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Zusammenfassung 
Da moderne optische Systeme heutzutage oft kompaktere und leistungsfähigere 

Abbildungssysteme erfordern, werden nicht-sphärische Oberflächen immer häufiger in 

optischen Design-Prozessen eingesetzt. Mit einer relativ kompakten Struktur können 

solche Systeme eine gute Aberrationskorrektur für große numerische Aperturen und 

Sichtfelder realisieren. Die steigende Nachfrage nach solchen Systemen bringt die 

Notwendigkeit nach fortschrittlicheren Methoden für die optische Auslegung mit sich.  

Um in der Praxis eine sehr gute Abbildungsqualität von Systemen zu erreichen, sind die 

Bewertung der Aberration sowie die Sensitivitätsanalyse von großer Bedeutung. 

Insbesondere für symmetriefreie optische Systeme wird eine umfassende Methode zur 

Bewertung der Abbildungsleistung während der Korrektion angestrebt. Daher liegt ein 

Schwerpunkt dieser Arbeit auf einer neuen quantitativen Analysemethode für transversale 

Aberration in symmetriefreien Systemen, die eine Zerlegung in die Anteile der optischen 

Flächen erlaubt. Basierend auf einer gemischten paraxialen/realen Ray-Tracing-

Berechnung ermöglicht die Methode die Berechnung der Bildfehler beliebig hoher 

Ordnung sowie eine Auftrennng in intrinsische und induzierte Anteile. Dabei unterstützt 

die Methode die Darstellung der Aberrationen in Zernikepolynome. Diese neue Methode 

ermöglicht es, die Abbildungsqulität unter Berücksichtigung relativ kritischer Oberflächen 

in einem beliebigen nicht-symmetrischen System zu bewerten.  

Der am weitesten verbreitete Optimierungsalgorithmus zur optischen Auslegung, die 

konventionelle Methode der kleinsten Fehlerquadrate, bietet eine schnelle Konvergenz und 

einen deterministischen Optimierungspfad. Neben diesen Vorteilen hat dieser Algorithmus 

jedoch Schwächen bei komplizierten Topologien der Gütefunktion mit vielen Variablen 

und erlaubt keine globale Optimierung oder Strukturänderungen. Daher zielt das zweite 

Thema dieser Arbeit darauf ab, die Fähigkeit des Algorithmus zur Suche globaler Lösungen 

zu verbessern. Zu diesem Zweck wird ein biologisch-inspirierter Algorithmus verwendet 

und erweitert, welcher auf dem sogenannten Ameisenalgorithmus (Ant Colony 

Optimization) basiert. Im Verlauf dieser Arbeit wird nachgewiesen, dass ein auf 

physikalischen Erkenntnissen und Erfahrungen beruhender Algorithmus dazu geeignet ist, 

unabhängig vom Startdesign nicht zu komplexe Optimierungsprobleme mittels sinnvoller 

struktureller Änderungen zu lösen. Als Ergebnis liefert der Algorithmus dem Benutzer eine 

Vielzahl möglicher Lösungen mit unterschiedlichen Strukturen, so dass der Designer die 
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Möglichkeit hat, die besten Lösungen für den jeweiligen Zweck auszuwählen. Darüber 

hinaus erzeugt der Algorithmus auch bei der Bearbeitung von hochdimensionalen 

Optimierungsaufgaben zufriedenstellende Ergebnisse. Das Verfahren basiert auf einem 

Wahrscheinlichkeitsprinzip und hat die Fähigkeit zur Suche des globalen Optimums von 

komplizierten Systemen mit nicht-sphärischen Oberflächen/Geometrien und geknickten 

optischen Achsen. Die erzielten Ergebnisse deuten darauf hin, dass die Kombination eines 

Optimierungsalgorithmus und physikalischen Grundprinzipien der Korrektion großes 

Potenzial für zukünftige intelligente Designmethoden optischer Systeme mit hohem 

Automatisierungsgrad bietet. 
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Abstract  
As the modern optical setups nowadays often require a more compact and well-performed 

imaging system, non-spherical surfaces are more and more applied in optical design tasks. 

With a relatively compact structure, such systems can realize a good aberration correction 

for a large numerical aperture or a wide field of view. Consequently, the increasing demand 

for such systems brings the request for more advanced optical design methods.  

For successful optical design, the aberration assessment, as well as the sensitivity 

analysis, is of great importance. Particularly for symmetry-free optical systems, a 

comprehensive imaging performance evaluation method is desired during the aberration 

correction process. Therefore, one major topic of the work focuses on the quantitative 

analysis method for surface-decomposed transverse aberration in symmetry-free systems is 

proposed. Based on a mixed paraxial/real ray-tracing calculation, the method can be applied 

for the calculation of full-order total, intrinsic, and induced aberration. In addition, the 

method supports surface-additive Zernike coefficient representation for the assessment of 

specific aberrations. The implementations of this novel method help to assess the correction 

performance considering the relatively critical surfaces in an arbitrary system.  

Besides, as the most widely used optimization algorithm in optical design, the 

conventional damped least square method is advantageous with fast convergence and its 

deterministic optimization path, but weak in complex merit function topologies in case of 

many variables and not able to perform global optimization or structural changes. Thus, the 

second topic of this work aims to enhance the global searching ability of the optimization 

algorithm. A bio-inspired algorithm based on the ant colony optimization is used and 

extended for this purpose. Guided by physical knowledge, the algorithm is proved feasible 

to solve simple optimization problems with proper structural changes, regardless of the 

initial design. The algorithm outputs a large solution database so that the user can gain an 

overview of the optional solutions with various structures and out select the best fitting 

ones according to the specific purpose. In addition, the algorithm also provides satisfactory 

results when dealing with high-dimensional optimization tasks. The strong global searching 

ability based on the probabilistic feature supports the optimization of complicated systems 

with non-spherical surfaces. The obtained results indicate that the combination of 

optimization algorithm and physical considerations is of great potential in optical system 

design with a high level of automation for the future outlook. 



Abstract 

iv 
 

 

This page is left blank intentionally. 



Contents 

1 
 

Contents 
Zusammenfassung ................................................................................................................ i 
Abstract ............................................................................................................................... iii 
Contents ............................................................................................................................... 1 

1. Introduction and motivation ............................................................................................. 4 

2. State of the art .................................................................................................................. 8 

2.1 Fundamentals of optics .............................................................................................. 8 

2.2 Matrix calculus for paraxial imaging ....................................................................... 10 

2.3 Traditional aberration analysis methods .................................................................. 11 

2.3.1 Seidel aberration theory .................................................................................... 12 

2.3.2 Wave aberrations with Zernike Fringe coefficient representation .................... 13 

2.3.3 Intrinsic and induced aberration ....................................................................... 15 

2.3.4 Aldis theory ....................................................................................................... 15 

2.3.5 Surface-decomposed aberration with the phase space method ......................... 16 

2.4 General optical design procedure ............................................................................ 20 

2.5 Conventional optimization method .......................................................................... 21 

2.6 Asphere surfaces in optical design ........................................................................... 23 

2.6.1 Aspherical surface descriptions ........................................................................ 23 

2.6.2 Performance enhancement with non-spherical surfaces ................................... 24 

2.7 Bio-inspired global optimization methods ............................................................... 26 

2.8 Fundamental of ACOR algorithm for optical design ............................................... 28 

2.9 Problems in symmetry-free system design .............................................................. 30 

3. New method for aberration analysis .............................................................................. 33 

3.1 Surface contribution of total transverse aberration .................................................. 33 

3.1.1 Additive surface contribution ∆𝑦𝑦 ...................................................................... 34 

3.1.2 Chief ray referred surface contribution ∆𝑌𝑌 ....................................................... 36 

3.1.3 Discussion: ∆𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼,  ∆𝑌𝑌𝐼𝐼𝐼𝐼𝐼𝐼, and spot diagram .................................................. 36 

3.2 Surface-decomposed intrinsic and induced aberration ............................................ 37 

3.2.1 Calculation method ........................................................................................... 37 

3.2.2 Approximation in the calculation ..................................................................... 38 

3.3 Surface-decomposed Zernike coefficient representation ......................................... 40 

3.4 Discussion ................................................................................................................ 43 

4 Improved global optimization algorithm ........................................................................ 44 

4.1 GACOR global optimization with structural changes ............................................. 47 



Contents 

2 
 

4.1.1 General workflow.............................................................................................. 47 

4.1.2 Global exploration ............................................................................................. 49 

4.1.3 Local exploration .............................................................................................. 53 

4.2 GACOR algorithm for final improvement phase ..................................................... 56 

4.2.1 General final improvement strategy of the optical designer ............................. 57 

4.2.2 Extended final improvement method of the GACOR algorithm ...................... 58 

5 Examples and applications .............................................................................................. 61 

5.1 Comprehensive aberration analysis with the MRT method ..................................... 61 

5.2 Quasi-automatic global optimization ....................................................................... 65 

5.2.1 Optimization strategy for retro-focus systems .................................................. 67 

5.2.2 Local exploration for one ant group in one main iteration ................................ 70 

5.2.3 Solution evolution ............................................................................................. 73 

5.2.4 Analysis of the output solutions ........................................................................ 78 

5.2.5 Successful solution analysis .............................................................................. 80 

5.2.6 Discussion ......................................................................................................... 89 

5.3 Freeform system optimization.................................................................................. 90 

5.3.1 Final improvement of an anamorphic system ................................................... 90 

5.3.2 Successful solution analysis .............................................................................. 93 

5.3.3 Discussion ......................................................................................................... 97 

6 Conclusion and outlook .................................................................................................. 98 

Appendix A: Verification of the MRT method ................................................................ 100 

A.1 Transverse aberration calculation results .............................................................. 100 

A.2 Intrinsic/induced aberration calculation results..................................................... 101 

A.3 Surface-additive Zernike coefficient fitting .......................................................... 103 

Appendix B: Further discussion of the MRT method ...................................................... 106 

B.1 Approximation of intrinsic/induced aberration calculation ................................... 106 

B.2 Distortion removal ................................................................................................. 109 

Appendix C: Parameterization of the GACOR algorithm ............................................... 112 

Appendix D: Searching for the best structural change..................................................... 114 

D.1 Choice of the structural change option .................................................................. 114 

D.2 Decision of the structural change surface ............................................................. 114 

D.3 Lens splitting option .............................................................................................. 116 

D.4 Aspherization ........................................................................................................ 117 

Appendix E: Switch from RI to RII ................................................................................. 119 

Appendix F: Variable and MF adaption........................................................................... 121 



Contents 

3 
 

F.1 MF adaption in various cases ................................................................................ 121 

F.2 Boundary condition control ................................................................................... 123 

Appendix G: Similarity and lens shape check ................................................................. 125 

Appendix H: ACOR local search ..................................................................................... 126 

H.1 Artificial initial deviation ...................................................................................... 126 

H.2 Prevention of infinite loops ................................................................................... 128 

Appendix I: Further optimization examples .................................................................... 129 

I.1 Tele-system optimization ....................................................................................... 129 

I.2 High NA collimator system optimization ............................................................... 132 

Appendix J: Freeform surfaces for distortion correction ................................................. 134 

J.1 Distortion correction of spectrometer systems ....................................................... 134 

J.2 Example: Modified Offner system optimization with freeforms ........................... 136 

References ........................................................................................................................ 141 

List of figures ................................................................................................................... 146 

List of tables ..................................................................................................................... 151 

List of symbols ................................................................................................................. 152 

List of abbreviations ........................................................................................................ 158 

Acknowledgment ............................................................................................................. 159 

Ehrenwörtliche Erklärung ................................................................................................ 160 

Publications ...................................................................................................................... 161 

 

 



1. Introduction and motivation 

4 
 

1. Introduction and motivation 
Since several centuries, optical systems play a crucial role in a broad field of applications. 

From Abbe’s microscopes to the modern astronomical telescopes, the topic of optical 

system design has been developed rapidly and the corresponding research is always of great 

interest to physicists. With the highly advanced computational assistance, the essential tool 

of optical system design – ray tracing – no longer impedes the design and analysis of 

complicated optical systems. In addition, the modern diamond turning technology with high 

accuracy supports the application of non-spherical surfaces in the optical system. The large 

degree of freedom brought by such surfaces is greatly beneficial for aberration correction 

compared to conventional spherical surfaces. Such systems can realize superior imaging 

performance for a large field of view with a more compact structure. However, the higher 

complexity of the modern optical systems with non-spherical surfaces also generates higher 

demands on the system design task [1]. 

Concerning the theoretical development process of an optical system, there are three 

important general research directions, namely the initial system design, optimization, and 

aberration analysis. Corresponding to the specific purposes, various methods were 

proposed to support an efficient optical system design systematically in the past decades. 

Due to the large variety of possible setups, the complexity of optical design is strongly 

dependent on the system structure. Generally, the existence of a common straight 

mechanical axis and surface shapes determines the rotational symmetry of the system, and 

the path of the optical axis ray (OAR) through the field and pupil center determines the 

symmetry of the ray bundle. These two kinds of symmetry have a great impact on the 

special features of the system during the design process.  

As an overview, Figure 1.1 summarizes the current completeness level of the important 

research in the main directions presented with the cell color, in case of different system 

structure symmetry and OAR bending situations. As one of the first steps of optical design, 

establishing a meaningful initial system has been investigated and understood at the best 

level among the research directions mentioned in Fig.1.1. Especially for systems with a 

straight OAR, the geometrical tilt and decenter of the optical components are of no concern, 

making the initial design less challenging. However, due to the lack of understanding of 

aberrations and the large number of degrees of freedom, it is not realistic to explore a 

universal initial system design method for all the system types, particularly considering the 
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large geometrical variety of the symmetry-free systems. Thus, due to the relatively higher 

completeness, the initial system design topic is not the focus of this work [2-4].  

Research 
directions Important research 

Straight OAR Bent OAR 
Rotational 
symmetric 

system 
structure 

Non-
symmetric 

system 
structure 

Rotational 
symmetric 

system 
structure 

Non-
symmetric 

system 
structure 

Initial structure 
design 

First-order property     
Tilt and decenter     

Optimization Global searching X X   
Automation X X   

Surface-
decomposed 
aberration  

Primary X X X X 
Higher-order X X X X 

Full-order X X X X 
Correction with 

freeform 
Resolution    X 
Distortion    X 

Figure 1.1. An overview of the optical design tasks. Green-marked cells are those which 
are understood or solved completely. Yellow-marked cells correspond to those not 

completely understood or solved, and red-marked cells mean being far from satisfaction. 
‘X’ marks the corresponding topic investigated and addressed in this work. 

During the optical design process, aberration analysis plays a significant role in 

understanding the system. Particularly, a clear comparison among the surface contributions 

of aberrations is desirable for the understanding of the imaging performance of the system, 

as well as the corresponding sensitivity and ease of manufacturing. For the systems with 

rotational symmetry, the surface-resolved primary aberration analysis method based on the 

paraxial optics, such as Seidel theory, is applicable [5,6]. In comparison, for the symmetry-

free systems, the assumption of paraxial optics is not valid anymore, leading to more 

challenges in the aberration assessment. The currently available methods, such as Nodal 

aberration theory (NAT), can solve the problem to some extent, but due to the complexity 

and limitations, the higher-order aberrations in the system cannot be well analyzed and are 

hard to control. Particularly for modern optical system design with non-spherical surfaces, 

the understanding and assessment of the higher-order aberrations are more critical, and the 

problems in finding out the optimal solutions are still not very well solved yet [7-9].  

Furthermore, as the key to a successful design, the optimization process requires a 

profound understanding of aberration theory and sufficient experience. However, although 

the conventional optimization algorithms, such as the Damped Least Square (DLS) method, 

perform well at a fast converge speed to reach the local minimum, they are not satisfactory 

in global searching, especially concerning the symmetry-free systems with high 

complexity. On one hand, due to the high dimension of the optimization problem and the 

lack of experience in this new field, the global optimal solution always remains unknown. 
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The strong influence of the starting point limits the chance of finding globally optimal 

solutions. On the other hand, as the algorithm is based on only mathematical principles, a 

successful optimization result demands a great effort from the optical designer concerning 

the necessary optimization strategy, such as a structural change. The inferior automation 

greatly degrades the efficiency and limits the variety of the resulted solutions [10,11]. To 

enhance the global searching ability, some genetic optimization methods have been 

investigated and proved with promising results. However, the lack of physical guidance 

remains a problem in developing the automation of the algorithm, which limits the 

application for high-dimensional optimization tasks [12]. 

Therefore, the necessity of improving the aberration analysis and optimization method 

indicates the direction of the research in this work. The modern optical system design 

methods concerning aberration analysis and optimization are the focus. Intending to solve 

the problems and improve the modern optical design method, this work discusses a new 

method of comprehensive aberration analysis concerning the resolution of symmetry-free 

systems. With the obtained results, a bio-inspired optimization method with improved 

global searching ability is proposed, proved by some test optimization problems. In a 

summary, the corresponding research topics discussed in this dissertation are marked with 

‘X’ in Figure 1.1. 

Chapter 2 briefly introduces the currently available methods concerning optical system 

design. Starting from the fundamental concepts, both the classical and modern aberration 

analysis methods are introduced. Then, the general optical system design process and the 

basic system evaluation methods are illustrated. In addition, an overview of the current 

development of bio-inspired optimization methods is given. 

In Chapter 3, a novel method based on the mixed ray-tracing method for aberration 

calculation is proposed, which is capable of calculating the surface-decomposed total, 

intrinsic, and induced aberrations in full order. Based on the additivity of the surface 

contributions, the surface additive Zernike coefficient representation of the aberrations can 

also be obtained, which is of great help in assessing the specific aberrations. 

With the powerful tool for aberration calculation, a new optimization method based on 

the ant colony optimization (ACO) method is developed and explained in Chapter 4, with 

the goal to enhance the global searching ability. Concerning the potential in the global 

searching ability of the bio-inspired method and the current drawback of lacking 
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automation, a new optimization algorithm is investigated to improve the optimization 

performance. Specifically, the new algorithm intends to solve the problems in the structural 

change limitations by combining the mathematic algorithm and physical knowledge, while 

keeping the bio-inspired methodology. Compared to the conventional algorithms, the 

optimization process can be of higher automation with physical guidance which demands 

less effort from the optical designer. Therefore, as the user of the algorithm, the optical 

designer will get a large database of the possible solutions, providing an overview of the 

solution landscape, so that the best solution can be selected concerning the practical issues, 

such as the manufacturability and the cost. Concerning the large variety of optical setups, 

the development of the general physical guidance cannot be fully accomplished within a 

limited time. However, the first steps towards this far goal are investigated in this work, 

and the algorithm is proved applicable and promising for automatized optimization.  

As a collection of the practical study of modern optical system design, Chapter 5 

presents the application of the proposed methods with several concrete optical design tasks. 

The results are assessed to illustrate the advantages of the methods during the design 

process.  

Finally, a conclusion is drawn in Chapter 6, together with the outlook for future research.  

In addition to the main content, the appendices are provided for a better illustration of 

the main content. Appendix A verifies the calculation accuracy of the MRT method, and 

Appendix B discusses the impact of the approximation and distortion involved in the 

calculation results. As a supplementation to the general working principle of the algorithm 

in Chapter 4, the detailed physical considerations corresponding to the optimization 

strategies are provided in Appendix C-H. These optimization rules are essential for 

successful results as the guidance of the quasi-automatic optimization process. In addition 

to the optimization results shown in Chapter 5, two more optimization tasks and the 

corresponding optimization results are collected in Appendix I to illustrate the universality 

of the algorithm.  Furthermore, together with the resolution-oriented optical design 

methods, the work also covers the research of distortion for a comprehensive understanding 

of the correction potential of non-spherical surfaces. For this purpose, a case study about 

distortion correction performance of freeform surfaces is presented in Appendix J. 
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2. State of the art 

2.1 Fundamentals of optics 

In general, an optical system should be modeled according to practical purposes. If the 

results are required with high accuracy, the physical approaches considering the diffraction 

effect should be applied. Usually, for optical imaging system design and simulation, only 

the geometrical feature of optics regardless of diffraction is considered.  For a fast and 

effective calculation, the geometrical ray-tracing method is used to describe the ray path 

through the system, which is based on Snell’s law of refraction, written as [5]  

0 0sin 'sin ',n i n i=                                                            (2.1) 

where sin 𝑖𝑖0 and sin 𝑖𝑖0′ correspond to the incidence angle of the incoming and outcoming 

ray, 𝑛𝑛 and 𝑛𝑛′ are the refractive indices of the respective optical media. During the optical 

design process, most of the geometrical analysis provided by the optical design software is 

based on the ray-tracing results of a sequential set of optical surfaces.  

 

Figure 2.1. Definition of pupil, chief ray, and marginal ray in the optical system [13]. 

Besides the optical elements, the pupil and field of view (FoV) are the most important 

system parameters, as shown in Figure 2.1. The pupil is controlled by the stop defining the 

size of the light cone going through the optical system, which can be a real diaphragm 

inside the system or one of the lenses. The stop is conjugate to the entrance pupil (EnP) and 

exit pupil (ExP), which are the corresponding images of the stop formed by the optical 

system before and after the stop. The numerical aperture (NA) is defined as  

0sin ,NA n u=                                                         (2.2) 

where the aperture angle 𝑢𝑢0  is the half light cone opening. In comparison, the FoV is 

determined by the size of the object, which will be magnified by the system and finally 
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seen on the image plane. Dependent on the finite or infinite location of the object, the FoV 

can be described by the object height 𝑦𝑦0 or the field angle 𝑤𝑤0. Referring to the size and 

location of the stop and object, some characteristic rays can be defined. The chief ray (CR) 

comes from the outermost field point and goes through the center of the stop, while the 

marginal ray (MR) comes from the center of the object and goes through the edge of the 

pupil. And the upper or lower coma rays are defined as going through the off-axis field 

point and the upper or lower boundary of the pupil [13].   

 

Figure 2.2. Normalized field and pupil coordinate of an arbitrary ray [13]. 

Due to the nonlinearity of the sine function in the law of refraction and the non-quadratic 

shape of the spherical surfaces, the imaging of the object point contains higher-order errors. 

For simplification, the paraxial optics is used for investigating the first-order properties, 

considering only the linear part of the sine function for the law of refraction, written as 

 0 0' '.n i n i⋅ = ⋅                                                             (2.3) 

The paraxial approximation is only valid if both the aperture and the FoV are small 

enough near the optical axis for a rotationally symmetric system structure. In this case, the 

imaging condition is linear without any aberration, and the sag of optical surfaces can be 

neglected. Thus, the first-order properties of the system, such as the focal length, 

magnification, and EnP location, can be calculated accordingly.  As a consequence of the 

linear light propagation, an invariant is valid before and after the refraction of a surface, 

denoted as the Helmholtz-Lagrange invariant, given by 

0 0 0 0' ' 'n y u n y u⋅ ⋅ = ⋅ ⋅ ，                                                      (2.4) 

where 𝑦𝑦0  and 𝑦𝑦0′ represent the object and Gaussian image height. Considering the 3D 

modeling of the system, a single ray can be defined by the normalized field and pupil 

coordinates, denoted as (𝐻𝐻𝑥𝑥,𝐻𝐻𝑦𝑦,𝑃𝑃𝑥𝑥 ,𝑃𝑃𝑦𝑦), which is used for ray tracing in the optical design 
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software, as Figure 2.2 shows. The normalized coordinates therefore all have the range of 

[−1, +1]. Assuming the optical axis is along the z-axis, the paraxial optics is defined in the 

tangential plane composed of the y- and z-axis, while for an arbitrary ray, the coordinates 

also consist of the components in the x-z plane, denoted as the sagittal plane [13].  

2.2 Matrix calculus for paraxial imaging 

As mentioned above, the optical system has linear behavior when the paraxial 

approximation is valid. Thus, paraxial imaging only considers the linear propagation of 

rays without aberrations, which can be described by matrices. For rotationally symmetric 

systems, the ABCD matrix is used for the paraxial calculation to obtain the first-order 

properties. Specifically, any paraxial ray can be represented with a 2 × 1  vector and 

propagated by multiplying the system ABCD matrix, written as [13] 

,
y A B y
v C D v
′    
=    ′    

                                                  (2.5) 

where 𝑦𝑦 is the paraxial ray height coordinate, and 𝑣𝑣 is the direction angle. However, for an 

arbitrary ray in the 3D space, the calculation concerning only the tangential plane is not 

enough. Instead, the coordinates and the projected direction angles in the sagittal plane are 

also necessary. Therefore, the ABCD matrix needs to be expanded to a 4 × 4  matrix to 

include the components of both tangential and sagittal planes, and the 2 × 1 ray vector for 

the rotationally symmetric case should also be modified to a 4 × 1  vector. Thus, the 

paraxial propagation can be written as [14] 

11 12 11 12

21 22 21 22

11 12 11 12

21 22 21 22

'
'

,
'
'

x A A B B x
y A A B B y
u C C D D u
v C C D D v

    
    
    =
    
    
    

                                   (2.6) 

where the ray vector elements 𝑥𝑥 and 𝑢𝑢 represent the global ray coordinate and projected 

angle in the sagittal plane, and 𝑦𝑦 and 𝑣𝑣 refer to the tangential plane accordingly. If the 4 × 4  

matrix is applied for the paraxial calculation in the symmetry-free system, it is only valid 

around each component, which has local rotational symmetry. Furthermore, if the broken 

symmetry in the global frame due to the misalignment components or the off-axis system 

structure is considered, the 4 × 4 matrix should be generalized with the decenter and tilt 

components. Therefore, for an arbitrary ray in the 3D space, a 5 × 5  matrix is generated 

[15, 16], written as 
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11 12 11 12 11

21 22 21 22 21

11 12 11 12 11

21 22 21 22 21

,

1 0 0 0 0 1 1

x A A B B E x
y A A B B E y
u C C D D F u
v C C D D F v

′    
    ′    
    ′ =
    ′    
    
    

                              (2.7) 

where the projected tilt angle and decenter are indicated in the decomposed 𝐸𝐸  and 𝐹𝐹 

components in both planes. Such a matrix is used for the generalized paraxial propagation 

of rays in an arbitrary system, where the common axis for all the optical components may 

not exist anymore. In this case, the global nominal axis of the system should be taken as 

the reference.  

2.3 Traditional aberration analysis methods 

In reality, due to the nonlinearity of the refraction law, aberrations occur in the optical 

system, causing degradation of the imaging performance. Therefore, the main task for 

imaging optical system design is the correction of aberrations. Ideally, a point object should 

form a perfect image point at the ideal position in the image plane, but the existence of 

aberrations makes it blurred and displaced. From the geometrical viewpoint, there are three 

kinds of aberration descriptions, as shown in Figure 2.3. The longitudinal aberration, 

∆𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼, is defined as the displacement of the real ray intersection point from the ideal image 

plane along the axis, while the transverse aberration, ∆𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼, is the displacement from the 

ideal position in the image plane. As the wavefront is always perpendicular to the ray cone 

for optical systems, accordingly, the difference between the real wavefront and the ideal 

reference sphere at the ExP of the optical system is denoted as the wave aberration [13]. 

Due to the equivalence of wavefront and rays, the three kinds of aberration descriptions can 

be converted to each other. Mathematically, concerning the tangential plane, with the 

approximation of small NA and limited aberrations, the relations between them write as  

,ref
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                                                          (2.8) 
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p
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y

∆ = − ∆                                                         (2.9) 

where 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟 represents the reference sphere radius, 𝑛𝑛𝐼𝐼 is the image space refractive index, 

𝑦𝑦𝑝𝑝 is the ExP coordinate in the tangential plane. The transverse aberration in the sagittal 
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plane, denoted as ∆𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼, shares the same format as ∆𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼. Eq. (2.8) and Eq. (2.9) indicate 

that the wave aberration is one order higher in pupil power dependence than transverse 

aberration, and transverse aberration is one order higher than the longitudinal aberration.  

 
Figure 2.3. Longitudinal, transverse, and wave aberrations [13]. 

2.3.1 Seidel aberration theory 

Considering rotationally symmetric systems, the primary aberrations can be understood as 

the lowest-order perturbation from the paraxial rays. Therefore, only the CR and the MR 

are involved in primary aberration calculation, as illustrated in Figure 2.4. The primary 

aberration theory is named after Ludwig von Seidel. With Taylor expansion of the 

geometrical perturbation, and concerning the rotation invariance, there are five kinds of 

monochromatic primary aberrations, namely spherical aberration, coma, astigmatism, field 

curvature, and distortion, which are of the third order for transverse aberration [5,6].  

 
Figure 2.4. Chief ray and marginal ray from an off-axis field [13]. 

For refractive optical components, the refractive index is dependent on the wavelength. 

Therefore, the primary chromatic aberrations are of the first order, proportional to the 

derivative of the refractive index. The chromatic aberration of the chief ray causes a change 

of magnification, denoted as transverse chromatic aberration. And for marginal rays, the 

dispersion introduces a chromatic defocus along the optical axis, called longitudinal 

chromatic aberration. Due to the lowest-order perturbation, the most important feature of 
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the Seidel coefficients is the additivity among the surfaces. As the primary aberrations are 

dominant for most of the systems, the additive coefficients give clear information about the 

critical surfaces, which need further correction with structural change during optical design. 

Assuming the parameters 𝐴𝐴𝑗𝑗 = 𝑛𝑛𝑗𝑗(ℎ𝑗𝑗𝑐𝑐𝑗𝑗 + 𝑢𝑢𝑗𝑗), and 𝐴̅𝐴𝑗𝑗 = 𝑛𝑛𝑗𝑗(ℎ�𝑗𝑗𝑐𝑐𝑗𝑗 + 𝑢𝑢�𝑗𝑗), the corresponding 

Seidel coefficients of the 𝑗𝑗𝑡𝑡ℎ surface are listed in Table 2.1. 

Table 2.1. Seidel coefficients of primary aberrations. 
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where ℎ𝑗𝑗  and 𝑢𝑢𝑗𝑗  are the object side ray height and angle of MR, while ℎ�𝑗𝑗  and 𝑢𝑢�𝑗𝑗  are the 

ones of CR, and 𝑢𝑢′𝑗𝑗 represents the image side angle. 𝑐𝑐𝑗𝑗 is the radius of curvature of the 

surface. 𝐿𝐿𝑗𝑗 is the Lagrange invariant, written as  

( ).j j j j j jL n h u h u= −                                                      (2.10) 

2.3.2 Wave aberrations with Zernike Fringe coefficient representation 

Considering the wave aberration, defined as the deformed real wavefront compared to the 

reference sphere, the most common analysis method is the decomposition with Zernike 

polynomials. The wavefront aberration is defined by polar coordinate at the ExP, where 𝜌𝜌 

is the normalized radial aperture height, and 𝜃𝜃 is the azimuthal angle, as Figure 2.5 shows. 

Measured at the ExP, 𝑊𝑊 can be fit as the sum of all the Zernike polynomials, written as  
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where 𝑍𝑍𝑖𝑖 is the 𝑖𝑖𝑡𝑡ℎ Zernike term, and 𝛾𝛾𝑖𝑖 is the coefficient of the term. 𝑄𝑄 is the total number 

of Zernike terms. Figure 2.5 illustrates the plots of the Zernike polynomial terms from the 

lowest to higher orders, where 𝑛𝑛𝑧𝑧 and 𝑚𝑚𝑧𝑧 are the radial and azimuthal order. 

 

Figure 2.5. Plots of the Zernike terms according to the radial and azimuthal order [13]. 

Compared to Seidel’s simple power expansion, Zernike polynomials are orthogonal and 

can be expanded to higher-order terms, which corresponds to the higher-order aberrations. 

Besides, the Zernike representation of the wave aberration can be applied to the symmetry-

free systems regardless of the validation of the paraxial calculation. With the help of the 

least-square data fitting methods, the coefficients of Zernike polynomials give a clear clue 

of the critical aberrations in the system. However, the interpretation of the fitting results 

can be more complicated, if the orthogonality is perturbed. Specifically, the non-circular 

pupil boundary, apodization, and discretization due to a discrete finite sampling ray set can 

all bring errors in the fitting results.  

In addition, when evaluating the wave aberration contributions of an arbitrary surface in 

the system with Zernike polynomials, the results are not very comfortable for some reasons: 

the fitting method implemented by the available software for the surface-resolved wave 

aberration is usually based on the approximated calculation of the corresponding 

intermediate image plane and the reference sphere parameter. This method always assumes 

a different reference sphere after each optical surface due to the changing magnification 

throughout the system. Specifically for mirror systems, the intermediate image may suffer 

from large astigmatism, and a toric reference surface makes more sense from a numerical 
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point of view. Consequently, the additivity of the coefficients among the surfaces is not 

fully valid, although the optical path difference along every ray is always additive, so the 

errors due to the approximations cannot be avoided. Furthermore, for the systems without 

proper ray aiming, the pupil aberrations cause a displacement of the sampling points from 

the entrance to the ExP. But as the Zernike polynomials are usually fitted based on the 

undistorted EnP coordinates, there are usually errors occurring in the results [17]. 

2.3.3 Intrinsic and induced aberration 

As mentioned, Seidel theory describes the lowest order perturbation from the paraxial 

optics. Compared to the additive surface contributions of the aberrations, the higher-order 

perturbation involves the non-linear accumulated superposition of the primary aberrations.  

 
Figure 2.6. Intrinsic and induced aberration [13]. 

As Figure 2.6 illustrates, a paraxial ray coming from the object plane hits the first 

refractive surface 𝑆𝑆1. Due to the non-linear refraction and the non-quadratic surface shape, 

the aberration occurs, as the green zone shows. As for the aberration caused by 𝑆𝑆2, if the 

refraction of the paraxial ray is considered, the aberration caused by 𝑆𝑆2 is not influenced by 

the aberrations of 𝑆𝑆1 , but only caused by 𝑆𝑆2  alone, which is defined as the intrinsic 

aberration. In contrast, if the perturbed ray after 𝑆𝑆1 is further refracted at 𝑆𝑆2, the aberration 

includes the higher-order perturbation. Thus, the additional aberration subtracted from the 

total aberration is denoted as induced aberration.   

