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Abstract
The prediction of turbulent flow by the application of machine learning (ML) algorithms to big
data is a concept currently in its infancy which requires further development. It is of special
importance if the aim is a prediction that is good in a statistical sense or if the vector fields
should be predicted as good as possible. For this purpose, the statistical and deterministic
prediction of the unsteady but periodic flow of the von Kármán Vortex Street (KVS) was
examined using an Echo State Network (ESN) which is well suited for learning from time series
due to its recurrent connections. The experimental data of the velocity field of the KVS were
collected by Particle Image Velocimetry (PIV). Then, the data were reduced by Proper
Orthogonal Decomposition (POD) and the flow was reconstructed by the first hundred most
energetic modes. An ESN with 3000 neurons was optimized with respect to its three main
hyperparameters to predict the time coefficients of the POD modes. For the deterministic
prediction, the aim was to maximize the correct direction of the vertical velocities. The results
indicate that the ESN can mimic the periodicity and the unsteadiness of the flow. It is also able
to predict the sequence of the upward and downward directed velocities for longer time spans.
For the statistical prediction, the similarity of the probability density functions of the vertical
velocity fields between the predicted and actual flow was achieved. The leaking rate of the ESN
played a key role in the transition from deterministic to statistical predictions.
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1. Introduction

Fluid mechanics is known for its abundant data, either from
numerical simulations or from experimental measurements.
Machine learning (ML) methods on the other hand, are known
for their exceptional capabilities to perform tasks of regres-
sion, classification and prediction, given enough training data
is provided for the learning algorithm. In the past years, the
application of ML models to turbulent fluid flows has gained
a lot of attention, as data-driven methods are able to model
flow physics without solving the underlying complex and often
non-linear equations of motion [1–5]. This is why in the past
years, such algorithms have gained popularity in the fluid
mechanics community. Recent ML applications in this field
cover turbulence modeling [6–10], indirect determination of
fluid properties from flow data [11], flow control [12–14],
production of super-resolved small-scale features of complex
flows [15, 16], as well as turbulent flow prediction [17]. The
latter, poses a challenge, as turbulent flows are inherently
chaotic, so that predictions, starting from a certain flow state
will quickly diverge from the true trajectory over time. Nev-
ertheless, several attempts have been made for ML-applied
turbulent flow prediction, such as prediction of shear flow
[18], laminar flow over an airfoil [19], generation of tur-
bulent channel flow [20], heated cavity flow [21], and two-
dimensional turbulent Rayleigh–Bénard convection [22–25].
Still, further investigations are needed, in order to understand
the capability and limitations of these algorithmswhen applied
to flows of differing complexity. This sets the stage for the
present work.

In this study, we focus on the vortex shedding behind a cyl-
inder, known as von Kármán Vortex Street (KVS). The wake
flow behind a cylinder is a phenomenon which ranges from
applications in engineering to occurrences in nature. The KVS
offers features of increasing complexity from laminar 2D flow
to fully turbulent 3D flow with increasing Reynolds number.
This makes the KVS a suitable candidate for testing the pre-
diction performance of a ML algorithm on flows of differing
stages of steadiness and complexity.

In the last years, many attempts have been made on util-
izing ML methods on KVS such as flow control [26–36],
shape optimization [37, 38], reduced order modeling [39–41],
detection of flow features [42–47], data reconstruction [48],
and super resolution [49]. Studies of KVS flow prediction
cover the prediction of the velocity field by a convolutional
neural network [50], trajectories of bubbles inside the vortex
street using a long short-term memory recurrent neural net-
work (RNN) [51] and the prediction of vorticity and pressure
fields by means of Proper Orthogonal Decomposition (POD)
and Sparse DynamicModeDecomposition [52]. Nevertheless,
none of these studies targeted the independent prediction of the
flow field in KVS for a reasonable time period without feeding
the network with the information of the flow field during the
prediction.

The aim of this study differs therefore from previous stud-
ies, in several points. Firstly, we run a RNN in a closed loop
fashion, i.e. where the last prediction serves as basis for the

next prediction step and no additional information about the
flow is given to the network. Secondly, the network architec-
ture differs from those of previous studies as we apply a reser-
voir computing algorithm, called Echo State Network (ESN).
ESNs are RNNs which include a reservoir of neurons with
sparse recurrent connections [53, 54] where merely the output
layer is trained. The ESN possesses an internal memory of past
inputs [55] which makes them suitable for application to pre-
diction of periodic turbulent flows. In recent years, ESNs have
been used to predict and control extreme events in a chaotic
shear flow [56], estimate the life time of fuel cells [57], pre-
dict spatiotemporal chaos [58], infer missing variables of the
Lorenz ’63 system [59], as well as to model two dimensional
turbulent convection [22, 23, 60]. While these results demon-
strate the potential of this network architecture for the purpose
of predicting nonlinear tasks, it is unclear how such a network
performs on experimental measurements of unsteady periodic
flows like the KVS.

