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Liver diseases are the fourth common death in Europe responsible for about 2 million

death per year worldwide. Among the known detrimental causes for liver dysfunction

are virus infections, intoxications and obesity.

The mineralocorticoid receptor (MR) is a ligand-dependent transcription factor acti-

vated by aldosterone or glucocorticoids but also by pathological milieu factors. Canoni-

cal actions of the MR take place in epithelial cells of kidney, colon and sweat glands

and contribute to sodium reabsorption, potassium secretion and extracellular volume

homeostasis. The non-canonical functions can be initiated by inflammation or an

altered micro-milieu leading to fibrosis, hypertrophy and remodelling in various tissues.

This narrative review summarizes the evidence regarding the role of MR in portal

hypertension, non-alcoholic fatty liver disease, liver fibrosis and cirrhosis, demon-

strating that inhibition of the MR in vivo seems to be beneficial for liver function and

not just for volume regulation. Unfortunately, the underlying molecular mechanisms

are still not completely understood.
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1 | INTRODUCTION TO THE
MINERALOCORTICOID RECEPTOR (MR)

Classically the renin-angiotensin-aldosterone system (RAAS) is con-

ceived as a hormonal mechanism regulating blood pressure and elec-

trolyte balance (Simoes E Silva et al., 2017). Renin is synthesized in

the juxtaglomerular cells of the afferent arteriole and released upon

glomerular hypoperfusion, reduced sodium intake and increased sym-

pathetic tone (Hackenthal et al., 1990). In a cascade of partial proteol-

ysis, activated renin cleaves the plasma protein angiotensinogen to

form the decapeptide angiotensin I. Angiotensin converting enzyme

(ACE), a membrane bound metalloproteinase of endothelial cells,

cleaves angiotensin I to angiotensin II (Paul et al., 2006). Angiotensin

II, for a long time considered the main effector peptide of the RAAS,

induces vasoconstriction by binding to its G-protein coupled AT1

receptors on vascular smooth muscle cells and induces the synthesis

of aldosterone in the adrenal cortex (Paul et al., 2006).

Aldosterone exerts its effects via binding to the MR. The MR

belongs to the steroid receptor superfamily together with

progesterone, estrogen, androgen and glucocorticoid receptors

(GR) (Meinel et al., 2014) and is nowadays considered an ubiquitously

expressed receptor (Kuhn & Lombes, 2013). However, the canonical

actions of the MR occur in epithelial cells from kidney, colon and

sweat glands and contribute to sodium reabsorption, potassium secre-

tion and extracellular volume homeostasis. Non-canonical MR func-

tions can be initiated by inflammation or an altered micro-milieu

leading to fibrosis, hypertrophy and remodelling (Meinel et al., 2014).

Here the best-described mechanistic insights derive from cardiovascu-

lar diseases. In recent years, other effector organs, as well as diseases,

related to the MR were identified. There is evidence that the MR

plays a role in the immune system (van der Heijden et al., 2018), in

adipose tissue (Feraco et al., 2013) and in the liver (Li et al., 2020; Luo

et al., 2012; Schreier et al., 2018). Thereby, the MRs contribute to the

consequences of diseases such as diabetes mellitus (Chen et al., 2015;

Luther et al., 2011; Wang et al., 2019) metabolic syndrome (Long

et al., 2013) or liver cirrhosis and portal hypertension (Garcia-Pagan

et al., 1994; Katsuta et al., 1993; Queisser et al., 2014; Schreier

et al., 2018; Tandon et al., 2010). An increase in aldosterone plasma

concentrations in liver cirrhosis was recognized relatively early in the

history of aldosterone (Conn, 1956). This secondary hyper-

aldosteronism leads to salt and water retention and is involved in the

formation of ascites, hypertension and therefore decompensation of

liver function. Additionally, there is more and more evidence that the

effects of aldosterone and the MR during liver dysfunction is attribut-

able not only to electrolyte and extracellular fluid balance.

Explaining the importance of RAAS, aldosterone or the MR on

extracellular volume homeostasis, salt and water balance and for the

control of blood pressure, is beyond the scope of this review and

extensively covered elsewhere (Poulsen & Fenton, 2019; Sparks

et al., 2014; Yamazaki et al., 2019). The same is true for the effect of

the second RAAS axis consisting of angiotensin converting enzyme 2

(ACE2), angiotensin (Ang 1–7), alamandine and their receptors MAS1

proto-oncogene (MAS) and Mas-related G protein-coupled receptor

D (MrgD) (see Santos et al., 2017). Similarly, the roles of MRs in learn-

ing and memory, in neuronal differentiation, and in stress responses

within the hippocampus and other areas of the brain, as evident from

various studies in brain specific mutant mice, will not be covered here.

This review will mainly focus on the effects of the MRs on liver physi-

ology and pathophysiology.

2 | LIVER

The physiological functions of the liver include, among others, macro-

nutrient metabolism, blood volume regulation, immune system sup-

port, endocrine control of growth signalling pathways, lipid and

cholesterol homeostasis and breakdown of xenobiotic compounds

(Trefts et al., 2017). Among the substrates metabolized in the liver are

the corticosteroids. Aldosterone, for example, is metabolized to less

polar metabolites and these are then mainly excreted in the bile

(Egfjord et al., 1991). In liver cirrhosis, synthesis of aldosterone is

increased and the metabolic clearance is reduced, both contributing

to increased aldosterone plasma concentrations (Rosoff et al., 1975).

The liver consists of several different cell types, with the hepato-

cytes as the “parenchymal cells” and responsible for most of the syn-

thetic and many of the metabolic functions (Nagy et al., 2020). Other

important liver cells are hepatic stellate cells (HSC), Kupffer cells and

liver sinusoidal endothelial cells (LSEC) (Trefts et al., 2017).

