoles and determined the
proportion that would be considered clinically resistant. Using the VIPcheck agar-based
screening method, followed by broth microdilution for isolates showing growth on
agar-containing wells (22, 23), we determined that only a very small fraction of A.
fumigatus organisms isolated from agriculture showed resistance to itraconazole, vori-
conazole, or posaconazole in 2016 to 2018 (Table 1). The overall resistance rate to
itraconazole among all isolates collected was higher than that for other compounds,
with 3.0% (11/333) of isolates being resistant in 2016, 0.7% in 2017 (4/460), and 0.6%
(2/322) in 2018. We observed lower resistance rates for posaconazole and voriconazole,
with only 2.1% (7/333) being resistant in 2016, 0.7% (4/460) in 2017, and 0.0% (0/322)
in 2018. As there are no clinical breakpoints established for agricultural azoles, we
calculated epidemiological cutoff values (ECOFFs) for difenoconazole and tebuconazole
using MICs from 160 randomly selected isolates from 2017 and 2018. Using these
values, we found that 1.3% of the 160 isolates had MICs above the ECOFF for
difenoconazole (2 mg/liter), and 4.4% of isolates had MICs above the ECOFF for
tebuconazole (2 mg/liter) (Table 2). As has been described previously (24), isolates
resistant to one or more medical azoles often displayed elevated MICs to agricultural
azoles, indicating cross-resistance (Table S4).

To quantify what mutations were responsible for azole resistance in the population
analyzed, we genotyped the cyp51a locus encoding the azole target enzyme for all
isolates resistant to one more medical azoles using Sanger sequencing (n # 18). We
found that the most dominant DNA alteration observed was the well-characterized
TR34/L98H mutation (Fig. 3H and Table S4). This cyp51a genotype accounted for 6/12
(50%) of resistant isolates in 2016 and 3/4 (75%) in 2017. In 2018, we identified only two
resistant isolates among the 322 screened, and both had wild-type cyp51a loci. How-
ever, both of these isolates were only weakly resistant to itraconazole, but not other
azoles, with itraconazole MIC values right at the breakpoint of 2 to 4 mg/liter. For

FIG 2 Legend (Continued)
Kruskal-Wallis test. In contrast, we found a significant difference (P # 0.004) for the abundances in this time period on the conventional
field. P values from subsequent pairwise comparisons between months are indicated. *, P ! 0.05; **, P ! 0.01; ***, P ! 0.001;
determined by Wilcoxon signed rank.
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comparison, resistant isolates from other years had MIC values of !8 mg/liter. In total,
the genetic cause of resistance remained unknown for 8 isolates from 2016 to 2018.

Since the majority of fields had no resistant isolates, it was not possible to effectively
compare resistance rates among agricultural A. fumigatus organisms for medical azoles
before and after fungicide treatment. In lieu of this, we examined the MIC distribution
for isolates collected before and after the growing season and fungicide application.
Examining 79 isolates from the before period and 79 isolates from after azole exposure,
we observed a shift in the MIC distribution toward higher MICs for all azoles examined,

A

E F

C D

B

FIG 3 Azole resistance among agricultural A. fumigatus. (A and B) Fraction of the isolates per field that grow at 1 mg/liter difenoconazole
(A) and 2 mg/liter tebuconazole (B). For 2017, n " 340 isolates from 9 conventional and 8 organic fields, #20 isolates per field, were used.
For 2018, n " 213 isolates from 8 conventional and 7 organic fields, #20 isolates per field, were used (full summary in Tables S2 and S3). (C
to F) Comparison of the proportion of isolates that grow at 1 mg/liter difenoconazole (C and D) and 2 mg/liter tebuconazole (E and F) before
and after the vegetative period and fungicide application. For 2017 (C and E), n " 275 isolates from 7 fields were used, and for 2018, n " 261
isolates from 8 fields were used (full summary in Tables S4 and S5). (Left) Overall summary of all isolates tested that year. (Right) Within-field
changes (n # 40 isolates per field; 20 before, 20 after). P values were calculated by Wilcoxon signed-rank test between before and after values.
(G) Temporal changes in antifungal susceptibility of A. fumigatus on apple fields sampled before and after fungicide exposure over a 2-year
period. Shown is the fraction of isolates that can grow at 1 mg/liter difenoconazole (top) and 2 mg/liter tebuconazole (bottom). n " 12 to 20
isolates/field and time point. (H) cyp51a genotypes of isolates resistant to one or more medical azole. (I) MICs of agricultural A. fumigatus
isolated before and after azole exposure. n " 159 randomly selected isolates from 2017 and 2018; n " 80 before and n " 79 after. P values
were calculated by Wilcoxon signed rank test between before and after values.
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both medical and agricultural (Fig. 3I). However, the median MICs remained un-
changed, indicating that the majority of the population following azole exposure
does not exhibit a change in MIC. Taken together, these results indicate that the rate
of resistance to clinical azoles among environmental A. fumigatus organisms isolated
from agricultural environments is low overall and that exposure to agricultural azoles
alone or in combination with other fungicides causes a minor increase in MIC values for
some of the population, but the majority of isolates are left unchanged.

No distinct population structure for A. fumigatus isolates from different sam-
pling sites. To better understand the population structure of A. fumigatus in the
environment and how it is impacted by the azoles, we performed whole-genome
sequencing on isolates from four conventional farms collected before and after azole
exposure. Sixty-four isolates were sequenced by Illumina paired-end sequencing, rep-
resenting eight isolates per farm and time point. Isolates from each field and time point
were randomly selected, with a maximum of two per soil sample to avoid sequencing
of clonal isolates. Raw reads were checked for quality and then aligned to the Af293
reference genome, resulting in a median depth of coverage after mapping of 31.5!
(range, 10! to 90!) and a median genome coverage median of 94% (range, 92.8 to
96.7%) (Data Set S1). Consistent with what has been observed among sequenced
clinical strains (25), isolates differed from the Af293 reference by a median of 84,690
single-nucleotide variants (SNVs) or 2.88 SNVs/kb, with a range of 65,854 to 146,055
SNVs. The analysis of copy number variations (CNVs) identified 8,277 unique CNVs in
total, with a median of 3,115 CNVs per isolate (range, 1,666 to 4,532 CNVs). These CNVs

G

Clinical breakpoint

I

H

FIG 3 (Continued)

Agricultural Fungicides and Aspergillus fumigatus ®

November/December 2020 Volume 11 Issue 6 e02213-20 mbio.asm.org 9

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.a

sm
.o

rg
/jo

ur
na

l/m
bi

o 
on

 2
9 

N
ov

em
be

r 2
02

1 
by

 1
92

.1
24

.2
48

.1
57

.



MANUSCRIPT III 
  

   84 

were further delimited into a median of 2,589 deletions (range, 1,247 to 4,405) and
5,687 insertions (range, 3,872 to 7,030).

A maximum likelihood phylogeny based on SNVs indicated no population stratifi-
cation among isolates from different farms and regions of Germany (Fig. 4). To more
directly assess the association between genetic and geographic distance, we performed
a Mantel test correlating a geographic distance matrix with the fixation index (FST)
genetic distance matrix and observed no significant association between the two.
When considering the azole-resistance status of the isolates, the two itraconazole-
resistant TR34/L98H isolates clustered next to each other, despite originating from
separate farms, while the third itraconazole-resistant isolate with an undefined resis-
tance mechanism was on a distinct branch. Despite being the nearest sequenced
neighbors, the two TR34/L98H isolates were genetically distinct, each possessing 19,439
and 60,841 unique SNVs not shared by the other isolate, along with 67,196 common
SNVs relative to Af293.

Comparative analysis of molecular variance (AMOVA) indicated that the majority of
the variation seen among the 64 isolates came from the population as a whole (within
sample) (94.8%) and between samples (5.0%) (Table 3). There was no significant
molecular variance between farms (0.2%), with the exception of modest variation
between farm B and farm C (1.2% of variation observed). Weighted Weir and Cocker-
ham’s fixation indexes (FST) for each farm were essentially zero, indicating an inter-
breeding, panmimetic population with no separation between farms (Fig. S3A). Analysis
of copy number variation (VST), estimating population differentiation based on copy
number variation, also indicated no subdivision among the farms (Fig. S3B). To examine
the genetic diversity within farms, nucleotide diversity (the average number of nucle-
otide differences per site for all possible pairs in the population or !) and the number
of polymorphic sites (Watterson estimator, or ") were calculated along 5-kb windows
with a 500-bp step size for each farm population. Farm C showed the greatest intrafarm
diversity, while farm E showed the smallest (Fig. S3C and D). Taken together, there was
no population differentiation between A. fumigatus isolates from different farms in
Germany, a finding in line with the fungus’ capacity for aerosol dispersal.

Changes in population genetics following azole exposure vary by field. Given
the observed reduction in overall A. fumigatus abundance after azole treatment, we
examined the populations for changes in genetic diversity and evidence of selective
sweeps in A. fumigatus field populations. Using 5-kb sliding windows with a 500-bp
step size, nucleotide diversity (!) was calculated for the individual farms before and

TABLE 1 Azole resistance rates among agriculturally isolated A. fumigatus isolatesa

Year n

Resistance rate (%)

ITR POS VOR
2016 333 3.0 2.1 2.1
2017 460 0.7 0.7 0.7
2018 322 0.6 0 0
aIsolates were screened for potential azole resistance to itraconazole (ITR), posaconazole (POS), and
voriconazole (VOR) using VIPcheck agar-based screening. Resistance was confirmed and MICs determined
via EUCAST broth microdilution testing.

TABLE 2MIC50 for medical and agricultural azoles calculated from 160 randomly selected
isolates as well as ECOFF95 and the fraction of isolates with MICs above this value

Azole MIC50a ECOFFb
Fraction of isolates
above ECOFF (%)

Itraconazole 0.5 2 1.3
Voriconazole 0.5 2 0.6
Difenoconazole 2 8 1.3
Tebuconazole 2 8 4.4
aCalculated from 160 randomly selected isolates.
bRounded up to next dilution.
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after azole treatment. No clear trend was seen regarding changes in nucleotide
diversity between the time points. The isolates from farms B and E showed increased
diversity following azole application, while nucleotide diversity decreased on farms C
and D (Fig. 5A). We also calculated the number of segregating sites (!) for the same
5-kb windows and observed the same lack of consensus. Farms B and C showed similar
values of ! before compared to after azole application, while farm D showed a dramatic
decrease in ! following azole application (Fig. 5B). AMOVA on isolates from before and
after the vegetative period and azole exposure did not indicate any significant molec-
ular variation between the time periods, with the majority of the variation being
between and within samples (Table 4). Finally, we measured Tajima’s D to test neu-
trality along 5-kb windows, where negative values indicate less variation than expected
and are indicative of a selective sweep. Positive values denote a population that is more
heterogenous than would be expected and suggest either a sudden population
contraction or balancing selection. Overall, the bulk of the Tamija’s D values were close
to neutral, and there was no clear trend between farms, indicating that there was no
genomic signature of a population bottleneck or selective sweep following azole
exposure (Fig. 5C). The median Tajima’s D was roughly zero for farm B and increased
slightly to 0.37 following azole exposure prior to azole application, and the same
direction shift was seen for farm D, but the starting Tajima’s D was negative at the time
point before azole exposure (!0.53 to 0.53) (Fig. 5C). Conversely, the median Tajima’s
D for farms C and E shifted from positive to negative after the growing season and azole
exposure (0.75 to !0.57 for field C and 0.61 to !0.10 for field E). Taken together, these
results indicate that despite the reduction in abundance of A. fumigatus on agricultural

A.
 fi

sc
he

ri

Itraconazole
Posaconazole

Voriconazole
Collection Period

Farm

TR34/L98H

Azole Resistance
Susceptible
Intermediate
Resistant
TR34/L98H mutation

Collection Period
Before
After

Farm
B
C
D
E

Reference Strains
Af293
A1163

FIG 4 Phylogeny of agricultural A. fumigatus isolates from before and after the vegetative period and azole application. From
top to bottom, the colored bars indicate the farm where the isolate was collected, the collection period, voriconazole
resistance (susceptible, intermediate, or resistant, according to EUCAST definitions), posaconazole resistance, itraconazole
resistance, and the presence of the TR34/L98H allele in cyp51a. A. fischeri is indicated as an outgroup, and the two A. fumigatus
reference strains, Af293 and A1163 (CEA10), are also marked. Branches with support values of less than 0.9 are marked in red.