Due to the complicated superposition of the aberration of various orders, the full-order 

induced aberration is hard to be expressed with analytical formulas. However, the 

understanding of induced effect is important for many applications, especially the 

complicated optical systems with large NA or wide FoV.  

2.3.4 Aldis theory 

Aldis theory was proposed for the full-order surface-additive transverse aberration 

calculation, which considers only one ray. The calculation is based on the paraxial and real 
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tracing data of the tested ray. Combining the ray-tracing results of both cases, the transverse 

aberration contribution of the 𝑗𝑗𝑡𝑡ℎ surface in the tangential and sagittal plane can be obtained 

for a ray in the tangential plane with [18] 
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where (𝑋𝑋𝑗𝑗,𝑌𝑌𝑗𝑗 ,𝑍𝑍𝑗𝑗) is the coordinate of the real ray intersection point on the 𝑗𝑗𝑡𝑡ℎ surface, and 

(𝐿𝐿𝑗𝑗 ,𝑀𝑀𝑗𝑗 ,𝑁𝑁𝑗𝑗)  is the corresponding optical direction cosine. 𝑢𝑢′𝑗𝑗  and ℎ′𝑗𝑗  are denoted as the 

angle and height of the corresponding paraxial ray at the 𝑗𝑗𝑡𝑡ℎ  surface. 𝑛𝑛𝑗𝑗  and 𝑛𝑛′are the 

refractive index after the surface and in the image space. The subscript 𝐼𝐼  denotes the 

corresponding parameters in the image plane. 𝐻𝐻𝐼𝐼 represents the Gaussian image height. The 

surface contributions sum up to the exact total transverse aberration of the ray 
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The advantage of Aldis calculation is the additivity among the surface, but as the 

calculation is only valid for one ray in the rotational-symmetric systems, the application for 

a total quality assessment is still limited.  

2.3.5 Surface-decomposed aberration with the phase space method 

To solve the problem of surface-decomposed aberration calculation in the off-axis systems, 

a new higher-order aberration analysis tool was built based on the phase space (PS) method 

as an alternative option. It was an extended description in comparison to what was already 

proposed and sketched in [19, 20]. Inspired by the description method with position and 

velocity of a particle in mechanics, the optical PS method is first applied in illumination 

design, where an arbitrary ray can be geometrically represented analogously by the 

coordinate and direction angle [21]. With the same idea, the method was later also 
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implemented on imaging optical design tasks to help analyze full-order surface aberration 

contribution. 

 

Figure 2.7. Propagation of the OAR in an arbitrary refractive system. [19]. 

Figure 2.7 illustrates the idea of the PS method for surface-decomposed transverse 

aberration calculation. Assuming a tested ray through an arbitrary optical system with 𝑁𝑁 

surfaces, the paraxial propagation of this ray can be calculated, considering the refraction 

inside an optical component and the propagation between the adjacent optical components 

separately. With the generalized 4 × 4 matrix introduced in Section 2.2, the refraction can 

be calculated between the dummy surfaces 𝐷𝐷  and 𝐷𝐷′  defined for paraxial calculation 

(orange zone), while the ray path between the two optical surfaces (green zone) can be 

simply obtained by free-space propagation. 𝒓𝒓  and 𝒑𝒑  indicate the ray vectors on the 

corresponding dummy surfaces, where the subscript denotes the surface number, and the 

primed values are the vectors after refraction. Therefore, concerning the transverse 

aberration contribution of 𝑆𝑆𝑗𝑗, the incoming real ray vector 𝒓𝒓𝒋𝒋 is propagated by both paraxial 

and real ray tracing, resulting in 𝒑𝒑′𝒋𝒋 and 𝒓𝒓′𝒋𝒋 respectively, the vector components of which 

in the tangential plane are shown in the y-v map. Thus, the distance between them, 𝛿𝛿𝑗𝑗, can 

be calculated and further propagated paraxially until the image plane. Finally, the resulted 

total transverse aberration caused by 𝑆𝑆𝑗𝑗 is denoted as ∆𝑗𝑗. It has been proved mathematically 

that all the surface contributions sum up to the total transverse aberration of this ray [19], 

written as  

1
.

N

IMG j
j=

∆ = ∆∑                                                            (2.16) 

As an extension of Aldis theory, the PS method can distinguish the surface contribution 

of full-order transverse aberrations, and the calculation results show a good match to the 

exact Aldis results in the case of rotationally symmetric systems.  

In addition, the method can be also applied to the symmetry-free system aberration 



2. State of the art 

18 
 

analysis tasks. As the real ray tracing data can be easily obtained from the optical design 

software, the challenge lies in the paraxial calculation with the generalized matrices in such 

cases. Since it physically takes over the paraxial calculation method with the ABCD matrix, 

it is considered the ‘generalized paraxial calculation’ for arbitrary system structures in this 

dissertation. For a symmetry-free system, the generalized paraxial calculation should 

follow the same definitions as the original paraxial calculation method, which can be 

explained in Figure 2.8.  

 

Figure 2.8. Propagation of the RR and a parabasal ray in an off-axis system, where 𝑆𝑆j is a 
reflective surface and 𝑆𝑆j+1 is a refractive surface. 

Similar to the rotationally symmetric system, where the ABCD matrix determines the 

path of paraxial rays around the optical axis, in the off-axis system, the 4 × 4  matrices are 

defined in a ‘parabasal zone’ around a real reference ray (RR) of the system. Figure 2.8 

illustrates a part of an off-axis optical system with the 𝑗𝑗𝑡𝑡ℎ  reflective surface 𝑆𝑆𝑗𝑗  and the 

subsequent refractive surface 𝑆𝑆𝑗𝑗+1. The incoming RR marked in black first intersects both 

surfaces at 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑗𝑗+1. Analogously, the generalized matrix determines the propagation of 

the rays slightly deviated from the RR, which are defined as ‘parabasal rays’. Usually, the 

so-called optical axis ray (OAR) is considered as the RR, which plays the same role as the 

optical axis in rotationally symmetric systems but is calculated by real ray-tracing. 

Different from the co-axial case, the ray paths of OAR and parabasal rays are not 

aberration-free due to the real propagation through the system with finite-sized tilts and 

decenters [17].  

With the definition of the OAR as the generalized optical axis, the dummy planes can 

be determined at each 𝐶𝐶 point shown in Figure 2.8, which are perpendicular to the incoming 
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and outcoming RR directions respectively. Specifically, 𝐷𝐷𝑗𝑗  and 𝐷𝐷𝑗𝑗+1 are dummy surfaces 

of the incoming RR, while 𝐷𝐷′𝑗𝑗 and 𝐷𝐷′𝑗𝑗+1 are responsible for the outcoming RR. Since the 

ray propagates in the free space from 𝑆𝑆𝑗𝑗 to 𝑆𝑆𝑗𝑗+1, 𝐷𝐷′𝑗𝑗 must always be parallel to 𝐷𝐷𝑗𝑗+1. Thus, 

the 4 × 4 matrices can be generally further categorized: the transfer matrix 𝑀𝑀𝑃𝑃,𝑗𝑗 indicates 

either the refraction or the reflection effect due to the 𝑗𝑗𝑡𝑡ℎ  optical component, and the 

propagation matrix 𝑀𝑀𝑇𝑇,𝑗𝑗 only records the ray path between the 𝑗𝑗𝑡𝑡ℎ and (𝑗𝑗 + 1)𝑡𝑡ℎ surface in 

the free space. Similar to the conventional ABCD matrix, the refraction/reflection of the 

optical components in the system is automatically embedded in the parabasal matrices, so 

that the generalized paraxial propagation of the rays is only determined by the matrices. 

 If the off-axis system structure and arbitrary non-spherical surface shape are considered, 

the generalized paraxial calculation is complicated. Specifically, the coordinate 

transformation between the optical components is needed because the generalized 4 × 4 

matrices are based on the local reference, and the matrix calculation of a general non-

spherical surface is hard to formulate. Therefore, the authors proposed two methods: one 

can either rely on certain optical design software capable of such matrix calculation, or 

calculate the local 4 × 4  matrix by tracing a set of parabasal rays and solving linear 

equations. As the advanced function of automatic matrix calculation is not always available, 

it is meaningful to briefly illustrate the latter option.  

Given a parabasal ray marked in blue in Figure 2.8, its ray path can be traced, and the 

intersection points at the corresponding dummy surfaces are denoted as 𝑅𝑅𝑗𝑗 ,  𝑅𝑅′𝑗𝑗 ,  𝑅𝑅𝑗𝑗+1 , 

and 𝑅𝑅′𝑗𝑗+1. Therefore, the 4 × 1  ray vectors as given in Eq. (2.6) at each intersection point 

𝑅𝑅  can be written in the same format. Therefore, a linear system of equations with 16 

unknown numbers can be established, and at least 16 equations are necessary to obtain a 

unique set of solutions. Thus, with each ray providing four linear functions, only four non-

parallel parabasal rays need to be traced, so that the generalized matrices can be deduced 

from the ray data. Finally, for each two sequential optical surfaces, the transfer matrices are 

calculated simply by solving the linear equations [22, 23]. And the propagation matrix in 

the free space can be also easily obtained as long as the distance between the corresponding 

parallel dummy surfaces is known. It is important to mention that as the RR and the 

neighboring parabasal rays are traced in the real case, the aberrations existing in the 

parabasal zone are consequently included in the linear propagation calculation. 

In this way, the generalized paraxial calculation can be realized, combining the 
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coordinate transformation due to the off-axis system structure. The PS method has been 

proved feasible for distortion analysis in the off-axis systems with freeform surfaces. 

2.4 General optical design procedure 

The goal of optical design is to create a system, which fulfills all the specifications [24]. 

For imaging systems, typically the first-order properties, the constraints, and the imaging 

quality are required. The general optical design procedure is shown in Figure 2.9.  

 
Figure 2.9. General optical design process [2]. 

First, a proper initial system should be chosen carefully as the starting point. The initial 

system is essential for a smooth and effective optimization path, and it determines the 

potential to obtain a well-performing final system. Therefore, it is meaningful to find out a 

proper initial system that roughly fulfills the requirements with limited aberrations. The 

easiest way to build an initial system is to modify an existing system, the data of which can 

be found in a patent or literature [24]. With several iterations, the structure of such an initial 

system can be adjusted closer to the specifications. Besides, a preliminary design with only 

paraxial lenses is also an option, as the ideal lenses determine the basic structure of the 

system considering the first properties [3]. Then the stepwise replacement with real lenses 
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guarantees a stable switch from the ideal to the real system for further optimization. As one 

of the decisive factors for a successful optical design, the initial system design should be 

worked out carefully.   

Second, the system should be optimized based on a merit function (MF) that defines all 

the specifications and boundary conditions if the variables are set properly. The 

performance is then evaluated after each iteration to determine if any structural change is 

needed. In case of very challenging specifications, usually, the system should be adapted 

step-by-step to reach the requirements. With the help of aberration theory and experience 

as guidance, the system can be improved gradually until all the requirements are at least 

roughly fulfilled.  Such a nominal system should indicate the general structure of the final 

design with adequate imaging performance. This procedure is denoted as the nominal 

design process.  

Particularly for complicated systems, the nominal system may still not reach the ideal 

imaging performance, requesting further adjustments, for instance, with non-spherical 

surfaces. Also, the as-built performance evaluation concerning manufacturability should be 

considered, including the tolerance, mechanical design, environmental stability, and cost. 

Thus, the fine-tuning process of the system is necessary to further improve the system 

performance, until the system is realistic enough for production [24]. 

Therefore, optical design is a comprehensive process with a balance of many aspects. A 

successful result requires a deep understanding of aberration theory, practical 

manufacturing knowledge, and much experience as an optical designer, which is 

particularly challenging for beginners. Thus, nowadays, the development of a more 

efficient and automatic optical design method has become more and more attractive. 

2.5 Conventional optimization method 

The optimization process is the key to the success of optical system design. In most cases, 

the optimization is a complicated problem with a high-dimensional searching space which 

brings optical designers much difficulty in meeting all the requirements. Mathematically, 

the optimization problem of an optical system can be described as follows: assuming  𝑥⃗𝑥 is 

a vector representing all the variables in the system with the dimension of 𝑚𝑚. The merit 

function 𝐹𝐹(𝑥⃗𝑥)  is denoted as a weighted sum of the squared differences between the target 

values 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡,𝑖𝑖 and MF operand values 𝑓𝑓𝑖𝑖(𝑥⃗𝑥) [24] 
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where 𝑚𝑚 is the target number, and 𝑤𝑤𝑖𝑖 is the weighting for each target. The main task is to 

minimize the MF value as much as possible while keeping the system realistic. In other 

words, a successful optimization should bring the system to the bottom of the deepest 

‘valley’ of the searching space topology within the boundaries, understood as the global 

minimum. Ideally, 𝐹𝐹(𝑥⃗𝑥) = 0  means that the current system fulfills all the targets and 

boundary conditions. 

Besides the initial system introduced above, other three factors also influence the 

optimization results. First, the variables should be chosen carefully among all the lens data, 

as the number of the variables directly determines the degrees of freedom during 

optimization. Usually, different types of variables also contribute to the optimization to a 

different extent. For instance, the curvatures of the lenses usually have a stronger impact 

on the system performance compared to the thicknesses. If the system contains aspherical 

surfaces, the additional asphere terms of surface data bring much more degrees of freedom 

for correction. But meanwhile, the additional dimensions of the searching space due to the 

aspherical terms also increase the difficulty.  

Second, the formulation of the MF is essential for the final results, as mathematically it 

determines the geography of the searching space topology. As Eq. (2.17) illustrates, the 

targets are translated from the practical specifications, which describe the ideal values of 

the specific parameters. As the most important components of the MF, the constraints can 

be handled as soft or hard targets. The soft targets do not need to be fulfilled exactly, while 

the hard ones require an exact fulfillment typically using Lagrange multipliers [24]. The 

weighting indicates the priority of each target that also determines the optimization path. 

With a well-formulated MF, the system structure should be controlled with the 

corresponding boundary conditions to guarantee a physically realistic system, and the 

system performance is improved concerning the appropriate criteria. In the usual cases, the 

number of the variables is much smaller than the number of targets, which means there can 

be no perfect solution, but the best compromise among all the constraints can be found.   

Besides, the optimization algorithm also influences the optimization. Among all the 

available algorithms, the DLS algorithm is commonly applied in most commercial optical 

design software.  As a derivative-based optimization algorithm, the direction of the damped 
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step ∆𝑑𝑑𝑗𝑗 is described by the Jacobian matrix 𝐽𝐽. The solution in index form is 

1( ) ,j ij ij kk jk kd J J I J fλ −∆ = − ⋅ + ⋅ ⋅ ⋅                                         (2.18) 

with a damping factor 𝜆𝜆 > 0. 𝐽𝐽𝑖𝑖𝑖𝑖 = 𝜕𝜕𝑓𝑓𝑖𝑖/𝜕𝜕𝑥𝑥𝑗𝑗  is the Jacobian matrix in index notation, and 

𝐼𝐼𝑘𝑘𝑘𝑘 is the diagonal component of diagonal unity matrix  𝐼𝐼 [24]. 

The mathematical principle makes it a very effective algorithm for local optimization, 

which searches for the short way deterministically to reach a local minimum with a fast 

converging speed. However, as it is a purely mathematical algorithm without any physical 

consideration, an inappropriate formulation of the variables or the MF may cause an 

unphysical result. And the optimization performance with the DLS algorithm is also not 

satisfactory due to two reasons: On one hand, due to the complexity of the high-dimensional 

searching space, there exist plenty of local minima, while the converging behavior of the 

algorithm brings no chance to escape automatically from the local minimum. Thus, the 

optimization stops before reaching the global minimum. On the other hand, as the starting 

point strongly influences the optimization results, the global search is hard to realize with 

only local optimization. And the experience-dependent initial system design is still a 

challenging task, especially for beginners with insufficient skills [25].  

Combining with mathematical modifications and other algorithms, the DLS algorithm 

can be also implemented for global optimization. However, the inferior efficiency and large 

consumed time due to a tremendous amount of calculation are also not desired. In addition, 

the global optimization performance of optical systems with a large number of parameters, 

particularly for freeform systems, is still far from satisfactory enough due to the extremely 

high complexity of the searching space.  

2.6 Asphere surfaces in optical design 

2.6.1 Aspherical surface descriptions 

During the optimization of the complicated optical systems, the correction of higher-order 

aberrations is important for the desired imaging quality. The spherical surfaces have only 

limited corrective power for the induced higher-order aberrations due to the limited degrees 

of freedom. To solve the problem, one of the most powerful methods is to introduce non-

spherical surfaces into the system. The additional deviation from the basic spherical shape 

makes it effective for balancing the high-order aberrations. The general surface sag can be 

written as [13] 
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where 𝑐𝑐  is the curvature, and 𝑟𝑟  is the radial coordinate. The first part of the formula 

describes the basic shape of the surface, which is determined by the conic constant 𝜅𝜅. 

Specifically, the various cases of surface shape dependent on 𝜅𝜅 are listed in Table 2.2.   

Table 2.2 Surface shape against conic constant. 

Surface shape Conic constant Surface shape Conic constant 

Hyperboloid 𝜅𝜅 < −1 Paraboloid  𝜅𝜅 = −1 

Prolate ellipsoid −1 < 𝜅𝜅 < 0 Sphere 𝜅𝜅 = 0 

Oblate ellipsoid 𝜅𝜅 > 0   

Besides, the second part of the formula is the deviation from the basic shape, denoted as 

∆𝑧𝑧. The rotationally symmetric non-spherical surface is an asphere, of which the simplest 

type is ‘even asphere’. The surface sag is described as 
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where 𝑎𝑎 represents the coefficients of the exponential asphere terms with increasing even 

orders. Due to the non-orthogonality of the terms, the optimization is usually not stable. To 

solve the problem, the so-called ‘Q-type asphere’ description is proposed [26], which 

benefits both the stabilization of the optimization and the surface manufacture evaluation.  

Furthermore, if the rotational symmetry of the surface is broken, it becomes a freeform, 

which introduces even more degrees of freeform to enhance the correction power. There 

are various description methods for freeform surfaces. In this dissertation, only the surface 

type ‘Zernike Fringe sag’ is used for freeform, which applies Zernike polynomials to 

describe the surface deviation, corresponding to the introduction in Section 2.6.2. 

2.6.2 Performance enhancement with non-spherical surfaces 

As mentioned above, the nominal design determines the general system, such as the lens 

number and the relative lens group positions. However, particularly for the complicated 

systems, the imaging performance can be close to, but still not reach the expectation. In this 

case, it is meaningful to consider adding aspherical surfaces or even other more complicated 

surface shapes like freeforms into the system to further improve the system performance 

while maintaining the general structure. Therefore, in the fine-tuning process, the imaging 
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performance should be improved toward the target. Compared to the nominal design 

process, the optimization with structural changes is no more necessary, and the MF 

operands concerning the original specifications only need to remain activated to ensure the 

fulfillment. Only those for the boundary conditions still need dynamic adjustment 

according to the varied lens data to keep the acceptable manufacturability. As only one of 

the tasks during the fine-tuning process, the final performance enhancement of the system 

is called ‘final improvement’ in this dissertation for distinguishment. This process only 

aims for better academic imaging performance, regardless of manufacturability.  

Therefore, compared to the early optimization phase with structural changes, the final 

improvement phase can be less challenging. In addition, as the starting point of the final 

improvement, the system with a large degree of freedom indicates larger flexibility for 

further optimization, and the very complicated MF topology in the last phase of the 

optimization process also contains a huge number of local minima. In consequence, the 

more relaxing condition and the high dimension of the optimization problem together result 

in many different optimization paths that finally reach the goals. However, the optimization 

path strongly influences the result, and the best final improvement strategy cannot be easily 

predicted. In principle, the strategy can be either rougher, which may trigger a large jump 

over the MF landscape, or more conservative, which ensures a smooth improvement along 

the optimization path. Depending on the specific situation, sometimes a rough strategy can 

bring a large improvement in the performance, but it may also cause an unstable 

optimization path due to the extremely complicated MF topology, finally leading to an 

undesired result.  In comparison, a conservative method is safer, but might block the chance 

to find out potentially optimal solutions. 

In case the current design cannot reach the required imaging performance, the optical 

designer should analyze the current system to decide if, for example, the application of a 

non-spherical surface is necessary. Particularly for the system with broken rotational 

symmetry, such as the co-axial anamorphic system or off-axis systems, the rotationally 

symmetric surfaces have only limited power to correct the strongly asymmetric aberration 

distribution in the tangential and sagittal planes simultaneously. In this case, the freeform 

surfaces are of great help in improving the imaging performance. However, concerning the 

balance between the nominal and as-built performance, the determination of the location 

and type of the non-spherical surface is not trivial. Very often a compromise is necessary 

in the end, depending on the practical situation. 
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Generally, a freeform which allows the separation of individual ray bundles has a better 

performance for field-dependent aberrations, and a freeform near the pupil with coincident 

ray bundles is better for field-independent aberrations. This empirical conclusion can be 

explained by NAT to some extent [9], but because the current development of NAT still 

cannot reach so high aberration order as freeforms introduce to the system, it cannot explain 

or completely prove the application of freeforms. Therefore, as for our research, the choices 

of freeform locations still follow this general principle when necessary [27, 28]. 

Furthermore, when dealing with the optimization with freeforms, to ensure a smooth 

optimization path, the additional terms should be included in the system step by step. As 

for the rotationally symmetric aspheres, usually the aspherical terms are added gradually 

with increasing orders. In terms of freeform surfaces, the Zernike Fringe sag terms of the 

4th order (Z5-Z9), 6th order (Z10-Z16), 8th order (Z17-Z25), and 10th order (Z26-Z36) are 

added sequentially to freeform surfaces. It is also important to reoptimize the system after 

each addition, using the same MF. 

2.7 Bio-inspired global optimization methods 

To overcome the drawbacks of conventional mathematics-based optimization algorithms, 

genetic algorithms have been proposed for global optimization and some are already 

implemented in commercial software. Inspired by nature, various ideas help escape from 

the local minima and improve global optimization efficiency. For instance, particle swarm 

optimization (PSO) and ant colony optimization (ACO) are both proved feasible for optical 

design [28, 29].  

 
Figure 2.10. Particle movement principle of PSO [30]. 

PSO for optimization imitates the social behavior of bird flocking or fish schooling, the 

basic principle of which is illustrated in Figure 2.10. During each iteration, the movement 

of each member of the group is determined by three factors: the inertia velocity of the 

particle itself, the best position ever found by the particle, and the best position among the 
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whole group. These components add an updating learning and memory mechanism to the 

particle, which greatly improves the efficiency, and avoids being stuck in a local minimum. 

The method has been successfully implemented for some optimization problems with 

satisfactory results [29]. 

In contrast, ACO algorithm is inspired by the food foraging behavior of the ant colony. 

The ‘ants’ randomly explore the circumstances around the starting position and leave a 

pheromone trail along their walking route. If an ant finds an attraction area promising for a 

local minimum corresponding to the food sources, the quantity of pheromone it leaves on 

the way back will be changed according to its assessment of the solution. As the optimal 

solution can be blocked by some boundary conditions, the random exploration of the ‘ants’ 

makes it possible to find the solution via various paths on the landscape, as shown in Figure 

2.11(a). Since the pheromone evaporates with time, it can be accumulated faster in shorter 

ways and the fellow ants tend to follow the more ‘attractive’ ways (Figure 2.11(b)). In the 

end, all the ants should converge to the best way to the attraction area, as Figure 2.11(c) 

illustrates. 

 
Figure 2.11. Concept of ACO. (a) the ants start to explore various paths; (b) the following 
ants choose a path to follow according to the pheromone trail; (c) ants all converge to the 

best way to the goal [14]. 

Regardless of the specific algorithm, such bio-inspired algorithms share some 

similarities. The optimization principle can be summarized by two special features: the 

stigmergy which is explicitly described by a deterministic mathematical model which 

controls the general direction of optimization; and the metaheuristic character represented 

by a probabilistic construction of solutions. In terms of the ACO algorithm, the pheromone 

model determines the rules of the communication among all the ‘working ants’ and 

indirectly ‘teaches’ the ants to make decisions by assigning probabilities to various paths. 

Meanwhile, the metaheuristic character of ACO encourages the ants to explore further 
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unfamiliar regions to potentially bring up more creative solutions. In general, the mixed 

probabilistic and deterministic features of such genetic algorithms greatly enhance the 

global searching ability.  

Compared to the traditional DLS method, the convergence speed of such a bio-inspired 

optimization algorithm is mostly slower in local searching due to the probabilistic feature. 

Therefore, based on the global searching results, DLS algorithm can be used to enhance the 

convergence speed. As there are many aspects to consider while evaluating the global 

searching speed, such as the parameters involved in the algorithm and the programming 

software, it is hard to determine the best optimization methods. However, the bio-inspired 

algorithm offers a promising option to improve the optical design efficiency [29]. 

2.8 Fundamental of ACOR algorithm for optical design 

The ACO algorithm was first applied to solve the problem with discrete variables, such as 

the traveling salesman problem [31], and later the algorithm was adapted for continuous 

problem optimization with various ideas. As for the optical systems, the optimization 

mostly deals with continuous variables like curvatures and thicknesses, but the discrete lens 

material variable is an exception, due to the limited availability of glasses. In addition, the 

range of the lens parameters cannot be estimated before the optimization, making the 

searching space topology much more complicated compared to the practical optimization 

tasks. Therefore, to find the most suitable continuous ACO algorithm for optical design, 

some of the available ideas were implemented for to investigate the feasibility of the idea, 

and it has been proved that the so-called ‘ACO in the field of real numbers’ (ACOR) 

algorithm is of the largest potential for optical design tasks [32].  

The ACOR algorithm is implemented based on a solution archive of a capacity of 𝐾𝐾, the 

structure of which is shown in Figure 2.12 together with the algorithm outline. During the 

initialization, all the variables are determined and 𝐾𝐾  solutions are randomly generated. 

They are all evaluated and ranked according to the MF value 𝐹𝐹(𝑥⃗𝑥𝑗𝑗). In the archive, 𝑥⃗𝑥𝑗𝑗 is an 

𝑚𝑚-dimensional variable vector of a solution with the 𝑗𝑗𝑡𝑡ℎ ranking. In each iteration, each ant 

in the family with a population 𝑃𝑃 chooses a solution as a starting point. The possibility of 

each solution to be chosen is weighted according to the ranking. The weight 𝜔𝜔 of the 𝑗𝑗𝑡𝑡ℎ 

ranked solution is calculated by  
2
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where 𝑞𝑞  is a parameter for the bias towards the best-ranked solutions. With the guide 

solution, the ant explores a new solution nearby, the position of which is determined by a 

continuous probability density function (PDF). It is a Gaussian kernel function defined as 

the sum of different weighted individual Gaussian functions with the following form [32] 
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where  𝑗𝑗 = 1,2, …𝑚𝑚 indicates a certain component of the vector. 𝜇𝜇 is the mean value of this 

dimension among all the archive solutions and 𝜎𝜎 is the corresponding standard deviation 

which is presented as  
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where 𝑠𝑠𝑗𝑗𝑖𝑖  represents the 𝑖𝑖𝑡𝑡ℎ  variable value of the 𝑗𝑗𝑡𝑡ℎ  solution, and ζ is a parameter for 

convergence speed as an imitation of the evaporation of pheromone in nature. PDF is 

calculated only once for each component per iteration. In other words, for the construction 

of the same parameter of the solutions, the PDF does not change. After all the ants have 

moved, the new solutions are merged with the archive solutions and all these total (𝑃𝑃 + 𝐾𝐾) 

solutions are ranked again. The archive is updated with the top-ranked 𝐾𝐾 solutions and the 

rest are deleted, followed by the next iteration, until the final stop criteria are reached [32].  

 

Figure 2.12. Structure of the solution archive of ACOR, and the algorithm outline [32]. 

The ACOR algorithm was proved to be feasible for simple optimization tasks with a 

good global searching ability. But as the ants only jump randomly according to the PDF 

without any physical consideration, the solution is very often not physically meaningful. 

Thus, the large number of failures degrade the efficiency of the optimization.  



2. State of the art 

30 
 

In addition, the simple ACOR method can only deal with optimization problems with a 

consistent number of variables and fixed MF. As a result, the optimization process still 

requires a large effort from the optical designer for determining the initial system and 

structural changes, so the automation is far from satisfactory.   

2.9 Problems in symmetry-free system design 

Nowadays, as applications based on symmetry-free optical systems have become more 

common and desirable in many fields, optical design tasks with freeform surfaces are in 

higher demand. Compared to conventional optical design methods, the limited 

understanding of freeform surfaces complicates the analysis and correction of aberrations.  

Concerning the practical design process, it is still challenging to summarize a reliable 

systematic design method for a symmetry-free optical system due to the following reasons: 

1) Surface-decomposed resolution-related aberration calculation 

For most rotationally symmetric systems with spherical surfaces, the primary 

aberrations are usually dominant. Thus, Seidel aberration theory with surface 

decomposition is generally enough to evaluate the system performance. In the case of the 

symmetry-free systems, although the classical analysis of aberrations based on paraxial 

optics is not valid anymore for off-axis systems, the lowest-order aberrations can be still 

calculated according to the theory developed by Araki for instance[33-35]. However, the 

higher-order aberration evaluation cannot be tackled by either of these methods. To solve 

this problem, various theories are developed, such as the well-known NAT [4, 9, 36-39], 

which is also surface resolved. Currently, the NAT is usually restricted to the 6th order, and 

various literature [40-43] have presented the further extension of NAT up to the 8th order 

concerning some specific aberrations, which is of great help for understanding the 

dependency on the field and pupil to some extent. However, the mathematical formulas 

grow strongly in length and complexity with the increasing order. Thus, the practical 

interpretations and assessment of higher-order aberrations are complicated. Furthermore, 

the complete understanding of the aberrations over the 8th order is still missing. For the 

freeform surfaces with much higher-order deviations in the optical system for achieving 

superior imaging performance, it is necessary to take the wavefront aberration analysis of 

the same order into consideration. In this case, NAT for freeform analysis is often not 

enough. [17] 

As mentioned in Section 2.3.2, the surface-resolved Zernike coefficient fitting results of 



2. State of the art 

31 
 

the wave aberrations still suffer from inaccuracy due to the assumptions and 

approximations used in most optical design software. Concerning the ray bundle from an 

arbitrary field, as the wavefront changes in radius and shape during propagation through 

the system, the Zernike coefficients of the wave aberration measured after a certain surface 

cannot be added up with the ones of the successive surface. Besides, very often in the 3-

dimensional space, the pupil distortion also causes errors in the fitting results, which may 

influence the aberration analysis. In addition to the full-order aberration evaluation, a better 

understanding of the critical aberrations is meaningful for a more effective correction 

strategy. Therefore, a reliable calculation method of the surface-additive Zernike 

coefficient representation should be investigated.  

Besides, for a deeper understanding of the system performance, as well as the qualitative 

prediction of the manufacturing sensitivity, the induced effect evaluation of optical 

surfaces, particularly for off-axis systems, is also of great importance. However, the 

systematic study of intrinsic and induced aberration is also restricted in the range of circular 

symmetric systems until the 6th order [6], and the surface additivity cannot be clearly 

visualized because of the complicated superposition of aberrations among the surfaces. In 

addition, a numerical calculation method [44] for surface contributions of intrinsic and 

induced aberrations has been proposed to investigate the full-order aberration. But the 

assumptions and approximations hidden in the method cause error concerning the 

generalized system structure, therefore limiting the applications. As the understanding of 

induced aberration is essential for analyzing the high order aberration and sensitivity, the 

calculation method should be further improved. 

2) Higher-order distortion correction 

Despite the aberrations that degrade the resolution of the image, the symmetry-free 

structure also introduces higher-order distortion, such as keystone or bow-type distortion. 

[45] Although the existence of distortion does not influence the resolution, it still deforms 

the image, which can be a severe problem, especially for optical metrology applications. 

As many investigations were focused on the correction ability of freeform in resolution, the 

potential of higher-order distortion correction was not much illustrated in many application 

fields.  Therefore, the correction performance of freeform considering distortion is 

meaningful to be discussed.  

3) Improvement of the optimization method 
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With a better understanding of aberration correction, the system can be optimized 

according to the assessment result. The optimization method for rotationally symmetric 

systems has been discussed a lot considering the boundary conditions and structural 

changes [10, 11, 24]. Dependent on the actual purpose, the optical designers may have 

different criteria for a successful task. A globally optimal solution among the whole 

searching space is, in any case, desirable, while more creative solutions with various system 

structures can be also of interest. However, as mentioned above, the drawbacks of 

traditional DLS algorithm for local and global optimization still have limited ability in the 

global searching for outputting a large variety of solutions. Therefore, it is meaningful to 

investigate an optimization method, which improves the global searching performance and 

enhances the possibility to find out the global optimal solution. Furthermore, it is also 

desirable for the optimization method to be automatic to some extent as a great help for the 

optical designer without sufficient experience.  

To reach the goal, one possibility is to equip the mathematical algorithm with physical 

knowledge and the experience for lens design, imitating the optimization strategy that a 

real optical designer would follow to find the optimal solution. For example, the intelligent 

aberration analysis and the execution of structural changes could be programmed in the 

optimization. In addition, the bio-inspired optimization idea could be also implemented in 

the algorithm, so that the global searching ability is enhanced. Thus, the optimization results 

are both deterministic and probabilistic with the advantage of accelerating the convergence 

speed of fully random searching schemes. 

