
The socle of the center of a group
algebra

Dissertation

zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)

vorgelegt dem Rat der Fakultät für Mathematik und Informatik
der Friedrich-Schiller-Universität Jena

von M. Sc. Sofia Bettina Brenner
geboren am 02.09.1996 in Kassel



Gutachter:

1. Prof. Dr. David J. Green, Jena

2. Prof. Dr. Markus Linckelmann, London

3. PD Dr. Benjamin Sambale, Hannover
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Abstract

Let A be a finite-dimensional algebra over an algebraically closed field F . We consider the
socle soc(Z(A)) of its center Z(A), which is known to be an ideal of Z(A). The principal
question treated in this thesis is under which conditions soc(Z(A)) is even an ideal in the
entire algebra A. Our main focus lies on the case that A is the group algebra FG of a
finite group G over F . Here, it suffices to consider fields of characteristic p > 0.

In the first main result, we classify the p-groups G for which soc(ZFG) is an ideal in FG.
In case that p is an odd prime number, these are exactly the p-groups of nilpotency class
at most two. For p = 2, we obtain a characterization in terms of the conjugacy class
structure of the group. Here, in contrast to the case of odd characteristic, the group G
can have arbitrary nilpotency class.

However, the main focus of this thesis lies on the structural analysis of arbitrary finite
groups G for which soc(ZFG) is an ideal in FG. Our first fundamental observation
is that G has a normal Sylow p-subgroup P , which contains the derived subgroup G′.
Then we study the quotient group G/P ′ and determine a decomposition of G′/P ′ as a
direct product. Subsequently, we decompose G into a central product, which reduces our
investigation to the case P = G′. In case that one term in the decomposition of G′/P ′

vanishes, we give a complete characterization of the groups G for which soc(ZFG) is an
ideal of FG. Making use of these results, we state a conjecture on the structure of G in
the general setting, which we prove in a special case.

We also investigate the main problem for symmetric algebras, with a particular focus on
symmetric local algebras. There, we concentrate on two aspects: Firstly, we show that the
minimal dimension of a symmetric local algebra A in which the Jacobson radical J(Z(A))
of Z(A) is not an ideal is twelve, and that the minimal dimension of such an algebra A in
which the socle soc(Z(A)) is not an ideal is 17, 18, 19 or 20. Secondly, these properties
are investigated for quantum complete intersection algebras as well as trivial extension
algebras.
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Zusammenfassung

Sei A eine endlich-dimensionale Algebra über einem algebraisch abgeschlossenen Körper F .
Bekanntermaßen ist der Sockel soc(Z(A)) des Zentrums Z(A) von A ein Ideal in Z(A).
In dieser Arbeit untersuchen wir, unter welchen Bedingungen soc(Z(A)) sogar ein Ideal
in der gesamten Algebra A ist. Der Fokus liegt dabei auf Gruppenalgebren FG von end-
lichen Gruppen G über F . Hierbei reicht es aus, Körper mit positiver Charakteristik p zu
betrachten.

In unserem ersten Hauptresultat klassifizieren wir die p-Gruppen G, für die soc(ZFG) ein
Ideal in FG ist. Falls p eine ungerade Primzahl ist, sind dies genau die p-Gruppen der
Nilpotenzklasse höchstens zwei. Für p = 2 erhalten wir eine Charakterisierung anhand der
Konjugationsklassenstruktur von G. Im Unterschied zum Fall ungerader Charakteristik
kann die Nilpotenzklasse von G hier beliebig große Werte annehmen.

Der Fokus dieser Arbeit liegt jedoch auf der strukturellen Untersuchung beliebiger end-
licher Gruppen G, für die soc(ZFG) ein Ideal in FG ist. Wir zeigen zunächst, dass die
Gruppe G in diesem Fall eine normale p-Sylowgruppe P besitzt, die die Kommutatorun-
tergruppe G′ enthält. Danach untersuchen wir die Struktur der Faktorgruppe G/P ′ und
leiten eine Zerlegung von G′/P ′ als direktes Produkt von Untergruppen her. Im Anschluss
finden wir eine Zerlegung von G als Zentralprodukt gewisser Untergruppen, die es uns im
Folgenden ermöglicht, unsere Untersuchung auf den Spezialfall P = G′ zu beschränken.
Im Fall, dass ein bestimmter Faktor in der Zerlegung von G′/P ′ verschwindet, leiten wir
eine vollständige Klassifikation der Gruppen G, für die soc(ZFG) ein Ideal in FG ist,
her. Mithilfe dieser Resultate formulieren wir eine Vermutung über die Struktur von G im
Allgemeinen, die wir in einem Spezialfall beweisen.