This study aims to investigate the predictive potential of
an ESN for KVS as an archetype for typical wake flows.
We obtain experimental data of the KVS velocity fields at
Re= 100 and 1000 by means of Particle Image Velocimetry
(PIV). The data from the flow measured at the two Reynolds
numbers allows us to evaluate the quality of the predictions
of unsteady and steady vortex shedding respectively. We dis-
tinguish between deterministic and statistical prediction of the
flow, and highlight the challenges of defining suitable criteria
for the evaluation of predictions and the tuning of the hyper-
parameter. As the ESN is not capable of processing all data
points of the velocity fields, we introduce a preprocessing step
to reduce the amount of input data. We perform POD and
optimize an ESN with 3000 neurons to obtain the best determ-
inistic and statistical prediction of the first 100 Time Coef-
ficients of the POD Modes (TCPM). The complexity of the
TCPMs increases with the mode number, so that we are expos-
ing the ESN to an input with a wide range of time scales.
We find that an ESN can both predict the time trajectories
(named deterministic prediction) and probability density func-
tion (PDF) (named statistical prediction) of the flow, when it
is optimized accordingly.

The outline of this manuscript is as follows. First the exper-
imental and numerical methods of data generation, processing
and prediction are discussed in section 2. Section 3 presents
the results of the closed-loop ESN prediction of the KVS and
discusses the hyperparameter optimization of the ML method.
Finally, we summarize our results and give a brief outlook in
section 4.

2. Methods

In this section, first the experimental method for conducting
experiments and collecting flow data is explained. This is fol-
lowed by an explanation of how to reduce data for ML and
a discussion of the results of the data reduction. Finally, the
algorithm and method for applying ML to the reduced data of
the flow are discussed.
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Figure 1. Schematic sketch of the experimental setup for the PIV
measurements.

2.1. Experimental setup

A schematic sketch of the experimental setup for the PIV
measurements can be seen in figure 1. The cylinder was placed
inside a water channel with a cross-section of 50× 50mm2. To
increase the Reynolds number range two different diameters,
namely 8mm (C8) and 1mm (C1) for the cylinder were used.
The flow was seeded by Polyamide particles of 20µm and
5µm in diameter for C8 and C1, respectively. A continuous-
wave laser (Laserworld Green-200 532) illuminated the ver-
tical mid-plane of the channel. A light sheet was formed by
optical elements and had a thickness of 1mm. PIV images
of the illuminated particles were then captured using a high-
speed camera (HS 4M by LaVision GmbH) perpendicular to
the laser sheet outside the channel. For C8, the images were
calibrated with respect to the channel walls at the top and
bottom of the images, and for C1, due to the proximity of
the camera to the flow and the lack of wall boundaries in the
images, they were calibrated against a calibration target. The
target was two-dimensional and consisted of white dots in a
black background. The Reynolds number (Re) is calculated
based on the diameter of the cylinders (D) as Re= V∞D/ν.
Here, V∞ stands for free stream velocity (133 mm s−1) and
ν is the kinematic viscosity. This results in Re= 1000 and
100 for C8 and C1, respectively. In Re= 1000, the flow is 3D,
whereas in Re= 100, the flow is 2D. This results in unsteady
and steady vortex shedding for Re= 1000 and 100, respect-
ively. The data were collected at recording frequencies (f) of
50 Hz for C8, and 400Hz for C1, with measurement durations
of 100 and 12 s, respectively. The oscillatory behavior of the
KVS is usually described by Strouhal number (St) which is
often calculated as St= fD/V∞, where f is the frequency of
the vortex shedding. The typical St for the KVS in Re= 100
and 1000 are around 0.16 and 0.22, respectively. This results
in 280 and 330 vortex shedding events with a temporal res-
olution, t/tcharacteristic, of 18 or 15 time steps per vortex shed-
ding event, respectively. For the current study the PIV analysis
was done via DaVis Software provided by Lavision GmbH.
Detailed information about recent PIV algorithms including
the results of the currently used algorithm for benchmarks
(among the best) can be found in [61]. An advanced cross-
correlation evaluation was applied for PIV processing for an
initial rectangular interrogation window size of 64× 64 pixels

Figure 2. Instanteneous sample vector field of PIV measurement
for Re= 1000. Color indicates velocity magnitude. Every 8th vector
shown.

for both the C8 and C1 with 50% overlap, and a final circular
Gaussian window weighting of 16 × 16 pixels for C8 and 32
× 32 pixels for C1. The number of passes of the initial and final
interrogation windows were one and three for C8, and two and
three for C1, respectively. For C8, the final spatial resolution
was 0.35 × 0.35mm2 in physical coordinates with 141 × 211
vectors, and for C1, 0.13 × 0.13mm2 in physical coordinates
with 56 × 89 vectors. For both Re= 100 and 1000, in a nor-
malized median test, the number of outlier vectors amount to
below one percent [62]. For carefully adjusted experiments,
the absolute error can be estimated to be around 0.1 pixels of
displacements. This results in minimum relative uncertainties
of 1.3% and 1.5% for Re= 100 and 1000 in the free stream.
However the values will be higher for the areas with lower dis-
placements in the flow. Figure 2 shows a sample vector field
of the measured data.