Endothelial cells of the sinusoids comprise about 3% of the

parenchymal mass/volume. They are only 150–170 nm across in the

normal liver and exhibit holes (fenestrae) 50–200 nm in diameter but

lack a structured basal membrane (Nagy et al., 2020). Modifications in

fenestrae properties, i.e. pseudo-capillarization, are associated with

aging and hypoxia (McLean et al., 2003), while a complete loss of

fenestrae, i.e. capillarization (Le Couteur et al., 2002) seems to

precede the development of most chronic liver diseases

(Schmucker, 1998; Wynne et al., 1989). One of the major factors

involved in maintenance of the fenestrae is vascular endothelial

growth factor (VEGF) (Iwakiri & Groszmann, 2020). HSCs – also

known as Ito cells - represent 4–8% of cells of the healthy liver and

are characterized by storage of retinyl esters in cytoplasmic lipid drop-

lets (Lee & Friedman, 2020). HSCs are located in the space of Disse,

between the hepatocytes and the endothelial cells. They are the prin-

cipal source of extracellular matrix proteins (Ishibashi et al., 2009).

Therefore, they play an important role in the development of liver

fibrosis after injury (Lee & Friedman, 2020). Additionally, they act as

pericytes of the liver sinusoids and regulate the sinusoidal blood flow

(Nagy et al., 2020). Kupffer cells are the resident macrophages in the

liver and play a major systemic anti-inflammatory role by preventing

gut-derived, immuno-reactive substances from travelling past the

hepatic sinusoid (Dixon et al., 2013). Reduced function of the Kupffer

cells contributes to pathogen invasion and hence systemic inflamma-

tion. Enhanced activity contributes to chronic inflammatory liver

diseases as NAFL/NASH or alcoholic liver disease (Dixon et al., 2013).

The organizational principles of liver function have been recently

reviewed (see Nagy et al., 2020).
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Liver diseases account for about 2 million deaths per year, world-

wide. Of these, 1 million people die due to complications of cirrhosis

and 1 million due to viral hepatitis and hepatocellular carcinoma

(HCC) (Asrani et al., 2019). In Europe, cirrhosis is the fourth most com-

mon cause of death with numbers rising (Tsochatzis et al., 2014). Dif-

ferent pathological alterations lead to liver cirrhosis in developed

countries, with hepatitis C infection, alcohol misuse and non-alcoholic

liver diseases as the main causes. However, infection with hepatitis B

virus is the main cause in sub-Saharan Africa and the most parts of

Asia (Tsochatzis et al., 2014).

Liver disease often starts with lipid accumulation in the hepato-

cytes and development of fibrosis. In the natural course, chronic liver

disease progress into compensated cirrhosis and with development of

complications, such as ascites, variceal bleeding, hepatic encephalopa-

thy and icterus, to decompensated cirrhosis (D'Amico et al., 2006).

The main driver of the most frequent complications, ascites and

variceal haemorrhage, is portal hypertension (D'Amico, 2014; Zipprich

et al., 2012). Patients with decompensated cirrhosis are at further risk

of developing acute-on-chronic liver failure and subsequent death

(Trebicka et al., 2021).

3 | RAAS IN THE LIVER

The function of the RAAS in the liver is still not completely under-

stood (Simoes E Silva et al., 2017), although the liver is an important

organ for this system because the main source of angiotensinogen are

the hepatocytes. Cre-dependent deletion of angiotensinogen in mice

revealed that 90% of the circulating angiotensinogen -which is the

only precursor of all angiotensin peptides, including angiotensin II,

Ang (1–7) or alamandine, is synthesized in hepatocytes (Lu

et al., 2016). In advanced liver cirrhosis, the production of

angiotensinogen is decreased, while the renin plasma activity is

increased (Kuiper et al., 2008). Additionally, the liver is involved in

renin clearance from the plasma (Kuiper et al., 2008), presumably con-

tributing to an increase in plasma renin activity when liver function is

restricted.

There is good evidence that angiotensinogen derived peptides

are involved in liver diseases. For example, angiotensin II, as a vaso-

constrictor substance, causes a rapid and pronounced rise in portal

pressure, most probably by reducing the diameter of the post-

sinusoidal venules (Simoes E Silva et al., 2017). Accordingly, losartan -

an AT1 receptor antagonist - reduced the portal pressure in patients

with moderate to severe portal hypertension (Schneider et al., 1999).

However, in a systematic review Tandon et al (Tandon et al., 2010)

could not observe an overall beneficial effect of AT1 receptor antago-

nists or decreased generation of angiotensin II (with ACE inhibitors)

on portal pressure. By re-analyzing the patient data from three of the

initial studies, the authors came to the conclusion that there is a bene-

ficial effect of AT1 receptor antagonists or ACE inhibitors in patients

with less severe liver cirrhosis (Child Pugh A compared to Child Pugh

B). The authors hypothesize that, in advanced cirrhosis, additional

vasoactive pathways, such as increased endothelin, thromboxane or

insufficient NO release, contribute to portal hypertension and that

the effect of RAAS inhibitors might therefore be overcome (Tandon

et al., 2010).

In the liver, angiotensin II induces the expression of TGF-β1 in

HSCs via AT1 receptors, contributing to liver fibrosis (Yoshiji

et al., 2001). Detrimental contributions of ACE and angiotensin II are

not only reported for portal hypertension and liver fibrosis, but also

for non-alcoholic fatty liver disease (NAFL) and chronic hepatitis B

virus induced fibrosis (Simoes E Silva et al., 2017). Among liver dis-

eases, NAFL is the most common worldwide and an important risk

factor for non-alcoholic steatohepatitis (NASH), Type 2 diabetes and

cardiovascular diseases (Musso et al., 2011, 2015).

