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Summary

Before satellite imagery was freely accessible, the assessment of vegetation activity

at regional and global scales was unthinkable. Today, we can access more than three

decades of data records associated with vegetation activity at fine spatial and temporal

resolutions. New data products are also being released that are improving rapidly

our ability analyze ecosystem properties at multiple scales. All these satellite data

products and model outputs associated with vegetation activity contain information

of multiple processes that occur at different time scales. However, there are challenges

in studying certain ecosystem processes that can be obscured by the dominance of a

few processes that overwhelm the overall signal. In addition, handling efficiently these

data sets implies certain technological challenges, especially whenworking across time

in a geographical domain.

The overarching goal of this doctoral thesis was to understand dynamics of vegeta-

tion activity occurring across time scales globally and in a regional context. To achieve

this, I took advantage of open data sets, novel mathematical approaches for time series

analyses, and state-of-the-art technology to effectively manipulate and analyze time

series data. Specifically, I disentangled the longest records of vegetation greenness (>

30 years) in tandem with climate variables at 0.05◦ for a global scale analysis. Later, I
focused my analysis on a particular region, northern South America (NSA), to evaluate

vegetation activity at seasonal and interannual scales using moderate spatial resolu-

tion (0.0083◦). NSA is dominated by natural land cover classes such as broadleaved

evergreen forest (71.8 %), grasslands (7.1 %) and shrublands (4.0 %). In addition, it

plays a key role in the water and carbon cycle at regional and global scales.

Two main approaches were used in this research; time series decomposition and

dimensionality reduction analysis. Time series decomposition was carried out through

the Fast Fourier Transformation (FFT), which transforms the data from the time do-

main to the frequency domain. It was used in Chapter 3 to disentangle time series

of vegetation greenness and climate into short-term, seasonal cycle and longer-term

oscillation after linear detrending. In addition, FFT was used in Chapter 4 to estimate

the contribution of annual and semiannual oscillations to the variability of vegetation

activity, and to compute a seasonality ratio (𝑆𝑅) that informs on whether vegetation

activity for each pixel has one or two peaks during a year.

Dimensionality reduction analysis was carried out pixel-wise in Chapter 4 and over
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the entire domain of NSA in Chapter 5. Specifically, I used Principal Component Anal-

ysis (PCA) to reduce a data set of vegetation variables acquired by satellites or reported

by models. The resulting leading component (i.e., PC1) was used as a proxy of vegeta-

tion activity and as an input variable to assessmodes of seasonality pixel-wise (Chapter

4). Furthermore, a variant of PCA called Global PCA was applied to reduce the space

and dimension of the variables. Similarly, the resulting leading component was used

to assess vegetation activity during different ENSO phases (Chapter 5). All analyses

were contextualized within an ecological context (e.g., biotic units, ecoregions).

Results from my first analysis showed the regional dominance of spatio-temporal

processes occurring beyond the seasonal cycle (Chapter 3). Thus, 27 % of NDVI vari-

ability was dominated either by short- (18 %) or longer-term oscillations (9 %) that

are predominantly found in broadleaved evergreen forest, shrublands, and herbaceous

covers, respectively. Also, the dominant co-variability map between NDVI and climate

highlighted regional differences with a strong seasonal cycle of NDVI and temperature

in the northern latitudes. Long-term oscillations were mostly found in the southern

latitudes, and more complex vegetation climate interactions were found in tropical

South America and South East Asia.

For the regional-level analysis, I contributed to the development of the Regional

Earth System Data Lab (RegESDL). The RegESDL is a data infrastructure at moderate

spatial resolution (0.0083◦) for NSA (Chapter 4). It relies on two cores; analysis ready

data cubes, and the Earth System Data Lab software. It efficiently supports multivari-

ate statistics and time series analysis because of its data storage configuration and

rapid access to any data cube dimension (e.g., time, space, variables). The RegESDL

integrates data sets from Earth science, biodiversity and ecosystems from global and

national sources, and contributes to inter-disciplinary research. It is an open source

tool ready for big data analytics, and to facilitate the ongoing challenges of increasing

satellite products and model output.

As a first implementation of the RegESDL, I assessed modes of seasonality in veg-

etation activity in NSA (Chapter 4). The vegetation activity proxy from PCA had a

different performance at capturing data variability between land cover classes (∼ 0.7
in grasslands and herbaceous cover, and ∼ 0.33 in broadleaved evergreen forest). The

𝑆𝑅 shows heterogeneous seasonal patterns of vegetation in NSA. A key finding was

that peaks of seasonality observed with remote sensing do not always correspond to

climate seasonality driven by precipitation. Also, the variety of seasonality trajecto-

ries and timing underline the heterogeneity of ecosystems in this biodiverse region.

The obtained results suggest that different environmental conditions drive vegetation

seasonality, and local drivers have to be further investigated.

Inmy last study, I compared the vegetation activity inNSA during the ENSOphases
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(Chapter 5). I observed contrasting variability of vegetation activity during the same

ENSO phase on the southern Pacific coast in comparison with the northern inland sa-

vannas and the Caribbean coast. Also, I found that the strongest correlations between

the vegetation activity and MEI are in the drier ecoregions during El Niño events. This

finding highlights the role of arid and semiarid ecosystems in NSA, and their vulnera-

bility during the ENSO cold phase.

In conclusion, assessing vegetation-climate dynamics at different temporal scales

facilitates the observation and understanding of processes that are often obscured by

one or few dominant processes. On the one hand, the global analysis showed the dom-

inant seasonality of vegetation and temperature in northern latitudes in comparison

with the heterogeneous patterns of the tropics, and the remarkable longer-term oscil-

lations in the southern hemisphere. On the other hand, the regional analysis showed

the complex and diverse land-atmosphere interactions in NSA when assessing season-

ality and interannual variability of vegetation activity associated with ENSO. Overall,

disentangling these processes and assessing them separately allows one to formulate

new hypotheses of mechanisms in ecosystem functioning, reveal hidden patterns of

climate-vegetation interactions, and inform about vegetation dynamics relevant for

ecosystems conservation and management.
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Zusammenfassung

Bevor Satellitenbilder frei zugänglich waren, war die Bewertung der Vegetationsaktiv-

ität auf regionaler und globaler Ebene undenkbar. Heute können wir auf mehr als

drei Jahrzehnte an Datensätzen zur Vegetationsaktivität mit hoher räumlicher und

zeitlicher Auflösung zugreifen. Zusätzlich werden neue Datenprodukte veröffentlicht,

die unsere Fähigkeit zur Analyse von Ökosystemeigenschaften auf verschiedenen Ebe-

nen rasch verbessern. Die Gesamtheit der Satellitendaten und Modelldaten zur Vege-

tationsaktivität enthält Informationen über verschiedene Prozesse, die auf unterschied-

lichen Zeitskalen ablaufen. Dabei gitb es Herausforderungen bei der Untersuchung

bestimmter Ökosystemprozesse, die durch die Dominanz einiger weniger Prozesse, die

das Gesamtsignal überlagern, verdeckt werden können. Darüber hinaus bringt die ef-

fiziente Handhabung dieser Datensätze technologische Herausforderungen mit sich,

insbesondere wenn in einem geografischen Gebiet über einen längeren Zeitraum gear-

beitet wird. Das übergreifende Ziel dieser Doktorarbeit war es, die Dynamik der Veg-

etationsaktivität über Zeitskalen hinweg global und in einem regionalen Kontext zu

verstehen. Um dies zu erreichen, nutzte ich offene Datensätze, neuartige mathematis-

che Ansätze für Zeitreihenanalysen und modernste Technologien zur effektiven Bear-

beitung und Analyse von Zeitreihendaten. Insbesondere habe ich die längsten Aufze-

ichnungen von Vegetationsindices (> 30 Jahre) in Verbindung mit Klimavariablen auf

einer räumlichen Auflösung von 0,05° für eine Analyse auf globaler Ebene entschlüsselt.

Später konzentrierte ich meine Analyse auf eine bestimmte Region, das nördliche Sü-

damerika (NSA), um die Vegetationsaktivität auf saisonaler und interannualer Ebene

mit einer moderaten räumlichen Auflösung (0,0083◦) zu bewerten. Das NSA wird von

natürlichen Bodenbedeckungsklassenwie immergrünen Laubwäldern (71,8 %), Grasland

(7,1 %) und Buschland (4,0 %) dominiert. Darüber hinaus spielt es eine Schlüsselrolle

im Wasser- und Kohlenstoffkreislauf auf regionaler und globaler Skala.

In dieser Untersuchungwurden zweiHauptansätze verwendet: Zeitreihenzerlegung

und Dimensionalitätsreduktionsanalyse. Die Zeitreihenzerlegung wurde mit Hilfe der

schnellen Fourier-Transformation (FFT) durchgeführt, die die Daten vom Zeit- in den

Frequenzraum transformiert. Sie wurde in Kapitel 3 verwendet, um die Zeitreihen der

Vegetation und des Klimas in kurzfristige, saisonale Zyklen und längerfristige Oszilla-

tionen nach Abzug eines linearen Trends zu zerlegen. Darüber hinaus wurde die FFT

in Kapitel 4 verwendet, um den Beitrag jährlicher und halbjährlicher Osyillationen
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zur Variabilität der Vegetationsaktivität abzuschätzen und um ein Saisonalitätsver-

hältnis (SV) zu berechnen, das Aufschluss darüber gibt, ob die Vegetationsaktivität

für jeden Pixel einen oder zwei Maxima im Jahr aufweist. Die Dimensionalitätsreduk-

tionsanalyse wurde in Kapitel 4 pixelweise und in Kapitel 5 für den gesamten Bere-

ich des NSA durchgeführt. Konkret verwendete ich die Hauptkomponentenanalyse

(PCA), um einen Datensatz von Vegetationsvariablen zu reduzieren, die von Satelliten

erfasst oder von Modellen gemeldet wurden. Die sich daraus ergebende Hauptkom-

ponente (d. h. PC1) wurde als Proxy für die Vegetationsaktivität und als Eingangsvari-

able für die Bewertung der saisonalen Modalitäten auf Pixelbasis verwendet (Kapi-

tel 4). Darüber hinaus wurde eine Variante der PCA, die globale PCA, angewandt,

um räumliche Dimensionen sowie die verschiedenen Variablen selbst zu reduzieren.

Die sich daraus ergebende Hauptkomponente wurde verwendet, um die Vegetations-

aktivität während verschiedener ENSO-Phasen zu bewerten (Kapitel 5). Alle Analysen

wurden in einen ökologischen Kontext eingeordnet (z. B. biotische Einheiten, Ökore-

gionen). Die Ergebnisse meiner ersten Analyse zeigten die regionale Dominanz von

raum-zeitlichen Prozessen, die außerhalb des saisonalen Zyklus stattfinden (Kapitel

3). So wurden 27 % der NDVI-Variabilität entweder von kurz- (18 %) oder länger-

fristigen Oszillationen (9 %) dominiert, die vor allem in immergrünen Laubwäldern,

Gebüschen bzw. krautigen Beständen zu finden sind. Auch die Karte der vorherrschen-

den Kovariabilität zwischen NDVI und Klima zeigte regionale Unterschiede mit einem

starken saisonalen Zyklus vonNDVI und Temperatur in den nördlichen Breitengraden.

Langfristige Oszillationen wurden hauptsächlich in den südlichen Breitengraden fest-

gestellt, und komplexere Wechselwirkungen zwischen Vegetation und Klima wurden

im tropischen Südamerika und in Südostasien gefunden.

Für die Analyse auf regionaler Ebenewar ich an der Entwicklung des Regional Earth

System Data Lab (RegESDL) beteiligt. Das RegESDL ist eine Dateninfrastruktur mit

moderater räumlicher Auflösung (0,0083◦) für NSA (Kapitel 4). Es stützt sich auf zwei

Kerne: analysefähige Datenwürfel und die Earth System Data Lab-Software. Es un-

terstützt effiziente multivariate Statistiken und Zeitreihenanalysen aufgrund seiner

Datenspeicherkonfiguration und des schnellen Zugriffs auf jede beliebige Datendi-

mension (z. B. Zeit, Raum, Variablen). Die RegESDL integriert Datensätze aus den

Bereichen Geowissenschaften, Biodiversität und Ökosystemforschung aus globalen

und nationalen Quellen und trägt zur interdisziplinären Forschung bei. Es handelt

sich um ein Open-Source-Tool für Big-Data-Analysen, welches die laufenden Heraus-

forderungen der zunehmenden Zahl von Satellitenprodukten und Modellausgaben er-

leichtern soll. Als erste Anwendung von RegESDL habe ich die Arten der Saisonalität



xiii

der Vegetationsaktivität im NSA bewertet (Kapitel 4). Das Maß für die Vegetationsak-

tivität aus der PCA hatte eine unterschiedliche Eignung bei der Erfassung der Daten-

variabilität zwischen den Landbedeckungsklassen (∼0,7 bei Grasland und krautiger

Bedeckung und ∼0,33 bei immergrünem Laubwald). Die SV zeigt heterogene saisonale

Muster der Vegetation im NSA. Eine wichtige Erkenntnis war, dass die mit Fernerkun-

dung beobachteten Maxima der Saisonalität nicht immer mit der klimatischen Saison-

alität übereinstimmen, die durch den Niederschlag bestimmt wird. Auch die Vielfalt

der saisonalen Verläufe und Zeitpunkte unterstreicht die Heterogenität der Ökosys-

teme in dieser artenreichen Region. Die Ergebnisse deuten darauf hin, dass die Saison-

alität der Vegetation von verschiedenen Umweltbedingungen abhängt, und dass lokale

Faktoren weiter untersucht werden müssen.

In meiner letzten Studie habe ich die Vegetationsaktivität im NSA während ver-

schiedener ENSO–Phasen verglichen (Kapitel 5). Ich stellte fest, dass sich die Variabil-

ität der Vegetationsaktivität während derselben ENSO-Phase an der südlichen Paz-

ifikküste im Vergleich zu den nördlichen Binnensavannen und der Karibikküste un-

terscheidet. Außerdem stellte ich fest, dass die stärksten Korrelationen zwischen der

Vegetationsaktivität und der MEI in den trockeneren Ökoregionen während El-Nino-

Ereignissen bestehen. Diese Erkenntnis unterstreicht die Rolle der ariden und semiari-

den Ökosysteme im NSA und ihre Anfälligkeit während der ENSO-Kältephase.

Zusammenfassend lässt sich sagen, dass die Bewertung der Vegetations-Klima-

Dynamik auf verschiedenen zeitlichen Skalen die Beobachtung und das Verständnis

von Prozessen erleichtert, die oft durch einen oder wenige dominante Prozesse über-

lagert werden. Einerseits zeigte die globale Analyse die dominante Saisonalität von

Vegetation und Temperatur in den nördlichen Breiten im Vergleich zu den heteroge-

nen Mustern in den Tropen sowie die auffälligen längerfristigen Oszillationen in der

südlichen Hemisphäre. Andererseits zeigte die regionale Analyse die komplexen und

vielfältigen Wechselwirkungen zwischen Land und Atmosphäre im NSA bei der Bew-

ertung der Saisonalität und der interannuellen Variabilität der Vegetationsaktivität in

Verbindungmit ENSO. Insgesamt ermöglicht die Entflechtung dieser Prozesse und ihre

getrennte Betrachtung die Formulierung neuer Hypothesen über Mechanismen in der

Funktionsweise von Ökosystemen, die Aufdeckung verborgener Muster von Wechsel-

wirkungen zwischen Klima und Vegetation sowie Informationen über die Vegetations-

dynamik, die für die Erhaltung und Bewirtschaftung von Ökosystemen relevant sind.
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Chapter 1

Introduction

1.1 Motivation

Undoubtedly, with more than five decades of instrumental records, different lines of

evidence have shown that the Earth system is changing due to anthropogenic forc-

ing. Since the 1960s, studies have revealed that changes in atmospheric carbon diox-

ide (CO2) concentration have a direct impact on climate. Specifically, Manabe and

Wetherald (1967) reported how doubling atmospheric CO2 has the effect of increas-

ing the global surface temperature by 2.3 ◦C. A decade later, the global positive trend

of atmospheric CO2 concentration was clearly observed on Mauna Loa Observatory’s

records, with another important remark, a strong annual seasonality (Keeling et al.,

1976). And a few years after, the first scientific report by climate experts, explaining

the consequences of burning fossil fuels in the Earth’s system, was published (Char-

ney et al., 1979). Today, it is known that increasing global temperatures have an effect

on carbon uptake by vegetation, extreme weather, ocean acidification, among others

(Arias et al., 2021a). Undeniably, living on a warming planet is one of the greatest

challenges humanity will face in this century.

Increasing the understanding of the Earth system has become of pivotal impor-

tance. Yet, an important task is to disentangle processes occurring at different time

scales in the biosphere and atmosphere. An outstanding example is the work by Keel-

ing et al. (1976), who distinguished the two main components (processes) of the at-

mospheric CO2 records from Mauna Loa Observatory. They determined the positive

trend of the gas concentration and the annual variability driven by the vegetation sea-

sonality from the northern hemisphere. Disentangling multiple processes allows for a

more comprehensive perspective of mechanisms in the Earth’s system over time. One

approach to achieve this is through time series analysis of data recorded systematically

at regular time intervals.

Currently, global data of vegetation and climate variables, acquired from satellite

retrievals or models, is available for time series analysis. This has facilitated the study

of vegetation-climate interactions, which is essential for a better understanding of the
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terrestrial carbon cycle. In general, vegetation fixes carbon by photosynthesis and

releases it by respiration. Carbon uptake by vegetation is modulated by different fac-

tors such as vegetation type, water availability, radiation, among others (Bonan, 2015;

Jarvis, 1976; Sellers et al., 1997). Importantly, processes involved in these interactions

occur at different time scales; from seconds (e.g. stomatal aperture) to decades (in-

terannual climate variability e.g. El Niño Southern Oscillation) (Braswell et al., 2005;

Mahecha et al., 2010; Stoy et al., 2009).

In addition, regional analysis is becoming the focus of attention in recent years. As

it is explained in the sixth assessment report of the Intergovernmental Panel onClimate

Change (IPCC), regional climate can be moderated or amplified by local forcing, soil

moisture feedbacks, land use/cover change, decadal/multi-decadal natural variability,

among others (Arias et al., 2021a). Moreover, it is known that changes in the Earth

system will not be evenly distributed in time or space. In consequence, understand-

ing the past and present climate-vegetation interactions within a regional context is

of prominent relevance. Such studies could be used to benchmark early warning sys-

tems, extreme events detection and, hopefully, facilitate a better adaptation to climate

change.

One of the regions of greatest interest is the tropics. On one hand, the tropical

rainforest (e.g., the Amazon) is considered one of the largest terrestrial carbon sinks

(Baccini et al., 2017; Pan et al., 2011). On the other hand, tropical ecosystems are

counted as a major source of uncertainty in processed-based and data-driven mod-

els (Jiang and Ryu, 2016; Jung et al., 2020). This is mostly explained by two different

factors; (i) the low availability and quality of satellite retrievals from optical sensors

because of frequent cloud cover; and, (ii) limited ground data for models’ calibration

and validation.

This doctoral research investigates the variability of vegetation activity across time

scales, through time series analysis of biosphere-atmosphere variables with a specific

emphasis in northern South America (NSA). Firstly, I evaluated the co-variability of

vegetation and climate globally using the longest records of the Normalized Difference

Vegetation Index (NDVI), which is a proxy of vegetation greenness strongly related to

productivity (Chapter 3). Here, the main goal was to disentangle climate-vegetation

interactions occurring at different time scales over 30 years at coarse spatial resolution

(0.5◦).

Secondly, I usedmoderate spatial resolution (0.0083◦) over 14 years to evaluate time

series from a set of vegetation variables in NSA. I started deploying a Regional Earth

SystemData Lab (RegESDL), which facilitates pixel-wise analyses over the time dimen-

sion (Chapter 4). My first focus was a comprehensive characterization of the modes of

seasonality of vegetation activity (Chapter 4). A second focus was to understand the
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interannual variability looking at the imprints of El Niño Southern Oscillation (ENSO)

on vegetation activity regionally (Chapter 5). In the regional studies, my approach

was to combine a set of vegetation variables and to use the leading component from a

dimensionality-reduction analysis as a proxy of vegetation activity (see section 2.1.1).

Each of these studies are briefly introduced from sections 1.2.1 to 1.2.4 and extensively

explained in the following chapters.

1.2 Research questions

The overarching goal of my thesis was to understand dynamics of vegetation activity

occurring across time scales globally and in a regional context. The research questions

(RQ) addressed in this research were:

1. RQ1: What are the modes of variability in vegetation greenness, and what is its

co-variability with climate across time scales globally?

2. RQ2: How to carry out computationally efficient time series analysis in NSA

with moderate spatial resolution?

3. RQ3: What are the modes of seasonality of vegetation activity in NSA?

4. RQ4: Where are the hotspots of vegetation activity observed during the ENSO

phases in NSA?

1.2.1 RQ1. Vegetation-climate variability across time scales

The dominant annual seasonality of photosynthesis obscures climate-biosphere inter-

actions occurring at other time scales. Revealing these patterns is key for having a

differentiated understanding of ecosystems processes that will be affected by and will

respond differently to changes in climate. In my first study, I investigated vegetation-

climate co-variability using the longest records of global surface reflectance by satel-

lites associated with vegetation and climate variables. The main research question

addressed in this study was; What are the modes of variability in vegetation greenness,

and what is its co-variability with climate across time scales globally?

Specifically, the aim was to characterize the co-variability between the activity

of the terrestrial biosphere and climate, spatially and by land cover classes, and to

propose a new classification scheme for vegetation taking into account the temporal

component. To do this, I used time series of NDVI in combination with air temper-

ature and precipitation. In general, NDVI estimates vegetation greenness, which is
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strongly related to productivity. After a linear detrending, time series were decom-

posed into the short-term, seasonal cycle and longer-term oscillations. In particular, it

was observed that the dominant modes of variability for NDVI, precipitation and tem-

perature are different among all variables (Chapter 3). Also, they certainly vary across

the spatial domain by land cover classes. Furthermore, one of the key findings was the

remarkable heterogeneity of the dominant climate-vegetation co-variability in NSA.

This highlights the regional complexity in terms of the vegetation-climate interactions

across time scales. Based on this, the following analyses were narrowed to assess the

seasonal and interannual variability of vegetation activity at higher spatial resolution

in the region.

1.2.2 RQ2. Deployment of the Regional ESDL

This work has involved a considerable amount of technical development, especially at

the regional scale. This is because computer access to time series is often limited by

the data storage configuration. Traditionally, spatio-temporal data layers are stored

on a latitude-longitude grid. This configuration is not suitable for rapid data sampling

along the time dimension, which is key for efficient time series analyses. To overcome

this constraint, I addressed the second research question; How to carry out computa-

tionally efficient time series analysis in NSA with moderate spatial resolution?. As a main

result, I developed the “Regional Earth System Data Lab” (RegESDL) using moderate

spatial resolution. The RegESDL significantly improves computational timing for time

series analysis and facilitates multivariate statistics. In summary, the implementation

of computationally intensive methods is easily and effectively implemented at 0.0083◦

(∼ 1 km at the equator) over the time domain, but also for any other dimension in NSA.

1.2.3 RQ3. Modes of seasonality on vegetation activity in NSA

Vegetation cover in NSA is largely dominated by broadleaf evergreen forest (71.8 %),

grasslands (7.1 %), and shrublands (4.0 %) (ESA, 2017). Ecosystems with a strong sea-

sonality are wetlands, savannas and the tropical dry forest, however seasonality re-

mains a controversial topic for evergreen tropical forests. Regionally, from the climate

perspective, it is known that precipitation and radiation are one of the main drivers of

vegetation activity (González-M et al., 2021; Junk, Bayley, and Sparks, 1989; Nemani

et al., 2003). Particularly, precipitation has two main annual regimes; unimodal (one

peak) and bimodal (two peaks), which are strongly bound to geographical location

(Knoben, Woods, and Freer, 2018; Poveda, Waylen, and Pulwarty, 2006). Until now, it

is unknown whether these modes of annual seasonality in precipitation are also ob-

served in vegetation activity.
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In my second study, I investigated the modes of seasonality of vegetation activity in

NSA. To achieve this, I assessed different vegetation variables; the Enhanced Vegetation

Index (EVI), Fraction of Absorbed Photosynthetically Active Radiation (FPAR), modeled

Gross Primary Productivity (GPP) and NDVI (Chapter 4). Each variable carries differ-

ent information on characteristics of vegetation, but it is unclear what is the best proxy

for assessing seasonality of productivity of photosynthesis in the region. Therefore, at

pursuing to capture themajority of information associated to seasonality of vegetation

activity, I implemented a dimensionality reduction analysis pixel-wise. The resulting

leading component was used as a proxy of vegetation activity. Next, I estimated the

ratio of annual and semiannual oscillations using time series decomposition methods.

The proposed seasonality ratio exposes the different modes of annual seasonality in

tropical ecosystems that are driven by different environmental variables.

1.2.4 RQ4. Imprints of ENSO on vegetation activity in NSA

My last study is related to the interannual variability of vegetation activity in the

region. ENSO is the dominant mode of interannual variability globally (Arias et al.,

2021a), and it has a strong impact on precipitation in NSA which in turn impacts veg-

etation. Studies of ENSO impacts on vegetation are usually carried out for individual

events (e.g. La Niña 2010-2011, El Niño 2015-2016) or ecosystems type. However, there

is limited understanding of the main response of vegetation activity to several ENSO

events. ENSO events cannot be easily generalized due to (i) the internal variability of

ENSO itself, (ii) local forcing which might overrule its impacts. To tackle these issues,

my last study sought the identification of hotspots of vegetation activity observed dur-

ing the ENSO phases in NSA. My results showed contrasting spatio-temporal responses

along the region. In general, a stronger correlation of vegetation activity is observed

during El Niño (ENSOwarm phase) than during La Niña (ENSO cold phase). Moreover,

the most vulnerable ecoregions to El Niño are arid and semiarid ecosystems (Chapter

5).

1.3 Thesis structure

In the next chapter (Chapter 2) I expand the description of the scientific background

and concepts that are key for my research. The analysis of global modes of variability

of vegetation greenness and climate is presented in Chapter 3. In Chapter 4 and 5,

I investigate the seasonal cycle and the interannual variability of vegetation activity,

respectively, in NSA. The main findings are contextualized and discussed in Chapter

6.
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Chapter 2

Background

2.1 Methods for studying temporal dynamics

2.1.1 Vegetation variables derived from space

Vegetation variables estimated from satellite retrievals or models provided the oppor-

tunity tomonitor ecosystems globally. These variables are mostly based on optical sen-

sors that capture surface reflectances. The main principle here is that plants use differ-

entiated regions of the electromagnetic spectrum to convert light into energy. Specif-

ically, photosynthetic pigments absorb red wavelengths for photosynthesis, whereas

near-infrared is highly reflected. The difference between both reflectances is the basis

for the computation of vegetation indices (Huete et al., 1997; Tucker and Sellers, 1986).

Vegetation indices were the first global measurements used to assess vegetation activ-

ity since Earth observation satellites were launched (Ryu, Berry, and Baldocchi, 2019).

Currently, they are considered surrogates of productivity, and usually referred to as

vegetation "greenness". The main reason is that vegetation indices do not necessarily

and immediately reflect the impact of environmental conditions on photosynthesis;

they are nonlinear with respect to biomass, and saturate in dense canopies (Camps-

Valls et al., 2021; Huete et al., 1997; Huete et al., 2002).

In the last decades, significant advances on global estimates of photosynthesis

were possible. The integration of frameworks from remote sensing, plant physiology,

climate modeling, and micrometeorology paved the way for the generation of GPP

products (Ryu, Berry, and Baldocchi, 2019). Different methods have been developed

to estimate GPP such as; (i) semi-empirical models based on light use efficiency mod-

els in tandem with differentiated coefficients for specific biomes (Running, Mu, and

Zhao, 2015); (ii) process-based models that aim to represent atmosphere-vegetation-

soil fluxes (Jiang and Ryu, 2016); (iii) and, data-driven models based on up-scaling of

carbon-water fluxes, provided by a network of eddy covariance towers, using machine

learning methods (Jung et al., 2011, 2020; Tramontana et al., 2016).
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An important attribute of global vegetation products is the data sampling frequency.

These vegetation products rely on satellite retrievals either for direct computations,

model calibration or algorithm training (Huete et al., 1997; Jiang and Ryu, 2016; Jung

et al., 2020; Running, Mu, and Zhao, 2015; Ryu, Berry, and Baldocchi, 2019; Tucker and

Sellers, 1986). Consequently, their frequency is strongly tied to the frequency at which

satellites revisit every point on Earth’s surface. In general, retrievals by Earth observa-

tion satellites are provided at regular time intervals. These systematic measurements

provide regular observations over time, and guarantee the integrity of time series for

each data product.

The longest satellite retrievals used to compute vegetation variables are from the

Advanced Very High Resolution Radiometer (AVHRR). Particularly, the NDVI data set

based on AVHRR, and produced by the Global Inventory Modeling andMapping Stud-

ies (GIMMS), provides more than three decades of data at 0.0833◦ spatial resolution,

with a bi-weekly temporal resolution (Pinzon and Tucker, 2014). Since the year 2000

until present, higher spatial resolution data has been acquired by theModerate Resolu-

tion Imaging Spectroradiometer (MODIS). It offers a larger set of vegetation variables

such as vegetation indices, GPP and FPAR. Moreover, MODIS products are processed

at different spatio-temporal resolutions; from daily imagery to monthly composites,

starting from 250 m to 0.05◦ depending on the specific data product.

In this doctoral research, I used time series of four vegetation variables, i.e., NDVI,

EVI, FPAR and GPP, summarized in Table 2.1. NDVI is the normalized difference be-

tween the near-infrared and red surface reflectances (Tucker and Sellers, 1986). NDVI

is probably the vegetation variable most used from satellite retrievals. Nevertheless, it

is limited in very dense vegetated areas such as tropical forests where it saturates. EVI

is another vegetation index, but its computation includes the blue band, and aerosols

coefficients to account for atmospheric and background noise, and to reduce satura-

tion (Huete et al., 1997; Huete et al., 2002). FPAR refers to the energy absorption by

the vegetation canopy within the 0.4 - 0.7 µmwavelength spectrum (Knyazikhin, 1999;

Myneni et al., 1997). GPP is gross primary production, i.e. carbon up-take by photo-

synthesis. GPP products include environmental drivers as constraints on the carbon

uptake by terrestrial vegetation.

Finally, the quality of these variables is directly related to the atmospheric con-

ditions at the time of measurement. They all have been either acquired or derived

from passive remote sensors that are highly affected by clouds and haze (Estupinan-

Suarez, Leon, and Sarmiento Pinzon, 2017; Hilker et al., 2012). This is one of the major

challenges of working in NSA, data here is constrained due to the presence of clouds

associated to the Intertropical Convergence Zone (ITCZ), and the transfer of moisture

from the Amazon to the Andes (Eltahir and Bras, 1994; Poveda, Waylen, and Pulwarty,
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Table 2.1: Vegetation variables data set. 𝜌: Surface reflectance. 𝐶1 and
𝐶2: Coefficients of the aerosol resistance. 𝐺 : Gain factor. 𝐿: Canopy

background adjustment. 𝑁𝐼𝑅: Near-infrared.

Index
abbreviation Computation Data

span Product

NDVI 𝜌𝑁𝐼𝑅−𝜌𝑅𝑒𝑑
𝜌𝑁𝐼𝑅+𝜌𝑅𝑒𝑑

2001 to
present

MOD13A2

EVI 𝐺 × 𝜌𝑁𝐼𝑅−𝜌𝑅𝑒𝑑
𝜌𝑁𝐼𝑅+𝐶1×𝜌𝑅𝑒𝑑−𝐶2×𝜌𝐵𝑙𝑢𝑒+𝐿

2001 to
present

MOD13A2

FPAR Radiative transfer algorithm
2001 to
present

MOD15A2

GPP Process-based models
2001 to
2014

BESS GPP

2006; Zemp et al., 2014). In spite of this, all variables carry valuable information related

to vegetation processes such as canopy greening, productivity or energy absorption.