2.2. POD

In order to reduce the amount of data, which has to be fed
to the reservoir, and to have better understanding of the flow
features, snapshot POD [63] was applied to the data. The use
of POD-based reduced order modeling of complex geometry
flows has been widespread for decades [64]. Different data
reduction methods have been adapted to suit various aspects
of the flow. For example, balanced POD analysis captures
the most controllable modes of the flow, and Dynamic Mode
Decomposition extracts the growth rates and frequencies of
dynamic modes from flow field data [65]. For this study, we
chose POD due to its widespread implementation in the past
for wakeflows [66] and the fact that it does not add any addi-
tional information to the ESN about the modes other than the
fact that it captures the maximum kinetic energy. As a result,
the discovery of the relationships between the different POD
modes will rely solely on ML.

Figure 3 shows the share of each POD mode in the total
kinetic energy. Two main modes with distinct higher ener-
gies are present for both Reynolds number, with higher val-
ues for Re= 100. This is an indication of more steady vor-
tex shedding for this Re. Figures 4, 5, 6(a), and 7(a) show the
vertical velocity fields and time coefficients of the first four

3



Meas. Sci. Technol. 34 (2023) 014002 M Sharifi Ghazijahani et al

Figure 3. Energy of POD modes.

Figure 4. Spatial distribution of modes 1, 2, 3, and 4 for Re= 100.

modes for Re= 100 and 1000 respectively, where T is the
time period for one vortex shedding event. The first twomodes
have a sinusoidal pattern with 90◦phase shift from each other,
which is an indication of the vortex shedding in the flow. How-
ever, for Re= 1000, mode three and four show more complex
time coefficient distributions. The results of the POD analysis
for the current study are in line with similar available data in
the literature (see Feng et al [67] for similar POD results for
Re= 950). Figures 6(b) and 7(b) show the time coefficient of
the first mode for a longer period, where Re= 100 has fixed
amplitude for this mode, whereas the variation in the amp-
litude of this mode is evident for Re= 1000. For the current

ML application, only the first hundredmodes were considered.
For the cumulative energy percentage of the POD modes the
elbow method cuts the flow for first 228 and 404 modes in
Re= 100 and 1000 respectively, which is way above first hun-
dred selected modes for this study. As a result, it can be argued
that mode number hundred in this flow is most likely not part
of the noise. Additionally, in order to assess whether the ML
algorithm is capable of deducing a meaning from the oscil-
lations of a relatively large number of intrinsically connected
modes, it is necessary to feed it with such a high number of
POD modes. This is in line with other studies in literature
which examined similar methods [23]. In addition the ESN
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Figure 5. Spatial distribution of modes 1, 2, 3, and 4 for Re = 1000.

Figure 6. Temporal coefficient values of modes for Re = 100.

(number of neurons) is built to work with a certain size for
input within a reasonable time. In our case it works well with
100 TCPM as input and in practice a user would then always
use 100 input modes independent of the Reynolds number. In
our case 100 modes correspond to 82% and 73% of total kin-
etic energy for Re= 100 and Re= 1000, respectively.

Figure 7. Temporal coefficient values of modes for Re = 1000.

2.3. ESN

In this study, an ESN was used to predict the TCPM of the
KVS. It is a RNN where the output weights are trained only.
It was proposed by Jaeger [53] as an alternative to the gradi-
ent descent training scheme of RNNs which suffer from the
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Figure 8. A schematic sketch of an Echo State Network (ESN).

exploding and vanishing gradient problems [68]. Independ-
ent of Jaeger, a similar approach, called liquid state machine,
was developed by Maas et al [69]. Both are now summarized
by the name reservoir computing which is a rapidly growing
field [54]. A schematic of an ESN is illustrated in figure 8. An
ESN is simply a reservoir of N neurons with the reservoir state
(s) that receives Nin input signals (u) and produces Nout output
signals (q), where u contains the predicted TCPMs from the
previous time step and q their predictions. For our task Nin =
Nout. There are three layers of connections within an ESN.
First, input signals are connected to different reservoir neur-
ons with different weights. Win ∈ RN×Nin is the weight matrix
for this connection, and it is randomly preselected before run-
ning the ESN. The weight valuesW in

ij of this matrix are chosen
according to W in

ij ∼ U [−INS/2, INS/2]. The Input Scaling
(INS) is the main variable for the control of the input weights
in Win, and it can regulate the amount of the nonlinearity of
the reservoir plus the relative weight of current input against
the history. INS can be set individually or uniformly across all
input signals. In addition, the neurons of the reservoir are con-
nected by random weightsWij ∼ U [−0.5,0.5]. These weights
are components of the reservoir matrix W ∈ RN×N. Despite
Win and W being preselected randomly, the random state of
them can be fixed by a variable named Random Seed (RS) in
order to be able to recreate the same ESN later.