TABLE 3 AMOVA between farmsa

Farm
Total
variation

Variation within
samples (%) P value

Variation between
samples (%) P value

Variation between
farms (%) P value

All farms 289,735.7 274,622.7 (94.8) "0.001 14,629 (5) "0.001 484 (0.2) 0.303
B vs C 147,358.0 139,257.7 (94.5) "0.001 6,386.2 (4.3) "0.001 1,714.1 (1.2) 0.028
B vs D 190,425.2 181,470 (95.3) "0.001 9,002.4 (4.7) "0.001 !47.2 (0.0) 0.429
B vs E 162,874.7 155,745.5 (95.6) "0.001 6,879.3 (4.2) "0.001 249.9 (0.2) 0.211
C vs D 130,625.7 122,692.8 (93.9) "0.001 7,932 (6.1) "0.001 1 (0.0) 0.355
C vs E 105,529.1 99,521.4 (94.3) "0.001 6,098.3 (5.8) "0.001 !90.6 (!0.1) 0.414
D vs E 143,684.1 135,847.0 (94.5) "0.001 8,382.7 (5.8) "0.001 !545.6 (0.4) 0.890
aCalculated using isolates from before and after azole application. n # 16 isolates per farm.
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fields following azole application, we were unable to detect any marked changes at the
population level.

DISCUSSION
The use of azole fungicides for plant protection has been previously suggested as a

driver of clinical resistance in the environmental saprobe and human pathogen A.

FIG 5 Genetic diversity among isolates from before and after the vegetative period and azole exposure.
(A to C) Nucleotide diversity (!) (A), nucleotide polymorphism (Watterson estimator, or ") (B), and
Tajima’s D (C) along 5-kb windows with a 500-bp step size before and after the vegetative period and
azole exposure. n ! 8 isolates per farm and time point, 64 in total.
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fumigatus, as well as the emergence of new fungal pathogens, such as Candida auris
(11, 26, 27). However, direct evidence linking azole use in agriculture and clinical
resistance is missing. Additionally, delineation of specific roles for the use of azoles in
crops versus ornamental plants, such as flower bulbs, has not been defined and is
important to make, as limiting azole fungicide use would significantly impact disease
control and yield in many crops. In this study, we provide the first systematic investi-
gation of the impact of fungicide use on the ecology and azole resistance status of a
human pathogen, A. fumigatus. Through analysis of 2,875 soil samples over a 3-year
period in central Germany, we found an overall low incidence of A. fumigatus isolates
that would be considered clinically resistant (1 to 3%). However, we observed a modest,
but consistent, decrease in azole susceptibility following the growing season and azole
exposure, as well as a more variable reduction in fungal abundance following fungicide
application. Interestingly, this change in susceptibility was transient and reset by the
following spring. We also assessed the influence of fungicide application on A. fumiga-
tus population dynamics by WGS and were unable to find a clear impact on the
population structure or genetic diversity.

Despite sampling on fields that were actively treated with azole fungicides and in
regions of Germany with above average fungicide exposure, only 1 to 3% of A.
fumigatus isolates collected were resistant to medical azoles. This incidence is in
agreement with clinically reported frequencies in Germany and other European coun-
tries, where the rate of triazole resistance ranged from 0.6% to 4.2% (3.2% in Germany)
(28, 29). The environmental resistance rates reported for Europe, however, have been
much broader. Some studies have found environmental resistance frequencies ap-
proaching 20%, while others have reported virtually no incidence of resistant environ-
mental isolates (30–35). Part of these differences could be attributed to differences in
methodology, such as the use of azole selection during the isolation procedure or
inclusion of potentially clonal isolates from a given sample to skew the data. In the
current study, we avoided azole selection during the isolation procedure and allowed
only two isolates per soil sample to avoid potentially clonal isolates that influence the
results. Another potentially contributing factor could be that while they are all tech-
nically “environmental” isolates, rural or agricultural settings could be a completely
different niche than an urban flower garden, a supposition supported by a recent study
where rural areas in the United Kingdom had much lower resistance rates (1.1%) than
urban locations (13.8%) (34).

Another important and novel finding from this study is that isolates from after the
vegetative period and azole exposure consistently showed decreased azole suscepti-
bilities to difenoconazole and tebuconazole as well as a subtle MIC shift to both
agricultural and medical azoles. However, one shortcoming to our study is that we did
not collect isolates from organic fields at a matching time point for susceptibility
testing, so we cannot exclude that the changes observed in azole susceptibility are not
also influenced by seasonal changes. The observation that changes in susceptibility are
transient and reset in the period between the end of the growth period and the
following spring on the two fields is intriguing and worthy of further study. This
transformation could either be the result of a naive population coming in via aerosol
dispersal or a consequence of isolates acquiring unstable, epigenetic-mediated resis-
tance, a phenomenon previously observed in the environmental saprobe and human
pathogen Mucor circinelloides as well as the plant-pathogenic fungus Monilinia fructi-

TABLE 4 Analysis of molecular variance between isolates collected before and after azole exposurea

Farm
Total
variation

Variation within
samples (%) P value

Variation between
samples (%) P value

Variation between time
periods (%) P value

B 106,712.9 103,295.3 (96.8) !0.001 3,729.5 (3.5) !0.001 "311.9 ("0.3) 0.617
C 48,438.0 45,393.1 (93.7) !0.001 3,341.7 (6.9) !0.001 "296.8 ("0.6) 0.593
D 85,724.6 80,522.3 (93.9) !0.001 5,592 (6.5) !0.001 "389.7 ("0.5) 0.564
E 59,366.5 55,941.4 (94.2) !0.001 3,001.2 (5.1) !0.001 423.9 (0.7) 0.149
an # 16 isolates per farm field (eight pre-azole and eight post-azole).
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cola following azole exposure (36, 37). Either scenario would be in agreement with our
finding that fungicide application does not alter the population structure or genetic
diversity of A. fumigatus in agricultural fields.

We observed a wide range in the number of CFU per gram of soil within and
between farms during annual spring sampling. Our mean number of A. fumigatus CFU
per gram of soil was in line with what was reported recently for abundance in wheat
grain, maize silage, and fruit waste (38). However, this abundance is several magnitudes
lower than that reported for A. fumigatus in flower bulb waste and green material waste
in this same study, where it was not uncommon to isolate 104 CFU/g. We demonstrated
a reduction in the A. fumigatus population size on most fields sampled in 2017
following the vegetative period and fungicide application. However, this finding was
not strongly observed in 2018, indicating that other environmental factors also influ-
ence the abundance of A. fumigatus in agricultural soil. One example of such a potential
factor is that Germany experienced extreme heat and drought during the 2018 growing
season; in fact, one field had to be removed from analysis this year because it caught
fire during the vegetative period.

Our study also provides the first WGS-based study focused on A. fumigatus in its
natural niche, the environment. Previous studies have primarily concentrated on clinical
isolates, with particular priority given to resistant strains (25, 39). Even while sampling
within the same field, we found a large degree of genetic diversity, where the majority
of diversity came from within samples. We also did not observe a defined population
structure or separation between farms or regions. The degree to which this environ-
mental diversity is recapitulated in clinical isolates, and whether there are enrichments
for particular subgroups in the transition from environment to clinic, is an interesting
question for further study.

Given our low observed resistance rate among agricultural isolates and the lack of
discernible impact on the population structure and genomic diversity of A. fumigatus
following fungicide application, our study does not find evidence that azole fungicide
use in crop agriculture significantly contributes to resistance in A. fumigatus. Azoles
should not necessarily be removed from use in this context due to their crucial role in
global food production. Instead, our field study provides empirical support for the
model that azole resistance in A. fumigatus is being driven not by the use of these
compounds for crop agriculture but in settings such as the cultivation of flowers or
ornamental plants as well as the storage of green waste. Both of these settings have
been identified as hot spots for resistance development, owing to their higher overall
fungal colony counts and higher fungicide concentrations (38, 40–42). Unfortunately,
due to massive aerial dispersal of A. fumigatus conidia, the use of azoles in any hot spot
can lead to the worldwide distribution of resistant strains.

MATERIALS AND METHODS
Site selection and soil sampling. During 2016 to 2018, soil sampling was conducted on agricultural

sites in the federal states of Thuringia, Saxony-Anhalt, and Saxony, with the approval of the land owner
and/or relevant ministries. The majority of fields sampled were growing cereals such as wheat or barley,
but some apple orchards were sampled as well (see Table S1 in the supplemental material for full details).
Farms were arbitrarily assigned an alphabetic identifier (A to L) and specific fields a numeric identifier,
as described in Text S1. Due to crop rotation, the same field could not be surveyed over subsequent
years, with the exception of the apple orchards. Soil samples were collected at the beginning of the
vegetation period on the conventional and organic cultivated sites, and after azole application an
additional sampling was carried out on the conventional sites. In general, 50 soil samples per site and
type of farming (conventional or organic) were collected, with a total of approximately 1,000 soil samples
per year. Soil samples were selected to best cover the field with a minimum distance of 1 m between
samples. For each sample, the top layer of soil was collected by a metal spatula into a sterile sample cup
and refrigerated until processing.

Soil processing and isolation of A. fumigatus. Three grams of soil from each sample cup was
weighed out and resuspended in 8 ml 0.2 M NaCl containing 1% Tween 20. Samples were vortexed
vigorously and then left to settle until a phase separation became apparent. Two milliliters of the upper
phase was transferred to a new tube for plating onto Sabouraud glucose agar (SGA) containing 50 !g/ml
chloramphenicol (Sigma-Aldrich, Taufkirchen, Germany). Of this 2 ml, 150 !l was plated onto one plate
and the remaining volume was plated onto a second plate to adjust for variable fungal concentrations
in samples. Plates were then incubated at 50°C for 5 days to select for A. fumigatus, which is unique
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among Aspergillus spp. in its ability to grow at this temperature. On day 5, the incubator temperature was
reduced to 42°C to allow for sporulation, and plates were grown for another 2 days. The number of A.
fumigatus colonies was counted, and up to two colonies per soil sample were transferred to new plates
for isolation.

Antifungal susceptibility testing. Quick screening of susceptibility to itraconazole, voriconazole,
and posaconazole was assessed using the agar-based VIPcheck assay (Mediaproducts BV, Groningen,
Netherlands) by following the manufacturer’s directions. For testing, isolates were grown on SGA for 2
to 4 days at 37°C. Plates were then swabbed with a damp, sterile cotton swab to prepare a conidial
suspension of 0.5 to 2 McFarland. Twenty-five microliters of this suspension was then plated onto the 4
wells of the VIPcheck plate containing 4 mg/liter itraconazole, 2 mg/liter voriconazole, or 0.5 mg/liter
posaconazole or a control well containing no drug. To assess susceptibility to agricultural azoles for
isolates collected during 2017 and 2018, RPMI plus 2% glucose agar plates containing either 1 mg/liter
difenoconazole or 2 mg/liter tebuconazole was prepared as described in reference 43. Resistance was
defined as significant inhibition of germination and hyphal growth compared to the no drug control.
Isolates that showed resistance to any of the medical azoles in the VIPcheck assay were subject to broth
microdilution following EUCAST methodology (protocol E.DEF 9.3). ECOFFs were calculated using the
ECOFFinder program available from EUCAST.

DNA extraction. For WGS and PCR-based amplification, isolates were grown shaking in SG broth at
37°C, and genomic DNA was isolated using the Quick-DNA fungal/bacterial miniprep kit (Zymo Research,
Irvine, CA) according to the manufacturer’s suggested protocol.

cyp51a genotyping. The cyp51a coding sequence and upstream region containing the tandem
repeat was amplified using the primers described in Table S5. Cleaned-up PCR products were sequenced
and the cyp51a genotype determined using FunResDB (https://elbe.hki-jena.de/FunResDb/index.php).