Furthermore, due to the high-order terms of the non-spherical surfaces, a large number 

of degrees of freedom are involved in the optimization problem of the freeform systems. In 

addition, the geometrical structure of the symmetry-free system also brings more degrees 

of freedom concerning the tilt and decenter of the lenses. Thus, the searching space of such 

optimization tasks can be extremely complicated with a high dimension and considerable 

local minima.  Currently, the traditional optimization method is limited in global searching 

ability when many variables are involved, and there is not yet a general optimization 

method valid for all the system structures. However, with the help of an advanced 

aberration analysis tool, the global optimization of the symmetry-free systems can be 

developed to improve the system performance in a more systematic and promising way.  
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3. New method for aberration analysis  
Following the idea introduced in Section 2.3.5, with the local refraction/reflection 4 × 4 

matrices, the generalized paraxial ray-tracing can be calculated for each optical surface, 

combined with the free-space propagation between every two sequential surfaces. As the 

transformation of the ray vectors takes the local coordinate system as the reference, the 

paraxial calculation always needs to take the coordinate transformation into account. For 

the optical design software without the automatic matrix calculation, such calculation in 

the 3D space can be complicated. Therefore, inspired by the great potential of the method, 

a novel comprehensive higher-order aberration analysis tool is investigated, attempting to 

solve the problems in aberration analysis. 

To simplify the mathematical approach of the generalized paraxial ray-tracing 

calculation, the first task of this study is to describe the propagation of rays with global 

reference in the 3D space. Additionally, the flexible switch between real and paraxial ray-

tracing can be applied to develop more advanced functions for aberration evaluation. 

Therefore, in this chapter, the improved mixed ray-tracing (MRT) method is investigated 

to develop a multi-functional aberration analysis tool for surface-decomposed aberration 

evaluation in symmetry-free systems. In this study, the real ray-tracing is performed by 

Zemax, and Matlab is used for the main body of the program [17]. 

3.1 Surface contribution of total transverse aberration 

To enhance the calculation efficiency, the generalized paraxial calculation method is first 

extended and improved in this work in comparison to what was suggested in [19,20]. 

Instead of the 4 × 4  matrices with the local reference, the global 5 × 5  matrices are 

calculated, so that the refraction/reflection and the free-space propagation including the 

tilt/decenter information are considered together for simplification, instead of the separate 

calculation. The calculation method follows that of the 4 × 4 matrice calculation with the 

linear equation set, while the number of unknown components becomes 20 in this case due 

to the additional non-zero components in the 5 × 5 matrices. In this dissertation, the 5 × 5 

matrix is denoted as the ‘parabasal matrix’. Thus, the propagation of an arbitrary ray can 

always be described in the global reference frame with the parabasal matrices.  

As introduced in Section 2.3.5, the phase space method has already been investigated 

and proved feasible for the system performance assessment concerning the surface-resolved 
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full-order aberrations [19, 20]. The additivity of the surface contributions is also the 

essential feature of the MRT method, and all the extended aberration evaluation 

implementations mentioned in this work are based on this idea. However, in comparison to 

the PS method, which only takes the paraxial calculation as the reference, the MRT method 

introduces more definitions of aberration with other references for extended functions. 

Correspondingly, the working principle of the MRT method is generalized. Therefore, due 

to the improved calculation method of the global parabasal matrices, the modified working 

principle, and the extended calculations in this work, the basic idea of the full-order total 

transverse aberration calculation method is still illustrated here, so that the core of the MRT 

method and the important complementary notations are clarified. This changed calculation 

scheme allows for extended analysis options, which are a great benefit to analyzing the 

systems and the functionality of the surfaces in a generalized system. 

3.1.1 Additive surface contribution ∆𝒚𝒚 

Figure 3.1 shows the tangential cross-section of an arbitrary optical system with a given 

RR, whose path is drawn in purple. Specifically, the RR here can be the CR of any finite 

field, in the special case of which the OAR is simply the CR of the central field. The 

notations of the dummy surfaces and intersection points still all follow Figure 2.8.  

 

Figure 3.1. Surface contribution of transverse aberration projected in the tangential plane 
and transformation to the image plane. 

After the parabasal matrices of the whole system are calculated, for any tested ray from 

the same object field point, marked in green in Figure 3.1, the transverse aberration 

contribution of an arbitrary surface can be calculated as follows: Assume first the tested ray 

starts from an arbitrary field point and hits an optical surface 𝑆𝑆𝑗𝑗  at 𝐶𝐶𝑗𝑗  in the real case, 

denoted as vector 𝒓𝒓𝒋𝒋. To calculate the transverse aberration of the tested ray caused only by 

𝑆𝑆𝑗𝑗 , the tested ray needs to be propagated through 𝑆𝑆𝑗𝑗  in two different ways for the 

comparison. First, it is refracted by 𝑆𝑆𝑗𝑗 in the real case from 𝐶𝐶𝑗𝑗, until it hits the next optical 
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surface 𝑆𝑆𝑗𝑗+1, with 𝑅𝑅𝑗𝑗+1being the intersection point at 𝐷𝐷𝑗𝑗+1. The ray path of this case is 

drawn in green between 𝑆𝑆𝑗𝑗 and 𝑆𝑆𝑗𝑗+1; Meanwhile, the extension of the tested ray intersects 

on the front dummy surface 𝐷𝐷𝑗𝑗  at 𝑅𝑅𝑗𝑗 , which is also considered as the starting point of 

paraxial refraction 𝑃𝑃𝑗𝑗 . With the coordinates of 𝑃𝑃𝑗𝑗  and angle of 𝒓𝒓𝒋𝒋 , the ray is refracted 

paraxially through 𝑆𝑆𝑗𝑗 by multiplying the transfer matrix 𝑀𝑀𝑇𝑇,𝑗𝑗, resulting in 𝑃𝑃′𝑗𝑗 on the rear 

dummy surface 𝐷𝐷′𝑗𝑗 . Then, the paraxial ray is further propagated in the homogeneous 

medium to the next front dummy surface 𝐷𝐷𝑗𝑗+1 with the propagation matrix 𝑀𝑀𝑃𝑃,𝑗𝑗. Therefore, 

the ray coming out of 𝑆𝑆𝑗𝑗 already is divided into real and paraxial paths, denoted by the 

vectors 𝒓𝒓′𝒋𝒋 and 𝑀𝑀𝑇𝑇,𝑗𝑗 ∙ 𝒓𝒓𝒋𝒋 respectively, which finally intersect 𝐷𝐷𝑗𝑗+1 with different direction 

angles and coordinates. Furthermore, the two ray vectors from the two propagation methods 

are both paraxially propagated until the dummy image plane 𝐷𝐷𝐼𝐼𝐼𝐼𝐼𝐼  with the following 

parabasal matrices. Finally, the ray coordinates on the real image plane can be obtained 

simply by calculating the intersection points of the image plane and the ray vectors. 

Therefore, in the tangential/sagittal plane, the projected distance between the two ray 

vectors on the image plane, denoted as ∆𝑦𝑦𝑗𝑗  and ∆𝑥𝑥𝑗𝑗 , are the transverse aberration 

contribution components of 𝑆𝑆𝑗𝑗, as the only difference between the two ray vectors is the 

refraction method at 𝑆𝑆𝑗𝑗. For a clear comparison specifically on the image plane, ∆𝑥𝑥𝑗𝑗 and  

∆𝑦𝑦𝑗𝑗 are both transferred back to the local coordinate on the image plane. The definition of 

these two parameters are corresponding to ∆𝐼𝐼𝐼𝐼𝐼𝐼 in Eq. (2.16), which is the total aberration 

in the image plane. Despite the slightly adapted working principle, the additivity property 

proved for ∆𝐼𝐼𝐼𝐼𝐼𝐼 is not violated. Similarly, the additivity of the surface contributions can be 

written as 
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∆ = ∆∑                                                                   (3.1)             

and 
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Img j
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y y ,
=

∆ = ∆∑                                                                    (3.2) 

where ∆𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼 and  ∆𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼 are the total transverse aberrations of the tested ray projected in 

the sagittal and tangential planes, and 𝑁𝑁 is the total number of the optical surfaces in the 

system. As the x-and y-components of transverse aberration contribution always share the 

same formulation and are only different in the cross-sections, for the rest of the chapter we 
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only consider the tangential plane, meaning only the y-components of the aberration 

descriptions are given. Due to the change in the parabasal matrix definition and calculation 

method, the accuracy and reliability of the calculation results of  ∆𝑥𝑥𝑗𝑗 and  ∆𝑦𝑦𝑗𝑗 still needs to 

be proved. Thus, a brief verification is provided in Appendix A.1. 

3.1.2 Chief ray referred surface contribution ∆𝒀𝒀 

Except for the additive surface contribution ∆𝑦𝑦𝑗𝑗  referred to the paraxial ray vector, the 

MRT method also supports the aberration calculation with another reference for extended 

functions. In some cases, paraxial propagation is not of practical concern in optical design. 

Instead, the evaluation of the system performance may require the comparison between the 

chief ray and other coma rays from this field, such as the evaluation of the real spot diagram 

and wavefront aberration. Thus, we define the distance between the intersection positions 

of the CR and the test coma ray from the same field as ∆𝑌𝑌𝑗𝑗, as shown in Figure 3.1. In this 

case, the CR is considered as the RR here, and the tested coma ray coming from the same 

field point goes through a finite pupil position. In other words, the paraxial propagation at 

𝑆𝑆𝑗𝑗  is no more of concern for ∆𝑌𝑌𝑗𝑗  calculation. Instead, only the real ray vector 𝒓𝒓′𝒋𝒋  is 

paraxially transferred to the image plane as introduced before to compare to the real ray 

vector of the CR. According to the propagation method, ∆𝑌𝑌𝑗𝑗 here includes all the surface 

contributions of transverse aberration from 𝑆𝑆1  to 𝑆𝑆𝑗𝑗 . Consequently, ∆𝑌𝑌𝑗𝑗  is not additive 

among all the surfaces, as it compares only to the real CR position. Thus, for the 𝑁𝑁𝑡𝑡ℎ optical 

surfaces in the system, we have 

Img NY Y .∆ = ∆                                                            (3.3) 

In general, the definition of ∆𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼  and ∆𝑌𝑌𝐼𝐼𝐼𝐼𝐼𝐼 provide alternative options for system 

performance analysis concerning different purposes. If the additive surface contribution to 

the transverse aberration is of concern, ∆𝑦𝑦𝑗𝑗  is required for determining the relative 

contribution and balance among all the surfaces. However, if a visualized transverse 

aberration regarding the real spot diagram is required, ∆𝑌𝑌𝑗𝑗 can better illustrate the spread 

intersection positions of the rays from the same field on the image plane.  

3.1.3 Discussion: ∆𝒚𝒚𝑰𝑰𝑰𝑰𝑰𝑰,  ∆𝒀𝒀𝑰𝑰𝑰𝑰𝑰𝑰, and spot diagram 

The definitions of ∆𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼  and ∆𝑌𝑌𝐼𝐼𝐼𝐼𝐼𝐼  share similarities and distinctions because of the 

different references. To better illustrate the relationship between them, Figure 3.2 shows 



3. New method for aberration analysis 

37 
 

two arbitrary rays coming from the ExP, marked in blue and red respectively. For 

simplification, we assume the two rays both come from the on-axis FoV, so that they should 

intersect the axis again in the ideal paraxial image plane, as the dashed lines illustrate. 

However, in the real case, their ray paths with aberrations are different, as the solid lines 

indicate. The ∆𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼 for each ray is defined as the distance between its real and paraxial 

intersection point in the real image plane, while ∆𝑌𝑌𝐼𝐼𝐼𝐼𝐼𝐼 shows the distance between the real 

intersection points of the tested ray and the CR of this field in the image plane. Specifically 

in this case, the CR is the optical axis ray, so that ∆𝑌𝑌𝐼𝐼𝐼𝐼𝐼𝐼 in Figure 3.2 refers directly to the 

optical axis. Thus, if the image plane locates at the ideal image position, ∆𝑌𝑌𝐼𝐼𝐼𝐼𝐼𝐼  will 

coincide with ∆𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼. However, if the real image plane is moved away from the paraxial 

position, according to the same definition, we observe separated ∆𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼_1 and ∆𝑌𝑌𝐼𝐼𝐼𝐼𝐼𝐼_1, as 

well as  ∆𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼_2 and ∆𝑌𝑌𝐼𝐼𝐼𝐼𝐼𝐼_2 as marked in Figure 3.2.  

In consequence, due to the different definitions, the scale of ∆𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼 is not necessarily 

corresponding to the spot diagram of the same field, but the scale of ∆𝑌𝑌𝐼𝐼𝐼𝐼𝐼𝐼 must be.  

 
Figure 3.2. Geometrical illustration of ∆𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼 and ∆𝑌𝑌𝐼𝐼𝐼𝐼𝐼𝐼. 

3.2 Surface-decomposed intrinsic and induced aberration 

3.2.1 Calculation method 

As the core idea of the MRT method, the switch between real and paraxial ray-tracing at 

any surface realizes the surface-decomposed aberration calculation. Furthermore, if the 

definition of the full-order intrinsic and induced aberration is considered, the MRT method 

can be easily adapted for the extended application. As an overview, Figure 3.3 illustrates 

the extension of intrinsic/induced aberration calculation. 

As mentioned above, if the ray vector 𝒓𝒓𝒐𝒐𝒐𝒐𝒐𝒐 from the object reaches 𝑆𝑆𝑗𝑗 in the real case, 

with both real and paraxial calculations of 𝒓𝒓𝒋𝒋 and the paraxial propagation afterward, we 

can finally calculate ∆𝑦𝑦𝑗𝑗 caused by 𝑆𝑆𝑗𝑗 alone by calculating the distance between 𝒓𝒓𝑰𝑰𝑰𝑰𝑰𝑰,𝑹𝑹 and 
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𝒓𝒓𝑰𝑰𝑰𝑰𝑰𝑰,𝑷𝑷. Similarly, if 𝒓𝒓𝒐𝒐𝒐𝒐𝒐𝒐 is propagated to 𝑆𝑆𝑗𝑗 only by paraxial calculation instead of real ray-

tracing, the resulted paraxial ray vector 𝒑𝒑𝒋𝒋  will be still divided into two paths after 

refraction/reflection at 𝑆𝑆𝑗𝑗, denoted as 𝑀𝑀𝑇𝑇,𝑗𝑗 ∙ 𝒑𝒑𝑗𝑗 and 𝒑𝒑′𝑗𝑗 for the paraxial and real ray tracing 

respectively. Following the same procedure explained in Section 3.1.1, finally, the distance 

between the resulted ray vectors 𝒑𝒑𝑰𝑰𝑰𝑰𝑰𝑰,𝑹𝑹  and 𝒑𝒑𝑰𝑰𝑰𝑰𝑰𝑰,𝑷𝑷  in the image plane is the surface 

contribution of the intrinsic aberration, denoted as ∆𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗. 

 

Figure 3.3. Mixed ray-tracing process for calculating the surface-decomposed total, 
intrinsic, and induced transverse aberration of 𝑆𝑆𝑗𝑗 concerning only the y-component. 

As ∆𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗 of each surface is independent according to the calculation method, it is easy 

to clear that the additivity ∆𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗 is still valid, written as 
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Then, the corresponding surface contribution of the induced aberration ∆𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗 can be 

easily obtained by subtracting the intrinsic aberration from the total value. As for a single 

surface, we have 

ind, j j int, jy y y .∆ ∆ ∆= −                                                   (3.5) 

Consequently, the induced aberrations of the surfaces are also additive, written as 
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∆ = ∆∑                                                             (3.6) 

3.2.2 Approximation in the calculation 

As the essential point of the switch between real and paraxial propagation of the rays, it 

should be emphasized, that the real ray tracing always starts from the intersection point at 

the real surface, while the generalized paraxial ray tracing considers always the intersection 
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point on the corresponding plane dummy surface. Figure 3.4 illustrates an example of a 

tested surface and the ray path when calculating the intrinsic and induced aberration, where 

the dummy surfaces are not drawn for simplification, but practically the vectors still take 

the intersection points on the dummy surface for calculation. All the paraxial traced rays 

are marked green and real traced rays are marked red. During the calculation, according to 

Figure 3.3, it is clear for the calculation of vectors 𝒓𝒓𝒋𝒋′ , 𝑀𝑀𝑇𝑇,𝑗𝑗 ∙ 𝒓𝒓𝒋𝒋 , and 𝑀𝑀𝑇𝑇,𝑗𝑗 ∙ 𝒑𝒑𝒋𝒋 , as the 

intersection points of the surface or the dummy surface can be easily found. However, when 

calculating 𝒑𝒑′𝑗𝑗, the intersection point of 𝒑𝒑𝒋𝒋 and the real surface, 𝐶𝐶𝑝𝑝𝑝𝑝, needs to be calculated 

first for further real ray tracing, as shown in the zoomed area of Figure 3.4. In generalized 

systems with high-order freeform surfaces, the calculation of the exact intersection point 

on an arbitrary surface is complicated.  

 
Figure 3.4. Approximation in the intrinsic/induced aberration calculation concerning 𝑆𝑆𝑗𝑗. 

Considering the intention of the method, it only makes sense to evaluate the higher-order 

aberrations when the system performance is not so far from satisfaction. Therefore, based 

on the assumption, an approximation for the intersection point calculation can be made here 

to reduce the unnecessary calculation effort. The procedure is as follows: first the tangent 

plane 𝑇𝑇 to the intersection point 𝐶𝐶𝑗𝑗 is drawn, as the blue projected line, where the extension 

of the vector 𝑀𝑀𝑇𝑇𝑇𝑇 ∙ 𝒑𝒑𝑗𝑗 hits the point 𝐶𝐶𝑝𝑝𝑝𝑝0. Through 𝐶𝐶𝑝𝑝𝑝𝑝0, a parallel line of the local optical 

axis of 𝑆𝑆𝑗𝑗 can be drawn and the intersection point on 𝑆𝑆𝑗𝑗 is denoted as 𝐶𝐶′𝑝𝑝𝑝𝑝. With the help of 

the known x-and y-coordinate of 𝐶𝐶′𝑝𝑝𝑝𝑝 , the local surface sag of 𝑆𝑆𝑗𝑗  can be automatically 

calculated by the ray-tracing software, so that the 3-dimensional coordinate of 𝐶𝐶′𝑝𝑝𝑝𝑝 can be 

obtained for further calculation [17]. 

Concerning the accuracy of the approximation method, there are 2 main factors 

dominant for the error. For an arbitrary surface with moderate freeform deviation, if the 

difference between 𝒑𝒑𝑗𝑗 and 𝒓𝒓𝑗𝑗 is extremely large due to the bad correction of the system, the 
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distance between  𝐶𝐶𝑝𝑝𝑝𝑝 and 𝐶𝐶′𝑝𝑝𝑝𝑝 is no more neglectable. In addition, if the surface deviation 

from the basic spherical shape is too large, the strongly curved surface sag also causes a 

pitfall in the approximation. The corresponding detailed illustrations of the two cases can 

be found in Appendix B, together with the analytical estimation of the error. The evaluation 

of the error and a guideline concerning the practical applications are also introduced there. 

In general, for most of the well-corrected systems with moderate freeform surfaces, the 

error caused by this approximation can always be considered acceptable. The 

approximation here simplifies and therefore speeds up the whole calculation procedure.  

Among the current methods for calculating the intrinsic or induced aberrations, there is 

no available tool that also calculates the full-order intrinsic/induced aberrations based on 

the same definitions. Therefore, it is hard to find an appropriate reference for proving the 

reliability of the MRT method concerning full-order intrinsic/induced aberration 

calculation. Thus, one of the best ways to evaluate the results with the MRT method is to 

make a test on a simple on-axis system, whose intrinsic aberrations can be easily predicted, 

so that the results of intrinsic aberration calculation with the MRT method can be verified. 

The corresponding illustration is given in Appendix A.2. The results show that considering 

the qualitative analysis of the intrinsic/induced aberration, the calculation is accurate 

enough with minor error caused by the approximation [17].  

3.3 Surface-decomposed Zernike coefficient representation 

With the full-order aberration calculation results with the MRT method, the application can 

be further extended. For many purposes, the analysis for specific types of aberration is of 

great help to better correct the system, particularly for the symmetry-free systems. To solve 

the problems in the accuracy and the additivity of the conventional surface-decomposed 

Zernike coefficients fitting method mentioned in Section 2.3.2, the improved Zernike 

representation based on the MRT calculation is illustrated in this section. 

The relation between wave and the transverse aberration in the tangential plane has been 

given by Eq. (2.8). In the fitting procedure, the real wavefront is calculated with the optical 

path length of the sampling rays and the center of the wavefront reference sphere is 

determined by the real CR of this field, regardless of the paraxial rays. Thus, assuming the 

image space is in the air and considering the two kinds of transverse aberration notation 

introduced in Section 3.1.2, the transverse aberration here should be written as  
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where ∆𝑌𝑌 here is regarding the CR intersection position of this field, instead of that of the 

paraxial ray. Furthermore, if the corresponding wave aberration after 𝑆𝑆𝑗𝑗 is denoted as 𝑊𝑊𝑗𝑗, 

it can be fitted to the Zernike polynomials terms with a number of 𝑄𝑄, written as  
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=∑                                                           (3.8) 

where 𝛾𝛾𝑖𝑖,𝑗𝑗 is the coefficient of the 𝑖𝑖𝑡𝑡ℎ Zernike polynomial 𝑍𝑍𝑖𝑖. Considering ∆𝑌𝑌 of a certain 

surface, together with Eq. (3.7), we have  
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This relation in terms of ∆𝑋𝑋𝑗𝑗 in sagittal plane shares the same format. It can be seen, that 

if ∆𝑋𝑋𝑗𝑗  and ∆𝑌𝑌𝑗𝑗  are directly used to fit the derivatives of Zernike polynomial terms, the 

corresponding coefficients do not change. Thus, given sufficient sampling rays 𝑀𝑀, and 

using the first 36 Zernike Fringe terms for fitting, we can rewrite Eq. (3.9) with matrices to 

express the wave aberration after the 𝑗𝑗𝑡𝑡ℎ surface, as 
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For simplification, this expression can be also written as  

( ) .ref jj
R Z γ η− ∇ ⋅ = ∆                                                  (3.11) 

where ∆𝜂𝜂𝑗𝑗 represents both ∆𝑋𝑋𝑗𝑗 and ∆𝑌𝑌𝑗𝑗. According to the definition of the least-square data 

fitting method, we have 
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where 𝛾𝛾∗  is supposed as the best fitting results of Zernike coefficients. By solving the 

equation of matrices, finally, we have the solution for 𝛾𝛾∗  
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This means, by collecting the additive ∆𝑌𝑌𝑗𝑗 obtained by the methods mentioned above, 

we can also finally calculate the Zernike coefficients after 𝑆𝑆𝑗𝑗  which correspond to the 

accumulated wave aberrations after this surface.  

Furthermore, as for the ‘pure’ surface contribution of 𝑆𝑆𝑗𝑗, denoted as ∆𝑌𝑌𝑗𝑗0, we have 

0 1,j j jY Y Y −∆ = ∆ −∆                                                             (3.14) 

inserting in Eq. (3.9), we have 
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This means the single surface contribution of Zernike coefficients can be finally 

obtained by iteratively subtracting the coefficients of the surface before. In other words, the 

coefficient of a certain term fitted directly after  𝑆𝑆𝑗𝑗 is the sum of all the coefficients until 𝑆𝑆𝑗𝑗. 

Compared to the definition of ∆𝑌𝑌𝑗𝑗, the coefficients are additive among the surfaces, which 

finally add up to the image space wave aberration.  

Due to the strict additivity of the surface contributions of the MRT method, the 

calculation results cannot be compared to those based on approximations and assumptions. 

However, it still makes sense to verify the results with Zemax wavefront fitting results. The 

details are given in Appendix A1.3. 

Considering the change of the wavefront during the free-space transformation between 

the adjacent optical surfaces, the calculation results of the MRT method already indirectly 

include the propagation into the results. Compared to other numerical calculation methods 

with intermediate image calculation [44], the MRT method calculation for the Zernike 

coefficient after a certain surface is not impacted by the corresponding approximations 
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involved in the calculation. Specifically, an individual surface contribution of Zernike 

coefficients automatically contains the propagation to this surface and the 

refraction/reflection through it.  

As the transverse aberrations after each surface are all finally transferred to the image 

plane, the corresponding wavefront is calculated at the same ExP position with the same 

radius. Thus, the changing of the shape and radius during the propagation through the 

system is no longer of concern. Consequently, the problem in the wavefront propagation 

variance and the normalized radius is solved. In addition, as the sampling rays are all 

defined by the ideal pupil coordinates, the integral wavefront is fitted also based on the 

ideal pupil, which means the problem of pupil distortion also does not exist. Instead, all the 

fitted coefficients share the same ExP parameters which are determined by the chief and 

coma rays. Therefore, the problem in the conventional Zernike fitting algorithm is avoided 

by this method.  

So far, Nodal aberration theory usually investigates the first 16 Zernike terms. For 

higher-order aberrations, despite a well understanding of some specific aberrations [41], a 

complete investigation and comparison among all the aberrations in the same order of 

freeform deviation is still missing. In comparison, the orders of aberrations calculated with 

the MRT method are not limited, as long as the derivatives of the Zernike polynomial terms 

are given.  

Furthermore, we could also evaluate the intrinsic and induced surface contribution by 

fitting only the corresponding transverse aberration to Zernike polynomial derivatives, 

which is a powerful analysis tool for aberration correction together with sensitivity [17].  

3.4 Discussion 

So far, the working principle of the MRT is introduced. The core of the method is the switch 

between the real ray tracing and the generalized paraxial calculation based on the global 

parabasal matrices. The verification results prove the accuracy of the method.  

As the reference of the parabasal matrices, the choice of the RR has a great impact on 

the aberration calculation results. Specifically, if the RR and the tested rays come from 

different FoVs, distortion will be included in the transverse aberrations. For some purposes, 

the distortion may need to be removed. The various cases concerning the distortion are 

discussed in more detail in Appendix C.  
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4 Improved global optimization algorithm 
As introduced in Chapter 2, the conventional optimization methods still have limitations in 

various aspects, which demand much effort from the user concerning the optimization 

strategy. In this chapter, an improved optimization method for quasi-automatic global 

searching is discussed. As an overview of the research directions and motivations of this 

work, Table 4.1 summarizes the challenges in improving the optimization algorithm and 

the corresponding solutions and development. 

Table 4.1. Overview of the optimization method research in this work. 

Challenges in optimization Corresponding 
development 

System with 
only spherical 

surfaces 

System 
including 
aspheres 

System 
including 
freeforms 

i. Structural change 
Lens splitting X X  

Aspherization  X  

ii. Higher-order aberration 
evaluation MRT method X X X 

iii. Handling a large degree 
of freedom 

Final 
improvement   X 

iv. Automation  Improved Improved Improved 

v. Global searching ability  Improved Improved Improved 

vi. Manufacturability / 
sensitivity  Critical cases 

avoided 
Critical cases 

avoided 
Critical cases 

avoided 

Applications  Retro-focus system Anamorphic 
system 

The first column of the table lists the general goals considered for the improved 

optimization algorithm development, which are currently not fully reached by the 

conventional optimization methods. The first challenge is the structural change limitations, 

as (i) shows. Starting from the initial system, appropriate structural changes are essential 

for aberration correction during the whole nominal design process. Second, as the imaging 

performance is improved, the higher complexity of the system structure usually brings a 

larger degree of freedom. Thus, as (iii) illustrates, the algorithm should be capable of 

dealing with very high-dimensional optimization problems, particularly the optical systems 

with aspherical or even freeform surfaces. In addition, an improved higher-order aberration 

analysis method is also beneficial for improving the system performance during the 

optimization process, referring to challenge (ii).  

Therefore, the final goal of the research is to complete all these challenges by 

introducing physical knowledge into the optimization algorithm. Ideally, it should be 
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feasible for a fully automatic optimization from the initial design until the final output for 

all kinds of optical systems (challenge (iv)). Simultaneously, the algorithm should be strong 

in global searching to provide the user with a large number of output solutions with 

acceptable manufacturability, referring to challenges (v) and (vi). Considering the large 

variety of optical systems, the complete development of such an algorithm is a very broad 

research topic requesting a huge amount of programming, making it impossible to include 

all the detailed physical issues in this work. Therefore, this work concentrates on the 

development of an improved optimization algorithm to investigate the benefit of physical 

guidance in optimization. 

The original ACOR algorithm is already introduced in Section 2.8 as a promising global 

optimization method. Based on the archiving mechanism, each ‘ant’ individually explores 

for new local minima, so that the global searching ability can be greatly enhanced. 

However, the drawbacks of this method still limit the application. Considering its great 

potential in global searching ability, an improved ACOR algorithm based on the ‘ant group’ 

is developed, denoted as the GACOR algorithm. Intending to tackle a successful 

optimization with a high level of automation, its working principle mimics the optical 

design process performed manually by experienced optical designers, who manage the task 

with both physical and empirical knowledge. Correspondingly, the ‘ants’ are trained to have 

their own ‘judgment’ during the optimization process, so that the whole ‘ant family’ can 

have better overall control of the results. Therefore, the algorithm is investigated as a first 

step to completing the challenges mentioned in Table 4.1.  

As mentioned above, the structural changes are mainly considered in the nominal 

procedure, and the high-dimensional optimization problems refer to the complicated 

systems in the later optimization stage, whilst the complete development of the algorithm 

is not realistic. Therefore, to include the research concerning both challenge (i) and (iii) in 

the work within the limited time frame, the GACOR algorithm development is divided into 

two subtopics: In the first part, the algorithm is developed for quasi-automatic global 

optimization with structural changes guided by physical knowledge concerning simplified 

nominal design tasks. The algorithm only focuses on the spherical aberration correction for 

rotationally symmetric systems with only an on-axis field. Correspondingly, lens splitting 

and aspherization are developed in the algorithm as the concrete structural change options, 

marked with blue ‘X’s in Table 4.1. The usage of these two options covers both systems 

with and without aspheres, which will be discussed in the following sections. 
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Correspondingly, a retro-focus system design task will be illustrated in Section 5.1 as an 

application example of the method, presented in the bottom row in Table 4.1.  

In the second part, only the high-dimensional optimization problem is considered to 

prove the capability of the GACOR algorithm when dealing with a large number of 

variables. As mentioned in Section 2.4, the obtained nominal system only indicates the 

general structure of the system, while the lens parameters might not be optimal concerning 

ideal imaging quality, particularly for complicated systems. Thus, the final improvement 

process is considered as the second part of the algorithm development, marked with red 

‘X’, which further optimizes the system performance without changing the general 

structure. As the very late phase of the optical design process, the starting system can be 

much more complicated with aspherical or even freeform surfaces, which is ideal for 

modeling a high-dimension optimization problem. For this purpose, an anamorphic system 

with freeform is chosen to test the optimization performance, presented in Section 5.2.  

In addition, the aberration analysis of the algorithm is supported by the MRT method 

introduced in Chapter 3, as marked with black ‘X’s. It is of great help for the optimization 

with non-spherical surfaces.  

Besides all the challenges mentioned above, the manufacturability of the output 

solutions is also of great concern, as challenge (v) shows. Depending on the various 

purposes of the design task and the actual manufacturing conditions, the criteria of 

sensitivity and tolerance analysis can be very different. However, the GACOR algorithm is 

capable of filtering out the solutions with critical manufacturability based on general 

criteria, which will be discussed in the following section. Thus the critical cases are always 

avoided in the output. 

As the extension of the original ACOR algorithm, the GACOR algorithm is designed to 

output a solution collection with various system structures at a higher level of automation, 

all fulfilling the original design specifications with moderate manufacturability. However, 

it is important to mention that the output solutions collected in the database found by the 

algorithm are only pre-selected according to the imaging specifications. The manufacture-

related issues are not taken into consideration, because the evaluation and ranking of all the 

solution ‘candidates’ cannot be easily determined. The large database provides the user 

with enough choices, so that the best fitting solution can be finally filtered out by the user 

according to the specific purpose. 
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In this chapter, the working principles of both two parts of the GACOR algorithm are 

introduced, and the brief mathematical modeling method and the necessary evaluation 

criteria are illustrated. The output systems in the database are denoted as ‘successful 

solutions’ in the dissertation, regardless of which part of the algorithm. 

4.1 GACOR global optimization with structural changes  

For nominal design, in practice, the optical designer often decomposes the challenging final 

specifications into smaller steps and improves the system from a simple initial system 

gradually until all the requirements are fulfilled. Correspondingly, the original ACOR 

algorithm should also be modified with such a stepwise optimization idea to realize the 

automation. In addition, during the stepwise optimization, some structural change options 

according to the physical considerations are necessary, requesting the algorithm of adaptive 

adjustment of the structure, MF, and variables. 

Additionally, optical designers mostly determine the optimization strategy according to 

only qualitative analysis provided by the design software with their physical knowledge 

and experience. In comparison, as a mathematics-based optimization algorithm, all the 

optimization rules involved in the program can only be executed by the ‘ants’ when they 

are ‘translated’ to concrete quantitative mathematical models. In other words, the ants need 

very concrete ‘lectures’ to know how to work on optimization. Therefore, in this section, 

the translation of the physical guidance for the algorithm is explained.  

4.1.1 General workflow 

As an overview of the GACOR algorithm, the general workflow is illustrated in Figure 4.1. 

Before starting the optimization, the initialization of the algorithm includes three aspects, 

as marked in the blue zone: First, the manual settings of all the algorithm parameters can 

be adjusted according to the specific optimization problem. Second, the system 

requirements are denoted as the ‘original specifications’ in contrast to the intermediate 

goals during the optimization. Most importantly, a starting system should be given in the 

optical design software, for which Zemax is used. As mentioned in Chapter 2, the initial 

system strongly influences the final result when the conventional DLS algorithm is applied 

for optimization. With the help of the structural change, the initial system design becomes 

easier for optimization with the GACOR algorithm. Thus, assuming the algorithm is 

completed with the full nominal design procedure, it is sufficient to set up a simple singlet 
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imaging system as the initial system during the initialization. However, the initial system 

should in any case contain system parameters like the EnP diameter, wavelength, and FoV, 

which are not changed during the whole optimization process. 

 

Figure 4.1 General workflow of the GACOR algorithm. 