An important control parameter is themaximum eigenvalue
ofW, referred to as the spectral radius (SR). It controls the con-
tribution of the internal reservoir interactions to the nonlinear
update rule of the reservoir. High values of SR can lead to
more chaotic reservoir dynamics, while a small SR increases
the influence of the external reservoir input u on the output q,
where u represents the predicted TCPMs in the previous time
step and q is their predicted values for the current time step.
However, SR should stay below unity to ensure the echo state
property. The echo state property is a necessary condition for
an effective reservoir and states that a reservoir becomes inde-
pendent of its past states and is therefore uniquely defined by
the last inputs [53, 70]. Until now, no sufficient condition for
an effective reservoir has been found, see Yildiz et al [71] for a

discussion. A further hyperparameter is the sparsity (or dens-
ity D) ofW which controls howmany connections each neuron
possesses. As shown in equation (1), each neuron updates s̃(n)
based on the signals it receives from inputs and other neurons.

s̃(n) = tanh(W in[1;u(n)]+Ws(n− 1)) (1)

s(n) = (1− LR)s(n− 1)+ LRs̃(n) (2)

q(n) =Wout[1;u(n);s(n)] (3)

Wout = argmin
1
Nout

Nout∑
i=1

[
T∑
i=1

(
qi(n)− qi(n)

target)2 +β
∥∥wout

i

∥∥2]
(4)

Following this, the current state of the neurons s(n) is cal-
culated by combining the state of the neurons at the current
time step with their state at the previous time step based on the
leaking rate (LR), as shown in equation (2). LR is a measure
of how fast the reservoir is updated. Consequently, the optimal
LR is heavily influenced by the flow dynamics.

In the end, the output signals are compiled from neurons by
a weight matrix called Wout, which is calculated during train-
ing as shown in equations (3) and (4). Here β > 0 is the ridge
regression parameter which prevents the amplification of small
differences in state dimensions by large rows of Wout. It also
counters the effect of overfitting, where the algorithm learns
the training data by heart. For this study, the ESN model was
created in Python using the library easyesn [72] and turbESN
[73] forN= 3000 neurons, where each neuron is sparsely con-
nected to 20 percent of the others, i.e. D= 0.2. Then it is
trained and tested for T = 700 time steps with different sets
of hyperparameters to reach the maximum efficiency.

3. Results and discussion

3.1. Deterministic prediction

This section aims to evaluate the performance of the ESN
for a deterministic prediction of the flow in each time step
with the least amount of error possible. Therefore, the aim
is to determine the actual flow field as measured in the test-
ing phase by the prediction via ESN. In order to optimize the
ESN for that purpose, a parameter for prediction evaluation
is required to rank the predictions based on their proximity to
the corresponding flow field. This depends on the flow fea-
ture that is preferred to be predicted, such as vertical velocity,
vorticity, velocity magnitude, etc. The ideal case would be to
consider the proximity of all flow features in the prediction.
However, this is a quite complex task to accomplish. Since
the entire flow information is preserved in TCPM and hence
their correct estimation will result in the preservation of all
flow features in the predictions, one can consider the abso-

lute error
(∑100

i=1

∑700
t=1 | qi(t)prediction − qi(t)target |

)
of the time

coefficients as a reasonable parameter for evaluating these pre-
dictions. Figure 9 shows the prediction set with the minimum
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Figure 9. Actual and predicted values of the temporal coefficients of modes 1, 2, 3, 10, and 100 for Re = 1000. The lines marked with ESN
indicate the predicted values of the network with the optimized set of hyperparameters with lowest absolute error with respect to actual
values, while the lines marked with POD show the actual values of the temporal coefficients during training and testing.

absolute error of the POD time coefficients compared to real-
ity. Here the outputs of the ESN are just constant lines over
zero. It is clear that the prediction is incapable of reproducing
any oscillations of time coefficients. This is quite foreseeable.
Due to time shift of oscillatory predictions with reality, which
will result in even larger absolute errors, the constant lines
will have minimum absolute error compared to other predic-
tions. Therefore, another parameter for prediction evaluation
is needed.

The vertical velocity fluctuation is the primary footprint
of the KVS. After all, the wake flow behind a cylinder is a
series of regions with upward and downward flow and the
momentum transfer is due to Vy inside the vortices. Accord-
ingly, the aim can be the correct prediction of negative or
positive directions of the vertical velocity field in Re = 1000
for |Vy|> 17.6 mm s−1. The value of 17.6 mm s−1, which
corresponds to Vy/V∞ = 0.132, was arbitrarily chosen and
corresponds to one pixel displacement in the PIV images. It is
defined as a threshold to only predict the flow inside the wake
region with the shedding vortices and neglect the free stream.
This parameter is named Vertical Velocity Prediction of Dir-
ection (VVPD) and shows the percentage of |Vy|> 17.6 mm
s−1 which have correct direction in terms of their positive
or negative values in the predictions. It should be stressed,
that this parameter does not deal with the prediction of ver-
tical velocity magnitudes. Figure 10 shows a schematic of the
division of the flow into three regions based on the vertical
velocity values, where the white area is the part of the flow
which is the free stream outside the regions of higher vertical
momentum transfer, and blue and red regions represent the
positive and negative |Vy| that are aimed to be predicted. From
figure 10, it is obvious that the pattern of the up and down
flow is quite complex, as well as somewhat unpredictable due
to the unsteadiness of the vortex shedding. To some degree

Figure 10. Vertical velocity field behind the cylinder. Blue and red
stand for up- and downward directed flows respectively, and white
regions are for |Vy|< 17.6 mm s−1 in the free-stream which
corresponds to less than one pixel displacement in the PIV images.

this is due to the experimental nature of the data, which has a
larger error than its numerical counterparts. Mainly it is due to
the turbulent nature of the flow, i.e. unsteady vortex shedding
in the case of Re = 1000, which shows up in the TCPMs of
the first two modes.