For the regional analyses, my approach was to merge these datasets of vegetation vari-

ables to extract the largest possible amount of information using Principal Component

Analysis (PCA) (see section 2.1.3). Within the scope of this thesis, I refer to "vegeta-

tion activity" as the leading component obtained from the PCA, which also carries the

largest data variability. In addition, I use "vegetation dynamics" to refer indistinguish-

ably to the variability of any vegetation variable used in this research either as input

or output.

2.1.2 Time series decomposition

Time series refers to a set of observations 𝑥𝑡 , each one being recorded at a specific

time t within regular intervals (Brockwell and Davis, 2002). In consequence, the time

difference between contiguous data points is equal. Importantly, time series carry dif-

ferent characteristics or features related to intrinsic frequency variations (Braswell et

al., 2005; Defriez et al., 2016; Mahecha et al., 2010). Nevertheless, these signals are

obscured depending on the signals’ amplitude and the signal to noise ratio. Stronger

signals such as vegetation seasonality might obscure the observation of processes oc-

curring at other time scales. To tackle this, time series decomposition methods have

been developed to disentangle original signals into different components.

Time series analyses are carried out at two different domains; time and frequency.

The time domain relies on the adjacency of points and dependency of the current value

on the past value. The frequency domain assumes that periodic or sinusoidal variation

is found on most data sets (Brockwell and Davis, 2002). As a result, data is partitioned

in different frequencies, and then the associated variance is estimated for each.
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Data adaptive models such as the Empirical Mode Decomposition (EMD) works

directly in the time domain. They are recognized for capturing nonlinear processes

which occur in natural systems (Huang and Wu, 2008; Huang et al., 1998). However,

different challenges emerge when data adaptive approaches are implemented within

a geographical domain. Data adaptive methods can result in fuzzy spatial patterns

because outcomes from neighbor pixels might differ significantly. We faced this lim-

itation when carrying out global analysis with EMD, or assessing complex ecological

and topographical regions such as the tropics (see Chapter 3). In contrast, other meth-

ods based on sinusoidal assumptions such as Fast Fourier showed more homogeneous

and consistent results spatially.

The Discrete Fast Fourier Transform is an algorithm that transforms the time do-

main into a frequency domain based on sinusoidal functions (Brockwell and Davis,

2002). Frequencies containing the highest variance are identified using a power spec-

trum. In particular, for my doctoral research, time series were decomposed into three

components after a linear detrending. The short-term signal contains periods < 0.9

years, except for two seasonal harmonics. The seasonal cycle contains oscillations

with periods from 0.9 to 1.1, plus two harmonics with periods of 0.5 and 0.33 years

(i.e., semiannual and quadrennial harmonics). The longer-term signal enclose periods

> 1.1 years. Figure 2.1 shows an example of the air temperature components after the

Fast Fourier Transformation in a tropical savanna. On the upper panel is the original

signal spanning from 2001 to 2010 with a strong seasonality, although the maximum

variability is ∼ 0.5◦. The linear trend and decomposed oscillations are in the middle

and bottom panel.

2.1.3 Principal component analysis

In general, dimensionality reduction analysis reveals hidden intrinsic features in high-

dimensional data sets. A well established dimensionality reduction method is PCA

which uses recursively linear functions. PCA reconstructs new variables, referred to as

principal components, from the initial variables in an orthogonal space. The objective

is to maximize the information contained in the first components, so following analysis

can be focused exclusively on a subset of principal components. In consequence, the

dimensions of the data set can be reduced without losing as much information as

possible (Jolliffe and Cadima, 2016; Pearson, 1901).

I used PCA to assess a set of vegetation variables at seasonal (Chapter 4) and in-

terannual time scales in NSA (Chapter 5). The main reasons to use PCA were; (i) the

variance explained by each principal component is easily calculated; (ii) the contribu-

tion of each variable to each principal component is known, and therefore variables

containing the most information are identified.
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Figure 2.1: Time series decomposition of temperature of air at 2 m (T)
using the Fast Fourier Transformation. Lat. 5.75◦𝑁 , Lon. 70.25◦. De-

composed oscillations are unitless (Data source: ERA5)

In both regional analyses presented in this dissertation, the first principal com-

ponent (PC1) was used as a proxy of vegetation activity. Specifically, the seasonality

analysis carried out in Chapter 4 used PC1, the leading component, as input to esti-

mate annual and semiannual oscillations pixel-wise. In Chapter 5, I implemented a

variant of PCA called Global PCA (Kraemer et al., 2020) to assess vegetation activity

during the ENSO phases. Using the Global PCA approach, data was reduced over the

spatial and variable dimensions.

The Global PCA steps, which are similar to a standard PCA, are explained bellow.

First of all, data was scaled to zero mean and unit variance because the highest ex-

plained variance could be driven by the variables magnitude and not by intrinsic data

variability (Kraemer, Reichstein, and Mahecha, 2018). The next steps are summarized

in Figure 2.2 and are as follow; (i) create a matrix per time step including all land

pixels from all variables; (ii) compute a covariance matrix per time step; (iii) combine

the covariance matrix per time step into a global covariance matrix by element-wise

mean; (iv) calculate eigenvectors from the global covariance matrix; and, (v) project

data pixel-wise to the new PCA space. To do this, the eigenvector matrix is transposed

(i.e. projection matrix), and multiplied with the transpose input matrix. An impor-

tant remark is that the selection of the most informative eigenvectors is based on their
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Figure 2.2: Workflow of the Global PCA. Lat: Latitude. Lon: Longitude.
M: Number of pixels. N: Number of variables. t: time steps.

scalar values (i.e., eigenvalues). In other words, the higher the eigenvalue, the more

relevant the principal component.

2.1.4 Data cubes and the Earth system data lab

Timely and efficient access to data is a priority for up-to-date ecosystem assessment.

This is key for investigating ecosystem responses to climate change, developing early

warning systems, and monitoring programs. Today, this can be achieved with the in-

creasing volume of satellite products and models, but also requires rapid advances in

technology. Therefore, access to big data and processing capabilities can be a major

challenge for researchers, especially for those in regions where funding for long-term

projects such as data infrastructures are rarely absent. In addition to funding and in-

frastructure limitations, some of the current challenges posed by big data are: redun-

dancy in data storage and preprocessing, increased computing power, interoperability,

among others.

Data Cubes have become a worldwide data management strategy to handle big

data. They are basically a multidimensional matrix that allows one to conveniently

store geographic layers over time. For example, the Open Data Cube project, led by

the Commonwealth Scientific and Industrial ResearchOrganization (CSIRO), began by

focusing on satellite products such as MODIS and Landsat (Lewis et al., 2017). Today,
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Figure 2.3: Data visualization of the Regional Earth System Data Lab.
Example of three variables represented in the spatio-temporal domain.

(Source: Mahecha, 2019)

the best-known platform is the Google Earth Engine, which stores geographic data

from multiple sources and enables cloud computing. However, in these approaches,

data is stored in a latitude-longitude grid that renders access to the temporal dimen-

sion inefficiently (Gorelick et al., 2017; ODC, 2021).

The Earth System Data Lab (ESDL) is a big data processing technology based on

Data cubes. It was developed at the Max Planck Institute for Biogeochemistry by

Mahecha et al. (2020). It relies on two cores; (i) analysis ready data cubes (ARDCs); and

(ii) the ESDL software described by Gans (https://esa-esdl.github.io/ESDL.jl/latest/).

ARDCs provide a harmonized spatio-temporal grid, and allows efficient access to the

time dimension, which is key for time series analysis. The ESDL software supports the

implementation of user-defined functions that are carried out efficiently to any cube

dimension based on the user preference. I implemented a higher spatial resolution

ESDL at 0.0083◦ 8-daily for NSA called the RegESDL (Figure 2.3), it facilitates big data

analysis over the time dimension in the NSA region.

2.2 Regional study: Northern South America

2.2.1 Climate

2.2.1.1 Annual cycle

The annual hydro-climatological cycle in NSA is dominated by the migration of the

ITCZ, and its interaction with the regional and local atmospheric circulation (Poveda,

Waylen, and Pulwarty, 2006). Additionally, the Andes and the Amazon play a key role

in the climate of this region. The Andes enhances wind convection due to orographic

lifting. This interaction is easily observed between the Choco low-level jet and the

western flank of the Andes, where annual precipitation ranges between 8000 to 10000

mm (Poveda andMesa, 2000; Yepes et al., 2019). On the other hand, precipitation in the
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Figure 2.4: Meanmonthly values of precipitation (P, gray bars) and tem-
perature of air at 2 m (T, yellow lines) from 1981 to 2010 at two different
gauging stations in northern South America. Left: Unimodal precipita-
tion regime Lat.2.37◦, Lon. -74.64◦. Right: Bimodal precipitation regime

Lat. 5.26 ◦, Lon. -74.73◦ (Data source: IDEAM 2021).

Amazon is the combination of multiple factors. It results from strong land-atmosphere

interactions such as precipitation recycling (Zemp et al., 2017a), moisture transport

from the Atlantic, and the ITCZ migration (Poveda, Waylen, and Pulwarty, 2006).

There are two main modes of precipitation in the region that result from the inter-

action between climate and topography. Unimodal precipitation regimes refer to one

dry season and one wet season within the year (i.e., one peak of rainfall). Whereas

bimodal precipitation refers to two dry seasons and two wet seasons (double peak of

rainfall) (Knoben, Woods, and Freer, 2018). Compared to the strong seasonality of pre-

cipitation, temperature is mostly constant throughout the year. Figure 2.4 shows that

the monthly mean values of temperature differ by only a few degrees (∼ 3 ◦C) at two

selected gauging stations. In the same figure, we observe a unimodal precipitation

regime with a peak of rainfall between May and August, and a bimodal regime with

a first peak in May-June and a second peak in October-November. Little has been ex-

plored about what is the response of vegetation activity to these different precipitation

regimes. In this dissertation, I assessed modes of seasonality on vegetation activity to

understand whether they can be related to precipitation regimes.

2.2.1.2 Interannual variability

ENSO is the dominant mode of interannual variability of climate globally (Arias et al.,

2021a). It is a coupled climate phenomena between the atmosphere and the Pacific

ocean. ENSO has three phases; El Niño (the warm phase), La Niña (the cold phase)
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Figure 2.5: Time series of the Multivariate ENSO index (MEI).

and the Neutral phase. During the same phase, positive and negative changes in tem-

perature and precipitation occur worldwide.

Different ENSO indices have been proposed based on predefined regions over the

Pacific ocean, and selected atmospheric and oceanic variables. Specifically, the Multi-

variate ENSO Index Version 2.0 (MEI) is estimated from sea level pressure, sea surface

temperature, surface zonal winds, surface meridional winds, and outgoing longwave

radiation between 30◦S −30◦N and 100◦E−70◦W.MEI is the resulting leading principal

component calculated of an empirical orthogonal function. MEI values are classified

as follows: ≤ −0.5 correspond to La Niña whereas values ≥ 0.5 to El Niño, values from

−0.5 to 0.5 correspond to the Neutral phase (NOAA, 2021b). Because MEI is com-

puted from a set of variables, it is less sensitive to perturbations from a single variable.

Another advantage of working with MEI is that the index does not carry signals of sea-

sonality which facilitates time series analysis at interannual scales. Figure 2.5 shows

MEI time series from 1980 to 2019.

It is known that ENSO causes anomalies in precipitation and temperature, which

in turn affect vegetation activity. The two strongest ENSO events in the last decades

were La Niña 2010-2011 and El Niño 2015-2016. During La Niña 2010-2011, it was ob-

served that; (i) 40 % of the variance in global net primary productivity was explained

by this event (Bastos et al., 2013); and, (ii) 5 % increased in methane emissions by wet-

lands (Pandey et al., 2017). During El Niño 2015-2016, Liu et al. (2017) reported that

the tropics released 2.5 ± 0.34 gigatons more carbon than during other periods. Their

results also showed heterogeneous climate forcing along the tropics, accompanied by

the superposition of regional conditions such as soil and vegetation structure, and pre-

vious disturbance. In this sense, Liu et al. (2017) highlighted that changes in vegetation

during El Niño must not be generalized to a single response. In this sense, the under-

standing of changes in terrestrial vegetation as affected by ENSO require more specific

analyses at local and regional scales.
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Table 2.2: Climatic impacts of El Niño and La Niña in northern South
America. *: Anomalies not reported. Source: NOAA (2021a).

El Niño La Niña

Region Austral
summer

Austral
winter

Austral
summer

Austral
winter

Pacific
coast Warm and wet Warm Cool and dry Cool

Caribbean
coast * Warm and dry * Cool and wet

Amazon Dry * Wet *

In general, previous assessments of vegetation activity during El Niño and La Niña

have been carried out for individual events. These analysis have contributed to explain

annual changes in vegetation greenness and productivity (Bastos et al., 2013; Liu et

al., 2017; Luo et al., 2018; Pandey et al., 2017; Patra et al., 2017; Schaik et al., 2018).

Nevertheless, they are limited for detecting hotspots of ENSO effects over time. An ex-

emption is the study by Kogan and Guo (2017), who analyzed both ENSO phases from

1982 to 2016 using vegetation health indices. Regions such as northern Brazil, south-

ern Africa, eastern Australia, among others, were identified with moderate-to-strong

stress (healthy) during El Niño (La Niña). However, their results were aggregated at

the country level and do not elucidate differences between ecosystems. Yet, there is

limited understanding on the differentiated responses by vegetation activity when as-

sessing simultaneously different phases of ENSO using time series.

In NSA different hydro-climatological studies have reported changes in precipita-

tion during ENSO phases (Bolaños et al., 2021; Cai et al., 2020; Poveda, Waylen, and

Pulwarty, 2006; Poveda et al., 2001; Waylen and Poveda, 2002). In general, each ENSO

phase does not manifest homogeneously across the region, but rather at different in-

tensities and with contrasting patterns. Table 2.2 summarizes the climatic impacts of

ENSO. An important remark is the opposite changes in the Caribbean and Pacific coast

during the same ENSO phase.

2.2.2 Vegetation

NSA is dominated by natural ecosystems such as rainforests and savannas. They both

are key for understanding regional and global dynamics in the water and carbon cycles

at annual and interannual time scales (Holmgren et al., 2013). The Amazon forest, for

example, is the largest terrestrial carbon sink (Baccini et al., 2017; Pan et al., 2011), and

dominateswater andmoisture cycling in the continent (Poveda,Waylen, and Pulwarty,

2006; Zemp et al., 2017a). Further, savannas worldwide have been considered as a main

driver of carbon interannual variability (Ahlström et al., 2015). In addition, wetlands,
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including flooded savannas and swamp forest, are significant contributors of methane

emissions (Bloom et al., 2017) that increases during La Niña (Pandey et al., 2017).

Understanding vegetation activity across time scales is still in an early phase. In

NSA, seasonality of vegetation activity is mainly observed in water-limited ecosystems

such as savannas, dry forest, and partially wetlands. In tropical rainforests, seasonality

is still debated although data from tree rings (Giraldo et al., 2020), sun-induced chloro-

phyll fluorescence (SIF) (Schaik et al., 2018), and geostationary satellites (Hashimoto

et al., 2021) suggest some annual cyclicity. Furthermore, the assessment of vegetation

activity at other time scales such as interannual variability has been focused on the

impacts of ENSO as explained in section 2.2.1.2 and 2.2.3.

In addition to this natural variability, ecosystems are facing rapid changes due to

direct anthropogenic drivers such as selective logging, or extensive land cover change

from forest to pastures, soy and palm plantations (Anaya et al., 2020; Armenteras et

al., 2019; Barona et al., 2010; Clerici et al., 2020; Seymour and Harris, 2019; Song et

al., 2018). Among the tropics, South America is the continent with the highest rate of

forest loss, doubling the rates reported for Africa and South East Asia (Baccini et al.,

2017). Clearly, South America is facing massive environmental pressure, threatening

not only carbon and water ecosystem services, but also increasing its vulnerability to

extreme events (Brando et al., 2019; Erfanian, Wang, and Fomenko, 2017). A deeper

understanding in the region is needed to improve ecosystems conservation and man-

agement, develop early warning systems, and effective decision making.

2.2.3 Vegetation-climate interactions

At the annual scale, the main climatic drivers in tropical ecosystems are precipitation

and solar radiation. In water limited ecosystems such as savannas, and tropical dry

forest, plant seasonality is driven by precipitation (González-M et al., 2021; Siyum,

2020; Stan and Sanchez-Azofeifa, 2019). Similarly, the ecological functioning of most

wetlands is driven by flood pulses controlled by the precipitation regime (Junk, Bayley,

and Sparks, 1989; Junk et al., 2014). Regarding tropical forests, Nemani et al. (2003)

reported solar radiation as the main driver of net primary production, but recently

(Hashimoto et al., 2021) reinforced the role of precipitation.

At the interannual scale, anomalies of precipitation and temperature are mostly

related to ENSO, which in turn also affects vegetation. Initially, Zeng, Mariotti, and

Wetzel (2005) provided a global understanding of processes occurring in the tropics

during El Niño. They generalized a dominant decline of precipitation that causes lower

soil moisture and less net primary productivity. Complementary, higher temperatures



18 Chapter 2. Background

boost heterotrophic respiration. In combination, all these factors contribute to less car-

bon uptake by vegetation and higher carbon release by plants and soils to the atmo-

sphere. Nevertheless, this simplified perspective is not applicable entirely to all tropical

ecosystems, because sensitivities to the climate forcing differ by vegetation types. For

example, Wang, Zeng, and Wang (2016) reported different sensitivities to tempera-

ture in the tropics, being stronger in the Amazon and weaker in African savannas and

South Asian forests. Regarding precipitation, African savannas have stronger sensitiv-

ities than the Amazon that could be associated to a stronger soil moisture deficit in

arid and semi-arid ecosystems.

Currently, we have a limited understanding of the diverse response of vegetation

activity to climate forcing in tropical regions. This knowledge is pivotal when consid-

ering the urgent need of forecasting, and modeling ecosystems in a warming planet.

In this sense, models are not considering the different variability across time scales.

As well, policies for ecosystems conservation, and management take place at local and

regional scales. Therefore analyses at higher spatio-temporal resolutions are critically

needed to narrow-down the heterogeneous impacts of extreme weather on vegetation

activity.
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Abstract. Climate variables carry signatures of variability at
multiple timescales. How these modes of variability are re-
flected in the state of the terrestrial biosphere is still not quan-
tified or discussed at the global scale. Here, we set out to gain
a global understanding of the relevance of different modes of
variability in vegetation greenness and its covariability with
climate. We used > 30 years of remote sensing records of the
normalized difference vegetation index (NDVI) to character-
ize biosphere variability across timescales from submonthly
oscillations to decadal trends using discrete Fourier decom-
position. Climate data of air temperature (Tair) and precipita-
tion (Prec) were used to characterize atmosphere–biosphere
covariability at each timescale.

Our results show that short-term (intra-annual) and longer-
term (interannual and longer) modes of variability make re-
gionally highly important contributions to NDVI variability:
short-term oscillations focus in the tropics where they shape
27 % of NDVI variability. Longer-term oscillations shape
9 % of NDVI variability, dominantly in semiarid shrublands.
Assessing dominant timescales of vegetation–climate covari-
ation, a natural surface classification emerges which cap-
tures patterns not represented by conventional classifications,

especially in the tropics. Finally, we find that correlations
between variables can differ and even invert signs across
timescales. For southern Africa for example, correlation be-
tween NDVI and Tair is positive for the seasonal signal but
negative for short-term and longer-term oscillations, indicat-
ing that both short- and long-term temperature anomalies can
induce stress on vegetation dynamics. Such contrasting cor-
relations between timescales exist for 15 % of vegetated ar-
eas for NDVI with Tair and 27 % with Prec, indicating global
relevance of scale-specific climate sensitivities.

Our analysis provides a detailed picture of vegetation–
climate covariability globally, characterizing ecosystems by
their intrinsic modes of temporal variability. We find that
(i) correlations of NDVI with climate can differ between
scales, (ii) nondominant subsignals in climate variables may
dominate the biospheric response, and (iii) possible links
may exist between short-term and longer-term scales. These
heterogeneous ecosystem responses on different timescales
may depend on climate zone and vegetation type, and they
are to date not well understood and do not always correspond
to transitions in dominant vegetation types. These scale de-

Published by Copernicus Publications on behalf of the European Geosciences Union.
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pendencies can be a benchmark for vegetation model evalu-
ation and for comparing remote sensing products.

1 Introduction

Ecosystems and climate interact on multiple spatial and tem-
poral scales. For example, the main driver of photosynthe-
sis during the daily cycle typically is light availability, as-
suming no other resource limitation. At annual timescales,
temperature can limit growth and development during cer-
tain phases of the year, particularly in the extratropics. While
climate variability is traditionally very well characterized
across timescales (e.g., Viles, 2003; Cao et al., 2012; Bala
et al., 2010; Hannachi et al., 2017), it is less well known
how the biosphere responds to variations in climate on differ-
ent scales. Understanding the implications of such timescale
dependencies of climate–vegetation interactions is challeng-
ing due to the variety of interwoven processes. These de-
pendencies range from short-term climate extremes and bi-
otic stress (e.g., insect outbreaks) to seasonal dynamics in
climate-driven phenology and long-term dynamics that can
again either reflect intrinsic ecosystem dynamics (e.g., veg-
etation successional dynamics) or climate-change- or land-
use-induced process alterations. Investigating vegetation–
climate dynamics globally across multiple timescales re-
quires long-term observation on relevant vegetation dynam-
ics and climate variables in combination with a method to
separate ecosystem variability at different timescales.

The assessment of ecosystem variability, e.g., in responses
to climate at the global scale, has only become feasible in
the last decades. Long-term Earth observations (EOs) are
now allowing us to assess ecosystem states consistently over
more than 30 years. Vegetation indices such as the normal-
ized difference vegetation index (NDVI) have often been in-
terpreted as proxies for vegetation activity (Zeng et al., 2013;
De Keersmaecker et al., 2015; Hawinkel et al., 2015; Kogan
and Guo, 2017; Pan et al., 2018), despite well-known limi-
tations of only reflecting vegetation greenness. While novel
EOs may be more closely related to actual rates of photosyn-
thesis (Sun-induced fluorescence, SIF; Guanter et al., 2007),
NDVI from the Advanced Very High Resolution Radiome-
ter (AVHRR) has the advantage of offering the longest up-
dated records of vegetation remote sensing data every 15 d
(d stands for day). In tandem with climate time series from
the same period, this record provides a solid basis to globally
assess biosphere–atmosphere interactions across timescales
ranging from weeks to decades.

Temporal biosphere dynamics carry the imprint of dif-
ferent drivers across timescales, yet EOs can only record
one integrated signal over time. This signal reflects a mix-
ture of processes acting on different scales, which cannot
be observed independently (Mahecha et al., 2007; Defriez
and Reuman, 2017; Pan et al., 2018). Therefore, short-term

and long-term processes can be obscured by the dominant in-
fluence of the annual cycle (Braswell et al., 2005; Mahecha
et al., 2010c). In order to study relevant ecosystem–climate
interactions across temporal scales, information contained
for each timescale thus first needs to be extracted from this
integrated signal. Time series decomposition allows us to ex-
tract different frequencies such as annual, intra-annual, and
interannual oscillations from vegetation and climate time se-
ries. Such approaches have proven useful, e.g., to character-
ize at what scales vegetation responses are dampened or am-
plified in comparison with their climate forcing (Stoy et al.,
2009), how ecosystem variability is confined by hydrome-
teorological variability (Pappas et al., 2017), what scales of
variability need to be considered to relate forcing variables
and vegetation state comprehensively (Katul et al., 2001;
Braswell et al., 2005), or to remove confounding effects from
processes acting on longer timescales than the process in
question (Mahecha et al., 2010b). However, to date most
studies employing time series decomposition to study veg-
etation dynamics have focused on disentangling timescales
from minutes to a few years based on flux data (Stoy et al.,
2009; Katul et al., 2001; Mahecha et al., 2007, 2010c). Stud-
ies investigating long-term vegetation records by time se-
ries decomposition do exist but focus only on a specific re-
gion (Martínez and Gilabert, 2009; Canisius et al., 2007;
Hawinkel et al., 2015) or do not provide cointerpretation with
climate signals (Pan et al., 2018). Earth observation time se-
ries of vegetation and climate covering more than 30 years
now allow us to characterize the timescale-resolved variabil-
ity in the biosphere and its relation to climate globally across
several decades. Additionally, the global coverage of these
records allows one to attain a broader understanding in cli-
mate space and across vegetation types, which to date is
equally lacking.

In this study, we set out to gain a global understand-
ing of the relevance of the different modes of variabil-
ity in vegetation greenness and its covariability with cli-
mate at timescales from submonthly oscillations to long-
term trends. These timescale-specific vegetation–climate co-
oscillations are expected to serve as a reference benchmark
for comparing remote sensing products and terrestrial bio-
sphere models. Specifically, we aim to (i) characterize vari-
ability of biosphere and climate time series explicitly on
multiple timescales; (ii) understand spatial patterns of this
scale-resolved variability and covariability globally; (iii) as-
sess whether characteristic timescale-specific dynamics in
the biosphere and climate relate to established climate classi-
fications or land cover; and (vi) assess differences in correla-
tions of biosphere with climate on short-term, seasonal, and
longer-term timescales.

Biogeosciences, 17, 945–962, 2020 www.biogeosciences.net/17/945/2020/
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2 Methods

The code to produce all primary figures is made available
as supplementary notebook (https://doi.org/10.5281/zenodo.
3611262, Linscheid et al., 2019).

2.1 Data

A global gridded dataset of AVHRR NDVI was retrieved
from the Global Inventory Monitoring and Modeling Sys-
tem (GIMMS, Pinzon and Tucker, 2014) at 15 d tempo-
ral and 0.083◦ spatial resolutions (GIMMS NDVI v3.1).
Original data were aggregated to 0.5◦ by taking the mean
of the corresponding 0.083◦ pixels. Corresponding records
of air temperature (Tair) from the European Centre for
Medium-Range Weather Forecasts (ERA-Interim v4, Dee
et al., 2011) and precipitation (Prec) from the Multi-Source
Weighted-Ensemble Precipitation (MSWEP, Beck et al.,
2019) were aggregated to match temporal resolution by sum-
mation (Prec) or averaging (Tair). Spatial resolution of Tair
was preserved (0.5◦), while MSWEP values were averaged
for spatial resampling (0.083 to 0.5◦). Spatial and temporal
resolution were fixed based on the coarsest resolution among
the input datasets to ensure conservative results. The time
period considered was from 1 January 1982 to 31 Decem-
ber 2015.

2.2 Preprocessing

Gaps in NDVI time series were filled with values from the
mean seasonal cycle computed separately for each grid cell.
Missing values were mostly present at high northern latitudes
(Fig. S1 in the Supplement). Each time series (for each pixel)
was normalized to zero mean and unit variance prior to per-
forming fast Fourier transformation (FFT). For further anal-
ysis, the gap-filled data were discarded. Normalization, gap-
filling, and FFT were performed in the Earth System Data
Lab (https://www.earthsystemdatalab.net/, last access: 1 Au-
gust 2019, Mahecha et al., 2019), using the implementation
based on the programming language Julia. Analyses were
performed on a latitude–longitude grid due to software and
data considerations. In all spatial analyses on the latitude–
longitude grid, the difference in size of grid cells between
high latitudes and the Equator was accounted for through
weighting values by grid cell size. Similarly, in all analyses
that involved sampling of data points, the sampling frequency
was weighted by grid cell size.

2.3 Time series decomposition

All pixel time series were first detrended using a linear
model. We then used discrete FFT to decompose the de-
trended time series into underlying harmonic functions at dif-
ferent frequencies (Brockwell and Davis, 2006). The result-
ing Fourier spectra (Fig. S2) were reconstructed by inverse
FFT into binned scale-specific subsignals for short-term, sea-

sonal, and longer-term oscillations: the seasonal signal was
reconstructed from the Fourier spectrum at periods of 0.9–
1.1 years, plus semiannual and 4-monthly harmonics (i.e.,
0.5- and 0.33-year periods). The short-term signal was recon-
structed from the Fourier spectrum of all periods < 0.9 year,
except the two seasonal harmonics, representing interannual
oscillations that are not directly linked to periods of sea-
sonality. The longer-term signal was reconstructed from all
remaining periods > 1.1 year, representing interannual and
longer timescales. The subsignal binning was centered on the
definition of the seasonal/annual bin similarly to Mahecha
et al. (2010a) and Fürst (2009). The bin ranges were slightly
adapted due to the FFT approach, which yields signals of
different frequencies compared to the approach chosen by
Mahecha et al. (2010a). To identify emerging features occur-
ring at different latitudinal bands, mean values weighted by
pixel area were calculated in the tropics (23.5◦ N to 23.5◦ S),
extratropics (above 23.5◦ N and below 23.5◦ S), and globally.

2.4 Variance per timescale and co-oscillation regimes

For each timescale-specific signal, we calculated the propor-
tion of variance of the original signal explained for each vari-
able per grid cell. Each pixel of the global land surface was
then classified into oscillation regimes depending on which
scale explained the largest amount of variance in each vari-
able (abbreviations: S – short term, A – seasonal, L – longer
term, T – trend). For example, if the variance was dominated
by the seasonal subsignal in NDVI and Tair, and by the short-
term scale in Prec, this pixel would be classified as AAS (in
the order of NDVI, Tair, and Prec). Theoretically, the super-
imposition yields 64 (43) possible combinations, of which
only 26 occurred. For simplicity, our analysis was focused
on the 11 most abundant oscillation regimes (99.7 % of pix-
els).

In order to complement static/traditional classifications,
we compared our oscillation regimes with the Global Land
Cover map project coordinated by the Joint Research Cen-
ter (GLC2000, Bartholomé and Belward, 2005) and climate
zones from the updated Köppen–Geiger global classification
(Kottek et al., 2006, see Fig. S1). Only those pixels that
contained data from all three data streams (Köppen–Geiger
classes A–D, GLC2000, and our oscillation regimes) were
considered in this analysis. Nonvegetated and nonnatural ar-
eas as defined by GLC2000 were disregarded for this analy-
sis and onward (Table S1 in the Supplement). The final land
surface assessed was 75 871 486 km2, corresponding to 70 %
of the vegetated GLC2000 area (Fig. S1). For the same area,
we calculated the V measure (V ), a spatial association in-
dex based on homogeneity and complementarity criteria pro-
posed specifically for thematic map comparison (Nowosad
and Stepinski, 2018). The index ranges from 0 to 1, with 1
being a perfect association, and was used to provide an over-
all comparison between the co-oscillation regime map with
Köppen–Geiger and GLC2000 maps.

www.biogeosciences.net/17/945/2020/ Biogeosciences, 17, 945–962, 2020
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To assess the influence of gap-filling performed in the orig-
inal GIMMS NDVI data due to influence of cloud cover or
snow, we excluded time points that were retrieved by splines
or mean seasonal cycle due to the lack of direct observation
in NDVI (Pinzon and Tucker, 2014) at five different qual-
ity flag thresholds in our classification of oscillation regimes.
Quality flags were aggregated from 0.083 to 0.5◦ by calculat-
ing the fraction of direct observations per 0.5◦ pixel at each
time step. Subsequently, the dominant classification was re-
peated, excluding time steps with less than 30 %, 50 %, 70 %,
90 %, and 95 % direct observations for each grid cell. Fur-
thermore, we repeated the time series decomposition method
for NDVI and the enhanced vegetation index (EVI) from the
Moderate Resolution Imaging Spectroradiometer (MODIS).
The vegetation indices product MOD13C1.006 is provided
by NASA EOSDIS LP DAAC at 0.05◦. Data were aggregated
spatially by averaging valid pixels to 0.5◦ for the overlapping
period with GIMMS NDVI (2001–2015). A comparison of
the dominant oscillation regimes between products was car-
ried out at a pixel basis.