In contrast to angiotensin II, Ang (1–7) acts anti-inflammatory and

anti-fibrotic in liver tissue (Simoes E Silva et al., 2017). Accordingly, in

rats with bile duct ligation, the induced liver cirrhosis was associated

with an increase in plasma renin activity, angiotensin II and Ang (1–7)

concentrations in the plasma. Upon treatment with the MAS receptor

antagonist (A-779), fibrosis was significantly enhanced, indicating a

protective role of the Ang (1–7) axis (Pereira et al., 2007). There

seems to be a carefully maintained balance between the classical

(ACE-angiotensin II-AT1 receptor axis) and the non-classical

ACE2-Ang (1–7)-MAS axis. While the former exerts pro-fibrotic

effects, the latter acts as an anti-fibrotic system, not only in liver cir-

rhosis and hypertension but also in NAFL (Simoes E Silva et al., 2017).

One major drawback of all these studies is that they do not take

into account the last part of the classical RAAS system, the

aldosterone-MR interaction. For cardiovascular diseases, inhibition of

the MRs has, at least, an additional, beneficial effect in patients

treated with AT1 receptor antagonists/ ACE inhibitors and

β-adrenoceptor antagonists (Pitt et al., 1999, 2001). Therefore, it is of

interest to have a closer look on the effects mediated by the MR and

its ligand aldosterone, in liver tissue.

4 | FUNCTION OF THE
MINERALOCORTICOID RECEPTOR AND
ALDOSTERONE IN THE LIVER

MR activation in the cardiovascular tissue promotes hypertension,

fibrosis and inflammation (Buonafine et al., 2018). These mechanisms

are also involved in the development of liver diseases. Progression of

liver dysfunction depends on the crosstalk of the different cell types

within the liver but, while there is evidence that inhibition of the MR

is beneficial for liver function (see below), little is known about the

cellular mechanisms leading to this effect. In healthy rat livers, the

main cell type expressing MRs, at mRNA and protein levels, is the

hepatocytes (Schreier et al., 2018), although there are also MRs

detectable in LSECs and Kupffer cells (Pizarro et al., 2015). At the

moment, it is not clear if rat HSCs also express MRs, as we could

detect the appropriate mRNA but not the protein (Schreier

et al., 2018). Pizarro et al detected the mRNA (Pizarro et al., 2015),

while Rombouts et al. could not detect mRNA for the MRs, but

observed an increase of extracellular matrix proteins after treatment
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with aldosterone, of freshly isolated rat hepatic stellate cells

(Rombouts et al., 2001). As activation of the MRs might be cell type

and micro-milieu specific, the effects in the different cells may vary

and therefore a cell type-specific analysis is needed.

Unfortunately, little is known about the regulation of MR expres-

sion, e.g. is there a feedback from the ligand-activated MR on its own

transcription or are there further transcription factors involved in the

baseline MR expression. Zennaro et al. (Zennaro et al., 1997) demon-

strated that there are at least two 50-flanking regions of the MR lead-

ing to two functional MR promoters resulting in two distinct

MR-mRNAs which result in the same protein. Both variants seem to

have the same abundance in the tissues tested (Zennaro et al., 1997).

In contrast to the tissue abundance, the promoters differ in their basal

and hormone-regulated activity (Le Menuet et al., 2000; Zennaro

et al., 1995, 1996). This might provide a tissue-specific, fine-tuning,

control mechanism for MR expression and aldosterone action. It is

possible that there are cell type-specific effects on MR expression, as

in mice fed with a choline-deficient and amino-acid defined (CDAA)

diet, an increase in MR mRNA was observed in HSCs but a reduction

in hepatocytes (Pizarro et al., 2015). We also observed a reduction of

MR mRNA content in freshly isolated hepatocytes from rats with

decompensated liver cirrhosis (Schreier et al., 2018). If this reduced

mRNA content is due to reduced transcription or enhanced mRNA

degradation is still under investigation, as well as the underlying

molecular pathways. This knowledge will provide relevant insight into

the pathophysiological role of the MR in the liver.

The expression of different MR isoforms or splice variants is

rarely taken into account for varying MR action. Besides the two vari-

ant exons 1, the human MR gene is composed of nine additional

exons (Zennaro et al., 1995), with the translation start site located in

exon 2. Bloem et al. (Bloem et al., 1995) identified a MR splice variant

with a 12 base pair insertion between the two zinc fingers. This alter-

ation leads to a four amino acid longer spacer between the two

residues, presumably altering DNA binding of the MR. Additionally, a

truncated version of the MR has been described lacking ten base

pairs at the C-terminus resulting in a premature stop codon

(Zhou et al., 2000). This deletion shortens the MR from 981 amino

acids to 807 amino acids. The variant protein showed the same

baseline activity as the wild type MR, but was not responsive to

aldosterone. One of the tissues expressing this variant is the liver

(Zhou et al., 2000). Furthermore, there is an isoform lacking exon five

and six of the human MR. This isoform lacks the hinge region and the

ligand-binding domain. This variant acts as a ligand-independent

transcription factor and enhances with co-activators - differing from

those of the wild type MR - the transcriptional potential (Zennaro

et al., 2001). The expression of the isoform lacking the exons 5&6 in

the hepatic cell line SK Hep1 was high (Zennaro et al., 2001). If this is

true for the liver in vivo and for all liver cells has still to be evaluated.