Although the aim of this study is to predict the unsteady
vortex shedding in the wake flow of a cylinder in Re = 1000,
however, it is of particular interest to first see the predictions in
Re = 100 where vortex shedding is fairly stable. In figure 11,
the performance of the ESN is optimized for the main three
hyperparameters for Re = 100 according to the VVPD val-
ues. It should be noted that for Re = 100, 14.8 mm s−1 cor-
responds to one pixel displacement in the PIV images and
Vy/V∞ = 0.11, and thus it is considered as the minimum
threshold for calculating VVPD. Table 1 shows the values that
were used in the grid search for hyperparameters. To the left
of figure 11, SR is fixed at 0.95 and LR and INS are varied,
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Figure 11. Vertical velocities prediction of direction (VVPD) values with respect to variations in input scaling and leaking rate (left),
leaking rate and spectral radius (middle), and spectral radius and input scaling (right) for Re = 100.

Table 1. The range of the three main hyperparameters in which the optimizations were conducted.

INS 0.1 0.5 1 3 4 5 7 10 15 20
LR 0.05 0.1 0.3 0.5 0.7 0.8 0.9 0.95 0.97 0.99
SR 0.05 0.1 0.3 0.5 0.7 0.8 0.9 0.95 0.97 0.99

Figure 12. Actual and predicted values of the temporal coefficients of modes 1, 2, 3, 10, and 100 for Re = 100. The lines marked with ESN
indicate the predicted values of the network with the optimized set of hyperparameters for the deterministic prediction, while the lines
marked with POD show the actual values of the temporal coefficients during training and testing.

where INS = 10 and LR = 0.7 represent the highest VVPD
value. Next, INS is fixed to 10 at the middle, and LR and SR
are varied. The maximum VVPD is obtained when LR = 0.7
and SR = 0.97. Finally, at the left, LR is set to 0.7 and SR
and INS are changed where SR = 0.8 and INS = 4 is the
best choice. This resulted in an optimized ESN with INS = 4,
LR = 0.7, and SR = 0.8. Here, it is also essential to take into
account the more general behavior of the ESN with respect
to its hyperparameters. Generally, the ESN performs similarly
for a wide range of all three hyperparameters. The only excep-
tion is extremely low LR values, notably below 0.3, which
always significantly reduce the VVPD of the predictions.

Figure 12 shows the TCPMs of the optimized case for
Re = 100 for modes 1, 2, 3, 10, and 100. The blue lines stand
for the ground truth (POD) and the green lines for the optim-
ized ESN. First, from time step −700 to 0 the ESN is trained,
and then the prediction phase starts for the next 700 time steps.
The first two modes are predicted accurately in terms of phase.
However, in the later time steps there are some enlargements
of the amplitudes. This indicates that sometimes the errors are
not related to predicting the oscillations in wrong time steps,
instead they are simply the natural divergence of the ESN
itself. However, the ESN is capable of keeping them under
control and returning to an imitation of the oscillation. The

8
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Figure 13. The vertical velocity fields of optimized deterministic prediction and reality for t= 25 (left) and 400 (right) for Re= 100.

Figure 14. Vertical velocities prediction of direction (VVPD) values with respect to variations in input scaling and leaking rate (left),
leaking rate and spectral radius (middle), and spectral radius and input scaling (right) for Re= 1000.

time coefficients of next modes are also predicted quite well,
but they have more divergence due to their higher complex-
ity. Figure 13 shows the vertical velocity fields predicted by
ESN and the real ones for t = 25 and 400. In both time steps,
the location and shape of the upward and downward flows are
predicted accurately. However, for the later time step the mag-
nitudes are exaggerated.

Figure 14 shows the optimization of the ESN with respect
to VVPD values for the main three hyperparameters for
Re = 1000. Again, the values of the hyperparameters used in
the grid search are shown in table 1. At the left of figure 14
SR is fixed to 0.95 and LR and INS are varied, where INS = 3
and LR = 0.95 represent the highest VVPD value. Therefore,
next the INS is fixed to 3 for the mid panel, and LR and SR
are varied. Here, LR = 0.95 and SR = 0.97 has the maximum
VVPD. Finally, in the right panel of the figure, LR is set to
0.95 and SR and INS are changed where SR = 0.97 and INS
= 3 is the best choice. Therefore, the optimized ESN had INS
= 3, LR = 0.95, and SR = 0.97.