2.5 Correlations between variables at each timescale

We correlated timescale-specific subsignals of NDVI, Tair,
and Prec using Pearson’s correlation coefficient, Spearman
correlation, and partial correlation. For this analysis, all time
points with NDVI < 0.2 were masked in order to consider
only data points corresponding to active vegetation (Fig. S1).
NDVI was lagged one time step (15 d) behind Prec in order
to allow for the response time of vegetation to changes in
water availability. Due to the 15 d temporal resolution of the
data, a response time of up to 15 d is intrinsically included
in our analyses. Each time lag is therefore an additional 15 d,
and shorter responses cannot be assessed. We compared six
different lags (from 15 to 90 d, Fig. S3). When correlating
NDVI and precipitation instantaneously, we found almost ex-
clusively negative correlations for the short-term scale. A lag
of one time step was sufficient to arrive at expected posi-
tive correlations between NDVI and precipitation, while in-
creasing the lag time did not substantially improve or alter
the results. We thus chose to globally use a lag of one time
step (representing a 15–30 d response time) between precip-
itation and NDVI across all scales. Globally, temperature
appeared to be most strongly correlated to NDVI instanta-
neously (not lagged); thus, no time lag was introduced be-
tween air temperature and NDVI. Recent studies assessing
time lags and memory effects between vegetation and cli-
mate also indicate that time lags of around 1 month gener-
ally carry most of the explanatory power for predicting veg-
etation dynamics (Krich et al., 2019; Kraft et al., 2019; Pa-
pagiannopoulou et al., 2017). Correlations of NDVI–Tair and
NDVI–Prec were binned into five quantiles and presented in
a bivariate color map (Teuling et al., 2011). In addition, we
compared differences in the sign of the correlation between

seasonal and longer-term oscillations to detect areas where
the correlation was inverted between scales.

2.6 Assessment of land cover change on time series
decomposition

We assessed whether land cover change over the 30-year
time period influenced our results by extracting pixels with
substantial land cover change as determined by Song et al.
(2018). While linear trends were removed from the time se-
ries before decomposition, changes in amplitude or piece-
wise linear and nonlinear trends may have an impact on our
analyses. First, we aggregated original 0.05◦ data to match
our 0.5◦ spatial resolution by averaging. We then determined
0.5◦ pixels with > 25 % gain or loss of trees, short vege-
tation, or bare ground and assessed whether the observed
changes in land cover (Song et al., 2018) were reflected in
the NDVI time series to a degree that substantially affected
the classification of dominant oscillation regimes.

2.7 Comparison of Fourier transform with empirical
mode decomposition

While the FFT approach is the most classical time series
decomposition technique, there are more data-adaptive al-
ternatives available (Huang et al., 1998; Ghil, 2002; Paluš
and Novotná, 2008). In order to understand whether differ-
ent methods would lead to different insight, we compared the
employed FFT approach with the more data-adaptive empir-
ical mode decomposition (EMD). EMD repeatedly extracts
subsignals (intrinsic mode functions, IMFs) from the time
series by interpolating a spline between local minima and
maxima until the residuals converge to approximately con-
stant values (Huang et al., 1998). We used an ensemble-based
modification of the EMD algorithm, the complete ensemble
empirical mode decomposition with adaptive noise (CEEM-
DAN, Colominas et al., 2014; Torres et al., 2011), and a
frequency-binning approach to obtain frequency bands com-
parable to the ones chosen for FFT. In contrast to the regular
EMD, CEEMDAN employs an ensemble approach in which
noise is added to the data before decomposition and ensem-
ble averages for each IMF are returned, so that a more ro-
bust end result is obtained (Colominas et al., 2014; Torres
et al., 2011). Briefly, in CEEMDAN each IMF is computed
as the mean of an ensemble of IMFs retrieved from noisy
data copies. This IMF is subtracted from the original signal,
and the residual signal is used as input for retrieving the next
IMF (Colominas et al., 2014; Torres et al., 2011). As such,
CEEMDAN is less prone to mode mixing than EMD while
still fulfilling the completeness property of EMD (i.e., the
sum of all IMFs equals the original signal). As IMFs result-
ing from EMD do not have a fixed frequency assigned, we
then associated each IMF with a timescale by measuring the
distance between all local maxima and minima as a proxy for
the dominating wavelength of the signal. Distances between
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each two maxima or minima were classified as short-term,
seasonal, or longer-term depending on their length. The IMF
was then categorized by the majority distance category and
added into the respective timescale bin. For example, if an
IMF contained 25 seasonal cycles and 5 short-term cycles, it
was classified as seasonal and added to the seasonal signal
bin. IMFs in each bin were combined by summation.

3 Results

3.1 Time series variance across timescales

Assessing the contribution of each timescale subsignal to the
signal variance at each grid cell, we find that for NDVI most
of the temporal variability is expectedly captured by the sea-
sonal cycle (71 % of the global variance), especially above
the Tropic of Cancer (23.5◦ N) (Fig. 1, Table S2). Short-
term oscillations contribute dominantly in parts of tropi-
cal America and Southeast Asia, while longer-term compo-
nents are mainly observed in Australia, South Africa, parts
of Argentina, and northern Mexico. Specifically, short-term
and longer-term signals together contribute 27 % of the to-
tal NDVI variance globally and 38 % in the equatorial region
(23.5◦N to 23.5◦S).

Similarly, Tair is strongly dominated by seasonal oscilla-
tions in the extratropics above/below 23.5◦ N/S (94 % and
90 %, respectively, Table S2) as would be expected. Even
in the tropics, short-term and longer-term components con-
tribute only 30 % of the variance (and 11 % and 4 % of global
variance, respectively, Table S2). In contrast, short-term os-
cillations dominate global precipitation variance before the
seasonal cycle (52 % and 41 % of global variance each, Ta-
ble S2). An east–west gradient of precipitation over Eurasia
stands out, changing from predominantly short-term to pre-
dominantly seasonal signal variance. In the tropics, a sim-
ilar contribution from both oscillations is found (42 % and
41 %, respectively, Table S2). Linear trends removed before
FFT decomposition had a minor influence on overall vari-
ance (Fig. 1). In summary, short-term and longer-term signals
show substantial, regionally focused contributions to signal
variance. These regions differ between variables, suggesting
complex patterns of temporal interaction.

3.2 Classification of co-oscillations regimes

Given the contrasting, spatially heterogeneous patterns ob-
served in different variables in Fig. 1, we investigated how
scale-specific oscillations of biosphere and climate co-occur
globally. We combined the dominant scale of variability for
each variable in each grid cell (Fig. S4) and found that 84.5 %
of the assessed area is dominated by seasonal oscillations of
NDVI, 9 % by short-term oscillations in NDVI, and 6.5 %
by longer-term oscillations in NDVI (0.03 % captured by the
trend). Combining the maps for all three variables into a
map of codominant oscillation regimes (Fig. 2, Table S3),

we find that seasonal NDVI regimes co-occur predominantly
with seasonal Tair, as well as seasonal or short-term Prec
regimes (blue regions). Dominant seasonal cycles of NDVI
and Tair, as well as fast oscillation regimes in Prec, are ex-
pected over large parts of the globe, which is reflected by
the large extent of the AAS and AAA classes in this anal-
ysis. Beyond this expected solar-cycle-induced behavior, a
number of differentiated oscillation classes stand out: short-
term NDVI oscillations occur mainly in the South American
and Asian tropics, in a multitude of combinations with pre-
dominantly seasonal or short-term Tair and Prec (light-green,
red, and light-red regions). Longer-term oscillation regimes
of NDVI co-occur with seasonal Tair and short-term Prec
regimes (dark green regions) around southwestern Africa,
southeastern South America, and Australia. Interestingly, the
dominant scales in climatic variables are not always associ-
ated with similar dominant regimes in NDVI dynamics, sug-
gesting complex or additional driving mechanisms in these
heterogeneous regions. In fact, even in areas where tempera-
ture or precipitation has a seasonal cycle, NDVI can be dom-
inated by short-term or longer-term oscillations: more than
90 % of the area with short-term NDVI regimes exhibits pre-
dominantly seasonal Tair, of which 36 % also shows predom-
inantly seasonal Prec (SAA) and 55 % predominantly short-
term Prec (SAS, Table S3). All areas where NDVI is predom-
inantly longer term are classified as seasonal Tair and short-
term Prec regimes (LAS, Table S3).

To account for the influence of clouds and snow cover
in the GIMMS NDVI record, especially in the tropics and
northern regions, we excluded time points where pixels con-
tained a high proportion of gap-filled values. We found that
overall less than 1.5 % of pixels changed their dominant
oscillation class when only pixels with more than 0.7 di-
rect observation fraction were considered. Even when the
highest-quality threshold was applied (0.95 direct observa-
tion fraction), only 2.6 % of pixels changed dominant oscil-
lation class (Fig. S5). Short-term pixels were the most af-
fected by changes in dominant oscillation (12.9 % and 20.8 %
for 0.7 and 0.95 direct observation thresholds respectively),
while seasonal pixels showed the highest fraction of gap-
filling overall (Fig. S5). As a further validation, we found
very similar results when repeating the time series decom-
position and the dominant oscillation regime classification
based on EVI and NDVI from MODIS (Didan et al., 2019;
Huete, 1997; Huete et al., 2002) for the years 2001–2015
(Fig. S6).

We investigated to what extent our classification into os-
cillation regimes shows patterns of temporal vegetation–
climate relations that are not represented by conventional
static classifications of the land surface. To determine over-
lap and differences between the classification of tempo-
ral vegetation–climate co-oscillations with static classifica-
tions of land cover (GLC2000) and Köppen–Geiger climate
classes, we assessed their spatial association by the V mea-
sure (Nowosad and Stepinski, 2018). The V measures of co-
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Figure 1. Global distribution of timescale-specific variance (relative spectral powers) of the normalized difference vegetation index (NDVI),
air temperature (Tair), and precipitation (Prec). Normalized time series of NDVI, Tair, and Prec (columns) were decomposed by fast Fourier
transformation and reconstructed into short-term (intra-annual), seasonal (annual), and longer-term (interannual) components (rows). The
relative contribution of each scale-specific signal to overall variance was determined at each grid cell. Globally, most of the variance of
NDVI and Tair is contained in the seasonal component (red colors), while Prec shows a high contribution of variance from the short-term
component. The semiannual cycle is included in the seasonal band. Upper-right-corner values show the percentage of overall variance
explained by each timescale.

oscillation regimes with Köppen–Geiger and GLC2000 were
V = 0.17 and V = 0.11, respectively, indicating weak asso-
ciation with both static classifications. Hence, our classifica-
tion contains information largely complementary to the com-
pared climate and land cover classifications. Yet we observed
a slightly stronger association with Köppen–Geiger than with
GLC2000, also when comparing homogeneity and comple-
mentarity (Table S4). Comparing the three classifications
among each other, we find that dominant temporal patterns in
NDVI can be linked to certain land cover types such as shrubs
and broadleaf forest: Sankey diagrams (Fig. 2b and c) dis-
play which proportion of land surface is commonly classified
across different class combinations in the three data layers
of the co-oscillation regime, GLC2000, and Köppen–Geiger
for evergreen broadleaf forest (EBF, Fig. 2b) and areas domi-
nated by longer-term NDVI (Fig. 2c). We find that EBF is the
most diverse among land cover classes in terms of our tempo-
ral classification, with 35 % dominated by short-term NDVI

oscillation (Fig. 2b). In contrast, more than 95 % of decidu-
ous and evergreen needleleaf forests (DNF and ENF) and de-
ciduous broadleaf forests (DBF) are dominated by seasonal
NDVI regimes (Table S3). We further find a strong associa-
tion of longer-term NDVI regimes with shrubs (21 % of the
area dominated by longer-term NDVI), herbaceous (26 %),
and sparse shrubs/herbaceous (49 %) land cover types in arid
regions (Fig. 2c, overall 93 % of the LAS area coincides
with Köppen–Geiger class B). Thus, differences within and
among land cover and climate types exist when assessing
temporal co-oscillations of vegetation and climate.

3.3 Assessment of land cover change on time series
decomposition

In the above analyses we did not aim to explicitly detect the
effect of land cover or land use change (LCLUC), but never-
theless LCLUC could have an influence on our NDVI classi-
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Figure 2. Classification of land surface by dominant scale of variability in NDVI and climate, and its relation to land cover and mean
climate. (a) Dominant scale of variability was determined for NDVI, Tair, and Prec separately for each grid cell and summarized as unique
combinations between variables (S – short term, A – seasonal, L – longer term, T – trend, listed in the order of NDVI, Tair, and Prec). Only
the 11 most common classes are shown. The semiannual cycle is included in the seasonal band. (b, c) Sankey diagrams (river plots) showing
associations of pixels for (b) evergreen broadleaf forest (EBF) and (c) regions of dominant long-term oscillations in NDVI (LAS class) to
oscillation regime (FFT), land cover class (GLC2000), and Köppen–Geiger (KG) climate class. The width of the ribbons is proportional
to the area that is commonly classified into the corresponding GLC2000, KG, or oscillation classes. DBF: deciduous broadleaf forest;
Hb_closedopen: herbaceous closed open land cover; DSh: deciduous shrublands; HbSh_sparse: sparse herbaceous and shrub vegetation;
Equatorial: KG class A; Arid: KG class B; WarmTemp: KG class C; NDVI: normalized difference vegetation index; Tair: air temperature;
Prec: precipitation.

fication (Fig. 2). We assessed whether changes in vegetation
cover over the 30-year period severely affected our classifi-
cation by inspecting pixels with > 25 % change in the frac-
tion of trees, short vegetation, or bare ground according to
Song et al. (2018). Notably, very few of such pixels showed
marked signs of land cover change reflected in NDVI time
series at all, which is likely due to the coarse spatial reso-
lution of the data used in this study as compared to previ-
ous studies focused on detecting LCLUC (Song et al., 2018;

Fensholt et al., 2015): at 0.5◦ resolution, most pixels rep-
resent mixed signals which obscure most of the details that
would allow for detecting land cover changes. In those pix-
els where we did see a clear progression in NDVI over time,
the method did adequately capture this progression, e.g., by
correctly reflecting an increasing amplitude of the seasonal
cycle and/or shifting baseline (Fig. S7). However, the ma-
jority of such pixels with pronounced positive or negative
NDVI progression were located in agricultural areas or ar-
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eas of urbanization, which had a priori been excluded from
downstream analyses. Overall, the change in vegetation over
time did not have a widespread influence on the classification
of dominant scale and oscillation regimes at the given spatial
resolution.

3.4 Correlations of NDVI with climate on multiple
scales

To inspect relationships of vegetation with climate at multi-
ple timescales, we correlated NDVI with Tair and Prec at each
pixel for each timescale (Fig. 3). We found different correla-
tion patterns depending on the timescale: while all possible
combinations of correlation between NDVI and Tair or Prec
exist at the seasonal scale, short-term and longer-term scales
show predominantly Tair+/Prec− or Tair−/Prec+ relation-
ships. On the seasonal scale, NDVI correlates positively with
Tair and Prec above 40◦ N, whereas in the other latitudes all
possible relations are observed. In particular, South America
shows a highly diverse pattern of correlations. Differences
exists across the tropics, where South America and Southeast
Asia display mainly negative correlation with Prec, whereas
African tropics display positive correlation with Prec. Semi-
arid regions show negative correlations with Tair as would be
expected. While some of the patters are known, this correla-
tion of decomposed oscillations reveals a more differentiated
picture of ecosystem variability in comparison with the un-
decomposed data (Fig. S8). Notably, correlations on short-
and longer-term scales partially show opposite signs com-
pared to the seasonal scale, e.g., in South America, south-
ern Africa, and Central America. Repeating the analysis with
Spearman correlation and partial correlation returned similar
results (Figs. S9 and S10). Due to the known saturation ef-
fects of NDVI against plant productivity over areas of dense
biomass, we repeated the analysis with MODIS EVI. We
found overall similar results across timescales, but correla-
tions with Tair turned from negative to positive in parts of
Central and South America, as well as India (Fig. S11), in-
dicating that NDVI saturation may affect the results obtained
from GIMMS long-term records in some areas.

We again compared the observed patterns with vegeta-
tion types, to understand how different ecosystems react
at different timescales, and found that different land cover
classes showed distinct correlation patterns (Fig. 3b and c).
Broadleaf evergreen forest shows the most diverse correla-
tions on a seasonal scale (Fig. 3b). For short-term oscil-
lations, the strongest correlations were found in semiarid
shrublands and savannas, which spatially coincide with pat-
terns observed in the longer term: for longer-term oscilla-
tions, the strong correlation Prec+ and Tair− was again re-
lated primarily to shrublands and savannas (Fig. 3a blue ar-
eas, Fig. 3c). We also observed a widespread positive longer-
term correlation of NDVI with Tair in the northern latitudes.

Comparing with static classifications, we found that
Köppen–Geiger climate classes had the most prominent dif-

ferentiating effect for correlation patterns, and different cli-
mate classes occupy distinct patterns in this correlation space
across scales (Fig. S12). Different land cover types generally
show similar correlations within one climate zone, but ex-
ceptions exist (Fig. S13). Most prominently, EBF shows the
most heterogeneous, spatially varying correlations on a sea-
sonal scale. All land cover types show a confined correlation
pattern of mainly Tair+/Prec− or Tair−/Prec+ at the longer-
term scale (Fig. 3c), which is further differentiated by climate
zone (Fig. S14).

Assessing correlations across the different timescales, we
find that the majority of northern temperate regions (Köppen
class D) are positively correlated with Tair on all timescales,
but correlation with Prec varies (zero for short-term and
longer-term as well as seasonal scale: generally negative on
the coast, positive in the interior continent). The equatorial
region, South America, Africa, and Southeast Asia exhibit
different correlation patterns with climate despite similar
land cover types (tropical forest). In some regions, opposing
correlations can be observed across timescales (Fig. 4a). For
example, correlation of NDVI with Tair in southern Africa
varies from negative on the short-term scale to positive on the
seasonal scale and back to negative on the longer-term scale.
As another example, on the east coast of Australia, NDVI
has a low correlation with precipitation on the seasonal scale
but high in the longer term. Assessing this globally, corre-
lations between NDVI and Tair show inverted signs between
seasonal and longer-term scales in 15.4 % of the vegetated
land surface area (Fig. 4a and c). The same is true for NDVI
and Prec in 27.3 % of the vegetated land surface area (Fig. 4b
and c).

In summary, we find that correlations between NDVI and
climate variables can change strongly between timescales.
Semiarid ecosystems show most prominent short-term and
longer-term signatures, while tropical rainforest show the
most diverse relationships between variables. These patterns
point to complex ecosystem responses to climate at differ-
ent timescales, indicating that scale-specific ecosystem char-
acterization is necessary to fully understand their temporal
dynamics.

3.5 Comparison of fast Fourier transformation with
empirical mode decomposition

FFT decomposes a signal in the frequency domain under
the assumption that the underlying signals are sinusoidal,
time-invariant, and additive (Brockwell and Davis, 2006).
Although resulting power spectra and frequency-invariant
modes of oscillation are conveniently interpretable, not all
ecological processes can be expected to follow regular peri-
odic and additive oscillatory patterns approximated by sine
and cosine waves over time. We chose FFT decomposition
due to its superior computational speed and stable global ap-
plicability, i.e., its ability to return homogeneous spatiotem-
poral patterns in our analysis. To ensure that the above limita-
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Figure 3. Global distribution of timescale-specific correlation of NDVI with air temperature (Tair) and precipitation (Prec). (a) Correlations
of NDVI with Tair and NDVI with Prec were calculated between decomposed signals at each grid cell. NDVI was lagged one time step
(15 d) behind precipitation to allow for the response time; Tair was correlated instantaneously. Color scale represents both correlations,
binned into quantiles (e.g., purple – high positive correlation of NDVI with both Tair and Prec, green – high negative correlation of NDVI
with both Tair and Prec). Data points with NDVI < 0.2 were excluded to avoid influence of inactive vegetation or nonvegetated time points.
(b, c) Correlations for different land cover classes (GLC2000) in the seasonal (b) and longer-term (c) scale.
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Figure 4. Global comparison of differences in the sign of the correlation between the annual and long-term scale for NDVI and air temper-
ature (a), NDVI and precipitation (b), and summary of both (c). Areas in which the sign of the correlation is inverted between seasonal and
longer-term scales are highlighted in color, and areas where the sign of the correlation is identical between scales are highlighted in gray (a,
b). Areas with correlations between −0.2 and 0.2 were not considered.

tions did not confound our results, we compared the FFT ap-
proach to the data-adaptive empirical mode decomposition,
which could be expected to be better suited for exploring
nonstationary ecological processes over time. In a test case
over Europe, we found that our binning approach resulted
in comparable results for the two methods, in terms of both
spatial and temporal behavior of the signals (Figs. S15–S18).
CEEMDAN generally attributed slightly less signal variance

to the short-term and slightly more to the seasonal cycle for
both Tair and NDVI and generally showed less modulation
in the longer-term signals. Nevertheless, overall results were
remarkably comparable. However, because CEEMDAN is
a data-adaptive method a higher spatial heterogeneity and
spatially varying sensitivity to the noise parameter were ob-
served, which currently constrains a global implementation
of the analysis.
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4 Discussion

In this study, we present a global characterization of bio-
sphere variability at multiple timescales from weeks to
decades where a natural surface classification emerges. We
find that a substantial fraction of terrestrial ecosystems is
characterized by either short- or longer-term NDVI oscilla-
tions (27 % of variance globally). The grid cells dominated
by longer-term oscillations in NDVI concentrate mainly in
semiarid shrublands, and the short-term-dominated grid cells
concentrate mainly in equatorial latitude forests. Patterns in
NDVI, air temperature, and precipitation variability are spa-
tially heterogeneous: the classification of codominant oscil-
lations is particularly homogeneous for temperate and boreal
regions, while the tropics exhibit complex patterns of codom-
inating timescales in vegetation and climate. This lack of cor-
respondence in dominant temporal oscillations suggests that
certain modes of variability in ecosystem–atmosphere inter-
actions can be potentially induced by different exogenous, or
even endogenous, dynamics. This picture is further differen-
tiated by the finding that correlations between NDVI and cli-
mate variables differ between timescales. This highlights the
need to assess vegetation sensitivity to climate specifically
on different scales in order to understand complex patterns of
atmosphere–biosphere interactions in time, where also con-
founding factors should be considered.

4.1 Comparison across timescales points to complex
temporal signatures

The combination of timescale-specific classification (Fig. 2)
and correlation (Fig. 3) allowed us to characterize the ma-
jor scales of vegetation variability in relation to climate.
The classification provides an additional layer of ecosystem
characterization beyond common classifications such as land
cover classes or the effective Köppen–Geiger climate classi-
fications (Kottek et al., 2006; Koeppen, 1900; Geiger, 1954),
which only consider seasonality besides mean climate states,
increasing our understanding of dynamic vegetation prop-
erties across timescales. The complementarity of this data-
driven classification of vegetation dynamics, extracted from
the time series and summarized in the co-oscillation classi-
fication, is supported by the low spatial association calcu-
lated from the V measure. Our findings show that the domi-
nant oscillation of NDVI is often, but not always, related to
dominant oscillations of Tair and Prec (Fig. 2). For example,
most of the land surface is dominated by annual oscillations
in NDVI and Tair, combined with either seasonal or short-
term dominance of Prec (AAA and AAS classes). In many of
these regions, air temperature alone or both air temperature
and precipitation are limiting factors for plant growth (Ne-
mani, 2003; Seddon et al., 2016) and thus expected to drive
vegetation dynamics. In contrast, heterogeneous spatial pat-
terns are observed in equatorial and semiarid regions, where
different dominant scales of oscillation are found for NDVI

and climatic variables. Here, the relationship between vari-
ables may depend on additional factors, and/or scales may
show interactive effects. In the tropics, radiation is proposed
to be one of the main drivers of NDVI (Nemani, 2003; Sed-
don et al., 2016), which could partially explain the lack of
temporal coherence between NDVI, Tair, and Prec. Dominant
short-term oscillations of NDVI (SSS, SAS, SAA) might be
explained by climate intraseasonality in the tropics due to
the Madden–Julian Oscillation (MJO). The MJO is defined
as anomalies in the atmospheric pressure between 10◦ N and
10◦ S in the Indian Ocean region that propagate eastward to
the eastern Pacific (Madden and Julian, 1971). Depending on
the region and phase, its oscillatory period ranges between
20 and 90 d. MJO is considered the dominant component of
intraseasonal climate variability in the tropics (Zhang, 2013).
We see MJO as one feasible driver of short-term NDVI oscil-
lations through alterations of precipitation and temperature
(Zhang, 2013; Hidayat, 2016; Mayta et al., 2019). However,
MJO impacts, teleconnections, and predictability are still in-
sufficiently understood (Zhang, 2013; Wang et al., 2019).
Short-term oscillations of vegetation in those regions need to
be further investigated, including other sources of intrasea-
sonal variation, connections with climatic events, and data
constraints. Additionally, regional analysis at higher spatial
resolution might reveal details in local climatic variability, as
well as other nonclimatic processes such as land use change
or crop rotations, among others. Comparing variables across
multiple timescales can point to areas with complex temporal
signatures that require further attention.

4.2 Nondominant subsignals reveal short- and
longer-term ecosystem dynamics

From assessing relationships among variables on multiple
timescales, we conclude that (i) nondominant subsignals in
climate variables may dominate the biospheric response,
(ii) possible links may exist between short-term and longer-
term scales, and (iii) correlations of NDVI with climate vari-
ables differ between scales.

The dominance of long-term NDVI in semiarid regions co-
incides with strong correlations of longer-term NDVI with
Prec (positive) and Tair (negative). This indicates that longer-
term variation in precipitation exerts a strong influence on
NDVI variability in these regions despite contributing a mi-
nor portion of precipitation variation itself. Overall, longer-
term correlation of precipitation with NDVI is higher than
seasonal correlation (by at least 0.2) in 73 % of the area
classified as LAS, where simultaneously longer-term vari-
ance of precipitation itself contributes < 20 % of the vari-
ance (3 939 362 km2). Due to their highly plastic interan-
nual vegetation dynamics, semiarid ecosystems exert a strong
influence on interannual variability of the land CO2 sink
(Ahlstrom et al., 2015; Poulter et al., 2014; Zhang et al.,
2016). Longer-term correlations between variables also show
broad patterns related to temperature-induced greening in the
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northern latitudes (Pan et al., 2018; Keenan and Riley, 2018;
Zhu et al., 2016; Park et al., 2016). This is in agreement
with previous findings using higher-resolution data (Clinton
et al., 2014). Thus, nondominant subsignals in climate vari-
ables may dominate the biospheric response, stressing their
possible long-term impact on vegetation dynamics.

Vegetation may respond to interannual climate variation
on both intra- and interannual scales (Meir et al., 2018). Such
interannual climate variation may occur, e.g., in the form of
precipitation variation or periodic atmospheric fluctuations
like the El Niño–Southern Oscillation (ENSO, Poveda and
Salazar, 2004; Kogan and Guo, 2017; Liu et al., 2017), the
Pacific Decadal Oscillation (Chen et al., 2017), or Indian
Ocean dynamics (Hawinkel et al., 2015). As a prominent
example in our study, for semiarid regions both short- and
longer-term correlations indicate a strong coupling to vari-
ations in water availability for shrublands and herbaceous
land cover. These results harmonize with the observed fast
response of vegetation to water deficit in arid and semiarid
regions (Vicente-Serrano et al., 2013; Wang et al., 2016), as
well as the observation of strong water memory effects in
these regions (Liu et al., 2018). Some of these patterns match
regions where vegetation is stressed during ENSO events due
to precipitation decrease (Ahlstrom et al., 2015; Kogan and
Guo, 2017), generating a possible link between short-term
and longer-term scales. Previous studies suggest that climate
forcing on one timescale can be amplified or dampened in
corresponding vegetation responses (Stoy et al., 2009), or
transferred to another timescale (Katul et al., 2001), preserv-
ing the system’s entropy but creating complex interactions
across scales. This highlights the need to further investigate
interactions between different timescales globally in long-
term EO records.

Finally, for some regions the correlation of variables can
differ between timescales. In southern Africa, for example,
this may be due to a pronounced temperature-dependent an-
nual cycle of vegetation but a longer-term negative effect
of warming temperatures on vegetation productivity. Thus,
time series decomposition offers important differentiation of
atmosphere–biosphere covariation across scales. This may
serve as a platform for generating hypotheses in areas where
contrasting dominant oscillations and/or correlations across
scales are observed.

4.3 Differences between land cover classes highlight
the tropics

By characterizing the temporal behavior of NDVI and cli-
mate, we observed different vegetation dynamics between
land cover types. Differences in power spectra between
plant functional types have been shown before on shorter
timescales with flux data (Stoy et al., 2009). Assessing this
phenomenon globally, we find both homogeneous and het-
erogeneous behavior within land cover types, showing non-
trivial global patterns of the influence of land cover and cli-

mate on vegetation variability across scales. For example,
36 % of evergreen broadleaf forests are dominated by short-
term oscillations in NDVI, while other forest types are dom-
inated almost exclusively by seasonal NDVI oscillations. In-
deed, the most heterogeneous patterns of codominating os-
cillations and correlations were found for tropical regions,
within and across continents. In African tropics, NDVI is
predominantly seasonal and correlation of NDVI with pre-
cipitation is always positive, while in most of the remaining
tropics, NDVI is dominated by short-term oscillations and
shows a predominantly negative correlation with Prec on a
seasonal scale in the central Amazon and Southeast Asian
tropical forests. This could be explained by different amounts
of mean annual precipitation (MAP) falling in these regions,
which cause a pronounced wet–dry seasonality in Africa and
the central Amazon but not in the northwest or outer regions
of the Amazon and SE Asia where MAP is in excess of an-
nual vegetation water demand (Guan et al., 2015). In such
areas, correlation with Prec may, e.g., become negative when
water is already in excess and clouded/rainy seasons cause
limitation in radiation available for plant growth. Similarly,
temperature is not usually limiting canopy development in
the tropics (rather the contrary, Huang et al., 2019), which
may explain negative correlations with Tair. As NDVI sat-
urates over regions of dense vegetation, results in the trop-
ics need to be interpreted with caution, and negative corre-
lation with Tair could alternatively be explained by under-
estimation of the seasonal cycle over tropical EBF. In fact,
negative correlations with Tair were observed less frequently
when repeating the analysis with MODIS EVI (Fig. S11), in-
dicating that saturation of NDVI against plant productivity
might affect our results in densely vegetated areas such as
the tropics. Overall, despite known drawbacks of NDVI as a
proxy for plant productivity, the long-term NDVI record gen-
erally agrees well with results obtained from the considerably
shorter EVI time series, suggesting that it is a good proxy for
vegetation activity across timescales over large parts of the
global land surface.

It is relevant to emphasize that our results might be af-
fected by noise related to the continuous presence of clouds
in the tropics and other atmospheric artifacts. To estimate this
effect, we excluded pixels with a low number of direct ob-
servations and recalculated the dominant oscillation regime.
Short-term oscillations were most affected in this analysis,
but roughly 80 % were consistently dominated by short-term
oscillation under the strictest scenario, providing higher con-
fidence in our results for the tropics (Fig. S5).

The observed scale-specific patterns highlight the need to
assess dynamic vegetation properties in time as differentiat-
ing factors beyond land cover type and mean climate.
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4.4 Results prove robust against changes in data source
and decomposition method

We used long-term GIMMS NDVI records in combination
with Fourier transformation in this analysis, well aware of
their potential limitations (van Leeuwen et al., 2006; Beck
et al., 2011; Fensholt and Proud, 2012; Pinzon and Tucker,
2014). Further consolidating our results against methodolog-
ical artifacts of the data source and decomposition method,
we found that results were not broadly affected or conclu-
sions changed when repeating analyses with MODIS NDVI
and EVI or empirical mode decomposition, when exclud-
ing gap-filled values as discussed above, or when testing
the effect of land use change on decomposed oscillations.
Specifically, the analysis of MODIS NDVI and EVI returned
a similar classification of dominant timescales in vegeta-
tion (Fig. S6). Although short-term oscillations in tropical
NDVI may partly reflect noise introduced by cloud cover,
heavy aerosol conditions, and biomass burning, our results
based on EVI, which is less sensitive to aerosols and haze
(Miura et al., 2012), resulted in even more, rather than less,
pixels being classified into the short-term oscillation regime
(Fig. S6). However, dense clouds are still a limitation when
optical remote sensing data are used. EMD decomposition
consistently reproduced results of FFT in space and time
for all variables (Figs. S15–S18). Excluding gap-filled values
originating from snow or cloud inference from the GIMMS
NDVI dataset changed the dominant oscillation for only up
to 2.3 % of pixels overall, and 20 % of short-term classified
pixels, when the strictest threshold was applied (Fig. S5).
Land cover and land use change were hardly detectable at the
coarse spatial resolution of 0.5◦ employed and had a minor
effect on the distribution of signal variance to the different
timescale (Fig. S7). In summary, our results proved robust
against data source and decomposition method.