Das zentrale Problem dieser Arbeit wird außerdem für symmetrische Algebren, insbe-
sondere für symmetrische, lokale Algebren, untersucht. Dabei liegt der Fokus auf zwei
Aspekten: Zum einen zeigen wir, dass die minimale Dimension einer symmetrischen, loka-
len Algebra A, in der das Jacobson Radikal J(Z(A)) des Zentrums kein Ideal ist, zwölf ist,
und dass die minimale Dimension einer solchen Algebra, in der soc(Z(A)) kein Ideal ist,
17, 18, 19 oder 20 beträgt. Zum anderen betrachten wir diese Eigenschaften für

”
quantum

complete intersection algebras“ sowie triviale Erweiterungen von lokalen Algebren.
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Introduction

Group algebras are the fundamental objects studied in the representation theory of finite
groups: Instead of directly investigating the finite-dimensional representations of a finite
group G over a field F , one usually studies modules over the group algebra FG of G over F .
This is possible since there exists a one-to-one correspondence between FG-modules and
representations of G over F . Since the group elements form a vector space basis for the
corresponding group algebra, the group G completely determines the structure of FG.
Naturally, this raises the question to which extent the converse holds, that is, which
structural aspects of the group G can be recovered from FG. In other words, we would
like to know which information is preserved in the transition from the group to its group
algebra.

A famous example for this kind of questions is the isomorphism problem: In the original
version, posed by Higman in his thesis [22], the question was whether two finite groups
G and H are isomorphic provided that they have isomorphic integral group rings ZG
and ZH. Although there exist some affirmative results for special classes of groups (for
instance, for p-groups [46]), the general problem was answered negatively by Hertweck
[21] in 2001. Many variants of this problem were considered. We mention Brauer [6] who
asked whether two finite groups G and H are isomorphic if their group algebras FG and
FH are isomorphic for every field F . A counterexample to this conjecture was given by
Dade [14]. Another variant is the modular isomorphism problem which states whether two
p-groups G and H are isomorphic if their group algebras over the field with p elements
are isomorphic. Also this question was recently answered negatively [18].

Since group algebras form a special class of symmetric algebras, it is useful to investigate
the latter in greater detail. This approach proved to be an efficient tool in representation
theory, for instance in the understanding of certain blocks of finite groups. Külshammer’s
series of papers on the group algebra viewed as a symmetric algebra (see [31], [32], [33],
[35]) is one of the first sources in which abstract symmetric algebras are explicitly studied
in order to obtain information on group algebras and related objects. This strategy was
subsequently adopted by various authors. For instance in [27], Broué’s abelian defect group
conjecture ([8, Question 6.2]) is proven in a special case by analyzing symmetric local
algebras of dimension nine with a prescribed isomorphism type of the center. Landrock
[38] investigates the Morita equivalence classes of certain blocks of finite-dimensional group
algebras by classifying symmetric local algebras of a certain type. Similar techniques are
for example also used in [29] and [40].

Here, we focus on properties of symmetric algebras originating from ideals in their center.
For group algebras, this is motivated by the fact that there exist many connections between
aspects of the representation theory of the group and the structure of certain ideals in the
center of the corresponding group algebra. For instance in [25] and [7], the investigation



2 Introduction

of such ideals gives rise to a method to detect odd diagonal entries in the Cartan matrix
of a finite-dimensional group algebra in characteristic two. More specifically, this thesis is
mostly concerned with the question under which conditions an ideal I of Z(A) is even an
ideal in the entire algebra A. This is then denoted by I E A. Our main focus lies on the
so-called socle soc(Z(A)), which is the annihilator of the Jacobson radical J(Z(A)) and
of fundamental interest in representation theory.

Main Problem. For which finite-dimensional F -algebras A is the socle soc(Z(A)) of
Z(A) an ideal of A?

To set the stage, we also deal with certain aspects of the analogous problem for the
Jacobson radical itself.

Question. For which finite-dimensional F -algebras A is the Jacobson radical J(Z(A)) of
Z(A) an ideal of A?

The latter question has been investigated for a long time, especially for group algebras over
an algebraically closed field F of positive characteristic p. In 1969, Clarke [12] provided
a characterization of the finite groups G that are p-solvable and satisfy J(ZFG) E FG.
In 1978, Koshitani [28] showed that the assumption on the p-solvability of G is in fact
redundant, thus completing the classification. In 2020, Külshammer [37] dealt with blocks
of finite group algebras and gave some approaches for general finite-dimensional symmetric
algebras. Furthermore, Landrock [39] proved that every symmetric local F -algebra A of
dimension at most ten satisfies J(Z(A)) E A. It should be mentioned that especially for
group algebras, there exist various prequels and variants of this question (for a collection
of related problems, see [37]).

In contrast, results related to the corresponding problem for the socle soc(Z(A)) are
rare. In the case that A is a symmetric local algebra, a criterion which is equivalent to
soc(Z(A)) E A is mentioned in [38, Lemma 1.1.15] and [39, Lemma 3.1]. It is generalized
to arbitrary finite-dimensional F -algebras in [37, Lemma 2.1]. Apart from these sources,
we are not aware of any other results concerning this question.

