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A B S T R A C T

Compliant mechanisms are widely applied in precision engineering, measurement technology
and microtechnology, due to their potential for the reduction of mass and assembly effort
through the integration of functions into fewer parts and an increasing motion repeatability
through less backlash and wear, if designed appropriately. However, a challenge during the de-
sign process is the handling of the multitude of geometric parameters and the complex relations
between loads, deformations and strains. Furthermore, some tasks such as the dimensioning by
means of optimization or the modeling for a controller design require a high number of analysis
calculations. From this arises the need for sufficient computational analysis models with low
calculation time. Existing studies of analysis models are mostly based on selected load cases,
which may limits their general validity. The scope of this article is the comparison of models for
the analysis of corner-filleted flexure hinges under various loads, to determine their advantages,
disadvantages and application fields. The underlying methods of the study can further be used
to evaluate future models based on a broad selection of possible load cases.

1. Introduction

Compliant mechanisms achieve motion through the flexibility of their elements [1]. In the case of monolithic compliant
echanisms, these elements are manufactured as one single piece of material. This integration of functions into fewer parts enables
iniaturization as well as a reduction of mass and assembly effort. By utilization of compliant hinges instead of conventional hinges,
urface friction effects can be avoided, which results in increasing motion repeatability through less wear and backlash and no need
or lubrication. Due to these advantages, compliant mechanisms have great potential in precision engineering, microtechnology,
ionics, measurement and medical technology. Established applications include for example positioning stages and amplification
echanisms for piezo actuators [2–4] as well as grippers [5,6]. These mechanisms often contain compliant elements in the form of

flexure hinges (see Figs. 1 and 2(a)).
However, the advantages of compliant mechanisms are accompanied by challenges in their design. The mechanical behavior,

determined by a multitude of parameters, requires the balancing of often contradictory design goals. Possible geometrical parameters
include the mechanism structure, the hinge positions as well as the hinge shapes (see Fig. 2(a)). In addition, materials and
manufacturing processes must be selected accordingly. These parameters and their dependencies influence for example the
installation space, motion range, mechanical advantage, load capacity and dynamic behavior. To predict the mechanical properties,
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Fig. 1. (a) Parallel-guiding mechanism according to [7], (b) displacement amplifier according to [4] and (c) gripper according to [7] as examples of compliant
mechanisms with flexure hinges.

Fig. 2. (a) Dimensions, (b) deflections and (c) loads of investigated models for corner-filleted flexure hinges.

a wide range of analysis approaches can be used and thus support the design process. Among them are for example finite
element models [8,9], pseudo-rigid-body models [10,11], beam constraint models [12,13], the compliance matrix method [14,15],
continuum beam models [7,16] and design equations [17,18]. Overviews of modeling approaches with regard to various aspects
can be found in [19–21]. The calculation time of these models can be decisive for their applicability, especially for a high number
of analysis calculations, such as in the dimensioning by means of optimization or the modeling for a controller design. These tasks
require analysis models with low calculation time and sufficient accuracy in the prediction of strains, deformations and reaction
forces. Comparisons of available models are mostly based on selected load cases and geometric parameters. This may limits their
general validity, since the expected accuracy in other possible load cases remains unclear.

This article extends the comparability of various selected models focusing on the analysis of different corner-filleted flexure
hinges. The analysis of individual hinges is of great interest due to their significance for the mechanical properties of the overall
mechanism and the applicability of the results across different mechanisms. The investigations include the prediction of strains
and rotational axis shift under a broad range of rotation angles as well as longitudinal and transversal loads. For this purpose, the
selected models are presented first. By means of the design of experiment, different contour shapes and load cases are determined
for the following comparison. The results yield conclusions about the advantages, disadvantages and applications of the individual
models. The underlying methods of the study can be used to evaluate models based on a broad selection of possible load cases and
thereby extend the general validity of future studies.

2. Model parameters

Starting point for the investigations are shape variations of corner-filleted flexure hinges, characterized by their length 𝑙, width
𝑤, fillet radius 𝑟 and minimum notch height ℎ (see Fig. 2(a)). The hinge height respectively thickness along the 𝑥-axis is described by
(𝑥). The applied material properties correspond to the aluminum alloy ENAW7075 (Young’s modulus: 𝐸 = 72 000MPa, Poisson’s
atio: 𝜈 = 0.33, proof stress: 𝑅𝑝0.2 = 470MPa [22]), which is often used in compliant mechanism design [2–6]. One end of the
inge is fixed to the reference frame. Deflections or loads are applied at the opposite end (see Fig. 2(b) and (c)). The displacement
ector 𝑢 is composed of the components 𝑢x and 𝑢y. Similarly, the force vector in the direction of the angle 𝛼 is composed of the
components 𝐹x and 𝐹y. Furthermore, the rotation angle of the hinge 𝜑 and the torque 𝑀z are considered. These quantities allow
the characterization of a wide variety of loads and displacements at the force application point.