Genome sequencing, quality assessment, and alignment. Library preparation and 2 ! 150-bp
paired-end sequencing were performed on a NextSeq 500 v2 by LGC Genomics (Berlin, Germany) by
following the manufacturer’s recommended protocols. Sequence data quality control and filtering were
performed using an in-house script and FastQC (v0.11.5). Quality reads were mapped to the A. fumigatus
Af293 reference genome (version 2015-09-27; retrieved from FungiDB [44]) using BWA-MEM (version
0.7.8-r779-dirty) (45). PCR duplicates were marked using MarkDuplicate from Picard version 2.18.25
embedded in the Genome Analysis Toolkit (GATK; version 4.1.0.0). All WGS samples included for analysis
possessed greater than 10-fold genome coverage after mapping, and more than 90% of reads mapped
to the reference genome.

Variant identification and SNV-based phylogeny. Short variants, including single-nucleotide
variants (SNVs) and short insertions and deletions (InDels), were detected using GATK Haplotype Caller
by following the recommended best practices for single calling (46). Copy number variants (CNVs) were
identified using Control-FREEC (47). For the phylogenetic analysis, nucleotide consensus sequences were
extracted from vcf files using VCFtools (48), and an in-house script was used to translate nucleotides to
protein-coding sequences. Multiple-sequence alignment was performed using MUSCLE v3.8.31 (49) with
7,771 conserved core genes and an approximately maximum likelihood phylogeny constructed using
FastTree2 (version 2.1.10) (50). The Interactive Tree of Life (iTOL) v4 was used for visualization (51).

Genetic diversity analyses. Analysis of molecular variance (AMOVA) was determined using the R
package ade4 (nrep " 999). Nucleotide diversity (!) was calculated by VCFtools (version 0.1.6) using
5-kbp windows with a step size of 500 bp. Nucleotide polymorphism (") and Tajima’s D were calculated
using ANGSD (52) with a window size of 5 kbp and a step size of 500 bp. Weighted Weir and Cockerham’s
FST values were calculated using VCFtools, while VST values were calculated as in reference 53. A Mantel
test correlating geographic distance matrices with pairwise FST matrices was performed using the R
package ade4 (nrep " 9999).

Estimation of fungicide treatment areas and rates in Germany. The fraction of each district
theoretically treated with fungicides was calculated using publicly reported data from 2016, available
from the German Statistical Offices (https://statistikportal.de), using the following equation:

(HaAckerland # HaDauerkulturen) $ FractionConventional
HaTotal

The total area per district was obtained from Table 33111-01-02-4, ground area by actual use. The
sum of arable farmland and permeant crop areas was calculated for each administrative district using
Table 41141-01-01-4, farms and their agricultural use area by crop type. To accommodate that some
percentage of this area is cultivated under organic agriculture methods, the hectares of cropland were
then multiplied by the fraction of nonorganic agriculture for the federal state in which the district is
located to estimate the number of hectares potentially treated with fungicides (as calculated using data
on farms, agricultural areas, and workers; accessed on 1 November 2019 from https://www.statistikportal
.de/node/254). Unfortunately, no data were available on the breakdown of agricultural methods at the
district level to allow for more exact estimation. Finally, this value of estimated treated area per district
was divided by the total area of the district for visualization as a choropleth map.

Box and whisker plots. Box and whisker plots presented in this paper are in the style of Tukey,
where the boldface line indicates the 50th percentile and the hinges represent the 25th and 75th
percentiles. The lower whisker extends from the lower hinge to the lowest datum within a 1.5
interquartile range (IQR), while the upper whisker represents the highest datum still within 1.5 IQR.
Outliers are marked with points.
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Data and isolate availability. Isolates generated within this study were submitted to and are
publicly available in the Jena Microbial Resource Collection. Raw FASTQ files were uploaded to the NCBI
Sequence Read Archive and are publicly available under BioProject number PRJNA595552.
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Manuscript IV 
 

 

Overview 

In manuscript IV, we aimed to understand the similarities and differences of 
A. fumigatus genomes at the metabolic level. Therefore, genome-scale metabolic models 
of A. fumigatus were constructed based on their de novo assembled genomes. The results 
showed the strong point of metabolic differences between environmental and clinical 
strains, which improved our understanding of the evolutionary fitness of A. fumigatus 
clinical strains in human lungs. 
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 46 

Abstract 47 

The saprotrophic fungus Aspergillus fumigatus is an opportunistic human fungal pathogen 48 

and one of the most common causes of infectious death in immunocompromised patients. 49 

Here, we present a collection of 252 strain-specific, genome-scale metabolic models 50 

(GEMs) of this important fungal pathogen to study and better understand the metabolic 51 

component of its pathogenic versatility. Metabolism showed a notable accessory reactome 52 

of 22.7%, which was mainly associated to amino acid, but also nucleotide, and nitrogen 53 

metabolism. Presence of reactions and feasible reaction fluxes supporting fungal growth 54 

were sufficient to differentiate environmental from clinical strain origin. In addition, shotgun 55 

metagenomics of sputum from 40 cystic fibrosis patients before and after they were 56 

diagnosed with an A. fumigatus infection suggests that the fungus shapes the lung 57 

microbiome towards a more beneficial fungal growth environment associated with 58 

glycine/serine biosynthesis and the shikimate pathway. Taken together, the here 59 

presented first collection of A. fumigatus strain-GEMs highlights metabolic differences 60 

between different strains of environmental and clinical origin and improves our 61 

understanding of fungal survival in the non-native environment of the human lung. These 62 

may serve as starting points for the development of alternative clinical intervention 63 

strategies targeting the fungal metabolic needs for survival and colonization by diet 64 

modification or microbiome intervention..   65 
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Introduction 66 

Fungal infections are an emerging public concern for both human health care and 67 

economics (1, 2). Aspergillus fumigatus is a globally occurring environmental saprotrophic 68 

mold that poses a serious threat to hospitalized, particularly immunocompromised patients 69 

(3). It affects more than 1 million people annually with invasive aspergillosis (IA) and 3 70 

million with chronic pulmonary aspergillosis, both of which show high mortality rates 71 

especially in vulnerable cohorts, while diagnostics remain challenging 72 

(https://gaffi.org/why/fungal-disease-frequency/, April 2022). On top, the prevalence of 73 

chronic obstructive pulmonary disease (COPD) appears to be much higher than estimated 74 

with IA contributing substantially to fatal disease progression (4), while A. fumigatus is 75 

related to as many as half of the worldwide cystic fibrosis cases (5).  76 

It remains largely unknown to which extent environmental and clinical A. fumigatus 77 

isolates possess distinct characteristics to cope with external stresses or accessible 78 

nutrient profiles in challenging environments such as the human lung. Recently, we 79 

explored the genetic diversity of A. fumigatus to reveal a remarkably low fraction of core 80 

genes shared by all members of the species (69% of the total genes identified) (6). 81 

However, how the genetic diversity of A. fumigatus influences phenotypic and metabolic 82 

heterogeneity, particularly in their ability to thrive in the non-native niche of the human 83 

lung, has not been addressed yet. 84 

One promising approach to study metabolic capabilities and growth dependencies 85 

of pathogens is the application of genome-scale metabolic model (GEM) reconstruction 86 

and analysis(7). We have previously applied GEM analysis to reveal gut microbiome 87 

species that influence colonization levels of the opportunistic fungal pathogen Candida 88 

albicans (8). Given the exponentially increasing number of available genome sequences, 89 

the reconstruction of multi-strain genome-scale metabolic models is now possible. The first 90 

multi-strain-GEM collection of Escherichia coli enabled the definition of strain-specific 91 

adaptation to nutrition availability and the prediction of nutritional auxotrophies in some 92 

strains (9). Protocols and databases were consequently updated to allow for bacterial 93 

GEM reconstruction at strain resolution (10, 11), while reconstructions of multi-strain-94 

GEMs remain to be explored in eukaryotes.  95 

In this study we provide the first non-bacterial, multi-strain-GEM reconstruction 96 

using A. fumigatus as a fungal model organism. Defining metabolic differences between 97 

252 environmental and clinical strain-specific GEMs allowed us to identify metabolic 98 

reactions that differ between the two populations. Subsequently, we performed shotgun 99 

metagenomics on sputum from 40 cystic fibrosis patients before and after they were 100 
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diagnosed with A. fumigatus infection. By computationally defining the metabolic output of 101 

the lung microbiome, we propose that the presence of A. fumigatus shapes the metabolic 102 

landscape of the lung microbiome in a manner favorable for fungal growth.  Resolving the 103 

impact of genetic diversity on A. fumigatus metabolism appears important to extend our 104 

understanding of adaptation mechanisms particularly with respect to aromatic amino acid 105 

metabolism involving the Shikimate pathway that can ultimately guide the development of 106 

new antifungal therapies. 107 

 108 

 109 

Results 110 

 111 

Reconstruction of a most comprehensive Aspergillus fumigatus pan-GEM 112 

To create a template for subsequent strain-specific GEM design, we first derived a 113 

comprehensive pan-GEM for A. fumigatus metabolism (Fig. 1A). To start, we combined 114 

available draft reconstructions for A. fumigatus with seven automatically derived draft 115 

reconstructions for different Aspergillus spp. (see Methods for details) (12, 13). This 116 

approach allowed us to acquire as many as possible Aspergillus-associated reactions in 117 

the core metabolism of A. fumigatus (i.e. metabolic reactions present in all strains). It also 118 

allowed us to acquire a more comprehensive catalogue of optional accessory metabolic 119 

reactions by defining strain subset diversity enabling the subsequent strain-specific gap 120 

filling curation steps (Fig. 1A). In total, this first draft model was comprised of 7,606 121 

reactions (of which 3,233 are responsible for metabolite exchange with simulated 122 

environment) and 3,578 metabolites.  123 

 Next, we adapted 62 metabolic components based on fungal and particularly 124 

A. fumigatus specific literature information to create the biomass objective function 125 

essential to simulate A. fumigatus growth rates (see Methods) (14). The largest fractions of 126 

the derived biomass function included carbohydrates and proteins (42.8% and 30%, 127 

respectively). Additional essential components included lipids, DNA, and energetic co-128 

factors (Fig. 1B, Supplementary Table S1).  129 

Subsequently, we screened available A. fumigatus gene information relevant for 130 

metabolism and added 1,453 genes and 2,003 corresponding gene to reaction rules for 131 

metabolic reactions, as defined by KEGG (https://www.kegg.jp/) or MetaCyc 132 

(https://metacyc.org/, Methods). The remaining 2,370 metabolic reactions (excluding 133 

exchange reactions) could not be mapped to any gene in our pan-GEM draft model and 134 

were removed from the generic pan-GEM accordingly. However, these reactions were 135 
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retained for subsequent strain-specific refinement steps, which require accessory 136 

information including gap-filling of fragmented metabolic pathways (Fig. 1A). Concurrently, 137 

we incorporated reaction-to-pathway association information from both KEGG and 138 

MetaCyc. The broadest pathway categories included amino acids and carbohydrates 139 

(Fig. 1C). For the 2,003 metabolic reactions with gene annotation, we predicted nine 140 

compartments in our pan-GEM using WoLF PSORT (Fig. 1D, see Methods) (15). In 141 

parallel, we identified and resolved erroneous energy-generating cycles (16) by correcting 142 

or removing thermodynamically implausible reactions, such as cases where free energy 143 

dissipation was diminished. 144 

For the final curation of our pan-GEM, we generated phenotypic growth data for 145 

A. fumigatus wild type (Af293 strain) and five mutant strains affecting nitrogen or carbon 146 

metabolic components, and considered publicly available gene essentiality information 147 

(17) (Supplementary Table S2). The initial agreement of our pan-GEM to our metabolite 148 

specific growth data was already good (Fig. 1E). To optimize the simulation accuracy of 149 

our pan-GEM, we manually resolved any incompatibility between our growth data, 150 

available gene essentiality data, and our in silico model predictions. These curation efforts 151 

improved growth simulation accuracy from 58% to 84% for all tested carbon sources and 152 

improved nitrogen growth simulation accuracy from 55% to 85% (Fig. 1E). The pan-GEM 153 

achieved 79% and 65% compatibility for the tested phosphorus and sulfur sources 154 

respectively and reached 83% if we neglected sulfur source growth data for ΔniaD and 155 