In this thesis, we are mainly interested in treating this problem in the case that A is a
symmetric algebra, or, as a special case, in the situation where A is the group algebra FG
of a finite group G over the field F . This situation is of particular interest since the
property soc(ZFG) E FG is an invariant of the group algebra. That is, it only depends
on the structure of the algebra FG itself and it can be verified without any information
on the underlying group G. Such invariants play a crucial role in the treatment of the
isomorphism problems that we mentioned earlier. Moreover, from a practical point of
view, the investigation of the special case of group algebras has the additional advantage
that the group carries a lot of structural information. It turns out that our problem can
be expressed completely in terms of group-theoretic notions, which allows us to make use
of the rich theoretical background developed in this area.

This thesis is structured in the following way: The first chapter is devoted to introducing
the main problem in its most general setting. We begin with some universal results
on arbitrary finite-dimensional F -algebras. In particular, we introduce the structures
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investigated in this thesis and present an equivalent condition for our main question which
is stated in [37]. With this, we examine our problem for tensor products of algebras. In
the next step, we restrict ourselves to symmetric algebras. Apart from collecting some
background results on this topic, the main objective of this part is to transfer the property
soc(Z(A)) E A to certain quotient algebras of A.

The second chapter is concerned with the treatment of group algebras. We rephrase the
problem in terms of group-theoretic notions and derive some first results on the structure
of the finite groups G which satisfy soc(ZFG) E FG for a fixed algebraically closed
field F . In this situation, we may restrict ourselves to fields of positive characteristic p.
By investigating the Reynolds ideal of FG, we find a decomposition of G as a certain
semidirect product. This allows us to determine a basis for the Jacobson radical J(ZFG),
which we will use throughout the entire thesis. Another important aim of this chapter is
to establish a connection between our main problem for the group algebra FG and the
corresponding question for the group algebra of a quotient group G/N . We conclude this
chapter with the investigation of groups which have an abelian Sylow p-subgroup. This
will form the starting point for further derivations.

In the third chapter, we study groups of prime power order. Although this is a special
case of our problem, the treatment of p-groups is particularly insightful and forms a basis
for the further results in this thesis. After some general observations concerning p-groups
of small nilpotency class and the behavior of the problem with respect to isoclinism, we
distinguish the cases p ≥ 3 and p = 2. We obtain the following characterization of the
p-groups G which satisfy soc(ZFG) E FG:

Theorem. Let F be an algebraically closed field of characteristic p > 0 and let G be
a finite p-group. Then soc(ZFG) is an ideal in FG if and only if one of the following
statements holds:

(i) The nilpotency class of G is at most two.

(ii) We have p = 2 and G′ ⊆ Y (G)Z(G), where G′ and Z(G) denote the derived subgroup
and the center of G, respectively, and Y (G) is the subgroup generated by all elements
fg−1 for which the set {f, g} is a G-conjugacy class of length two.

In particular, we find examples of 2-groups G of arbitrary nilpotency class for which
soc(ZFG) is an ideal in FG. This demonstrates the substantial difference in the behavior
of p-groups with respect to this problem, depending on whether the characteristic is odd or
even. Moreover, this theorem has consequences in view of the isomorphism problems that
we mentioned at the beginning: It implies that one can distinguish p-groups of nilpotency
class at most two from p-groups of class at least three by examining the socle of the center
of their group algebra if p is odd.

In the fourth chapter, we treat our main problem for arbitrary finite groups. It turns out
that if G is a finite group which satisfies soc(ZFG) E FG, then G is of the form G = PoH,
where P is the unique Sylow p-subgroup of G and H is an abelian Hall p′-subgroup. In
order to exploit our results on groups with an abelian Sylow p-subgroup from the second
chapter, we first describe the structure of the quotient group G/P ′ before examining the
structure of G itself. After that, we distinguish the cases CG′(P ) ⊆ P ′ and CG′(P ) 6⊆ P ′.
In the first case, we can classify the groups G which satisfy soc(ZFG) E FG:
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Theorem. Let F be an algebraically closed field of characteristic p > 0 and let G be a
finite group of the form G = P oH with a Sylow p-subgroup P and an abelian p′-group H.
Moreover, we assume CG′(P ) ⊆ P ′ and Op′(G) = 1, where Op′(G) denotes the p′-core
of G. Then soc(ZFG) is an ideal of FG if and only if there exist normal subgroups
K,Q1, . . . , Qn of G for some n ∈ N0 such that

G = K ∗Q1 ∗ . . . ∗Qn

is a central product and the following hold:

(i) K is a p-group with soc(ZFK) E FK,

(ii) Qi = Q′i oHi is a semidirect product of the derived subgroup Q′i, which is a p-group
of nilpotency class exactly two, and a cyclic subgroup Hi of order |Q′i/Q′′i | − 1 such
that Qi/Q

′′
i
∼= AGL(1, |Q′i/Q′′i |) holds,

(iii) the centralizer CHi(Q
′′
i ) of Q′′i in Hi is nontrivial,

(iv) Q′i/Z(Qi) is a Camina group.