In contrast to idealized revolute hinges, the rotational axis of flexure hinges is not fixed relative to the adjacent links. There are
several approaches to model the shift of the rotational axis [23]. In this contribution, the shift is defined as the displacement of the
2
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Fig. 3. Deflection of a beam with its geometric and material parameters loaded by two forces 𝐹x and 𝐹y and a torque 𝑀⃗z.

virtual center point (vector norm of 𝑑 with components 𝑑x and 𝑑y) fixed to the force application point at the deflected end (𝑢x, 𝑢y)
of the flexure hinge (see Fig. 2(b)). It is calculated by:

𝑑 =
√

𝑑x2 + 𝑑y2 with (1)

𝑑x = 𝑢x +
𝑙
2
⋅ (1 − cos𝜑) and 𝑑y = 𝑢y −

𝑙
2
⋅ sin𝜑. (2)

3. Selected modeling approaches

Overview and abbreviations. The investigations contained in this article include modeling approaches by:

• compliance matrices based on linear Euler–Bernoulli beam theory (CMat),
• nonlinear continuum Euler–Bernoulli beam models (ConBeam),
• finite Euler–Bernoulli beam element models (FEM1D),
• finite quadrilateral element models with plane stress (FEM2D 𝜎) and plane strain (FEM2D 𝜀) and
• finite hexahedral element models (FEM3D).

Please note, that the abbreviations regarding the finite element models (FEM1D, FEM2D, FEM3D) are distinguished by the
spatial location of the node positions and not by the degree of freedom of the node deformations. The models are additionally
distinguished by geometrically linear (lin.) and nonlinear (n.lin.) behavior.

Compliance matrices (CMat). According to Lobontiu [14], the compliance of flexure hinges in different spatial directions can be
summarized in matrix notation, where the entities of the matrix are based on the Euler–Bernoulli or Timoshenko beam theory. Each
matrix entry (𝐶11, 𝐶12, 𝐶22, 𝐶33) describes the compliance regarding a deformation (𝜑, 𝑢y, 𝑢x) with respect to a given load (𝑀z, 𝐹y,
𝐹x). In the case of plane deformations the matrix results in:

⎧
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(3)

A generalized formulation of this approach for various individual hinges and also mechanisms can be found in [14]. The
corresponding implementation in this paper is based on [15], which contains closed-form equations of the matrix entries for
corner-filleted flexure hinges. The strain is calculated without further concentration factors at 20 points along the 𝑥-axis by:

𝜀(𝑥) =
|

|

|

|

|

6 ⋅ (𝑀z + 𝐹y ⋅ (𝑙 − 𝑥))

𝐸 ⋅𝑤 ⋅ 𝑡(𝑥)2
|

|

|

|

|

+
|

|

|

|

𝐹x
𝐸 ⋅𝑤 ⋅ 𝑡(𝑥)

|

|

|

|

(4)

For the model evaluation, only the maximum strain in the hinge is considered.

onlinear continuum Euler–Bernoulli beam models (ConBeam). The theory for large deflections of (curved) rod-like structures [1] has
extensively been utilized to describe the deformation behavior of flexure hinges and compliant mechanisms under large deflections
and was shown to be in good correlation with three-dimensional FEM-based results for certain load cases [7,16]. The model is based
on the deformation of a beam loaded by two directionally constant forces 𝐹x and 𝐹y and an external torque 𝑀⃗z as shown in Fig. 3.

The beams dimensions are given by the height 𝑡(𝑠), the width 𝑤 and the length 𝑙. Further, it may be curved in the unloaded
state by a curvature 𝜅0. The material is specified by the Young’s modulus 𝐸. Due to the deflection, a bending torque 𝑀b, an angle
𝜃, a curvature 𝜅 and displacements in 𝑥- and 𝑦-direction result along the beam axis 𝑠. Considering large deflections, the following
system of differential equations results:

d𝑀b
d𝑠

= 𝐹x sin 𝜃 − 𝐹y cos 𝜃, (5)

d𝜃
d𝑠

= 𝜅, with 𝜅 =
𝑀b
𝐸𝐼z

+ 𝜅0, (6)

d𝑥 = cos 𝜃, (7)
3
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Fig. 4. Approximated hinge contour with (a) constant, (b) tapered or (c) circular cross-sectional profile in fillet section and four nodes per element (𝑛k = 4) and
ive elements per hinge (𝑛e = 5).