4.5 Limitations and outlook

The current study presents a first global characterization
of atmosphere–biosphere variability at multiple timescales
from weeks to decades. We chose the longest available
satellite-retrieved time series of vegetation, GIMMS NDVI,
to be able to assess relations of atmosphere–biosphere co-
variability over more than three decades. We find hetero-
geneous temporal patterns of biosphere–climate responses
across timescales. Known limitations of NDVI include sat-
uration effect at high canopy cover, especially relevant in the
tropics, as well as influence by soil reflectance in sparsely
vegetated areas. These effects could thus influence our re-
sults and the emerging patterns should be compared with
newer satellite products such as Sun-induced fluorescence
(SIF), which are coupled more directly to plant physiology
and photosynthesis (Badgley et al., 2017; Koren et al., 2018)
but are only available for short time periods. Considering fur-
ther variables influencing vegetation dynamics, such as radi-

ation, cloud cover, soil moisture, fires, or storms could bring
additional insight into the drivers of vegetation dynamics, es-
pecially for poorly explained regions in the current analy-
sis, such as the tropics. In future studies, longer-term climate
signals could be compared with climate oscillations such as
ENSO to gain further understanding of their effect on long-
term ecosystem variability.

Analysis of time lag effects between atmospheric forcing
and vegetation response may bring additional valuable in-
sight into ecosystem functioning, yet assessing meaningful
time lags across timescales is challenging due to a variety
processes involved. Plausible time lags from months to years
have been suggested between climate forcing and vegetation
response and/or ecosystem carbon exchange through direct
and indirect effects (e.g., Braswell et al., 1997, 2005; Vuk-
ićević et al., 2001; Krich et al., 2019; Kraft et al., 2019; Papa-
giannopoulou et al., 2017). Assessing lagged vegetation re-
sponses across timescales may help to disentangle such co-
existing time lags to form a global, timescale-resolved pic-
ture of vegetation responses to climate. To account for the
confounding effect of autocorrelation and spurious links be-
tween variables, methods like causal inference (Runge et al.,
2013, 2019; Krich et al., 2019) should be applied in order to
retrieve causal time lags between variables.

Our analyses are conducted at 0.5◦ spatial and 15 d tem-
poral resolution, which may obscure short-term and local
vegetation–climate relations, and instead only provide aver-
age relationships of variables within each grid cell. Our anal-
yses may thus not be representative in heterogeneous land-
scapes such as coastlines or mountains. Regions standing out
through heterogeneous patterns, such as the Amazon, should
be further investigated regionally at higher temporal and spa-
tial resolution whenever consistent data streams permit this
to better understand local influence of climate, vegetation and
topography on atmosphere–biosphere covariation. Recently,
studies in the Amazon based on products such as SIF have
detected differences in vegetation anomalies within the basin
during El Niño events (Koren et al., 2018). The identified
asymmetry in the east–west gradient coincides with observed
changes in temperature, soil moisture, and GRACE-derived
water storage. Our results pave a way for better understand-
ing the spatial heterogeneity of ecosystem responses to cli-
mate variability (van Schaik et al., 2018). Here, assessing
temporal patterns beyond correlation (see Wu et al., 2015)
will provide additional insight into the temporal evolution of
vegetation dynamics and the carbon cycle variability.

5 Conclusions

In conclusion, decomposing vegetation and climate time
series into discrete subsignals allows us to disentangle
atmosphere–biosphere oscillations from short- to longer-
term timescales. A key finding is that short-term and longer-
term modes of variability can dominate regional patterns
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of ecosystem dynamics: 18 % of land area is effectively
characterized by intra-annual variability and 9 % by longer-
term modes of NDVI. We derived a global map of domi-
nant patterns of vegetation–climate covariability on multiple
timescales. The emerging classification of variability regimes
allows us to generate new hypotheses on land–atmosphere
interactions. In particular, we can now delineate areas with
complex spatiotemporal vegetation signatures. For exam-
ple, tropical evergreen forests are dominated by short-term
oscillations (36 %), while shrublands and herbaceous land
cover make up > 90 % of the area dominated by longer-
term NDVI, suggesting important roles in intra- and inter-
annual biosphere dynamics of these land cover classes. Im-
portantly, changing correlations of NDVI with climate across
timescales suggest that climate sensitivities of vegetation can
vary with timescale. Globally, 15.4 % of the land area shows
opposing correlation of NDVI to Tair between annual and
long-term modes of variability, while 27.3 % shows opposite
correlations of NDVI and Prec. These findings underline the
relevance of advancing our understanding of scale-specific
climate sensitivities. In southern Africa, for instance, the re-
lation of vegetation to temperature is inverted across scales,
as well as in parts of Australia where the same is true for pre-
cipitation. Differentiating such responses is essential to fully
comprehend long-term biosphere dynamics and project them
into the future. Understanding the interaction of climate and
vegetation on separate timescales, warranting that indepen-
dent processes are not obscured by dominant ones, is essen-
tial in times where extreme climate conditions of increasing
frequency exert a repeated perturbing influence on ecosystem
dynamics (Defriez and Reuman, 2017). This needs to be con-
sidered for short- and long-term vegetation modeling under
changing climate scenarios.
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Vukićević, T., Braswell, B. H., and Schimel, D.: A Diagnostic
Study of Temperature Controls on Global Terrestrial Carbon Ex-
change, Tellus B, 53, 150–170, https://doi.org/10.1034/j.1600-
0889.2001.d01-13.x, 2001.

Wang, B., Chen, G., and Liu, F.: Diversity of the
Madden–Julian Oscillation, Sci. Adv., 5, eaax0220,
https://doi.org/10.1126/sciadv.aax0220, 2019.

Wang, J., Zeng, N., and Wang, M.: Interannual variabil-
ity of the atmospheric CO2 growth rate: roles of pre-
cipitation and temperature, Biogeosciences, 13, 2339–2352,
https://doi.org/10.5194/bg-13-2339-2016, 2016.

Wu, D., Zhao, X., Liang, S., Zhou, T., Huang, K., Tang, B.,
and Zhao, W.: Time-Lag Effects of Global Vegetation Re-
sponses to Climate Change, Glob. Change Biol., 21, 3520–3531,
https://doi.org/10.1111/gcb.12945, 2015.

Zeng, F.-W., Collatz, G., Pinzon, J., and Ivanoff, A.: Evaluating and
Quantifying the Climate-Driven Interannual Variability in Global
Inventory Modeling and Mapping Studies (GIMMS) Normalized
Difference Vegetation Index (NDVI3g) at Global Scales, Remote
Sens., 5, 3918–3950, https://doi.org/10.3390/rs5083918, 2013.

Zhang, C.: Madden–Julian Oscillation: Bridging Weather
and Climate, B. Am. Meteorol. Soc., 94, 1849–1870,
https://doi.org/10.1175/BAMS-D-12-00026.1, 2013.

Zhang, Y., Xiao, X., Guanter, L., Zhou, S., Ciais, P., Joiner, J.,
Sitch, S., Wu, X., Nabel, J., Dong, J., Kato, E., Jain, A. K.,
Wiltshire, A., and Stocker, B. D.: Precipitation and Carbon-
Water Coupling Jointly Control the Interannual Variability of
Global Land Gross Primary Production, Sci. Rep.-UK, 6, 39748,
https://doi.org/10.1038/srep39748, 2016.

Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell,
J. G., Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao,

www.biogeosciences.net/17/945/2020/ Biogeosciences, 17, 945–962, 2020



962 N. Linscheid et al.: Multiscale vegetation–climate dynamics

C., Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y.,
Liu, R., Mao, J., Pan, Y., Peng, S., Peñuelas, J., Poulter, B.,
Pugh, T. A. M., Stocker, B. D., Viovy, N., Wang, X., Wang,
Y., Xiao, Z., Yang, H., Zaehle, S., and Zeng, N.: Greening of
the Earth and Its Drivers, Nature Climate Change, 6, 791–795,
https://doi.org/10.1038/nclimate3004, 2016.

Biogeosciences, 17, 945–962, 2020 www.biogeosciences.net/17/945/2020/



39

Chapter 4

A regional Earth system data lab for
understanding ecosystem dynamics:
An example from tropical South
America

Second manuscript

Authors: Lina M. Estupinan-Suarez, Fabian Gans, Alexander Bren-
ning, Victor H. Gutierrez-Velez, Maria C. Londono, Daniel E. Pabon-
Moreno, Germán Poveda,Markus Reichstein, Björn Reu, Carlos A. Sierra,
Ulrich Weber, and Miguel D. Mahecha.

Status: Published

Journal: Front. Earth Sci. 9:613395, 2021. doi: 10.3389/feart.2021.613395



XX



A Regional Earth System Data Lab for
Understanding Ecosystem Dynamics:
An Example from Tropical South
America
Lina M. Estupinan-Suarez1,2*, Fabian Gans1, Alexander Brenning2,3,
Victor H. Gutierrez-Velez4, Maria C. Londono5, Daniel E. Pabon-Moreno1, Germán Poveda6,
Markus Reichstein1,3,7, Björn Reu8, Carlos A. Sierra1,9, Ulrich Weber1 and
Miguel D. Mahecha1,7,10,11

1Max Planck Institute for Biogeochemistry, Jena, Germany, 2Department of Geography, Friedrich Schiller University Jena, Jena,
Germany, 3Michael Stifel Center Jena for Data-Driven and Simulation Science, Jena, Germany, 4Department of Geography and
Urban Studies, Temple University, Philadelphia, PA, Unites States, 5Alexander Von Humboldt Biological Resources Research
Institute, Bogotá, Colombia, 6Department of Geosciences and Environment, Universidad Nacional de Colombia, Medellín,
Colombia, 7German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany, 8School of Biology,
Faculty of Science, Universidad Industrial de Santander, Bucaramanga, Colombia, 9Department of Ecology, Swedish University of
Agricultural Sciences, Uppsala, Sweden, 10Remote Sensing Centre for Earth System Research, Leipzig University, Leipzig,
Germany, 11Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany

Tropical ecosystems experience particularly fast transformations largely as a consequence
of land use and climate change. Consequences for ecosystem functioning and services
are hard to predict and require analyzing multiple data sets simultaneously. Today, we are
equipped with a wide range of spatio-temporal observation-based data streams that
monitor the rapid transformations of tropical ecosystems in terms of state variables (e.g.,
biomass, leaf area, soil moisture) but also in terms of ecosystem processes (e.g., gross
primary production, evapotranspiration, runoff). However, the underexplored joint potential
of such data streams, combined with deficient access to data and processing, constrain
our understanding of ecosystem functioning, despite the importance of tropical
ecosystems in the regional-to-global carbon and water cycling. Our objectives are: 1.
To facilitate access to regional “Analysis Ready Data Cubes” and enable efficient
processing 2. To contribute to the understanding of ecosystem functioning and
atmosphere-biosphere interactions. 3. To get a dynamic perspective of environmental
conditions for biodiversity. To achieve our objectives, we developed a regional variant of an
“Earth System Data Lab” (RegESDL) tailored to address the challenges of northern South
America. The study region extensively covers natural ecosystems such as rainforest and
savannas, and includes strong topographic gradients (0–6,500 masl). Currently,
environmental threats such as deforestation and ecosystem degradation continue to
increase. In this contribution, we show the value of the approach for characterizing
ecosystem functioning through the efficient implementation of time series and
dimensionality reduction analysis at pixel level. Specifically, we present an analysis of
seasonality as it is manifested in multiple indicators of ecosystem primary production. We
demonstrate that the RegESDL has the ability to underscore contrasting patterns of
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ecosystem seasonality and therefore has the potential to contribute to the characterization
of ecosystem function. These results illustrate the potential of the RegESDL to explore
complex land-surface processes and the need for further exploration. The paper
concludes with some suggestions for developing future big-data infrastructures and its
applications in the tropics.

Keywords: data cubes, data access, time series, dimensionality reduction, tropical ecosystems, ecosystem
functioning, seasonality, biodiversity

1 INTRODUCTION

Novel data streams in the Earth system sciences are becoming
available at unprecedented rates (Boulton, 2018). Given that
many data streams are regularly improved and frequently its
spatio-temporal resolution is increased, we overall face a quasi-
exponential growth of data volumes (Guo, 2017; Reichstein et al.,
2019). The “data rich world” has become a challenge widely
acknowledged across disciplines, but also opened a novel window
of opportunity. For example, in the Earth system sciences, we
expect a deeper understanding of a wide range of processes that
remain to be insufficiently understood today (Scholze et al., 2017;
Gentine et al., 2018; Reichstein et al., 2019). In particular, these
data have large potential to reduce uncertainties in the
quantification of global hydrological fluxes (Miralles et al.,
2011; Beck et al., 2016; Ciabatta et al., 2018; Shen et al., 2018),
atmosphere-biosphere exchange of carbon, water and energy
(Dorigo et al., 2011, 2017; Green et al., 2017; Konings and
Gentine, 2017; Papagiannopoulou et al., 2017; Ryu et al., 2019;
Jung et al., 2020), the estimation of biodiversity patterns (Asner
et al., 2015; Ma et al., 2020), and the interactions of all these
processes as mediated by key ecosystem functional properties
(Reichstein et al., 2014; Musavi et al., 2015; He et al., 2019).

The reason for this optimism comes especially from emerging
opportunities in interpreting a wide array of data streams that
jointly monitor the same system from different viewpoints.
Examples are the monitoring of land ecosystems with multiple
sensors at different wavelengths via satellite remote sensing, e.g.,
from the optical to the radar domain (Joshi et al., 2016; Anaya
et al., 2020; Heckel et al., 2020), the joint analysis of field
measurements and remotely sensed data (Mahecha et al., 2017;
Meyer et al., 2019), and productions of ensembles of multiple data
sets that integrate process-based understanding (Musavi et al.,
2017). In general, it is the multitude of climate data sets that allow
researchers to understand the multivariate and multifaceted
nature of land-dynamics in relation to climate variability
(Kraemer et al., 2020; Mahecha et al., 2020). Big-data
perspectives of this kind in the Earth system context are
therefore highly relevant to improve our understanding of
ecological processes, e.g., effects of land use and climate
change, and other fundamental transformations on the
functioning of land ecosystems.

Given that many of the relevant data streams are retrieved
from space, they create a unique opportunity to understand
dynamics, trends and tipping points in those regions of the
Earth that often lack dense in-situ observation networks. This
is an advantage for low and mid-income countries, which

nevertheless experience the fastest and most severe ecological
and social transformations (Hansen et al., 2013; Leblois et al.,
2017; McNicol et al., 2018; Song et al., 2018).We specifically point
out to tropical ecosystems for two reasons. On the one hand, these
regions experience fast ecological transitions e.g., due to rapid
socioeconomic development (Dávalos et al., 2011; Bathiany et al.,
2018; Armenteras et al., 2019a). For instance, the tropical Andes
are the most critical hotspot for biodiversity in the world due to
human encroachment, deforestation and land use change (Orme
et al., 2005; Etter et al., 2008; Poveda et al., 2011). On the other
hand, tropical ecosystems constitute relevant controls on the
global carbon and water cycles. The Amazon forest, for
instance, plays a significant role in the global carbon balance
(Chambers et al., 2001; Pan et al., 2011; Phillips and Lewis, 2014;
Hubau et al., 2020), and strongly regulates water and moisture
recycling at the continental scale (Poveda et al., 2006; Zemp et al.,
2014, 2017). In turn, the Andes and the low-lying Amazon
constitute a coupled system whereby the low-lying Amazon
exports atmospheric water to the Andes by the winds, while
the Andes export surface water, sediments and nutrients to the
Amazon, which highlights their mutual interdependence and the
deleterious impacts of deforestation on both sides for the integrity
of the system’s functioning (Builes-Jaramillo et al., 2018).
Additionally, other ecosystems play a crucial role in
biogeochemichal cycles. In general, savannas have been
considered main drivers of interannual variability in the
carbon cycle (Ahlström et al., 2015), and wetlands, including
flooded savannas and swamp forest, are significant contributors
of methane emissions (Bloom et al., 2017).

However, the countries hosting these highly relevant
ecosystems often happen to be those where knowledge on
Earth system dynamics happens to be at a comparatively early
stage. Limited resources for science and technology often hinder
dealing with these highly interdisciplinary challenges. One
practical reason might be that research e.g., into large-scale
biosphere-atmosphere interactions may require big-data
infrastructures, data hosting facilities, and numerical
preparation that is hardly achievable by local institutions in
the long-term. This is why great hopes are today on global
data facilities that may become fundamental game changers in
this context. Specifically, we refer to such facilities that are not
only providing data access but also provide users’ independence
for developing and executing analysis. Prominent examples such
as Google Earth Engine (GEE) (Gorelick et al., 2017; Tamiminia
et al., 2020), or the Climate Data Store give access to a wide set of
data streams accompanied by analytics facilities. However, these
platforms usually provide the data as is, which means they are a
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collection of satellite images that are stored image by image for
example as a stack of GeoTIFFS or as NetCDF files chunked as
latitude-longitude maps. If the task is understanding the complex
dynamics of time series or spatio-temporal patterns, having
efficient computational access to the time dimension is key for
boosting temporal studies at individual pixels or selected regions.
Therefore, a certain amount of data pre-processing is necessary to
give analytical tools the possibility for efficient access to data
along all axes of the n-dimensional cube (e.g., latitude, longitude,
time, variables, ensemble members, etc.). In addition, none of
these platforms are particularly developed for the analysis of
tropical ecosystems in terms of specific data availability and
analytic capacity to trigger the understanding of regional Earth
system processes.

In an ongoing joint European-Colombian collaboration since
2016, we identified the lack of open platforms that not only share
free and open data, but enable analyzing them for specific
problems such as regional conservation issues that should
accompany a suite of regional monitoring and synthesis efforts
(Sierra et al., 2017), let alone with the accompanying meta-data
information. Starting from there, we have worked on the
conceptual outline of a data infrastructure to study land
ecosystem dynamics in space and time in tropical South
America. We developed a regional Earth System Data Lab
(RegESDL) for northern South America to facilitate big-data
analytics efficiently based on cloud infrastructures. Our
approach is twofold: first, it provides analysis ready data cubes
(ARDCs) that can be augmented by almost any other
conventional spatial data set. Second, and this is key, it
provides the opportunity to apply any arbitrary set of user-
defined functions and algorithms on the generated data cubes.
The idea is that time, space, and variables, are all dimensions that
can be equally relevant to the problem under investigation and
therefore need to be treated alike (Mahecha et al., 2020).

Many regional data cube efforts have recently emerged around
the Open Data Cube (ODC) concept that was originally
developed for Australia (Lewis et al., 2017). Mostly, ODCs
facilitate access to pre-processed satellite imagery. This idea is
now applied to e.g., Armenia (Asmaryan et al., 2019), Colombia
(Ariza-Porras et al., 2017; Bravo et al., 2017), Kenya (Killough,
2019), Switzerland (Giuliani et al., 2017), among other countries.
Previous work has focused on the implementation and
perspectives of these and related initiatives that vary from the
software development to its establishment as national projects for
supporting decision making (Giuliani et al., 2017; Killough,
2019). However, these initiatives are based on a latitude-
longitude grid for data storage. This dramatically limits
efficient access to time series which comes with an expensive
computational cost when operating on the raw data directly
because the spatial dimensions is the main unit of access and
processing. Compared to all these initiatives, our approach is
committed to support efficient access to any suite of geographical
dataset. This allows users to explore time, variables, space, and
other dimensions in its equal right (Mahecha et al., 2020).We also
regard it as essential to take user-defined functions seriously and
prioritize them. Users should be able to use the full power of a
programming language to write algorithms, including calling into

third-party libraries and map them over the entire data cube in a
way that is equally efficient. In this study, we support moderate
spatial resolution for understanding Earth System interactions
addressing regional challenges; varying from technical aspects of
data quality, acquisition and management, to high complexity
due to landscape heterogeneity.

The purpose of this paper is to introduce the RegESDL for
northern South America and illustrate its potential to characterize
land-surface processes in relation to climatic and land use drivers.
Using the example of ecosystems complex seasonality, we
illustrate the approach by combining dimensionality reduction
and time series analytics tools. The paper is structured as follows:
First, we briefly introduce the RegESDL architecture, the
implemented facilities and computational approach. Second,
we describe the available datasets and the regional context.
Third, we showcase how to operate on the RegESDL by
characterizing seasonal dynamics in tropical ecosystems. For
this, we use a multivariate set of remote sensing derived
indicators related to ecosystem productivity. Seasonality in the
tropics is well characterized from a climatological point of view,
but hardly described from the point of view of ecosystem
functioning. Finally, we discuss the findings of our study and
provide some guidance on how the RegESDL should help to
advance research in the tropics across disciplines such as
biodiversity from both a conceptual and technical standpoint.

2 METHODS

2.1 The Regional Earth System Data Lab
Architecture
The RegESDL is a twofold approach for big-data analytics of
spatio-temporal variables. It is conceptually and technically an
extension of the the Earth System Data Lab (ESDL) (Mahecha
et al., 2020), and its guiding principle is to treat all data
dimensions such as latitude, longitude, time, variables, and
new dimensions (i.e., outcomes from processing), all alike.
Thus, all data sets are treated as elements of the same
“hypercube”. A formal mathematical definition of data cubes
and how to operate on them is provided in Mahecha et al. (2020).
The first fold is based on ARDCs which are a set of data cubes
gridded at the same spatio-temporal resolution (see section 2.2).
The second fold is the analytics software that tackles the issue of
working with large datasets that are too big to fit into a computer’s
RAM. With our approach this is not any longer a critical
limitation given that many user functions do not operate on
the whole dataset at once, but can operate independently on slices
of the data cube along a given dimension.

Traditionally, there are many tools for analyzing data sliced
along the space dimensions and well established libraries like the
Geospatial Data Abstraction Library (GDAL/OGR Contributors,
2020) used as main dependency in geospatial libraries of different
geographical information system software such as QGIS and
programming languages such as R and Python. However, in
our cubing approach, slicing is not only efficient along the
space dimension but also along all dimensions i.e., time,
variables, and any other thinkable dimension a cube might
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have (e.g., frequency domain after time series decomposition).
The idea is that users only have to define and implement their
basic functions at the minimum dimensions that the computation
would operate individually in the data cube. The system then
handles each operation efficiently, i.e., the implemented logic for
slicing can be applied to solve spatial, temporal, or multivariate
problems all in the same highly efficient way.

The ESDL software uses split-apply-combine methods
(Wickham, 2011) to facilitate the repeated application of user-
defined functions to sub-cubes. Thus, in the Julia interface, in
order to implement a customized function to be applied to the
entire cube or its lower-dimensional sub-cubes, the user first
simply implements it for the lowest possible dimensionality. As
an example, an operation on a single time series only needs to be
implemented as a function that takes a vector (i.e., one-
dimensional array) as its input. Likewise, a function intended
to operate on two-dimensional latitude-longitude slices of the
data only needs to be designed in a way that it expects a matrix
argument, not a three or four-dimensional cube. The user simply
ignores the fact that later the function is applied to a higher-
dimensional object, for example along variables or any remaining
cube dimension. Then this function is passed to a higher-level
processing pipeline, along with the definition of input and output
dimensions and a highly optimized computation kernel is
generated by the processing package.

The users can, too, allow any ARDCs axis to interact with data
stored in other formats such as one or multi-dimensional arrays. For
example, indices of climate variability such as El Niño Southern
Oscillation (ENSO) could either be defined simply as a vector or
transformed into a one-dimensional cube. In both cases, the index
interacts with the corresponding ARDCs axis in a similar way than
an apply function in the time domain. These split-apply-combine
methods are common tools in data-science oriented languages like R,
Python and Julia for in-memory datasets. However, for larger-than
memory datasets it is not so easy to find a suitable solution at hand.
While frameworks like Apache Hadoop and Spark (Vavilapalli et al.,
2013; Zaharia et al., 2016) provide solutions for unstructured, table-
like data, they would not fit for the challenges provided by structured
n-dimensional arrays. A very promising approach is the
combination of xarray and dask for efficient and scalable split-
apply-combine computations in combination with Zarr as a storage
backend.

The implementation of this data cube approach takes advantage
of the latest cloud-ready formats for big chunked spatio-temporal
data sets. Here we use the Zarr format (https://zarr.readthedocs.io/
en/stable/spec.html) that focuses in cloud technologie storage and
can be efficiently handled in Python (https://zarr.readthedocs.io/en/
stable/) and Julia (https://github.com/meggart/Zarr.jl). In addition to
the Python xarray interface we offer another interface implemented
in Julia, a novel high-level programming language for scientific
computing, in the ESDL.jl package by Fabian Gans (co-author), and
the most up-to-date documentation is always available in the
respective GitHub repository https://github.com/esa-esdl/ESDL.jl
(last visit Apr 17, 2020). All the Julia ESDL.jl packages and
facilities have been transferred to the RegESDL offering a very
flexible and efficient way for processing. The ESDL software is
open source and available under the MIT license.

2.2 Analysis Ready Data Cubes
In our study, we defined ARDCs as spatio-temporal datasets,
usually provided by different sources, stored in a uniform grid
and located at common chunks. Figure 1 shows a schematics of
the ARDCs main features and the stepwise generation. ARDCs
support immediate interaction between different data sources.
Rechunking is unnecessary for analysis along the spatial or
temporal dimension speeding up the processing. ARDCs in
the RegESDL extend from latitude 14° N to 14° S and
longitude –83° W to –60° W. The spatial resolution is 0.0083°

× 0.0083° (approximately 0.9 km × 0.9 km at the equator). We
consider this spatial resolution a good compromise for regional
studies, preserving sufficient spatial details for general climate
patterns, ecosystem gradients and main relief features.
Nevertheless, it is limited in very steep areas and
heterogeneous landscapes in the Andes. The temporal
resolution is 8-daily and the covered period is from 2001 to
2014.When necessary, data has been resampled or interpolated to
match the spatio-temporal grid. Temporal and spatial
aggregation was done using the package gridtools (https://
github.com/esa-esdl/gridtools), further details are included in
Table S1. The total size of the ARDCs is 3.03 TB. We present
the RegESDL ARDCs in three categories; time series, descriptive
variables and national layers. A comprehensive list of the data
with details of the original resolution, interpolation method,
spanning time, source and license is in the Supplementary
Tables S1–S5.

Time series are mainly data sets from models or satellite
products related to vegetation and climate (Supplementary
Table S1). We compiled data of gross primary productivity
(GPP), evapotranspiration, shortwave radiation,
photosynthetically active radiation (PAR) and diffuse PAR
from the Breathing Earth System Simulator (Ryu et al., 2011;
Jiang and Ryu, 2016; Ryu et al., 2018) describing ecosystem
functioning. The selected products from the Moderate
Resolution Imaging Spectroradiometer (MODIS) are 8-daily
composites of leaf area index, fraction of absorbed
photosynthetically active radiation (FPAR), and 16-daily
composites of the enhanced vegetation index (EVI) and
normalized difference vegetation index (NDVI) which are
values of standing vegetation and greenness. Day and night
land surface temperature was also obtained from MODIS.
Albedo data was acquired from the Quality Assurance for
Essential Climate Variables project (http://www.qa4ecv.eu/).
Precipitation data was provided from two sources; the
Tropical Rainfall Measuring Mission (TRMM, https://trmm.
gsfc.nasa.gov/) and The Climate Hazards Group Infrared
Precipitation with Stations (Funk et al., 2015). Time series
with different temporal resolutions were also included such as
the annual land cover maps from the European Space Agency
(ESA) (ESA, 2017), annual vegetation cover fraction from
MODIS, monthly annual averages of cloud coverage (Wilson
and Jetz, 2016) and monthly fire data from MODIS. We also
incorporated quality flags fromMODIS products. The quality flag
criteria was implemented on the original files (i.e., sinusoidal
projection) and it is documented in Supplementary Table S2.
After defining the pixels with acceptable quality, data was
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reprojected to WGS84. For detailed information of all data
products refer to the original documentation, references are
included in the supplementary and bibliography.

Another important element relates to descriptive ecosystem
variables. This category collects global datasets without a time
dimension and describes some ecosystem features
(Supplementary Table S3). There are 45 layers in total;
canopy height (Simard et al., 2011), 11 variables of the
Harmonized World Soil Database (FAO and ISRIC, 2012) and
23 of Soil Grids (Hengl et al., 2014) associated with soil
composition and chemical properties at different strata. These
ecosystem variables reflect a specific ecosystem state which is of
importance for characterization, but they lack on offering a
dynamic perspective. Alternative products bring the possibility
for investigating soil water dynamics (e.g., soil moisture),
however the coarse spatial resolution constrains its current use
in our study.

Because the RegESDL also aimed to support the Colombian
Biodiversity Observation Network (BON) geographical layers of
Colombia were included (Supplementary Table S4). These data
layers have been ingested from governmental web portals or from
scientific publications. Layers in vector format were transformed
to the target grid. Borders of administrative units (IGAC, 2010)
and national natural parks (PNN, 2015) were included. Maps of
wetlands (Flórez et al., 2016), agriculture frontier (MADR-UPRA,
2017) and biotic units (Londoño et al., 2017) were also added for
further ecological analyses, as well as comparative interpolations
of mean annual precipitation (Álvarez-Villa et al., 2011).

The RegESDL can be operated through different ways. First,
the RegESDL can be accessed locally using Julia. In this case, the
loaded datasets are exclusively the ones required for the analysis.
Second, the RegESDL can be completely downloaded to any local
machine using Python. Explanatory scripts of how to access the

RegESDL are included in the supplementary and at http://doi.
org/10.5281/zenodo.5068004.

It is important to highlight that datasets described previously
are the first core of the RegESDL. Nevertheless, the RegESDL is
prepared for interacting with new data sources and can be easily
expanded by users ingesting their own data as NetCDF or CSV
files using the ESDL.jl package. The imported data layers must
share the same grid extent to warranty Interoperability among
multiple datasets. Vector files i.e., shapefiles are also supported,
they can be loaded and converted to a grid for further processing
in the ESDL environment.

2.3 The Regional Earth System Data Lab
Coverage
The RegESDL focuses on tropical ecosystems of northern South
America. It covers Colombia, Ecuador, Venezuela, and partially
Brasil, Bolivia, Panama and Peru. Fromnow onwe refer as regional
scale to the area covered by the RegESDL, and local scale to the
country level and finer geographical units. We selected this region
because it is facing a rapid ecosystem transformation due to land
use change and urgently needs tools that help to understand
ecosystem dynamics, contributing to fill a knowledge gap in the
countries that encompass this region. Having a ready RegESDL to
facilitate big-data analytics for ecosystem function is key on
understanding one of the most diverse regions of the world.

This region is dominated by extensive natural tropical
ecosystems, and multiplicity of climates related to
topographic gradients, trade winds, and the meridional
migration of the Intertropical Convergence Zone that drives
annual variability. The highest altitude is in the peruvian
Andes in Cordillera Blanca with more than 6,500 masl.
Dominant land cover types are broadleaved evergreen forest

FIGURE 1 | Workflow of the Analysis Ready Data Cubes (ARDCs) generation and dimensions of the Regional Earth System Data Cube (RegESDL). Lat: latitude.
Lon: longitude t: time, Var: variables.
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open or close > 15% (4,740,043 km2), grassland (474,959 km2)
and shrubland (266,967 km2) according to the ESA land cover
classification (ESA, 2017) (Figure 2). Regional climate
interaction with the Andes creates a variety of
microclimates that cause two major hydrological regimes;
unimodal and bimodal seasonal dynamics in many hydro-
meteorological processes. In general, all feedbacks in the water
cycle are governed by complex lateral interactions across the
Amazon and the Andes, but also locally caused by
precipitation recycling due to orographic gradients (Poveda
et al., 2006; Bedoya-Soto et al., 2019; Espinoza et al., 2020). The
mean annual precipitation records in the RegESDL area range
from less than 100 mm in the Peruvian coast, upper limit with
Atacama desert, to more than 11,000 mm in the Choco region
of Colombia, which is perhaps the rainiest region on Earth
(Poveda and Mesa, 2000; Yepes et al., 2019). The diurnal cycle
of temperatures is the most salient feature of tropical
climatology. Variations in temperature are often larger
within a day than throughout the year (Hastenrath, 1991),
with strong effects on the diurnal cycle of precipitation in the
tropical Andes (Poveda et al., 2005). The region currently faces
increasing rates of deforestation and land cover change.