ΔlysF (Fig. 1E) (see Methods). This final model also reached 75% agreement with the 156 

available gene essentiality data (Fig. 1F). Altogether, our final pan-GEM of A. fumigatus 157 

was comprised of 1,453 genes, 3,882 reactions and 4,170 metabolites distributed across 9 158 

compartments. Of these, 3,051 metabolic reactions and 1,957 metabolites were unique 159 

across all compartments. 160 

 161 

 162 

A. fumigatus strains show notable accessory reaction content 163 

Using a genomic dataset of 252 A. fumigatus strains from Germany (203 environmental 164 

and 49 clinical strains) that we generated previously (6), we mapped strain-specific gene 165 

profiles to the reference pan-GEM and subsequently derived strain-specific GEMs 166 

(Supplementary Table S3). For all strain-specific GEMs, we ensured viable growth was 167 

predicted in minimal media with glucose as the carbon source by identifying and resolving 168 

minimal sets of essential reactions (18) and crosschecking against blocked reactions with 169 
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FASTCC (see Methods) (19). Model size varied in the different A. fumigatus strains from 170 

1,366 to 1,455 reactions (mean 1,413). 171 

 Although all strain-specific GEMs are derived from A. fumigatus, we found a 172 

strikingly low number of core metabolic components shared by all GEMs. In line with the 173 

considerably high genome diversity of this organism (6), only 984 metabolic genes (69.8%) 174 

and 1,150 metabolic reactions (77.3%) were shared by all strain-specific GEMs, resulting 175 

in a large degree of metabolic variation across all GEMs (426 accessory genes and 338 176 

accessory reactions). Most accessory content was involved in nucleotide, energy 177 

(including oxidative phosphorylation and nitrogen metabolism) and amino acid metabolic 178 

pathways (Fig. 2A). Only 56%, 63% and 68% of all reactions included in the strain-GEMs 179 

for these pathways, respectively, were conserved across all strain models, demonstrating 180 

considerable metabolic pathway variation between strains (Fig. 2A). The majority of the 181 

accessory content (70% of accessory genes, 77% of accessory reactions, Table 1, 182 

Fig. 2B) was shared by more than 80% of all strain-GEMs. We previously observed that 183 

one genetic lineage of A. fumigatus possessed significantly fewer accessory genes than 184 

the other lineages, including notably fewer metabolic accessory genes (6) (Supplementary 185 

Fig. S1). In contrast, metabolic reaction content in the strain-GEMs did not show a reduced 186 

number of metabolic reactions in this lineage, demonstrating the presence of redundancy 187 

among metabolic accessory genes (Fig. 2B). Finally, a small, but notable amount of 188 

reactions appeared in at most 40% of all strain-GEMs (Table 1, Fig. 2A) comprising mostly 189 

reactions of amino acid metabolism, but also of lipid and energy metabolism including but 190 

not limited to nitrogen dependent chorismate pyruvate-lyase or nicotinamidase and acyl-191 

CoA dependent acyltransferases.  192 

Taken together, our generated 252 strains showed notable accessory content and  193 

therefore potential metabolic diversity among the strains as well as metabolic robustness 194 

despite reduced accessory metabolically relevant genes.  195 

 196 

 197 

Metabolic activity of 25 reactions allows differentiation between environmental and 198 

clinical strain-GEMs  199 

When calculating the pairwise Jaccard distance, we found that strain-specific GEMs 200 

differed by at most 15% (Fig. 2C). Neither accessory reaction information nor Jaccard 201 

distance allowed discriminating metabolic capabilities between environmental and clinical 202 

strains (Fig. 2B, C). However, we identified eight metabolic reactions present primarily in 203 

either environmental or clinical strain-GEMs that, when taken together, were able to 204 
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significantly differentiate the two populations (exact Fisher-test, p<0.05, Fig. 2D). In 205 

agreement with the statistical significance of these eight reactions, decision tree machine 206 

learning (ML) using the presence or absence of these metabolic reactions, as well as the 207 

capability of the strains to grow on different minimal media compositions required only a 208 

few steps to correctly categorize 216 out of 252 strains (86%, Fig. 2E). Four of these 209 

reactions were chorismate dependent and involved chorismate lyase activity that 210 

generates 4-hydroxybenzoate and pyruvate from chorismate. Chorismate lyase activity is 211 

linked to differential activity in the shikimate pathway, which has been associated with 212 

virulence in A. fumigatus (20, 21). Interestingly, the ability to convert chorismate and 213 

glutamine to anthranilate, pyruvate and glutamate, as well as, of utilizing carbon 214 

metabolites including methionine, acetate, succinate and also thioredoxin was sufficient for 215 

the strain origin classification and yielded complementary metabolic discriminators to the 216 

sole presence/absence statistical analysis of metabolic reactions in our strain-GEM 217 

collection (Fig. 2C, D).  218 

Given that only a few metabolic reactions were sufficient to differentiate strains from 219 

clinical and environmental origin by statistical and decision tree analysis, we further 220 

explored whether reaction fluxes between strain-GEMs could be used to further improve 221 

differentiation of strain origin. We analyzed feasible reaction flux ranges for all strain-222 

GEMs by simulating each on minimal media including glucose as a carbon source and 223 

calculating growth supporting flux ranges using flux variability analysis (FVA) (22). The 224 

derived flux ranges were subsequently used as the input for ML-based classification (see 225 

Methods). Classifying environmental from clinical strains achieved an accuracy of 0.80 226 

(AUC = 0.72) with information from only 25 reactions (Fig. 2F, Supplementary Table S4). 227 

In addition to previously highlighted chorismate-associated reactions, the ML-model also 228 

selected features associated with amino acid reactions, such as homoserine succinate-229 

lyase or L-methionine:oxidized-thioredoxin S-oxidoreductase or cystathionine gamma-230 

lyase, suggesting aromatic amino acid metabolism as a differentiating factor of clinical and 231 

environmental A. fumigatus strains.  232 

Taken together, we did not observe major differences in strain origin given the 233 

strain’s accessory gene or reaction content (Fig. 2B, Supplementary Fig. S1) or complete 234 

metabolic reaction presence (Fig. 2C). In contrast, we identified a small defined set of 235 

reactions that mainly associate to amino acid and chorismate metabolic acitivity which are 236 

sufficient to differentiate clinical from environmental origin to a large extend (Fig. 2D-F). 237 

 238 
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The structure of the lung microbiome changes upon A. fumigatus colonization  239 

To investigate the applicability of the GEMs from clinical origin for the prediction of 240 

metabolic components supporting A. fumigatus growth in the human lung, we analyzed 241 

sputum samples from 40 cystic fibrosis patients in Germany (cf. Methods for cohort 242 

description). For all patients, we had an initially culture-negative sample and a subsequent 243 

sample that was positive for A. fumigatus growth. To investigate the changes to the lung 244 

microbiota after A. fumigatus colonization, we performed shotgun metagenomic 245 

sequencing for all 80 sputum samples (A. fumigatus-negative and positive), generating an 246 

average of 5.59 Gbp of sequencing data per sample (s.d. 0.80 Gbp). Using Kraken for 247 

taxonomic profiling, we identified 228 genera and 598 species from all samples using a 248 

relative abundance cut-off of 0.1%. Despite the differences in patient cohort, starting 249 

biomaterial, and sequencing method, the taxonomic annotation of the top 10 most 250 

abundant genera (Supplementary Table S5) showed striking similarities to two recent 251 

studies, where the lung microbiome of A. fumigatus infected and control patients was 252 

investigated using either sputum samples and or bronchoalveolar lavage and 16S rRNA 253 

sequencing (23, 24).  254 

 The prevalence of the top abundant genera was consistently high (Fig. 3A). 255 

Notably, from the top 10 abundant genera, Sphingomonas, Burkholderia, 256 

Stenotrophomonas and Pseudomonas were detected as highly abundant (within the 10 257 

most abundant genera) in 8, 12, 17 and 36 out of 80 samples, (10%, 15%, 21%, and 45%, 258 

respectively) showing an uneven distribution in the population (Supplementary Table S5). 259 

Similarly, the most prevalent species, making up between 2.5% and  51.3% relative 260 

abundance were present in most samples (70%) with the exception of Burkholderia 261 

multivorans and Sphingomonas sp. FARSPH, which had a prevalence of 38.8% and 262 

41.3%, respectively (Supplementary Table S5). Intriguingly, Pseudomonas aeruginosa 263 

was among the top10 most abundant species in 16 samples before and only 11 samples 264 

after A. fumigatus infection in the same patients, although this species has been described 265 

to commonly outgrow in cystic fibrosis patients and co-occur frequently with A. fumigatus 266 

colonization (25).  267 

Since we did not find statistically different alpha- and beta-diversity (Supplementary 268 

Fig. 2A, B), we analyzed species co-abundance networks to further examine the 269 

compositional changes of the lung microbiome following A. fumigatus colonization. Using 270 

differential gene correlation analysis (DGCA), we generated networks from differentially 271 

correlated microbial pairs in A. fumigatus negative versus A. fumigatus positive patients’ 272 

paired samples (Fig. 3B). We then analyzed the resulting networks using MEGENA (26) 273 
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and identified two notable modules in the global network that contained four differentially 274 

abundant species (Metagenomseq, zero-inflated gaussian mixture model p<0.05) between 275 

the A. fumigatus negative and subsequently positive patients’ samples. The interactions of 276 

these six species — Schaalia meyeri, Abiotrophia defectiva, Pseudomonas fulva, 277 

Pseudomonas resinovorans, Pseudomonas sp. S1-A32-2, and Haemophilus 278 

parahaemolyticus — were highlighted to emphasize discussion (Fig. 3B). Existing edges 279 

(class +/0 in Fig. 3B) of Pseudomonas sp. S1-A32-2, Abiotrophia defectiva and 280 

Haemophilus parainfluenzae with Clostridium intestinale, Actinomyces sp. Oral taxon 171 281 

and Streptococcus sp. oral taxon 431 in A. fumigatus-negative samples were lost upon 282 

colonization with A. fumigatus. Similar patterns were observed in the negative association 283 

(-/0) between Schaalia meyeri with Clostridium intestinale, Rhizobium leguminosarum and 284 

Pseudomonas sp. DY-1, and also for Pseudomonas resinovorans, Pseudomonas fulva 285 

and Pseudomonas sp. S1-A32-2 with Haemophilus influenzae, Streptococcus sp. Oral 286 

taxon 064 and Streptococcus sp. Oral taxon 431 (magenta edges, Fig. 3E). The 287 

associations of Pseudomonas resinovorans with Streptococcus salivarius, and Schaalia 288 

odontolytica, Schaalia meyeri, Haemophilus parainfluenzae, Streptococcus intermedius 289 

with Capnocytophaga endodontalis, Streptococcus sp. oral taxon 064, Veillonella dispar 290 

and Schaalia meyeri, respectively, also changed direction in the presence of A. fumigatus 291 

(0/-, -/0, respectively). 292 

To evaluate the functional implications of microbiome restructuring following 293 

A. fumigatus colonization, we performed KEGG orthology (KO) enrichment analysis in the 294 

identified four modules in our co-abundance networks (see details in Methods). 295 

Interestingly, both module 1 and 2 were enriched in amino acid metabolism (e.g. 296 

phenylalanine, tyrosine, and tryptophan, but also valine and (iso-)leucine). Further 297 

enrichments included propanoate and butanoate metabolism (module 1), folate 298 

biosynthesis (module 2), glycan biosynthesis and fatty acid metabolism (module 3) and 299 

cyanoamino acid metabolism (module 4, Supplementary Table S5).  300 

In summary, albeit not significantly different with alpha or beta diversity we identified 301 

a distinct set of co-abundance differences in the lung microbiome upon A. fumigatus 302 

colonization. The associated enriched metabolic functions pinpointed again towards amino 303 

acid, particularly aromatic amino acid pathways, but also fatty acid, nitrogen and sulfur 304 

metabolic pathways, suggesting that lung microbiome metabolic activity is reshaped in the 305 

presence of A. fumigatus. 306 

  307 
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A. fumigatus is predicted to contribute to the shaping of the lung microbiome and 308 

its metabolic activity to support its own growth 309 

We subsequently investigated whether the changes in the lung microbial community 310 

triggered by the presence of A. fumigatus were accompanied by changes in the metabolic 311 

output of the microbiome. To integrate not only the metabolic output of the microbiome, but 312 

also the host’s, the pathogen’s, as well as additional factors such as dietary molecules, we 313 

opted for in silico prediction. Towards this aim we derived the most likely lung microbiome 314 

metabolic profile supporting the relative abundances of our metagenomics species by 315 

growth rate using the MAMBO algorithm (27). Briefly, MAMBO iteratively calculates growth 316 

rates of bacterial models corresponding to a samples’ metagenomic profile and infers a 317 

metabolome profile. We found significant differences in the beta-diversity of derived 318 

metabolite profiles between patient samples before and after A. fumigatus infection 319 