d𝑦
d𝑠

= sin 𝜃. (8)

It is worth noticing, that the Young’s modulus, the second moment of area 𝐼z or the curvature in the initial state 𝜅0 do not have
to be constant and may be functions of 𝑠 for example for the realization of flexure hinge contours. For a single beam with a free
end as shown in Fig. 3, the four boundary conditions result:

𝑀b(𝑠 = 𝐿) = 𝑀z, 𝜃(𝑠 = 0) = 0, 𝑥(𝑠 = 0) = 0, 𝑦(𝑠 = 0) = 0. (9)

In summary, a boundary value problem results that can be solved numerically using a four-step Runge–Kutta-method in
combination with the shooting method [16]. After a solution is obtained, results for each equation are present for each 𝑠. These
results can be used to determine the elastic strain, rotational axis shift or displacements.

Finite Euler–Bernoulli beam element models (FEM1D). Both linear [24,25] and nonlinear [8,26,27] finite beam elements have been
utilized for the analysis of compliant mechanisms. These can be derived from the differential equations of the Euler–Bernoulli
beam with the help of the principle of virtual displacement [28]. The finite beam elements in this paper are created based on the
description given in [28] (similar to [8,26]). The derivation of these finite beam elements and their combination to a hinge model,
require the consideration of several modeling parameters. Among them are the number of nodes per element 𝑛k and the number
of elements per hinge 𝑛e. For planar beam models, each node provides three degrees of freedom. The axial displacement over the
element is interpolated using Lagrange polynomials and the transversal deflection as well as the node rotation are interpolated with
Hermite polynomials. The derivation of the stiffness matrices allows the consideration of a variable cross-section along the element.
Thus, the contour of the fillet hinge section can be approximated with different cross-sectional profiles, for example with a constant,
tapered or circular changing hinge height (see Fig. 4).

The element height of the constant profile ((a) in Fig. 4) corresponds to the arithmetic mean of the hinge heights at both
ends of the finite beam element. The tapered profile ((b) in Fig. 4) matches the heights at the ends of the element. The circular
changing profile represents the idealized contour of the fillet hinge section exactly ((c) in Fig. 4). The cross-sectional profile, the
node number per element and the element number per hinge influence the equations to be solved and their computation time.
Therefore, computation time and approximation error must be considered against each other. The Appendix contains a more detailed
description of these relations. The results of the finite beam element models in Section 5 are created using elements with tapered
and constant cross-sectional profiles with three nodes. At least 14 finite elements per hinge are used. Their nodes are approximately
equidistant. Deviations in their distance result from rounding up the element number in the hinge sections (fillet and constant
sections), since a node is required at the boundary between the sections respectively between the different finite element types. The
system of nonlinear equations to determine the displacements and loads is solved using the Newton method. The Kármán strain
(see [28]) is calculated based on the displacements at five equidistant points along the beam axis of each element. The maximum
strain in the hinge is considered for the evaluation of the model. All calculations related to the finite Euler–Bernoulli beam element
models are implemented in Python®.

Finite quadrilateral and hexahedral element models (FEM2D and FEM3D). Two-dimensional and three-dimensional finite element
models are common tools for the analysis of compliant mechanisms. But especially for the investigation of a wide range of hinge
dimensions, the automatic meshing of the models presents a challenge. High stress gradients in the regions of small notch heights
or fillets require a locally high element density. However, these areas are not known in advance and meshing with generally high
element density leads to unnecessarily high computational time. In addition, the shape of the elements also has a decisive role in
the quality of the results. Depending on the element type, this is evaluated on the basis of various factors, like the element aspect
ratio, the size of the corner angles or the Jacobian ratio [29]. A customized meshing strategy enables a suitable element shape and
an appropriate computational time for a wide range of hinge dimensions (see Fig. 5).

The element nodes within the 𝑥–𝑦-plane are distributed equidistant along circular arcs that are perpendicular to the contour
(see Fig. 5). The length of a circular arc 𝑒h depends on its position characterized by 𝑒c (see Fig. 6). The quantity 𝑒c represents the
istance of the arc connection point from the hinge center traced along the contour. In the constant center segment of the hinge,
he arc (infinite radius) corresponds to a line and 𝑒c is identical to the hinge height ℎ.
The starting point of the meshing strategy is the specification of a number of elements over the height of the hinge 𝑛H. The

intended element length is adaptively calculated by dividing the length of the circular arc 𝑒 by the number of elements over the
4
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Fig. 5. Meshing parameters for quadrilateral and hexahedral element models.