In the following, we emphasize the territory of Colombia
which is considered the third most biodiverse country and a
hotspot for biological conservation (Myers et al., 2000;
Andrade, 2011). Currently, Colombia is facing a massive
transformation of natural ecosystems due to various
socioeconomic transitions (Baptiste et al., 2017; Sierra et al.,
2017; Salazar et al., 2018). Deforestation is now reaching
national protected areas (Armenteras et al., 2019b; Clerici
et al., 2020), and the agricultural frontier is also expanding
to other natural ecosystems (Miles et al., 2006; Etter et al.,
2008; Bianchi and Haig, 2013; Patino and Estupinan-Suarez,
2016; Correa Ayram et al., 2020). The RegESDL incorporated
national layers to facilitate analysis at this scale with a special

focus on biodiversity and ecosystems research (see section 2.2).
Moreover, some variables were selected to provide seasonal
and longer-term information to Biomodelos (http://
biomodelos.humboldt.org.co/es) aiming to get a more
dynamic perspective of species distribution models. For this
particular reason they both share the same grid extent. The
RegESDL also aimed to contribute to the development of
Essential Biodiversity Variables (EBVs) in mega-diverse
tropical countries. In this case we thought on a top-down
approach for biodiversity monitoring. The Colombia BON,
one of our partners, has done an extensive development and
implementation on the topic.

2.4 Case Study Question
In the following, we showcase the potential of using the RegESDL
for assessing seasonality in northern South America. Here, we
investigated the joint variability of multiple time series, and
contextualized the identified patterns in different spaces
(i.e., climate space, geographical space, along biodiversity
gradients). This analysis had two purposes. One was to carry
out a seasonality analysis pixel wise for the region. The other one
emphasized on the Colombian territory and its biotic units. A
schematic of the RegESDL and a workflow overview is in
Figure 3.

2.4.1 Seasonality in Northern South America
We focused on seasonal phenology, one of the fundamental
dynamics of most ecosystems of the world (Schwartz, 1998).
In tropical ecosystems, however, seasonal dynamics are hardly
understood and not well characterized (Wu et al., 2016). On the
one hand, this is due to data quality issues, but on the other hand
it reflects the fact that the tropics embrace extremely
heterogeneous landscapes. For northern South America, a
large level of annual variability in phenological variables has
been reported, particularly for savannas, dry forest and wetlands

FIGURE 2 | Regional Earth System Data Lab extent with land cover classes. White lines correspond to national borders (Data from ESA land cover 2014).
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(Estupinan-Suarez et al., 2015; Hamunyela et al., 2016; Fagua
et al., 2019). Subannual data acquired from tree ring cores
(Giraldo et al., 2020), and from space via solar induced
fluorescence (SIF) (van Schaik et al., 2018) recently also
suggested annual seasonality in tropical rainforest. From the
functional perspective, Nemani et al. (2003) reported radiation
as a limiting factor of plant growth and net primary productivity
in the tropics that likewise hints at some seasonality.

What remains unclear from the literature is: i) how strongly
are seasonal patterns reflected by terrestrial ecosystem dynamics,
ii) whether we can delineate unimodal or bimodal regions, and iii)
how do patterns of annual and semi-annual seasonality distribute
spatially. If we understand where unimodal and bimodal

seasonailities predominate in land-atmosphere interactions, we
could achieve a better predictive understanding of the imprints of
extreme climate events such as ENSO, and climate change signals
on ecosystems.

Terrestrial seasonal dynamics should be contained in all remote
sensing indicators related to green biomass and primary production.
Available data sets in the RegESDL are partly direct remote sensing
vegetation indices of greenness, i.e., NDVI (Tucker and Sellers, 1986)
and EVI (Huete et al., 1997, 2002). But also, we can analyze GPP and
FPAR that are closely related to vegetation activity. Conceptually,
these variables represent different processes which are related and
physiologically connected, but they are not exchangeable. Of course,
the closer to the actual process under interest (e.g., GPP), the more

FIGURE 3 | Workflow of the multivariate vegetation dynamics analysis pixel wise and by biotic units.
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model assumptions are contained in the data (Jiang and Ryu, 2016).
The advantage of the original remote sensing signals is that they are
closer to the purely observational signal, but not necessarily directly
related to the process of interest. Yet, we can assume that all these
time series somehow reflect the seasonal cycle of vegetation
productivity, yet coupled via more or less direct mechanisms that
all reflect seasonal dynamics of green vegetation.

2.4.2 Characterization of the Mean Seasonal Cycle
Pixel Wise
In order to capture the seasonal variability of vegetation while
accounting for the redundancy of the different vegetation related
signals, we conducted a principal components analysis (PCA).
PCA is a dimensionality reduction method that seeks new
dimensions (components) in the feature space to explain the
largest variance, and does it recursively based on orthogonal basis
functions. In this sense, it provides common modes of variability
at the pixel level that serve to assess seasonality. For our analysis,
we selected GPP, NDVI, EVI and FPAR variables spanning from
2001 to 2014 (data set size � 111.24 GB). Variables were gap filled
using the Mean Seasonal Cycle (MSC) method. Gaps were
clustered in rivers and waterbodies and its amount varied
among variables; while GPP excluded all data pixels related to
water, MODIS products preserve or exclude them irregularly. The
next step was to standardize the time series to mean zero and
variance of one ( μ � 0 and δ � 1), and then applied PCA at pixel
level. Explained variances by the leading components described
how representative the leading mode is for the different
vegetation variables.

Based on the Fast Fourier power spectrum, we estimated the
contribution of annual and semiannual oscillations of the MSC
pixel wise using the discrete Fast Fourier transform library
(FFTW) included in the Julia programming language. Here,
the idea is that the ratio between the spectral power of the
annual and semiannual oscillations can be quantified if the
annual or semiannual oscillations dominate the seasonality of
the signal. Theoretically, values of <1 indicate a dominance of the
semiannual oscillations, values close to 1 are related to an equal
contribution of seasonal and semi-annual modes, while values of
>1 reflect a dominance of the annual oscillation. We classified the
FFTW outcomes as follows: The first component is the sinusoidal
function offset, the second component corresponds to the annual
oscillation, whereas the third and fourth components together (6
and 4 months respectively) correspond to the semiannual
oscillation. Subsequently, we computed the contribution of
both annual and semiannual oscillation to the entire signal.
Only pixels with at least one direct retrieval at each MSC time
step were included in the analysis. The quantification of direct
retrievals was based on the quality flags from MODIS variables
(Supplementary Table S2). The computation is documented in
Jupyter notebooks included as supplementary material and at the
GitHub repository https://github.com/linamaes/Regional_ESDL.

2.4.3 Seasonality Characterization of Biotic Units in
Colombia
For our second study, we used the biotic units map of Colombia
produced by Londoño et al. (2017) as a level of aggregation,

aiming to bring a functional understanding of units with
biological diversity connotation. The delineation of these biotic
units was based on a Beta diversity criteria defined as the
taxonomic composition variation (Supplementary Figure S1).
Each unit was defined by having a unique set of species that was
significantly different to the species set of all other units. Beta
diversity was computed from species distribution models of
amphibians, birds, mammals, reptiles and plants available in
Biomodelos, a collaborative platform that integrates models
and expert knowledge (Olaya-Rodríguez et al., 2018;
Velásquez-Tibatá et al., 2019). Our approach looks at
biodiversity based on the hierarchical concept developed by
Noss (1990), and seeks a functional perspective including
different taxa similar to Radeloff et al. (2019). It is not related
to spectral diversity for ecosystem function assessment.

We calculated the MSC of biotic units using the first principal
components (PC) obtained from the pixel wise analysis. First, we
computed the average and standard deviation of all pixels within
each unit. Then, we calculated the ratio and fraction values of the
averaged MSC based on the Fast Fourier power spectrum as we
explained in section 2.4.2. We also analyzed the biotic units
outcomes in light of climatic variability. For this, we selected
variables that describe annual bioclimatic conditions such as
precipitation of the driest month, maximum temperature of
the warmest month, mean temperature of the driest quarter
from WorldClim (Fick and Hijmans, 2017), and median
annual cloud frequency (Wilson and Jetz, 2016). These
variables were used in the climate space and were related to
the MSC ratio by biotic units.

All analysis ran in Julia 1.3 using the ESDL package v0.8.4.
Processing was done in an Intel®Xeon®Processor E5-2687W v4
CPU (30M Cache, 3.00 GHz), and used six cores.

3 RESULTS

3.1 Summarizing Multivariate Vegetation
Dynamics
The first PCs from the PCA captured the largest vegetation
variability pixelwise (Figure 4). When exploring pixels from
different land cover types, we found overall that PC1 captured
the main MSC features of each variable (Supplementary Figure
S2). In general, for broadleaf evergreen trees and grassland the
variables’ trajectories and peaks overlapped most of the time,
although the signal amplitude differed. The shrubs-herbaceous
flooded cover was the one presenting the most contrasting
trajectories between variables. The main contributors to PC1 are
different along the regions (Supplementary Figure S3), NDVI
contributed the most in arid and semiarid regions such as the
Caribbean and Orinoquia savannas and at the Pacific coast of
Ecuador and Peru, whereas EVI is the larger contributor in the
Amazon and Biographic Choco i.e., the wettest regions. Some pixels
were excluded from the analysis due to data quality. They are mainly
located along the Pacific coast, in the higher Andenean mountains,
and in the transition between the mountains and lowlands.

We observed different regional patterns of variance explained
by the three principal components. PC1 (Figure 4A) explains
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the largest variance in ecosystems mainly dominated by savannas
in the Orinoco and Caribbean basins of Colombia and Venezuela,
and lowlands of the Magdalena-Cauca river basin. Similar
pattern occurs in the Pacific coast of Ecuador and Peru. These
regions are characterized by very low precipitation during the
dry season and are dominated by grassland. PC2 (Figure 4B)
shows a homogeneous spatial pattern, being slightly lower in
arid and semiarid ecosystems. Otherwise, PC3 (Figure 4C)
dominates the broadleaf evergreen forest. The explained

variance by the PCs range from; 0.28 to 0.86 for PC1,
0.07–0.31 for PC2, and 0.03–0.24 for PC3. These shows
that variance PC2 and PC3 can carry similar amount of
variance in some regions. Overall, Figure 5 shows that PC1
explains more than 40% of variance in grassland, shrublands and
herbaceous cover with shrubs and trees. But it is certainly limited
in broadleaf evergreen forest where captures between 20% and
40%, which is also a region known by large data gaps due to
clouds.

FIGURE 4 | Variance explained by principal components. Variance explained by the first, second and third component in (A,B,C) respectively. (D) RGBmap of the
variance explained by the components 1, 2 and 3 in red, green and blue channels respectively. Note that the red channel represents variability in the range (0.28–0.86),
the green (0.07–0.31), and blue (0.03–0.24).
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3.2 Quantification of Temporal Dynamics
The map of seasonality ratios (Figure 6) depicts a spatially
heterogeneous dominance of annual variability in the region
that can be associated to the major landscapes. Annual cycles
dominate the land-surface dynamics along the Ecuadorian and
Peruvian coast and northern Venezuela. Large-scale patches of
semi-annual oscillations are found in the flooded savannas of
Orinoquia, and inter-Andean valleys in Colombia. Similar
contributions of annual and semi-annual oscillations are
observed partly in the Caribbean coast and foothills. The
northwestern Amazon basin does not have a uniform pattern,
although it shows a slight trend with dominance of bimodality
close to the Equator (the wettest region), and unimodality toward
South. Yet, it is hard to determine due to the optical sensors
limitations in the rainforest. However, care must be taken in
interpreting this figure, taking into the account the variability
represented from the total signals (Figure 4) and the amplitude of
the oscillations. In this regard, we estimated the fraction between
both assessed oscillations (i.e., annual and semiannual) and the
entire signal based on the power spectrum of Fast Fourier. These
values are found in Figures 6, 7.

3.3 Seasonal Dynamics of Colombian Biotic
Units
In order to understand the spatial variability of vegetation
seasonality and its links to biodiversity we used the biotic

units of Colombia. We observe that the units with higher
amplitude are also the ones where annual and semiannual
variability have a fraction value of >0.7 (Figure 7). Overall, we
observe that seasonality in the biotic units is extremely different;
peaks of vegetation activity are reached at different times across
Colombia, unimodal and bimodal seasonality are equally
important at the national level, and regions with lower
variability explained by these regimes have to be further
explored. These could be associated with the dominance of
fast oscillations as reported by Linscheid et al. (2020) for some
tropical regions.

We used bioclimatic variables as a first proxy to understand
seasonal variability.We selected precipitation of the driest month,
maximum temperature of the warmest month, mean temperature
of the driest quarter (Fick and Hijmans, 2017), and median
annual cloud frequency Wilson and Jetz (2016). As an
overview, six biotic units with contrasting patterns are
presented. We observe that the lowest values of monthly
annual precipitation differ significantly within biotic units. In
Arauca and Baja Guajira-Cesar values are less than 30 mm
(Figures 8A,D) whereas in Micay values are above 300 mm on
average (Figure 8F). Interestingly, in the region Magdalena-
Medio & Depresion Momposina, there are two clear hotspots
(Figure 8E). Pixels with precipitation in the driest month of
>50 mm show a bimodal dynamics in vegetation dynamics, while
pixels with drier conditions show a higher importance of annual
oscillations. This could be associated with the distribution of

FIGURE 5 | Histogram of variance explained by the first three principal components for different ESA land cover classes in 2014. Tree cover BrEv-co: Tree cover,
broadleaved, evergreen, closed to open (>15%). Herbaceous cover with trees/shrubs: Mosaic herbaceous cover (>50%)/tree and shrub (<50%).
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different land cover types, i.e., broadleaf evergreen trees and
rainfed croplands, based on the rainfall patterns. When
assessing the maximum values of annual temperature, biotic
units in the lowlands are very confined in the space gradients.
Andean biotic units are the ones showing higher levels of
variability such as in the Patia region (Supplementary Figure
S4). It is important to highlight that in Colombia, the largest
temperature variability is mostly found on a diurnal basis than
along the year (Hastenrath, 1991).

Due to the orographic conditions of our study area, clouds
are a major limitation for passive sensors, however recording
these conditions is also informative in an ecological context.
Biotic units with a strong dry season are the ones with lower
values of annual cloud frequency. Nevertheless, they either
show a centralized pattern as Baja Guajira or a large spectrum
as Magdalena Medio, similar to the one observed in Patia
(Supplementary Figure S5). Micay exposes high cloud cover
as it is expected due to its location in the biogeographic Choco
region, one of the wettest places on Earth (Poveda and Mesa,
2000; Yepes et al., 2019).

As we have shown in this case study, the seasonal land-surface
dynamics in northern South America is surprisingly complex and
not trivially explainable by climatic factors alone. Our results are a
step forward to reveal interactions between biotic and abiotic
components in tropical ecosystems. From a technical perspective,
we show that multi-dimensional analysis in any dimension

i.e., along physical variables, time, and space, can be
performed very efficiently with a few lines of code. The code
(available at http://doi.org/10.5281/zenodo.5068004) can be
applied to any other data cube, e.g., the ones that are now
emerging from the Coupled Model Intercomparison Project
Phase 6 (CMIP6) archive and used to understand if patterns
as reported here, are similarly identifiable in such global
simulations. If they were not, this would suggest that one of
the most basic processes of land-surface dynamics in state-of-the-
art models is not well represented yet.

3.4 Computational Performance of the
Regional Earth System Data Lab
During the multivariate vegetation analysis, we used a set of
four variables (i.e., GPP, NDVI, EVI, FPAR) available as
ARDCs at the RegESDL with a total size of 111.24 GB. The
estimated time processing for the main steps was: 27 min for
the time series standardization, 2.5 min for PCA and 2.8 min
for computing the Fast Fourier spectrum. All these
computations were carried out at the pixel level using the
RegESDL for time series analysis. Overall, these estimates are
broad because timing for data loading and processing are
hardly discernible, furthermore speed is also affected by other
features as parallel processing in other cores. Nevertheless,
these timing values bring a general picture of the

FIGURE 6 | Seasonality ratio of annual and semiannual oscillations pixel wise from the first PCA component of vegetation variables. (A)Mean Seasonal Cycle (MSC)
of three pixels represented as black dots in the map. (B) Ratio map of the MSC. Values of 1 show an equal contribution of annual and semiannual oscillation, values of >1
means higher contribution of annual in comparison to semiannual oscillation, and values of <1 conversely. Note that the color scheme is cut in 2 (54% of pixels values <2).
Ratio: Ratio of annual and semiannual oscillation. Fraction: Fraction of annual and semiannual oscillation in comparison to the entire signal.
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FIGURE 7 | (A–D)Mean Seasonal Cycle of the first PCA component (yellow solid line) aggregated by biotic units of Colombia. Green solid line is the smoothed time
series and the ribbon is the standard deviation. Dominant land cover type percentages from ESA 2014 are on each subplot, and follow the next abbreviations. Crops-
rainfed: Cropland, rainfed. Grass: Grassland. Shrubs: Shrubland. Shrubs/Herb.-flood.fr/sa/br: Shrub or herbaceous cover, flooded, fresh/saline/brakish water.
TreeBrEv-co: Tree cover, broadleaved, evergreen, closed to open (>15%).Trees-flood. sa: Tree cover, flooded, saline water. Ratio: Ratio between annual and
semiannual oscillations. Fraction: Fraction between annual and semiannual oscillations to the entire signal. (G) Geographical location of BU shown from (A–D).
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computational performance. A comparison between the
spatial and temporal RegESDL computational
performance, for time series analysis, is in the
supplementary (Supplementary Table S6) and the code is
available at http://doi.org/10.5281/zenodo.5068004.

4 DISCUSSION

Open data and open source software can be seen as the major
triggers for recent advances in environmental and Earth system
sciences. A remarkable example are the achievements after the
Landsat archive was opened for ecosystemmonitoring, assessment
of climate impacts, among others (Wulder et al., 2016). Moreover,
data streams are continuously improved; spatio-temporal and
radiometric resolutions increased with the development of new
satellites and sensors (e.g., the Sentinel constellation). This
increasing data availability also raises enormous challenges for
data management and ways to interact with them. Data cubes have

been a common solution for tackling this problem bridging the
code to the data, and therefore simplifying data storage and
processing (Lewis et al., 2017; Giuliani et al., 2019; Gomes et al.,
2020; Tamiminia et al., 2020; Yao et al., 2020). Nevertheless, most
initiatives prioritize spatial grids for data storing (Gorelick et al.,
2017; ODC, 2021), and work with specific data sets such as climate
or satellite products exclusively. In comparison, our approach
considers that all data dimensions are equally important
whether they are space, time, variables, or frequency. This has
two main advantages: i) Facilitate access to other axes different
from latitude and longitude. ii) Implement the cube structure to
outputs as is for inputs. With the ESDL package new-axes can be
easily added to cubes during processing. Users have full functionality
for defining new-axes of a “hypercube”, assign their name and type
class. In addition, the RegESDL links data across disciplines offering a
multidimensional perspective for environmental sciences. Thus, we
are capable of analyzingmultiple data sources efficiently at spatial and
temporal dimensions which is key for tropical regions facing rapid
transformation.

FIGURE 8 | Seasonality ratio of annual and semiannual oscillation (x-axis) and precipitation of the driest month (y-axis) in six biotic units (A–F). Dominant land cover
type percentage from ESA 2014 are on each subplot, and follow the next abbreviations. Crops-rainfed: Cropland, rainfed. Grass: Grassland. Shrubs: Shrubland.
Shrubs/Herb.-flood.fr/sa/br: Shrub or herbaceous cover, flooded, fresh/saline/brakish water. TreeBrEv-co: Tree cover, broadleaved, evergreen, closed to open (>15%).
Trees-flood. sa: Tree cover, flooded, saline water. Note that the y-axis range varies from 0 to 30 to 800 mm, and the color scheme range differs between plots. “n” is
the total number of pixels in each biotic unit.
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4.1 Perspectives of the Regional Earth
System Data Lab
The RegESDL started as an initiative for supporting analysis that
integrate Earth science and biodiversity within a tropical
geographical range. The main objectives were to get a dynamic
perspective of environmental conditions for biodiversity, to
contribute to the understanding of ecosystems functioning and
to explore atmosphere-biosphere interactions. Until now, studies
have focused mostly on evaluating land cover and ecosystems
structure for the region. This has been pivotal for the assessment
of deforestation and in some extent forest degradation
(Armenteras et al., 2016; Pacheco-Pascagaza et al., 2018;
Ramírez-Delgado et al., 2018; Meyer et al., 2019; Anaya et al.,
2020). As well, different passive and active sensors have been used
for ecosystems delineation (Estupinan-Suarez et al., 2015; Flórez
et al., 2016), estimation of vegetation biomass and extraction of
canopy features from individual trees and forest using Lidar
(Asner et al., 2012; Li et al., 2012; Ferraz et al., 2016; Jeronimo
et al., 2018; Ferraz et al., 2020). However, fewer studies are carried
out for investigating ecosystem function even though global
products such as GPP are available from several sources
i.e., GPP estimates derived from satellite retrievals (Running
et al., 2004), coupled to process-based models (Ryu et al.,
2011; Jiang and Ryu, 2016), and data driven methods (Jung
et al., 2011, 2020). This can be partially related to the large
uncertainties regarding tropical ecosystems due to atmospheric
conditions and limited ground data for models calibration and
validation. But also to the early state of Earth science development
in the region.

The growing availability of new retrievals from upcoming
satellite missions and advanced mathematical methods offer
new information and alleviate some gaps regarding data
accuracy and quality. Promising variables such as SIF open a
possibility to improve estimates of GPP and phenological
changes (Porcar-Castell et al., 2014; Walther et al., 2016; Sun
et al., 2017; Merrick et al., 2019). Recently launched and
upcoming satellites missions will deliver hyperspectral and lidar
data globally that will facilitate structure and functional
biodiversity assessment. Satellite missions such as the DLR
Earth Sensing Imaging Spectrometer, the Global Ecosystem
Dynamics Investigation (GEDI) or the Surface Biology program
will provide key information for evaluating vegetation stress,
vegetation traits, and improving carbon and water fluxes
estimation. Thus, tools and long-term projects are needed to
warrant timely and efficient access to these new data streams.
In this sense, the ESDL software offers a suitable framework to
address the technical developments required by the unprecedented
volume of coming datasets, and most importantly for integrating
different suites across research disciplines. Recently, Cremer et al.
(2020) implemented the ESDL for higher resolution analysis,
specifically for assessing Sentinel-1.

In fact, the RegESDL is an example of a regional effort for
offering a common ground to assess Earth system science,
ecosystem function, and explore links to biodiversity that
could be realized in practice. Specifically during our showcase
we presented different modes of seasonality in the region. Studies

of bimodal precipitation regimes have been carried out globally
(Knoben et al., 2019) and regionally in East and Central Africa,
and northern South America (Poveda et al., 2006; Hawinkel et al.,
2015). Nevertheless, such patterns are poorly explored at the
ecosystem level. In East and Central Africa double peaks of
vegetation greenness were observed by Hawinkel et al. (2015)
at annual scales. Recently, Turner et al. (2020) reported
bimodality in vegetation activity for savannas in California
based on SIF measurements that were previously jeopardized
when using vegetation indices. Our outcomes revealed that these
double peaks on vegetation activity are also occurring in regions
of northern South America. But further analysis are needed to
understand the mechanistic process of bimodality in the region.
For example, it is expected to observe different timing for leaf
flushing in savannas. Hypothetically, this might be driven by
water pulses and different vegetation strata. Otherwise, studies
using passive sensors are limited in some regions despite of
having more than 10 years data. In this context, data
integration from upcoming missions with higher spatial and
multispectral resolution and active sensors is key. Moreover,
the biotic units analysis showed that the dominance and
intensity of seasonality in the tropics is very heterogeneous,
and it requires deeper analysis on the drivers that are not
covered in this paper.

Future studies in the RegESLD aim to exploit time series
analysis to evaluate tropical ecosystems dynamics at different
time scales. Also, a next step to increase our understanding of how
biodiversity is related to ecosystem function is to integrate species
distribution data, from platforms such as the Global Biodiversity
Facility (GBIF), with data from the RegESDL. This will allow the
scientific community to understand how the spatial distribution
of specific taxa (not necessarily plants) could respond not only to
abiotic variables but also to dynamics of the land surface.
Moreover, this can be a benchmark to predict patterns of
species migrations by global warming.

4.2 Comparison with Alternative Regional
Projects
Colombia has done a major effort to develop strategies for big
data generation and management. The National Institute of
Environmental Studies and Meteorology has released the latest
Climate Forecast System Reanalysis models for the region from
hourly to daily temporal resolution, as well as national climate
change scenarios and analyses of extreme events thresholds (Ruiz
M.et al., 2020) (http://bart.ideam.gov.co/wrfideam/). Another
example is the development of the Colombian ODC (Ariza-
Porras et al., 2017; Bravo et al., 2017) to reduce redundancy in
satellite imagery acquisition, pre-processing and storage.
Simultaneously, the scientific community is taking advantage
of GEE to assess rapid socio ecological challenges such as
deforestation using satellite imagery or products derived from
passive (Clerici et al., 2020) and active sensors (Anaya et al.,
2020). From the biodiversity perspective, Colombia is
contributing significantly in an international context; it is the
only country with a National BON in the tropics, its biodiversity
information system (SIB Colombia, https://sibcolombia.net/)
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contributes to the GBIF, and since 2017 different projects are
supporting the assessment and implementation of EBVs;
specifically for improving species distribution model platforms
(Velásquez-Tibatá et al., 2019), supporting biodiversity decision
making (http://biotablero.humboldt.org.co/, http://www.
bosproject.org/en/), and participates in the calibration of new
satellites missions such as GEDI in tropical dry, moist and rain
forest (Fagua et al., 2019), TRMM and the Global Precipitation
Measurement (Vallejo-Bernal et al., 2020). All of these efforts
point to an urgent necessity for developing a common framework
that improves data access and management and facilitates
ecosystem assessments with a more dynamic and functional
perspective, but also for evaluating the rapid natural and
anthropogenic changes that are occurring. The RegESDL
aimed to bring the initial foundations for these developments,
integrating data from biospheric, and atmospheric variables with
biodiversity.

4.3 Technical Challenges for the Future
One of the major challenges of all data cube facilities is that data
is constantly being updated. Not adopting a “living data
paradigm” is one of the major obstacles that reduces the
user-update of project-based infrastructures. Also in our case,
no matter how convincing the concept and implementation
might be, it will not persist as a stand-alone implementation
next to a machinery that can update the underlying data
archives in near-real time. This is why we hope that the
analytic framework as it was developed here can soon be
coupled to data cube facilities that solve the underlying data
availability issue. In fact, in Europe, for instance, the Data and
Information Access Services initiatives are about to realize such
an approach such that initiatives like the RegESDL can be placed
on top of them. The difficulty today remains that the cube type
of data access along all dimensions remains often not well
addressed and that the idea is rarely to give the full spectrum
of functionalities to the users as ESDL does. This is to enable
users to map arbitrary functions. Otherwise, initiatives centered
on specific satellites products have opted for automated
ingestion based on rapid data acquisition from platforms as
GEE (Giuliani et al., 2017). However, this alternative is hard to
extrapolate when working with multiple data sources.

We believe that in the future, the ESDL software should not
merely be a facility that hosts predefined ARDCs but become a
service to generate them tailored to individual user needs. These
user-defined cubes should be able to ingest arbitrary gridded and
non-gridded data. Particularly, higher resolution datasets are
requested when moving from regional to local studies or for
in-situ data up scaling. Here, accessing high-resolution and latest
global data products e.g., SIF from various sources on demand
and in tandem with other existing data suites is key. In this sense,
ARDCs may be static and pre-processed, transient, automatically
updated, or lazy, whatever suits best its intended usage. This
means that the ESDL needs to serve data streams from multiple
sources, and therefore handle multi-resolution data within the
same framework.

Only if we can convince the major infrastructure providers of
our concept, we soon will address the most pressing data analytic

bottlenecks that remain open: That is, the need to further
generalize spatio-temporal data analytics. The current methods
implemented in the ESDL are highly efficient in exploiting high-
dimensional time series and maps, but lack one fundamental
requirement: Spatio-temporal interactions and spatio-temporal
contextualized data analytics are essentially not possible and limit
our capacity to study e.g., telecouplings at large scales or lateral
transport processes. This is of particular relevance, when aiming
to simulate e.g., water transport in space and time via e.g., surface
hydrology or atmospheric interactions. Another challenge for the
future is certainly brining in latest advances in machine learning
i.e., Deep Learning (DL), as one of the most relevant and rapidly
developing fields. In principle this is possible already today, but
whenever a DL model requires dealing with e.g., structured data
(either spatial, temporal or spatio-temporal as in the Earth
sciences), the cube-slicing approach is suboptimal and needs
to be redesigned to efficiently map DL methods on the cube.
This is particularly promising for understanding e.g., biotic
dynamics in the tropics that are often not well constrained by
our ecohydrological understanding.

Another major challenge is Interoperability. The exponential
data generation and advancements in computer and software
technology reinforced the urgency of data exchange between
research infrastructure systems. This has to be accompanied
by common metadata conventions, open algorithms and
software documentation (Kissling et al., 2015; Wilkinson et al.,
2016; Hardisty et al., 2019). For Earth observation data cubes,
Giuliani et al. (2019) defined two tiers to approach this issue: an
upstream tier which is the ODC infrastructure, and a downstream
tier which is centered on the user’s interaction. Here, we focused
on data ingestion from several data sources which was crucial for
multivariate analysis. With this approach we achieved to integrate
different environmental layers from the biosphere and
atmosphere. The usage of Zarr format for data storage, that is
in the process of becoming the standard for the Open Geospatial
Consortium (OGC, 2020), facilitates exchange with other geo
initiatives such as the CMIP6 model. As well, the implementation
of downstream software as xarray opens the possibility to develop
backends with existing data cubes. We followed the Climate and
Forecast metadata conventions (http://cfconventions.org/) that
supports properties of the data. What is still remaining is the
possibility of working with multi-resolution data, which is one of
the following steps. These characteristics are favorable to
Interoperability, but this is indeed a topic on constant
development by the community.

4.4 Engaging the User Community
A long-term sustainability of the RegESDL requires an active
users community. On one hand, the ESDL software is open,
documented and its main features, i.e., the cube generation and
analytical tools, can operate independently which brings
versatility for forward software development and applications.
On the other hand, consolidating such a community requires
active dissemination and training to operate the RegESDL
efficiently, besides constant technical support. Having a
consolidated community is a key step for warranting the
establishment and development of our tool. We see as
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potential users research groups and universities that are
interested in the spatio-temporal understanding of the
biosphere-atmosphere interactions, implications of climate
variability, land cover change, and biodiversity loss in tropical
ecosystems.

Moreover, embracing big data initiatives, such ours, is also
beneficial for supporting environmental studies that support
environmental policy. For example, the Colombian
government has appointed a roadmap for a strong
bioeconomy development to the International Mission of
Experts in Science, Technology and Innovation (https://
minciencias.gov.co/mision-sabios/documentos), but there are
many unknowns about ecosystems dynamics and functioning
nation wise that need to be solved for creating such a plan. Studies
bringing new insights for informing the sustainable goals, or the
Intergovernmental Panel on Climate Change as well as research
for understanding ecosystems functioning and ecosystem
resilience under climate change scenarios could be efficiently
carried out in the RegESDL. In this sense, our initiative could
contribute to existing platforms that provide scientific input for
decision making at local level.

5 CONCLUSION

To our knowledge the ESDL is the first data cube implementation
with an emphasis on representing interactions across the water
cycle, carbon cycle, and climate system (Mahecha et al., 2020). It
has been successfully used to understand biosphere-atmosphere
interactions at multiple time-scales (Linscheid et al., 2020),
analyzing specific variables of ecosystems to climate extremes
(Flach et al., 2020), and has enabled studying the multivariate
nature of land-surface dynamics globally (Kraemer et al., 2020).
The RegESDL has been developed to more specifically explore
biodiversity as yet another thematic domain. Our goal was
bridging the gap between Earth science and biological diversity
that includes ecosystems composition, structure and function
(Noss, 1990; Randin et al., 2020).