In addition, before the main iteration starts, an archive similar to the ACOR algorithm 
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is established with the capacity of 𝐾𝐾𝑔𝑔, named as the ‘global archive’ (GA), and the solutions 

stored in the GA are called ‘global archive solution’. As for the initialization, only the initial 

system is stored in the GA and evaluated.  

The basic working principle of the GACOR algorithm still follows the ACOR idea. In 

the main iterations marked in the gray zone, the GA solutions are chosen by ant ‘groups’ 

instead of ant ‘individuals’. The capacity of GA and ant group number are also adapted 

during the iterations to improve the efficiency, as given in Appendix C. The first important 

task of the ant groups is to operate the structural change based on the dynamic physical 

evaluation. Then, each ant group is responsible for exploring new solutions after the 

corresponding structural change in the format of an embedded ‘local exploration’ carried 

out by all the members of this ant group. Each ant group should output one solution after 

the exploration, which is immediately evaluated. If a successful solution is obtained, it is 

stored in the so-called ‘successful solution archive’(SSA), otherwise, it is either stored in 

the GA for further evaluation or deleted. Thus, at the end of each main iteration, the GA 

includes both the new solutions found by all the ant groups and those obtained before. All 

these solutions are merged and evaluated according to the original specifications, and the 

ones which fail to place in the top 𝐾𝐾𝑔𝑔 will be eliminated from the GA. During the main 

iterations, if enough successful solutions are found, the algorithm stops and outputs the 

SSA, otherwise, the algorithm keeps running until all the iterations of the pre-set number 

are finished.  

In general, the main iteration process performed by the ‘ant group’ is called ‘global 

exploration, compared to the embedded ‘local exploration’. To control the optional 

structural changes more practically, the global exploration is executed in two rounds, 

namely RI and RII, which will be introduced in the following section. It can be seen from 

the general workflow, that better cooperation within the whole ‘ant family’ can boost the 

global searching ability.  

4.1.2 Global exploration 

4.1.2.1 Structural change options 
Compared to the traditional optimization algorithm, one of the essential improvements of 

the GACOR algorithm is the ‘training’ of the ants to make structural changes. Considering 

the simplification of this work, only two representative structural change options for 

spherical aberration correction are included in the algorithm. First, as one of the most 
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common methods for rotationally symmetric system optimization, lens splitting (called the 

‘splitting option’ in the following discussion) is included in the algorithm. Second, as a 

more powerful correction method for higher-order spherical aberrations, turning a spherical 

surface into an asphere (denoted as the ‘asphere option’ in this dissertation) is also included. 

Certainly, changing the glass material is also meaningful in this case. But the glass 

optimization is discrete due to the limited available glass types, distinguished from the 

optimization of other continuous lens parameters. Therefore, in this research, this option is 

not considered for simplification reasons. Furthermore, concerning the main purpose of 

proving the feasibility of the algorithm, other options such as adding/removing a lens do 

not greatly influence the results. Thus, they are not included in the research in the current 

stage as well.  

In general, these two structural change options applied in the algorithm either increase 

the total lens number or the complexity of the surface, which may enlarge the system 

volume or increase the cost of the system. Therefore, it makes sense to prevent the 

algorithm from endlessly making structural changes for avoiding unnecessary system 

complexity. Thus, a parameter of ‘equivalent lens number’ is defined, denoted by 〈𝑁𝑁𝐿𝐿〉, 

which qualitatively represents the system complexity. Empirically, an aspherical lens can 

be considered as three spherical lenses referring to the general cost in practice. Following 

this estimation,  〈𝑁𝑁𝐿𝐿〉 can be calculated as 

s= 3 .L L LaN N N+                                                   (4.1) 

where 𝑁𝑁𝐿𝐿𝐿𝐿 is the total spherical lens number, and 𝑁𝑁𝐿𝐿𝐿𝐿 is the total spherical lens number. 

Thus, for each optimization task, a maximum allowed equivalent lens number, denoted by 

〈𝑁𝑁𝐿𝐿〉𝑚𝑚𝑚𝑚𝑚𝑚, is set by the user as a rough estimation to limit the system complexity.  

The same as what an optical designer needs to know about these structural change 

options, the ants should also learn the important lectures about ‘how to choose from the 

options’, and ‘when and where to apply the option’. Regardless of the specific structural 

change option, the modification of the system should be carried out step by step to avoid 

any undesired large change in the MF topology. Therefore, the GACOR algorithm only 

allows one kind of structural change on one lens per ‘ant group’ in each main iteration 

during the global exploration. Consequently, the ant group needs to consider the best 

location for applying the corresponding structural change. Regardless of the splitting option 

worked on the ‘lens’ or the asphere option involving only the ‘surface’, the algorithm 
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always determines the location referring to the optical surfaces. Such a surface where the 

structural change is finally operated is denoted as the ‘structural change surface’. 

Automatically, the splitting option is applied to the lens to which the structural change 

surface belongs. The choice of the structural change option, the rules of the structural 

change surface determination, as well as the operations of the structural changes developed 

in the GACOR algorithm, are all explained in Appendix D in more detail. 

4.1.2.2 Switch from RI to RII 
As one of the common structural change options, the asphere option is helpful to reach the 

final goal with a simpler system structure instead of introducing too many lenses in the 

system. However, considering the practical issues, the optical designer usually avoids 

applying aspherical surfaces in the system in the very early stage of optical design, but 

prefers first trying out the structural change options involving only spherical surfaces to 

roughly reach the original specifications. Therefore, as an imitation of such preferences, in 

RI, the algorithm only allows the optional structural changes while keeping all the optical 

surfaces in the spherical shape, and the algorithm frequently analyzes the possibility of 

obtaining a successful solution with only spherical surfaces. If it is assessed that any further 

improvement with only spherical surfaces is minor, or if a successful system is already 

obtained in the current situation, it makes sense to allow the applications of aspherical 

surfaces. The former case indicates a further imaging enhancement with the asphere, and 

the latter case implies the application of aspheres to explore more alternative solutions. In 

addition, RI also helps to estimate the minimum number of spherical lenses needed for a 

successful solution.  According to the estimation, a so-called ‘archive solution bank’ (ASB) 

will be established based on the intermediate solutions obtained in RI as a database to avoid 

the redundant optimization in RII. In comparison, all kinds of structural changes are 

allowed in RII, as the asphere option is also included. The specific rules for switching from 

RI to RII are given in Appendix E. 

4.1.2.3 Quantitative Performance evaluation 
When the ants find out new solutions, in contrast to the optical designer, they are not able 

to qualitatively assess the solution flexibly from the most reasonable perspective. Therefore, 

the performance evaluation of the solution needs to be quantified. However, due to the 

different optimization stages and individual system structures, it is hard to fix a universal 

rule for all the solutions. Thus, as a more fair method, the performance of each solution can 

be assessed from two viewpoints. First, if the solution is optimized only for intermediate 
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targets as a smaller step to the final goals, the performance according to the intermediate 

targets should be analyzed, called ‘stepwise performance’. Second, considering the final 

goals of the optimization, the solution is assessed according to the fulfillment of the original 

specifications, denoted as the ‘overall performance. In this way, these two kinds of 

performance can both be quantified with MF calculation simply by adjusting the MF 

operands, resulting in ‘stepwise performance cost’ (SPC) and ‘overall performance cost’ 

(OPC). The settings of the MF will be clarified in Section 5.2 combined with an example 

and Appendix F.  

4.1.2.4 Solution evaluation  
As the result of the local exploration, each ant group outputs one solution. The quantitative 

performance assessment helps to determine the destination of the solutions, either being 

stored or eliminated. The general assessment process is illustrated in Figure 4.2.  

As the most important criterion, the performance should be checked first by calculating 

the OPC value instead of the SPC value, so that the original specifications are emphasized. 

Only the solution with an OPC value smaller than 10 is considered appropriate for the next 

evaluation step. The criterion originates from the empirical evaluation of the MF 

calculation, which is considered meaningful for this purpose. As the next step, the 

fulfillment of all the original specifications will be checked. If the solution meets all the 

final goals concerning the imaging performance, it is denoted as a ‘qualified solution’. The 

‘qualified solutions must be distinguished from the ‘successful solution’ in the final output, 

as it is not ensured to be output.   

 

Figure 4.2 Evaluation criteria of the output solution from the local exploration. 
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Furthermore, to keep the variety of the archive solutions, every solution in the GA or 

SSA should be unique. Therefore, a so-called ‘similarity check’ is executed for the new 

solution, which examines if there is any similar solution already existing in the target 

archive. The qualified solutions should be checked among the SSA, while a not qualified 

one is checked among the GA. Regardless of the target archive, if a similar solution has 

already been stored, the two solutions need to compete. Only the one with a relatively lower 

OPC value is stored in the corresponding archive, while the other is eliminated.  

In addition, if a qualified solution is unique in the SSA, before being stored in the SSA, 

the solution needs to pass the ‘lens shape check’ including two items. First, the lens should 

not be strongly bent concerning manufacturability. Specifically, a bending parameter is 

defined as 
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j
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+
=

−
                                                        (4.2) 

where 𝑟𝑟1𝑗𝑗 and 𝑟𝑟2𝑗𝑗 are the radii of curvature of 𝑆𝑆𝑗𝑗 of the two solutions. Second, regardless of 

some special application design tasks like the cellphone camera, the asphere surface should 

not be in a waved shape with turning points which can be referred to Figure B.2. The 

methods of the similarity check and the lens shape check are introduced in Appendix G.  

4.1.3 Local exploration 

In both RI and RII of the global exploration, after the ant group has performed the structural 

change for the chosen GA solution, the MF topology mostly also changes due to the varied 

dimension and boundary conditions. Consequently, the system immediately relocates to a 

new relative position on the MF landscape. Thus, the local exploration is carried out to 

search for the local minima around the new position.  

4.1.3.1 General local exploration workflow 
The local exploration is carried out by each ant group in each main iteration, starting after 

the structural change is made for the chosen GA solution. The purpose of the local 

exploration is to find out a local minimum around the solution, which considers the 

stepwise optimization targets. Figure 4.3 shows the workflow of the local exploration. 

First, the system is read from the optical design software directly after the structural 

change to record the necessary lens parameters. Due to the new structure, the system 

variables and the MF should be adapted, denoted with index ‘i’ for distinguishment. To 
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obtain a new solution, there are two essential steps in the process, marked in red. The first 

step of the local exploration is a simple ACOR process embedded in the global exploration 

by the ant group, denoted as the ‘ACOR local search’. All the ant group members directly 

start after the structural change and search around the new position individually following 

the simple ACOR algorithm, which helps to enhance the solution variety. As the embedded 

local search process in the general frame of global exploration, only the best solution found 

by the whole group will be kept.  

 

Figure 4.3. General algorithm workflow of the local exploration. 

It has been proved that the ants are good at locating the local minimum area, but weak 

in reaching the minimum point. Thus, as the second important step of the local exploration, 

the DLS algorithm will be applied to this solution again to further improve the solution 

until it reaches the local minimum position. This post-processing after the embedded 

ACOR procedure is called the ‘DLS booster’. Before the process starts, the variables and 

the MF should be adapted again, represented by index ‘ii’, following the MF adaption rules.  

After evaluation, the final solution is considered as the only output of the whole ant 

group in this main iteration whose performance will be further evaluated. In general, the 

combination of the probabilistic searching by ACOR and local optimization by DLS 

method can greatly enhance the efficiency of the optimization by taking advantage of both 

algorithms. Section 5.2.2 illustrates this process with a concrete optimization example.  

4.1.3.2 ACOR local search 
As mentioned above, the purpose of the implementation of the ACOR local search is to 

enhance the global searching ability of the GACOR algorithm. Particularly, even though 

one GA solution might be chosen by more than one ant group in the main iteration and 

these ant groups choose the same structural change option, the ACOR local search process 

based on the probabilistic feature is still beneficial in finding various local minima around 

the same starting point. 

When the ACOR local search starts, following the basic ACOR idea, another archive 
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should be established for storing the top-ranking solutions ever found, which is denoted as 

a ‘local archive’ (LA) distinguished from the GA. However, after the exploration, only the 

best of all the solutions in the LA can be output for the further process. Compared to the 

original ACOR method introduced in Chapter 2, the ACOR local search algorithm should 

be adapted to the fixed starting point, of which the details are given in Appendix H.  

4.1.3.3 DLS booster  
As introduced, the goal of the ACOR local search is to look for different system structures 

with a fixed lens number after a structural change, which may still vary in focal power 

distribution, lens shape, or lens position. In comparison, the DLS booster aims to bring the 

system to the lowest position in the ‘valley’ of the MF topology, so that the best 

performance in the local minimum area found by the ants can be evaluated.  

 

Figure 4.4. Workflow of the DLS booster. 

Figure 4.4 illustrates the workflow of the DLS booster process. The solution output by 

the ACOR local search will be evaluated first. As mentioned above, usually the solution is 

not yet the local minimum and needs further improvement. Therefore, the OPC of the 

solution is calculated to decide the adjustment of the MF and variables. In general, there 

are two possibilities concerning the fulfillment of the specifications: If the system cannot 

meet the original specifications yet, it needs to stick to the stepwise intermediate targets. In 

the better case, if the optimization is almost finished, the original requirements of the 

system as the final targets are set as the current optimization goal. For each case, the DLS 
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local optimization supported by the optical design software is then applied to the system. 

The details are explained in Section 5.2.1 combined with the example for better 

understanding. After optimization, the system is evaluated concerning the SPC, and there 

are four various possibilities, as marked in green in Figure 4.4. 

If the stepwise goal is failed, it is impossible to fulfill the current optimization targets 

with the system structure, which implies either further structural change is needed, or the 

structure is not promising. Thus, the system should be output in the GA for evaluation 

during the main iterations.  

If the stepwise goal is reached with the system structure, we can learn that the solution 

is qualified for the stepwise targets, and potential for higher optimization goals. Therefore, 

it makes sense to immediately adapt the MF again to level the targets up, so that the local 

optimization can be applied again with the current system structure before making further 

unnecessary structural changes in the next main iteration.  

If the system is already optimized under the final goals but fails to fulfill all the 

requirements, further optimization is necessary for the current system. For the system with 

at least one asphere, in the last phase of the whole optimization process, its performance 

may still reach the final goals by simply tuning the asphere terms without any additional 

structural change. In this case, if the algorithm finds any asphere in the system, the so-called 

‘asphere enhancement’ will be started. If so, the fine adjustment for aspherical surface 

terms will be executed to further improve the imaging performance, the details of which 

are mentioned in Appendix D. 

Finally, if the system is successful after the local optimization, the system will be output 

immediately for further overall performance evaluation.  

4.2 GACOR algorithm for final improvement phase 

In Section 4.1, the optimization method with structural changes is introduced. As for the 

second goal of the research to prove the capability of the GACOR algorithm when dealing 

with very high-dimensional optimization problems, the algorithm developed only for the 

simplified design tasks is not enough. Therefore, an extension of the main body of the 

algorithm is developed in the program, concerning the performance final improvement in 

the fine-tuning phase of optical design.  

In this section, the general manual final improvement method applied by the optical 
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designer is first introduced. Based on that, an extension of the GACOR system is explained 

in detail, in order to verify the feasibility of the algorithm concerning the very high 

dimension of the optimization problem. 

4.2.1 General final improvement strategy of the optical designer 

Considering the specific final improvement methods, each optical designer has his 

preference and habit in practice. As for the extension of the algorithm in this work, the 

working principle origins from the author’s education, which can differ from other optical 

designers. Thus, before the introduction of the extended algorithm, the manual final 

improvement method applied by the author is first explained, so that the essential idea can 

be better understood. Regardless of the specific method, given the best imaging 

performance as the final goal, the method shown in this section is only an example.  

Despite the variety of final improvement strategies, the optical designer usually first 

divides the lens parameters into some categories, so that the variables involved in the 

optimization can be organized more systematically. The lens parameters are divided 

according to the corresponding type, such as curvature and thickness, and the parameters 

of the same type are also categorized by the main lens groups indicated by the system 

structure. Based on the grouping situation, the lens parameter categories can be included 

step by step as variables. If the final improvement method is rougher, then many of the 

categories can be turned into variables simultaneously, and in contrast, a more conservative 

method allows only a few more variable groups at each optimization step. Specifically, the 

general grouping rules are as follows: 

1) Within each lens group, all the curvature parameters are in the same category; 

2) Within each lens group, all the lens thicknesses and the air gaps in between are 

considered as the same category; 

3) Each air gap between the two main lens groups, as well as the object and image 

distance alone, is independent as one category;  

4) Each curvature or conic constant of the aspherical (including cylindrical) lenses is 

considered individually as a category; 

5) All the aspherical surface sag terms of each asphere are together in one group. 

During the final improvement process, all the lens parameter categories are included in 

the variables step by step, and the optimization is carried out after each round of variable 
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adding until the system imaging performance is qualified. Corresponding to the symmetry 

of the system, the corresponding Zernike terms with the same symmetry are successively 

allowed as variables with increasing orders, in the sequence of Zernike terms until Z9, Z16, 

Z25, and Z36. Given a proper sequence when adding the lens parameter categories as 

variables, the system can be systematically improved. 

4.2.2 Extended final improvement method of the GACOR algorithm 

Following the basic idea of the final improvement method introduced above, an extension 

of the GACOR algorithm is developed. As mentioned, there is a large variety of possible 

solutions due to the different strategies. Thus, in comparison to only one single output 

solution in the manual process, the automatic program is capable of creating a large output 

collection of possible solutions by implementing various final improvement strategies and 

repeating the process. The output solutions fulfilling the imaging requirements are still 

denoted as the ‘successful solution’, and the desired number of them is denoted by 𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚. 

 

Figure 4.5. Workflow of the final improvement process. 
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Figure 4.5 illustrates the workflow of the final improvement process. Given the solution 

from the early optimization phase as the starting point, the system is first pre-adjusted 

according to the same boundary condition adjustment rules, and the adjusted system is 

denoted as the ‘starting system’. Then the algorithm categorizes all the lens parameters to 

generate the final improvement strategy as the essential step of the process. The total 

number of the lens parameter categories is denoted as 𝑀𝑀𝑔𝑔0. During each main iteration, the 

algorithm executes a complete final improvement process from the starting system until the 

final solution, following the strategy specially generated for this process alone.  

Similar to the manual final improvement process by the optical designers, the program 

also optimizes the system by including more variables step by step. In this section, each 

optimization step regarding the new variable settings is denoted as a ‘final improvement 

step’, marked in green in Figure 4.5. The generation of the strategy for the starting system 

refers to the settings of the variables concerning the lens parameter categories. Specifically, 

the algorithm determines how many, and which lens parameter categories are included as 

variables in each final improvement step.  

Corresponding to whether the final improvement method is more conservative or coarse, 

the algorithm first decides how many lens parameter categories are included for each final 

improvement step. The mathematical approach is similar to the approach of choosing the 

archive of the ant group introduced in Section 4.1, which depends on the probability of all 

the options. Specifically, assuming 𝑀𝑀𝑔𝑔 is the number of all the available lens parameter 

categories, which has not been included in the optimization as variables, then the number 

of those being added as variables at this final improvement step ranges from 1 to 𝑀𝑀𝑔𝑔. Thus, 

the probability of the algorithm choosing each possible option is determined by Eq. (2.21), 

for which the option ‘only adding one more group as variable’ has the first ranking with 

the highest probability, and ‘including all the 𝑀𝑀𝑔𝑔 lens parameter groups as variables’ option 

ranks the last corresponding to the lowest probability. With this calculation, the number of 

newly added variable groups in each step is determined, denoted as ∆𝑀𝑀𝑔𝑔. For the next fine-

tuning step, the remaining available lens parameter group number 𝑀𝑀𝑔𝑔 is updated with 𝑀𝑀𝑔𝑔 −

∆𝑀𝑀𝑔𝑔, and the process is repeated until all the variable groups are turned into variables in 

the end. Table 4.2 presents an example of the strategy sketch. Assuming there are 12 lens 

parameter categories, they are represented by G1 to G12. Each column shows the strategy 

of each final improvement step, and the second row gives the calculation results of ∆𝑀𝑀𝑔𝑔 in 
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each final improvement step. 

Table 4.2. An example of the final improvement strategy. 

 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 

 ∆𝑀𝑀𝑔𝑔 = 3 ∆𝑀𝑀𝑔𝑔 = 1 ∆𝑀𝑀𝑔𝑔 = 2 ∆𝑀𝑀𝑔𝑔 = 1 ∆𝑀𝑀𝑔𝑔 = 4 ∆𝑀𝑀𝑔𝑔 = 1 

G1   X X X X 

G2 X X X X X X 

G3 X X X X X X 

G4     X X 

G5   X X X X 

G6      X 

G7     X X 

G8    X X X 

G9 X X X X X X 

G10     X X 

G11  X X X X X 

G12     X X 

When ∆𝑀𝑀𝑔𝑔 is determined, the algorithm chooses the lens parameter categories randomly 

from the available ones with the number of  ∆𝑀𝑀𝑔𝑔. The ‘X’'s marked red are the newly added 

variable groups, while the black ‘X’ indicates that in the corresponding step, the 

corresponding group remains variable. In this example, there are in total 6 steps until all 

the possible lens parameter groups are included in this example, but it can be different due 

to the probabilistic generation of ∆𝑀𝑀𝑔𝑔. 

Following the final improvement strategy, the variables are added, and the boundary 

conditions are updated in the MF before the optimization starts. Then, similar to the ACOR 

local search introduced in Section 4.1, a group of ants first locate a local minimum area to 

enhance the global searching ability. Then the DLS booster is applied for further 

improvement towards the local minimum position. In this way, the system is optimized step 

by step, until in principle all the necessary parameters are involved in the optimization. 

Exceptionally, if a successful system is obtained before all the steps are executed, the final 

improvement process ends immediately, and the system is stored in the output collection. 

Furthermore, due to the same practical consideration as mentioned in Section 4.1, the lens 

shape should be checked before the solution is output.  
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5 Examples and applications 
In the past decades, the rising demand for advanced optical systems motives the research 

in modern optical design methods. Therefore, the novel methods introduced in Chapter 3 

and 4 are applied in some application-oriented research, and the results are presented in this 

chapter. In Section 5.1, the practical application of the MRT method for symmetry-free 

optical system evaluation is illustrated with an example of a freeform lithographic system, 

where the advantage of the assessment tool is clearly visualized. Then, based on the 

reliability of the MRT method and the GACOR algorithm with physical guidance, the 

global optimization results of two example systems with the GACOR algorithm are shown 

in Section 5.2 and 5.3. 

Besides the lithography system illustrated in Section 5.1, the MRT method is also 

applied to other systems with various structures and complexity, which can be referred to 

[46] and [47]. In addition, concerning the practical purpose, the imaging performance of a 

system can be assessed from the viewpoint of both the resolution and distortion. Therefore, 

as the MRT method is currently only applied for the resolution-related aberration 

assessment, an additional case study of the distortion correction potential of freeform 

surfaces is also conducted in this work to cover the field of distortion analysis. The 

corresponding results of this supplementary research are illustrated in Appendix I. 

5.1 Comprehensive aberration analysis with the MRT method 

In Chapter 3, the working principle of the MRT method is introduced for surface-

decomposed transverse aberration analysis. The calculation results have been verified with 

Zemax calculation results, proving that the method is reliable for comprehensive aberration 

analysis concerning symmetry-free systems. To further illustrate the practical usage, the 

aberration analysis results of a complicated reflective freeform lithographic obtained with 

the MRT method are presented in this section as an example.  

Lithography systems are well known for the difficulty in aberration correction due to 

the large etendue and superior imaging performance. Many designs can be found using only 

reflective elements for EUV wavelengths according to the growing request for large NA 

and field size. Thus, the complicated off-axis structure with non-spherical surfaces of such 

pure reflective systems cannot be avoided. It has been investigated and proved in present 

publications, that the as-built performance based on the sensitivity analysis in the optical 
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systems is strongly determined by the induced effect [48-50]. Specifically for lithographic 

systems, high-order freeform surfaces are commonly applied to achieve the system 

specifications. Consequently, the misalignment of the components could introduce 

considerable induced aberrations into the system, greatly degrading the system 

performance. Therefore, the sensitivity analysis of lithographic systems is of great concern 

during the optical design process [51, 52].  

 
Figure 5.1. The layout of the test lithography system and the object field. 

The example lithographic system comprises six freeform mirrors. The layout is shown 

in Figure 5.1, where M6 has a central obscuration. The working wavelength is 13.5nm with 

an image space NA of 0.27. The system is chosen from the available patent [53] where lens 

data can be found. The object is a 16 × 104mm2 off-axis rectangle. The central field CR is 

taken as the RR for parabasal matrix calculation, and the upper right vertex of the object is 

chosen as a representative of the corner fields, marked also in Figure 5.1. 

By applying the MRT method, the surface-decomposed full-order total, intrinsic, and 

induced transverse aberrations can be calculated. In order to gain an overview of the surface 

contributions of the aberrations all over the pupil concerning one field point, it is beneficial 

to illustrate the surface-resolved aberrations of multiple sampling rays in one plot. 

Therefore, the so-called Kingslake plot is applied here, as shown in Figure 5.2 and Figure 

5.3. The circle with a radius of 1 in the plot represents the ideal normalized circular pupil, 

on which the starting position of each arrow has exactly the pupil coordinates of the tested 

ray. The length and the direction of the arrows illustrate the scaled values and directions of 

∆𝑌𝑌 or ∆𝑦𝑦 of the sampled coma rays. The various colors of the arrows represent different 

surface contributions. In other words, the plots show the aberration performance of a ray 

cone coming from the same field. The bar in the lower-left corner indicates the scale for 

the actual values of ∆𝑌𝑌 or ∆𝑦𝑦, which is equal to the largest arrow’s length [46]. 

According to the Kingslake plots in Figure 5.2, for the center field, M5 is dominant for 

intrinsic aberration among all the surfaces, making M6 suffer from large induced 

aberrations correspondingly, while the total aberrations of them form a good balance. 
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Figure 5.2. Kingslake plots of intrinsic, induced, and total aberration with decomposed 
surface contributions of the lithography system concerning the center field. 

 
Figure 5.3. Kingslake plots of intrinsic, induced, and total aberration with decomposed 

surface contributions of the lithography system concerning the corner field. 

As for the aberration distributions of the corner field illustrated in Figure 5.3, the 

asymmetry can be easily seen, and M5 is still dominant. Due to the quite large extension of 
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the field in the sagittal plane and the large aperture size of M6, its intrinsic aberration 

becomes larger, but the balance against M5 remains. The results indicate that M5 should 

bring most trouble when calibrating the position due to the high sensitivity, while M6 is 

also critical as a compensator with a large aperture.  

 
Figure 5.4. Surface-additive Zernike coefficients until Z25 for the lithography system as 

well as the sum value (unit: waves) [46]. 

Besides, the surface-additive Zernike coefficients of the total, intrinsic, and induced 
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aberrations can be also obtained from the transverse aberration with the MRT method, 

which illustrates clearly the critical aberrations concerning the sensitivity in the system. 

Considering all the six freeform mirrors of the system, such analysis with additive Zernike 

coefficients helps a lot to understand the correction of the system. Figure 5.4 collects all 

the surface contributions of Zernike coefficients, decomposed by intrinsic and induced 

aberrations. As mentioned, Zernike Fringe terms are used for the fitting. Only the terms 

until Z25 are illustrated due to the limited size, but in principle, the Zernike terms can be 

further extended. Since the coefficients of the first six plane-symmetric terms until Z11 are 

relatively larger than those of higher orders, for better visualization, the lower and higher-

order terms are separated with two sets of scales. Besides, for a better comparison between 

the two selected fields, only the plane-symmetric terms of Zernike polynomials are 

illustrated in the plots. The other aberrations in the corner field are non-zero, but not shown 

in the plot due to the limited size. 

For each field, the surface contributions are comparable as the fitting procedure 

considers the same pupil parameters. Consistent with the conclusion drawn from the 

Kingslake plots, M5 and M6 suffer from the largest aberrations among all the surfaces. As 

the relation among the total, intrinsic, and induced aberration still exists, the sum of intrinsic 

and induced aberrations for each term coefficient always equals the total value. Specifically 

for M1, all the total values originate from the intrinsic aberrations because there is no 

induced aberration for the first optical component.  

5.2 Quasi-automatic global optimization 

In Section 4.1, the global optimization method with structural changes of the GACOR 

algorithm is introduced. In order to test the performance, the GACOR algorithm is 

implemented to design a retro-focus system starting from an arbitrary simple system. 

 
Figure 5.5. Layout of the retro-focus system [54]. 

The retro-focus structure is one of the typical system structures applied for camera 

objectives. The basic layout is shown in Figure 5.5, which contains a negative lens group 
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in front and a positive lens group behind. The collimated incoming beam is first expanded 

by the negative lens and then converged by the positive lens. Thus, according to the 

definition of the principal plane, the focal length 𝑓𝑓′ is shorter than the free working distance 

𝑠𝑠′, which is the distance between the center of the last optical surface and the image plane. 

To describe the relationship between these two parameters, a retro-focus factor 𝑅𝑅𝐹𝐹  is 

defined as 

' .
'

F
sR
f

=                                                                      (5.1) 

As for the optimization task, the system specifications are listed in Table 5.1. Among all 

the system parameters, the image space NA and the retro-focus factor 𝑅𝑅𝐹𝐹 are considered as 

the structure requirements which need to be optimized step by step. Together with the spot 

size requirement, there are in total three requirements in need of dynamic adjustment and 

optimization during the whole design process, while all the others are fixed either in the 

system properties or by the MF. 

Table 5.1. System specifications of the retro-focus system. 

Entrance pupil diameter 20mm Image space NA 0.4 

Wavelength  550nm Retro-focus factor 3 

Stop position L1 front surface Field of view On-axis field only 

Total length Maximum 200mm Image performance Diffraction limited 

To be diffraction limited for the imaging performance, the RMS spot size should be 

smaller than the Airy diameter, calculated by 

1.22 .AiryD
NA

λ
=                                                              (5.2) 

As mentioned in Chapter 4, it is hard to formulate the universal manufacturability 

criteria independent of the specific situations. Therefore, in this work, for an algorithm 

aiming at the nominal optimization phase, the detailed optimization targets for controlling 

the sensitivity are not included in the MF. 

 
Figure 5.6. The layout and the parameters of the initial system. 
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The initial system is a single lens system with a collimated incoming beam, as illustrated 

in Figure 5.6. The system parameters are fixed in the optical design software. The lens is a 

plano-convex lens made of SF12. As glass optimization is not investigated in this work, for 

simplification reasons, it is assumed that all lenses are made of the same glass material 

during the optimization. The image distance is simply optimized for the smallest RMS spot 

size. 

As there are a lot of systems involved in this section to present the optimization results, 

it should be clarified for the following sections, that the specific surfaces of the system are 

always denoted as ‘S’ + ‘optical surface number’, and the specific lenses are always 

denoted as ‘L’ + ‘lens number’. Both the optical surface number and lens number are 

counted from the left to the right. As an example, for the system shown in Figure 5.6, the 

lens and all the surfaces are marked following the notation rules. 

5.2.1 Optimization strategy for retro-focus systems 

Given an optical system design task, the optical designer usually figures out a general 

strategy before starting the optimization process concerning the realization of all the 

specifications with his experience. But because the optimization is extremely nonlinear 

with considerable local minima, the results obtained during the process cannot be predicted. 

Thus, an experienced optical designer usually adjusts the strategy dynamically according 

to the current results so that the optimization process is kept in the right direction. In 

comparison, the GACOR program is completely executed by the ants, and training all the 

ants to be as flexible and experienced as real optical designers is not realistic. Therefore, 

corresponding to the optical designer’s experience, the GACOR algorithm is developed 

with the archiving mechanism which makes the ants in the wrong direction ‘disappear’.  

The general optimization strategy is the most important ‘lecture’ for the ants and is 

essential for the success of the optimization. In Chapter 4, the general optimization 

workflow of the GACOR algorithm has been introduced, but concerning the specific 

system type, the detailed optimization strategy can differ a lot. Therefore, only the 

optimization strategy for the retro-focus system applied by the author is introduced in this 

section. It should be mentioned that the appropriate strategy may not be unique. 

5.2.1.1 MF adjustment rules 
The optimization strategy is mainly reflected by the adjustment of the MF. Specifically for 

the retro-focus system, in the MF, the three main requirements can be represented by the 
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corresponding operands, which are specified with weighting and target values. The 

weighting and target for the NA operands are denoted as 𝑊𝑊𝑁𝑁𝑁𝑁 and 𝑇𝑇𝑁𝑁𝑁𝑁, and the ones for the 

𝑅𝑅𝐹𝐹 operands are 𝑊𝑊𝑅𝑅𝑅𝑅 and 𝑇𝑇𝑅𝑅𝑅𝑅. The corresponding operands for the spot size in the MF are 

taken from the default settings controlling the transverse aberration of each sampled ray, 

so that the weightings and targets are also automatically set. Considering the possible 

aspherical surfaces in the system, the MF samples the rays with 6 arms and 20 rings over 

the pupil with Gaussian quadrature. With the systematically formulated MF, the dynamic 

assessment of the system can be tackled easily when necessary, according to the current 

spot size, NA, and 𝑅𝑅𝐹𝐹 values, denoted as 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅, 𝑉𝑉𝑁𝑁𝑁𝑁 and 𝑉𝑉𝑅𝑅𝑅𝑅. Among all the requirements 

for the retro-focus system, the spot size is the most important criterion concerning the 

imaging performance. Thus, the corresponding default MF operands for the spot size are 

not changed and are always activated during the whole optimization process, while 𝑇𝑇𝑁𝑁𝑁𝑁 and 

𝑇𝑇𝑅𝑅𝑅𝑅 are decomposed into several stepwise values. In this task, the NA targets should be 

increased from 0 to 0.4 with an interval of 0.1, and the 𝑅𝑅𝐹𝐹 target is increased from 0 to 3 

with an interval of 1. 

 

Figure 5.7. Workflow of the DLS local optimization (left) and the setting rules of the MF 
(right). The ‘final’ targets represent the corresponding value of the original specification, 
and ‘intermediate’ refers to the intermediate target values before the system reaches the 

original specification.  