Fig. 6. Length and distance of the circular arcs depending on the position along the contour given by 𝑒c and the number of elements over the height of the
hinge 𝑛H = 3 (𝑙 = 10mm, 𝑟 = 2.5mm, ℎ = 0.5mm).

height 𝑛H. Starting from the center, each new arc is shifted along the contour by the current intended element length (see Fig. 6).
This results in an iterative procedure that distributes the nodes of the elements in approximately equal distances. When the end of
the contour is reached, the position of all contour nodes is linearly scaled in direction of 𝑒c, so that the closest element edge matches
the end of the contour.

The number of elements along the height 𝑛H thus results in the number of elements along the contour 𝑛C. However, the number
of elements along the height is not a suitable parameter to control the meshing, since the element density differs greatly between
hinges with small or large notch height. For this reason, the described procedure is repeated with an increasing number of elements
over the height until a minimum number of elements in the 𝑥–𝑦-plane 𝑛HC,min is reached (𝑛H ⋅ 𝑛C ≥ 𝑛HC,min).

This strategy allows the evenly meshing of different hinge contours in the 𝑥–𝑦-plane, which suffices for the use of quadrilateral
lements. The same strategy is used for the modeling with hexahedral elements, by projection of the mesh in 𝑧-direction, which
dditionally requires the determination of the element number along the hinge width 𝑛W. This element number is calculated from
he desired edge length in z direction by means of the geometric mean of the minimal and maximal edge length in the 𝑥–𝑦-plane.
his minimizes the extrema of aspect ratios (largest edge length divided by smallest edge length of an element) in the overall mesh.
ince the number of elements in z direction is less crucial for the calculation results, due to the planar load case, a maximum number

).
5

f elements along the hinge width is defined to reduce the calculation time (𝑛W ≤ 𝑛W,max
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Table 1
Parameters of design of experiments.
Parameter Value range

Hinge radius relative to length 0.05 ≤ 𝑟i∕𝑙 ≤ 0.5
Hinge notch height relative to length 0.01 ≤ ℎi∕𝑙 ≤ 0.2
Intended utilization ratio 0.1 ≤ 𝜂i ≤ 1.0
Intended strain ratio due to the rotation angle 0 ≤ 𝜁i ≤ 1
Angle of hinge force −𝜋 ≤ 𝛼i ≤ 𝜋

The finite quadrilateral and hexahedral element models are implemented in ANSYS Mechanical™APDL 2021 R1 using PLANE183
nd SOLID186 elements. The associated APDL batch files are created by automated scripts that define node positions, finite elements,
oundary conditions and loads. The maximum equivalent von Mises strain of all elements is considered for the evaluation of the
odel. Based on a meshing study, the meshing parameters are defined as 𝑛HC,min = 1000 and 𝑛W,max = 30. According to the boundary
onditions, one end of the hinge (circular arc or cylindrical surfaces) is fixed. For the load application in analogy to the beam model,
ll nodes of the opposite end are rigidly connected to a pilot node in their center (see Fig. 7).

. Design of experiments

In order to cover a wide range of relevant hinge dimensions and load cases, a staged parameter definition is performed, which
akes the relationship between the maximum admissible loads of each individual set of hinge dimensions into account. Quantities
pecific to a given parameter set are labeled in the following by the additional index 𝑖.
The hinge length is used as a reference for the remaining dimensions to obtain dimensionless ratio parameters. For this purpose,

he hinge length is fixed to 𝑙 = 10mm. In order to reduce the number of calculations and to guarantee a suitable meshing of the
odels, the ratio of the hinge width relative to the length of the hinge is set to 𝑤∕𝑙 = 1. The results of the investigations can
evertheless be transferred to hinges with different length or width. The effects of the restrictions will be discussed in greater detail
n Section 6.
The ratios of the radius and notch height relative to the length of the hinge are varied in the range of 0.05 ≤ 𝑟i∕𝑙 ≤ 0.5 and

0.01 ≤ ℎi∕𝑙 ≤ 0.2 (see Fig. 2(a)). This covers a wide range of typical applications [2–6]. An exception are very thin hinges in load
cells, which are only subject to very selected load cases with almost no deflection and are designed with specialized goals. More
detailed considerations in this regard can be found in [9].