If CG′(P ) is not contained in P ′, we formulate a conjecture on the structure of H and its
action on P , which we prove in a special case. Conversely, if H is of the presumed form,
then the group G can be decomposed into a certain direct product to which our previous
results can be applied in order to determine whether soc(ZFG) is an ideal of FG.

In the last chapter, we move to the investigation of symmetric local algebras over an
algebraically closed field F of arbitrary characteristic. The aim of this chapter is to provide
examples of minimal dimension in which the Jacobson radical or the socle of the center are
not ideals, respectively. To this end, we first consider two special classes of symmetric local
algebras, namely quantum complete intersection algebras and trivial extension algebras,
before moving to the investigation of general symmetric local algebras. In [39, Theorem
3.2], Landrock proved that every symmetric local F -algebra A of dimension at most ten
satisfies J(Z(A)) E A. Here, we refine his result in the following way:

Theorem. Let F be an algebraically closed field. Every symmetric local F -algebra A
of dimension dimA ≤ 11 satisfies J(Z(A)) E A and there exists a symmetric local F -
algebra A of dimension twelve in which J(Z(A)) is not an ideal.

We conclude this thesis with the analogous investigation for the socle. In this case, we
show the following:

Theorem. Let F be an algebraically closed field. Every symmetric local F -algebra A of
dimension at most 16 satisfies soc(Z(A)) E A.

Moreover, using trivial extension algebras, we are able to provide an example of a symmet-
ric local F -algebra A of dimension 20 with soc(Z(A)) 6E A, which yields an upper bound
for the minimal dimension of such an algebra. Additionally, we show that for the class of
trivial extension algebras, this bound is optimal.



Chapter 1

General Results

In this chapter, we introduce our notation and present the problems examined in this
thesis as well as some first results in a general context. We begin with some observations
for finite-dimensional algebras in Section 1.1 before studying the special case of symmetric
algebras in Section 1.2.

1.1 The problem for finite-dimensional algebras

In this section, we discuss our main problem in the most general setting, that is, for
arbitrary finite-dimensional algebras over an algebraically closed field. We begin by intro-
ducing the principal structures investigated in this thesis and give some first examples in
Section 1.1.1. Subsequently, we state an equivalent condition for our main problem which
will be used throughout this thesis (see Section 1.1.2). In the third part of this section,
we move to a first universally applicable result by investigating the problem for the tensor
product of two algebras (see Section 1.1.3).

Throughout, F is assumed to be an algebraically closed field and A denotes a finite-
dimensional F -algebra. Note that the left and right ideals as well as the subalgebras
of A are F -vector spaces. We write F{a1, . . . , an} for the F -vector space spanned by the
elements a1, . . . , an ∈ A. All F -algebras occurring in this thesis are assumed to be unitary.

1.1.1 Jacobson radical, socle and Reynolds ideal

The aim of this section is to define the structures studied in this thesis and to discuss some
of their properties. As announced in the introduction, our main problem is the following:

Question 1.1. Under which conditions is the socle soc(Z(A)) of the center Z(A) an ideal
of A?

Moreover, it sometimes makes sense to study the following related question:

Question 1.2. Under which conditions is the Jacobson radical J(Z(A)) of Z(A) an ideal
of A?

We now introduce the notions arising in the above questions. We begin with the Jacobson
radical J(A) of A, which is one of the most important subspaces of an algebra and plays
a prominent role in many ring-theoretic results. It is defined as the intersection of the
annihilators of all simple left A-modules, that is, we have

J(A) = {a ∈ A : aS = 0 for every simple left A-module S} .
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In the following lemma, we collect some properties of J(A). Note that in this thesis, an
ideal I of A, denoted by I E A, is meant to be a two-sided ideal of A. The ideal I is called
nilpotent if In = 0 holds for some n ∈ N. With this, we have the following identities:

Lemma 1.3.

(i) J(A) is the intersection of the annihilators of all simple right A-modules.

(ii) J(A) is the intersection of all maximal left ideals of A.

(iii) J(A) is the intersection of all maximal right ideals of A.

(iv) J(A) is a nilpotent ideal of A, and any nilpotent ideal of A is contained in J(A).

Proof. The proof of (i) – (iii) is given in [41, Theorem 1.10.6], the proof of (iv) can be
found in [47, Corollary I.3.4 and Lemma I.3.5].