Experience also shows, that the corresponding operands of the three requirements should 

not be always activated simultaneously during the optimization. Instead, the better strategy 

is to assign priority to them for keeping a smooth improvement of the system. Especially 

for the automatic optimization program, the proper MF adjustment rules are essential to 

ensure successful solutions, which must be very clear and rigid for the program. Therefore, 

the corresponding expressions in the program should be formulated carefully. The right 
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part of Figure 5.7 illustrates the MF setting rules of the corresponding operands of the 

specifications.  

As mentioned, before the system becomes diffraction limited, the algorithm only 

optimizes the spot size with the help of structural changes. When the system is diffraction 

limited, the NA requirement as the second priority is included in the MF by switching the 

weighting value to 𝑊𝑊𝑁𝑁𝑁𝑁 = 1. According to the 𝑉𝑉𝑁𝑁𝑁𝑁 value, the GACOR algorithm sets the 

𝑇𝑇𝑁𝑁𝑁𝑁 value as the next intermediate value that the system has not reached. Mathematically, 

it is represented as 
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                                             (5.3) 

As the last requirement included in the MF, the 𝑅𝑅𝐹𝐹 operand is not activated until the NA 

and spot size reach the requirements simultaneously, and the target should be set according 

to the current 𝑉𝑉𝑅𝑅𝑅𝑅 value as 
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                                                     (5.4) 

It is important to mention that the MF setting rules are universal for all the retro-focus 

system optimization tasks with various NA and 𝑅𝑅𝐹𝐹. Only the stepwise target values may 

vary. The MF setting rules introduced in this section are corresponding to the general MF 

adjustment rules introduced in Appendix F, and the target values and weightings of the 

operands of the three requirements are regarding the 𝑇𝑇𝑝𝑝 and 𝑊𝑊𝑝𝑝 in Figure F.1.  

5.2.1.2 DLS Local optimization 
The DLS local optimization is an important step for the DLS booster introduced in Section 

4.1.3.3, as it explores the best solution in the current local minimum area. The workflow is 

also shown in Figure 5.7. The GACOR algorithm operates the program, while the local 

optimization of the system is executed by the optical design software.  

Before the local optimization starts, the system is assessed according to the 

specifications, so that the MF can be adjusted correspondingly. Then the optical design 

software starts the local optimization with DLS algorithm until the stopping criteria are 

reached. To check the improvement of the system, the same assessment is performed again 
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after the optimization. If all the current targets are reached, it makes only limited sense to 

stop the optimization process and directly output the system for further structural changes 

in the next main iteration. Thus, imitating the optical designer, the algorithm adjusts the 

MF again to the next optimization step and immediately starts the local optimization to 

improve the system towards the final goals. This loop ends if either the system reaches all 

the original specifications, or any one of the currently activated targets is not reached, as 

such a case indicates that the current system structure is not good enough to reach all the 

goals. More concrete explanations will be illustrated in Section 5.2.2 combined with the 

system evolution. 

5.2.2 Local exploration for one ant group in one main iteration 

As introduced in Section 4.1, each ant group chooses one GA solution as the starting point, 

and only outputs one solution after the ACOR local search for the DLS booster to further 

optimize it. Because of the probabilistic feature of the algorithm, it happens often that the 

best-ranked GA solution is chosen by many ant groups, while the less well-performing 

solution has a lower chance to be selected. Even though more than one ant groups select 

one GA solution, the ACOR local exploration can still lead them to different local minimum 

areas by the individual search of each member in the ant group. Consequently, the final 

output solutions are completely different so that the global searching ability is greatly 

enhanced. In this section, such a case with various optimization paths is illustrated.  

To avoid the large diversity of the optimization paths and the complexity of the 

optimization process, the first main iteration starting from the initial system is chosen as an 

example to illustrate all the intermediate solutions during a main iteration. Due to the simple 

MF topology of the initial system, it turned out after sufficient times of execution, that there 

are only two possible solutions as the final output of the ant group, when only the splitting 

option is allowed for structural change. Thus, Figure 5.8 illustrates the evolution of the 

solutions in different optimization paths as a comparison, where each solution is specified 

with a name. But it should be clarified that each ant group can only follow one evolution 

path during one main iteration.    

As shown in Figure 5.8, in the first main iteration, the optimization starts from the initial 

solution a, the lens data of which have been given in Figure 5.6. Due to the limited lens 

number, the splitting option is the only allowed structural change. Following the 

corresponding rules for lens splitting explained in Appendix D, solution b is obtained. Then, 
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the program executes the simple ACOR local search to find out more possible local 

minimum areas. Due to the strong probabilistic feature of the ACOR algorithm, the output 

solutions can be similar, but always slightly different in lens data. To illustrate the possible 

solutions, five various solutions with visible differences found by five different ant groups 

are shown, all denoted with c, and they are considered as the starting points of the following 

DLS booster process for further improvement.  

 

Figure 5.8. Intermediate solutions during the first main iteration. The current targets and 
values of the spot size (unit: um) and NA in the MF are also given. 

Although the five output solutions of ACOR local exploration are all different, they 

converge to only two optimization paths during the DLS booster process which are from 

c1 to g1 (left) and from c2 to g2 (right). As for this specific case, the large difference in the 

optimization paths is due to the different focal power distribution of the two lenses, which 

is either a ‘negative + positive’ combination (solution c1.1 and c1.2), or a ‘positive + 

positive’ combination (solution c2.1, c2.2, and c2.3). If the first lens is negative, the DLS 

optimization keeps the negative value, and the final output solution can only be g1, while 

in the other situation only g2 can be obtained. This result also corresponds to the 
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understanding of the drawback of the DLS local optimization algorithm, that the sign of the 

focal power cannot be easily changed. In the case of more complicated systems, there can 

be many more different optimization paths, which finally result in a larger variety of output 

solutions. 

In addition, it should be clarified that considering the various aberration distributions, 

there should be other possible solutions with different lens bendings besides g1 and g2. 

However, in this case, such solutions cannot be easily found by the ants, corresponding to 

very ‘hidden’ local minimum areas on the MF topology from the perspective of the starting 

position for the local search. Such a feature of the ACOR searching is considered as a part 

of the algorithm, which cannot be avoided. However, if necessary, more lens splitting 

methods can be added to the algorithm to enhance the deviation, so that the ants have a 

higher chance to find more local minimum areas leading to other solutions. 

Taking a closer look at the process of the DLS booster, g1 and g2 are obtained in very 

different routes. According to the optimization strategy, the MF is first adjusted before the 

DLS local optimization starts. Among the three main requirements, the activated targets 

and the actual values after optimization are also given in Figure 5.8 to better explain the 

workflow introduced in Figure 5.7. As the system is usually not diffraction limited due to 

the weak local optimization ability of the ACOR algorithm, the first DLS optimization loop 

only focuses on minimizing the spot size. In other words, neither the NA nor 𝑅𝑅𝐹𝐹 operands 

are activated. After the intensification, both d1 and d2 are diffraction limited, meaning the 

only activated MF target is fulfilled. Thus, the DLS optimization will keep proceeding to a 

second loop, where the NA operands are included. Due to the different 𝑉𝑉𝑁𝑁𝑁𝑁 values of d1 

and d2, the 𝑇𝑇𝑁𝑁𝑁𝑁values for them in the second loop are different. After the optimization, 

both e1 and e2 fulfill both two targets, so the process still goes on. In the third loop, the NA 

target is further increased, leading to the solutions f1 and f2 after optimization. The 

performance evaluation indicates that both of them succeed in reaching the NA target, but 

the system is not diffraction limited anymore. In this case, the DLS local optimization for 

imaging performance is stopped here, but only the lens thicknesses and air gaps are finely 

adjusted according to the updated boundary conditions to prevent the inappropriate 

thickness due to the changing diameter after the optimization.  
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5.2.3 Solution evolution  

During the optimization process, as the complexity of the system increases, the number of 

local minima in the MF topology grows greatly in the later stages. In addition, the evolution 

of the systems during the optimization by the GACOR algorithm cannot be reproduced, as 

the algorithm is strongly based on probability and random decisions. Consequently, it is 

impossible to collect all the solution evolution cases, as the number of optimization paths 

is considerable.  Therefore, in this section, a part of the evolution among the whole picture 

is chosen to illustrate the large variety of the solution and the impact of each main step of 

the algorithm. All the results are obtained during one execution of the program with the 

GACOR algorithm.  

 

Figure 5.9. First partial solution evolution map (left), and the comparison of surface-
decomposed transverse aberrations (unit: mm) calculated with the MRT method between 

solution B1 and C1 (right). 

The left part of Figure 5.9 shows the partial evolution starting from 3-lens solution A1 

to two 4-lens systems B1 and C1 in RI. A1 is directly evolved from system g1 in Figure 

5.8, but the detailed optimization path is not shown here. In this path, the algorithm chooses 

L3 to split, leading to A2. During the whole program, the path from A1 to A2 occurred 

three times, ending in three different output solutions after the execution of the ACOR local 

exploration, denoted as A3.1, A3.2, and A3.3. In contrast to the solutions c1.1 - c1.5 in 

Figure 5.8, these solutions all have the same focal power distribution, and the layouts still 

do not show a big difference. However, after the further improvement by the DLS 

optimization, A3.1 finally evolves to B1, while the optimization of A3.2 and A3.3 both 

converge to the output solution C1.  

It can be seen in this example, that although the locations of the similar solutions found 

by the ACOR local search may be very close on the MF topology, they may belong to 
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different local minimum areas. Consequently, the final output solution can be completely 

different after the DLS booster. Concerning plenty of ant groups, the repetition of the 

searching around one starting system is the essential reason for the global searching ability 

of the algorithm.  

As the optimization task only concerns the correction of the spherical aberration and 

there is no off-axis field point, the surface-decomposed aberration distributions of the 

solutions can be represented by the MRT method calculation results considering only the 

MR. The transverse aberrations of B1 and C1 are plotted in the right part of Figure 5.9 for 

comparison. The general surface contributions are comparable, while the deviation among 

the surface contributions of B1 is clearly smaller than C1. The comparison implies that the 

sensitivity of B1 is less critical concerning further optimization. 

 
Figure 5.10. Second partial evolution map of solutions. The aspherical surfaces are 

marked pink and the successful solutions are marked red. 

As the obtained solutions B1 and C1 are still not diffraction limited, they will be 

considered as the starting points for further optimization. Figure 5.10 shows the further 

evolution of B1 recorded in the later optimization process. During the program execution, 

the further evolution only happened in RII, when both of the structural change options were 

allowed. Therefore, the splitting option applied for L3 in B1 leads to system B2.1. The 

systems B2.2 and B2.3 are obtained because of the asphere option applied on S3 and S6, 

marked in pink. The same as already mentioned, these three solutions after the structural 

change cannot represent all the possibilities. The reason behind this is again the 

probabilistic feature of the algorithm. Given another execution of the program, the obtained 

solutions can be completely different.  

At the end of these optimization paths illustrated in Figure 5.10, B4.1, B4.2, and B4.3 

are still not successful, and they may have some clear drawbacks. For example, L3 in B4.3 
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seems redundant without much correction contribution. However, the algorithm still keeps 

them, as they still can be promising starting points for further optimization. In addition, the 

asphere can be also added earlier in the system in principle to reduce the number of 

spherical lenses, compared to the structural change in B2.2 and B2.3. Such an optimization 

path will be discussed in Section 5.2.4.  

As introduced in Appendix D, the algorithm first decides the structural change option 

and then determines the surface for operating the structural changes. According to the rules, 

the splitting option considers Seidel contribution, incidence angle, and the MR height 

simultaneously, while the asphere option for B1 only considers the Seidel contribution to 

determine the structural change surface. Dependent on the structural change option, the 

critical indices for all the candidate surfaces are calculated and plotted in Figure 5.11.  

 
Figure 5.11. Critical index (u.a.) of B1 for splitting option (left) and asphere option 

(right). 

According to Figure 5.11, the surface S2 of solution B1 clearly has the largest aberration 

contribution because of the large divergence of the rays made by the only negative lens in 

the system. In this case, the author would preferentially choose the lenses with a larger 

diameter for lens splitting, so that the more critical positive lens group can be optimized 

better. Therefore, for this optimization task, the critical indices are scaled with the squared 

lens diameters. Consequently, when B1 is considered as the starting point for further 

structural change, despite the largest aberration contribution of S2, its critical impact should 

be weakened. Otherwise, the algorithm tends to only split the negative lenses in the front 

group during the whole process because of the much larger possibility to be chosen. In this 

case, the algorithm would keep splitting the negative lenses until the large ray divergence 

is shared by a greatly expanded negative lens group. Thus, restricted by the lens number 

and total length, the final solutions are not so satisfactory concerning the variety and the 

system structure. Therefore, in this work, the strong scaling of the lens diameter makes a 

certain sense. However, in general, the mathematical modeling of the critical index 
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calculation is not unique. 

As for the splitting option corresponding to the left plot, S3, S6, and S7 are the most 

critical among all the surfaces, which belong to L2, L3, and L4 respectively. In this case, 

the algorithm has a larger possibility to choose them for splitting. In comparison, if the 

algorithm chooses the asphere option, according to the corresponding calculation rules of 

the critical index, S2, S3, and S6 become the most critical surfaces that are of higher 

probability to be turned into an asphere. Consequently, although each surface has the 

chance to be chosen, the relatively more critical surfaces would more likely be chosen due 

to the probabilistic feature of the GACOR algorithm.  In this example, although the 

solutions with split L1 are not found, in principle it is possible, and such structural change 

is found in other optimization paths during the program execution.  

Comparable to the cases mentioned above, the solutions B3.1, B3.2, and B3.3 after the 

ACOR local search are also similar, but the three different solutions B4.1, B4.2, and B4.3 

after the DLS booster are very different. The results prove again that the embedded ACOR 

algorithm is very helpful for locating various local minimum areas, and the variety among 

them indicates that the MF topology is already highly complicated even though there are 

only 5 lenses in the system.  

 
Figure 5.12. Comparison of the surface-decomposed transverse aberrations calculated 

with the MRT method among solutions B4.4, B4.5, and B4.6 (unit: mm). 

Besides, when the asphere locates at S3, the ACOR local exploration also finds out two 

local minimum areas resulting in two different successful solutions with the same asphere 

position. When the asphere locates at S6, the algorithm finally finds out a successful 

solution B4.6. The results prove that the algorithm can deal with the higher-dimensional 

optimization problems with aspherical parameters to some extent. Figure 5.12 again 
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illustrates the surface-decomposed transverse aberration of the MR calculated with the 

MRT method. As a good indicator of the sensitivity of the system, the deviation of the 

aberration distribution of B4.6 and B4.4 is relatively higher. The results can be also 

predicted according to the layouts, where the rays are unevenly distributed over the lenses 

in B4.4, and L2 in B4.6 is strongly bent. In comparison, the rays clearly have a smaller 

change in height and angle in B4.5, corresponding to a much better balance of the aberration 

distribution. As it is hard to realize a fast and accurate surface contribution analysis for an 

aspherical system with the conventional methods, this example illustrates a good 

combination of the MRT method and the GACOR algorithm concerning the aspherical 

system optimization.  

 
Figure 5.13. Third partial solution evolution map. The aspherical surfaces are marked 

pink and the successful solutions are marked in red 

 
Figure 5.14. Critical index (u.a.) of C1 for splitting option. 

The last example illustrated in Figure 5.13 shows the optimization paths starting from 

solution C1, also obtained from A1 in Figure 5.9. L2, L3, and L4 of C1 were chosen for 

the splitting option during the whole program. According to the critical index calculation 

results plotted in Figure 5.14, except for S1 and S2, all other surfaces are quite comparable, 
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indicating similar probabilities for them to be chosen for lens splitting, which well explains 

why the three lenses are all found split.  

It is worth mentioning that C2.1 and C2.2 are found in RI, while C2.3 is found in RII. 

Specifically, C4.1 is the first successful system ever found in RI during the program, which 

marks the time point of the switch from RI to RII. The details of this switch are discussed 

in Appendix E.  

Concerning the final solutions, both C3.1 and C3.2 converge to C4.1 after the DLS 

booster although the difference in the layout can be easily observed. From C3.3 to C3.6, 

each local minimum area found by the ACOR local search leads to a unique solution after 

the DLS booster, but only C4.2 and C4.4 are successful. Figure 5.15 compares the surface 

contributions of the transverse aberration again among these three successful solutions. 

C4.1 clearly has the largest absolute aberration values among all, implying the most critical 

manufacturability, while C4.2 and C4.4 are both less critical. However, as there is no 

asphere in these solutions, the general distributions of the additive aberrations are 

comparable, which can be understood with the same starting system C1. 

 
Figure 5.15. Comparison of the surface-decomposed transverse aberration calculated with 

the MRT method among the solutions C4.1, C4.2, and C4.3 (unit: mm).  

5.2.4 Analysis of the output solutions  

As mentioned in section 4.1.3, although the qualified solutions fulfill all the performance 

requirements, they still need further checks on the lens shape to ensure acceptable 

manufacturability. In this section, two examples of the evaluation process are illustrated. 

Figure 5.16 shows a partial evolution map, where the starting system h1 also evolved 

from A1 with the asphere option. By splitting L3, j1 is obtained, while on the other 
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optimization path, S5 is turned into an asphere in addition to aspherical S4, resulting in two 

aspheres in j2. After the local exploration process, k1 and k2 are obtained. First, the 

bending parameter 𝑋𝑋 of both solutions is calculated according to Eq. (4.2) and plotted in 

Figure 5.16. Considering the limit of the bending parameter |𝑋𝑋| = 10, solution k1 has a 

very moderate bending, while the bending of L2 in k2 reaches almost -20. It can be also 

seen from the layout, that the strongly bent L2 is critical for manufacture. In addition, 

considering the surface shape of the aspheres, the second asphere of k2, S5, has a clear 

turning point corresponding to the surface sag plot lower right in Figure 5.16. Therefore, 

concerning the solution evaluation rules, k2 is neither appropriate in bending nor qualified 

in asphere surface shape. Consequently, in this case, k1 is qualified as a final output 

successful solution, and k2 will be eliminated.  

 
Figure 5.16. Fourth partial solution evolution map (left). Comparison of lens bending 

parameters of k1 and k2 (upper-right). Surface sag plot of S5 in k2 in mm (lower-right).  

It should be mentioned again that the optimization paths leading to k1 and k2 are parallel 

and only one path is possible for each ant group in one iteration. This example shows that 

even though starting from the same starting system (h1), the choice of the structural change 

also has a huge impact on the final output solutions. Furthermore, it is proved by sufficient 

executions of the program, that a system with two aspherical lenses and one spherical lens 

like k2 is not possible to simultaneously fulfill all the requirements, boundary conditions, 

and restrictions. In other words, a successful system for this optimization task at least needs 

to have two spherical lenses to balance the aberrations. The other failure examples are not 

shown in this dissertation. 

In addition to the example shown above, there is another situation for the solution being 

eliminated due to inappropriate bending. Figure 5.17 gives a whole optimization path 

starting from the solution g1 obtained as shown in Figure 5.8, which finally leads to g1.5 
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which fulfills all the imaging requirements. Here only the solutions saved in the GA are 

shown, and the structural change methods applied to the intermediate solutions are marked.  

According to the layout of g1, the two curvatures of L1 are nearly the same, and after the 

optimization with the splitting option on L1, the new L1 is flipped over in g1.2, but the lens 

still looks parallel in shape. Since then, the shape of L1 remains similar until the final 

solution g1.5 is obtained. According to the transverse aberration plot also in Figure 5.17, 

the total contribution of L1 is only very small, and deleting it will not cause a large 

degradation of the performance. If L1 is removed properly, it is found that the system will 

finally turn into the solution S3A1(4.1) illustrated in the next section. Concerning the 

bending parameter, although the lens is not strongly curved, the close values of the two 

curvatures result in a very large 𝑋𝑋 value. Therefore, such a system is finally eliminated 

because of the bending criteria, but the reason behind is different from the case of solution 

k2 in Figure 5.16. As mentioned, the automatic removal of a lens according to the 

aberration contribution is not included in the current program. 

 
Figure 5.17. Evolution of a solution where L1 has nearly parallel surfaces. The aberration 

analysis (unit: mm) and the lens bending analysis of solution g1.5 are plotted below. 

5.2.5 Successful solution analysis 

In addition to the successful solutions illustrated in the examples of the evolution maps 

shown above, there are more successful solutions found by the GACOR algorithm. 
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Concerning the large number of local minima of this optimization task, it is impossible to 

find all the possible solutions. Thus, the whole program is executed only two times, and 20 

solutions are asked to be output for each execution. In addition, a maximum equivalent lens 

number 〈𝑁𝑁𝐿𝐿〉𝑚𝑚𝑚𝑚𝑚𝑚 = 7 is given as a restriction. Finally, all the solutions are collected and 

the repetitive solutions coming from the two parallel executions are only listed once in the 

collection. Furthermore, for a better analysis, the solutions are all categorized and denoted 

according to their spherical and aspherical lens numbers. As the whole program produces 

a lot of intermediate solutions, only the final successful results in the output are listed. 

The successful solutions with five spherical lenses are listed in Figure 5.18, which 

includes the name, the layout, and the spot diagram. In addition, the surface-decomposed 

transverse aberrations of each solution are calculated with the MRT method and plotted in 

Figure 5.19. Based on the surface contributions, the standard deviation of the aberration 

distributions, ∆𝑦𝑦𝜎𝜎, is also calculated and given in Figure 5.18 in the ‘comments’ column 

(same for the following figures).  

Name 
Layout and 

spot diagram (scale: 4μm) Comments Name 
Layout and 

spot diagram (scale: 4μm) 
Comments 

S5.1 
 

∆𝑦𝑦𝜎𝜎 = 0.62 S5.3 
 

∆𝑦𝑦𝜎𝜎 = 0.62 

S5.2 
 

∆𝑦𝑦𝜎𝜎 = 0.73 S5.4 
 

∆𝑦𝑦𝜎𝜎 = 0.83 

Figure 5.18. Collection of successful solutions with five spherical lenses.  

 
Figure 5.19. Comparison of the surface-decomposed transverse aberration calculated with 

the MRT method of the ‘S5’ solution category (unit: mm). 

According to the spot diagram, all the solutions are similar and just reach the diffraction 

limit. The difference among the layouts of them mostly lies in the lens positions, while the 

focal power distributions look similar. Therefore, it can be understood, that such a system 
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structure is the only possibility for meeting the imaging requirements with only five lenses. 

From the aberration plot in Figure 5.19, it can be seen that S5.4 has the highest surface 

contributions, indicating more sensitive system manufacturability, while the general 

distributions among the surfaces among them are very similar. As the negative lens surface 

diverges the ray bundle, S2 contributes the largest full-order transverse aberration among 

all the surfaces.  

Name 
Layout and 

spot diagram (scale: 4μm) Comments Name 
Layout and 

spot diagram (scale: 4μm) 
Comments 

S6.1 
 

∆𝑦𝑦𝜎𝜎 = 0.45 S6.3 
 

∆𝑦𝑦𝜎𝜎 = 0.45 

S6.2 
 

∆𝑦𝑦𝜎𝜎 = 0.40 S6.4 
 

∆𝑦𝑦𝜎𝜎 = 0.59 

Figure 5.20. Collection of successful solutions with six spherical lenses.  

 
Figure 5.21. Comparison of the surface-decomposed transverse aberration calculated with 

the MRT method of the ‘S6’ solution category (unit: mm). 

In addition to the 5-lens solutions, the algorithm can also find 6-lens solutions with only 

spherical lenses, as illustrated in Figure 5.20. Although they share quite similar focal power 

distributions, the imaging spots show a larger difference in size. According to the spot size, 

S6.2 has the best imaging performance among all, while the imaging performance of S6.1 

and S6.4 is not much improved compared to the 5-lens solutions. Concerning the aberration 

distribution shown in Figure 5.21, the negative lens L1 still contributes the largest positive 

aberration value, while the positive lenses have very different aberration contributions in 

each solution. According to the analysis of the aberrations, this group of solutions has 

smaller ∆𝑦𝑦𝜎𝜎 values in general compared to the 5-lens solutions, which indicates less critical 

sensitivity due to the additional lens. S6.4 is the most sensitive because of the largest 

aberration deviation. 
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For the solutions with seven spherical lenses, the spherical aberration can be even better 

corrected. Figure 5.22 lists all the 7-lens solutions found by the algorithm. It can be seen 

from the layouts, that these solutions show a larger diversity concerning focal power 

distribution and the spot becomes even smaller in general.  

The MRT calculation results of the aberration distribution are shown in Figure 5.23. 

Specifically concerning the aberration contributions, as S7.1 and S7.4 both contain two 

negative lenses, the large positive transverse aberration are shared by two lenses. 

Consequently, the standard deviations of the aberrations of S7.1 and S7.4 are smaller.  

Name 
Layout and 

spot diagram (scale: 2μm) Comments Name 
Layout and 

spot diagram (scale: 2μm) 
Comments 

S7.1 
 

∆𝑦𝑦𝜎𝜎 = 0.39 S7.5 
 

∆𝑦𝑦𝜎𝜎 = 0.58 

S7.2 
 

∆𝑦𝑦𝜎𝜎 = 0.27 S7.6 
 

∆𝑦𝑦𝜎𝜎 = 0.70 

S7.3 
 

∆𝑦𝑦𝜎𝜎 = 0.29 S7.7 
 

∆𝑦𝑦𝜎𝜎 = 0.79 

S7.4 
 

∆𝑦𝑦𝜎𝜎 = 0.28    

Figure 5.22. Collection of successful solutions with seven spherical lenses.  

 
Figure 5.23. Comparison of the surface-decomposed transverse aberration calculated with 

the MRT method of the ‘S6’ solution category (unit: mm). 

The algorithm finds that the solutions with aspherical lenses should contain at least three 

spherical lenses (3S) and one aspherical lens (1A), namely 〈𝑁𝑁𝐿𝐿〉0 = 6, and such solutions 

are denoted as the category ‘S3A1’. Different from the notation of the spherical solutions, 

the solutions with aspherical lenses are distinguished with the asphere surface location as 

the first value in the parentheses. The corresponding solutions are listed in Figure 5.24. In 

addition to the  ∆𝑦𝑦𝜎𝜎 values, the coefficient of the corresponding highest asphere term is also 

given in the comments column. 
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According to the layouts of the solutions, regardless of the asphere location, almost all 

the successful solutions have a similar system structure, where the first negative lens greatly 

diverges the ray bundle, and the three positive lenses converge it. In addition, the air gaps 

between the lenses are comparable. The only exception is S3A1(3.2), which is longer than 

the other solutions along the z-axis, and the positive lenses are closer to each other. Due to 

the smoother ray path, the ∆𝑦𝑦𝜎𝜎 values of this solution are much smaller than the others. In 

the output results, the successful solutions with aspherical surface locations at S2, S5, and 

S8 were not found. The reason behind this can be the probabilistic feature of the algorithm, 

or these asphere locations do not help succeed in fulfilling all the specifications. 

Name 
Layout and 

spot diagram (scale: 2μm) 
Comments Name 

Layout and 
spot diagram (scale: 2μm) 

Comments 

S3A1
(6.1) 

 

A1 
∆𝑦𝑦𝜎𝜎 = 0.78 

S3A1
(7.1) 

 

A1 
∆𝑦𝑦𝜎𝜎 = 1.67 

S3A1
(6.2) 

 

A1 
∆𝑦𝑦𝜎𝜎 = 1.19 

S3A1
(4.1) 

 

A3 
∆𝑦𝑦𝜎𝜎 = 1.34 

S3A1
(6.3)  

A1 
∆𝑦𝑦𝜎𝜎 = 0.88 

S3A1
(3.1) 

 

A3 
∆𝑦𝑦𝜎𝜎 = 1.23 

S3A1
(6.4) 

 

𝜅𝜅 
∆𝑦𝑦𝜎𝜎 = 1.16 

S3A1
(3.2)  

A1 
∆𝑦𝑦𝜎𝜎 = 0.34 

S3A1
(1.1) 

 

A3 
∆𝑦𝑦𝜎𝜎 = 1.95    

Figure 5.24. Collection of successful solutions with three spherical lenses and one 
aspherical lens.  

 
Figure 5.25. Comparison of the surface-decomposed transverse aberration calculated with 

the MRT method of the ‘S3A1’ solution category (unit: mm). 

Correspondingly, Figure 5.25 compares the aberration distributions of all the solutions. 

In some cases, the aspherical surface contributes a positive value together with the negative 
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lens to balance the aberration, such as S3A1(3.1), S3A1(6.3), and S3A1(6.4), while in the 

other cases, the asphere simply reduces the negative aberration values for the same purpose. 

Due to the application of the aspheres, the aberration distributions among all the solutions 

show a greater variety, compared to the pure spherical lens systems. As the aspherical 

surfaces introduce higher-order aberrations into the system, their contributions to the 

spherical aberration correction can differ a lot in these successful solutions. Thus, it is hard 

to summarize the overall aberration balance of the whole solution category. However, 

S3A1(3.2) indicates a great potential of aspherical surfaces for finding highly tolerant 

solutions, with the great global searching ability of the algorithm. 

Name 
Layout and 

spot diagram (scale: 2μm) 
Comments Name 

Layout and 
spot diagram (scale: 2μm) 

Comments 

S4A1
(8.1)  

𝜅𝜅 
∆𝑦𝑦𝜎𝜎 = 0.38 

S4A1 
(8.2)  

A1 
∆𝑦𝑦𝜎𝜎 = 0.39 

S4A1 
(8.3) 

 

𝜅𝜅 
∆𝑦𝑦𝜎𝜎 = 0.58 

S4A1 
(8.4) 

 

𝜅𝜅 
∆𝑦𝑦𝜎𝜎 = 0.70 

S4A1 
(8.5)  

A1 
∆𝑦𝑦𝜎𝜎 = 0.41 

S4A1 
(8.6) 

 

𝜅𝜅 
∆𝑦𝑦𝜎𝜎 = 1.12 

S4A1 
(8.7)  

A1 
∆𝑦𝑦𝜎𝜎 = 0.66 

S4A1 
(8.8)  

𝜅𝜅 
∆𝑦𝑦𝜎𝜎 = 0.66 

S4A1 
(1.1) 

 

A1 
∆𝑦𝑦𝜎𝜎 = 1.46 

S4A1 
(2.1)  

A1 
∆𝑦𝑦𝜎𝜎 = 0.74 

S4A1 
(3.1)  

𝜅𝜅 
∆𝑦𝑦𝜎𝜎 = 0.52 

S4A1 
(3.2)  

A1 
∆𝑦𝑦𝜎𝜎
= 2.016 

S4A1 
(3.3)  

A1 
∆𝑦𝑦𝜎𝜎 = 3.06 

S4A1 
(4.1)  

A3 
∆𝑦𝑦𝜎𝜎 = 0.99 

S4A1 
(4.2)  

Conic 
∆𝑦𝑦𝜎𝜎 = 0.81 

S4A1 
(4.3) 

 

Conic 
∆𝑦𝑦𝜎𝜎 = 1.49 

S4A1 
(4.4) 

 

Conic 
∆𝑦𝑦𝜎𝜎 = 1.09 

S4A1 
(6.1) 

 

Conic 
∆𝑦𝑦𝜎𝜎 = 0.43 

S4A1 
(6.2)  

Conic 
∆𝑦𝑦𝜎𝜎 = 0.42 

S4A1 
(6.3) 

 

Conic 
∆𝑦𝑦𝜎𝜎 = 0.73 

S4A1 
(7.1)  

Conic 
∆𝑦𝑦𝜎𝜎 = 0.85 

S4A1 
(10.1)  

Conic 
∆𝑦𝑦𝜎𝜎 = 0.36 

 
S4A1 
(10.2)  

Conic 
∆𝑦𝑦𝜎𝜎 = 1.30 

S4A1 
(10.3)  

Conic 
∆𝑦𝑦𝜎𝜎 = 0.46 

Figure 5.26. Collection of successful solutions with four spherical lenses and one 
aspherical lens.  

Finally, the spherical and aspherical lens combination for the solution can be either 
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‘S1A2’ or ‘S4A1’, namely 〈𝑁𝑁𝐿𝐿〉 = 7. As illustrated in Figure 5.16, the combination of 

‘S1A2’ cannot meet all the requirements with appropriate lens shapes. Therefore, only the 

successful solutions in the ‘S4A1’ category are illustrated in Figure 5.26.  More spherical 

lense in this solution category relaxe the optimization, so the program found many various 

solutions. Among all the asphere locations, the solutions with aspherical S8 are the most 

often found, up to eight times, followed by S4, S3, S6, and S10. All the solutions in this 

category show the greatest variety of aberration distribution conditions compared to the 

former ones. Furthermore, due to the additional spherical lens in the ‘S4A1’ category 

compared to the ‘S3A1’ category, most of the solutions only need an asphere with only the 

conic constant term to fulfill all the requirements.  

Considering the large number of solutions, the aberration distributions are divided into 

three parts plotted in Figure 5.27, Figure 5.28, and Figure 5.29. The first part only plots the 

aberrations of the solutions with the asphere located at S8, so that the different 

performances only caused by various system structures can be compared. S4A1(8.6) has 

the largest deviation, indicating the highest sensitivity among all, while the aberrations of 

solution S4A1(8.1) are balanced the best.  

 
Figure 5.27. Comparison of the surface-decomposed transverse aberration calculated with 

the MRT method of the ‘S4A1’ solution category (part 1) (unit: mm) 

As for the solutions with asphere surfaces located in the front part of the system from 

S1 to S4, the difference in the aberration distribution is even larger. Especially concerning 

the three solutions with S3 being aspherical, the aberration balance of the solution S4A1(3.1) 

is much more comfortable than S4A1(3.3) due to the different system structures. The results 

prove again that the aspherical surface behavior in the system is complicated, and has a 

great impact on the system tolerance. 