Since the values of admissible loads (𝜑i, 𝐹x,i, 𝐹y,i) strongly depend on the joint geometry defined by 𝑟i∕𝑙 and ℎi∕𝑙, three
additional geometry-independent load parameters are used to define suitable load cases. These include the intended utilization
ratio 𝜂i = 𝜀i∕𝜀𝑝0.2, which is calculated as the quotient of the intended maximum strain of the particular parameter set (𝜀i) and the
strain at the offset yield point (𝜀𝑝0.2 = 𝑅𝑝0.2∕𝐸). By varying the intended utilization ratio in the range of 0.1 ≤ 𝜂i ≤ 1.0, it is ensured
that both low and high strains are investigated.

A further distinction is made according to the cause of the strain. For this purpose, 0 ≤ 𝜁i ≤ 1 is introduced as the ratio of
the maximum hinge strain due to the angle of rotation. The ratio of 𝜁i = 1 indicates for a given parameter set, that the strain is
exclusively caused by the rotation angle and no other hinge forces are present. Accordingly, the ratio of 𝜁i = 0 indicates, that the
strain is exclusively caused by hinge forces.

The third load parameter 𝛼i defines the direction of the hinge force. It is varied in the range of −𝜋 ≤ 𝛼i ≤ 𝜋.
The two geometric parameters (𝑟i∕𝑙, ℎi∕𝑙) and three load parameters (𝜂i, 𝜁i and 𝛼i) span a parameter space, which is summarized

in Table 1. Within this parameter space, 100 parameter sets are selected using latin hypercube sampling. The exact parameter values
are listed in the accompanying file in [30]. For each of the parameter sets, two load calculations are performed to determine the
values of 𝜑i, 𝐹x,i and 𝐹y,i using the linear quadrilateral element model (lin. FEM2D 𝜀, see Fig. 7). The use of a linear test model
allows the robust and fast estimation of appropriate loads, by avoiding potential non-continuous results (e. g. due to buckling) and
non-convergence, which may occur with nonlinear models. Quantities associated with these load calculations are labeled in the
following by the additional index 𝑡.

The first load calculation estimates the relation between the rotation angle of the parameter set 𝜑i and the resulting strain. For
this purpose a testing strain 𝜀𝜑,t is determined for the given hinge contour of the parameter set (𝑟i∕𝑙, ℎi∕𝑙) and the application of
a testing rotation angle 𝜑t = 30° without further hinge forces. The test model approximates a linear relation between the rotation
angle and the resulting strain. The rotation angle of the parameter set 𝜑i can thus be calculated from the intended strain due to the
rotation angle (𝜀p0.2 ⋅ 𝜂i ⋅ 𝜁i):

𝜑i = 𝜀p0.2 ⋅ 𝜂i ⋅ 𝜁i ⋅
𝜑t
𝜀𝜑,t

(10)

The second load calculation estimates the increase in strain due to an additional hinge force. Therefore a further testing strain
F,t is determined resulting from the calculated angle of rotation 𝜑i and an additional testing hinge force 𝐹t = 1 kN in the direction
f the angle 𝛼i. The magnitude of the testing rotation angle 𝜑t and the testing hinge force 𝐹t is mainly relevant for the numerical
rrors of the load calculation, since the real hinge behavior may exhibit geometrically nonlinear effects but a linear model is used
or the load calculations. So analogously to the first load calculation, a linear relationship is approximated between the magnitude
6
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Fig. 7. Determination of the load values by a linear quadrilateral element model.

of the hinge force and the resulting increase in strain. Based on the intended strain due to all loads of the parameter set (𝜀p0.2 ⋅ 𝜂i),
the magnitude of the hinge force 𝐹i is calculated by:

𝐹i = 𝜀p0.2 ⋅ 𝜂i ⋅ (1 − 𝜁i) ⋅
𝜀F,t − 𝜀p0.2 ⋅ 𝜂i ⋅ 𝜁i

𝐹t
. (11)

In this manner, all loads (𝜑i, 𝐹i, 𝛼i respectively 𝜑i, 𝐹x,i, 𝐹y,i) are determined for each parameter set, which can be applied in the
investigated models. The linearization due to the linear test model causes a deviation from the target load case of the parameter set
defined by 𝜂i and 𝜁i. This deviation can be estimated from the results of the study (see lin. FEM2D 𝜀 in Fig. 8) and is considered to
be sufficiently small.