As customary, let
Z(A) = {z ∈ A : az = za for all a ∈ A}

denote the center of A. Note that Z(A) is a subalgebra of A (see [47, page 368]) and hence
it makes sense to consider its Jacobson radical J(Z(A)), which is an ideal in Z(A) by the
preceding lemma. In particular, it is closed under addition, so Question 1.2 is equivalent
to asking whether A · J(Z(A)) ⊆ J(Z(A)) holds. By [41, Theorem 1.10.8], we have

J(Z(A)) = J(A) ∩ Z(A). (1.1)

As explained at the beginning, the main focus of this thesis lies on the socle of the center of
an algebra instead of its Jacobson radical, although these notions are related. By soc(A),
we denote the socle of the regular left A-module, that is, the sum of all simple left ideals
of A. In the literature, this is usually referred to as the left socle of A. Analogously, one
can define the right socle rsoc(A) of A as the socle of the regular right A-module. Although
both the left and the right socle are ideals of A, they do not necessarily coincide. For the
majority of the algebras studied in this thesis, however, the left and the right socle agree,
so the ambiguity in the definition of soc(A) does not make a difference. In particular, this
holds for the socle of the center of A. Again, note that soc(Z(A)) is an ideal in A if and
only if A · soc(Z(A)) ⊆ soc(Z(A)) holds.

We nearly exclusively use an alternative characterization of the socle in terms of annihi-
lators, which is relatively amenable to computation. For a subset X ⊆ A, we define the
left annihilator of X in A by

lAnnA(X) = {a ∈ A | ax = 0 for all x ∈ X}.

Similarly, the right annihilator of X in A is defined by

rAnnA(X) = {a ∈ A | xa = 0 for all x ∈ X}.

If the two sets coincide (for instance, if A is commutative), we simply write

AnnA(X) := lAnnA(X) = rAnnA(X).
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By [41, Theorem 1.10.22], the socles of A and Z(A) can be expressed as the (right)
annihilators of the corresponding Jacobson radicals, that is, we have

soc(A) = rAnnA(J(A)) and soc(Z(A)) = AnnZ(A)(J(Z(A))). (1.2)

In this sense, the notion of the socle is therefore dual to that of the Jacobson radical.

The third important subspace of A which we investigate is the Reynolds ideal R(A). It is
defined by R(A) := Z(A) ∩ soc(A), where soc(A) denotes the (left) socle of A as before.
Again, this ambiguity in the definition does not play a role since we have

R(A) = {z ∈ Z(A) : J(A) · z = 0} = {z ∈ Z(A) : z · J(A) = 0} = Z(A) ∩ rsoc(A).

Note that R(A) is contained in soc(Z(A)) since it annihilates J(Z(A)) = J(A) ∩ Z(A).
Analogously to J(Z(A)) and soc(Z(A)), the Reynolds ideal R(A) is an ideal of Z(A). In
order to answer Questions 1.1 and 1.2, it is useful to consider the corresponding problem
for the Reynolds ideal:

Question 1.4. Under which conditions is the Reynolds ideal R(A) an ideal of A?

The relation between Questions 1.1, 1.2 and 1.4 will be investigated in the next section.
In the remainder of this part, we treat the first two problems in special cases, beginning
with some concrete examples:

Example 1.5.

(i) If A is a commutative algebra, we have Z(A) = A and hence both J(Z(A)) = J(A)
and soc(Z(A)) = soc(A) are ideals of A.

(ii) Let A = F [X]/〈X2〉 be a quotient of the polynomial ring F [X] and set x to be
the image of X in A. Since x is nilpotent, we have 〈x〉 ⊆ J(A). On the other
hand, A/〈x〉 ∼= F is simple and hence we obtain J(A) = 〈x〉. Moreover, note that
J(A)2 = 0 holds, which yields J(A) ⊆ soc(A) and hence J(A) = soc(A). Now
consider the matrix algebra M := Mat2(A) of 2 × 2-matrices with entries in A. Its
center

Z(M) = {a · 1 : a ∈ A} ∼= A

consists of scalar multiples of the identity matrix. By the above, we have soc(Z(M)) =
J(Z(M)) ∼= J(A). Clearly, J(Z(M)) is not closed under multiplication with elements
of M : For instance, we take the matrix x · 1 ∈ J(Z(M)) and consider the product(

1 0
0 x

)
·
(
x 0
0 x

)
=

(
x 0
0 0

)
/∈ J(Z(M)).

This shows that J(Z(M)) = soc(Z(M)) is not an ideal of M . /

A second class of examples for which Questions 1.1 and 1.2 can be easily answered are
semisimple algebras. Recall that a finite-dimensional F -algebra A is called semisimple if
J(A) = 0 holds. This is equivalent to A being isomorphic to a direct product of simple
F -algebras (see [47, Corollary I.6.6]).
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Remark 1.6. Let A be a finite-dimensional semisimple F -algebra. Then also the subal-
gebra Z(A) is semisimple since J(Z(A)) = J(A)∩Z(A) = 0 holds by (1.1). In particular,
J(Z(A)) is an ideal of A. Moreover, we obtain soc(Z(A)) = Z(A) and hence soc(Z(A)) is
an ideal of A if and only if A is commutative. /

We have now answered Questions 1.1 and 1.2 in some example cases. Before beginning a
systematic analysis of these problems for various classes of algebras, however, we need a
better criterion to determine whether a given subspace I ⊆ Z(A) is an ideal of A. This
leads us to the definition of commutator spaces.