In this regard, the satellite era has brought us the possibility of
gaining ecosystems dynamics understanding from systematic
measurements over time and at larger spatial scales. Advances
in the EBVs (Pereira et al., 2013), functional traits and functional
ecosystem properties (Reichstein et al., 2014; Musavi et al., 2015)
are supporting this development. And it is increasingly
recognized that one has to consider the functional dimension
of biodiversity in its own right, which requires working with high
temporal resolutions. In particular, remote sensing observations
are of uttermost importance for the analysis of the EBVs
(Skidmore et al., 2015; Pettorelli et al., 2016; Giuliani et al.,
2020; Randin et al., 2020). Recently, the EBVs for Species
Population started to develop a framework for working with
space-time-species cubes and proposed it as a suitable model for
the oncoming challenges of big data (Jetz et al., 2019) (European
BON http://biodiversity.eubon.eu/essential-biodiversity-
variables). As well, Randin et al. (2020) provided a detailed
review of possible synergies between remote sensing products and
biophysical process variables that are key for species distribution

models. Furthermore, Hardisty et al. (2019) developed a
framework for Interoperability between research
infrastructures related to EBVs. Hence, the successful
implementation of the RegESDL for studying ecosystem
dynamics in northern South America can be seen as a step
forward on the development of EBVs related to function and
structure in tropical ecosystems.

Specifically on our case study, we show the variety of seasonal
trajectories in northern South America. We computed simple
metrics to compare semiannual and annual regimes, derived from
vegetation variables of productivity, greenness and standing
vegetation available at the RegESDL. Nevertheless, our seasonality
analysis approach relies on passive sensors which are limited in rainy
regions despite of having long time series. This reinforced the
necessity of synergies between multiple sensors and data sources.
Using the biotic units map of Colombia, we observed heterogeneity
on the seasonality modes and the timing of maximum activity
among units that are characterized by Beta diversity values. Our
findings contribute to elucidate the large seasonal variability in
hotspots of biodiversity which is key for differentiated
management of tropical ecosystems. Complementary analysis in
light of local climate variability needs to be further investigated to
identify the main drivers.
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Spatial patterns of vegetation activity related to
ENSO in northern South America

Abstract

Interannual variability of vegetation activity (i.e. photosynthesis) is regionally corre-

lated with El Niño Southern Oscillation (ENSO). Globally, a reduction in carbon up-

take by terrestrial ecosystems has been observed during El Niño (warm phase) and

the opposite during La Niña (cold phase). However, this global perspective obscures

the heterogeneous impacts of ENSO on vegetation activity at regional scales. Partic-

ularly, ENSO has contrasting impacts on climate in northern South America (NSA)

depending on the ENSO phase and geographical location. Furthermore, changes in

vegetation activity related to multiple ENSO events in NSA are not well understood

yet. In this study, we investigated time series of vegetation variables (i.e. GPP, NDVI,

EVI, FPAR) from 2001 to 2014 at moderate spatial resolution (0.0083◦). Data were ag-

gregated through dimensionality reduction analysis, specifically we used the Global

Principal Component Analysis. The leading principal component served as proxy of

vegetation activity (VAC). VAC was correlated to the multivariate ENSO index sepa-

rately for each ENSO phase. Our aim was to understand differences between El Niño

and La Niña in NSA, a region dominated by rainforest and savannas, and to identify

hotspots of ENSO impacts. Our results show that El Niño phase has a stronger impact

on vegetation activity both in intensity and duration than La Niña phase. Moreover,

seasonally dry ecoregions were more susceptible to El Niño impacts on vegetation ac-

tivity. Understanding these differences is key for regional adaptation and differenti-

ated management of ecosystems.

Keywords: ENSO, tropical ecosystems, vegetation activity, dimensionality reduction anal-

ysis, lagged effects, hotspots, northern South America

5.1 Introduction

The response of vegetation activity – photosynthesis in particular – to changes in cli-

mate is strongly controlled by both anthropogenically induced climate change and nat-

ural drivers induced by internal variability of the climate system (Arias et al., 2021b).

In northern South America (NSA), the El Niño Southern Oscillation (ENSO) is consid-

ered the main driver of interannual variability of cloud cover, rainfall and temperature

(Cai et al., 2020; Cess et al., 2001; Eleftheratos et al., 2011; Hilker et al., 2014; Philander,

2018; Poveda, Waylen, and Pulwarty, 2006; Tedeschi, Grimm, and Cavalcanti, 2016),
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with important impacts on the productivity of vegetation within this region (Bastos

et al., 2018; Köhler et al., 2018; Liu et al., 2017; Luo et al., 2018; Salas et al., 2020; Schaik

et al., 2018). ENSO is a coupled oceanic-atmospheric event in the Pacific ocean and it

is expected to increase in frequency and intensity in the wake of climate change (Cai

et al., 2014; Fasullo, Otto-Bliesner, and Stevenson, 2018; Yun et al., 2021), which can

lead to excesses or deficits of rainfall for different parts of NSA depending on the sea-

son. Therefore, a regional understanding of climate variability, in particular of ENSO

and its impacts on vegetation, is of paramount importance to predict the impacts of

global change on natural ecosystems, and, in consequence, its further implications to

human populations that inhabit this region.

Hydro-climatological studies have shown important changes in precipitation and

temperature associated with ENSO phases (i.e., El Niño, La Niña and Neutral) both at

regional and subregional scales (Bolaños et al., 2021; Cai et al., 2020; Poveda, Waylen,

and Pulwarty, 2006; Poveda et al., 2001; Waylen and Poveda, 2002). These studies have

shown that each ENSO phase does not manifest homogeneously across the entire NSA

domain, but rather at different intensities and with contrasting patterns of precipita-

tion. The complex topography imposed by the Andean mountains as well as the diver-

sity of ecosystem types characteristic of the tropical rain and dry forests, savannas and

wetlands of NSA pose big challenges to understanding the impacts of different ENSO

phases on climate and vegetation activity. In particular, there is limited knowledge

on how variability among ENSO phases affects vegetation activity taking into account

the diverse topography and ecosystems in NSA.

In general, the impacts of ENSO on vegetation are studied for individual events

(e.g., El Niño 2015-2016) from global to local scales. Local studies have used ground

data and permanent plots to assess plant functional traits, and changes in floristic

biodiversity in regions affected by ENSO (González-M et al., 2021; Muenchow et al.,

2013, 2020). Regional and global analyses have assessed changes on vegetation pro-

ductivity and photosynthesis (Bastos et al., 2018; Liu et al., 2017; Luo et al., 2018; Patra

et al., 2017). Specifically, for tropical South America, research has focused extensively

on productivity in the Amazon biome. For example, Schaik et al. (2018) compared GPP

anomalies among the Amazon sub-basins for El Niño 2015–2016 and found that the

northeastern sub-basin hosted the largest GPP loss (56% from October to March). In

contrast to analyses based on El Niño events, analyses related to La Niña are scarce

and usually carried out at global scales. For instance, Bastos et al. (2013) found that

La Niña of 2011 explained more than 40% of the variance in global net primary pro-

ductivity. For the same La Niña event, Pandey et al. (2017) reported an increase in

methane emissions by wetlands (5%). Analyses of individual events contribute to ex-

plain yearly changes in global vegetation activity but they are limited in: (i) detecting
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systematic/concurrent hotspots of ENSO across time; and, (ii) identifying differences

in ecosystem responses due to local conditions.

An alternative to evaluating individual ENSO events is to implement time series

analyses of climatological and ecosystem-productivity variables that cover multiple

ENSO events. This approach can be very powerful in assessing and comparing changes

over time that could be associated with lagged effects during transitions between

ENSO phases. Currently, multiple proxies of vegetation activity are available (e.g.,

greenness, productivity). Some of these variables are either calculated from direct

satellite retrievals such as vegetation indices (Huete et al., 1997; Huete et al., 2002;

Tucker and Sellers, 1986) or data products obtained from model-data fusion methods

or data-driven models (Jiang and Ryu, 2016; Running, Mu, and Zhao, 2015). Neverthe-

less, tropical regions such as NSA usually face challenges related to data availability

and quality due to cloud cover and lack of ground-truthing (Estupinan-Suarez, Leon,

and Sarmiento Pinzon, 2017; Hilker et al., 2012).

Another important challenge in analyzing vegetation activity metrics is that mul-

tiple data products are available that may provide contrasting results concerning the

relationships between climatic and ecosystem variables. It is often difficult to deter-

mine whether one single vegetation variable is preferable over others, but data analysis

methods such as dimensionality reduction contributes to capturing a clearer vegeta-

tion signal and to reducing noise (Estupinan-Suarez et al., 2021; Kraemer et al., 2020).

In particular, these methods can combine the information from multiple data streams

into a small set of indicator variables retaining most of the shared information in the

data, which offers an opportunity to aggregate different metrics of vegetation activity

without a major loss of information.

In this study, we investigated the spatial and temporal differences in vegetation ac-

tivity associated with ENSO phases (i.e., El Niño, La Niña) in NSA from 2001 to 2014. In

particular, we address three main research questions; How well is vegetation activity

captured by a single indicator variable obtained from a dimensionality reduction anal-

ysis? Are there differences in time lags of vegetation activity between ENSO phases?

And, Where are the hotspots in which vegetation activity responds more strongly to

inter ENSO variability in NSA?

5.2 Methods

5.2.1 Study area

This study was carried out in NSA, in a domain that includes the countries of Panama,

Colombia, Venezuela, Ecuador, and partially Peru and Brazil. This region hosts one
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Table 5.1: Climatic impacts of El Niño and La Niña in northern South
America. *: Anomalies not reported. Source: NOAA (2021a).

El Niño La Niña

Region Austral
summer

Austral
winter

Austral
summer

Austral
winter

Pacific
coast Warm and wet Warm Cool and dry Cool

Caribbean
coast * Warm and dry * Cool and wet

Amazon Dry * Wet *

of the largest biodiversity levels on Earth with a high degree of species endemism

(Andrade, 2011; Myers et al., 2000). In addition, the region is home to more than 100

million inhabitants (United Nations, 2019) that rely on a number of ecosystem services,

but are also a major driver of deforestation and land use change. The most extensive

natural land covers are broadleaved evergreen forests (71.8%), grasslands (7.1%), and

shrublands (4.0%) (ESA, 2017).

In this region, the impacts of ENSO on weather are contrasting depending on

the season (i.e., austral summer and winter), ENSO phase, and geographical location

(NOAA, 2021a). The main climatic impacts are summarized on Table 5.1.

5.2.2 Vegetation variables

As a proxy of vegetation activity, we selected two vegetation indices and two data sets

derived from models. These variables are the normalized difference vegetation index

(NDVI) (Tucker and Sellers, 1986), the enhanced vegetation index (EVI) (Huete et al.,

1997; Huete et al., 2002) and the fraction of absorbed photosynthetically active radia-

tion (FPAR) (Knyazikhin et al., 1998; Sellers et al., 1997) from the Moderate Resolution

Imaging Spectroradiometer (MODIS) Terra. Gross primary productivity (GPP) was ob-

tained from the Breathing Earth System Simulator (Ryu et al., 2011). Data sets were

acquired from the Regional Earth System Data Lab (RegESDL) where they are avail-

able in a harmonized grid at 0.0083◦ spatial resolution and 8-daily temporal resolution

(Estupinan-Suarez et al., 2021). Their geographical extend is from latitude 14◦𝑁 to

14◦𝑆 and longitude 83◦𝑊 to 60◦𝑊 . Quality flag filters were applied previously to the

MODIS products by the RegESDL. Data spans from 2001 to 2014, a period when all

four variables overlapped.
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5.2.3 Global Principal Component Analysis

Each variable was normalized pixel-wise to a global mean of zero and a variance of one.

To extract the main features of vegetation activity, we used dimensionality reduction

analysis. Specifically, we used an online version of the principal component analysis

(PCA) developed to deal with very large data sets and spherical distortions (Kraemer et

al., 2020), and refer to it as Global PCA. Within this framework, the entire data set was

projected into a unified principal component space regardless of the time and space

features. The Global PCA steps are: (i) to create covariance matrices for each time

step; (ii) to combine the covariance matrices of each time step into a global covariance

matrix; (iii) to calculate the loadings of the PCA from the global covariance matrix; and

(iv) to project data pixel by pixel to the new principal component (PC) space.

In addition, the first PC (PC1) trajectory was cross-checked with the one from the

input variables. This is because the PCA orthogonal rotation is arbitrary and not sen-

sitive to the variables directions. In our case, the PC1 trajectory was opposite to the

one from the input variables, then PC1 was flipped with a simple multiplication by −1.
Moreover, the Global PCA handles no data values, and also it assigns a weighted factor

to each covariance matrix per time step. Therefore data was not gap-filled. To account

for pixel size variations and accurately estimate the final covariancematrix we used the

WeightedOnlineStats.jl package (doi: 10.5281/zenodo.6494412) that efficiently handles

large data sets.

Furthermore, we conducted a separate Global PCA for each of the dominant nat-

ural land cover classes, and referred to it as the land cover PCA for simplicity (see

Appendix D ). With this approach, we compared the fraction of variance captured for

PCs when doing a separate analysis for broadleaved evergreen forests, shrublands and

grasslands.

Subsequent analyses were performed with the PC1 that captures the largest frac-

tion of variation, and holds the main information of vegetation activity (see section

5.3.1). Henceforth, we refer to PC1 as the leading vegetation activity component (VAC).

5.2.4 Time-lagged correlations between ENSO phases and the
vegetation activity component

We calculated the Spearman correlation (𝜌) between VAC and the bi-monthly Multi-

variate ENSO index v2.0 (MEI) on a pixel-by-pixel level. MEI is calculated based on

five atmospheric and oceanic variables (i.e., sea level pressure, sea surface, tempera-

ture, surface zonal winds, surface meridional winds, and outgoing longwave radiation)

between 30◦ S – 30◦ N and 100◦ E – 70◦ W over the tropical Pacific, and it takes into

account seasonal and sub-seasonal variability (NOAA, 2021b). Time series of monthly
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MEI are available from the National Oceanic and Atmospheric Administration (NOAA)

(https://psl.noaa.gov/enso/mei/, last access Sep. 1st, 2021). To match the vari-

able’s temporal resolution with the one of MEI, the index was interpolated to 8-daily

time steps using B-splines. Based on MEI thresholds by NOAA, the index values were

classified as follows: ≤ −0.5 correspond to La Niña whereas values ≥ 0.5 to El Niño,

values from −0.5 to 0.5 are Neutral (NOAA, 2021b).

The Spearman correlation was computed separately for El Niño, La Niña and the

Neutral phases. Furthermore, we calculated cross-correlations between MEI and VAC

to assess time-lagged correlations from zero to six months. Due to seasonal variability,

we only considered the months that have data from all three ENSO phases (January

to March and August to December). Finally, we used the Neutral phase as a base-

line to compare VAC during El Niño and La Niña. Thus, we subtracted the correla-

tion coefficient difference between El Niño (La Niña) and the Neutral phase pixel-wise.

Henceforth, we refer to this difference as the correlation anomalies, and interpreted as

a measure of the effect of the ENSO phases on variation in vegetation activity.

5.2.5 Hotspots of correlations between ENSO and vegetation ac-
tivity by ecoregions

To investigate regions with the strongest association between ENSO phases and veg-

etation activity, we evaluated the study area by terrestrial ecoregions (Figure 5.1). The

ecoregion map integrates biogeographical principles with spatial distribution models

of species and communities (Olson et al., 2001). Within these ecoregions, we computed

the median Spearman correlation between ENSO phases and the vegetation compo-

nent.

All data analyses were conducted in Julia 1.3 and used the ESDL.jl package (https:

//esa-esdl.github.io/ESDL.jl/latest/) that allows efficient processing over time

series and multivariate statistics (Estupinan-Suarez et al., 2021; Mahecha et al., 2020).

5.3 Results

5.3.1 Global PCA

We calculated a unified principal component space for the entire study area. VAC, the

leading vegetation activity component, captured a fraction of 0.45 of the variance. The

second and third PC explained a fraction of 0.21 and 0.19 of total variance, respec-

tively. Vegetation indices such as EVI and NDVI were the main variables contributing

to the leading component (Table 5.2). In general, VAC had a good agreement with the

https://psl.noaa.gov/enso/mei/
https://esa-esdl.github.io/ESDL.jl/latest/
https://esa-esdl.github.io/ESDL.jl/latest/
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Figure 5.1: Map of northern South America. Grey polygons are selected
ecoregions fromOlson et al. (2001). The numbers indicate the ecoregions

name. The black lines are the country borders.

input variables in grasslands and shrublands, with correlation coefficients 𝜌 > 0.7 (Fig-

ure D.1). Nevertheless, the agreement between VAC and GPP decreases when GPP ≥ 6
gCm2/day, highlighting that VAC is not sensitive when productivity is high. Regard-

ing broadleaf evergreen forests, the correlation between VAC and the input variables

dropped dramatically 𝜌 ≤ 0.5, except for EVI. In fact, EVI has a nearly linear relation-

ship with VAC within each of the assessed land cover classes, which contrasts with

the observed pattern for NDVI. In this sense, we found that the correlation with NDVI

highly varies among land cover classes with a 𝜌 ∼ 0.3 in broadleaved evergreen forests

in comparison with 𝜌 ∼ 0.7 in savannas.

When conducting the Global PCA separately by land cover class (i.e., land cover

PCA), we found that VAC accounted for 0.68 and 0.71 of the variance in shrublands

and savannas, respectively, and decreased to 0.33 in broadleaved evergreen forests

(Table D.1). Additionally, EVI, NDVI and GPP had similar loadings for savannas and

shrublands (from −0.51 to −0.53), whereas EVI was the main variable in broadleaved

evergreen forest (−0.67 vs. ≥ −0.42).

5.3.2 Vegetation activity duringdifferent ENSOphases along lags

We compared the variability of VAC-MEI correlations among ENSO phases. The cor-

relation anomalies map (Figure 5.2) shows the differences of the Spearman correlation

coefficients between the El Niño (La Niña) and the Neutral phase. The differences of

correlation coefficients at each pixel and for each time lag illustrate how the strength
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Table 5.2: Loadings from the Global PCA by (normalized) variable. EVI:
Enhanced vegetation index. FPAR: Fraction of absorbed photosyntheti-
cally active radiation. GPP: Gross primary productivity. NDVI: Normal-
ized difference vegetation index. VAC: Vegetation activity component.

PC: Principal component.

Variable VAC (PC1) PC2 PC3 PC4

EVI -0.58 -0.22 0.09 -0.78
FPAR -0.41 0.85 -0.34 0.02
GPP -0.49 -0.49 -0.59 0.43
NDVI -0.51 0.04 0.73 0.46

of these correlations change spatially and temporally. Specifically, areas near the Pa-

cific coast of Ecuador and Peru, the Caribbean coast, and northern inland savannas

(i.e., Llanos and surroundings) are the areas with the highest variability in vegetation

activity associated to El Niño and La Niña.

In general, we observed contrary patterns between areas north and south from the

equator during all ENSO phases. In the northern region, correlation anomalies were

negative during El Niño while positive during La Niña. Additionally, the correlation

anomalies were stronger during El Niño than La Niña either in intensity (𝜌) and du-

ration (along lags). For example, in the Caribbean coast of Venezuela, the correlation

anomalies were stronger for all lags during El Niño and only from 4 to 6 month during

La Niña. In the Sinu valley, the correlation anomalies was stronger during El Niño in

the first lags (0 to 2 month), whereas for La Niña occurred from 3 to 6 month lags.

The opposite was reported for the southern regions near the Ecuadorian and north-

ern Peruvian coast, it was an increase on the correlation anomalies during El Niño that

also became stronger along time (2 to 6 month lag). During La Niña, the correlation

anomalies turned negative and stronger from 3 to 6 month lag. The Amazon biome

included in the study area, i.e., the upper western Amazon basin, showed a more ho-

mogeneous pattern during La Niña than during El Niño. Mostly, during La Niña the

correlation diminished from 2 to 6-month lag. The strongest period was at 3-month

lag, then it slightly increased in the following months. Contrary, there was not a uni-

fied response of vegetation activity during El Niño. Around 10◦𝑆, the correlations were
negative whereas in the northern part of the Amazon they were positive (Figure 5.2a).

This heterogeneity is more discernible between 2 to 6 month lag, and highlights the

variety of responses within the Amazon biome.

Despite these strong spatial differences, these results consistently show that time

lags are more pronounced during El Niño than during La Niña phase. In brief, variabil-

ity of the vegetation activity is higher during El Niño in the mountain ranges near the
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southern Pacific coast, Caribbean coast and the Llanos along all lags. On the contrary,

changes in vegetation activity related to La Niña are narrowed to specific lags.

5.3.3 Hotspots of ENSO impacts on vegetation activity

We also calculated the lagged Spearman correlation between VAC and MEI by ecore-

gions for each ENSO phase. We found that El Niño had the strongest correlation with

VAC, and followed the same trajectory that the Neutral phase which had weaker val-

ues (Figure 5.3). On the contrary, the trajectory observed during La Niña is opposite

to the ones from other ENSO phases, and also had weak correlations.

Contrasting correlation patterns emerged from the ecoregions along the latitude

gradient. In fact, we clearly observed that in the northern region, the VAC–MEI cor-

relations were stronger and negative during El Niño while they were weakly positive

during La Niña. Conversely, we found a positive (negative) correlation with El Niño (La

Niña) in the southern region. Interestingly, El Niño showed the strongest correlation

in ecoregions located north and south from the equator, despite the opposite signs of

the correlation i.e., a positive correlation in the southern region and a negative one in

the north.

In particular for El Niño, the strongest correlation, and smallest standard deviation,

was found in ecoregions closer to the coasts. Specifically, ecoregions closer to the Pa-

cific ocean (i.e., Central Andean Puna and Central Andean wet Puna) and the Caribbean

coast (i.e., La costa xeric shrublands) have the strongest correlation |𝜌 | > 0.6. Conti-
nental ecoregions such as Guianan savanna, Llanos and Beni savanna had |𝜌 | ∼ 0.5 and

a larger standard deviation. Overall, we observed a higher variability of VAC associ-

ated to ENSO in dry ecosystems; from the 16 ecoregions with the strongest correlation

( |𝜌 | > 0.4), 69% are either savannas, dry forests, or xeric shrubs/scrubs. Figure S2 il-

lustrates the gradient between 𝜌 and precipitation of the driest quarter, this suggests

that the correlation becomes weaker in wetter ecoregions.

To understand the climatic drivers of these ecoregional changes on vegetation, we

explored time series of precipitation and air temperature. In general, plots of MEI

against the climate variables showed similar trajectories that the ones observed with

VAC (Figure D.3). As expected rainfall increases during La Niña in the norhthern ecore-

gions and decreases during El Niño in the southern ecoregions highlighting the re-

gional heterogeneity. Otherwise the trajectories regarding the MEI-temperature cor-

relation were not uniform along lags and often overlapped (Figure D.4).
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(a) El Niño − Neutral

(b) La Niña − Neutral

Figure 5.2: Map of correlation anomalies. The color map represents the
difference in lagged Spearman correlations between MEI and the lead-
ing vegetation activity component (VAC) for (a) the El Niño and Neutral
phase, and (b) the La Niña and Neutral phase. The black lines are coun-

try borders.
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Figure 5.3: Median values of the lagged Spearman correlation between
VAC and MEI by ecoregions. Ecoregions are in rows. From left to right:
first column shows the ecoregion location. Second column represents
the median correlations within the ecoregion by ENSO phases. The rib-
bon correspond to the standard deviation. Data distribution from El
Niño, La Niña and Neutral phases by lags is showed in columns three
to five respectively. Showed ecoregions have the highest correlation and

an area larger than 50000 km2
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5.4 Discussion

We analyzed time series of four vegetation variables to assess the effects of inter ENSO

variability across time and space in NSA. To do this, we implemented the Global PCA

approach (Kraemer et al., 2020) with the aim to capture a clearer vegetation activity

signal that incorporated information from different sources. The derived leading com-

ponent (i.e., VAC) was correlated to MEI within the different ENSO phases. Our find-

ings show: (i) VAC captures the largest amount of variation from vegetation variables

but its performance varies among land cover classes. (ii) There are opposite patterns of

vegetation activity along time lags during El Niño and La Niña. In addition, (iii) vegeta-

tion in drier ecoregions show higher variability in El Niño regardless of the correlation

sign with MEI. And, (iv) the trajectories of the lagged correlations are opposite in La

Niña in comparison to the Neutral phase. In the following we discuss these findings

in detail.

5.4.1 The vegetation activity component from the Global PCA

Our understanding of vegetation activity in the tropics is still limited. Recent stud-

ies are clarifying the climatic drivers at seasonal scales in different ecosystems (Chen

et al., 2021; Hashimoto et al., 2021; Li et al., 2021; Uribe, Sierra, and Dukes, 2021), but

its variability at longer temporal scales is still in a very early phase. One of the major

challenges is that clear-sky observations are limited due to high cloud cover, and oc-

casionally aerosols from fire (Hilker et al., 2012). In addition, ground data for models

calibration is limited in the tropics reducing their regional predictability (Jung et al.,

2020). Using the Global PCA approach, we captured the main characteristics of vege-

tation variables related to greenness and productivity. The derived vegetation activity

proxy defined as VAC captured the largest amount of variation in seasonally dry cli-

mate ecosystems such as savannas and grasslands, but it was limited in the rainforest

regions (Figure D.1). This was expected due mostly to two main reasons. First, areas

such as the western Amazon or the Biogeographic Chocó, where annual precipita-

tion could reach levels above 2500 mm and 11000 mm respectively (Poveda and Mesa,

2000), present large seasonal data gaps (Hilker et al., 2012) offering limited yearly data.

Second, there are known drawbacks of optical satellites to detect changes in vegeta-

tion activity in ecosystem with very dense canopies such as the rainforest (Asner and

Alencar, 2010; Huete et al., 1997; Köhler et al., 2018).

In general, our results show that VAC is dominated by the EVI signal. As a con-

sequence, the information content in VAC is closer to vegetation greenness than to

productivity. When looking at the dominant land cover classes, we found certain char-

acteristics. For example, all variables show similar linear trends and correlations in
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grasslands with the exception of a nonlinear relationship between VAC and GPP (Fig-

ure D.1). This clearly delineates the limitations of VAC regarding its ability to represent

spatio-temporal variation of photosynthetic activity. With respect to broadleaved ev-

ergreen forests, EVI is the variable with the highest Spearman correlation (𝜌 = 0.67),
and NDVI has the weakest correlation (𝜌 = 0.3). This was unexpected considering that
both are measuring greenness, but reinforces the idea that EVI is more suitable for

broadleaved evergreen vegetation because its lower sensitivity to atmospheric effects

as well as less canopy saturation (Huete et al., 1997; Huete et al., 2002).

5.4.2 Lagged effects of ENSO in vegetation activity in NSA

Regions near the coast of southern Ecuador and northern Peru, including La Sierra,

experienced a progressive increase on the correlations anomalies from lag zero to six

during El Niño (Figure 5.2). In this area, the dominant land cover is grasslands and

shrublands that might benefit from an increase in rainfall associated to El Niño. A

similar response was observed in the Caribbean coast and neighbor inland areas such

as the Sinu Valley and Orinoquia savannas (Llanos), but for La Niña phase and from

lag three to six. Conversely, these ecoregions showed a negative correlation between

VAC and El Niño across all lags, which can be related to a stronger water deficit during

the dry season.

In comparison to studies that pointed to a reduction of vegetation activity during

El Niño episodes in the Amazon basin (Hilker et al., 2014; Liu et al., 2017; Luo et al.,

2018; Patra et al., 2017), we observed a more heterogeneous pattern. During the first

three months, the western Amazon basin, covered by our study area, had a boost on

the correlation anomalies. This could be explained by the fact that solar radiation

is a limiting factor in tropical rainforests (Graham et al., 2003; Nemani et al., 2003),

which benefit from less clouds during El Niño (Moura et al., 2019). Furthermore, this

area is part of the wettest sub-basin in the Amazon (Schaik et al., 2018), therefore

plants are not exposed to water stress in the early stages. However, at a six month

lag, the correlation of vegetation activity with MEI became predominantly negative.

This reveals contrasting vegetation responses related to a lagged effect, and it could

be indicative of a link between prolonged solar radiation and the crossing of other

environmental thresholds in the Amazon (Brando et al., 2010).

In general, we found negative correlations in the Amazon region during both ENSO

phases at lag six, although spread of these correlations cover a larger area during La

Niña phase. Taking into account that higher precipitation and less solar radiation is

expected during La Niña, the vegetation activity should drop (Moura et al., 2019). This

is consistent with observations by Graham et al. (2003) at the site level in the Panama
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rainforest, who reported light as themain limiting factor for forest carbon uptake. Nev-

ertheless, this result has to be carefully interpreted when working with optical satellite

data due to quality issues in tropical forests and saturation of vegetation indices.

Overall, we summarize the interplay between ENSO phases and VAC as follows.

There is a clear and contrasting response between the Ecuadorian and Peruvian regions

near the coast on the one hand, and the Caribbean coast and Orinoquia savannas on

the other hand, during both the El Niño and La Niña phases. This highlights the impor-

tance of spatial heterogeneity within the region, with a clear separation of the northern

and southern regions of the study area. This variability is associated to the complex

climatology of the region. For instance, Salas et al. (2020) showed that anomalies in

precipitation and streamflow during ENSO phases are interlinked with moisture ad-

vection of regional jets affecting the anomalies in magnitude and spatial distribution.

Thus, the Caribbean Jet, Choco Jet, and Orinoco Jet caused different anomaly patterns

in the Caribbean, northern Pacific coast (Choco) and the Amazon, respectively.

Finally, the VAC–MEI correlation anomalies are stronger during El Niño than La

Niña both in terms of intensity and delayed effects in the southern Pacific andCaribbean

coasts as well as in the Orinoquia savannas. Elucidating these differences in ENSO

phases is key for assessing changes, not only for the natural ecosystems but also in

terms of further impacts for the population depending on them.

5.4.3 ENSO hotspots by ecoregions

Of significant importance is our finding of a high correlation between vegetation activ-

ity andMEI during El Niño in dry ecoregions. About 67% of ecoregions with 𝜌 > | ±0.4|
are considered arid or semi-arid ecosystems. Currently, there is limited understanding

on the physiological and climatological mechanisms that may lead to this response in

such ecosystems, but some authors have highlighted some implications. For example,

González-M et al. (2021) reported a negative net biomass balance in tropical dry forests

during El Niño of 2015 for NSA. For similarly dry ecosystems such as the Cerrado in

Brazil, Zanella De Arruda et al. (2016) found that this grassland dominated ecosystem

is a source of CO2 during the drier years. In general, research on tropical ecosystems

with seasonal dry climate is still limited (Pennington, Lehmann, and Rowland, 2018),

and even scarcer regarding their response to ENSO. Taking into account that semi–arid

ecosystems are considered the main driver of interannual variability of GPP (Ahlström

et al., 2015), and that ENSO is the main climatic driver at the same scale, it is crucial

to increase our understanding in this context. Moreover, research focused on tropical

savannas and dry forests is extremely relevant in light of decreased rainfall scenarios in

places such as the Amazon due to the amplified effects of deforestation, drought, and



5.4. Discussion 77

climate change (Hilker et al., 2014; Parsons et al., 2018; Shiogama et al., 2011; Vilanova

et al., 2021; Zemp et al., 2017b).

In addition, our results also show that ecoregions with the highest correlation

anomalies (𝜌 > | ±0.6|) were in relative proximity to the coast, i.e., La Costa xeric shrub-

lands and Central Andean puna, followed by continental ecoregions such as Guianan

savanna, Llanos and Benni savanna. This suggests that ecoregions near the coast are

slightly more sensitive to MEI than the continental ones independent of their latitu-

dinal location. Another geographical remark is the clear inverse response of VAC in

ecoregion’s located north and south from the equator during the same ENSO phase.