On the other hand, there are studies showing that loss of a part of the

hormone-binding region of the GR generates a constitutively active

molecule, indicating that neither the steroid binding domain, nor the

steroid hormone itself, is needed for DNA binding or transcriptional

enhancement (Evans, 1988).

In vivo, the MR is exposed to different circulating steroids including

cortisol, cortisone, corticosterone (the main active glucocorticoid in

most rodents) and progesterone. The MR shows the same affinity for

aldosterone, corticosterone and cortisol, while the GRα shows low affin-

ity for aldosterone, deoxycorticosterone and the sex steroids but high

affinity for dexamethasone and modest affinity for cortisol and cortico-

sterone (Funder, 1997; Reul & Kloet, 1985). Therefore, the MR is often

considered a high-affinity corticosteroid receptor. Nonetheless, aldoste-

rone and deoxycorticosterone are recognized as the physiological MR

ligands. The concentration of glucocorticoids in the plasma varies on a

diurnal basis with low nanomolar concentrations during sleep and low

micromolar concentrations during severe stress/illness (Chapman

et al., 2013); thereby exceeding the plasma aldosterone concentrations

up to 1,000 fold. Interestingly, the aldosterone synthase (CYP11B2) can

be found in rat HSC and the expression of this enzyme is upregulated

after chronic liver injury (Caligiuri et al., 2003), indicating a local RAAS

which could affect liver function in an autocrine or paracrine fashion.

In certain cells, 11-β-hydroxysteroid dehydrogenase 2 (11β-
HSD2) converts cortisol to the inactive cortisone (Chapman

et al., 2013), but not aldosterone. When this enzyme is not expressed

or inhibited, e.g. by licorice, cortisol can bind to the MR and activate it

(Funder, 1997). In the kidney, the 11β-HSD2 is expressed in collecting

duct cells and protects the MR from activation by cortisol (Edwards

et al., 1988; Funder et al., 1988). In the liver, adipose tissue and the

adult brain this enzyme is absent, therefore activation by cortisol is

possible if not likely (Chapman et al., 2013). Additionally, 11β-HSD1

regenerates cortisol from inactive cortisone. Among other locations,

this enzyme is expressed in the liver, adipose tissue and the brain

(Anagnostis et al., 2009). Interestingly, deletion of the 11β-HSD1 in

hepatocytes did improve glucose tolerance but not insulin resistance

or steatosis in mice fed a high-fat diet for 18 weeks (Lavery

et al., 2012), indicating that cortisol might be the active ligand for the

MR in liver and adipose tissue (Kuhn & Lombes, 2013) but regenera-

tion of cortisol does not contribute substantially to steatosis. Unfortu-

nately, little is known regarding the ligand activating the MR in the

liver. Further studies are needed to identify if the effects elicited by

MR inhibition in vivo are induced by aldosterone or glucocorticoids.

In the unliganded state, both MR and GR are associated with

chaperone proteins, such as heat shock protein (HSP) 90 and immu-

nophilin (HSP56). These proteins ensure that the receptors stay in

their inactive form, with high affinity for the hormone (Funder, 1997).

Upon ligand binding, the chaperone proteins are partly released from

the complex and the receptor translocates – together with HSP90 - to

the nucleus (Gekle et al., 2014), enabling its action as a transcription

factor (Funder, 1997). The expression of chaperones, co-activators or

co-repressors can be cell type or micro-milieu specific. For example,

there is a change in transcriptional activity of the aldosterone-

activated MR under hypoxic conditions in HEK cells, where the activ-

ity via the NFκB -response element is enhanced and activation of the

glucocorticoid receptor response element is reduced (Schreier

et al., 2018). The GR and the MR share 94% homology in the DNA

binding domain and thus bind to the same palindromic 15-nucleotide

sequence either as homodimers or heterodimers (Funder, 1997).
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However, from a systemic and clinical point of view, both receptors

and hormones – glucocorticoids vs. mineralocorticoids – show

different effects. Therefore, the identification of MR-specific response

elements is of high scientific value. Meinel et al. (Meinel et al., 2013)

identified a MR-, but not GR-responsive, DNA fragment within the

promoter of the epidermal growth factor receptor. This

element lacked the classical GR response element characteristics and

gene transcription by the MR depended on the specificity protein

1 (SP1).

Considering the beneficial effects of MR inhibition for liver func-

tion in vivo, the following questions need to be answered: i) which liver

cells are responsible for the beneficial effect of MR inhibition? ii) How

does the alteration of the signalling cascade in one cell affect the other

cell types? iii) Is the MR activated by aldosterone or by glucocorticoids

in liver diseases, or are the micro-milieu changes sufficient to increase

the transcriptional activity of the MR? iv) What are the effects of MR

activation on liver function and which cofactors are needed to induce

them? We tried to summarize the knowledge about the potential MR

action modulating factors in the different liver cells in Table 1.

5 | MR IN LIVER DISEASES

5.1 | NASH (non-alcoholic steatohepatitis) & NAFL
(non-alcoholic fatty liver)

NAFL has a global prevalence of 25% and is a leading cause for cirrho-

sis and hepatocellular carcinoma (Powell et al., 2021). NAFL enhances

the risk of developing Type 2 diabetes, cardiovascular and cardiac dis-

eases, as well as chronic kidney disease (Byrne & Targher, 2015). In

patients with Type 2 diabetes, NAFL can be observed in 47.3–63.7%

of patients, in people with obesity that number is even higher with

70–80%. Although less than 10% of people with NAFL develop liver

associated complications, it is now known to be the most rapidly

increasing cause of liver-related mortality worldwide (Powell

et al., 2021).