1.1.2 Commutator space

As before, let A be a finite-dimensional F -algebra. First, we derive a criterion to determine
whether J(Z(A)) or soc(Z(A)) are ideals of A. It is applied in the second part of this
section in order to study the relation between Questions 1.1, 1.2 and 1.4.

For elements a1, a2 ∈ A, we define their commutator [a1, a2] := a1a2 − a2a1. For two
F -subspaces A1, A2 of A, we set

[A1, A2] := F {[a1, a2] : a1 ∈ A1, a2 ∈ A2} .

In particular, K(A) := [A,A] denotes the commutator subspace of A. Note that K(A) is
a Z(A)-submodule, but not necessarily an ideal of A. In the following, we collect some
useful properties of commutator spaces. We begin with a result on the commutator ideal
of A, that is, the ideal of A generated by K(A):

Lemma 1.7. We have A ·K(A) = K(A) · A, and this is the smallest ideal I of A such
that A/I is commutative.

Proof. For arbitrary elements a, b, c ∈ A, we obtain

a[b, c] = a(bc− cb) = abc− bac+ bac− acb = [a, b]c+ [b, ac] ∈ K(A) ·A

and hence we have A · K(A) ⊆ K(A) · A by linearity. The other inclusion follows by
symmetry. Let I be an ideal of A such that the quotient algebra A/I is commutative.
This implies 0 = [a + I, b + I] = [a, b] + I and hence [a, b] ∈ I for all a, b ∈ A. Hence we
have K(A) ⊆ I, which yields A ·K(A) ⊆ I since I is an ideal of A. On the other hand,
the algebra A/A ·K(A) is commutative, so the claim follows.

A main step in the derivation in the subsequent chapters will be the transition to quotient
algebras. Their commutator spaces are simply the images of K(A):

Lemma 1.8 ([36, Equation (3)]). For any ideal I of A, we have K(A/I) = K(A) + I/I.

The following criterion relates the problems given in Questions 1.1 and 1.2 to the ques-
tion under which conditions an ideal of A which is contained in Z(A) annihilates the
commutator space K(A):

Lemma 1.9 ([37, Lemma 2.1]).

(i) If I ⊆ Z(A) is an ideal of A, then I ·K(A) = 0 holds.
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(ii) J(Z(A)) is an ideal of A if and only if J(Z(A)) ·K(A) = 0 holds.

(iii) soc(Z(A)) is an ideal of A if and only if soc(Z(A)) ·K(A) = 0 holds.

Proof.

(i) Let I ⊆ Z(A) be an ideal of A. For z ∈ I and arbitrary elements a, b ∈ A, we have
za ∈ I ⊆ Z(A), which yields z[a, b] = z(ab− ba) = za · b− b · za = za · b− za · b = 0.
This implies I ·K(A) = 0 by linearity.

(ii) If J(Z(A)) is an ideal of A, then J(Z(A)) · K(A) = 0 follows by (i). Now assume
that J(Z(A)) ·K(A) = 0 holds and consider elements j ∈ J(Z(A)) and a ∈ A. For
any b ∈ A, we obtain j[a, b] = j(ab − ba) = 0, which yields ja · b = jba = b · ja due
to j ∈ Z(A). This implies aj = ja ∈ Z(A) ∩ J(A) = J(Z(A)), which shows that
J(Z(A)) is an ideal of A.

(iii) If soc(Z(A)) is an ideal of A, then soc(Z(A)) annihilates K(A) by (i). Now assume
that soc(Z(A)) ·K(A) = 0 holds. For s ∈ soc(Z(A)) and elements a, b ∈ A, we have
0 = s(ab − ba) = sa · b − b · sa, which yields sa = as ∈ Z(A). For j ∈ J(Z(A)), we
obtain j · sa = js · a = 0 and hence sa ∈ AnnZ(A)(J(Z(A))) = soc(Z(A)) follows.
This shows that soc(Z(A)) is an ideal of A.

Remark 1.10. More precisely, for a single element z ∈ J(Z(A)), the proof of the preceding
lemma shows that Az ⊆ Z(A) is equivalent to K(A) · z = 0. /

As a first example, we apply the criterion given in Lemma 1.9 to a special class of basic
algebras. Recall that A is called basic if A/J(A) is a direct product of division algebras.
Since we assume F to be algebraically closed, each of these division algebras is isomorphic
to F. Hence A being basic is equivalent to A/J(A) being commutative in our situation.

Example 1.11. Let A be a basic F -algebra with K(A) ⊆ Z(A). Since A/J(A) is com-
mutative, this yields K(A) ⊆ J(A) ∩ Z(A) = J(Z(A)) by Lemma 1.7 and (1.1). Then we
obtain

soc(Z(A)) ·K(A) ⊆ soc(Z(A)) · J(Z(A)) = 0

and hence soc(Z(A)) is an ideal of A by Lemma 1.9. /

In the remainder of this section, we study the relation between Questions 1.1, 1.2 and 1.4.
The next result shows that the condition R(A) E A is weaker than soc(Z(A)) E A:

Lemma 1.12. If soc(Z(A)) E A holds, then also R(A) E A follows.