5 Examples and applications 

87 
 

In the last part, the aberrations of the solutions with asphere locations at S6, S7, and S10 

are compared in Figure 5.29. Among all, the solution S4A1(10.2) shows the largest 

deviation, meaning the more critical sensitivity for manufacture. In comparison, solution 

S4A1(10.3) is considered to have a better aberration correction concerning the smaller 

aberration deviation among the surfaces, although the asphere is also located at S10.  

 
Figure 5.28. Comparison of the surface-decomposed transverse aberration calculated with 

the MRT of the ‘S4A1’ solution category (part 2) (unit: mm). 

 
Figure 5.29. Comparison of the surface-decomposed transverse aberration calculated with 

the MRT of the ‘S4A1’ solution category (part 3) (unit: mm). 

To obtain an overview of the aberration correction and imaging performance among all 

the solutions in various categories, the aberration deviation ∆𝑦𝑦𝜎𝜎  values against the 

equivalent lens number are plotted in Figure 5.30. In this plot, each solution is represented 

by a ‘bubble’, and all the solutions from the same category share the same color. 

Concerning the overall performance evaluation, the MF values of all the solutions are not 

fully comparable, because different lens numbers of the systems lead to a different amount 

of boundary constraints in the MF, influencing the OPC calculation. Therefore, as a rough 
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indicator of the imaging performance, the bubble size is determined by the relative spot 

size of the system, compared to all the other output solutions.  

 
Figure 5.30. Aberration standard deviation of all the solutions (unit: mm). Each solution 
category is marked with a different color, and the bubble size represents the relative spot 

size of the solutions.  

Concerning the solutions composed of only spherical lenses, as the equivalent lens 

number increases, the ∆𝑦𝑦𝜎𝜎 value can reach a lower level in general. In accordance with the 

physical knowledge, all the solutions in the ‘S6’ category have a smaller aberration 

deviation, compared to those in the ‘S5’ category. However, although the aberration 

correction of the best solution found in the category ’S7’ is further improved, there are still 

solutions in the same category suffering from a larger aberration deviation. The larger 

variety of the ‘S7’ solution category can be understood by the very different focal power 

distributions of the solutions. In addition, the plot clearly shows that the spot size becomes 

smaller from ‘S5’ to ‘S7’, due to the larger equivalent lens number in the system. 

Consequently, Figure 5.30 clearly indicates that for the systems with only spherical lenses, 

the aberration correction and manufacturability can be predicted according to the lens 

number to some extent. However, the nominal imaging performance and the system volume 

should reach a compromise. 

As mentioned above, the aspherical surfaces can strongly influence ∆𝑦𝑦𝜎𝜎  due to the 

higher-order aberration. Considering the two solution categories with different aspherical 

lens numbers, namely ‘S3A1’ and ‘S4A1’, the aberration balance performances are hard to 

compare. On one hand, both categories include solutions with superior aberration 

correction compared to the ‘S5’, ‘S6’, ‘S7’ categories. On the other hand, the large 

difference in the system performance among the solutions also indicates the uncertainty of 

the optimization path and the difficulty in controlling the higher-order aberrations, 

especially concerning the ‘S4A1’ category. In addition, the spot size is also hard to predict 

in a system with aspherical surfaces, according to the irregular bubble sizes of these solution 

categories in the plot. Consequently, due to the much more complicated full-order 
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aberration distribution, the system imaging performance and sensitivity cannot be simply 

predicted according to the equivalent lens number. 

5.2.6 Discussion 

With all the discussions and illustrations above concerning the optimization results, the 

GACOR algorithm is considered strong in global searching ability. It is capable of guiding 

the optimization path and assessing the imaging performance of the output solutions with 

a high degree of automation for the proposed retro-focus system design task.  Given the 

general optimization strategy based on the physical knowledge and the corresponding 

algorithm parameters, the algorithm succeeds in the design task from the very beginning 

until a large output solution database with great diversity. 

Due to the probabilistic feature of the algorithm, there may be always new solutions 

being found every time the whole program is executed. Particularly, the different asphere 

locations bring much more degrees of freedom in the optimization process. However, 

concerning the essential purpose of optical design, it is only of limited sense to find out all 

the possible solutions, especially for a complicated high-dimensional optical design task. 

Instead of a considerably large number of successful solutions, gaining an overview of the 

solutions, understanding the tendency of the solution evolution, and having enough choices 

for a final design regarding the practical considerations are the most essential intentions of 

the investigation. 

The execution time of a full running of the program consists of three parts according to 

the program platforms. First, the main workflow, the analysis of the system, and the 

execution of the ACOR local search process are all done by Matlab where the program is 

written. Among all, the ACOR local search costs most of the execution time. Although the 

exact execution time is not predictable due to the probabilistic feature of the algorithm, the 

general execution time is strongly dependent on some of the algorithm parameters, such as 

the output solution number and the iteration number. Second, the DLS local optimization 

is only operated by Zemax, which cannot be improved or modified. Third, as the connection 

tool between Zemax and Matlab, the ZOS-API toolbox is always needed during the whole 

program, and it is found that the DLS optimization called by ZOS-API tool takes much 

longer than directly operating in Zemax.  

Consequently, concerning only the most time-consuming process of the whole program, 

only the ACOR local exploration time and the DLS booster running time are calculated 
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accurately as an overview. In general, given the retro-focus system design task and 20 

output solutions in 10 main iterations, the ACOR local exploration time ranges from 10-

70min, and the DLS booster takes 4-6 hours.  

Finally, the algorithm can be also applied for other optimization tasks, if the optimization 

strategy is adapted according to the different system specifications. Besides the 

optimization of the retro-focus system, a tele-system and a high NA collimator are also 

chosen to test the optimization performance of the GACOR algorithm. The additional 

experiments prove that the GACOR algorithm can output also satisfactory results by simply 

adjusting the optimization strategy. And considering the lower complexity of the tasks, the 

execution time is much shorter (0.5-2 hours) for the whole process with enough output 

solutions, the details of which are given in Appendix J.  

5.3 Freeform system optimization 

With the simple optimization tasks, the GACOR algorithm has been proved feasible for the 

quasi-automatic optimization with structural changes, if the ants are ‘trained’ with proper 

physical knowledge about optical design. The results confirmed the great potential of the 

global searching ability. Concerning the second goal of the research, the algorithm should 

also be tested for feasibility when high-dimensional optimization problems are given.  

5.3.1 Final improvement of an anamorphic system 

Concerning the GACOR algorithm developed in the current stage, a complicated system 

with straight OAR but broken rotational symmetry is ideal as a test example. Anamorphic 

systems are applied in many fields such as camera objects and 3D scanners [45]. However, 

the broken symmetry due to the differently stretched NA in both tangential and sagittal 

planes brings troubles in correcting the aberrations with only spherical lenses. Therefore, 

an anamorphic system is chosen as an example to test the final improvement ability of the 

GACOR algorithm. The common axis system structure with complicated freeform surfaces 

makes the anamorphic system appropriate for the purpose.  

The layout of the starting anamorphic system for the final improvement is shown in 

Figure 5.31. The system contains five lenses, marked as L1 to L5. L1, L4, and L5 compose 

a retro-focus system comparable to the example introduced in Section 5.2. L2 and L3 are 

two cylindrical lenses placed between L1 and L4, working only in the x-z cross section. 

The two cylindrical surfaces are marked in red. Due to technical reasons, the other surface 
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of both cylindrical lenses always remains plane. In comparison, the aspherical surface 

location is marked in orange, which will be discussed in the following paragraphs. 

Furthermore, as discussed before, the optimization of the glass materials is not considered 

in this work, and all the lenses are simply made of BK7 in this example system. In addition, 

the selected object fields of view of maximum 2˚ are also given in Figure 5.31. 

 
Figure 5.31. Layout of the anamorphic system in both cross-sections and the sampled 
FoV. The cylindrical surface locations are marked in red, and the aspherical surface 

locations are marked in orange. 

The specifications of the system are listed in Table 5.2. The focal length and the retro-

focus factor 𝑅𝑅𝐹𝐹  determine the image distance together. The image space NA in the 

tangential plane, denoted by 𝑁𝑁𝑁𝑁𝑦𝑦 , can be also calculated with the focal length and the 

incoming beam diameter. Two cylindrical lenses are applied to reach an anamorphic 

stretching factor of 3, resulting in a smaller 𝑁𝑁𝑁𝑁𝑥𝑥 in the sagittal plane. The goal of the final 

improvement is to obtain diffraction limited spots all over the objective field. 

Table 5.2 Specification of the anamorphic system. 

Required specifications Target values Required specifications Target values 

Focal length in y 20mm Free working distance 60mm 

Focal length in x 60 mm Stop position L1 rear surface 

NAx 0.05 Total length 200mm 

NAy 0.15 Retro focus factor 3 

Incoming beam diameter 6mm Field of view 2˚ 

The given starting system currently has only spherical surfaces. Therefore, it can be 

predicted that the aberration correction is poor. Figure 5.32 shows the spot diagrams of all 

the selected FoV. The large scale indicates a large improvement space for the system.  

 
Figure 5.32. Spot diagrams of all the selected fields. 
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Approximately, we can assume a decoupling of the sagittal and tangential plane for this 

system. As a result, the aberration correction is difficult if only spherical lenses are used. 

Therefore, the application of aspherical surfaces is considered. Concerning the choice of 

the position and type of the non-spherical surface, the necessary criteria are not trivial. 

Compared to rotationally symmetric aspherical surfaces, the freeform surface provides 

better correction ability, but is also challenging for manufacturing and increases the cost. 

Instead, if more rotationally symmetric lenses are used for the same correction purpose, the 

general cost and sensitivity problems due to the higher complexity of the system structure 

are also hard to control. Therefore, according to the specific system structure and the 

manufacturing considerations, there is no simple indicator for the best decision of the 

asphere.  As the purpose of this research is to illustrate the potential ability of the algorithm 

concerning a large number of degrees of freedom, the decision of the position and surface 

type of the aspherical surface is not the focus.  

Concerning the final improvement of the example anamorphic system, L2 and L3 are 

allowed for a conic constant deviation from the cylindrical surface sag, while only one of 

the other three lenses can be non-spherical for this optimization task. With many tryouts, it 

is found that one rotationally symmetric asphere in the type of ‘even asphere’ and ‘Q-type 

aspheres’ is not able to reach the diffraction limited goal without changing the current 

structure. Therefore, a freeform surface with the type of ‘Zernike fringe sag’ is applied in 

the system for the final improvement. 

Following the empirical rules for the freeform position as mentioned in Section 2.6, the 

freeform surface location of the anamorphic system is fixed at the rear surface of L5. For 

the correction all over the object field,  it is appropriate as the ray bundles are best separated 

at this surface, so that the correction of the spots all over the field can reach the best. The 

location is marked in pink in Figure 5.31. 

Table 5.3. Categorization of lens parameters. 

 Curvature 
(front surface) 

Curvature 
(rear surface) 

Lens 
thickness Air gap Conic 

constant Zernike term 

L1 𝑟𝑟1𝑓𝑓 𝑟𝑟1𝑟𝑟 𝑡𝑡1𝑔𝑔 𝑡𝑡1𝑎𝑎 0 0 
L2 𝑟𝑟2𝑥𝑥 0 𝑡𝑡2𝑔𝑔 𝑡𝑡2𝑎𝑎 𝜅𝜅2𝑥𝑥 0 
L3 0 𝑟𝑟3𝑥𝑥 𝑡𝑡3𝑔𝑔 𝑡𝑡3𝑎𝑎 𝜅𝜅3𝑥𝑥 0 
L4 𝑟𝑟4𝑓𝑓 𝑟𝑟4𝑟𝑟 𝑡𝑡4𝑔𝑔 𝑡𝑡4𝑎𝑎 0 0 
L5 𝑟𝑟5𝑓𝑓 𝑟𝑟5𝑟𝑟 𝑡𝑡5𝑔𝑔 𝑡𝑡5𝑎𝑎 𝜅𝜅5 𝑍𝑍1 − 𝑍𝑍36 

As explained in Section 4.2, the various optimization paths of the final improvement 
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process originate from the variable settings, dependent on the lens parameter categories. 

Following the categorization rules, Table 5.3 summarizes the lens parameter categories of 

the example anamorphic system. The corresponding lens parameters in the same category 

are marked by a unique colored background with black font color, while the categories of 

an individual component are marked in blue background with blue font color. As the system 

structure clearly indicates two main groups of the lenses divided between L2 and L3, the 

air gap 𝑡𝑡2𝑎𝑎  is considered individually. For the same reason, both the curvatures and 

thicknesses are divided into two main groups correspondingly. Thus, there are in total 13 

categories of parameters in this system. 

During the final improvement process, assuming all the lens parameters are allowed for 

being variables, except for 𝑡𝑡5𝑎𝑎 fixed at 60mm, all the 12 parameter categories are included 

in the variables step by step. As more variables are added, the optimization is carried out 

until the system is diffraction limited. Especially for the Zernike terms, only plane-

symmetric Zernike terms are added step by step during the optimization, following the 

instruction given in Figure D.2 in Appendix D. 

5.3.2 Successful solution analysis 

Concerning the output solution number of the optimization task, the desired number of 

𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 = 10 is given. The final improvement program is executed for one time and all the 

solutions are listed in Figure 5.33, where the layout in both cross-sections, the spot diagram 

of all the fields, and the freeform surface sag (basic sphere shape removed) are given. As 

for the layout, only the rays from the on-axis field are plotted to better announce the lens 

shape. In addition, as the data for analysis in the last column, the information about the 

Zernike polynomial order, as well as the standard deviation values ∆𝑦𝑦𝜎𝜎  is given. The 

standard deviation is again calculated with the MRT method concerning the full-order 

transverse aberrations of one ray. Due to the off-axis FoV and the asymmetric structure of 

the anamorphic system, a skew ray with the sampling coordinate (0.7, 0.7, 0, 1) is chosen 

here for the aberration calculation as a representative of the general performance of the 

whole system. It has been checked, that the results are similar if any other ray is chosen due 

to the similar system structure of the solutions, but only on different scales. As the solutions 

have almost the same system structure, the MF values regarding the overall performance 

are comparable, indicating the small difference in the aberration correction. Therefore, the 

MF calculation values are also given in the comments column, denoted as 𝑉𝑉𝑚𝑚. 
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Figure 5.33. Collection of the output solutions of the anamorphic system. The surface sag 
is in the unit of mm, and the spot diagrams are scaled in 300μm. 
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Due to the different image space NA values in the two cross-sections, the Airy pattern 

looks elliptical. Therefore, for a clarification of the diffraction limited criteria for this 

optimization task, the generalized definition of the Airy diameter according to Zemax is 

applied, which is approximated with the squared NA regarding four MRs, written as [55]  

( )2 2 2 2 2

1.222 ,
sin sin sin sin

Airy

t b l r

D
n

λ

θ θ θ θ
= ×

+ + +
                                  (6.1) 

where 𝜃𝜃𝑡𝑡, 𝜃𝜃𝑏𝑏, 𝜃𝜃𝑙𝑙, and 𝜃𝜃𝑟𝑟 are the real MR angle at the top, bottom, left, and right side of the 

pupil edge. Thus, the RMS spot sizes of all the sampled fields can be compared to the 

nominal 𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 value, and the system is considered diffraction limited only when all the 

field spot sizes are smaller than 𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴.  

Compared to the nominal design shown in Figure 5.31, for most of the final 

improvement results, the lens bending does not show a significant change. The only 

exception is solution 2, where L4 is flipped after fine-tuning. This result proves that the 

global searching ability of the algorithm is good enough to find some potentially better lens 

bending structures even during the final improvement phase of optical design, but such 

creative solutions are always probability-based and therefore cannot be predicted. 

However, with the help of the ACOR local search, the chance can be greatly enhanced.  

Despite the similar layouts of the different solutions, the freeform surface sag can be 

completely different. Considering the technical issues of freeform manufacturing, solution 

1, 8, and 10 have the smallest deviation from the basic sphere, while solutions 3 and 6 might 

be critical due to the large deviation. As the acceptable manufacturability may vary in 

different situations, in this work, the large collection of different solutions are all presented 

here to illustrate their diversity. The large database provides the user with a large choice 

according to the specific purpose. 

To better compare the aberration distributions among the surfaces, the standard 

deviations of the surface-decomposed transverse aberration projected in both sagittal and 

tangential planes, ∆𝑥𝑥𝜎𝜎  and ∆𝑦𝑦𝜎𝜎 , are plotted in Figure 5.34. The values indicate the 

performance in aberration correction and sensitivity. As the only solution with reversed L4 

found by the program, solution 2 has the smallest ∆𝑥𝑥𝜎𝜎 and ∆𝑦𝑦𝜎𝜎, implying the best tolerance 

for manufacture. Although solution 7 keeps the same structure as the nominal system, it 

still reaches a very well-balanced aberration correction compared to the other. Therefore, 

it can be concluded that the bending orientation of L4 is not the essential reason for the 
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final performance, while the considerable local minima make it harder for the optical 

designer to find the optimal solution.  

 
Figure 5.34. Aberration standard deviation of the transverse aberration surface 

contribution in x- and y-direction of all the final improvement solutions.  

With this example, the benefit of the MRT aberration calculation tool can be illustrated 

again. Among all the solutions shown in Figure 5.33, solution 2 and 10 respectively show 

the best and worst aberration balance. Thus, they are selected for analysis with the MRT 

method concerning the additive Zernike coefficient representation, as shown in Figure 5.35.  

 

Figure 5.35. Comparison between solution 2 and 10 concerning the surface-additive 
Zernike coefficients in the case of Z5, Z6, Z8, and Z9 (unit: waves). ‘S2’ and ‘S10’ refer 

to solution 2 and 10. 

Among all the Zernike terms, astigmatism in both cross-sections (Z5 and Z6), tangential 

coma (Z8), and spherical aberration (Z9) are compared respectively between these two 
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solutions for comparison. For all the coefficients, the surface contributions of the front lens 

group show no differences between the two solutions. But due to the different lens bendings 

and freeform surface shapes, the contributions of the rear group of solution 10, especially 

the last freeform surface, are much higher than solution 2. The results are consistent with 

the calculation results of ∆𝑥𝑥𝜎𝜎 and ∆𝑦𝑦𝜎𝜎, and more explicitly proves that the sensitivity of the 

solution 10 is far more critical concerning the manufacturability.  

5.3.3 Discussion  

Concerning the large degree of freedom involved in the final improvement phase of 

optimization, the local exploration based on the ACOR algorithm is still capable of locating 

the local minimum area so that the variety of the output solutions is enhanced. Different 

from the nominal optimization phase with structural changes, there is almost no chance to 

obtain the same solution, given a limited number of the output solutions. The reason behind 

this is the high dimension of the MF topology and the large variety of the final improvement 

strategy, especially when the system contains freeform surfaces. Therefore, it is not 

necessary to check the similarity in this program. Thus, the large variety of the results offers 

a big database of the possible solutions, from which the user can set their filter considering 

the specific criteria to finally decide on the more appropriate system as the final design. 

Compared to the manual optimization influenced by the individual preference of the optical 

designer, the automatic program includes various strategies, which bring a higher 

probability to find ‘new’ solutions that are hard to be found with the optical designer’s 

habitual methods.    

Furthermore, due to the lower correction complexity compared to the nominal system 

design, the final improvement optimization program is found much faster than the nominal 

design program. With sufficient executions of the program, it is found that the running time 

ranges from 30 to 90min, given 10 output solutions. Because of the connection between 

Matlab and Zemax, the execution time is still mostly occupied by the DLS local 

optimization. 
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6 Conclusion and outlook 
The main goal of this work is to seek new methods of modern optical system design with a 

special focus on systems without symmetry, with the desire that the design process could 

be directed to greater productivity. The research discussed in this dissertation makes certain 

contributions regarding a more powerful aberration analysis tool and the improved global 

optimization methods at a higher automation level.  

First, a novel mixed ray-tracing (MRT) method for comprehensively analyzing the off-

axis system surface contribution of transverse aberration is introduced, applicable for the 

calculation of surface-decomposed total, intrinsic, and induced aberrations. Thanks to the 

additivity among the surface contributions, the surface-additive Zernike coefficient 

representation is proposed for the first time as an extension of the method. The large 

flexibility concerning the choice of the reference ray supports the aberration evaluation 

with various purposes for symmetry-free systems. The accuracy and reliability of the results 

are proved to the best extent despite the lack of perfectly comparable references. The 

application of an example lithographic system proves that the MRT method is of great helps 

to evaluate the critical surfaces with large aberration contributions, and the higher-order 

aberration balancing effects among the surfaces can be better understood. The quantitative 

calculation results also qualitatively indicate the sensitivity of the surfaces during 

manufacture from the viewpoint of the high-order aberrations. The modified Kingslake 

plots showing the contributions of all the surfaces can clearly visualize the aberrations of 

arbitrary systems, and therefore help for better analysis for practical purposes. Besides, the 

surface-additive Zernike coefficient fitting for separated intrinsic and induced aberration 

also breaks the limits in the high and low order aberration assessment, so that the specific 

aberration orders can be analyzed separately. Furthermore, if the finite object field instead 

of the pupil is sampled, the MRT method is also capable of analyzing distortion. In addition, 

the direction angle components of the ray vectors can be directly used for analyzing the 

angle aberrations specifically for generalized afocal systems. 

Besides, a bio-inspired algorithm referring to the ant colony behavior is further 

developed for an improved global optimization method in lens design, and the MRT method 

is applied for aberration analysis in the algorithm. It breaks the limitations in making 

structural changes compared to the conventional optimization algorithm, so that the strong 

impact and restriction of the initial design is eliminated, and a higher level of automation 
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of the optimization process can be achieved. The large database of the output systems 

provides the user with an overview of the solution landscape.  The large variety of the 

solutions without ranking also support the user to fix the best-fitting solution according to 

the specific practical purposes. Although the sensitivity is not quantitatively formulated 

during the optimization, the output solutions are all ensured with acceptable 

manufacturability to avoid the critical cases. With the simple optimization task of the retro-

focus system, the optimization algorithm is proved feasible for operating necessary 

structural changes, given proper physical guidance. Furthermore, the optimization results 

of the anamorphic system with freeform surfaces also verify the reliability of the algorithm 

concerning the handling of large degree of freedom. Concerning the far goal of a fully 

automatic global optimization algorithm, the research in this work only accomplished the 

fisrt steps. Within the limited time frame of this work, it was nearly impossible to complete 

the development of the algorithm. However, the satisfactory results prove that the 

combination of genetic methodology and physical guidance is on the right direction and 

promising towards the final goal. It can be predicted that given enough physical guidance, 

the optimization algorithm could reach a great global searching ability with a high level of 

automation and efficiency.  

Besides the resolution-related aberration analysis and correction topics, the distortion 

correction potential of freeforms is also investigated with a case study of selected 

spectrometer systems. The results of all the research topics in this work indicate the 

powerful aberration correction ability of non-spherical surfaces, which proves again the 

necessity of modern optical design method research. As an outlook of this work, there are 

several points for future search. The MRT method can be combined with the aberration of 

the real reference ray for an off-axis system, so that the absolute aberration calculation can 

be more precise. The further development of the GACOR algorithm is also desired to cover 

the whole optimization process, from the singlet system to the final nominal design, 

especially for complicated systems with non-spherical surfaces. When this goal is fulfilled, 

a more generalized optimization method applicable for more optical system types can be 

considered, which requires considerable detailed physical guidance and experience in the 

program. Ideally, the algorithm can be extended to the full optimization process of the off-

axis systems with more advanced design methods for the 3D structure. 
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Appendix A: Verification of the MRT method 
In this appendix, all the new functions of the MRT methods are verified with concrete 

example optical systems. The total aberration surface contributions are compared to the 

results in [19]. Due to the unavailability of comparable calculation methods for full-order 

intrinsic/induced aberrations and additive Zernike representation, the MRT calculation 

results are verified to the best extent with limited references. 

A.1 Transverse aberration calculation results 

It is illustrated in [19], the calculation results of ∆𝑥𝑥𝑗𝑗 and  ∆𝑦𝑦𝑗𝑗 with the 4 × 4 matrices are 

comparable to the exact values resulted from Aldis theory. Due to the change from local to 

global reference, it is necessary to first verify the calculation with the MRT with a 

reproduction of such comparison. Therefore, the same triplet system, first proposed by 

Brewer [28] and later chosen as a test system in [19], is selected again for the purpose. The 

system layout is shown in Figure A.1, as well as the corresponding spot diagram of the 

outermost y-direction field of 16.5°, the lens data of which can be found in [19].  

 
Figure A.1. Layout of the triplet system proposed by Brewer, and the spot diagram of the 

outermost field in the y-direction  (scale: 100μm). 

The comparison between the MRT results and Aldis results is shown in Figure A.2. As 

Aldis theory takes the paraxial calculation of the system, the calculation also takes the OAR 

as the RR to be comparable. In total three representative rays are chosen here to illustrate 

the results, namely the MR, CR, and a skew ray in the 3D space. For the two rays only in 

the tangential plane, the ∆𝑦𝑦𝑗𝑗 results are very close to the exact values from Aldis formulas. 

For the skew ray, the ∆𝑥𝑥𝑗𝑗 and  ∆𝑦𝑦𝑗𝑗 results with the MRT method have a relatively larger 

difference compared to Aldis results, but still can be considered as a good approximation, 

as the chosen ray should suffer from the largest error compared to other rays in the system 

with smaller field and pupil coordinates.   

Considering the sum values, both methods give almost the same value, which is also the 

same as the transverse aberration value obtained from Zemax real ray-tracing. In addition, 

it is not visualized in the figure but proved during calculation, that the transverse aberration 
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calculated directly in the image plane is exactly the same compared to simply adding up all 

the surface contributions. 

It needs to be noticed that if the CR is chosen as the RR, the surface contributions, as 

well as the sum value, are changed, as the parabasal matrices for paraxial calculation are 

changed. However, the comparison of the contributions among the surfaces remains the 

same. 

 
 

Figure A.2. Calculation results of ∆𝑥𝑥𝑗𝑗 and  ∆𝑦𝑦𝑗𝑗 (in μm) by the MRT method and Aldis 
formulas, concerning different rays in the system. 

A.2 Intrinsic/induced aberration calculation results 

To demonstrate the reliability of the full-order intrinsic/induced aberration calculation with 

the MRT method, here a system with a symmetric structure is considered, the layout of 

which is shown in Figure A.3.  

 
Figure A.3. Layout of the test symmetric system. 

The system consists of two identical but reversed meniscus lenses with an objective 

space NA of 0.07. The system data are listed in Table A.1. The object and image distance 

are the same, and S1, S5 are both concentric. Concerning the radii of curvature, S2 and S4 
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are determined so that the ideal intermediate image locates exactly in the middle of the 

system at the same distance as the object. Therefore, in the case of paraxial calculation, the 

system is symmetric about S3, and both lenses have symmetric object and image.  

Table A.1. Lens data of the symmetric system. 

Surface 
number 

Radius 
(mm) 

Thickness 
(mm) 

Material  

Object  Infinity  100  
1 -100 4 BK7 
2 -21.1 100  
3 Infinity  100  
4 21.1 4 BK7 
5 100 100  
Image  Infinity  -  

Considering only the on-axis object point of the system, the system should suffer from 

pure spherical aberration, independent of the stop position. Concerning the special 

symmetry along the z-direction, it is easy to understand that the ∆𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖,1 and ∆𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖,5 should 

be zero, and ∆𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖,2 and ∆𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖,4 should be the same according to the definition. With such 

prediction, ∆𝑦𝑦𝑗𝑗 , ∆𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗  and ∆𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗  are calculated, and Table A.1 shows the calculation 

results of the surface-decomposed total, intrinsic and induced aberration of this system. 

Table A.2. Transverse aberration calculation (unit: mm). 

Surface 
number 

Total 
aberration 

Intrinsic 
aberration 

Induced 
aberration  

S1 0  0 0 
S2 1.2011 1.2011 0 
S4 2.5885 1.2004 1.3880 
S5 0.0061  -0.0192 0.0253 
Sum  3.7958 2.3823 1.4134 

From Table A.2, the corresponding intrinsic aberration contributions can be considered 

as a fulfillment of these predictions except for S5. The non-zero value of ∆𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖,5 comes 

from the approximation of 𝐶𝐶′𝑃𝑃𝑃𝑃 illustrated in Figure 3.5, which introduces a small error at 

S5. As the ideal image plane is far from the best image plane, the error is scaled, and finally 

leads to an obvious non-zero transverse aberration, but compared to the total intrinsic 

aberration, this error only contributes an additional 0.8%. In the case of induced aberration, 

∆𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖,4 contributes 98.2% of the total value, which also makes sense concerning the system 

structure. ∆𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖,5 also shares the same error as the intrinsic result. Therefore, the results of 

the MRT method for full-order intrinsic or induced aberration calculation can be considered 
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accurate enough for determining the critical surfaces in the system and indicating the 

balances between them. 

For a more complicated system, it is hard to predict the intrinsic aberrations by simple 

ray-tracing calculations. However, based on the test results, the method is considered also 

reliable for symmetry-free system analysis. 

A.3 Surface-additive Zernike coefficient fitting 

To evaluate the reliability of the Zernike coefficient fitting method, it is also meaningful to 

test the results of a rotationally symmetric system due to two reasons. First, due to the 

approximations and assumptions used in the surface-decomposed wavefront fitting method 

of Zemax, the results are scaled and not fully comparable to the additive surface 

contributions calculated with the MRT method. And the pupil distortion in the system also 

has an impact on the accuracy of the fitting results in Zemax. Second, the evaluation with 

an on-axis example system brings another convincing analysis option concerning the 

additive surface contributions of the primary aberrations, which is the qualitative 

comparison to Seidel coefficients, since Seidel coefficients are exact additive values 

serving as a reliable reference. Therefore, the same triplet system as shown in Figure A.1 

is again taken as the test system for the verification. With the method introduced in Section 

3.3, Zernike coefficient calculation takes ∆𝑌𝑌𝑗𝑗 instead of the additive ∆𝑦𝑦𝑗𝑗. Practically, the 

large number of sampling rays helps improve the accuracy of fitting, especially for non-

spherical surfaces with high-order aberrations. The normalization radius of Zernike 

polynomials also needs to be calculated in advance, which can be obtained by tracing the 

CR and coma ray for the considered field point. Furthermore, as the piston term Z1 is 

constant, it is neglected in the Zernike coefficient fitting with derivative terms.  

Figure A.4 shows the Zernike coefficient fitting results of the outermost field of the 

triplet system corresponding to the total wave aberration of the system at the ExP. The 

comparison is between the MRT calculation and Zemax fitting results. The results show a 

very good match between each other with a maximal difference in the absolute value of 

0.0176 λ. The RMS of the fitting error compared to Zemax fitting results is 0.0061λ in this 

case. The choice of the RR for Zernike polynomial fitting also has an impact on the 

coefficients, as the propagation of ∆𝑌𝑌𝑗𝑗  is determined by the parabasal matrices. For the 

triplet system, if the OAR is considered as the reference, the wave aberration of the 

outermost field includes all the information of the wave aberration. In this case, although 
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Zemax calculates the Zernike coefficients with different assumptions and approximations, 

the results are still comparable.  

 

Figure A.4. Comparison of Zernike coefficient fitting results between Zemax and the 
MRT method calculation results. The unit is in waves. 

If an arbitrary optical surface is investigated, the surface contribution of Zernike 

coefficients can be also calculated and plotted. Figure A.5 shows the additive Zernike 

coefficients among all the surfaces under some different circumstances. For better 

visualization, only Z9 (primary spherical aberration), Z8 (sagittal coma), and Z5 (primary 

astigmatism) are compared.  

Plot (a) demonstrates the Zernike coefficients fitted with the MRT method with OAR as 

the reference, and plot (b) shows the ones calculated by Zemax. Generally, the absolute 

values of these coefficients in the two plots are slightly scaled, because Zemax assumes a 

different normalization radius for each surface, while the MRT method keeps the additivity 

among the coefficients. However, the relations among the three coefficients are almost the 

same in both two cases.  

For qualitative comparison, the additive surface contributions of Seidel coefficients are 

also plotted as (d), which proves that both (a) and (b) match the Seidel calculation of 

primary aberrations. Furthermore, as the aperture dependence of primary astigmatism is 

quadratic, if the MRT method takes the CR as the reference, the parabasal matrices will 

include the information of the local toric surface in the parabasal zone during the paraxial 

calculation. Consequently, the astigmatism fitting results, in this case, can only be seen as 

defocusing. Concerning other kinds of pupil dependence for spherical aberration and coma, 

the problem does not exist. Thus, as (c) indicates, the astigmatism Z5 shows a completely 

different distribution, while the other two coefficients remain almost unchanged and still 

match the tendency of additive Seidel coefficients.  
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Therefore, if considering the ray cone and the asymmetrically located optical 

components together as an off-axis, the Zernike coefficient fitting results still provide an 

additive surface contribution of any specific aberration when Seidel is not valid anymore, 

except for primary astigmatism. With the help of the Coddington equation, primary 

astigmatism caused by the finite field can be calculated if necessary. 

 
Figure A.5. Spherical aberration (Z9), coma (Z8), and astigmatism (Z5) calculated with 

different methods. 
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Appendix B: Further discussion of the MRT method 

B.1 Approximation of intrinsic/induced aberration calculation 

Here the approximation when calculating the intrinsic/induced aberration is discussed in 

more detail to get an idea about the validity of this simplification. To simplify the problem, 

the discussion here considers only the y-z cross section, and the corresponding coordinates 

all refer to the local coordinate system of the surface with the origin located at the surface 

vertex. As introduced in Section 3.2, the real ray vector 𝒓𝒓𝒋𝒋 = (𝑥𝑥𝑟𝑟 , 𝑦𝑦𝑟𝑟 , 𝑢𝑢𝑟𝑟 , 𝑣𝑣𝑟𝑟 , 1)′  coming 

from the object intersects 𝑆𝑆𝑗𝑗  at 𝐶𝐶𝑗𝑗 . The tangent plane  𝑇𝑇  is drawn at 𝐶𝐶𝑗𝑗 , of which the 

projected line is illustrated in Figure B.1, together with the coordinates of the intersection 

points.  