Figure 15 shows the temporal evolution of the TCPMs for
Re = 1000 in the real flow (blue lines) and in the prediction

(green lines) of the optimized case for modes 1, 2, 3, 10, and
100. For the first two modes, the ESN is capable of learning
the vortex shedding frequency and thus accurately predicts the
phase of the oscillations. However, the amplitudes of oscilla-
tions diverge from the real flow after almost 150 time steps.
Apparently, the significant variation of the amplitude in the
real flow due to the unsteady vortex shedding is something
that the ESN fails to predict or at least imitate. However, the
predictions have a limit in their amplitude and they continue
to oscillate without growing infinitely. For the next modes, the
predictions are quite close to the general behavior of the real
values, however, the exact prediction of the values are out of
reach for the ESN. Therefore, the ESN has accomplished the
task of mimicking the oscillations of the time coefficients of
the modes in general. In order to better assess the quality of
the predictions, figure 16 compares the vertical velocity fields
of the predictions by ESN and reality at time step 25 and 400.
In both time steps, the succession of the upward and down-
ward flows are predicted acceptably. Also, in t = 25 the Vy

magnitudes are well predicted. However, for t = 400, they
are quite exaggerated by the ESN. Generally, the predictions
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Figure 15. Actual and predicted values of the temporal coefficients of modes 1, 2, 3, 10, and 100 for Re= 1000. The lines marked with
ESN indicate the predicted values of the network with the optimized set of hyperparameters for the deterministic prediction, while the lines
marked with POD show the actual values of the temporal coefficients during training and testing.

Figure 16. The vertical velocity fields of optimized deterministic prediction and reality for t= 25 (left) and 400 (right) for Re= 1000.

match reality well at the start, but accumulating a number of
minute errors over a period of time causes the flow to become
exaggerated in the later time steps after around ten vortex shed-
ding events.

Although the ESN is optimized for the three main hyper-
parameters, however, the robustness of the results should
also be evaluated with respect to the different random states
of the network. RS is the variable that fixes the randomly
preselected Win and W, and by its variation new random
values will be assigned. Since the deterministic prediction
for Re = 1000 was comparatively more challenging, thus the
effect of RS variation will be discussed for this case only.
Figure 17 shows the degree in which the VVPD value of the

optimized deterministic prediction for Re = 1000 (INS = 3,
LR = 0.95, and SR = 0.97) depends on RS. RS = 0 refers
to the RS used during optimization. Therefore, it is predict-
able that it should have the highest VVPD. For the next seeds
VVPD drops significantly and after around 20 RSs the cumu-
lative average VVPD value approaches to 0.35. This is a clear
indication of the RS effect in the performance of the ESN.
Although one can argue that the dependence on RS should
decrease with the increase of the reservoir size, the depend-
ence on RS is inevitable for the current reservoir with 3000
neurons.

Therefore, the ESN is optimized for hundred differ-
ent RS values and their respective maximum VVPD and

10



Meas. Sci. Technol. 34 (2023) 014002 M Sharifi Ghazijahani et al

Figure 17. The variation of VVPD values using the optimized hyperparameters (INS= 3, LR= 0.95, and SR= 0.97) for random seed
RS= 0 versus different random initializations (RS > 0) for Re= 1000.

Figure 18. The optimized hyperparameters for maximum VVPD
values for one hundred different random seeds for Re= 1000.

hyperparameter values are shown in figure 18. The maximum
VVPD values are between 0.53 and 0.73, with 0.62 being their
average. This indicates that the optimized set for each RS will
have a comparable performance in terms of VVPD. For all RSs
the optimized sets have large LR values close to one, and there
is no single optimal set with LR< 0.5. SR is also predomin-
antly high and close to one, although there are still some cases
with a very low SR that have very high INS values. Finally,
most of the cases have large INS as well, and the domain of
LR and SR increases for high INS values. In general, sixty of
the hundred different RSs have SR and LR ⩾ 0.8. Therefore,
the initial conclusion about INS = 3, LR = 0.95, and SR =
0.97 being the optimized set of hyperparameters for determ-
inistic prediction of the flow for Re = 1000 is generally valid.
However, the INS value will be highly dependent in the RS.

Overall, the deterministic predictions of the flow show the
potential of the ESN for the prediction of the KVS. However,
as Reynolds number increases and flow becomes unsteady,
predictions deviate increasingly from the ground truth. Rather

than predicting the oscillations of the TCMPs exactly, an ESN
is by far more capable to reproduce their evolution qualit-
atively. Therefore, a clear boundary between prediction and
imitation should be drawn in our understanding ofML applica-
tion for flow prediction. While prediction results in exact over-
lap of prediction and ground truth, imitation results in general
agreement of prediction and ground truth in terms of statistics,
which is the topic of the next section.