(Euclidean distance; PERMANOVA, p=0.03, Fig. 4A, Supplementary Table S6).  320 

We next quantified how the changes in the metabolic output of the lung microbiome 321 

following A. fumigatus colonization might alter the predicted growth of the A. fumigatus 322 

clinical strain-GEMs. Using the MAMBO-derived metabolite profiles present after 323 

A. fumigatus colonization, we observed that the GEMs of the 49 clinical strains showed a 324 

significant increase in the predicted growth rate compared to GEMs simulated on the 325 

metabolic outputs from before A. fumigatus colonization (14% increase, Wilcoxon signed 326 

rank test, p=3.55e-15, Fig. 4B) suggesting that the changes induced by A. fumigatus in the 327 

lung microbiome led to a nutritional profile supporting its own growth.  328 

To explore next whether we can identify a connection between the altered lung 329 

microbiome and the metabolic capacity of A. fumigatus we analyzed feasible flux ranges of 330 

reactions that were associated to enriched metabolic subsystems, which we identified 331 

before in the A. fumigatus affected CF lung microbiome (Fig. 3B, Supplementary 332 

Table S4). We identified 54 metabolic reactions across all A. fumigatus clinical GEMs that 333 

showed significantly altered lower or upper flux ranges to support fungal growth simulated 334 

with FVA on MAMBO derived media before compared to after A. fumigatus confirmed 335 

colonization (FDR corrected paired Wilcoxon test, p≤0.05, Fig. 4C, Supplementary 336 

Table S6). Most filtered reactions showed significant differences in the upper range, which 337 

suggests increased metabolic activity of A. fumigatus (Fig. 4C). Affected pathways mainly 338 

included (aromatic) amino acid metabolism, but also nitrogen, sulfur, butanoate or steroid 339 

metabolic pathways (Supplementary Table S6). Although predicted flux ranges overlapped 340 

between A. fumigatus negative and positive samples, the change of direction is mostly 341 

consistent on a per-strain-GEM level (Fig. 4D). Interestingly, the reactions 342 
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Tryptamine:oxygen oxidoreductase (EC 1.4.3.4) and Chorismate pyruvate-lyase (EC 343 

4.1.3.27) were identified before as major discriminators between environmental and 344 

clinical strains simulated on minimal media (Fig. 2E). Only 17 reactions like showed 345 

significant differences in both, lower and upper flux bounds (Supplementary Table S6) with 346 

NADPH:oxidized-thioredoxin oxidoreductase (EC 1.8.1.9) showing notably constrained flux 347 

bound variability across all simulated strain GEMs.  348 

Finally, reinvestigating our phenotypic microarray data for the clinical strain Af293 349 

wild type we found also a positive growth effect of most amino acids tested as carbon 350 

source including the aromatic amino acids phenylalanine, tyrosine and tryptophan 351 

(Supplementary Table S2). Intermediates such as chorismate, anthralinate and cholines 352 

are not part of commercial microarray platforms, but appeared in multiple minimal media 353 

based and cystic fibrosis associated ML classification models. These metabolites pinpoint 354 

to an elevated role of the Shikimate pathway and warrant further investigation.  355 

 356 

Discussion 357 

In this study, we built the first suite of A. fumigatus genome-scale strain-specific metabolic 358 

reconstructions originating from 252 environmental and clinical isolates from Germany (6). 359 

We (i) reconstructed a comprehensive pan-GEM of A. fumigatus metabolism in a data-360 

driven manner, which we validated against phenotypic microarray and gene essentiality 361 

data; (ii) derived 252 strain-specific GEM models by considering respective genome 362 

assemblies and manually curating the strain-specific GEMs towards growth feasibility and 363 

minimal fractioned network topologies; and (iii) determined metabolic differences 364 

differentiating clinical from environmental strains, such as metabolic reactions involving 365 

several amino acids, particularly aromatic amino acids as well as chorismate or 366 

thioredoxin. Chorismate is an important precursor for aromatic amino acids and formed in 367 

the Shikimate pathway. This seven step pathway is not present in animals and enables the 368 

synthesis of aromatic amino acids tyrosine, phenylalanine and tryptophan. Thioredoxin is 369 

an important factor for DNA synthase metabolism and was associated to A. fumigatus 370 

virulence before (28, 29).  371 

Multi-strain-GEMs have been utilized previously to elucidate the metabolic diversity 372 

of human-pathogenic bacteria. For example, they have defined the pan metabolic 373 

capabilities of Pseudomonas putida (30), loss of fitness relevant pathways for survival in 374 

the gastrointestinal environment in extraintestinal Salmonella spp. (31), and strain-specific 375 

metabolic capabilities in Staphylococcus aureus linked to pathogenic traits and virulence 376 

acquisitions (32). Here we bring this strategy to exploring metabolic diversity in a 377 
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eukaryotic fungal pathogen for the first time. This strain-specific A. fumigatus GEMs 378 

platform is publicly available (Biomodels repository) as a platform for investigating the 379 

metabolic diversity influencing growth rate capabilities, metabolic adaptation and 380 

pathogenicity in this important human fungal pathogen. As a proof-of-concept for the 381 

applicability of our fungal GEM collection, we investigated sputum samples from a cohort 382 

of 40 cystic fibrosis patients for which samples from before and after confirmed 383 

A. fumigatus infection were collected. Clinical isolate specific simulations and analysis 384 

interestingly showed significantly increased growth rates in the patient samples after a 385 

confirmed A. fumigatus infection suggesting that the fungus influences the lung 386 

microbiome composition towards a more favorable fungal growth. Given these findings, 387 

our analyses of strain-resolution GEMs showed that we can recapitulate metabolic cues 388 

important for A. fumigatus growth that were reported before. Here, we showed that 389 

particularly fungal metabolic activity associated to aromatic amino acid metabolism and the 390 

Shikimate pathway are not only also important for discriminating environmental from 391 

clinical strains, but also to differentiate metabolic activity in clinical A. fumigatus strains 392 

given metabolite profiles shaped by the lung microbiome in cystic fibrosis patients. Our 393 

data-driven analysis highlighted 54 metabolic reactions, for which we predicted significant 394 

different flux ranges after A. fumigatus colonization of the lung. Our insights suggest that 395 

A. fumigatus influences its microbiome environment towards a more favorable growth 396 

environment. In addition, these reactions do not only appear in aromatic amino acid 397 

metabolism, but also sulfur, nitrogen and lipid metabolic pathways, highlighting the 398 

advantage of including topological pathway information when analyzing metabolic activity. 399 

Together with the 25 metabolic reactions, which we identified as important features of our 400 

ML driven classification to differentiate environmental from clinical strains, these reactions 401 

represent primarily novel metabolic targets for A. fumigatus growth modulation, which 402 

need to be investigated further to confirm their potential as biomarker, diagnostic or 403 

treatment target with respect to A. fumigatus colonization. 404 

 As a potential caveat to our study, there may be genomic differences between the 405 

clinical strain collection used to build the strain-specific GEMs and the clinical strains 406 

present in the cystic fibrosis patients. Though both datasets originate from Germany, the 407 

majority of the clinical strains in our GEM collection were from a different patient cohort 408 

(invasive aspergillosis). Although genetic diversity differs between strains from invasive 409 

and chronic A. fumigatus associated disease, we have also shown in our previous study 410 

that genomic similarities of clinical strains are relatively high even when the strains 411 

originate from different countries (6). We used the Af293 A. fumigatus genome annotation 412 
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as a reference, which precludes potentially metabolically relevant genes present in further 413 

A. fumigatus annotation. In lack of an existing model system we used MAMBO, which 414 

relies on taxonomic species annotation to infer the contribution of the lung microbiome to 415 

the most likely nutritional profile in the human lung.      416 

Altogether, the presented analyses demonstrated that strain level fungal genome-417 

scale metabolic modeling is feasible and contributes towards our mechanistic 418 

understanding of the genome diversity impact on phenotype of A. fumigatus. Moreover we 419 

could show a pronounced impact of the lung microbiome profile on available nutrition, 420 

which appeared to foster A. fumigatus colonization levels. Targeting towards patient 421 

stewardships involving diets with particularly suboptimal fungal growth compositions and 422 

drugging against fungal specific metabolic routes in the context of (aromatic) amino acid 423 

biosynthesis and also the Shikimate pathway (33), which is unavailable to the human host, 424 

appear promising targets that warrant further analyses in patients suffering from 425 

pulmonary diseases involving A. fumigatus colonization. 426 

 427 

  428 
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 429 
Methods 430 

Biomass formulation 431 

We adapted a specific A. fumigatus biomass composition according to several literature 432 

sources. First, we assigned proportions of main biomass components as described before 433 

(34) to 38.8% carbohydrates, 9.9% lipids, 30% proteins as well as 0.6% DNA and 3.7% 434 

RNA. Since this resource neglected polyols we added 4% polyols as were reported before 435 

for Aspergillus oryzae (35) to a total of 42.8% carbohydrates. After adding a fraction of 436 

6.6% co-factors these main components made up the total biomass composition together 437 

with reported 6.4% ash fraction (34). Next, we screened the literature to further specify 438 

fractions of subcategories for carbohydrates, e.g. glucans or trehalose (36–38), lipids, 439 

including sterols, phospholipid, neutral lipid and free fatty acid compositions (39, 40), 440 

amino acid composition of the protein content (41, 42) and co-factor content including 441 

energy carriers, such as NADH or vitamins like riboflavin (43, 44). After calculating the 442 

mmol/g content for each fraction, we added the ATP demand according to prior developed 443 

models from Saccharomyces cerevisae and Aspergillus niger (45, 46) as well as added 444 

the non-growth associated ATP maintenance value as reported for the curated 445 

Saccharomyces cerevisae GEM (Supplementary Table S1)(46). Finally, we modified the 446 

proportion of all components to resemble 1g dry weight (Supplementary Table S1). 447 

 448 

Pan-GEM reconstruction 449 

All reconstruction and analysis efforts were done with COBRApy (v0.17.1)(47) in python 450 

3.6.8 and the academic version of the IBM CPLEX solver (v12.8.0.0). 451 

We gathered and combined information from automatically generated draft 452 

reconstructions based on the CoRoCo pipeline (12). We downloaded the Aspergillus 453 

CoReCo model for A. fumigatus (Biomodels ID MODEL1604280029) and further 454 

Aspergillus models from the CoReCo repository including Aspergillus oryzae (Biomodels 455 

ID MODEL1604280012), Aspergillus nidulans (Biomodels ID MODEL1604280008), 456 

Aspergillus niger (Biomodels ID MODEL1604280021), Aspergillus clavatus (Biomodels ID 457 

MODEL1604280016), Aspergillus terreus (Biomodels ID MODEL1604280019), and 458 

Aspergillus gossypii (Biomodels ID MODEL1604280044) from the BioModels repository 459 

(https://www.ebi.ac.uk/biomodels/). In addition we adapted metabolite and reaction 460 

information from a recently published A. fumigatus central metabolism model (13). 461 

Combined together, this yielded a base model consisting of 7,606 reactions of which 3,233 462 

were exchange reactions and 3,578 metabolites. All subsequent curation efforts were 463 
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tailored towards keeping only reactions, for which annotation information was available or 464 

which were necessary to keep the model feasible. By filtering duplicate reactions and 465 

metabolites we reduced the model by 73 reactions and 201 metabolites. The biomass 466 

formation was modified to given literature on Aspergillus fumigatus metabolism and 467 

enriched with information from closely related species when we did not find A. fumigatus 468 

specific information as described in the Biomass formulation section. Next, we screened 469 

the KEGG (https://www.kegg.jp/) and MetaCyc (https://metacyc.org/) database for gene 470 

annotation to A. fumigatus metabolism and added 1,453 genes to the model. Whenever 471 

available we adopted AND and OR relationships of the genes for metabolic reaction 472 

encoding and cross-checked with gene to reaction encoding in the yeast consensus model 473 