 
Figure B.1. Surface sag in the tangential plane and the tangent plane T.  

Assuming 𝑆𝑆𝑗𝑗 is an arbitrary freeform surface with the local radius of curvature 𝑅𝑅𝐿𝐿 at 𝐶𝐶𝑗𝑗, 

the slope of the projected line of 𝑇𝑇 (marked red) can be obtained as 

.L r
T

r

R zk
y
−

=                                                           (B.1) 

Inserting the coordinate of 𝐶𝐶𝑗𝑗, the projected line of 𝑇𝑇 writes as 

1 1 (y ),T r T ry k z k z= + −                                                 (B.2) 

where 𝑧𝑧1 and 𝑦𝑦1 are the independent and dependent variables. As the paraxial ray vector 𝒑𝒑𝒋𝒋 

coming from the object is refracted with the parabasal matrix, a ray vector 𝒑𝒑′𝒋𝒋  can be 

calculated after refraction by 𝑆𝑆𝑗𝑗. Clearly, the projected slope of 𝒑𝒑′𝒋𝒋 is the direction angle, 
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denoted as 𝑘𝑘𝑝𝑝. Assuming 𝒑𝒑′𝒋𝒋 intersects the surface at 𝐶𝐶𝑝𝑝𝑝𝑝, the projected line function of 𝒑𝒑′𝒋𝒋 

is 

 2 2 (y ).p p p py k z k z= + −                                                (B.3) 

Therefore, the intersection point 𝐶𝐶𝑝𝑝𝑝𝑝0 (𝑧𝑧0, 𝑦𝑦0) can be obtained by Eq. (20) and Eq. (21) 

0 ,T r p p p r

T p

k z k z y yz
k k

− + −
=

−
                                           (B.4) 
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                                    (B.5) 

Consequently, the error in the y-direction is 

0
(z z ) (y y ) .T p r p p p r

y p
T p

k k kE y y
k k

− + −
= − =

−
                           (B.6) 

As the surface sag of an arbitrary surface can be described as the basic spherical shape 

and the derivative of freeform term along the z-axis, with Tylor expansion of spherical 

basic shape, it can be written as 

2 4

3 ,
2 8

s FF
y yz z
R R

= + + + ∆                                               (B.7) 

where 𝑅𝑅 is the surface radius, and ∆𝑧𝑧𝐹𝐹𝐹𝐹 is the freeform deviation. Thus, the total error 

of the surface sag in the z-direction is 

2 2 4 4
0 0

, ,3 ( ) .
2 8

p p
z pe p FF pe FF p

y y y yE z z z z
R R
− −

= − = + + + ∆ −∆              (B.8) 

Therefore, Eq. (B.6) shows that both y- and z- components of the distance between 𝐶𝐶𝑗𝑗 

and 𝐶𝐶𝑝𝑝𝑝𝑝 have an impact on 𝐸𝐸𝑦𝑦. Physically, such pitfalls can be visualized in Figure B.2. On 

one hand, if 𝒑𝒑𝒋𝒋 and 𝒓𝒓𝒋𝒋 are far from each other, which means the surface suffers from a 

considerable induced effect from the front groups of the system, then despite the small 

freeform deviation, the large distance in the y direction would cause a large error in the 

results; On the other hand, if the surface sag has a strong deviation from the basic spherical 

shape, such as a turning point illustrated in Figure B-2 (right), a large distance between 𝐶𝐶𝑝𝑝𝑝𝑝 

and 𝐶𝐶′𝑝𝑝𝑝𝑝 in z-direction will occur, which also finally leads to an unneglectable error.  

However, as for the error finally considered in the image plane, the analytical error 
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cannot be analytically calculated due to the following reasons: Firstly, the exact coordinates 

of the intersection points of the paraxial ray on the real freeform surface cannot be obtained 

with simple geometrical methods. Consequently, the true distance between 𝐶𝐶𝑝𝑝𝑝𝑝 and 𝐶𝐶′𝑝𝑝𝑝𝑝 

where the error origins remain unknown. Secondly, as 𝒑𝒑𝒋𝒋 and 𝒓𝒓𝒋𝒋 need to be transferred to 

the image plane for the transverse aberration calculation, the error included in the vector is 

also magnified or demagnified by the following optical components, which cannot be 

predicted due to the huge variety of the system structure, the surface shape, and the 

correction performance. In addition, according to Eq. (B.8), the full-order error 𝐸𝐸𝑧𝑧 can be 

strongly influenced by the additional freeform deviation, and the order of the surface sag 

expansion also impacts the analytical evaluation of 𝐸𝐸𝑧𝑧.  

Consequently, there are three factors that determine the final error in the image plane: 

the splitting of  𝐶𝐶𝑝𝑝𝑝𝑝 and 𝐶𝐶′𝑝𝑝𝑝𝑝 caused by the induced effect from the front group, the local 

curvature of the surface, and the magnification of the error due to the following part of the 

optical system. For most optical systems, whose surfaces are smooth without turning points, 

the error caused by the approximation can be neglected. In practice, the compact cellphones 

system with strong aspheres can be an exception. The error can be critical, if the system 

structure is complicated with various groups but the front groups suffer from the inferior 

correction. In this case, the large induced effect could cause a considerable error in the 

image plane, when calculating the intrinsic/induced aberration with the MRT method for 

the rear group surfaces. Thus, the complicated microscopy systems and lithography systems 

should be paid more attention when considering the performance of the front groups, when 

applying the MRT method. Otherwise, the error can be always considered acceptable.  

 
Figure B.2. Possible pitfalls of the approximation: the surfaces suffering from 

considerable induced effect (left), or freeform surfaces with extremely large deviations 
from the basic spherical shape (right).  



Appendix B: Further discussion of the MRT method 

109 
 

B.2 Distortion removal 

As the RR determines the parabasal zone of the system, the parabasal matrices are strongly 

dependent on the choice of the RR. Figure B.3 shows two different parabasal zones when 

the OAR or the chief ray of an off-axis field are considered as the RR respectively, 

assuming the OAR is not folded. It is well known that for systems with rotational or double 

plane symmetry, the RR is usually the common optical axis, which is also the reference for 

paraxial ray-tracing. In this case, if a finite field is under investigation, the transverse 

aberration of an arbitrary coma ray from this field consists of two parts: the distortion 

brought by the chief ray of this field ∆𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,  and other aberrations, denoted as ∆𝑦𝑦0. Then 

for the surface contribution ∆𝑦𝑦𝑗𝑗, we have 

, 0,y y y .j Dist j j∆ = ∆ + ∆                                                     (B.9) 

Therefore, if the ray-tracing data of a rotationally symmetric system is considered as the 

reference to verify the calculation of the MRT method, the OAR needs to be the RR. 

 

Figure B.3. Different choices of RR and the corresponding parabasal zone. 

Sometimes it is necessary to evaluate the aberrations without distortion for a better 

observation of the resolution-related aberrations, especially when the distortion is critical. 

In this case, we want to remove  ∆𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑗𝑗 from ∆𝑦𝑦𝑗𝑗. Combining Eq. (3.3) and (B.9), we have 
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In the image plane, we have correspondingly 
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For the coma rays of the finite field, ∆𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑗𝑗 here is exactly the surface contribution of 
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the chief ray distortion, and it adds up to the distortion on the image plane, which can be 

finally eliminated to obtain 

( )0 ,
1

y y .
N

,Img j Dist j
j

y
=

∆ = ∆ −∆∑                                           (B.12) 

Therefore, by simply subtracting the surface contribution of the CR from one of the 

coma rays, we can still keep the additivity of the transverse aberration surface contribution 

excluding distortion.  

Concerning the RR choices for different field points, there are various situations where 

the distortion is included in the results or automatically excluded. In addition, the cases are 

also not identical for rotationally symmetric and symmetry-free systems. The possible 

situations are concluded in Table B.1 as a summary. Following the definition of the 

normalized field and pupil coordinates, the RR can be represented by a 4-dimensional 

coordinate. Then by definition, OAR is described by (0,0,0,0), and the other case of RR 

represented by (0,1,0,0) refers to the CR of any off-axis FoV. The field coordinate (0,1) 

here also represents any finite field point away from the center of the object. The 

comparison illustrates if ∆𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑗𝑗 exists in the coma ray transverse aberration, and if the 

transverse aberration in the image plane is comparable to Aldis surface-decomposed results 

calculated with the ray-tracing data.  

Table B.1. Possible situations with RR and tested fields. 

 No. RR Tested 
field 

∆𝑦𝑦𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷,𝑗𝑗 
included? 

∆𝑦𝑦𝑗𝑗 comparable 
to Aldis results? 

Rotationally 
symmetry 

system 

(a) (0,0,0,0) (0,0) No Yes 
(b) (0,0,0,0) (0,1) Yes Yes 
(c) (0,1,0,0) (0,1) No No 

Symmetry-
free system 

(d) (0,0,0,0) (0,0) No No 
(e) (0,0,0,0) (0,1) Yes No 
(f) (0,1,0,0) (0,1) No No 

As the original Aldis theory is limited to rotationally symmetry systems, only when the 

RR is the unfolded OAR, the results of the MRT method are comparable to Aldis 

calculation considering the surface contribution of the full-order transverse aberration, as 

in case (a) and (b).  

 if the CR of a finite field is chosen as the RR in a rotationally symmetric system (case 

(c)), the ray cone from the field together with the optical components of this system can be 
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considered as an off-axis system, as marked by red in Figure B.1. Therefore, case (c) is 

comparable to case (f). Then automatically, the matrices already contain all the field-related 

aberrations that exist in the parabasal zone during propagation. Therefore, if ∆𝑦𝑦𝑗𝑗  of an 

arbitrary ray from this FoV is calculated with the parabasal matrices, the final result will 

not contain separated distortion. 

Furthermore, if the OAR is taken as the RR, the existence of distortion shows the same 

tendency regardless of the symmetry of the system. As long as the tested ray comes from 

an off-axis FoV, the aberration calculation results include distortion (case (b) and case (e)), 

otherwise, distortion does not exist (case (a) and case (f)).  
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Appendix C: Parameterization of the GACOR 
algorithm 
The GACOR algorithm is an improved optimization algorithm inspired by the great 

potential of the basic ACOR algorithm for optical design. Therefore, the important 

parameters involved in the GACOR algorithm can be referred to Section 2.8, and [25] 

discusses the physical meaning and the impact on the ACOR algorithm results in more 

detail. Concerning the GACOR program introduced in this dissertation, there are two kinds 

of parameters. The first parameter category includes the fixed parameter during the 

optimization process, such as the bias parameter 𝑞𝑞 and the convergence speed parameter 

ζ . The second category consists of parameters that are adaptive during the program 

corresponding to the physical guidance. As introduced in [25], the fixed parameters do not 

have a great impact on the optimization result if they stay in the meaningful range, 

particularly for high-dimensional optimization problems. Therefore, it is not necessary to 

fix the values of such parameters here. In this appendix, only the important adaptive 

parameters, namely the GA capacity and ant group number, are discussed. 

First, serving as the database of the GACOR algorithm, the GA plays an important role 

during the optimization. At the beginning of the global exploration, all the ant groups start 

from the initial system, as it is the only given system stored in the GA before the main 

iteration starts. Therefore, we have 𝐾𝐾𝑔𝑔0 = 1, where the numerical subscript indicates the 

main iteration index, and 0 here indicates the initial index.  

Very often, for the nominal optimization process, where the system starts from a singlet 

initial system, the system only has very few variables and quite relaxing boundary 

conditions. Thus, the MF landscape is not complicated due to the low dimension and 

boundary complexity, which contains only a limited number of local minima. As the system 

structure becomes more and more complicated with more lenses during the optimization 

process, the variety of the new solutions found by the ant groups strongly grows due to the 

higher dimension of the MF landscape. In other words, in the first several iterations, it may 

happen that the ant groups have to pick the same GA solution and output the same solution 

after local exploration, resulting in redundant calculations. Therefore, the size of the GA 

should be adapted dynamically according to the increasing variety of the solutions to avoid 

such efficiency degradation in the beginning. Additionally, the maximum allowed capacity 

𝐾𝐾𝑔𝑔𝑔𝑔  is also given to limit the size of the GA. Dependent on the options of structural 
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changes, the capacity will finally reach the maximum allowed value sooner or later. 

After all the ant groups have finished their local exploration in the 𝑖𝑖𝑡𝑡ℎ main iteration, the 

newly generated various solutions are merged together with the original solutions in the 

GA. Then, each solution is compared with every other in the GA, and only the unique ones 

can remain, the process of which can be referred to Section 4.1.2.4. Finally, the total number 

of those unique solutions is counted and denoted as 𝐾𝐾′𝑔𝑔𝑔𝑔. Concerning the maximum allowed 

capacity, the GA capacity for the next iteration is determined as 

{ }min ' , .gi gi gmK K K=                                                 (C.1) 

Besides the GA capacity, the ant group number 𝑃𝑃𝑔𝑔 should also be adapted dynamically 

due to the same reason of the increasing possible solutions. In the beginning, 𝑃𝑃𝑔𝑔 is more 

limited to avoid the repetitive local exploration process, but increases with the GA capacity. 

Specifically, 𝑃𝑃𝑔𝑔  should be adapted according to the estimated number of unique new 

solutions. However, the assessment is not trivial because the number of local minima of the 

MF topology always remains unknown, and the structural change options also scale the 

possible solutions. Thus, as a part of the probabilistic feature of the original ACOR idea, 

the ant group number is simply determined by a rigorous mathematical model designed 

differently for RI and RII.  

In RI, as the splitting option is the only structural change option, the pre-estimated ant 

group number 𝑃𝑃′g𝐼𝐼 is determined only by the iteration index 𝑖𝑖g, written as 

' max{ | ( 2) / 2}.gI gP k Z k i= ∈ ≤ +                                          (C.2) 

And in RII, the rough number of the expected unique new solutions, denoted as 𝑃𝑃′g𝐼𝐼𝐼𝐼, is 

represented as  

' 2 ,gII gi LP K N= ⋅                                                         (C.3) 

where the scaling factor of 2 corresponds to the structural change options, and 𝑃𝑃g𝐼𝐼𝐼𝐼  is 

determined by the GA capacity size 𝐾𝐾g and equivalent lens number 〈𝑁𝑁𝐿𝐿〉.  For both RI and 

RII, a maximum ant group number 𝑃𝑃g𝑚𝑚 is also given to prevent the unnecessary execution 

time in each main iteration. Finally, the ant group number writes generally as 

{ }min ' , .g g gmP P P=                                                          (C.4) 
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Appendix D: Searching for the best structural change 
In order to answer the questions raised in Section 4.1.2 regarding the choice of the structural 

change option, the rules of the structural change surface determination, as well as the 

operations of the structural changes developed in the GACOR algorithm, the basic rules for 

structural changes are introduced in this appendix. 

D.1 Choice of the structural change option 

As mentioned, the algorithm only makes structural changes with spherical surfaces in RI. 

Therefore, considering the two options investigated in the study, only the split option is 

allowed in RI, while both options are allowed in RII. Therefore, each ant group can choose 

these options randomly in RII. 

As mentioned in Section 4.1.2, when choosing from the structural change options, the 

algorithm considers the current 〈𝑁𝑁𝐿𝐿〉 of the system, and the asphere option is only allowed 

if 〈𝑁𝑁𝐿𝐿〉  ≤ 〈𝑁𝑁𝐿𝐿〉𝑚𝑚𝑚𝑚𝑚𝑚 is still valid after the structural change.  

If the current system already has 〈𝑁𝑁𝐿𝐿〉  = 〈𝑁𝑁𝐿𝐿〉𝑚𝑚𝑎𝑎𝑎𝑎, then neither of the structural changes 

can be chosen, the ant group simply skips this step and directly executes the further local 

exploration.  

D.2 Decision of the structural change surface  

Empirically, the surface which contributes a large aberration should be considered as the 

structural change surface. However, although Seidel aberration theory can be a good 

indicator of the critical surfaces, the best choice of the structural change surface is still 

dependent on other criteria, such as the higher-order aberration or manufacturability issues. 

Thus, there is no fixed universal rule for the choice, as the importance of different criteria 

may vary under different conditions. Concerning the spherical aberration alone in this work, 

in addition to the surface contribution, the MR height and the incident ray angle on this 

surface should also be considered as impact factors of the surface sensitivity. Therefore, 

the comprehensive criteria for the determination of the critical surface should include all 

three aspects. 

Considering the surface-decomposed spherical aberration contribution, Seidel 

coefficient 𝑆𝑆𝐼𝐼𝐼𝐼  is sufficient for systems with only spherical surfaces under relaxed 

conditions. However, for systems with aspherical surfaces, the higher-order aberrations 
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cannot be ignored. Thus, for the rotationally symmetric systems with aspheres, the MRT 

method is used for analyzing the surface-resolved total transverse aberration. Here the 

aberration contributions for the 𝑗𝑗𝑡𝑡ℎ surface are denoted as 𝛼𝛼𝑆𝑆𝑆𝑆 for Seidel coefficients and 

𝛼𝛼𝐴𝐴𝐴𝐴 for the transverse aberration with the MRT method. In addition, the MR height and the 

MR incidence angle at every surface are also calculated, the parameters of which are 

denoted as 𝛼𝛼𝐻𝐻𝐻𝐻 and 𝛼𝛼𝐼𝐼𝐼𝐼 respectively.  

With the parameters, the overall evaluation of the critical surface can be modeled, 

indicated by a ‘critical index’, denoted as 𝐴𝐴𝑗𝑗 . Considering the different units of all the 

parameters, it is impossible to represent the 𝐴𝐴𝑗𝑗  by simply adding up all the involved 

parameters, but it is still possible to interpret the sum of them if they are all normalized 

before, written as 

, kj j
k

Α α= ∈∑ Z                                                           (D.1) 

where 𝛼𝛼�𝑗𝑗  generally represents any of the normalized value  𝛼𝛼�𝑆𝑆𝑆𝑆 , 𝛼𝛼�𝐴𝐴𝐴𝐴 , 𝛼𝛼�𝐻𝐻𝐻𝐻 , and 𝛼𝛼�𝐼𝐼𝐼𝐼 . 

Concerning the calculation of 𝛼𝛼�𝑗𝑗 , the surface diameter 𝐷𝐷𝑠𝑠𝑠𝑠  should also be included as a 

scaling factor, as a larger surface aperture with a larger MR height usually causes a large 

degradation of the imaging performance. Therefore, the modeling of 𝛼𝛼�𝑗𝑗 can be written as 
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where 𝛼𝛼𝑗𝑗  is the general representation of 𝛼𝛼𝑆𝑆𝑆𝑆 , 𝛼𝛼𝐴𝐴𝐴𝐴 , 𝛼𝛼𝐻𝐻𝐻𝐻 , and 𝛼𝛼𝐼𝐼𝐼𝐼 . 𝑁𝑁  is the total optical 

surface number of the system.  𝛽𝛽  and 𝜀𝜀  are the exponential scaling factors of the 𝑗𝑗𝑡𝑡ℎ 

surface, as the parameters should also be scaled according to their different impacts on 𝐴𝐴𝑗𝑗. 

For example, compared to the incidence angle, the Seidel coefficient has a greater influence 

on the surface aberration contribution, therefore 𝛼𝛼𝑆𝑆𝑆𝑆  should be scaled with a higher 

weighting. Table D.1 lists all the scaling factor values set in the GACOR algorithm.  

In the different cases according to the existence of asphere in the system, the most 

relevant parameters are not always the same. For instance, if there are already aspheres in 

the system, due to the unavoidable higher-order aberrations, 𝐴𝐴𝑗𝑗 cannot be represented by 

𝛼𝛼𝐻𝐻𝐻𝐻 or 𝛼𝛼𝐼𝐼𝐼𝐼 as well as by 𝛼𝛼𝐴𝐴𝐴𝐴. Thus, Table D.1 also illustrates the various cases, where only 

the most relevant parameters are included in the mathematical model, marked by ‘Yes’. 
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Table D.1. Parameterization of 𝜶𝜶𝒋𝒋 and the involved ones in different cases.  

 β  ε  Case a* Case b* Case c* 

Sjα  1 2 Yes  Yes   

Ajα  1 2   Yes  

Hjα  1/2 2 Yes    

Ijα  1/4 2 Yes    

*Case a: splitting option in the system; Case b: asphere option when the system currently 
has no asphere; Case c: asphere option when the system currently has already an asphere;  

Although the surface with the highest 𝐴𝐴𝑗𝑗 value can be considered a good candidate for 

the structural change, it is not ensured that this choice is the only best way to find a 

successful solution. Therefore, to enlarge the variety of solutions with a balance of the 

deterministic and the probabilistic feature, the algorithm chooses a surface in the same way 

as the ant chooses an archive solution. According to the 𝐴𝐴𝑗𝑗  values, all the surfaces are 

ranked in descending order and each one is assigned to a weighting as Eq. (2.21) indicates. 

Then, the probability of a surface being chosen as the final critical surface for the structural 

change is determined according to the weightings. 

In practice, it is only of limited benefit to use a lens with both surfaces aspherical in the 

case of thin lenses. Therefore, in the case of the asphere option, both surfaces of the 

aspherical lens in the system are deleted from the ranked candidates before choosing the 

critical surface.  

D.3 Lens splitting option 

If the splitting option is decided for the lens where the critical surface locates, the lens will 

be split into two by inserting a surface inside the lens. Figure E.1 illustrates the process of 

splitting the lens with the radii of curvature of 𝑅𝑅1 and 𝑅𝑅2. If the lens is too thin, the thickness 

of the two split lenses may not be physically meaningful. Thus, dependent on the diameter 

𝐷𝐷𝑗𝑗  of the lens, the lens should be first thickened to 𝐷𝐷𝑗𝑗/5, if the current thickness is smaller 

than this value. Then, two adjacent surfaces with a radius of curvature 𝑅𝑅3 are inserted in 

the middle of the lens, so that the thickness is evenly divided. Concerning the choice of the 

𝑅𝑅3 value, there are different options. Usually, the inserted surface can be a plane plate or 

has the average value of the two curvatures. In this work, the radius of 𝑅𝑅3 is calculated as 

the average value, written as 

3 1 2

1 1 1 1 .
2R R R
 = + 
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                                                     (D.3) 
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Figure D.1. Splitting process of the lens. 

And finally, the two lenses are separated with a small air gap of 0.05mm in between, 

which is an empirically appropriate value in the normal cases. Due to the change in the 

thickness and the small air gap, the MF topology will be changed after the lens splitting. 

To prevent a large sudden change of the MF, the image distance is immediately optimized 

again for the smallest RMS spot after the splitting.  

D.4 Aspherization 

As one of the structural options included in this work, the asphere option is an important 

step for the system to switch from spherical to aspherical system classification. Due to the 

application of the aspheres, the system structure can be varied a lot, and consequently, the 

manufacturability assessment might require very different criteria. Therefore, the settings 

of the aspherical surfaces should be clarified for different purposes during the optimization.  

The asphere option is allowed from the start of RII. It is defined in the algorithm that 

only one kind of asphere surface is allowed for one optimization task regardless of the 

aspherical surface number, and the specific type should be determined by the user before 

the optimization starts. Thus, when the asphere option is chosen, the algorithm will switch 

the surface type from spherical to this specific asphere type for the structural change 

surface. For the nominal design function of the GACOR algorithm, the asphere option only 

allows ‘even asphere’ and ‘Q-type asphere’ as the aspherical surface type, while for the 

final improvement function, the non-spherical surface type ‘Zernike fringe sag’ is allowed. 

Following the optimization method with non-spherical surfaces introduced in Section 2.6, 

the coefficients of the non-spherical terms are set as variables step by step from the lower 

to higher order during the optimization. However, to avoid the critical tolerance in 

manufacture when dealing with high-order non-spherical surfaces, the maximum order of 

the non-spherical terms should be also limited. 

As for the asphere option programmed in the nominal design function of the GACOR 
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algorithm, when performing the structural change, only 𝜅𝜅 is included as the asphere-related 

variable for the local exploration to prevent a large sudden increment of the MF dimension. 

The higher-order additional aspherical terms are not increased unless the system 

optimization comes to the asphere enhancement process. In addition, simultaneous with 

any structural change option of each main iteration, the variables of all the surfaces which 

are already aspheres in the system are adjusted by adding the next higher-order aspherical 

terms as variables. In this way, the aspherical terms of the aspherical surfaces are always 

of higher-order as the following iterations are executed until reaching the limited order. To 

illustrate the new terms involved in each new execution time point,  

Table D.2 shows the term coefficients that are added as variables when they are 

supposed to be adjusted. In the GACOR algorithm, for each kind of non-spherical surface, 

the maximum allowed term can be seen in the ‘final’ column, which means no further terms 

can be included for the surfaces. Particularly for the Zernike fringe surface, as the algorithm 

currently only deals with systems with plane-symmetric structure, only the plane-

symmetric Zernike terms within each order are included as variables. When the non-

spherical terms are added to the system, all the already existing variables in the system 

remain unchanged. 

Table D.2 Addition of the asphere coefficients. 

Surface type 1st round 2nd round 3rd round … Final round 
Even asphere 𝜅𝜅 𝑎𝑎2, 𝑎𝑎3 𝑎𝑎4, 𝑎𝑎5 … 𝑎𝑎8 

Q-type asphere 𝜅𝜅 𝑎𝑎1, 𝑎𝑎2 𝑎𝑎3, 𝑎𝑎4 … 𝑎𝑎15, 𝑎𝑎16 
Zernike fringe sag 𝜅𝜅 𝑧𝑧4 - 𝑧𝑧9 𝑧𝑧10 - 𝑧𝑧16 … 𝑧𝑧26 - 𝑧𝑧36 

Regardless of the nominal design function or the final improvement function, when the 

asphere enhancement is executed, the algorithm keeps the same MF, and reoptimizes the 

system step by step. During this process, the addition of the variables also follows the same 

rules of the increment of the order. And after each addition round, the system is optimized 

with the DLS algorithm again, and then evaluated. If the system meets all the original 

specifications, the process immediately stops and outputs the solution; If not, the next 

higher-order terms are added and the same process will be executed again until the system 

is successful, or all the last allowed terms of the non-spherical surfaces are included in the 

system.   
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Appendix E: Switch from RI to RII 
As introduced in Section 4.1, RI helps to estimate the number of spherical lenses needed 

for a successful solution. As the lens number increases, there can be two possibilities after 

a certain time point: First, if a successful solution is obtained, the current equivalent lens 

number 〈𝑁𝑁𝐿𝐿〉0 in the system is estimated as the necessary lens number for a successful 

solution. Second, if it is determined that the chance to have a successful solution with only 

spherical surfaces is very low, which means the splitting option is not enough anymore, 

then the asphere option should be included for further optimization. In this case, 〈𝑁𝑁𝐿𝐿〉0 is 

also recorded and the algorithm switches to RII from the next main iteration.  

In the later iterations, it can be predicted that the systems with more lenses are evaluated 

as better performing compared to those with fewer lenses in the earlier iterations. 

Consequently, it may happen that only solutions with more lenses remain in GA when RII 

starts. Therefore, it makes no sense to keep using the current GA for the ant groups, as the 

asphere option may introduce more lenses than needed based on the current GA solutions. 

Therefore, a new GA is needed as the beginning database for the ant groups. To distinguish 

the GA in the two rounds, the GA is denoted as GAI for RI and GAII for RII.  

The purpose of the establishment of the ASB in RI is to prevent the calculation 

performed at the beginning of RI from being repeated in RII. The ASB collects all the 

various solutions ever found in RI and categorizes them according to the lens number, so 

that they can be directly recalled from the GAII for the ant groups. In the ASB, all the 

solutions are categorized according to the lens number 𝑁𝑁𝐿𝐿, and all the solutions in the GAII 

are directly taken from the ASB when RII starts. Figure F.1 explains the relation which 

solutions stored in the ASB are to be included in the GAII when the algorithm switches to 

RII. The number of solutions in each category is qualitatively shown with the blue bar, and 

the categories are partly listed along the horizontal axis indicated by the increasing 𝑁𝑁𝐿𝐿.  

When the GAII is requested, the ASB collects all the solutions in the categories with the 

lens number of {𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿 − 1,𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿 ,𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿 + 1}, where 𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿 is the nominal lens number of RII, 

calculated as 
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In Figure E.1, the solution categories included in the GAII are marked in the red zone in 

comparison to the whole ASB in the yellow zone.  It should be mentioned that, the GACOR 
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algorithm considers only the optimization task for which asphere surfaces are meaningful 

for improving the performance. In other words, if the optimization task is very simple and 

can be successful with only two spherical lenses, correspondingly 〈𝑁𝑁𝐿𝐿〉0 = 2 , the 

application of the GACOR algorithm is not considered as necessary. 

 
Figure E.1 Categories of solutions in GAII and ASB. 

As for the analysis of the chance of obtaining a successful solution with only spherical 

surfaces, the criteria are given as follows: After the local exploration is finished in each 

main iteration, the solution categories with the lens number of {𝑁𝑁𝐿𝐿0 − 1,𝑁𝑁𝐿𝐿0} from the ASB 

are checked. For each category, the best solution with the lowest OPC value is picked out, 

and the improvement in percentage is calculated referring to these two solutions. This value 

is considered as the ‘pure’ improvement brought by introducing one more lens in the 

system. If the improvement reaches more than 10%, it is considered meaningful to further 

split the lens for the optimization. Otherwise, the algorithm stops RI and switches to RII. 

For instance, Figure 5.14 illustrates the first successful system ever found by the 

program since the start of running, which is solution C1. Therefore, the estimated necessary 

lens number needed for a successful solution is determined as 5, namely 〈𝑁𝑁𝐿𝐿〉0 = 5 . 

Therefore, 𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿 = 2 is also obtained according to Eq. (E.1), and the starting GAII can be 

established. According to the rules mentioned above, C1 is not included in GAII, while the 

program places all the intermediate solutions ever found with the lens number of 1, 2, and 

3 in the GAII. On one hand, these solutions in the GAII help to prevent redundant 

calculations from the initial system in RII to improve the efficiency, while the intermediate 

solutions with fewer lenses are more appropriate for performing the asphere option. On the 

other hand, for instance, if one ant group follows the same optimization path shown in 

Figure 5.9, C1 is obtained again in RII. This repetition is also meaningful, as more 

successful solutions originating from C1 can be found in the program, such as C4.4 and 

C4.5 in Figure 5.14. In conclusion, the switch between RI and RII and the establishment of 

the ASB are helpful for the algorithm to find various successful solutions. 
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Appendix F: Variable and MF adaption 
For the optimization procedure, the MF is essential as it indicates the stepwise optimization 

targets, and it is the most important performance evaluation reference of the GACOR 

algorithm. The MF adaption rules for optimization concerning the specific task is discussed 

in Section 5.2 and 5.3. In this appendix, the general MF and variable adaption rules are 

introduced.  

F.1 MF adaption in various cases 

As introduced in Section 4.1, to simplify the editing of the MF in the optical software 

via the algorithm programmed in Matlab, the operands corresponding to the system 

specifications are set in the MF before the optimization starts, and the indices of the 

operands are all recorded in the algorithm to help the program locate the operands when 

editing the MF. Thus, during the optimization, the algorithm only edits the necessary 

parameters, weightings, and targets of the operands in the MF. During the local exploration, 

the MF should be adapted according to the optimization strategy, and the variables should 

also be adapted to fit the stepwise optimization goal.  

First, when the ACOR local search or the DLS booster is executed, the MF needs to be 

edited for the optimization goals as the instruction of the optimization. Second, as for the 

solution evaluation, the performance is quantified with the MF calculation results. The 

performance is either evaluated for the SPC which focuses only on the stepwise 

optimization goals, or the OPC regarding the original specifications. With the 

corresponding resulted values, the solutions can be ranked in the GA or SSA. Therefore, 

the MF adjustment is necessary for both the optimization and evaluation purposes.  

Considering these two main functions of the MF, the detailed methods about the MF and 

variable adaption in various cases are given in Table F.1, where ‘W’ and ‘T’ represent the 

weighting and targets, and the subscripts ‘p’, ‘g’, and ’a’ indicate the imaging performance-

related operands, and those for the glass or air thicknesses. The target values of the air and 

glass thicknesses are marked with ‘Yes’ if they are adapted. As for the specific 

performance-related operands, if the adjustment rule for 𝑇𝑇p is described by ‘TBD’ (to be 

determined) in the table, the actual target values of them are determined according to the 

optimization strategy for the specific optimization task, which can be referred to Section 

5.2 or Appendix J.  If 𝑇𝑇p is described by ‘final’, the final goal values are set as the target 
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values of the corresponding operands for the overall performance evaluation for example. 

In addition, 𝑉𝑉g and 𝑉𝑉𝑎𝑎 represent the variable conditions of the glass and air thicknesses, 

for which ‘F’ means ‘fixed’ and ‘V’ means ‘variable’ in the settings. Following Figure 4.3, 

the two different cases when the MF is adjusted for optimization are marked with indices 

‘i’ and ‘ii’. The index ‘iii’ is defined for the situation when MF is adjusted for SPC 

evaluation, and index ‘iv’ refers to the OPC evaluation case.  

Table F.1. MF and variable adjustment rules in different situations.  

Adaption case Wp Tp Wg Tg Wa Ta Vg Va 

i 1 TBD 0  0  F V 

ii 1 TBD 1 Yes 1 Yes V V 

iii 1 TBD 1 Yes 1 Yes / / 

iv 1 Final 10 Yes 10 Yes / / 

Regarding the rules, the specific considerations for these cases are discussed: 

(i) is for the local ACOR search. As the glass thickness is of weaker impact on the 

performance compared to other lens parameters, they are not allowed variable, so the 

dimension of the problem is reduced. This helps to enhance the success probability of the 

ACOR process, and the efficiency can be also improved. In contrast to glass thicknesses, 

the air thickness as a variable allows for more possible structures of the system combined 

with the change of the curvatures found by the ants. Furthermore, with the sequential ray-

tracing tool, both air and glass thicknesses are not directly relevant to the imaging 

performance. Thus, it is enough for the algorithm to focus only on finding the possible 

solutions with good imaging performance. Concerning the possible problems of the 

geometrical boundary conditions, the next step with the DLS booster can be applied for a 

subsequent correction.  