3.2. Statistical prediction

The second objective of this study is to predict the statistics
of the unsteady flow at Re= 1000 velocity, which means that
the PDF of the predicted velocity should overlap the one of
the real flow (or ground truth). This ability is important in the
case of a coarse flow simulation and a subgrid modeling of
the statistical properties of the turbulent flow. The goal is to
produce a flow that is indistinguishable from the actual flow,
regardless of how closely the individual time steps between
the prediction and reality align. As figure 9 showed, the abso-
lute error of TCPMs cannot be used as a prediction evaluation
parameter. VVPD is not a suitable candidate due to its exag-
gerated velocity magnitudes, particularly at further time steps,
once the ESN is optimized based on it. Therefore, a new pre-
diction evaluation parameter needs to be defined. If the ver-
tical velocity fields are regarded as images, then the Structural
SIMilarity index (SSIM) [74] between the reconstructed velo-
city fields of the predictions and real flows can be defined as
a prediction evaluation parameter. Then, the overall proximity
of the prediction set and the real flow will be analyzed by cal-
culating the maximum SSIM between the prediction set and
the real flow through the entire 700 time steps. To do so, a
matrix of SSIM values is created between the entire predic-
tion and actual flow fields. The maximum SSIM value in the
matrix is recorded, and its respective prediction and actual
time steps are deleted. The remaining part of the matrix is
then searched for the next maximum SSIM. In order to do
so, this procedure is repeated until 700 prediction time steps
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Figure 19. Average SSIM (structural similarity index) values with respect to variations in input scaling and leaking rate (left), leaking rate
and spectral radius (middle), and spectral radius and input scaling (right) for Re= 1000.

Figure 20. Probability density function of the actual flow and the optimized statistical prediction of it for Re= 1000.

have been matched with their corresponding actual flow fields,
irrespective of their temporal occurrence. Then, the average
of the maximum SSIMs is reported. Figure 19 shows the res-
ult of optimizing the ESN according to the SSIM. Table 1
presents the hyperparameter values once again. The chart on
the left shows that when SR= 0.95, the INS= 5 and its sur-
roundings have markedly higher SSIM values. In the middle
of the figure, LR= 0.1 shows the maximum SSIM value for
INS= 5. Finally, at LR= 0.1, SR= 0.99 is representing the
highest average maximum SSIM, however the SSIM is quite
insensitive to the SR values. The optimized set of hyperpara-
meter according to SSIM, for the current setup is INS= 5,
LR= 0.1, SR= 0.99.

Figure 20 shows the PDFs of the Vy and Vx of the optimal
statistical (green lines) and deterministic (red lines) predic-
tions of ESN in comparison to POD or the actual flow (blue
lines) in Re= 1000. For plotting the PDFs, the entire 700 time
steps of the prediction phase are considered. Both statistic-
ally optimized and actual PDFs overlap very well for Vy and
Vx, however, at the far tails of the positive Vy and negative
Vx range, there are some differences. Meanwhile, the PDF
of deterministically optimized prediction diverges from actual
flow for both positive and negative ranges of Vy and Vx. In
figure 21, the TCPMs of the actual flow and the statistically

optimized prediction are shown. There is no variation in the
amplitude of the predictions of the first two modes. This is
unlike the optimized deterministic prediction, which aims to
predict the amplitude variation of these modes as well (see
figure 15). The reason for this is that the statistical prediction
of a flow needs to reflect the average variation of the flow, not
its exact perturbations. Accordingly, predictions of the other
modes with lower energies have minimal oscillations when
compared to their actual variations. Figure 22 shows the Vy

fields of the predictions and corresponding real flow fields. In
addition to the sequence of positive and negative Vy, the mag-
nitudes of the velocities are also within the range of the actual
flow. Nonetheless, in terms of their shape and pattern, the pre-
dicted fields do not correspond well to the actual flow in the
further time steps ahead. It can be concluded that the ESN is
perfectly able to reconstruct a prediction with similar velocity
statistics to the actual flow by mimicking the two main modes
and trying not to overestimate their amplitudes in the actual
flow. However, the deterministic prediction exhibits more real-
istic oscillations of the modes when compared. Also, it is inter-
esting to note that both deterministic and statistical predictions
have comparable INS and SR values, but the LR values dif-
fer significantly. This might suggest that the LR plays a spe-
cific role in determining how much to deviate from average
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Figure 21. Actual and predicted values of the temporal coefficients of modes 1, 2, 3, 10, and 100 for Re= 1000. The lines marked with
ESN indicate the predicted values of the network with the optimized set of hyperparameters for statistical prediction, while the lines marked
with POD show the actual values of the temporal coefficients during training and testing.

Figure 22. The vertical velocity fields of optimized statistical prediction and reality for t= 25 (left) and 400 (right) for Re= 1000.

oscillations in order to capture more complex perturbations.
For the purpose of comparison, the statistical optimization and
corresponding PDFs of Vy and Vx for Re = 100 are added to
the appendix.

4. Conclusions

In this study, an ESNwas used to elaborate on its ability to pre-
dict a turbulent flow deterministically and statistically. For this
purpose, the wake flow behind a cylinder commonly known as
the KVS was used at different Reynolds numbers to increase

the complexity of the flow. PIVmeasurements were conducted
to collect the experimental data of the KVS in Re= 100 and
1000. Data reduction of the velocity field was achieved by
POD. Subsequently, only the first 100 most energetic POD
modes were considered, assuming that higher modes contrib-
ute little to the variance of the flow and reflect small-scale fluc-
tuations. TCPM were used to train and test an ESN with 3000
neurons for 700 time steps, which corresponded to 39 steady
vortex shedding events for Re = 100 and 47 unsteady vortex
shedding events for Re = 1000. To reach the best deterministic
and statistical predictions of the flow, the ESN was optimized
according to its three main hyperparameters, INS, Leaking
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Rate (LR), and Spectral Radius (SR). Other parameters were
left constant, e.g. the reservoir density.