NAFL is defined by the presence of steatosis – accumulation of

triglycerides in the hepatocytes - together with metabolic risk factors

like obesity and Type 2 diabetes but in the absence of excessive alco-

hol consumption or other chronic liver diseases (Powell et al., 2021).

Different diseases are summarized under the term NAFL: i) steatosis

with or without mild inflammation (non-alcoholic fatty liver, NAFL)

and ii) steatosis with necro-inflammation and hepatocellular injury

(NASH). In NASH fibrosis develops more rapid than in NAFL, presum-

ably due to necro-inflammation (Powell et al., 2021). The underlying

pathomechanism is – to state it simply – over-nutrition. Over-

nutrition induces the expansion of adipose tissue, subsequent infiltra-

tion of macrophages in the fat tissue leads to insulin resistance. These

changes mean that glucose uptake is reduced while lipolysis is induced

inappropriately in adipose tissue. The resulting increased plasma lipid

concentrations lead to an increased lipid uptake in the liver with a

subsequent imbalance enabling the formation of lipotoxic lipids that

contribute to cellular stress (i.e. oxidative stress and endoplasmic

reticulum stress), inflammasome activation and apoptotic cell death,

and subsequent stimulation of inflammation, tissue regeneration, and

fibrogenesis in the liver (Powell et al., 2021). The lipid accumulation in

the hepatocytes impairs key components of the insulin-signalling

pathway, increasing the risk of Type 2 diabetes. Additionally insulin

resistance is not only restricted to adipose tissue but takes also place

in the liver (Rinella, 2015).

To our knowledge, liver-specific or rather, hepatocyte-specific

MR mutant mouse models have not yet been characterized. There is

some evidence from pharmacological inhibitor studies, that blockade

of the MR is beneficial against steatohepatitis. Treatment of mice with

60% high-fat diet combined with 30% high-fructose water for

8 weeks results – besides other alterations - in the accumulation of

lipid droplets in the hepatocytes, this phenotype was ameliorated by

spironolactone (Wada et al., 2010). Because high fat/high fructose

diet fed mice upon spironolactone treatment demonstrated reduced

epididymal fat weight, circulating free fatty acids and leptin levels, it is

possible that spironolactone suppresses hepatic steatosis and the

expression of pro inflammatory cytokines by preventing hepatic influx

of adipocytokines or free fatty acids from enlarged adipose tissue

(Wada et al., 2010). Consistent with this, the main source of accumu-

lated triglyceride in the liver is from serum free fatty acids (Donnelly

et al., 2005).

Additionally, C57Bl6J mice given a CDAA diet (a rodent model for

NASH), developed a severe steatosis, inflammatory cell infiltration,

hepatocyte ballooning and development of hepatic fibrosis.

Eplerenone treatment reduced liver steatosis and fibrosis but not liver

inflammation (Pizarro et al., 2015). The cell types involved are difficult

to identify. MR expression in isolated hepatocytes from CDAA mice

TABLE 1 Summary of the knowledge
for the different factors potentially
affecting MR actions in various liver cells

Hepatocytes LSEC Kupffer cells Hepatic stellate cells

MR expression

Health + + + ?

Disease # ? ? "
MR isoform Δ5&6 ? ? ?

CYP11B2 ? ? ? +

11β-HSD1 + ? ? ?

11β-HSD2 (�) (�) (�) (�)

Aldosterone degradation +
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was reduced but increased in hepatic stellate cells (Pizarro

et al., 2015). The interpretation of these results is difficult, as hepato-

cytes are the main cell type responsible for metabolic substrate turn-

over, while HSCs are the main source of extracellular matrix in the

liver.

In genetically altered mouse models for obesity and diabetes

(ob/ob mice with mutation of the leptin gene, db/db mice with muta-

tion in the leptin receptor gene) Robinson et al. (2000) showed that

eplerenone reduced the HOMA index (Homeostasis Model Assess-

ment index) – a measure for the endogenous insulin resistance - and

triglyceride levels in the plasma (Guo et al., 2008). Unfortunately,

these effects were only attributed to changes in the adipose tissue

and evaluation of the liver was not published until now. Interestingly,

in the obese db/db mice, urinary aldosterone/ creatinine ratio was

increased at 25 weeks of age (Guo et al., 2008), indicating an

increased plasma aldosterone level.

Although MR antagonists effectively ameliorate insulin resistance

in vivo, studies in vitro indicated that the effects of aldosterone on

the metabolic signalling cascade of insulin in hepatocytes and adipo-

cytes are mediated via the GR (Guo et al., 2008; Hirata et al., 2009;

Wada et al., 2009; Yamashita et al., 2004). In primary mouse hepato-

cytes, aldosterone stimulated the gene expression of glucose-6-phos-

phatase, beginning at a concentration of 1 nM, with a maximum effect

at 1 μM (Yamashita et al., 2004). Interestingly in HepG2 cells, human

hepatocellular carcinoma cells mimicking human hepatocytes, the

effect could be obtained at �100 fold higher concentrations, for the

lowest effective concentration and for the highest effect (Yamashita

et al., 2004). The results regarding the receptor mediating this effect

are still conflicting. While the effect was inhibited in HepG2 cells by

RU-486, a GR antagonist, but not by spironolactone (Yamashita

et al., 2004), indicating a MR-independent effect. Liu et al., 2006 (Liu

et al., 2006) demonstrated that RNAi-mediated MR silencing as well

as the MR antagonists spironolactone, eplerenone and RU-28318 led

– among other effects - to a decreased expression of glucose-

6-phosphatase in HepG2 cells. If MRs or GRs are involved in the de

novo glucose synthesis in hepatocytes needs to be investigated

further.