Proof. Let soc(Z(A)) be an ideal of A. Clearly, R(A) is a subspace of A contained in
soc(Z(A)). For a ∈ A and r ∈ R(A), we obtain ra ∈ soc(A) since soc(A) E A holds, and
ra ∈ soc(Z(A)) ⊆ Z(A) since soc(Z(A)) is an ideal of A. Hence ar = ra is contained in
soc(A) ∩ Z(A) = R(A), which shows that R(A) is an ideal of A.

In contrast, there is no immediate relation between Questions 1.1 and 1.2 in general, as
the following example demonstrates:
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Example 1.13.

(i) Assume that F is a field of characteristic p = 3 and let A = F 〈X1, X2, X3〉 be the
free algebra in variables X1, X2, X3. We consider the quotient algebra

Q := A/〈X3
i , XiXj +XjXi〉i,j=1,2,3, i 6=j .

This is an example of a quantum complete intersection algebra, which we investigate
in Section 5.2. One can show that the set {xr11 x

r2
2 x

r3
3 : r1, r2, r3 ∈ {0, 1, 2}} forms an

F -basis of Q, where xi denotes the image of Xi in Q for i = 1, 2, 3. With this, a
short direct computation shows

soc(Z(Q)) = F
{
x1x

2
2x

2
3, x

2
1x2x

2
3, x

2
1x

2
2x3, x

2
1x

2
2x

2
3

}
E Q.

Moreover, it is easily verified that x2
1 ∈ J(Z(Q)) holds. However, the element x2

1x2 is
not contained in Z(Q) since we have (x2

1x2)x3 = −x3(x2
1x2) 6= x3(x2

1x2), and hence
J(Z(Q)) is not an ideal of Q. Summarizing, Q is an example of an algebra in which
soc(Z(Q)) is an ideal, whereas J(Z(Q)) is not.

(ii) Now let F be an arbitrary algebraically closed field and consider a non-commutative
semisimple F -algebra M . For instance, let M = Matn(F ) for n > 1 be the matrix
algebra of n × n-matrices over F . By Remark 1.6, we obtain J(Z(M)) E M and
soc(Z(M)) 6EM. /

We now introduce a class of algebras for which the condition J(Z(A)) E A implies
soc(Z(A)) E A. Recall that the algebra A is called local if A/J(A) is one-dimensional. In
this case, every element in A\J(A) is invertible (see [47, Lemma I.3.8]). Note that every
local algebra is basic. Moreover, the center of a local algebra is local as well.

Remark 1.14. Let A be a local F -algebra and assume dimA ≥ 2, that is, we have
J(A) 6= 0. If n ∈ N is minimal with J(A)n = 0, then J(A)n−1 is contained in J(Z(A)),
which implies J(Z(A)) 6= 0. It follows that soc(Z(A)) is a proper (nilpotent) ideal of
Z(A), which yields soc(Z(A)) ⊆ J(Z(A)). /

This implies:

Lemma 1.15. Let A be a local F -algebra. If J(Z(A)) is an ideal of A, then also
soc(Z(A)) E A follows.

Proof. If A ∼= F holds, then the claim follows from Remark 1.6, so assume dimA ≥ 2 in
the following. By Remark 1.14 and Lemma 1.9, we have

soc(Z(A)) ·K(A) ⊆ J(Z(A)) ·K(A) = 0.

Hence soc(Z(A)) is an ideal of A by Lemma 1.9.

Summarizing, we obtain the following chain of implications for finite-dimensional local
F -algebras:

(J(Z(A)) E A)⇒ (soc(Z(A)) E A)⇒ (R(A) E A).

The second implication holds for arbitrary finite-dimensional F -algebras (see Lemma 1.12).
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1.1.3 Tensor products

After having collected some background information on Questions 1.1 and 1.2, we now
present some first results. In this section, we consider the tensor product of two finite-
dimensional (unitary) F -algebras A1 and A2. We prove that the socle of Z(A1⊗A2) is an
ideal in A1⊗A2 if and only if the socle of Z(Ai) is an ideal in Ai for i = 1, 2, respectively.
Later, this will be applied to the group algebras of direct products of subgroups. The
corresponding statement for the Jacobson radical of the center does not hold.

All occurring tensor products are taken over the field F . It is well-known that the center
of A1 ⊗ A2 is given by Z(A1 ⊗ A2) = Z(A1) ⊗ Z(A2). For the Jacobson radical, [41,
Theorem 1.16.15] yields

J(A1 ⊗A2) = A1 ⊗ J(A2) + J(A1)⊗A2. (1.3)

We first derive a corresponding formula for the socle of a tensor product of algebras.