(ii) is performed by the algorithm before the DLS booster process. Considering the 

possible improvement of the solution found during the local ACOR search, the stepwise 

performance-related operands should be updated for the DLS booster. Different from (i), 

the DLS booster also optimizes the thicknesses to ensure the physical boundary conditions. 

Thus, the weighting and targets of both air and glass thickness operands are adapted and 

the corresponding lens data parameters are set as variables.  

(iii) and (iv) both refer to performance evaluation criteria. For (iii), the MF adaption is 

only for checking the fulfillment of the current stepwise goals during the optimization, 
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while for (iv), the MF is adapted according to the final goals of the system. Therefore, the 

original specifications are set as the targets of the performance-related operand targets with 

a weighting of 1. Specifically, to rank the solutions according to the OPC, the physical 

considerations should be emphasized, so that the systems with better manufacturability can 

be recommended. Thus, the weighting of the thicknesses is set as 10, so that even small 

violations of the boundary conditions can be ‘punished’ in the ranking. For this purpose, 

the variables in the system are irrelevant for both cases.  

F.2 Boundary condition control 

Among the MF operands, those for controlling the boundary conditions are independent of 

the performance requirements but are set according to the practical issues during 

manufacture. The thickness of the lens and the distance between the lenses should be 

controlled for acceptable manufacturability to avoid possible problems during the 

manufacturing process. When the MF is adapted, the boundary conditions of each lens 

should be considered individually to ensure the feasible geometry, as the diameter of the 

lens also has an impact on the constraints as a scaling factor.  

Table F.2 Target value setting rules of thickness constraints. 

Operand Meaning Target value 

MXCA Maximum air gap center thickness Preset in Zemax 
MNCA1 Minimum  air gap center thickness 0.05mm for air gaps between lenses 
MNCA2 Minimum image distance thickness Preset in Zemax for image distance 

MXCG Maximum glass center thickness 
6
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Table F.2 lists the target setting rules for all the necessary constraints in the MF for the 

edge and center thicknesses, which originate from the experience considering the 

production process. The rules might not the optimal and generic for all kinds of opical 

systems, while it is applied in the algorithm to ensure the acceptable manufacturability in 

the normal cases. As the MF is set in Zemax, the notations of the specific operands all 

correspond to the definitions in Zemax [55], and they will be used in the following 

discussion for simplification. 

In the table, 𝑡𝑡𝑗𝑗 generally means the target value of the corresponding constraints.  𝐷𝐷𝑗𝑗  and 

𝐹𝐹𝑗𝑗 are the diameter and the focal power of the 𝑗𝑗𝑡𝑡ℎ lens in the system respectively.  

For the MXCA constraint in the system, the target is not as important as the other 

constraints, as the air gaps in the system are always of a finite distance limited by the total 

volume. Therefore, the target value can be predicted by the user according to the overall 

scale of the system to prevent the system from an infinite image distance. And concerning 

the MNCA2 constraint, the target value can also be estimated to ensure a feasible free 

working distance. 



Appendix G: Similarity and lens shape check 

125 
 

Appendix G: Similarity and lens shape check  
Before a solution is considered successful and output by the GACOR algorithm, it needs to 

first pass both similarity checks to ensure every output solution is unique. Then, the lens 

shape of the solution is checked to avoid any output system with unrealistic 

manufacturability. In this appendix, these two checking methods are introduced.  

To judge if the solution is unique, it is necessary to compare the structure of this solution 

to all the others in the corresponding archive. As the key factors of the structure, the 

thicknesses between all the lenses and the radii of curvature of them should be compared. 

Because of the stop criteria of the DLS local optimization algorithm, it may happen that the 

solutions are slightly different in the lens data, although they look almost the same. 

Consequently, the criteria for the similarity check should be adjusted, so that the slight 

differences between the two solutions can be ignored to some extent. Thus, the algorithm 

calculates the standard deviation values 𝛿𝛿  between the two solutions in terms of the 

curvature and the thicknesses, the one of the curvatures is written as  
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where 𝑐𝑐1𝑗𝑗 is the curvature of 𝑆𝑆𝑗𝑗 of the first solution, and 𝑐𝑐2𝑗𝑗 is obtained from the second 

solution. The 𝛿𝛿𝑡𝑡 value for the thickness shares the same format. Thus, the criteria according 

to empirical evaluation are determined. Specifically, if  

0 05 0 5mmc max t. c or . ,δ δ< ⋅ <                                        (G.2) 

then these two solutions are considered similar. 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum curvature value 

among all the surfaces as an indicator of the scale of the system.  If the two solutions have 

different non-spherical surface locations, or only one of them contains non-spherical 

surfaces, they are immediately considered not similar, and the further check is skipped.  

Besides, the lens shape also has an impact on the manufacturability of the system. Thus, 

for the overall performance evaluation, the lenses with strong bending should be avoided. 

During the lens bending check, the bending parameter 𝑋𝑋  of each lens is calculated, 

following Eq. (4.2). Empirically, the limit of the absolute value of 𝑋𝑋𝑗𝑗 is determined as 10 

for a general assessment. Correspondingly, the system is considered appropriate and passes 

the lens bending check if �𝑋𝑋𝑗𝑗� of every lens in the system is smaller than this value.  
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Appendix H: ACOR local search 
Due to the improved workflow of the GACOR algorithm compared to the simple ACOR 

algorithm, some modifications for the local ACOR search embedded in the GACOR 

program are necessary for effective optimization. In this appendix, the adjusted rules for 

the local ACOR search process are clarified.  

H.1 Artificial initial deviation 

According to the principle of the simple ACOR algorithm, the new position found by the 

ant members during the local ACOR exploration is determined by the PDF. As an important 

parameter for the PDF, the standard deviation 𝜎𝜎 is determined by all the solutions in the 

LA. A larger 𝜎𝜎 physically describes a higher probability that the ants can reach further from 

the initial value of the variables. However, because of the same starting system shared by 

all the ants, we have the initial value 𝜎𝜎0 = 0, which blocks the necessary deviation to 

generate the new solutions. Therefore, an initial value of 𝜎𝜎0 should be artificially set to 

trigger the dispersion of the ants around the starting solution.  

Particularly for optical system optimization problems, the values of different lens 

parameter types are on different scales. For example, the surface curvature interval is 

limited in [−1, 1], while the range of the air gap is [0, +∞) in principle. The big difference 

between them would cause a higher chance of failure, if 𝜎𝜎0 is set the same for them all. 

Thus, 𝜎𝜎0 should be dependent on the different variable types. Specifically, all the variables 

currently involved in the GACOR algorithm are categorized in curvature, thickness, conic 

section, and the coefficients of the non-spherical terms, so that they can be assigned to 

various setting rules. Furthermore, within one category, due to the different scales of the 

lens parameters and thicknesses, the impact of 𝜎𝜎0 on the searching performance is different. 

Therefore, determining the 𝜎𝜎0 individually for each parameter also helps to improve the 

global searching ability and reduce the failure. Therefore, the rules should be dependent on 

both the category and the initial values of the variables.  

In addition, it is learned from the experience that, when non-spherical surface sag terms 

are involved in the system, the MF topology is more complicated with a much higher 

dimension, where the local minimum area can be smaller and steeper. Consequently, if 𝜎𝜎0 

is set large in this case, the chance to find a local minimum area is lower. Therefore, to 

enhance the global searching ability, the 𝜎𝜎0 values are defined differently for the systems 



Appendix H: ACOR local search 

127 
 

with and without aspheres. 

Table. H.1 lists the calculation of 𝜎𝜎0 according to different categories, where 𝑐𝑐0, 𝑡𝑡0, 𝜅𝜅0, 

𝑧𝑧0 are the initial values of the starting system variables. Correspondingly,  𝜎𝜎𝑐𝑐0, 𝜎𝜎𝑡𝑡0, 𝜎𝜎𝜅𝜅0, 

𝜎𝜎𝑧𝑧0 are the initial deviation values. 𝑁𝑁𝐿𝐿  is the total number of lenses, and 𝑁𝑁𝑧𝑧 is the total 

number of aspherical surface terms in the system. It should be noticed that the modeling 

method here is proved feasible in the program, but it may not be optimal and unique. 

Table H.1. Calculation of 𝝈𝝈𝟎𝟎 dependent on the existence of asphere and the variable category. 

Parameter Starting system without asphere Starting system with asphere 
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The difference between the existence of non-spherical surfaces is described by the 

scaling with 𝑁𝑁𝑧𝑧.  And among the categories, the thickness has a different expression from 

all the others, as the initial value is non-zero after the structural change. Instead of 𝑡𝑡0, the 

average occupied thickness per lens 𝑡𝑡̅ is used to calculate 𝜎𝜎0, written as 

/ ,s Lt T N=                                                              (H.1) 

where 𝑇𝑇𝑠𝑠 is the distance from the first to the last optical surface. Thus, the deviation can 

homogeneously stimulate the lens variables for a beneficial deviation. As the impact of 

thickness changing is relatively weak compared to other types of variables, a large 𝜎𝜎0 is not 

critical, but helpful for finding more different types of solutions.   
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H.2 Prevention of infinite loops  

The local ACOR exploration follows the basic workflow introduced in Section 2.8, which 

is formulated as a loop until each ant member has found a solution. When an ant finds out 

a new solution, the SPC of the solution will be calculated. Empirically, only those with an 

SPC value lower than 5 can be considered acceptable, otherwise, it is denoted as a failure. 

Although the setting rules for  𝜎𝜎0 introduced above are determined carefully, it still might 

happen that the ant cannot find any meaningful solution around the starting point. 

Particularly, the situation can be understood for two reasons: either the current initial 

deviation 𝜎𝜎0 is still too large due to the very high dimension of the MF, or the GA solution 

locates at a very sensitive position on the MF landscape, so that each step of the ants around 

the current starting point leads to great growth of the SPC. In this case, a mechanism is 

developed for the ants to jump out of the loop to prevent being stuck in the infinite loop.  

Considering the two various reasons, the GACOR algorithm includes two methods to 

stop the infinite loop. First, if all the ants fail to find any new solution for more than 𝐹𝐹𝑚𝑚1 

times directly in the beginning of the whole process, it can be predicted that the problem is 

in 𝜎𝜎0. Thus, all the 𝜎𝜎0 values are reduced to a half, and the algorithm starts the loop again. 

This process is repeated until each ant can find a new solution.  On the other hand, a record 

is established for each GA solution, which counts the total failure time among all the 

individual ants starting from this solution. The failures due to the large 𝜎𝜎0 values are not 

counted in this record. If it is found out that the ants have made in total over  𝐹𝐹𝑚𝑚2 times of 

failures when a specific GA solution is chosen, then this GA solution is considered as 

sensitive in the MF topology. In practice, concerning the tolerance for the manufacture, the 

system can be predicted to have a low as-built performance. Therefore, this GA solution is 

deleted from the GA and no more ant groups will choose this solution as its starting point 

of the local ACOR exploration, similar to the ‘group memory’ in nature.  

In general, these two methods help to keep the local ACOR exploration in an acceptable 

execution time, which finally improves the efficiency of the GACOR algorithm.  
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Appendix I: Further optimization examples 
In Chapter 5, the optimization task of a retro-focus system is introduced as one of the 

applications of the GACOR algorithm. The output solutions have a large variety with 

appropriate physical considerations, which proves that the GACOR algorithm is helpful for 

the users in optical design. Besides, the GACOR algorithm can also optimize other kinds 

of systems, if the corresponding optimization strategy can be properly adjusted. In this 

appendix, the results for another two optimization problems are illustrated as a supplement 

to the test results of the GACOR algorithm. 

I.1 Tele-system optimization 

The first example is the optimization of a tele-system, the basic layout of which is shown 

in Figure I.1. A tele-system consists of two main lens groups, namely the front positive 

group and rear negative groups. Due to the divergence of the negative lens group, the free 

working distance 𝑠𝑠′ is shorter than the focal length 𝑓𝑓′. Meanwhile, the negative group also 

reduces the image space NA, which makes the system less critical for aberration correction, 

compared to a retro-focus system with the same entrance pupil size. 

 

Figure I.1. Layout of a tele-system. 

As for the optimization task, the system specifications are listed in Table. I.1 The system 

only has an on-axis field, and the corresponding spot should be diffraction limited. During 

the optimization, the focal length is fixed in the MF as a hard constraint. Similar to the 

system structure specifications of the retro-focus system optimization task, the free-

working distance and the total length should not be considered from the beginning, but in 

the later phase. 

Table I.1. System specifications of the tele-system. 

Entrance pupil dismeter 20mm Wavelength  550nm 

Free-working distance 20mm Total length 50mm 

Focal length 100mm Image performance Diffraction limited 

Stop position L1 front surface Field of view On axis only 
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According to the specific system type, the optimization strategy should be adjusted to 

ensure the optimization path is appropriate for obtaining the tele-system solutions. Thus, 

the dynamic MF settings are modified, as illustrated in Figure I.2. The total length and the 

free working distance are denoted as 𝑉𝑉𝐿𝐿𝐿𝐿 and 𝑉𝑉𝐿𝐿𝐿𝐿. The weighting and target values of them 

in the MF are correspondingly 𝑊𝑊𝐿𝐿𝐿𝐿 , 𝑊𝑊𝐿𝐿𝐿𝐿 , 𝑇𝑇𝐿𝐿𝐿𝐿 , and 𝑇𝑇𝐿𝐿𝐿𝐿 . As for this optimization task, it 

makes only limited sense to optimize the system with the two length constraints step by 

step, as the thickness parameters have a relatively weak impact on the system performance. 

Therefore, during the optimization process, once the system is diffraction limited, the 𝐿𝐿𝐼𝐼 

constraint is included in the MF immediately with the original specification target. 

Compared to 𝑉𝑉𝐿𝐿𝐿𝐿, 𝑉𝑉𝐿𝐿𝐿𝐿 has the lowest priority, which is only activated in the MF when the 

system has fulfilled all the other targets.  

 

Figure I.2. MF setting rules for the tele-system optimization. 

Given the maximum equivalent lens number, namely 〈𝑁𝑁𝐿𝐿〉𝑚𝑚𝑚𝑚𝑚𝑚 = 5, and expecting 20 

output solutions, the program is executed for one time, and the obtained solutions are listed 

in Figure I.3. The same as Chapter 5, the solutions are also categorized according to the 

number of spherical and aspherical lens numbers, and each of them is named according to 

the category and the aspherical surface location. 

Among the solutions, there are three solutions found with only three lenses. The 

solutions S3.1 and S3.2 with two meniscus lenses in the positive lens group have larger 

aberration deviations, but smaller spot sizes. In comparison, solution S3.3 has a different 

lens bending, leading to the best aberration balance but a slightly worse spot diagram. If 

more spherical lenses are included in the system, the aberrations can be better balanced by 

all the lenses, so that the standard deviation represented by ∆𝑦𝑦𝜎𝜎 becomes smaller, such as 

S4.3 and S5.1. If an asphere is applied in the system, it is harder to control the aberration 

distributions due to the higher-order aberration brought by the asphere. Besides, according 

to the calculation rules of the critical index, the probability of the negative lenses being 

chosen for structural changes is lower due to their smaller diameter. As a result, there is 

only one solution with an aspherical negative lens found by the program. The results show 
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again that the algorithm is capable of finding out solutions with different lens numbers and 

asphere locations. 

Name 
Layout and 

spot diagram (scale: 2μm) 
Comments Name 

Layout and 
spot diagram (scale: 2μm) 

Comments 

S3.1 
 

∆𝑦𝑦𝜎𝜎 = 0.47 S3.2  
 

∆𝑦𝑦𝜎𝜎 = 0.61 

S3.3 
 

∆𝑦𝑦𝜎𝜎 = 0.12 S4.1 
 

∆𝑦𝑦𝜎𝜎 = 0.40 

S4.2 
 

∆𝑦𝑦𝜎𝜎 = 0.34 S4.3 
 

∆𝑦𝑦𝜎𝜎 = 0.07 

S4.4 
 

∆𝑦𝑦𝜎𝜎 = 0.18 S4.5 
 

∆𝑦𝑦𝜎𝜎 = 0.50 

S5.1 
 

∆𝑦𝑦𝜎𝜎 = 0.04 S1A1 
(1.1)  

𝜅𝜅 
∆𝑦𝑦𝜎𝜎 = 0.11 

S1A1 
(2.1)  

𝜅𝜅 
∆𝑦𝑦𝜎𝜎 = 0.90 

S2A1 
(1.1)  

𝜅𝜅 
∆𝑦𝑦𝜎𝜎 = 0.26 

S2A1 
(1.2)  

𝜅𝜅 
∆𝑦𝑦𝜎𝜎 = 0.51 

S2A1 
(1.3)  

𝜅𝜅 
∆𝑦𝑦𝜎𝜎 = 0.14 

S2A1 
(2.1)  

𝜅𝜅 
∆𝑦𝑦𝜎𝜎 = 0.13 

S2A1 
(3.1)  

𝜅𝜅 
∆𝑦𝑦𝜎𝜎 = 0.51 

S2A1 
(3.2)  

𝜅𝜅 
∆𝑦𝑦𝜎𝜎 = 0.25 

S2A1 
(4.1)  

𝜅𝜅 
∆𝑦𝑦𝜎𝜎 = 0.14 

S2A1 
(4.2)  

𝜅𝜅 
∆𝑦𝑦𝜎𝜎 = 0.24 

S2A1 
(6.1)  

𝜅𝜅 
∆𝑦𝑦𝜎𝜎 = 0.46 

Figure I.3. Output solutions of the tele-system optimization. 

The same as Figure 5.30, the system performance of all the obtained solutions is 

summarized in Figure I.4. The standard deviation ∆𝑦𝑦𝜎𝜎 is calculated with the MRT method, 

representing the full-order transverse aberrations of the MR among the surfaces. The size 

of the bubbles indicates the relative spot sizes of the solution. The different solution 

categories are marked by different colors.  

 
Figure I.4. Aberration standard deviation of all the solutions (unit: mm).  

As for the solutions with only spherical lenses, namely ‘S3’, ‘S4’, and ‘S5’, the 

aberrations are better balanced as the lens number increases. However, an aspherical 
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surface in the surface could cause a large ∆𝑦𝑦𝜎𝜎, indicating a higher sensitivity. In general, 

an aspherical surface is helpful for a smaller spot size. 

I.2 High NA collimator system optimization 

Besides the tele-system, another nominal design task for testing the GACOR algorithm is 

the optimization of a high NA collimator. The system structure is simple, comprising only 

one converging lens group to obtain the high image space NA. The initial system remains 

a singlet system, and the system specifications are listed in Table. I.2.  

Table I.2. System specifications of the NA collimator system. 

Entrance pupil diameter 20mm Image-space NA 0.6 

Wavelength  550nm Image performance Diffraction limited 

Field of view On-axis only Stop position L1 front surface 

The optimization strategy of the collimator system is also simple, concerning only the 

image space NA and the spot size during the optimization process. Similar to the other two 

example systems, the diffraction limited criterion is still the first priority, while the NA 

value should be improved step by step. The corresponding MF setting rules are shown in 

Figure I.5, where 𝑊𝑊𝑁𝑁𝑁𝑁 and 𝑇𝑇𝑁𝑁𝑁𝑁 are the weighting and the target value of the image space 

NA operand. In this program, the NA optimization is divided into six steps, each of which 

refers to increasing NA of 0.1, until finally the system reaches an image space NA of 0.6.  

 

Figure I.5. MF setting rules for the high NA collimator system optimization. 

Following the optimization strategy, the program is executed for one time, and the 

resulted solutions are listed in Figure I.6. Considering the simpler structure of the system, 

only 10 output solutions are desired and 〈𝑁𝑁𝐿𝐿〉𝑚𝑚𝑚𝑚𝑚𝑚 = 5  is again set for the maximum 

equivalent lens number for them.  

As the high NA specification requires a strong convergence of the incoming collimated 

rays, almost all the lenses are positive and bent towards the image. Such a structure is more 

helpful for the balance of the spherical aberration distribution among all the surfaces 

concerning the limited lens number. Among all the solutions, only two spherical lens 
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systems are found. Solution S4.2 is the only exception with a negative lens. Compared to 

S4.1, the spot is better corrected, but the aberration balance indicated by the standard 

deviation ∆𝑦𝑦𝜎𝜎 seems much worse. As for the solutions with an aspherical surface, it is found 

that for such a high NA system, a diffraction limited system cannot be obtained by using 

only one aspherical lens. Thus, in the solution collection, only the systems with both one 

aspherical and one spherical lens can be found. Among the solution category ‘S1A1’, the 

various aspherical surface locations and the lens bending of the systems result in very 

different aberration correction performances.   

Name 
Layout and 

spot diagram (scale: 2μm) 
Comments Name 

Layout and 
spot diagram (scale: 2μm) 

Comments 

S4.1 

 

∆𝑦𝑦𝜎𝜎 = 0.0066 S4.2  

 

∆𝑦𝑦𝜎𝜎 = 0.1608 

S1A1
(1.1) 

 

𝜅𝜅 
∆𝑦𝑦𝜎𝜎 = 0.0003 

S1A1
(1.2) 

 

𝜅𝜅 
∆𝑦𝑦𝜎𝜎 = 0.0276 

S1A1
(1.3) 

 

𝜅𝜅 
∆𝑦𝑦𝜎𝜎 = 0.0127 

S1A1
(2.1) 

 

𝜅𝜅 
∆𝑦𝑦𝜎𝜎 = 0.0290 

S1A1
(3.1) 

 

𝜅𝜅 
∆𝑦𝑦𝜎𝜎 = 0.2141 

S1A1
(4.1) 

 

𝜅𝜅 
∆𝑦𝑦𝜎𝜎 = 0.0568 

S2A1
(1.1) 

 

𝜅𝜅 
∆𝑦𝑦𝜎𝜎 = 0.0069 

S2A1
(2.1) 

 

𝜅𝜅 
∆𝑦𝑦𝜎𝜎 = 0.1165 

Figure I.6. Output solutions of the high NA system optimization. 

As an overview of the aberration surface distributions, Figure I.7 illustrates the  ∆𝑦𝑦𝜎𝜎 of 

all the output solutions against the equivalent lens number and the relative spot size. The 

application of an aspherical lens for this optimization task helps to reduce ∆𝑦𝑦𝜎𝜎 , but 

compared to the correction ability of S4.1, the improvement is not obvious. However, these 

two examples prove the universality of the application of the GACOR algorithm. 

 

Figure I.7. Aberration standard deviation of all the solutions (unit: mm) 
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Appendix J: Freeform surfaces for distortion correction 
For understanding the corrective power of freeform surfaces we analyze the corrective 

power of freeform surfaces concerning the applications in the refractive spectrometer 

systems for high-performance requirements. 

 
Figure J.1. Basic imaging spectrometer layout. 

The correction of spatial resolution and distortion in imaging spectrometer systems is of 

great importance due to their significant impact on efficiency and quality. A traditional 

imaging spectrometer comprises an entrance slit, an imaging optical system with dispersive 

elements, and the detector, as shown in Figure J.1. The slit is usually rectangular, being 

very narrow in the y direction to limit the FoV in the dispersive direction, and wide in the 

x-direction (perpendicular to the y-z plane). In this way, the limited FoV in the y direction 

helps to separate the images formed by different wavelengths on the detector. Therefore, 

the slit is often simulated as a line object. The light beam with a broad spectral range enters 

the slit and propagates through the system to be dispersed. The dispersive elements are 

located at or near the pupil of the system. As the spectral components are dispersed only 

along the y direction, the imaging system maps them on the detector according to 

wavelength. Ideally, the spectral components are separated as parallel straight lines at the 

image plane for further scanning and analysis. In such a system, both gratings and prisms 

can be used as dispersive elements. The spectral separation is performed by an exit slit or 

a spectrally resolving detector [56]. 

J.1 Distortion correction of spectrometer systems 

Due to the dispersive behavior, two kinds of distortion require special attention when 

evaluating the optical system performance. These are spectral (‘smile’) distortion, which 

means a bent monochromatic line image (assumed along the x-axis), and spatial (keystone) 

distortion, referring to a wavelength-dependent magnification of the entrance slit [57-60], 

as illustrated in Figure J.2. As for this study, they are both defined quantitatively for the 

evaluation. Smile distortion is defined as [61] 
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smile, max, min, ,D y yλ λ λ= −                                                  (J.1) 

where 𝑦𝑦max,𝜆𝜆  represents the centroid image position of the outermost field, and 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚,𝜆𝜆 

regards to the one of the central field. Keystone distortion is defined as [62] 

max,

keystone,

1
2 100%,1

2

x L
D

L

λ

λ

−
= ×                                            (J.2) 

where 𝑥𝑥max,𝜆𝜆 is the centroid image position of the outer field point along the x-axis and L 

is the length of the entrance slit along the x-axis. 

 

Figure J.2. Distorted image with spectral and spatial distortion. 

Concerning the general performance of an imaging spectrometer, resolution and 

efficiency are both of great importance. Given a specific entrance slit length and sensor 

pixel size, the entire area of each image line should ideally be captured on the sensor array. 

However, since the spot size of a single field point determines the width of the image line, 

poor correction can lead to overlapping adjacent image lines, which cannot be fully 

captured or spectrally resolved by the sensor. The spot size also determines how critical 

distortion is, as a broader image line means more energy loss with the same bending. 

Furthermore, both smile and keystone distortion cause a loss of captured signal, leading to 

decreased resolution and efficiency. Consequently, distortion common to imaging 

spectrometers can complicate camera calibration, reduce efficiency and resolution 

performance, as well as impede data processing, making its correction of great concern.  

In imaging spectrometers, the dispersive elements usually break the rotational symmetry 

of the whole system, making it difficult to correct higher-order aberrations with only 

rotationally symmetric surfaces. Therefore, freeforms can be introduced in such systems to 

specifically correct the aberrations caused by asymmetry. The benefit of freeforms in 

grating spectrometer systems has been already discussed in the literature [27], but a 
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systematic investigation of prism-based systems is still lacking to the best knowledge of 

the authors. Therefore, we investigate the use of freeforms to improve imaging performance 

in common prism spectrometer systems. It is also important to mention that our 

investigation is not intended to deal with any particular application but to exhaust the 

potential of freeforms in a case study to illustrate the improvement of the system 

performance with the higher-order correction of freeforms in general prism imaging 

spectrometers. Thus, the results of this study can be projected to any practical application 

with such spectrometers as instructive guidance for distortion correction. 

J.2 Example: Modified Offner system optimization with 
freeforms 

In order to draw a generalized conclusion from this study, several typical refractive 

spectrometers are chosen for the case study. As an example for the dissertation, the results 

of a refractive spectrometer of modified Offner structure [63] are illustrated here.  

Distinguished from the typical Offner spectrometer with reflective gratings, the 

modified Offner structure spectrometer here is composed of 3 mirrors and 2 prisms. The 

original image space F-number is kept as 3 with an original entrance slit of 30 mm. The 

spectral range is 400-900 nm and the dispersion distance is 3 mm. The stop is located at 

M2, as illustrated in Figure J.3. It is interesting to mention that, according to the symmetry 

principle, an original Offner system without prisms generally enjoys the benefits of small 

field-related aberrations including distortion due to its symmetric structure about the stop 

(M2). However, as two prisms are added to the system, the symmetry is broken due to the 

separation of dispersive angles, which reduces the automatic distortion correction brought 

by the symmetry principle. Besides, the large final image distance, compared to the total 

length along the z-axis, further magnifies the distortion at the image plane. Thus, distortion 

becomes a critical problem in this system despite the partial fulfillment of the symmetry 

principle.  

 
Figure J.3. Modified Offner spectrometer system layout, where S1, S2, S3, S4, and M2 

are potential freeform surface locations. 
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First, a systematic optimization procedure should be established. Regarding the general 

rules mentioned above, all the prism and mirror surfaces are possible freeform locations. 

The investigation should include all possible combinations of freeform surfaces, so that the 

cases in which freeforms are added at various locations in different numbers can be 

compared. 

For the purpose of this study, a systematic optimization rule should be fixed. Concerning 

the optimization, the distortion correction should be based on the essential criterion that the 

original spot size is not degraded. Within the original spectral range, the system uses five 

sampling wavelengths for optimization and RMS distortion value calculation.  

During the actual spectrometer system design, the spot size should be optimized to 

match the detector pixel size. As the pixel size of the spectrometer system detector are 

various according to the specific application, and the ideal system image size is also 

determined by focal length, magnification, spectral range, and the scale of the system, the 

system performance cannot be simply analyzed with only pixel size. Therefore, according 

to the purpose of the study, only the improvement of the system performance by the 

introduction of freeforms is of concern, the spot size and distortion will not be compared to 

the pixel size. Therefore, with the precondition of maintaining the original spot size, the 

optimization prioritizes minimizing the distortion. In addition, the optimized freeform 

surfaces are limited to a peak-valley value of 6 mm based on the current state of 

manufacturing technology. 

Since there are three mirrors and four prism surfaces in the system, the possible freeform 

combinations can be categorized into many different cases. As we focus on comparing the 

imaging performance without and with freeforms, so not all cases need to be presented. 

Among all the mirrors, only M2 is considered as a possible freeform location because it is 

the system stop, which better illustrates the impact of the freeform with overlapped ray 

bundles. Meanwhile, all four prism surfaces will be considered, since each can contribute 

quite differently to aberration correction, and any relative advantage is difficult to predict. 

Therefore, the investigated categories are: single prism surface (P); two prism surfaces 

(2×P); three prism surfaces (3×P); all four prism surfaces (4×P); the mirror and single prism 

surface (M+P); the mirror and two prism surfaces (M+2×P); the mirror and three prism 

surfaces (M+3×P), and the mirror and all prism surfaces (M+4×P). After optimization, the 

performances of the various freeform groups and locations are compared using the RMS  

spot sizes at the edge and central wavelengths, as well as the RMS values of smile and 
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keystone distortion. The distortion values are calculated using all five sampling 

wavelengths, and ignoring spot size.  

 
Figure J.4. System RMS spot size comparison with different freeform positions after 

optimization. 

Using only one freeform surface, position P1 provides the best distortion correction and 

also offers a slight spot size reduction, as shown in Figure J.4 and Figure J.5. Considering 

only spot size, among the categories using two freeforms (2×P and M+P), those that include 

P1 typically show a smaller spot size than the others. Similarly, as shown in Figure 5.5, for 

the categories P, 2×P, 3×P, and M+P, the freeform groups including P1 all show a 

significantly better distortion correction in their respective categories. Being the first 

refractive surface of the system, its pre-correction of higher aberrations is important for 

preventing aberration magnification through the system. From the performance comparison 

of the 2×P cases, P1+P3 and P1+P4 perform the best, indicating again that proximity to the 

image enables good prevention of induced aberrations. 

 
Figure J.5. Distortion illustration of the modified Offner spectrometer. 
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For the 4×P, M+2×P, M+3×P, and M+4×P categories, all combinations show similar, 

very good distortion correction. Therefore, we conclude that using M2 and any two prism 

surfaces can guarantee great performance in typical Offner systems. In this particular setup, 

the combination of M2 and P1 alone can achieve this top-level correction performance after 

optimization. The corresponding surface sag and gradient are shown in Figure J.6, where 

only a small deviation from the basic shape can be observed.  

 
Figure J.6. Freeform surface illustrations of the modified Offner spectrometer. 

Furthermore, the large number of freeform group combinations in this system offers an 

interesting opportunity to examine the effect of available degrees of freedom on the 

aberration correction. Every freeform surface introduces 37 degrees of freedom, coming 

from the 36 Zernike fringe sag terms plus the corresponding normalized radius, so we can 

simply use the number of freeforms (1 to 5) as an independent variable. For a better 

illustration of the general improvement with a certain number of degrees of freedom, an 

averaged improvement factor is defined as 

1

,
/

original

freeform

D
F

Dτ τ
=
∑

                                                   (J. 3) 

where D represents the RMS value of any of the three evaluation criteria—keystone 

distortion, smile distortion, and spot size—calculated over the three wavelengths., which 

are keystone distortion, smile distortion, or spot size. 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 means the original value 

and 𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the value after optimization with freeforms. Here n indicates the total 

number of cases in each category. Therefore, the improvement factor F calculates the 

change of the average RMS values for each of the three criteria. The results are shown in 

Figure J.7, where the blue and orange lines represent the logarithmic improvement factor 

for the two kinds of distortion, and the gray line represents that of the spot size. It can be 
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clearly observed that all three lines grow exponentially as more freeforms are added. 

Distortion correction improves greatly up to three freeforms, but adding a 4th does not offer 

significant improvement. Adding a 5th considerably improves mainly smile distortion. In 

contrast, the spot size shows constant, significant improvement with the addition of further 

freeforms. In general, we observe a roughly exponential improvement in corrective power 

with increasing degrees of freedom [28]. 

 
Figure J.7. Improvement factor against the number of freeforms in logarithmic scale. 

With the aim to improve the smile and keystone distortion correction and potentially the 

resolution of line imaging refractive spectrometers, we discuss the correction of a refractive 

imaging spectrometer with the modified Offner structure by introducing freeforms at 

various locations. In general, as more freeforms are introduced, the improvement of the 

system performance can be greatly enhanced due to the additional degrees of freedom. For 

the folded structure of the system with more critical higher-order aberrations, the freeform 

should be located in the front part of the system to prevent any induced aberrations as early 

as possible. Based on the limits of manufacturing and cost, the number and optimal 

locations of the freeforms should be taken into consideration to reach the best balance with 

the imaging performance. Through this study, the corrective power of freeform surfaces is 

better understood, and the critical impact of the induced aberration is revealed, which 

emphasizes the necessity of the analysis of intrinsic/induced aberrations. 
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