Although this review focuses mainly on the liver, in the context of

NAFL the effect of the MR in adipocytes and immune cells has to be

mentioned, at least briefly. The influence of adipocyte MRs on meta-

bolic syndrome-related pathophysiological changes is still under

debate. In adipose individuals, the expression of MRs in adipose tissue

was increased (Hirata et al., 2009; Urbanet et al., 2015). Deletion of

the MR in adipocytes did not induce major changes in weight gain,

glucose tolerance or insulin tolerance after 16 weeks of high fat/high

sucrose diet (Hayakawa et al., 2018). In contrast to this, over-

expression of MRs in the adipocytes induced weight gain, as well as

impaired insulin tolerance in mice (Urbanet et al., 2015). The insulin

resistance in these mice was prevented by canrenoate treatment

(Urbanet et al., 2015), indicating a MR-dependent effect not located

in adipocytes. In obese db/db mice eplerenone reduced the expres-

sion of the chemokine CCL2, TNF-α, serpin-1, CD 68 and leptin in

adipose tissue, while the expression of adiponectin and PPAR-γ

increased to levels similar to those in lean mice (Guo et al., 2008).

These findings suggest that endocrine inter-organ crosstalk needs to

be taken into consideration in order to fully understand the effects of

the MR in NAFL.

The obesity-related changes in vivo could be mimicked by aldo-

sterone incubation of isolated, primary adipocytes and were inhibited

by canrenoate indicating a MR-dependent effect (Guo et al., 2008).

This is in agreement with data from Hirata et al. (2009), who demon-

strated that in white adipose tissue of db/db and ob/ob mice, the adi-

pocyte cell size distribution, the number of macrophages (F4/80

positive cells), the number of crown-like structures, as well as plasma

thiobarbituric acid reactive substance (TBARS) was reduced by

eplerenone. Crown-like structures in the adipose tissue are dead adi-

pocytes surrounded by macrophages and could be causally related to

the appearance of metabolic disorders (Murano et al., 2008). TBARS is

a marker for lipid peroxidation and therefore for reactive oxygen

stress, related to metabolic disease (Dasgupta & Klein, 2014; Ruiz-

Ojeda et al., 2018). Aldosterone mimicked the effect of obesity on

reactive oxygen species (ROS) producing enzyme expression in

3 T3-L1 adipocytes and the effect could be inhibited by eplerenone as

well as by siRNAs against the MR (Hirata et al., 2009).

A more recent study focused on the effects of MR in white adi-

pose tissue (Urbanet et al., 2015), revealing that aldosterone in pri-

mary murine adipocytes increased the expression of lipocalin-type

PGD2 synthase, which could be inhibited by incubation with spi-

ronolactone. The effect could not be mimicked by dexamethasone.

Interestingly, deletion of this PGD2 synthase in mice leads to dys-

lipidemia, altered expression of lipogenesis genes and the acceleration

of NAFL and NASH (Kumar et al., 2020). Further studies are necessary

to evaluate the crosstalk between adipose tissue and the liver, and

the contribution of this crosstalk to the development of NAFL.

In the last few years, the function of the MRs in immune cells has

been further elucidated (Belden et al., 2017; Bene et al., 2014; van

der Heijden et al., 2018). As mentioned before, Kupffer cells are spe-

cialized macrophages that reside in the liver and make up the main

part of the mononuclear phagocytic system (Thomson & Knolle, 2010).

The importance of macrophages in NAFL and Type 2 diabetes has

been acknowledged, but how these cells affect the hepatocytes is still

not clear (Zhang et al., 2017). Knockout of myeloid MR and therefore

also in Kupffer cells, improved glucose tolerance, insulin resistance

and hepatic steatosis in obese mice (Zhang et al., 2017). Hepatic gene

and protein expression indicates that the deletion of the MR in mye-

loid cells reduces hepatic lipogenesis and lipid storage. Zhang

et al. (2017) further demonstrated, that the MR directly regulated the

estrogen receptor 1 (ERα) in macrophages, which thereby via

hepatocyte growth factor (HGF)/Met signalling enhanced lipid accu-

mulation and reduced insulin sensitivity of hepatocytes. These data

are in agreement with a study from Munoz-Durango et al. (2020)

demonstrating in a NASH model that mice with a myeloid cell-specific

MR inactivation showed reduced hepatic inflammation and lower tri-

glyceride content than controls. While the total number and percent-

age of liver inflammatory infiltrate cells were similar in both mutants

and controls, expression of the co-stimulatory molecule CD86 by
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dendritic cells and the CD25 activation marker in CD8+ T cells were

significantly reduced in myeloid-specific mutant livers. It appears that

myeloid MRs affect hepatic lipid accumulation, in part by modulating

the adaptive immune response, and controlling pro inflammatory cells,

which is important for the pathogenesis of steatosis (Munoz-Durango

et al., 2020).

As summarized in Figure 1, there is evidence that the MR is

involved in the development of NAFL and NASH. However, there

are still questions to be answered: Is the beneficial effect of MR

antagonists due to an intra-hepatic effect or due to a change in

inter-organ crosstalk? Moreover, which cells are responsible for the

beneficial effect: hepatocytes, hepatic stellate cells (Ito cells) or

Kupffer cells?