5. Results

Based on the experiment design and the load calculation, the investigated models are applied to the 100 parameter sets. The
reference for the comparison of the models is the geometric nonlinear finite hexahedral element model (n. lin. FEM3D) in ANSYS
Mechanical APDL 2021 R1. Quantities associated with this reference model are labeled in the following by the additional index 𝑟𝑒𝑓 .
Quantities associated with the models evaluated in relation to the reference model are labeled by the additional index 𝑚. Figs. 8
and 9 show the signed percentage error of the maximum hinge strain and the rotational axis shift for the evaluated models. The
different models are listed along the abscissa. The signed percentage error is shown along the ordinate in a boxplot. The box center
line indicates the median. The box itself encloses the lower and upper quartile. The whiskers include the values that are within 1.5
times the interquartile range beyond the lower and upper quartiles. Values outside this range are marked with circles as outliers.
The signed percentage error (signed relative error in percent) of an evaluated model for the given quantity 𝑞 is calculated by:

𝑃𝐸q = 100% ⋅
𝑞ref − 𝑞m

𝑞ref
. (12)

In addition, Table 2 lists the median and the interquartile range of the signed percent error of the maximum hinge strain (𝑀𝐸𝑃𝐸𝜀,
𝑄𝑅𝑃𝐸𝜀) and rotational axis shift (𝑀𝐸𝑃𝐸d, 𝐼𝑄𝑅𝑃𝐸d) as well as the mean computational time ratio (𝑡ref∕𝑡m). The quotient of the
ean calculation time of the reference model and the evaluated model, can be interpreted as time gain factor of the evaluated
odel. The results of each model for all parameter sets are listed in the accompanying file in [30].

. Conclusions

Figs. 8 and 9 illustrate, that the error of the maximum hinge strain and rotational axis shift strongly depend on the particular
odel and the load case. This confirms the necessity to compare models for the analysis of compliant hinges based on a wide
election of load cases. The dispersion of the error decreases with increasing degrees of freedom of the model, since the investigated
7
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Fig. 8. Signed percentage error of the maximum hinge strain for the evaluated models.

Fig. 9. Signed percentage error of the rotational axis shift for the geometric nonlinear models.

Table 2
Median and the interquartile range of the signed percentage error of the maximum hinge strain (𝑀𝐸𝑃𝐸𝜀, 𝐼𝑄𝑅𝑃𝐸𝜀) and rotational
axis shift (𝑀𝐸𝑃𝐸d, 𝐼𝑄𝑅𝑃𝐸d) as well as the mean computational time ratio (𝑡ref∕𝑡m, 𝑡ref = 223.70 s).

Model 𝑀𝐸𝑃𝐸𝜀 𝐼𝑄𝑅𝑃𝐸𝜀 𝑀𝐸𝑃𝐸d 𝐼𝑄𝑅𝑃𝐸d
𝑡ref
𝑡m

in % in % in % in %

lin. CMat 2.43 6.47 11.61 27.06 43592672.33
n. lin. ConBeam 2.21 4.89 12.87 20.42 2070.54
lin. FEM1D 2.85 7.34 18.23 21.51 15181.14
n. lin. FEM1D 2.76 7.02 17.40 16.76 4667.86
lin. FEM2D 𝜎 −3.23 5.42 −8.73 3.87 54.09
n. lin. FEM2D 𝜎 −3.26 4.42 −8.31 1.97 38.26
lin. FEM2D 𝜀 4.01 2.52 2.99 3.75 53.39
n. lin. FEM2D 𝜀 4.03 2.13 3.21 1.89 38.22
lin. FEM3D 0.04 0.73 −0.17 2.89 4.60

model becomes more similar to the reference model and further physical effects are considered. The comparison of the outliers of
the geometrically linear and nonlinear models shows significant differences for individual load cases. These can be attributed to
interactions between the loads and deformations, which are not captured by geometrically linear models due to their superposition
property. This becomes especially apparent in the case of stability failure due to buckling. Another example are counteracting loads.
8

Positive longitudinal loads lead to a straightening of the hinge and thus counteract large rotation angles. However, for the majority
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𝑀

(
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Fig. 10. Relative error of the maximal hinge strain between quadrilateral element models for plane strain (2D 𝜀) and plane stress (2D 𝜎) assumptions.

of load cases and thus for the majority of possible analysis calculations, there are minor differences in the error of the hinge strain
between the geometric linear and nonlinear models of the same type.