(46). During this step 2,370 reactions could not be mapped to any annotated gene and 474 

were therefore removed from the template model. Instead these reactions were kept aside 475 

for subsequent gap-filling procedures. Further curation efforts were run in parallel, since 476 

any modification influenced different aspects of the curation efforts. This step included 477 

compartmentalization, resolving erroneous energy generating cycles (EGCs) (16) and 478 

gene essentiality information (17) as well as adaptation to phenotypic growth assays (cf. 479 

Methods section Biolog phenotypic microarray, Supplementary Table S2). To add 480 

compartment information for all reactions we applied WoLF PSORT subcellular localization 481 

prediction (15). A reaction was allocated to a particular compartment if more than 50% of 482 

the associated genes are predicted to be located in that compartment with more than 50% 483 

probability. Reactions, including exchange reaction, were associated to nine 484 

compartments accordingly. These included cytoplasm, mitochondrion, nucleus, 485 

peroxisome, endoplasmic reticulum, lipid particles, vacuole, golgi and extracellular space. 486 

In cases where the prediction was ambiguous or precluded a viable model as measured 487 

by biomass production based on defined minimal media we adapted concurrent alternative 488 

compartment localization as either predicted by WoLF PSORT or included in the curated 489 

S. cerevisae GEM (46). Compartment-connecting transport reactions were adapted from 490 

the yeast consensus model (46). A minimal set of additional necessary transport reactions 491 

were added by using gap-filling functionality as provided by COBRApy in order to allow 492 

biomass precursor production based on minimal media with glucose. 493 

In parallel we resolved again (EGCs)(16) and adapted our GEM model to publicly 494 

available gene essentiality data (17). EGCs are metabolic reactions running in a potentially 495 

non-trivial circle without a net-flux except for generating energy carriers. ATP, CTP, GTP, 496 

UTP, ITP, NADH, NADPH, FADH2, FMNH2, Acetyl-CoA, L-Glutamate, ubiquinol-8, 497 

demethylmenaquinol-8, menaquinol-8 were part in at least one EGC (Supplementary 498 
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Table S7). The directions of 44 reactions were refined considering the reaction 499 

directionality according to the BiGG (48) and BRENDA (49) databases and Gibbs free 500 

energy of the reactions stated in the MetaCyc database (50). Incompatible gene 501 

essentiality information, were resolved by either correcting feasible thermodynamically 502 

reaction direction or removal of erroneously present reactions without gene annotation.  503 

Finally, we ran several phenotypic microarrays with the A. fumigatus reference 504 

strain Af293 and five mutant strains (detailed out in the next section) and identified 505 

essential carbon, nitrogen, sulfur and phosphorus components (Supplementary Table S2). 506 

This step included again plausible correction of thermodynamically feasible reaction 507 

directions and removal of present reactions without gene annotation. In case 508 

incompatibilities could not be resolved in this way we screened our catalogue of initially 509 

removed reactions without gene annotation using gap-filling procedures using the 510 

COBRApy gap-fill functionality. Resolving growth compatibility for two of our mutants 511 

(ΔniaD and ΔlysF, cf. Biolog phenotypic microarray) on sulfur would have caused a 512 

notable performance drop in the overall growth prediction for all investigated growth media 513 

and gene essentiality performance. Since growth accuracy on sulfur was very good for the 514 

remaining wild type and two mutant strains and because optimizing growth on carbon and 515 

nitrogen sources was very good over all mutant data, we refrained from resolving ΔniaD 516 

and ΔlysF sulfur growth accuracy (Fig. 1B). 517 

 518 

Strain-GEM reconstruction and curation 519 

Recently, the pan-genome of A. fumigatus was derived for 300 environmental and clinical 520 

strains from a global distribution (6). Mapping the genomes for 252 of these strains to the 521 

Af293 A. fumigatus reference genome annotation, we identified metabolically relevant 522 

genes by requiring at least 95% sequence identity (small deviations from that threshold did 523 

not change the results) under the rational that high sequence identity preserves metabolic 524 

function. To ensure that all strain-specific GEMs were showing non-zero growth 525 

capabilities based on minimal media with glucose as carbon source we identified and 526 

resolved minimal sets of essential reactions that needed to operate in adaptation to the 527 

minimal cut set concept (18). Finally, we guaranteed a consistent network property by 528 

identifying and discarding blocked reactions per isolate with FASTCC (19).  529 

 530 

Biolog phenotypic microarray 531 
 532 

Fungal strains were grown at 25°C for 7 days prior to experimental assay on Malt 533 

agar supplemented with 5 mM uracil. Mature conidia were harvested by rubbing plates 534 
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with sterile distilled water and the resulting solution filtered through a 30 µm cell strainer to 535 

remove mycelial fragments. The spore solutions were then adjusted to a transmittance of 536 

75%. Phenotypic microarrays were performed using Biolog Phenotypic Microarray plates 537 

PM1, PM2, PM3, and PM4 and plates prepared following the manufacture’s protocol for 538 

filamentous fungi with the modification of 0.16 ml of Biolog Redox Dye D added to the 539 

master mix of each plate for the quantification of metabolic activity. The plates were 540 

incubated at 37°C for three days and the metabolic activity measured colorimetrically using 541 

an OmniLog microplate reader with readings taken every 15 minutes. Experiments were 542 

performed in biological duplicates or triplicates (Supplementary Table S2). The phenotypic 543 

microarray results were analyzed in R, and statistical comparison was done using Dunnett-544 

type comparison of growth signals of negative control against all the other wells in one 545 

plate. All the wells with greater signals than the negative control and p-value < 0.05 were 546 

considered as growth cases. 547 

 548 
Cystic Fibrosis sample acquisition 549 

This study was approved by the ethics committee of the University of Heidelberg and 550 

written informed consent was obtained from all patients or their parents/legal guardians (S-551 

370/2011). Patients were treated according to standard of care (51). The diagnosis of 552 

cystic fibrosis was verified by established diagnostic criteria (52, 53). Spontaneously 553 

expectorated sputum was collected during visits at the Cystic Fibrosis Center at the 554 

University Hospital Heidelberg and frozen in liquid nitrogen on the day of visit. Pulmonary 555 

function testing was performed on the same day of sputum collection according to 556 

ATS/ERS (European Respiratory Society) guidelines (54, 55) and FEV1 (Forced expiratory 557 

value in 1s) values were normalized according to the global lung function initiative (56). 558 

 559 

Metagenomics and subsequent MAMBO analysis  560 

Sputum samples of 40 cystic fibrosis patients were collected before and after they had 561 

positive A. fumigatus colonization. The cohort comprised 15 females and 25 males (80 562 

samples in total) with age=23.6±4.96 (mean±standard deviation) before A. fumigatus 563 

infection.   564 

 Trimmomatic was used to clip adapter and low-quality bases (v0.36, 565 

ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10:1:TRUE, LEADING:3, TRAILING:3, 566 

SLIDINGWINDOW:4:15, MINLEN:30). Remaining reads with less than 30 base pairs 567 

length were discarded. BWA (v07.17) was used to align quality filtered reads to the human 568 

reference genome (hg38). From originally 1.9e+07±2.7e+06 (mean±standard deviation) 569 
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metagenomic reads 7.8e+05±8.9e+05 remained after preprocessing per sample. To 570 

estimate the taxonomic composition of the non-human reads, Kraken2 (v2.0.7,, default 571 

parameters) was used with its standard database as reference. Low abundance species 572 

were removed at a cut-off=0.1% (Supplementary Table S5). For the functional composition 573 

annotation, the MG-RAST (v4.0.3) pipeline was used to assign non-human reads to KEGG 574 

pathways. R packages vegan (v2.5) and picante (v1.8.2) were used to calculate alpha 575 

diversity with Shannon and Phylogenetic diversity index for each samples on the read 576 

counts of species, Statistical differences between samples before (A. fumigatus -) and 577 

after (A. fumigatus -) infection with A. fumigatus were obtained by Wilcoxon signed rank 578 

test. For beta diversity, R package coda.base (v0.3.1) was used to calculate the pairwise 579 

Aitchison distance for samples on the relative abundance of species. Statistical difference 580 

between samples before (A. fumigatus -) and after (A. fumigatus -) infection with 581 

A. fumigatus was calculated by PERMANOVA.   582 

 The abundance network was constructed based on relative abundance values of all 583 

detected species (prevalence filter: 10%, abundance filter: 0.1%). DGCA (v2.0.0) was 584 

applied to construct the network from differentially correlated microbial pairs in paired 585 

cystic fibrosis samples before compared to after A. fumigatus infection (empirical 586 

p value<0.05). Subsequently, MEGENA (v1.3.7) was used to identify co-expressed 587 

modules in the constructed network using significant differing microbial pairs (module 588 

p value<0.05). To identify molecular functions, we investigated enrichment of KEGG 589 

pathway information (https://www.genome.jp/kegg/pathway.html) by permutation testing to 590 

determine whether correlations between modules and KOs were possible by chance or not 591 

(57). Firstly, for a given module all correlation values and p values between a particular 592 

KEGG Orthology and all species in this module were obtained using the spearman 593 

correlation methodThe sum of absolute correlation values in this module was then 594 

calculated. Following that, the same number of species in the module were chosen at 595 

random 1000 times from all species, and the sum of absolute values of every correlation 596 

was calculated for each set. Finally, the sum of significant correlation values in a given 597 

module was evaluated whether it was higher than in 95% of the sums of significant 598 

correlation values in the repeated random selected species. 599 

To associate the most likely metabolite abundance profile to our metagenomic 600 

samples we applied the MAMBO algorithm (27). In brief, MAMBO optimizes a high 601 

correlating metabolic profile to a given metagenomic relative abundance profile based on  602 

bacterial GEMs associated to a given metagenomic sample.  We opted for using only 603 

GEMs associated to species from the metagenomics profile at an abundance threshold of 604 
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0.5% to ensure that the abstracted media is associated to dominant species in the lung. 53 605 

bacteria species were present beyond this more rigid threshold for which we found and 606 

downloaded 51 matching bacterial GEMs from the AGORA (https://vmh.life)(58) and 607 

CarveMe collection (https://github.com/cdanielmachado/embl_gems/tree/master/models) 608 

(59). Optimizations were run in a python environment (v3.7) using a HPC (192 cores, 1TB 609 

RAM). After removing metabolites that appeared in less than 80% of the samples, missing 610 

metabolite abundance values in any remaining sample were imputed with MICE 611 

(miceRanger, v1.4.0 with m=1 and maxiter = 50) resulting in a final list of 357 metabolites 612 

(Supplementary Table S6). Metabolites differing significantly in the MAMBO associated 613 

media for samples before compared to after A. fumigatus infected were identified in three 614 

steps. Firstly, candidate metabolites were selected using p<0.2 as cut-off from a Wilcoxon 615 

signed rank test (60). Secondly, the identified metabolites in the first step were 616 

investigated with an adaptive Lasso statistical design using R package glmnet (v4.1) to 617 

identify important metabolites for group differentiation (family="binomial", 618 

type.measure="class")(61). Finally, we used a fixed Lasso design using R package 619 

selectiveInference (v1.2.5) as post-selection inference method to identify significance for 620 

each of the important metabolites (p≤0.05) (62). 621 

 622 

Machine learning approach 623 

Unless otherwise noted we used the following machine learning methodology. In cases 624 

where the group sizes were unbalanced (e.g. environmental and clinical origin labels) we 625 

randomly sampled 50% of the majority group and oversampled samples of the minority 626 

group using ADASYN implemented in R package imbalance (v1.0.2.1). Subsequently, 627 

feature selection was performed using Boruta (v7.0.0), VSURF (v1.1.0), MUVR (v0.0.973) 628 

and sPLS-DA (mixOmics, v6.16.0). These steps were repeated 50 times and selected 629 

features as well as their selection frequency recorded. Finally, the Extra Trees  algorithm 630 

from PyCaret (v2.3.2) was run for different feature sets scanning different frequency cut-631 

offs to optimize the best cut-off value for ML performance. The best hyperparameters of 632 

the Extra Trees model was automatically selected by scikit-optimize (v0.8.1, bayesian 633 

optimization).  634 

  635 
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Figure captions 837 

 838 

Figure 1: General reconstruction workflow and A. fumigatus pan-genome-scale 839 

metabolic model (GEM) statistics. (A) Workflow towards A. fumigatus strain-specific 840 