5.2 | Liver fibrosis

Liver fibrosis is a dynamic, highly integrated molecular, cellular and tis-

sue process responsible for driving the excess accumulation of extra-

cellular matrix components by myofibroblasts (Parola &

Pinzani, 2019). Chronic liver injury, chronic inflammation and progres-

sive fibrogenesis is leading often to liver cirrhosis, a process which

usually takes between 15–20 years (Parola & Pinzani, 2019). In liver

fibrosis, the progressive accumulation of extracellular matrix destroys

the physiological architecture of the liver (Iredale, 2007). The starting

point of liver fibrosis is often toxic, metabolic or viral damage of hepa-

tocytes. This promotes immune cell infiltration further by activating

the trans-differentiation of HSCs to collagen-producing myo-

fibroblasts (Elpek, 2014; Zhou et al., 2014). Although, on the short

term, pro-fibrotic and anti-fibrotic processes are balanced, persistent

activation of proliferating, contractile and migrating myofibroblasts

causes the excessive production of extracellular matrix (Elpek, 2014;

Zhou et al., 2014). Hepatocyte death is an important driver of liver

disease etiologies. One of the main causes for hepatotoxicity is lipid

overload, as accumulation of toxic lipid intermediates cause oxidative

and endoplasmic reticulum stress, mitochondrial dysfunction and

induce apoptosis (Musso et al., 2018). Quiescent HSCs are character-

ized as non-proliferative, peri-sinusoidal cells, characterized by their

star-like morphology and their cytoplasmic retinyl ester droplets (Ito

cells) (Testerink et al., 2012). Upon liver injury, HSCs become acti-

vated, loose their lipid droplets and produce collagen I, III, IV, fibro-

nectin and pro inflammatory mediators (Affo et al., 2017; Kisseleva

et al., 2012; Tsuchida & Friedman, 2017). Aldosterone, via the MRs,

contributes to tissue fibrosis in the heart, the kidney or blood vessels

(Azibani et al., 2013; Brown, 2013; Shrestha et al., 2019), but if they

also contribute to liver fibrosis is less clear.

There are only a few studies of the effects of aldosterone or the

MRs on liver fibrosis. In patients with liver fibrosis, there was no sig-

nificant increase in serum aldosterone levels but an increase in aldo-

sterone levels in the liver tissue, per se, to about 700 pg g�1 in

patients, from about 250 pg g�1 in healthy subjects (Li et al., 2020).

The mechanism leading to the increased aldosterone concentration in

the liver tissue is not known, there could either be an increase in aldo-

sterone synthesis – as in the rat brain (Albiston et al., 1994) or a

reduced aldosterone clearance from the liver (Rosoff et al., 1975). In a

model of hepatic fibrosis in rats, induced by i.p. injection of pig serum

over 12 weeks, treatment with spironolactone reduced the accumula-

tion of fibrotic material and the number of cells positive for α-smooth

muscle actin, indicating a reduced activation of HSCs (Fujisawa

et al., 2006). This model did not show increased plasma aldosterone

concentrations but the expression of CYP11B2 protein in hepatocytes

and HSCs was increased.

F IGURE 1 Effects mediated
by the mineralocorticoid
receptor (MR) and its
endogenous agonist,
aldosterone, in liver diseases.
Data summarized from human
and rodent model studies, as
discussed in the text
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In rats, infusion of aldosterone and 1% salt in the drinking water

induced systemic hypertension and liver fibrosis after 28 days of

treatment (Queisser et al., 2014). The effect was mediated by MR and

oxidative stress, as it was reduced by tempol – a ROS scavenger – and

spironolactone. Presumably, oxidative stress induced hepatic cell dam-

age, adding to the pro-fibrotic capacity of aldosterone. In a model of

bile duct ligation-induced liver cirrhosis in rats, spironolactone

reduced deposition of extracellular matrix and portal pressure (Luo

et al., 2012). This was accompanied by an increase in phosphorylation

and activity of endothelial NOS, indicated by enhanced phosphoryla-

tion of the vasodilator-stimulated phosphoprotein, as well as a

decrease of ROCK-2 (Rho-associated protein kinase 2) activity, mea-

sured as increased moesin phosphorylation (Luo et al., 2012).

In an additional study, high physiological concentrations of aldo-

sterone (1 nM) induced a contraction of activated HSCs, determined

by hydrated collagen gel contraction (Ji et al., 2011). This was medi-

ated most probably by interaction of the MRs with AT1 receptors acti-

vating ROCK-2, which is a key regulator of actin cytoskeleton and cell

polarity and subsequently an increase in myosin light chain phosphor-

ylation, necessary for smooth muscle cell like contraction (Ji

et al., 2011). Apart from the contractile function of the HSCs, acti-

vated MRs seem to enhance the pro-fibrotic effects of activated

HSCs. Platelet-derived growth factor BB (PDGF-BB) induced cell

proliferation and cell migration in human HSCs, effects inhibited by

canrenone. PDGF-BB also enhanced the activity of the sodium-

hydrogen antiporter, NHE1, by activating PI3K and this effect was

reduced by canrenone, as well as the de novo synthesis of collagen I,

collagen IV and fibronectin (Caligiuri et al., 2003). Aldosterone in

physiological concentrations stimulates the secretion of collagen IV

from freshly isolated HSCs, but after sub-culture, leading to an

activated phenotype of these cells, this effect was abolished

(Rombouts et al., 2001).

Taken together (Figure 1), there seems to be a pro-fibrotic action

of aldosterone and the MR in the liver, presumably in interaction with

enhanced reactive oxygen or nitrogen species. Further investigations

are needed to elucidate if the effect of aldosterone or the MRs is facil-

itated by increasing the ROS levels in hepatocytes, leading to an

increased activation of the HSCs or if there is a direct effect on HSCs

by aldosterone and the MRs.