This, nevertheless, does not apply to the analysis of the rotational axis shift. The nonlinear models are much more accurate in
this regard (see Table 2). Although the nonlinear beam models show significant deviations (see Fig. 9), existing studies indicate high
accuracy for the analysis of guidance errors of entire mechanisms [7,31]. The multitude of influencing factors on the guidance error
(link deformations, deviations of the hinge position in the mechanism, etc.) makes the analysis of the overall mechanism necessary.

However, especially for the early stages of development, the errors of the beam models in the strain calculation might be
acceptable. In addition, a significant reduction of the computation time allows a broader exploration of the design solution space
by means of optimization. The compliance matrices model according to Lobontiu shows high potential for this purpose, due to the
significant reduction of the computation time and the similar accuracy for the analysis of the hinge strain among the beam models.
The deviations between the nonlinear beam models (n. lin. ConBeam and n. lin. FEM1D) result from the chosen number of elements
in the finite Euler–Bernoulli beam element model and the slightly different model assumptions. Contrary to the continuum beam
models, the derivation of the finite beam models include a small-angle approximation, which can lead to deviations in some load
cases. The results further converge and the computation time increases for a higher element number (see Appendix). Most positive
outliers of the beam models occur in the case of minor hinge radii and greater hinge heights. This can be explained by the stress
concentration in the area of small radii, which become especially apparent in hinges of greater bending stiffness.

Despite the restriction to one hinge length and width, the results can be applied to other hinges. Due to the load case (𝐹x, 𝐹y,
z), the quadrilateral element model assumptions of plane strain (FEM2D 𝜀) and plane stress (FEM2D 𝜎) can be considered as

limit cases for wide (𝑤 ≫ ℎ) and narrow hinges (𝑤 ≪ ℎ). Depending on the hinge width, the results of the hexahedral element model
FEM3D) lies between the results of these two models, apart from numerical deviations for small strain values (see also [7,9]). The
omparison of the quadrilateral element models thus allows the estimation of the range of results of the hexahedral element models
or arbitrary hinge widths. This is exemplarily shown in Fig. 10 for the hinge strain error of both quadrilateral models relative to
the respective other model. The relative error of the plane strain assumption (suitable for wide hinges where 𝑤 ≫ ℎ) relative to the
plane stress assumption thus describes the error to be expected when modeling narrow hinges and vice versa. The absolute errors
in both cases are approximately distributed around a median of ±7% and an interquartile range of 6%. A similar comparison for
all investigated models or the combination of the results from Fig. 10 and Fig. 8, can be used to estimate the upper relative strain
error due to the change in width. Furthermore, the assumption of plane stress results in higher strain values and thus in a negative
relative error. This leads to a conservative design for the dimensioning of hinges.

The presented results can also be applied to hinges with a different total length 𝑙. Please note, that the displacements scale linearly
with the uniform change in hinge dimensions, under the condition of a constant rotation angle and constant hinge strain [32]. For
example, a hinge twice as large would result in the same hinge strains and twice as large rotational axis shift due to the load
definition strategy used. The relative error remains unchanged. But nonlinear relationships arise for the evaluation of the torques
and hinge forces, which would have to be taken into account for their study. However, the investigations cover a wide range of hinge
dimensions and load cases. The results allow an estimation of the error of the maximal hinge strain and rotational axis shift and
thus a selection of an analysis model for the given application in the design process. The experimental design, load determination
and meshing strategy in this study can also be used in future studies, to extend their general validity.
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𝐼
n

Table A.3
Strain error values (𝑀𝐸𝑃𝐸𝜀, 𝐼𝑄𝑅𝑃𝐸𝜀) and mean computational time ratio (𝑡ref∕𝑡m) for different elements (𝑛e, 𝑛k ) with constant cross-sectional profile.
𝑛e 𝑛k = 2 𝑛k = 3 𝑛k = 4

𝑀𝐸𝑃𝐸𝜀 𝐼𝑄𝑅𝑃𝐸𝜀
𝑡ref
𝑡m

𝑀𝐸𝑃𝐸𝜀 𝐼𝑄𝑅𝑃𝐸𝜀
𝑡ref
𝑡m

𝑀𝐸𝑃𝐸𝜀 𝐼𝑄𝑅𝑃𝐸𝜀
𝑡ref
𝑡m

in % in % in % in % in % in %

4 −6.38 30.28 36732 −5.76 21.23 26042 −4.88 17.92 17788
6 −5.19 16.40 30116 −4.26 12.10 19750 −3.54 11.90 6805
8 −2.45 13.48 25064 −1.83 10.20 11989 −1.70 9.98 5529
10 −2.24 12.19 20622 −1.31 8.90 6426 −1.19 9.48 4744
12 −1.80 10.55 16292 −1.11 7.94 5740 −1.00 7.89 3768
14 −1.65 9.62 15235 −0.78 7.28 5640 −0.82 7.39 3621
16 −1.57 9.04 13217 −0.96 6.91 4281 −0.96 6.62 2657
18 −1.47 8.06 7008 −0.77 6.42 4060 −0.72 6.24 2696
20 −1.20 8.11 7274 −0.64 6.43 3400 −0.62 6.30 2496