GEM reconstructions. Colors indicate different strains and associated metabolic models. 841 

(B-F) Characteristics of pan-GEM reconstruction for A. fumigatus.  (B) Contribution of 842 

macromolecules in comprising one unit of biomass (Supplementary Table S1). (C) 843 

Distribution of pan-GEM reactions across major pathway categories (Supplementary Table 844 

S7). (D) Distribution of pan-GEM reactions across nine compartments (Supplementary 845 

Table S7). (E) Growth prediction accuracy of pan-GEM for A. fumigatus wild-type (Af293) 846 

and five mutant strains using phenotypic microarray data. Growth accuracy for phenotypic 847 

microarrays on sulfur (S) are also indicated for neglecting ΔniaD and ΔlysF mutants (see 848 

Results for details, Supplementary Table S2). C: carbon, N: nitrogen, P: phosphor, 849 

S: sulfur. (F) Confusion matrix of pan-GEM accuracy in predicting the essentiality of 20 850 

genes according to the literature (see Results and Methods).  851 

 852 

Figure 2: Core and accessory metabolic capabilities of all A. fumigatus strain-853 

specific genome-scale metabolic models (GEMs). The core and accessory metabolic 854 

content was determined for 252 unique A. fumigatus strains with environmental and 855 

clinical origin. (A) Summary of the core and accessory reactome across higher level 856 

metabolic pathway categories. Pathway categories are according to the KEGG pathway 857 

definition (https://www.kegg.jp/kegg/pathway.html). (B) The distribution of the accessory 858 

reactome across all isolate models. Indicated percentage ranges correspond to accessory 859 

reaction presence across all strain-GEMs. (C) Heatmap with pairwise Jaccard distance 860 

values for isolate GEM pairs based on presence or absence of metabolic reactions. (D) 861 

Fisher-test based most statistically significant reactions enriched in the indicated isolate 862 

subsets. Presence frequency indicates the fraction of reaction presence over all 863 

investigated models (color associates to sample origin). (E) Decision tree optimized 864 

towards showing best separation into clinical and environmental isolate origin. The 865 

decision tree is based on absence/presence of metabolic reactions and growth capability 866 

on different nutrients across all isolate GEMs. (F) Machine learning mean AUC 867 

performance based on FVA derived flux ranges for all reactions (objective function: 868 

biomass) of strain models with clinical vs. environmental origin. 869 

 870 

  871 
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Figure 3: Metagenomics sequencing of 80 paired sputum samples from cystic 872 

fibrosis (N=40) patients before (A. fumigatus -) and after A. fumigatus infection 873 

(A. fumigatus +). (A) Relative abundances of the top 10 genera and species over all 80 874 

samples. X axis is ordered by patient sample. (B) Differential correlation analysis of 875 

species in A. fumigatus+ relative to A. fumigatus- to reveal changes in the interactome of 876 

the lung microbiome upon A. fumigatus colonization. Edge colors and different class 877 

information indicate direction of correlation in A. fumigatus-/A. fumigatus+. The associated 878 

count indicates the number of species pairs in the network exhibiting this pattern of 879 

change. Only species pairs with significant differential correlations were included 880 

(permutation test, p<0.05), Species with orange background indicate significant 881 

differentially abundant species between A. fumigatus- vs A. fumigatus+ samples 882 

(metagenomeSeq, zero inflated gaussian mixture model, p<0.05). Labels: A. fumigatus-: 883 

samples before infection; A. fumigatus+: samples after infection. 884 

 885 

Figure 4: Statistics for MAMBO-derived metabolite profiles in cystic fibrosis patient 886 

samples. (A) Beta diversity (Euclidean distance) of MAMBO derived media. 887 

PERMANOVA was used to assess the statistical significance of beta diversity 888 

comparisons. (B) Growth rate differences of genome-scale metabolic models 889 

corresponding to clinical A. fumigatus strains based on MAMBO derived media 890 

compositions associated to cystic fibrosis samples before and after A. fumigatus infection. 891 

(C) Significantly different flux ranges (either in lower or upper bound) of clinical strain 892 

models simulated with FVA on MAMBO derived media before and after A. fumigatus 893 

infection. Significance was tested according to paired Wilcoxon signed rank test and 894 

adjusted by FDR. (D) Three selected enzymatic reactions with significant flux bound 895 

differences in either lower or upper bound as displayed in (C). Both bounds are indicated. 896 

EC1.4.3.4: Tryptamine:oxygen oxidoreductase; EC4.1.3.27: Chorismate pyruvate-lyase; 897 

EC1.8.1.9: NADPH:oxidized-thioredoxin oxidoreductase. A.f.-/+: A. fumigatus positive and 898 

negative samples, respectively.  899 
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Tables 900 

Table 1: Number of accessory genes and reactions across all isolate GEMs. The 901 

occurrence column refers to the number of reactions occurring in a certain fraction 902 

range of isolate specific GEMs based on 338 accessory reactions in total.  903 

 904 
 Genes Reactions 
Occurrence 
(in %) 

Mean Standard 
deviation 

Mean Standard 
deviation 

[1,20] 1.9 1.8 4.7 7.7 
[21,40] 6.9 2.5 1.3 1.2 
[41,60] 16.7 3.2 17.4 6.0 
[61,80] 17.8 2.4 20.2 6.3 
[81,99] 296.9 8.1 219.3 6.8 

 905 

 906 

 907 

 908 

Supplementary material 909 

 910 

Supplementary Table S1 – Biomass composition 911 

Supplementary Table S2 – Phenotypic growth information 912 

Supplementary Table S3 – A. fumigatus strain metadata 913 

Supplementary Table S4 – ML model using minimal media 914 

Supplementary Table S5 – Metagenomics 915 

Supplementary Table S6 – Metabolite analysis 916 

Supplementary Table S7 – Detailed GEM information 917 

Supplementary Figure S1 – Accessory genome conservation among 252 Aspergillus 918 

fumigatus strains. Indicated percentage ranges denote accessory gene presence across 919 

the genomes of all strain-GEMs. Cluster with gray background denotes genetic lineage of 920 

A. fumigatus with significantly fewer accessory genes than other lineages as previously 921 

published (6). Associates to Fig. 2B. 922 

Supplementary Figure S2 – Alpha and beta diversity of CF lung microbiome. (A) Statistical 923 

significance according to Shannon and Chao diversity index for alpha diversity). (B) Beta 924 

diversity (Aitchison distance) based on Kraken derived taxonomic profiles. Wilcoxon 925 

signed rank test was used for alpha diversity comparisons; PERMANOVA was used to 926 

assess the statistical significance of beta diversity comparisons. 927 
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CHAPTER IV DISCUSSION 
In this thesis, a collection of state-of-art bioinformatics approaches for fungal 

genome analysis were applied to A. fumigatus genomes, a deadly airborne fungal pathogen. 
Based on the biological motivation to elucidate the fungal virulence mechanisms of 
A. fumigatus, the whole genome sequences of 252 strains from environmental and clinical 
origins were collected and were combined with 48 more strains globally distributed. 
Besides genetic determinants of antifungal resistance, I contributed to the analysis of the 
metabolic potential of these strains in relation to adaptation in the human lung. 

In addition, another series of transcriptome data analysis methods were applied to 
study gene expression (transcriptome) profiles from pre-symptomatic sepsis patients. This 
part was driven by the motivation to understand host immune response mechanisms leading 
to early pathogen detection (bacterial, fungal, and co-infection) in pre-diagnosis sepsis 
patients to administrate timely the appropriate treatment. This cumulative dissertation 
comprises four research papers belonging to four main topics: 

1. Using de novo and reference-based genome assemblies provided a powerful tool 
for genome reconstruction, variant detection, and strain-specific metabolic network 
analysis (Manuscript I, III, IV) 

2. WGS-based phylogenetic tree and genome clustering are highly reliable methods 
for studying evolutionary relationships (Manuscript I, III) 

3. Genome-wide association study revealed the genomic variants associated with 
A. fumigatus pathogenicity (Manuscript I) 

4. Network-based analyses and machine learning facilitated the discovery of potential 
bacterial, fungal, and co-infection host biomarkers for pre-symptomatic sepsis 
patients (Manuscript II) 
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Using de novo and reference-based genome assemblies provided a powerful tool for 
genome reconstruction, variant detection, and strain-specific metabolic network analysis 

In the manuscript I, I re-assembled 300 A. fumigatus genomes using reference-
based and de novo assembly methods. De novo assembled genomes of A. fumigatus 
contained genome sizes ranging from 26.9 Mb to 30.8 Mb. The pan-genome of these strains 
was constructed and composed of 10,907 orthologous genes. Of all orthologous genes, 69% 
were found in all strains (core genes), and 31% were accessory genes. Compared to a recent 
study, Lofgren et al. built the pan-genome of 260 A. fumigatus strains, by approximately 
67% of pan-genomes were core genes [187]. In manuscript IV, the de novo assembled 
genomes of 252 A. fumigatus isolates collected in Germany were used to construct genome-
scale metabolic models (GEMs) by Mirhakkak and Chen. This pan-GEM was composed 
of 1,453 metabolic genes and 3,882 metabolic reactions. Of all metabolic genes, 69.8% 
were presented in all strains resulting in 77.3% of all metabolic reactions. These results 
showed consistency of high diversity among A. fumigatus genomes at genetic and 
phenotypic levels. 

In another study by McCarthy and Fitzpatrick, the authors showed that 83% of the 
pan-genome of 12 A. fumigatus strains were shared in all genomes [188]. These results 
suggested that the diversity of A. fumigatus genomes was increased concerning the size of 
the population. However, the distribution of pan-genome diversity was leveled after more 
than 250 genomes were added, as shown in Lofgren’s and this studies [187]. Compared 
with other fungal pathogens, Neonectria neomacrospora has a genome size of 
approximately 40 Mb. The pan-genome of 66 N. neomacrospora strains comprised 13,069 
orthologous genes with 64% core genes [189]. While Saccharomyces cerevisiae has an 
approximate genome size of 12 Mb, 85% of the pan-genome was core genes among 100 
strains [188]. McCarthy and Fitzpatrick also analyzed the pan-genome of Cryptococcus 
neoformans and Candida albicans, which possess genome sizes <20Mb; these pathogens 
shared their core genes for 80% and 90% of the pan-genomes. In conclusion, a positive 
correlation between genome size and pan-genome diversity has been observed in fungal 
genomes. 

On the other hand, the A. fumigatus Af293 genome, with a genome size of 29.4, 
was used as the reference genome for the read mapping method (manuscripts I and III). 
Genome sequences were mapped on 90.8 – 97.9% of the Af293 reference genome, with 
39.8 – 98.3% of reads per genome. Compared to a study by Garcia-Rubio et al., they 
assembled 101 A. fumigatus genomes against Af293 and A1163 reference genomes [86]. 
The sequences were aligned on 84 – 99% of reference genomes, with more than 88% of 
reads were mapped on the references. Abdolrasouli et al. assembled 24 A. fumigatus 
genomes using Af293 as a reference genome. Their genomes can map to more than 92% 
of the reference genome [190]. The results from the reference-based method based on the 
Af293 genome suggested that approximately 90% of A. fumigatus genomes were 
conserved among strains. However, there were high percentages of reads that failed to be 
located on the reference genome. Furthermore, over 20% of pan-genome from the de novo 
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assembly method were not found in the A. fumigatus Af293 reference strain. Altogether, 
the de novo assembly method can overcome the limitations of reference-based genome 
assembly, which provides more completed genomes for novel sequenced strains. 