5.3 | Liver cirrhosis & portal hypertension

Portal hypertension is the main driver of complications in cirrhosis

(Bosch et al., 2015). It results from an increased intrahepatic resis-

tance and an increased splanchnic inflow (Bosch et al., 2015). The

main cause for increased hepatic resistance is the distortion of the

liver tissue by increased extracellular matrix formation, and microvas-

cular thrombosis, accounting for 70–80% of increased resistance

(named static resistance) (Bosch et al., 2015; Gunarathne et al., 2020;

Iwakiri & Groszmann, 2020). 20–30% of the increased resistance is

due to reversible, hyper-contractile phenotype of the hepatic micro-

circulation (dynamic resistance) (Bosch et al., 2015; Gunarathne

et al., 2020; Iwakiri & Groszmann, 2020; Wiest & Groszmann, 2002).

In the normal liver, 75% of the blood comes from the portal vein and

25% from the hepatic artery (Nagy et al., 2020). This circulatory situa-

tion leads to different important vascular necessities: i) the portal vein

is not or only moderately auto regulated, as the liver has to take up all

the blood draining from the gastro-intestinal tract. ii) The oxygen con-

tent of the portal venous blood is low while the supply with other

nutrients is high (Bosch et al., 2015). Portal hypertension is character-

ized by an increase in portal venous pressure. In the clinical setting,

this is determined by measuring the pressure gradient between the

portal vein and the inferior vena cava – HVPG (hepatic venous pres-

sure gradient). This gradient is normally not higher than 1–5 mmHg.

Portal hypertension is clinically manifest if the gradient exceeds

10 mmHg (Bosch et al., 2015).

Hyperaldosteronism is a well-known feature of advanced liver cir-

rhosis. In one study, the plasma aldosterone concentration was three

to four times higher than the normal upper reference value (Kuiper

et al., 2008). The increase of plasma aldosterone level was only mod-

erately correlated to plasma renin activity, indicating a deregulation of

the RAAS. Tandon et al (Tandon et al., 2010) performed a systematic

review analysing, if inhibition of the RAAS was beneficial in reducing

portal hypertension. In this study, AT1 receptor antagonists and ACE

inhibitors were compared to aldosterone antagonists (at that time spi-

ronolactone). While AT1 receptor antagonists and ACE inhibitors had

no beneficial effect on HVPG, spironolactone reduced HVPG and nei-

ther nitroglycerin patches (NO-donor) nor β-adrenoceptor antagonists

showed an additional effect or enhanced the effect. In the treatment

guidelines from the European Association for the Study of the Liver

(EASL, 2018), spironolactone is indicated as a potassium-sparing

diuretic to reduce blood volume and thereby blood pressure. There-

fore, a study performed comparing the effect of spironolactone and

furosemide, a loop diuretic, is of special interest. Here, a significantly

larger effect of spironolactone, compared with furosemide, on HVPG

was observed, indicating an effect of MR blockade, above or indepen-

dent of its effects on blood volume (Katsuta et al., 1993). In an addi-

tional study, Nevens et al. (Nevens et al., 1996) compared the change

in variceal pressure – as a parameter for portal hypertension - in

patients treated with placebo or spironolactone for six weeks. They

subdivided the groups into propranolol or non-treated patients, ahead

of spironolactone treatment. Regardless of the pre-treatment, spi-

ronolactone reduced the variceal pressure but not the mean arterial

pressure. As expected, plasma renin activity was increased by spi-

ronolactone treatment.

The molecular mechanisms contributing to the beneficial effects

of aldosterone-MR inhibition have not been resolved in detail. In a

model of bile duct ligation induced liver cirrhosis in rats, spi-

ronolactone reduced deposition of extracellular matrix and portal

pressure (Luo et al., 2012). This was accompanied by an increase in

endothelial NO-synthase phosphorylation and activity - indicated by

enhanced VASP phosphorylation - as well as a decrease of ROCK-2

activity, measured as increased moesin phosphorylation (Luo

et al., 2012). We (Schreier et al., 2018) have found, in an animal study,

that treatment with eplerenone (a more specific MR blocker) leads to
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less development of fibrosis and less portal hypertension related com-

plications (ascites and hypersplenism). Eplerenone treatment was

started eight weeks after the beginning of cirrhosis induction in the

rats, mimicking a clinically relevant situation. It was hypothesized that

the effect of the MR was related to hypoxia and independent of the

ligand aldosterone. Interestingly, ursodeoxycholic acid inhibits - at

least in part - TGF-β1-induced apoptosis of hepatocytes, by ligand-

independent activation of the MR, presumably by inducing MR-GR-

heterodimers with the GR and subsequent expression of the tran-

scription factor E2f-1 (Sola et al., 2004).

6 | CONCLUSIONS AND FUTURE
PERSPECTIVES

In summary (Figure 1), inhibition of the MR in vivo seems to improve

liver function, at least in the diseased state. Regrettably, not much is

known about the mechanisms specific to the liver that underlie such

actions. Nevertheless, it can be hypothesized that the known molecu-

lar mechanisms from “classical” non-target tissues of the MR (heart,

blood vessels, immune cells) are at least partly involved in the actions

of the MR in liver.

6.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in http://www.guidetopharmacology.org, and

are permanently archived in the Concise Guide to PHARMACOLOGY

2021/22 (Alexander, Christopoulos, Davenport, Kelly, Mathie, Peters,

Veale, Armstrong, Faccenda, Harding, Pawson, Southan, Davies,

et al., 2021; Alexander, Cidlowski, Kelly, Mathie, Peters, Veale, Arm-

strong, Faccenda, Harding, Pawson, Southan, Davies, Coons,

et al., 2021; Alexander, Fabbro, et al., 2021a, 2021b; Alexander, Kelly,

et al., 2021a, 2021b).
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