Table A.4
Strain error values (𝑀𝐸𝑃𝐸𝜀, 𝐼𝑄𝑅𝑃𝐸𝜀) and mean computational time ratio (𝑡ref∕𝑡m) for different elements (𝑛e, 𝑛k ) with tapered cross-sectional profile.
𝑛e 𝑛k = 2 𝑛k = 3 𝑛k = 4

𝑀𝐸𝑃𝐸𝜀 𝐼𝑄𝑅𝑃𝐸𝜀
𝑡ref
𝑡m

𝑀𝐸𝑃𝐸𝜀 𝐼𝑄𝑅𝑃𝐸𝜀
𝑡ref
𝑡m

𝑀𝐸𝑃𝐸𝜀 𝐼𝑄𝑅𝑃𝐸𝜀
𝑡ref
𝑡m

in % in % in % in % in % in %

4 −3.77 25.81 36792 −2.06 16.31 26351 −1.39 14.61 14200
6 −0.98 16.34 29796 0.18 12.25 16263 0.10 10.95 6775
8 2.05 11.47 24470 1.75 10.51 10707 1.91 9.88 4316
10 2.32 9.45 19095 3.02 8.53 7380 3.21 8.18 4185
12 2.24 8.86 17242 2.75 7.61 6569 2.72 7.66 2837
14 2.26 8.09 15233 2.76 7.02 4668 2.72 6.97 2628
16 2.32 7.53 13449 2.62 6.52 4491 2.65 6.52 2615
18 2.10 7.37 7658 2.65 6.66 3981 2.79 6.79 2534
20 2.09 6.36 6590 2.75 6.52 3574 2.85 6.89 2093

Table A.5
Strain error values (𝑀𝐸𝑃𝐸𝜀, 𝐼𝑄𝑅𝑃𝐸𝜀) and mean computational time ratio (𝑡ref∕𝑡m) for different elements (𝑛e, 𝑛k ) with circular cross-sectional profile.
𝑛e 𝑛k = 2 𝑛k = 3 𝑛k = 4

𝑀𝐸𝑃𝐸𝜀 𝐼𝑄𝑅𝑃𝐸𝜀
𝑡ref
𝑡m

𝑀𝐸𝑃𝐸𝜀 𝐼𝑄𝑅𝑃𝐸𝜀
𝑡ref
𝑡m

𝑀𝐸𝑃𝐸𝜀 𝐼𝑄𝑅𝑃𝐸𝜀
𝑡ref
𝑡m

in % in % in % in % in % in %

4 −4.01 14.05 19885 −0.57 16.09 5991 2.80 6.75 2402
6 −5.25 12.08 15007 2.11 7.54 4118 2.60 4.72 1639
8 −4.87 10.01 12318 1.98 5.37 3251 2.42 4.72 1297
10 −4.50 9.69 10368 1.89 5.39 2541 2.40 4.72 1092
12 −2.90 8.27 8303 2.11 5.11 2159 2.35 4.77 885
14 −1.92 8.18 7665 2.15 5.10 1950 2.34 4.77 785
16 −1.55 7.32 6751 2.16 4.95 1659 2.41 4.80 703
18 −0.96 7.54 5134 2.19 5.00 1471 2.32 4.87 633
20 −0.55 6.97 4434 2.09 5.00 1350 2.28 4.93 583

Appendix. Meshing parameters of beam elements

Tables A.3 to A.5 list the median and the interquartile range of the signed percent error of the maximum hinge strain (𝑀𝐸𝑃𝐸𝜀,
𝑄𝑅𝑃𝐸𝜀) and rotational axis shift (𝑀𝐸𝑃𝐸d, 𝐼𝑄𝑅𝑃𝐸d) as well as the mean computational time ratio (𝑡ref∕𝑡m, 𝑡ref = 223.70 s) of the
onlinear finite Euler–Bernoulli beam element models (n. lin. FEM1D) in dependence of element number 𝑛e, node number 𝑛k and
the contour profile (see Fig. 4).
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