However, to identify genetic variations, a common reference genome is still 
required for comparing and searching nucleotide variants that might cause protein changes. 
Based on the Af293 reference, an average of 78,692 SNVs and 7,383 insertions/deletions 
per genome were identified in this study. Compared to other studies, Abdolrasouli et al. 
can identify 78,960 SNVs by average per genome [190], while Garcia-Rubio et al. can 
identify 93,609 SNVs [86]. Although there was a high number of identified variants from 
previous studies, 33% of identified SNVs in this study were not reported on the database. 
The results of pan-genome and pan-GEM analysis suggested a surprisingly high genomic 
diversity and metabolic uniqueness of A. fumigatus genomes. 

In conclusion, reference-based and de novo genome assembly methods provided 
the most comprehensive reconstruction of A. fumigatus genomes, small variant 
identification, and genome-scale metabolic model construction. These works provide an 
extensive resource of A. fumigatus genomes to support further A. fumigatus genome 
studies. 

Future perspectives 

Genome assembly at the chromosomal level will provide more complete genomes, 
including improved localization of predicted genes on genomes. In addition, it will allow 
us to detect more complex variants, such as transversion/translocation. The third-
generation sequencing technology, which generates ultra-long sequences using single-
molecule technology, will enable assemblies at the chromosome level and significantly 
improve the accuracy of complex variant detection in fungal genomes, including 
A. fumigatus. 

 

WGS-based phylogenetic tree and genome clustering are highly reliable methods for 
studying evolutionary relationship 

In order to investigate the diversity of A. fumigatus genomes, phylogenetic tree and 
clustering techniques were used to study the evolutionary and genomic relationship among 
A. fumigatus genomes. In manuscript I, phylogenetic trees of all 300 A. fumigatus 
genomes were reconstructed using reference-based analyses (whole-genome SNVs), and 
de novo assembled genomes (core-genes). The trees revealed a total of 7 genetic clusters 
among all strains. Compared to phylogenetic trees of A. fumigatus from Garcia-Rubio et al. 
and Fan et al. studies, they performed tree reconstructing and clustering based on SNVs of 
101 and 196 A. fumigatus strains, respectively [86,191]. In their study, Garcia-Rubio et al. 
found 4 clusters among their strains, while Fan et al. found the optimal clusters of 3. 
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Interestingly, the most distant cluster (cluster 1) was observed in reference-based 
and de novo assembled genome trees, including 13 novel strains from Germany and 6 
strains from Spain (n = 4), Peru (n = 1), and Canada (n = 1). These 6 strains were also found 
in the notable most distant clusters in the tree from Garcia-Rubio and Fan studies. Garcia-
Rubio et al. found that A. fumigatus strains in this cluster possess the highest number of 
SNVs, resulting in the most distant of these strains from other clusters [86]. However, they 
were the most homogeneous cluster [86]. This study also found that A. fumigatus strains in 
this cluster possessed fewer accessory genes but contained more high-impact variants than 
other clusters. The highly homogenous A. fumigatus strains in this cluster suggested the 
recent spread of A. fumigatus across geographic regions [191]. Statistical testing confirmed 
that A. fumigatus genomes were distributed regardless of geographical areas. Phylogenetic 
tree analysis from WGS showed robust and concordant results among three different 
studies. 

The genome similarities of A. fumigatus harbor mutations of cyp51a and cyp51b, 
the triazole targeted genes, were further observed on the phylogenetic tree. In manuscripts 
I and III, the results showed the closed genetic relationship among A. fumigatus harbored 
TR34/L98H mutation (tandem repeats of copies of 34-bp sequence resulting in a substitution 
of leucine 98 on cyp51a gene). These results strongly supported a previous study by 
Camps et al. [192]. They studied 142 A. fumigatus isolated from Europe, in which 80 
strains were azole-resistant carrying TR34/L98H mutation. They found that azole-resistant 
A. fumigatus strains carried TR34/L98H mutation had identical microsatellite loci and 
putative cell surface protein (CSP) CSP typing [192]. In addition, I reconstructed neighbor-
net trees based on WGS-SNVs and SNVs on cyp51a and cyp51b genes for investigating 
recombination events among isolates (manuscript I). The neighbor-net trees also showed 
that most A. fumigatus strains harboring TR34/L98H mutation were highly related. Another 
study by Abdolrasouli et al. constructed a whole-genome SNP-based phylogenetic tree of 
24 A. fumigatus from India, the Netherlands, and the United Kingdom, with 17 strains 
harboring TR34/L98H mutation. Their tree also showed A. fumigatus genomes carrying the 
TR34/L98H mutation diverse independently from the source of origin. The results in this 
part suggested the common TR34/L98H mutation mechanism, which supports the 
distribution event of A. fumigatus across the globe. The non-synonymous-to-synonymous 
substitution (dN/dS) ratios in cyp51a and cyp51b genes also suggested the selective sweep 
under purifying selection for both genes (manuscript I). 

In conclusion, phylogenetic tree analysis can provide meaningful results related to 
A. fumigatus evolutionary relationship across regions, reflecting the distribution events of 
A. fumigatus strains. Moreover, the trees also showed a common azole-resistant mechanism 
corresponding to A. fumigatus distribution and selective sweep of genotype associated with 
the predominant TR34/L98H mutation. 
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Future perspective 

The more accurate and complete genomes from long-read sequences can enhance 
more biological insight of phylogenomic models. However, phylogenetic tree 
reconstruction based on whole-genome can have computational burdens. Therefore, 
improving more phylogeny reconstructing models for the complex tree to reduce 
systematic errors and computational sources and support the sequencing data from the 
novel sequencing technologies will further improve the phylogenetic tree for closely 
representing biological evolution. 

 

Genome-wide association study revealed the genomic variants associated with 
A. fumigatus pathogenicity 

TR34/L98H mutation on cyp51a has been reported as a predominant azole-
resistance mechanism of A. fumigatus and primarily found in patients who had no 
experience with triazole-treatment through environmental A. fumigatus strains [193,194]. 
Therefore, in manuscript I, the genomic variations between clinical and environmental 
strains were studied through several statistical methods, including a genome-wide 
association study (GWAS). 

Over two decades ago, we realized that A. fumigatus strains in hospitals differed 
from environmental A. fumigatus by using traditional DNA polymorphism comparison 
techniques [195]. Debeaupuis et al. studied the genetic diversity among 879 A. fumigatus 
strains from clinical and environmental sources using the Southern blot technique. Their 
results showed no prominent cluster related to geographical regions or 
environmental/clinical origins [196]. However, Aufauvre-Brown et al. studied 
A. fumigatus virulence between clinical and environmental strains using a mixed infection 
model. Their results showed that A. fumigatus strains from clinical origin were more 
virulent than those from environmental isolates [197]. 

In the study by Fan et al., which built the phylogenetic tree of 196 A. fumigatus 
strains based on genome-wide SNV, with a limited number of environmental compared to 
clinical strains (29:167), they also could not identify the genome differences between 
environmental and clinical isolates. In my study (manuscript I), with a large number of 
environmental strains (217 environmental:83 clinical) and a higher resolution of clustering, 
A. fumigatus clinical strains were significantly over-represented in one cluster (cluster 5) 
of the phylogenetic tree. Furthermore, at the nucleotide level, A. fumigatus environmental 
strains showed higher nucleotide diversity (π) than clinical strains. 

In manuscript I, genomic variants associated with clinical and environmental 
A. fumigatus strains were further observed at the nucleotide level (GWAS) and gene level 
(panGWAS). GWAS indicated that 68 genomic variants were associated with clinical 
A. fumigatus strains, including variants on 27 protein-coding genes. Of those, some genes 
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had been reported as A. fumigatus virulent genes, for example, pacC, which is a 
transcription factor involved in several fungal-host interaction processes [198,199]. In 
addition, AcuK, another transcription factor, and srbA genes involved in fungal growth and 
invasion were also identified in this study [200,201]. In addition, panGWAS reported 
accessory genes were significantly presented in clinical strains, such as a gene with 
predicted selenium binding activity and role in cell redox homeostasis (Afu1g05220).  

In conclusion, with a large dataset of A. fumigatus strains and more balanced strains 
from the environmental and clinical origin, a clinical A. fumigatus cluster was detected in 
this study. Moreover, GWAS and panGWAS allowed the identification of clinical 
A. fumigatus-associated genes, and we hypothesized that some of these genes hold essential 
roles related to pathogenic versatility. 

Future perspective 

To better understand the azole-resistant mechanisms, more azole-resistant 
A. fumigatus strains will power the GWAS analysis between azole-susceptibility and azole-
resistant strains. Moreover, with the advantages of long-read sequenced genome 
assemblies, we will be able to perform GWAS for structural variants such as CNV. They 
will provide the most comprehensive genome variant association studies in the future. 

 

Network-based analyses and machine learning facilitated the discovery of potential 
bacterial, fungal, and co-infection host biomarkers for pre-symptomatic sepsis patients 

This part will discuss the analyses from manuscript II, which focused on 
identifying the potential biomarkers for pre-symptomatic sepsis patients induced by 
bacterial, fungal, and co-infection based on their gene expression data. Sepsis is a complex 
disease that activates the innate immune system through several processes such as 
inflammatory, coagulation, and metabolism processes [202]. Recently, over 200 sepsis 
biomarkers were identified by more than 5,000 different studies [203]. However, there is 
still a lack of biomarkers to identify causative pathogens that will lead to appropriate 
treatments. Since the majority of causative pathogens were bacteria (60%-90% of identified 
pathogens) [204], several previous studies tried to develop biomarkers specific to bacteria-
initiated sepsis patients. For example, Ramilo et al. and Cernada et al. analyzed 
transcriptome data to discriminate between gram-positive and gram-negative bacteria 
infection in sepsis patients [205,206]. However, identifying fungal pathogens in sepsis 
patients mainly relies on blood culture, of which 20% showed negative results [204]. 

Dix et al. recently used transcriptome data from microarrays to build a classifier to 
discriminate between bacterial and fungal blood infections. The classifier was built based 
on biomarker genes selected by differentially expressed gene analyses [207]. However, 
their blood samples were obtained from healthy volunteers. They were subsequently 
infected in vitro by sepsis causative microorganisms, which showed a limitation in 
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representing the immune responses in sepsis patients. This study collected transcriptome 
data from sepsis patients infected by bacteria, fungi, and co-infection of both pathogen 
types. I also used weighted gene co-expression and protein-protein interaction networks to 
identify hub genes, which play essential roles in driving biological processes through 
several gene/protein interactions. Weighted gene co-expression network 
analysis (WGCNA) was successfully used to identify candidate biomarker genes for 
many cancers such as breast cancer [208], glioblastoma [209,210] as well as sepsis 
[211,212]. Based on network analyses and machine learning that was used to evaluate the 
pathogen discriminating performances of each gene, I could identify host genes and 
pathways that responded differently to bacteria, fungi, and co-infection of both pathogens 
in sepsis patients. Genes and pathways involved in NK-cell activation were highly 
associated with bacterial sepsis, while genes involved in transcriptional processes were 
highly associated with fungal and co-infection sepsis. Moreover, co-infection sepsis also 
showed highly expressed genes that are poor prognosis genes related to various pathogen 
infections. 

This study provided valuable hypotheses of the host immune system specific to 
different types of pathogens that will narrow the choice of antimicrobial use in sepsis 
patients. However, the main limitation of this study was significantly fewer fungal and co-
infected sepsis samples. 

Future perspective 

A more significant number of sepsis samples infected by fungal and co-infection is 
necessary to advance the machine learning model building for more reliable results. 
Furthermore, transcriptome data generated by sequencing technologies (RNA-seq) can 
provide broader dynamic ranges of gene-expression profiles. This technology will be an 
advantage in identifying more comprehensive DEGs and biomarker genes. More 
importantly, as mentioned that sepsis is one of the complex diseases, integration of multi-
omics data, for example, genomics, transcriptomics, and proteomics, will allow us to 
identify more comprehensive and robust biomarkers. Once a handful of biomarkers are 
identified, the new portable sequencing technology such as MinION will have a critical 
role in routine sepsis diagnosis and prognosis. Altogether, they will improve the diagnostic 
turnaround times and personalized treatments for sepsis patients, including patients 
infected by non-bacterial pathogens. 
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