In summary, while the sign correlation between VAC and MEI is positive in the North

it becomes negative in the South and conversely. This pattern can be explained by the

opposite effects that ENSO phases have in the different geographical locations in NSA,

and it is aligned with the diverse changes on temperature and rainfall previously de-

scribed for the region (NOAA, 2021a; Salas et al., 2020). Overall, our results suggests

that due to the warm ENSO phase, the identified ecoregions have a higher sensitivity

to changes in climate. Therefore, we considered them as the hotspots of ENSO effects

on vegetation activity.

Lastly, we highlight the opposite trajectory of the lagged correlations during La

Niña in comparison to the Neutral phase (Figure 5.3). Although the correlations be-

tween VAC and MEI are weaker during La Niña (from −0.23 to 0.09), the trend consis-

tently has the opposite direction than the Neutral phase along lags. We repeated the

same lagged correlation analysis but replacing VAC by precipitation (Figure D.3). Our

results showed the same trajectories along lags for each ENSO phase and are consis-

tent with the trajectories observed with VAC. These results were unexpected because

La Niña is usually considered and enhanced Neutral phase from the atmospheric point

of view (Bureau of Meteorology, 2012; Philander, 2018). These findings require further

investigation to assess the local climate conditions during La Niña in the identified

ecoregions. Currently, the assessment of land vegetation variability during La Niña

and the Neutral phase is limited. But studies such as Pandey et al. (2017) reporting

a global methane increase (6-9 Tg CH4 yr−1) during La Niña 2011 reveal the large im-

pact and relevance of the ENSO cold phase. Regionally, important questions emerged

after the extensive flooding by La Niña 2011. For example; How did the ecosystems

recover after nutrients were recharged by the river sediments? For how long were soils

water-logged? And, What are the consequences in the carbon cycle? Unfortunately,

assessments of such impacts by La Niña are still pending.
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5.4.4 Limitations and opportunities

The Global PCA approach aggregates the largest vegetation variability from the entire

region into a unified PCA space. This has the advantage that all pixels are projected us-

ing the same loadings, and prevents opposite loading signs among neighboring pixels

in a pixel-wise analysis. Nevertheless, PCA relies on orthogonal linear transforma-

tions and is limited for analysing nonlinear processes. There is an opportunity to use

nonlinear dimensionality reduction methods such as Isomap (Tenenbaum, Silva, and

Langford, 2000) or locally linear embeddings (Roweis and Saul, 2000) in future studies.

Until now, these methods have not been computationally implemented for capturing

simultaneously the variability in multiple dimensions (e.g., variables, space, time).

This study was carried out in a limited temporal and spatial domain that was de-

fined by the overlap in the time spans of the assessed variables, together with consis-

tency requirements for their spatial resolution. Nevertheless, there are opportunities

to expand this analysis to cover larger areas such as the entire tropical domain and in-

clude longer time windows as more information becomes available. Furthermore, our

method can be used to assess different ENSO indices in addition to the MEI used here.

5.5 Conclusion

Our results show that in NSA, a region with high heterogeneity in terms of climate

and biophysical characteristics, vegetation activity presents opposite patterns within

the same ENSO phase. Thus, when the correlation between vegetation activity and

ENSO is positive during El Niño south of the equator, it is negative towards the north,

and vice versa during La Niña. Understanding these differences is key for regional

adaptation to more frequent and prolonged droughts or floods. Moreover, this could

also contribute to the development of differentiated management plans for different

ecosystem types that respond differently to the extreme phases of ENSO.

When assessing the lagged effects of ENSO, we observed that variability of vegeta-

tion activity is stronger in intensity and more prolonged during El Niño than during La

Niña. Interestingly, this is independent of the correlation sign. In addition, we found

that seasonally dry ecosystems are the most sensitive to El Niño. This is key in a region

where research efforts are focused on tropical rainforest, and highlights the urgency

of research in other ecosystem types.

Furthermore, we found a shift in the correlation sign in the Amazon around five to

six month lag. This suggest the role of different environmental thresholds over time

that have to be further investigated. Analyses of prolonged periods of solar radiation

as well as water availability could contribute to elucidate ecosystems thresholds over

consecutive months for specific ENSO events.



5.6. Acknowledgments 79

Overall, our approach captured the integrated response of vegetation as assessed

by the combined information content of different metrics of vegetation activity. Al-

though we observed a large heterogeneity of responses in space and time, our analysis

unequivocally shows the contrasting variability of vegetation activity during ENSO

phases in NSA. By integrating different data sources, and by combining spatial and

temporal analyses, our results provide relevant information to disentangle the differ-

ent responses related to large-scale climate events such as ENSO considering those

specific characteristics that are endemic to each ecoregion in NSA.
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Chapter 6

Discussion

The overarching goal of my thesis was to understand dynamics of vegetation activity

occurring across time scales globally and in a regional context. To achieve this, I an-

alyzed variables related to vegetation activity acquired by satellites or generated by

models through two approaches: (i) time series decomposition, and (ii) dimensionality

reduction analysis. The first approach disentangles information contained in the sea-

sonal cycle, short-term (< 1 year), and longer-term (> 1 year) time scales. I applied it to

vegetation greenness and climate variables at the global scale. The second approach

sought to extract the largest amount of information from a combination of vegetation

variables through dimensionality reduction analysis in NSA. NSA is a region with a

large diversity of climate and ecosystems, but also with scarcity of data. This chapter

summarizes the main results and explains the implications of my work from a more

integrated perspective. I also emphasize on the relevance and implications for NSA, by

putting the obtained results into a regional context.

6.1 Dominant modes of variability in NDVI and cli-
mate variables across time scales

Investigating vegetation activity at different time scales is of notable importance, as

well as it is recognizing processes that occur beyond the often dominant seasonal cy-

cle, and among different ecosystems. I assessed more than 30 years of NDVI records

in tandem with climate variables. The research question addressed was RQ1: What

are the modes of variability in vegetation greenness and what is its co-variability with cli-

mate across time scales globally? In summary, my results show that; (i) 27 % of NDVI

variability is dominated either by short- or longer-term oscillations. Short-term oscil-

lations are mainly found in broadleaved evergreen forest while longer-term oscillations

are predominantly found in shrublands; (ii) the dominant co-variability map between
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NDVI and climate highlights homogeneous regions in the northern latitudes and het-

erogeneous regions in the tropics; and, (iii) the sign of co-variability between NDVI,

temperature and precipitation differs across time scales.

In general, my results provide a comprehensive understanding of vegetation green-

ness considering the temporal component. Of significant importance is the assessment

of climate-vegetation interactions. As I reported, correlations between NDVI and cli-

mate variables can have opposite signs when assessing the seasonal cycle and longer-

term oscillations in different regions (Chapter 3, Figure 4). Considering the expected

higher climate variability, it is important to understand how strongly vegetation green-

ness varies at these time scales, and which are the main co-varying climate drivers. In

addition, it is known that estimations of terrestrial vegetation productivity are limited

at capturing interannual variability (Jung et al., 2020). Providing differentiated spatio-

temporal frameworks of NDVI will improve model predictions of vegetation produc-

tivity as well as forecasting ecosystem dynamics in climate change scenarios.

Another key result was the regional differences of the dominant co-variability be-

tween NDVI and climate variables (Chapter 3, Figure 2). I identified three main pat-

terns along latitudes. At northern latitudes (above 23 ◦ N), the seasonal cycle of NDVI

and air temperature dominate in combination with either short-term oscillations or

the seasonal cycle of precipitation. At southern latitudes (bellow 23 ◦ S), longer-term

oscillation of NDVI become significant, whereas the strong annual seasonality of air

temperature prevails. Long-term oscillations of NDVI were dominant in deciduous for-

est and shrubs, and herbaceous covers. This is aligned with studies highlighting the

role of semi-arid ecosystems as main drivers of interannual variability of the terrestrial

carbon sink (Ahlström et al., 2015). Furthermore, the tropics present multiple combi-

nations of dominant co-variability, especially in South America and South East Asia,

where short-term oscillation of NDVI and precipitation are remarkable (see Section

6.2).

A remaining task that could be addressed in future studies, is a more detailed as-

sessment of short-term oscillations of vegetation activity, which until now has been

constrained by data availability. Such analyses are generally carried out using eddy

covariance data (Braswell et al., 2005; Mahecha et al., 2010), and therefore they are site

specific. In our global study with GIMMS NDVI, we hypothesized that the dominant

variability of short-term oscillations in the tropics might be explained by the Mad-

den Julian Oscillation, i.e. atmospheric oscillations at frequencies between 20 and 90

days (Madden and Julian, 1971). Assessing this interseasonal variability using weekly

composites, based on daily observations such as GIMMS, is insufficient because of lim-

ited data sampling and quality. New avenues are opened with geostationary satellite

missions such as the Geostationary Operational Environmental Satellite 16 (GOES-16)
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that carries the Advanced Baseline Imager (ABI) instrument. ABI includes the visible

and infrared spectral bands needed to compute NDVI (Schmit et al., 2018). In com-

parison to AVHRR and MODIS, ABI observations are acquired every 10 to 15 minutes

preserving a moderate spatial resolution (1 km), and at the same time increasing sig-

nificantly the number of clear-sky observations (Hashimoto et al., 2021). In fact, geo-

stationary satellites open an opportunity to explore vegetation activity in shorter time

periods and beyond the seasonal cycle such as the rapid growing season of annual

plants, plants’ response to water-pulses in water limited ecosystems, among others

(Küçük et al., 2022).

6.2 Analysis of vegetation activity in northern South
America

In NSA, the patterns of dominant co-variability between vegetation and climate are

complex as shown in Chapter 3. The ecosystems in NSA are key for the water and

carbon cycles at annual and interannual time scales. Currently, there is limited re-

search assessing land-atmosphere interactions, and therefore limited understanding

of ecosystem dynamics in the region. At the same time, and despite their continental

and global importance, ecosystems in NSA are highly threatened due to the expansion

of the agricultural frontier, which imposes large threats on these ecosystems that may

be amplified by climate change (Anaya et al., 2020; Armenteras et al., 2019; Barona

et al., 2010; Clerici et al., 2020; Seymour and Harris, 2019; Song et al., 2018).

Spatio-temporal analyses of vegetation in NSA are often constrained because of

limited data access and processing power, low data availability due to clouds, and

large uncertainty in global products. To address the first constraints, I implemented

the RegESDL and addressed RQ2: How to carry out computationally efficient time series

analysis in NSA with moderate spatial resolution? Overall, the RegESDL facilitates big

data analytics, and contributes to integrating geographical layers from different fields

such as climate, vegetation, biodiversity, among others (see section 6.3).

6.2.1 Diverse modes of seasonality of vegetation activity in NSA

As a first application of the RegESDL, I explored the seasonal cycle of vegetation activ-

ity in the region. To understand seasonality in NSA, it is important to consider two key

points. First, climate seasonality is dominated by precipitation regimes; unimodal and

bimodal. Second, seasonality of vegetation in tropical ecosystems has been related

either to precipitation or solar radiation (Hashimoto et al., 2021; Uribe, Sierra, and
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Dukes, 2021). In fact, tropical ecosystems with strong seasonality are mostly water-

limited such as tropical dry-forests and savannas. By contrast, the presence of sea-

sonal cycles of vegetation activity remains a controversial topic for tropical rainforest

(i.e. broadleaved evergreen forest). However, different fields of research have reported

structural ecosystem changes such as leaf flushing and leaf litter falling throughout

the year (Chave et al., 2010; Chen et al., 2021; Li et al., 2021; Lopes et al., 2016). The

research question addressed in this study was RQ3: What are the modes of seasonal-

ity of vegetation activity in NSA?. To do this, I combined a set of variables acquired by

satellites and models through dimensionality reduction analysis. The resulting leading

component was used as a proxy of vegetation activity and as input for the following

computations.

I proposed a seasonality ratio (𝑆𝑅) metric (Chapter 4) based on the contribution

of annual and semiannual oscillations. The results depict contrasting patterns of 𝑆𝑅

in ecosystems with a strong climate seasonality (e.g. water-limited ecosystems). Re-

gions with unimodal precipitation regimes such as tropical savannas surprisingly ex-

hibited one cluster with a dominant bimodality of vegetation activity (Chapter 4, Fig-

ure 8). This was the case of a biotic unit (i.e., Arauca) covered by a mosaic of flooded

shrubs/grass and grasslands. From here, the emerging hypothesis was that different

vegetation types peak at different times. Thus, the observed double-peak signal of

vegetation activity could be explained by a mosaic of different vegetation layers in

savannas and their functional diversity. In contrast, regions with bimodal precipita-

tion regimes such as lowland inter-Andean valleys (i.e., Magdalena Medio & depresion

Momposina) showed two different 𝑆𝑅 clusters. The first cluster highlighted unimodal

seasonality in drier regions. The second cluster was related to wetter regions and it was

dominated by bimodal values. Besides water availability, the emergence of these two

𝑆𝑅 clusters might be explained by the dominant vegetation types (i.e., broadleaved

evergreen forest and crop-rainfed). A detailed assessment of vegetation types, with

higher spatial resolution imagery and multiple sensors such as Sentinel-1 and 2, would

contribute to elucidate new hypotheses regarding ecosystem function together with

climate.

In addition, the seasonality ratio map (Chapter 4, Figure 6) revealed a pattern of

high complexity in western Amazon. In this part of the basin, the 𝑆𝑅 covered the en-

tire range; starting from bimodal values (𝑆𝑅 < 1), going through pixels where both

oscillations had equivalent contribution (𝑆𝑅 ∼ 1), as well as pixels with unimodal sea-

sonality (𝑆𝑅 > 1). A remark is that the vegetation activity proxy used to calculate the

𝑆𝑅 only explained ∼ 0.3 of variability in the majority of broadleaved evergreen forest

pixels. This is aligned with results from Chapter 3, where we reported that the dom-

inant variability of NDVI was enclosed in the short-term oscillations instead of the
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seasonal cycle. Nevertheless, these findings showed that even though the seasonal cy-

cle is not dominant in broadleaved evergreen forests, and was partially captured by the

vegetation activity component, heterogeneous patterns emerge when isolated annual

and semiannual oscillations are assessed. As introduced in section 6.1, first analyses

from geostationary satellites are providing new evidence of interseasonal changes in

vegetation activity at regional scales. In this sense, results from ABI have revealed sig-

nificant seasonality in 4 from 7 sites in the Amazon despite the limitations of working

with NDVI in dense canopies (Hashimoto et al., 2021).

Revealing seasonality of vegetation activity, and the corresponding climate drivers

is still an ongoing process in tropical ecosystems. These results are a first step for un-

derstanding different seasonalities of vegetation activity in very diverse ecosystems.

They highlight that not only climatic factors explain vegetation seasonality in NSA

but the composition of the ecosystems as well. An important step forward is to inte-

grate ground measurements and remote sensing observations from active and passive

sensors. A good example is the integration of phenocams and vegetation indices from

satellites by Lopes et al. (2016), who evaluated leaf canopy flushing in the Amazon.

Similar studies have to be extended, together with the development of interdisciplinary

frameworks and collaborations between big data analyses and ground measurements.

Outcomes from such analyses will go beyond assessing seasonality of vegetation ac-

tivity and its implications on carbon cycling, they will be also relevant to understand

other ecological processes such as nutrient cycling, animal migrations, among others.

6.2.2 Heterogeneous spatio-temporal activity of vegetation dur-
ing ENSO phases in NSA

In my last study, I investigated vegetation variables related to greenness and photo-

synthesis during the ENSO phases (i.e., El Niño, La Niña, Neutral)(Chapter 5). The

main research question addressed was RQ4: Where are the hotspots of vegetation ac-

tivity observed during the ENSO phases in NSA? To achieve this, I integrated the time

series of GPP, FPAR, NDVI and EVI using the Global PCA approach over the entire

domain of NSA from 2001 to 2014. The method facilitated obtaining a clearer signal by

retaining most of the variability in the data. I used the resulting leading component

(i.e., PC1) as a proxy of vegetation activity, and correlated it with MEI for each ENSO

phase. Additionally, I analyzed the results by ecoregions.

My findings depicted a large heterogeneity of vegetation activity in NSA during

El Niño and La Niña phases. The results highlight the contrasting variability in veg-

etation activity on regions near the southern Pacific coast compared to the northern

savannas and Caribbean coast during the same ENSO phase. In general, changes in
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vegetation activity, in magnitude and duration, were stronger during El Niño than La

Niña (Chapter 5, Figure 2). Moreover, when aggregating the results by ecoregions, the

strongest correlations withMEI was found in the drier ecoregions during El Niño phase

suggesting their high vulnerability to the ENSO cold phase (Chapter 5, Figure 3).

From the analysis at the ecoregion level, an unexpected outcome was the similar-

ity in trajectories between the Neutral phase and El Niño along lags. Interestingly,

the Neutral phase followed the same trajectory as El Niño but with lower correlation

values, and at the same time they both are opposite to La Niña trajectory (Chapter 5,

Figure 3). This is contrary to the meteorological definition of the ENSO phases in

the Pacific ocean. From the atmospheric perspective, La Niña and the Neutral phase

are more similar than El Niño. In fact, La Niña is considered as an enhanced Neutral

phase with an intensification of the Walker circulation and convection. By contrast,

El Niño presents a weaker Walker circulation, with often a displacement of convection

cells due to reversed winds (Bureau of Meteorology, 2012; Philander, 2018). I carried

out an equivalent analysis with precipitation and it confirmed the similar trajectories

between El Niño and the Neutral phase (Figure D.3). This underlines the limited knowl-

edge about vegetation activity during the Neutral phase as well as the unknown local

forcing under regular climatic conditions which has to be further investigated.

Another remark is that theGlobal PCA is a linear dimensionality reductionmethod.

Linear methods demand less computing resources in comparison to nonlinear meth-

ods, as well they have a broader implementation by different software. Nevertheless,

they have limited ability to reveal non linearities in the system. I selected the Global

PCA for its capability to capture data variability along the spatial and variable di-

mensions, which was aligned with my objective of assessing the regional variability

of vegetation activity in NSA. Otherwise, nonlinear methods such as Isomap (Tenen-

baum, Silva, and Langford, 2000) do not have the computational implementation for

reducing both dimensions simultaneously. I carried out a complementary analysis to

compare PCA and Isomap by reducing only one data dimension (univariate analysis).

The idea was to learn about the possible differences between bothmethods. The results

showed that when reducing the variables pixel-wise both methods have a similar per-

formance. In fact, the resulting correlation maps between the leading component and

MEI showed similar patterns (Appendix A, Figure A.1). Furthermore, when reducing

the spatial dimension by watershed using a single variable (i.e., GPP), the correlation

between Isomap components and MEI was slightly higher in comparison to PCA (Ap-

pendix A, Figure A.2).

Finally, results from both regional analyses have to be seen in the light of data

availability. NSA is exposed to the vertical migration of the ITCZ that in combination

with the recycling moisture from the Amazon create seasonal dense cloud cover. This
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constrains the number of reliable observations with optical sensors. In my research,

I applied data quality flags to the input variables (see Appendix C, Table S2). The

implemented criterion diminishes the number of final observations and therefore the

results are particularly limited in the wet seasons. In consequence, some regions were

totally excluded (i.e., northern Pacific coast Choco Biogeografico - Chapter 4, Figures 4

and 6) due to the reduced or null values in the 𝑆𝑅 analysis.

6.3 Opportunities from big data infrastructures

A common solution to facilitate access to big data and processing is to bridge the gap

between user code and data repositories. This is the principle of the RegESDL approach

implemented in this research. Similar initiatives are the well-known Google Earth En-

gine or the national data cube projects led by CSIRO. Google Earth Engine offers ex-

tensive data sets operated with closed source software (Lewis et al., 2017; Tamiminia

et al., 2020), while the CSIRO data cubes are open source software but have focused

exclusively on satellite imagery (Bravo et al., 2017; Giuliani et al., 2017, 2019; Lewis

et al., 2017). By contrast, the RegESDL is open source software that provides different

data sets to link Earth science, biodiversity and ecosystem function.

In this dissertation, I show the RegESDL deployment, its successful implementa-

tion to efficiently carry out time series analysis and multivariate statistics. I used time

series decomposition to calculate annual and semiannual oscillations pixel-wise taking

advantage of the data storage which is optimized for temporal analysis (Chapter 4).

As well, the performance was not degraded when working over the spatial domain to

calculate the Global PCA which required to load all land pixels from all variables per

time step (Chapter 5). Another application of the RegESDL was by Burbano Girón

et al. (2020) who assessed ecosystem functional types in tropical dry forest. Using

break-point detection to assess and characterize seasonality, they found that the most

relevant indicators for vegetationmonitoring aremean time series of productivity, pho-

tosynthetic activity, and water use.

The RegESDL offers unique properties to infer a more dynamic understanding of

vegetation activity in NSA across time scales. My results reveal the diverse modes of

seasonality of vegetation activity, and the contrasting variability of vegetation during

the ENSO phases. Furthermore, they were also contextualized within a biodiversity

framework, and the results can be seen to benchmark the assessment of essential bio-

diversity variables. Currently, the RegESDL is ready to assess land-atmospheric im-

pacts of deforestation or land use change, explore ecosystem functional traits, and

could potentially integrate species distribution data from biodiversity platforms (e.g.
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GBIF, Biomodelos). The latter is key for understanding the response of species to land

surface dynamics.

Yet, widespread use of the RegESDL is an ongoing process. One of the bottlenecks

is to have up-to-date data which is a challenge for any data infrastructure. To tackle

this, the ESDL package recently implemented an option to ingest new data sets in-

dependently. With this new development, users could easily extend the core data set

and leverage the software for efficient data processing over any data dimension (e.g.,

time, space). Moreover, the latest ESDL package supports different spatial resolutions

(Cremer et al., 2020) compared to the preset grid from the RegESDL. These recent de-

velopments demonstrate the rapid advances in technology and the importance of a

continuous maintenance of data infrastructures. Finally, a major challenge is to con-

solidate a community that often requires technological support and up-to-date docu-

mentation. This task implies a team and long-term funding to ensure a learning phase,

consolidation of analysis and timely technological solutions.

6.4 New avenues to study vegetation activity across
time scales

In my research, the assessment of vegetation activity across time scales required long

records of vegetation variables, mostly to capture long-term oscillations and assess in-

terannual variability. Hence, the temporal span of the variables was one of themain cri-

teria for selecting the input variables. For the global analysis, I used the longest avail-

able records of NDVI resampled at 0.5◦. For the regional analysis, I accepted a com-

promise between the temporal span and the higher spatial resolution i.e., 0.0083◦. In
general, long records are suitable for assessing vegetation activity beyond the seasonal

cycle, which is important for studying modes of interannual variability (e.g., ENSO),

or vegetation trends such as browning and greening (Chen et al., 2019; Cortés et al.,

2021; Piao et al., 2020). In addition, a longer data span obviously increases the num-

ber of good quality observations in regions with frequent cloud-cover such as NSA. In

brief, the higher the number of observations the more comprehensive understanding

of processes throughout the seasons could be obtained.

New mathematical methods are promising to improve estimates of vegetation in-

dices. Examples of recent vegetation indices are the near-infrared reflectance of terres-

trial vegetation (𝑁𝐼𝑅𝑉 ) (Badgley, Field, and Berry, 2017), and the kernel NDVI (Camps-

Valls et al., 2021). They both can be calculated from any retrieval that has been pre-

viously used to compute NDVI, which is advantageous for working with long opera-

tional satellites such as AVHRR or MODIS. 𝑁𝐼𝑅𝑉 has achieved a good agreement with
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GPP (Badgley, Field, and Berry, 2017), and it has been recently used as a substitute of

NDVI on the latest SIF downscaled product (Duveiller et al., 2020). Complementary,

the newest Kernel NDVI showed less saturation than traditional vegetation indices,

and a stable performance at different spatial and temporal resolutions (Camps-Valls et

al., 2021). Further analysis of these indices in regions such as the tropics, where data is

scarce and model performance is low, could bring more robust results when estimat-

ing vegetation activity at different time scales. A follow-up analysis would be to assess

their performance in tropical ecosystems using the 𝑆𝑅 metric proposed in this thesis

(Chapter 4). This will contribute to gaining a better understanding of seasonality in

the region.

In addition, new satellite products are improving our understanding of vegetation

activity over short periods of time. These satellite observations are suitable for assess-

ing seasonality or intraseasonal variability of vegetation. On the one hand, satellite

missions to measure SIF are promising for improving estimates of vegetation carbon

uptake due to its clear relationship with GPP, and its lower sensitivity to cloud-cover

than traditional vegetation indices (Duveiller et al., 2020; Guanter et al., 2012; Yang et

al., 2015). In fact, SIF has revealed different seasonal cycles in the Amazon, but further

investigation is needed to get a consensus between SIF seasonality and environmental

drivers (Köhler et al., 2018; Koren et al., 2018; Lee et al., 2013). On the other hand,

new geostationary satellites are providing high-frequency data sets (e.g., GOES-16,

Meteosat, see section 6.1). This latest generation of satellites have included sensors

to assess vegetation without compromising spatial resolution (∼ 1 to 5 km), and are

optimal for regional analyses (Hashimoto et al., 2021; Küçük et al., 2022).

Overall, these new satellite products and methodologies open new avenues to in-

crease our understanding of vegetation activity across time scales. In fact, they of-

fer a step forward to continue analyses based on the results from this dissertation.

Specifically, I see a clear opportunity to use high-frequency data to investigate regional

vegetation-climate variability at intraseasonal time scales such as the connection be-

tween dominant short-term oscillations in tropical South America and the Madden

Julian oscillation hypothesized in Chapter 3. In addition, analysis with high-frequency

data will require efficient access over the time dimension, which can be efficiently car-

ried out with the RegESDL.
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Chapter 7

Concluding remarks

Overall, this thesis has contributed to advance in our understanding of vegetation ac-

tivity at different temporal scales globally, and in the domain of NSA. It started with

a global assessment of vegetation greenness and climate variables at the short-term,

seasonal cycle and longer-term time scales. Later, I emphasized on the seasonal and in-

terannual variability of vegetation activity in NSA, a region where vegetation-climate

interactions are complex, and often reduced to analysis of evergreen broadleaved for-

est. Through this research, I took advantage of open data sets, different mathemat-

ical approaches for time series decomposition and dimensionality reduction, and the

state-of-the-art computing technology to carry out effectively time series analyses over

different geographical domains.

In my first study, the analysis of global modes of variability of vegetation greenness

and climate (Chapter 3), I identified regions where the dominant NDVI variability oc-

curs at short- and long-term scales. The emerging dominant variability map of NDVI,

precipitation and temperature delineated regions with complex land-atmosphere in-

teractions such as NSA and South East Asia. This emphasizes the regional dominance

of spatio-temporal processes occurring beyond the seasonal cycle. Another relevant

result was the opposite correlation sign observed between NDVI and climate variables

for the seasonal and longer-term scales. In face of higher expected climate variability,

differentiating the co-variability between vegetation and climate across time scales by

regions will improve the spatial and temporal accuracy of climate-vegetation models

and projections.

In my second study, I deployed the RegESDL and investigated themodes of season-

ality on vegetation activity in NSA (Chapter 4). I showed the heterogeneous seasonal

patterns based on the integration of vegetation variables and the computation of the

𝑆𝑅 metric. A remarkable result was that peaks of seasonality observed with remote

sensing do not always correspond to the climate seasonality driven by precipitation

(i.e., unimodal and bimodal regimes). This suggests that other environmental condi-

tions besides climate are driving the seasonal cycle of vegetation. Analyses with higher

spatial resolution from optical satellites in tandem with other sensors will elucidate
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other features of seasonality related to ecosystem structure and functional diversity.

Inmy last study, I compared the vegetation activity inNSA during the ENSOphases

(Chapter 5). My results showed that during the same ENSO phase there is an inverse

variability of vegetation activity in areas near the southern Pacific coast in comparison

with the northern inland savannas (Orinoquia) and the Caribbean coast. Also, I found

that the strongest correlations occur in drier ecoregions during El Niño, which suggest

a high vulnerability of these regions to the ENSO cold phase. This finding underlines

the role of arid and semiarid ecosystems in a region where research is mostly focused

on tropical rainforest. In addition, due to the remarkable heterogeneous patterns of

vegetation activity during ENSO phases, governments must consider differentiated re-

sponses and adaptation strategies especially when these events becomemore frequent

and stronger.

In addition, the RegESDL deployment facilitated the implementation of multivari-

ate approaches to assess seasonality and inter-annual variability in NSA. Currently,

the RegESDL is prepared to support efficient analyses considering the increasing open

data sets from remote sensing and models. Moreover, it is an open source infrastruc-

ture to handle big data, which is crucial for warranting independence in data access

and processing. And, it is an alternative approach to tackle the standard time series

processing in geoscience.

In conclusion, disentangling these processes and assessing them separately allowed

me to formulate newhypotheses aboutmechanisms of ecosystem-climate interactions,

reveal hidden spatial and temporal patterns in these interactions, and produce rele-

vant information for ecosystems conservation and management. This is critical for the

tropics where there is a limited understanding of dynamics of vegetation activity and

land-atmosphere interactions. In addition, there is a potential for incorporating this

knowledge on vegetation and climate models to improve predictions of future ecosys-

tem responses to climate change.