The aim of deterministic prediction was the accurate recon-
struction of the flow direction for Vy at Re= 1000 and 100 for
values above 17.6 and 14.8 mm s−1, respectively. This was
termed as Vertical Velocity Prediction of Direction (VVPD).
For the case of steady vortex shedding in Re= 100, the optim-
ization resulted in the highest VVPD value of 97% for the
case of INS = 4, LR = 0.7, and SR = 0.8. In this case both
TCPMs and velocity fields matched well with the actual flow.
For unsteady vortex shedding in Re = 1000, the optimization
resulted in the highest VVPD value of 60% for the case of
INS = 3, LR = 0.95, and SR = 0.97. The ESN modeled the
TCPMs well, specially for the lower, more energetic modes.
For the first two modes the phase of the oscillations was pre-
dicted well, however, the amplitudes were exaggerated after
some time steps. Therefore, the reconstructed Vy fields by
the ESN matched the actual flow in the early time steps, but
later they had larger magnitudes of Vy, even though they were
successful in predicting the position of both up and down-
ward Vy in later time steps after 40 vortex shedding events.
For this case, the random state of the ESN was also varied
by variation of Random Seed (RS) for a hundred different
values. Different seeds had different set of hyperparameters
for their best VVPD. However, LR and SR values were pre-
dominantly close to one, and the INS was changing with the
change of RS. Moreover, maximum VVPD varied between
0.53 and 0.73 with an average of 0.62, indicating that the RS
variation will not have a significant impact on the prediction
quality.

Statistical predictions aimed at reconstructing a flow that
has the best fit with the actual flow in terms of its PDF of Vy

and Vx for Re= 1000. This was accomplished by searching
for a set of hyperparameters with predictions closest to actual
flow in terms of the Structural SIMalrity index (SSIM) of the
Vy fields. The optimization resulted in INS= 5, LR= 0.1, and
SR= 0.99 for hyperparameters. The PDF of Vy and Vx of the
optimized prediction was very similar to the actual flow. Here,
the predictions matched well with the actual flow in terms of
both TCPMs and velocity fields.

In general, the ESN was able to predict the flow both
deterministically and statistically. However, precise predic-
tions of the unsteady vortices in Re= 1000 were not possible.
The question if turbulence flow can be predicted at all has to
be answered in further studies among the community. How-
ever, it was clearly shown that the time horizon for a good
representation of the turbulent wake flow was decreasing with
increasing turbulence level. LR values for the deterministically
and statistically optimized cases differed significantly, which

illustrates how the reservoir update speed influences the dif-
ference between statistical and deterministic predictions. The
second notable difference was the independence of the statist-
ical predictions from SR, which was in contrast to the determ-
inistic predictions, the latter of which were very sensitive to
variations in SR.

As a preliminary step towards understanding the benefits
and limitations of using ESNs to predict fluid flow, this study
can be extended in several directions. As a first step, the ESNs
can be used inmore complex flowswith different types of peri-
odicity. In addition, different methods of flow reduction other
than POD might be employed to increase the efficiency and
quality of data reduction. Lastly, it might be advantageous to
combine ESNs with other ML algorithms, so that their points
of strength can be taken advantage of while also covering their
downsides.
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Appendix

For the purpose of comparison, the statistical optimization and
corresponding PDFs of Vy and Vx for Re= 100 are added in
this section. Figure A.1 shows the optimization of the ESN
with respect to its main three hyperparameters (INS, LR, SR)
based on the average SSIM values of the predictions. The
hyperparameter values for the grid search are again represen-
ted in table 1. The optimized ESN for this case has INS = 1,
LR = 0.9, and SR = 0.9. Figure A.2 shows the PDFs of the
Vy and Vx of the optimal statistical (green lines) and determin-
istic (red lines) predictions of ESN in comparison to POD or
the actual flow (blue lines) in Re= 100. Figure A.3 shows the
temporal evolution of the TCPMs for Re= 100 in the real flow
(blue lines) and in the prediction (green lines) of the optimized
case for modes 1, 2, 3, 10, and 100. Finally, the Vy fields of the
predictions and corresponding real flow fields for t= 25 and
400 are shown in figure A.4.
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Figure A.1. Average SSIM (structural similarity index) values with respect to variations in input scaling and leaking rate (left), leaking rate
and spectral radius (middle), and spectral radius and input scaling (right) for Re= 100.

Figure A.2. Probability density function of the actual flow and the optimized statistical prediction of it for Re= 100.

Figure A.3. Actual and predicted values of the temporal coefficients of modes 1, 2, 3, 10, and 100 for Re= 100. The lines marked with
ESN indicate the predicted values of the network with the optimized set of hyperparameters for statistical prediction, while the lines marked
with POD show the actual values of the temporal coefficients during training and testing.
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Figure A.4. The vertical velocity fields of optimized statistical prediction and reality for t= 25 (left) and 400 (right) for Re= 100.
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