Finally, I hope this dissertation motivates follow-up studies that emphasize re-

search in three topics; assessment of intraseasonal variability associated with short-

term oscillations, further investigation of tropical semiarid ecosystems regarding their

seasonality and vulnerability to ENSO, and a deeper understanding of the ENSO Neu-

tral phase. As last remark, the methods and analyses implemented in this dissertation

can be applied to the increasing amount of satellite products and new vegetation in-

dices, and can be extended to other regions. This would help to develop new hypothe-

ses and improve our understanding of vegetation-climate interactions across multiple

time scales.
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Figure A.1: Lagged Pearson correlation between the Multivariate ENSO
Index and Isomap (PCA) components pixelwise. The showed value cor-
respond to the highest lagged correlation between MEI and respective
components from (a) Isomap and (b) PCA. (c) Difference between Isomap

and PCA lagged correlations.
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Figure A.2: Time series of the Multivariate ENSO Index (MEI) and a se-
lected output component from multidimensionality regression analysis
by watersheds. The assessed variable was global primary productivity
from BESS. MEI has been standardized to ` = 0 and 𝜎 = 1. The showed
component was selected because it has the highest absolute correlation
with MEI. Watersheds are from HydroBASINS (level 4), and are in the
rows. The dimensionality reduction methods are in the columns. Time
is in the x-axis. Each subplot has information about the selected com-

ponents, correlation value and respective lag in the legend.
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Supplementary Figures

2



Figure S1: Masks and Classification schemes used in the analyses. a. Mask for deserts and
oceans, b. Mask for natural vegetated area based on GLC2000, c. Fraction of non–gapfilled NDVI
values per grid cell based on GIMMS NDVI, d. Fraction of valid values per grid cell after filtering for
NDVI > 0.2, e. Simplified Köppen–Geiger Classification, A: equatorial, B: arid, C: warm temperate,
D: snow, f. Classification of land cover classes after Global Land Cover 2000 (GLC2000). Numbers
from 1–23 represent: 1 – Tree Cover broadleaved evergreen, 2 – Tree Cover broadleaved deciduous
closed, 3 – Tree Cover broadleaved deciduous open, 4 – Tree Cover needle leaved evergreen, 5 – Tree
Cover needle leaved deciduous, 6 – Tree Cover mixed leaf type, 7 – Tree Cover regularly flooded
fresh water, 8 – Tree Cover regularly flooded saline water, 9 – Mosaic: Tree Cover and other natural
vegetation, 10 – Tree Cover burnt, 11 – Shrub Cover closed open evergreen, 12 – Shrub Cover closed
open deciduous, 13 – Herbaceous Cover closed open, 14 – Sparse herbaceous or sparse shrub cover, 15
– Regularly flooded shrub and or herbaceous cover, 16 – Cultivated and managed areas, 17 – Mosaic:
Cropland Tree Cover Other natural vegetation, 18 – Mosaic: Cropland Shrub and or grass cover, 19 –
Bare Areas, 20 – Water Bodies, 21 – Snow and Ice, 22 – Artificial surfaces and associated areas, 23 –
no data.
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Figure S2: Representative power spectra of Fourier decomposed NDVI (a), air temper-
ature (b) and precipitation (c) time series. Mean and 10th–90th percentile of power spectra
are plotted as black line (mean) and band (percentiles), overlaid by 10000 sample spectra. Shortest
signal periods (fastest frequencies) are plotted on the left side of the x–axis, longest periods on the
right side of the x–axis. The annual period is located at 100.
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Figure S3: Lag of maximum absolute correlation between NDVI and air temperature (T, left
panel) and NDVI and precipitation (P, right panel) at each grid cell. The time step used is 15 days,
which is equivalent to a 0.5–month lag in the color key.
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Figure S4: Dominant Oscillation of NDVI, air temperature (Tair) and precipitation
(Prec) per grid cell. Dominant scale of variability was determined from normalized, detrended
and decomposed time series as the time scale containing highest relative variance (cf. Fig. 1).
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Figure S5: Assessment of NDVI GIMMS quality flags; direct observations and effect of
retrieval values. a. Median of fraction of direct observations at 0.5◦ per grid cell calculated overall
time period (1982–2015). Fraction of direct observations ranges from 0 to 1, and corresponds to the
number of pixels with direct observation after data aggregation (from 0.083◦ to 0.5◦). Quality flag
1 is obtained when all aggregated pixels are direct observations, 0 if none are direct observations,
b. Pixels that change NDVI dominant oscillation class when 0.3, 0.5, 0.7, 0.9, and 0.95 quality
threshold is applied (quality is defined as the fraction of pixels originating from direct observations
after aggregation), c. Percentage of pixels with change per dominant oscillation class. S: Short–term,
A: Seasonal, L: Longer–term, T: Trend, in order from / to. Categories with change <0.05% are
omitted. d. Median fraction originating from direct observation per pixel shown as box plot per
oscillation regime. Lowest percentage of direct observation is found in seasonal NDVI regimes.
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Figure S6: Comparison of dominant oscillation classification between vegetation indices.
Dominant scale of variability for GIMMS NDVI from 1982 to 2015 (top), MODIS NDVI from 2001
to 2015 (center), and EVI MODIS from 2001 to 2015 (bottom). Dominant scale of variability was
determined per pixel from normalized, detrended and Fourier–decomposed time series as the time
scale containing highest relative variance.
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Figure S7: Assessment of the effect of land cover change over time on decomposition
results of NDVI time series Four pixels with >25% change in vegetation type according to Song
et al. (2018) are displayed (columns), representing from left to right: (i) short vegetation gain,
(ii) bare ground loss, (iii) bare ground gain, and (iv) tree loss. Rows from top to bottom: integrated
NDVI signal (black), short–term oscillation (blue), seasonal oscillation (red), longer–term oscillation
(green), and trend (yellow). Time series were normalized and detrended before Fourier decomposition.
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Figure S8: Bicolor map of undecomposed time series (top) and detrended, deseasonalized
anomalies (bottom). Pearson correlation of NDVI with precipitation (Prec, legend x axis) and air
temperature (Tair, legend y axis) is shown at each grid cell. NDVI was lagged one time step (15
days) behind precipitation to allow response time, Tair was correlated instantaneously. Color scale
represents both correlations, binned into quantiles (e. g. purple – high positive correlation of NDVI
with both Tair and Prec, green – high negative correlation of NDVI with both Tair and Prec). Data
points where NDVI < 0.2 were excluded to avoid influence of inactive vegetation or non–vegetated
time points.
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Figure S9: Bicolor map of Spearman correlations between NDVI, air temperature (Tair)
and precipitation (Prec). Correlation of NDVI with Tair (legend y axis) and NDVI with Prec
(legend x axis) were calculated between decomposed signals at each grid cell for each time scale (rows).
NDVI was lagged one time step (15 days) behind precipitation to allow response time, Tair was
correlated instantaneously. Color scale represents both correlations, binned into quantiles (e. g. purple
– high positive correlation of NDVI with both Tair and Prec, green – high negative correlation of
NDVI with both Tair and Prec). Data points where NDVI < 0.2 were excluded to avoid influence of
inactive vegetation or non–vegetated time points. The semi–annual cycle is included in the seasonal
band.
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Figure S10: Bicolor map of Partial correlations between NDVI, air temperature (Tair)
and precipitation (Prec). Correlation of NDVI with Tair (legend y axis) and NDVI with Prec
(legend x axis) were calculated between decomposed signals at each grid cell for each time scale (rows).
NDVI was lagged one time step (15 days) behind precipitation to allow response time, Tair was
correlated instantaneously. Color scale represents both correlations binned into quantiles (e. g. purple
– high positive correlation of NDVI with both Tair and Prec, green – high negative correlation of
NDVI with both Tair and Prec). Data points where NDVI < 0.2 were excluded to avoid influence of
inactive vegetation or non–vegetated time points. The semi–annual cycle is included in the seasonal
band.
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Figure S11: Bicolor map of Pearson correlations between MODIS EVI, air temperature
(Tair) and precipitation (Prec). Correlation of EVI with Tair (legend y axis) and MODIS EVI
with Prec (legend x axis) were calculated between decomposed signals at each grid cell for each time
scale (rows) for the years 2007–2015. EVI was lagged one time step (15 days) behind precipitation to
allow response time, Tair was correlated instantaneously. Color scale represents both correlations
binned into quantiles (e. g. purple – high positive correlation of EVI with both Tair and Prec, green
– high negative correlation of with both Tair and Prec). The semi–annual cycle is included in the
seasonal band.
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Figure S13: Land cover classes in “correlation space” across Köppen–Geiger classes for
seasonal scale. Correlations of NDVI with precipitation (x axis) and air temperature (y axis) as
determined for Fig. 3 were plotted for major land cover classes (GLC2000, columns) across Köppen–
Geiger classes (rows). Each point represents one 0.5◦ grid cell from the global map. Transparency
was scaled with the area represented by the grid cell, colors represent both correlations in accordance
with Fig. 3 binned into quantiles (e. g. purple – high positive correlation of NDVI with both Tair

and Prec, green – high negative correlation of NDVI with both Tair and Prec). A – equatorial, B –
arid, C – warm temperate, D – snow)
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Figure S14: Land cover classes in “correlation space” across Köppen–Geiger classes for
longer–term scale. Correlations of NDVI with precipitation (x axis) and air temperature (y axis)
as determined for Fig. 3 were plotted for major land cover classes (GLC2000, columns) across Köppen–
Geiger classes (rows). Each point represents one 0.5◦ grid cell from the global map. Transparency
was scaled with the area represented by the grid cell, colors represent both correlations in accordance
with Fig. 3 binned into quantiles (e. g. purple – high positive correlation of NDVI with both Tair

and Prec, green – high negative correlation of NDVI with both Tair and Prec). A – equatorial, B –
arid, C – warm temperate, D – snow)
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Figure S15: Temporal comparison of Fourier transformation (FFT) and Empirical Mode
Decomposition (EMD). Time series examples for a. Germany (lon. 11◦, lat. 51◦), and b. south-
ern Portugal (lon. –8◦, lat. 38◦) of decomposed time series of NDVI, air temperature (Tair) and
precipitation (Prec) from 2000–2014. FFT signals are colored green, EMD signals are colored blue.
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Figure S16: Spatial comparison of Fourier transformation (FFT) and Empirical Mode
Decomposition (EMD). Comparison of variance explained per pixel as determined for NDVI time
series (2000–2014) by Fourier transformation (FFT, upper row) and empirical mode decomposition
(EMD), as well as their difference (lower row) over Europe.
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Figure S17: Spatial comparison of Fourier transformation (FFT) and Empirical Mode
Decomposition (EMD). Comparison of variance explained per pixel as determined for air tem-
perature time series (2000–2014) by Fourier transformation (FFT, upper row) and empirical mode
decomposition (EMD), as well as their difference (lower row) over Europe.
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Figure S18: Spatial comparison of Fourier transformation (FFT) and Empirical Mode
Decomposition (EMD). Comparison of variance explained per pixel as determined for precipi-
tation time series (2000–2014) by Fourier transformation (FFT, upper row) and empirical mode
decomposition (EMD), as well as their difference (lower row) over Europe.
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Supplementary Tables

Table S1: Selected and excluded classes from GLC 2000.

Selected land cover classes (natural vegetation)
Herbaceous cover closed open Tree cover broadleaved deciduous open
Mosaic: Tree cover other natural vegetation Tree cover broadleaved evergreen
Regularly flooded shrub and or herbaceous cover Tree cover mixed leaf type
Shrub cover closed open deciduous Tree cover needle leaved deciduous
Shrub cover closed open evergreen Tree cover needle leaved evergreen
Sparse herbaceous or sparse shrub cover Tree cover regularly flooded fresh water
Tree cover broadleaved deciduous closed Tree cover regularly flooded saline water

Excluded land cover classes

Artificial surfaces and associated areas
Mosaic: Cropland / Tree cover /
Other natural vegetation

Bare areas Snow and ice (natural & artificial)
Cultivated and managed areas Tree cover burnt
Mosaic: Cropland / Shrub or grass cover Water bodies (natural & artificial)

21



Table S2: Global weighted mean of decomposed oscillations and three latitudinal bands (i) extratropics
northern hemisphere (above 23.5◦ N), (ii) tropics (23.5◦ N to 23.5◦ S) and (iii) extratropics southern
hemisphere (below 23.5◦ S). The mean weights are based on pixel area.

Variable Region
Short-
term

Seasonal
Longer-
term

Trend

NDVI Global 0.18 0.71 0.09 0.02
NDVI Above 23.5◦ N 0.1 0.84 0.05 0.01
NDVI Tropics 0.27 0.59 0.11 0.02
NDVI Below 23.5◦ S 0.25 0.46 0.25 0.03
Tair Global 0.11 0.83 0.04 0.01
Tair Above 23.5◦ N 0.05 0.94 0.01 0
Tair Tropics 0.21 0.68 0.09 0.02
Tair Below 23.5◦ S 0.08 0.9 0.02 0
Prec Global 0.52 0.41 0.06 0
Prec Above 23.5◦ N 0.57 0.36 0.06 0
Prec Tropics 0.42 0.51 0.06 0
Prec Below 23.5◦ S 0.68 0.24 0.09 0
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Table S3: Summary statistics of total area assessed and percentage of dominant NDVI oscillations
by Köppen–Geiger, vegetated land cover classes and dominant oscillations of climatic variables.
A: Annual, L: Longer–term, S:Short–term, T: Trend. Values of T are solely presented for area
calculations.

23



Table S4: Spatial association between co–oscillation regimes and Köppen–Geiger or Global Land
Cover (GLC2000), respectively. c = complementarity, h = homogeneity, m = number of classes , V
= V–measure.

Co-oscillations regime (11 classes)
Static maps m h c V

Köppen–Geiger 4 0.19 0.16 0.17
Global land cover 9 0.16 0.09 0.11
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Supplementary Material

1 SUPPLEMENTARY TABLES

Table S1. Time series available at the RegESDL. BESS: Breathing Earth System Simulator. CHIRPS: Climate Hazards group Infrared Precipitation with
Stations. MODIS: Moderate Resolution Imaging Spectroradiometer. TRMM: Tropical Rainfall Measuring Mission. QA4ECV: Quality Assurance for Essential
Climate Variables project. Ori.res: Original resolution.

Variable Abbreviation Data product or project Timestep* Firstyear Lastyear Orig.res.
Bihemispherical reflectance
near infrared

BHR NIR QA4ECV daily 2001 2018 0.5◦

Bihemispherical reflectance
shortwave

BHR SW QA4ECV daily 2001 2018 0.5◦

Bihemispherical reflectance
visible

BHR VIS QA4ECV daily 2001 2018 0.5◦

Directional hemispherical
reflectance near infrared

DHR NIR QA4ECV daily 2001 2018 0.5◦

Directional hemispherical
reflectance shortwave

DHR SW QA4ECV daily 2001 2018 0.5◦

Directional hemispherical
reflectance visible

DHR VIS QA4ECV daily 2011 2018 0.5◦

Diffuse Photosynthetically
Active Radiation

BESS PARdiff Daily BESS daily 2001 2016 0.5◦

BESS RSDN Daily BESS RSDN Daily BESS daily 2001 2016 0.5◦

Gross Primary Productivity GPP BESS 8day 2000 2015 0.0083◦

Photosynthetically active
radiation

BESS PAR BESS daily 2001 2016 0.5◦

Evapotranspiration ET BESS 8day 2001 2015 0.0083◦

Enhanced Vegetation Index
Aqua

EVI aqua MYD13A2.EVI 16day 2003 2017 0.0083◦

Enhanced Vegetation Index
Terra

EVI terra MOD13A2.EVI 16day 2001 2017 0.0083◦

Fire dates Fire date MCD64A1 monthly 2001 2017 0.0042◦

Fire quality Fire quality MCD64A1 monthly 2001 2017 0.0042◦

Fire uncertainty Fire date uncertainty MCD64A1 monthly 2001 2017 0.0042◦

Fraction of Absorbed
PhotosyntheticallyActive
Radiation

FPAR MOD15A2 8day 2001 2017 0.0042◦

Land Surface Temperature day LST day MOD11A2 8day 2001 2017 0.0083◦

Land Surface Temperature
night

LST night MOD11A2 8day 2001 2017 0.0083◦

Leaf Area Index LAI MOD15A2H 8day 2001 2017 0.0042◦

Normalized Difference
Vegetation Index Aqua

NDVI aqua MYD13A2.NDVI 16day 2003 2017 0.0083◦

Normalized Difference
Vegetation Index Terra

NDVI terra MOD13A2.NDVI 16day 2001 2017 0.0083◦

Vegetation Cover Fraction
Trees

VCT tree MOD44B annual 2001 2016 0.0083◦

Vegetation Cover Fraction no
vegetation

VCF nonVeg MOD44B annual 2001 2016 0.0083◦

Vegetation Cover Fraction
nonTrees

VCF nonTreeVeg MOD44B annual 2001 2016 0.0083◦

ESA land cover ESA LC ESA Land Cover CCI Product annual 2001 2015 300 m
Precipitation Precipitation TRMM monthly 1998 2012 0.25◦

Precipitation Precipitation CHIRPS daily 2001 2018 0.05◦

1



Supplementary Material

Table S2. Quality flags of MODIS products, and selected flag settings. QBP: Quality band position in HDF file.

Variable Data product Dataset name QBP Data type Quality criteria settings

LST day MOD11A2 QC Day 2 Binary
Bit 0 to 1 == 00 & any combination
Bit 0 to 1 == 01 & Bit 2 to 3 == 00 or 01 or 11

LST night MOD11A2 QC Night 6 Binary
Bit 0 to 1 == 00 & any combination
Bit 0 to 1 == 01 & Bit 2 to 3 == 00 or 01 or 11

NDVI/EVI terra MOD13A2 1 km 16 days pixel reliability 12 8bit Values of 0 or 1
NDVI/EVI aqua MYD13A2 1 km 16 days pixel reliability 12 8bit Values of 0 or 1

FPAR/LAI MOD15A2 FparLai QC 3 Binary
Bit 0 == 0 & any combination
Bit 0 == 1 & Bit 5 to 7 == 000 or 001 or 010

Vegetation Cover Fraction
Trees/ No trees/No vegetation

MOD44B Quality 4 Binary
All values <1111111 (This is an annual
layer. Flags are fixed for dates range)

Fire quality MCD64A1 Quality 3 Binary
Bit 1 == 1 & any combination
Bit 1 == 0 & Bit 5 to 7 == from 001 to 101

2
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Table S3. Descriptive variables available at the RegESDL. EarthEnv: Global 1-km Cloud Cover. GCH-lidar: Mapping forest canopy height globally with
spaceborne lidar. HWSD: Harmonized world soil database. SoilGrids: Global Gridded Soil Information.

Variable Source Resolution Units Citation
canopy height GCH-lidar 1 km m Simard, M., Pinto N., Fisher J.B. and Baccini

A. 2011. Mapping forest canopy height globally
with spaceborne lidar. Journal of Geophysical
Research, vol. 116.

clouds monthlymean 01 EarthEnv 1 km % Wilson A.M. and Jetz W. 2016. Remotely
Sensed High-Resolution Global Cloud
Dynamics for Predicting Ecosystem and
Biodiversity Distributions. PLoS Biol 14(3):
e1002415. doi:10.1371/journal.pbio.1002415
https://www.earthenv.org/cloud

clouds monthlymean 02 EarthEnv 1 km % Wilson and Jetz (2016)
clouds monthlymean 03 EarthEnv 1 km % Wilson and Jetz (2016)
clouds monthlymean 04 EarthEnv 1 km % Wilson and Jetz (2016)
clouds monthlymean 05 EarthEnv 1 km % Wilson and Jetz (2016)
clouds monthlymean 06 EarthEnv 1 km % Wilson and Jetz (2016)
clouds monthlymean 07 EarthEnv 1 km % Wilson and Jetz (2016)
clouds monthlymean 08 EarthEnv 1 km % Wilson and Jetz (2016)
clouds monthlymean 09 EarthEnv 1 km % Wilson and Jetz (2016)
clouds monthlymean 10 EarthEnv 1 km % Wilson and Jetz (2016)
clouds monthlymean 11 EarthEnv 1 km % Wilson and Jetz (2016)
clouds monthlymean 12 EarthEnv 1 km % Wilson and Jetz (2016)
available water storage capacity HWSD 1 km categorical mm/m FAO/IIASA/ISRIC/ISSCAS/JRC, 2012.

Harmonized World Soil Database (version 1.2).
FAO, Rome, Italy and IIASA, Laxenburg, Austria.
http://webarchive.iiasa.ac.at/Research/LUC/External-
World-soil-database/HTML/index.html?sb=1

clay percentage in subsoil HWSD 1 km % FAO et al. (2012)
gravel volume percentage in subsoil HWSD 1 km % FAO et al. (2012)
organic carbon weight percentage in subsoil HWSD 1 km % FAO et al. (2012)
sand percentage in subsoil HWSD 1 km % FAO et al. (2012)
silt percentage in subsoil HWSD 1 km % FAO et al. (2012)
clay percentage in topsoil HWSD 1 km % FAO et al. (2012)
gravel volume percentage in topsoil HWSD 1 km % FAO et al. (2012)
organic carbon weight percentage in topsoil HWSD 1 km % FAO et al. (2012)
sand percentage in topsoil HWSD 1 km % FAO et al. (2012)
silt percentage in topsoil HWSD 1 km % FAO et al. (2012)
depth to bedrock R horizon up to 200 cm SoilGrids 250 m cm Hengl T, de Jesus JM, MacMillan RA,

Batjes NH, Heuvelink GBM, et al. 2014.
SoilGrids1km — Global Soil Information Based
on Automated Mapping. PLoS ONE 9(8):
e105992. doi:10.1371/journal.pone.0105992
https://www.isric.org/explore/soilgrids

predicted probability of occurrence of R horizon SoilGrids 250 m % Hengl et al. (2014)
absolute depth to bedrock SoilGrids 250 m cm Hengl et al. (2014)
Soil organic carbon stock SoilGrids 250 m tonnes/ha Hengl et al. (2014)
Soil organic carbon stock SoilGrids 250 m tonnes/ha Hengl et al. (2014)
Bulk density fine earth SoilGrids 250 m kg/m3 Hengl et al. (2014)
Bulk density fine earth SoilGrids 250 m kg/m3 Hengl et al. (2014)
Clay content 0 2 micro meter mass fraction SoilGrids 250 m % Hengl et al. (2014)
Clay content 0 2 micro meter mass fraction SoilGrids 250 m % Hengl et al. (2014)
Coarse fragments volumetric SoilGrids 250 m % Hengl et al. (2014)
Coarse fragments volumetric SoilGrids 250 m % Hengl et al. (2014)
Silt content 250 micro meter mass fraction SoilGrids 250 m % Hengl et al. (2014)
Silt content 2 50 micro meter mass fraction SoilGrids 250 m % Hengl et al. (2014)
Sand content 50–2000 micro meter mass fraction SoilGrids 250 m % Hengl et al. (2014)
Sand content 50–2000 micro meter mass fraction SoilGrids 250 m % Hengl et al. (2014)
Cation exchange capacity of soil SoilGrids 250 m cmolc/kg Hengl et al. (2014)
Cation exchange capacity of soil SoilGrids 250 m cmolc/kg Hengl et al. (2014)
Soil organic carbon content fine earth fraction SoilGrids 250 m g/kg Hengl et al. (2014)
Soil organic carbon content fine earth fraction SoilGrids 250 m g/kg Hengl et al. (2014)
Soil pH x 10 in H2O SoilGrids 250 m pH Hengl et al. (2014)
Soil pH x 10 in H2O SoilGrids 250 m pH Hengl et al. (2014)
Soil pH x 10 in KCl SoilGrids 250 m pH Hengl et al. (2014)
Soil pH x 10 in KCl SoilGrids 250 m pH Hengl et al. (2014)

Frontiers 3
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Table S4. Layers of Colombia available at the RegESDL.

Variable Data product or project Format-Res. Units Citation
annual mean precipitation
interpolation standardized cokriging*

Improved long-termmean annual
rainfallfields for Colombia

Raster 0.017◦ mm Alvarez-Villa, O. D., Velez, J. I.,
& Poveda, G. 2011. Improved long-
term mean annual rainfall fields
for Colombia. International Journal
of Climatology, 31(14), 2194–2212.
https://doi.org/10.1002/joc.222

annual mean precipitation
markov regionalization*

Improved long-termmean annual
rainfallfields for Colombia

Raster 0.017◦ mm Alvarez et al. (2011)

precipitation annual mean
interpolation colocated cokriging*

Improved long-termmean annual
rainfallfields for Colombia

Raster 0.017◦ mm Alvarez et al. (2011)

precipitation annual mean
interpolation kriging
with external drift*

Improved long-termmean annual
rainfallfields for Colombia

Raster 0.017◦ mm Alvarez et al. (2011)

biotic units** Ajuste de la capa del componente
biotico, incorporada dentro del Mapa
Nacional de Ecosistemas Terrestres,
Marinos y Costeros de Colombia,
elaborado en 2016 a escala 1:100.000

Shapefile categorical Londono, M. C., Bello, C., Velasquez,
J., Norden, N., Ortiz, C.,Gonzalez,
I., Lopez, D., Gutierrez, C., Olaya,
H., and Saavedra, K.: Documento
Tecnico: Componente Biotico
Mapa de Ecosistemas Continentales,
Marinos y Costeros de Colombia,
Escala 1 : 100 000, Tech. rep.,
Instituto de Investigacion de
Recursos Biologicos Alexander
von Humboldt, Bogota, D.C.,
2017http://geonetwork.humboldt.org.co/
geonetwork/srv/spa/catalog.search
#/metadata/a1afc35c-db98-4110-
8093-98e599d1571e

municipalities administrative units*** Cartografia Basica Digital Integrada.
Republica de Colombia.. Escala
1:100.000

Shapefile categorical IGAC. 2014. Cartografia Basica
Digital Integrada. Republica de
Colombia.. Escala 1:100.000.
http://metadatos.igac.gov.co/geonetwork/
srv/spa/catalog.search#/metadata/c1b4bfe5-
f7c7-44a4-8849-c5f7c4257937

wetlands** Delimitacion de ecosistemas
estrategicos

Raster 90 m categorical IAVH 2016. Identificacion de
humedales, escala 1:100.000.
Proyecto: Insumos para la
delimitacion de ecosistemas
estrategicos: Paramos y Humedales.
Convenio No. 13-014 (FA.
005 de 2013) suscrito entre el
Fondo Adaptacion y el Instituto
Humboldt. Bogota D.C., Colombia.
http://geonetwork.humboldt.org.co/geonetwork/
srv/spa/catalog.search#/metadata/d68f4329-
0385-47a2-8319-8b56c772b4c0

agriculture frontier*** Identificacion General de la
FronteraAgricola en Colombia a
escala 1:100.000 Ministerio de
Agricultura y Desarrollo Rural
Agropecuario

Shapefile categorical Unidad de Planificacion Rural
Agropecuaria (UPRA). 2017.
Identificacion general de la
frontera agricola en Colombia.
Escala 1:100.000. MADR y
UPRA. Bogota (Colombia).
https://www.minagricultura.gov.co/Normatividad/
Projects Documents/IDENTIFICACION
%20GENERAL%20DE%20LA%20FRONTERA%20.pdf
shp: https://sipra.upra.gov.co/

national parks*** Parques Nacionales Naturales de
Colombia

Shapefile categorical Limites de los Parques Nacionales
Naturales de Colombia, en Sistema
de Referencia Magna - Sirgas y
multiescala (1:100.000 y 1:25.000).
http://geonetwork.parquesnacionales.gov.co/
geonetwork/srv/spa/metadata.show?id=
10048&currTab=simple

*Raster resample to RegESDL using the mean value *Categorical raster resample to RegESDL using the mode value **Categorical shapefiles raterized in R
using the funcion ‘last’.
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Table S5. Data license information. BESS: Breathing Earth System Simulator. CHIRPS: Climate Hazards group Infrared Precipitation with Stations. EarthEnv:
Global 1-km Cloud Cover. HWSD: Harmonized world soil database. QA4ECV: Quality Assurance for Essential Climate Variables project. MODIS: Moderate
Resolution Imaging Spectroradiometer. SoilGrids: Global Gridded Soil Information. TRMM: Tropical Rainfall Measuring Mission.

Category Data product or project License information

Time series

QA4ECV License details in Global Attributes. Check info from ESDL
BESS License issued directly by data owner. No restriction for use.

Citation to original data is mandatory.
MODIS No restrictions on subsequent use or

redistributionhttps://modaps.modaps.eosdis.nasa.gov/services/faq/
LAADS Data-Use Citation Policies.pdf (visited on
29.07.2020)

TRMM Data are freely availablehttps://gpm.nasa.gov/data/policy
CHIRPS Creative Commons Attribution 4.0 International (CC BY 4.0)

Static layers

Canopy This dataset is openly shared, without restriction, in accordance
with the NASA Data and Information Policy.

Harmonized World Soil Data Base Creative Commons Attribution-Noncommercial 3.0 (CC BY-NC
3.0)

SoilGrids Creative Commons Attribution 4.0 International (CC BY 4.0)
EarthEnv Creative Commons Attribution-NonCommercial 4.0

International (CC BY-NC 4.0)

Layers for Colombia

Improved long-term mean annual rainfall fields for Colombia From authors
biotic units License issued directly by data owner. No restrictiction for use.

Citation to original data is mandatory.
municipalities administrative units Creative Commons Attribution-ShareAlike 4.0 International

(CC BY-SA 4.0)
wetlands TBD
agriculture frontier Governmental information for public use without any use

restrictions. Data most be properly cited.
national parks Creative Commons Attribution-ShareAlike 3.0 Unported (CC

BY-SA 3.0)License provided by Colombian National Parks
Rad. 20172400004243 (http://www.parquesnacionales.gov.co/)
available at: url tbf

Table S6. Timing of computer processing when using different RegESDL version.

Examples Reg ESDL for Temporal analysis
Time (minutes:seconds)

Reg ESDL for Spatial analysis
Time (minutes:seconds)

Example 1: Time series decomposition using Fast Fourier 02 min : 55 sec 36 min : 33 sec
Example 2: Find the maximum value along time series 00 min : 41 sec 12 min : 38 sec

Table S7. Scripts available in the supplementary, and at the Zenodo (http://doi.org/10.5281/zenodo.5068004) and GitHub (https://
github.com/linamaes/Regional_ESDL) repositories.RegESDL: Regional Earth System Data Lab

Scripts Supplementary Zenodo GitHub
Access to the RegESDL
01 script for downloading regional ESDL using python.py
02 loading regional ESDL.jl

X
-

X
X

X
X

Computing performance
03 comparison TS decomposition using different DC storage.jl X X X
Main figures
01 figure 2 land cover map ESA 2014.jl
02 figure 4 principal components processing & plotting.jl
03 figure 5 histograms PCs variance explained by land cover.jl
04 figure 6 seasonality ratio annual semiannual oscillations PC1.jl
05 figure 7 processing biotic units mean seasonal cycle PC1.jl
06 figure 7 plotting biotic units mean seasonal cycle PC1.jl
07 figure 8 & figureS4 S5 heatmaps seasonality ratio & climate.jl

-
X
X
X
-
X
X

X
X
X
X
X
X
X

X
X
X
X
X
X
X

Supplementary figures
08 figure S2 plotting px MSC 4vars&pca.jl
09 figure S3 loadings principal components.jl

-
-

X
X

X
X
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2 SUPPLEMENTARY FIGURES

Figure S1. Biotic units of Colombia. Values correspond to Beta diversity values of plants (Magnoliopsida).
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Figure S2. Mean seasonal cycle of the vegetation variables set calculated from the first principal
component. Variables have been standardized to µ = 0 and δ = 1. Shrubs/Herb.-flood.fr/sa/br: Shrub or
herbaceous cover, flooded, fresh/saline/brakish water. TreeBrEv-co: Tree cover, broadleaved, evergreen,
closed to open (> 15%).
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Figure S3. Loading values of vegetation variables for the first component of PCA. GPP: Gross Primary
Productivity, NDVI: Normalized Difference Vegetation Index. EVI: Enhanced Vegetation Index. FPAR:
Photosynthetically Active Radiation. National borders are delineated in withe. Color map shows absolute
values.
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Figure S4. Seasonality ratio of annual and semiannual oscillation (x-axis) and maximum temperature of
the warmest month (y-axis). Note that the color scheme range varies between figures. n is the total number
of pixels in each biotic unit
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Figure S5. Seasonality ratio of annual and semiannual oscillation (x-axis) and annual median of clouds
frequency (y-axis). Note that the color scheme range differs between plots. “n” is the total number of pixels
in each biotic unit.

3 SCRIPTS

The following scripts were exported from Jupyter notebooks and correspond to the scripts specified in
Table S7.
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Supplement of:

Spatial patterns of vegetation activity related to ENSO
in northern South America

Estupinan-Suarez et al.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

• The separated Global PCA analysis by land cover classes was carried out us-

ing the ESA land cover map for 2014 (ESA, 2017), maps.elie.ucl.ac.be/CCI/

viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf) resampled to 0.0083◦ and

available at the RegionalESDL (Estupinan-Suarez et al., 2021).

• Data of precipitation of the driest month, used on Figure D.2 correspond to the

bioclimatic variables of WorldClim.

Table D.1: Explained fraction of variance by principal components (PC)
from the Global PCA and the land cover PCA.

Principal
component (PC)

Global
PCA

Land cover PCA
Broadleaved
Evergreen Shrublands Grasslands

PC1 0.45 0.33 0.68 0.71
PC2 0.21 0.26 0.15 0.15
PC3 0.19 0.23 0.10 0.09
PC4 0.15 0.18 0.07 0.05

Table D.2: First principal component loadings from the Global PCA and
the land cover PCA.

Variable Global PCA Land cover PCA
Broadleaved evergreen

forest Shrublands Grasslands

PC1 PC1 PC1 PC1
EVI -0.58 -0.67 -0.53 -0.53
FPAR -0.41 -0.38 -0.44 -0.42
GPP -0.49 -0.48 -0.51 -0.51
NDVI -0.51 -0.42 -0.52 -0.53

maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
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(a) Grasslands

(b) Broadleaved Evergreen

Figure D.1: Density plots of vegetation variables (y-axis) against PC1
(x-axis) for homogeneous land covers.

Figure D.2: Absolute values of Spearman correlation (y-axis) versus pre-
cipitation of the driest month (x-axis) for all ecoregions in the study area.
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Figure D.3: Median values of the lagged Spearman correlation between
MEI and precipitation (source: Global Precipitation Climatology Project)
by ecoregions. Ecoregions are in rows. From left to right: first column
shows the ecoregion location. Second column is the median correlation
values within the ecoregion by ENSO phases. The ribbon correspond
to the standard deviation. Data distribution from El Niño, La Niña and
Neutral phases by lags is shown in columns three to five respectively.
Shown ecoregions have the highest correlation and an area larger than

50000 km2.
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Figure D.4: Median values of the lagged Spearman correlation between
MEI and air temperature at 2 m above the ground (source: source: ERA-
Interim 80 km) by ecoregions. Ecoregions are in rows. From left to right:
first column shows the ecoregion location. Second column is the median
correlation values within the ecoregion by ENSO phases. The ribbon
correspond to the standard deviation. Data distribution from El Niño,
La Niña and Neutral phases by lags is shown in columns three to five
respectively. Shown ecoregions have the highest correlation and an area

larger than 50000 km2.
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