Lemma 1.16. We have soc(A1 ⊗A2) = soc(A1)⊗ soc(A2).

Proof. The equality trivially holds if one of the algebras A1, A2 is zero. In the following,
we therefore assume A1 6= 0 6= A2. We first show soc(A1)⊗A2 = rAnnA1⊗A2(J(A1)⊗A2).
To this end, let s1 ∈ soc(A1), a2, a

′
2 ∈ A2 and j1 ∈ J(A1). Then we have

(j1 ⊗ a′2) · (s1 ⊗ a2) = j1s1 ⊗ a′2a2 = 0⊗ a′2a2 = 0,

so by linearity, soc(A1)⊗A2 annihilates J(A1)⊗A2 from the right. For the other inclusion,
we choose F -bases {v1, . . . , vn1} of A1 and {w1, . . . , wn2} of A2 for some n1, n2 ∈ N. Then
the elements in {vi ⊗ wk : i = 1, . . . , n1, k = 1, . . . , n2} form an F -basis of A1 ⊗ A2. Now
consider an element x ∈ rAnn(J(A1)⊗A2) and write x :=

∑
i,k λik(vi ⊗wk) with λik ∈ F

(i = 1, . . . , n1, k = 1, . . . , n2). For any j1 ∈ J(A1), we obtain

0 = (j1 ⊗ 1) · x =
∑
i,k

λik(j1vi ⊗ wk) =
∑
k

(∑
i

λikj1vi

)
⊗ wk.

For k = 1, . . . , n2, this yields 0 =
∑

i λikj1vi = j1 ·
∑

i λikvi. We obtain
∑

i λikvi ∈ soc(A1),
which implies x ∈ soc(A1)⊗A2. Analogously, we show

A1 ⊗ soc(A2) = rAnnA1⊗A2(A1 ⊗ J(A2)).

With this, we obtain

soc(A1 ⊗A2) = rAnnA1⊗A2(J(A1)⊗A2 +A1 ⊗ J(A2))

= rAnnA1⊗A2(J(A1)⊗A2) ∩ rAnnA1⊗A2(A1 ⊗ J(A2))

= (soc(A1)⊗A2) ∩ (A1 ⊗ soc(A2))

= soc(A1)⊗ soc(A2).

Lemma 1.17. Assume that both A1 and A2 are nonzero. The socle soc(Z(A1 ⊗ A2)) is
an ideal of A1 ⊗A2 if and only if soc(Z(Ai)) is an ideal of Ai for i = 1, 2.
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Proof. Let n1, n2 ∈ N denote the dimensions of A1 and A2, respectively. Assume first
that soc(Z(Ai)) E Ai holds for i = 1, 2. By Lemma 1.16, we have soc(Z(A1 ⊗ A2)) =
soc(Z(A1))⊗ soc(Z(A2)) and

(a1 ⊗ a2) · (soc(Z(A1))⊗ soc(Z(A2))) ⊆ soc(Z(A1))⊗ soc(Z(A2))

holds for all a1, a2 ∈ A by assumption. This shows that soc(Z(A1 ⊗ A2)) is an ideal of
A1 ⊗A2.

Now assume conversely that soc(Z(A1 ⊗ A2)) is an ideal of A1 ⊗ A2. We choose F -bases
{v1, . . . , vn1} of A1 and {w1, . . . , wn2} of A2 such that {v1, . . . , vk1} and {w1, . . . , wk2} form
a basis of soc(Z(A1)) and soc(Z(A2)) for some ki ∈ {1, . . . , ni} (i = 1, 2), respectively.
Note that soc(Z(Ai)) 6= 0 holds since Ai is nonzero. The set {vj1⊗wj2 : 1 ≤ ji ≤ ki for i =
1, 2} forms an F -basis for soc(Z(A1))⊗ soc(Z(A2)) = soc(Z(A1 ⊗A2)).

We show that a1vi ∈ soc(Z(A1)) holds for all a1 ∈ A1 and i = 1, . . . , k1. To this end,
we set a := a1 ⊗ 1 ∈ A1 ⊗ A2 and v := vi ⊗ w1. Since av ∈ soc(Z(A1 ⊗ A2)) holds by
assumption, there exist coefficients λrt ∈ F for 1 ≤ r ≤ k1, 1 ≤ t ≤ k2 with

av =
∑
r,t

λrtvr ⊗ wt.

Expressing a1vi =
∑n1

d=1 µdvd in terms of the basis of A1 (with µ1, . . . , µn1 ∈ F ) yields

av = (a1 ⊗ 1) · (vi ⊗ w1) = a1vi ⊗ w1 =

(
n1∑
d=1

µdvd

)
⊗ w1 =

n1∑
d=1

µd(vd ⊗ w1).

By comparing the coefficients in the two expressions for av, we obtain µd = 0 for d > k1.
This shows that a1vi is contained in soc(Z(A1)), which proves that this space is an ideal
of A1. For soc(Z(A2)), we proceed analogously.

In the following, we may therefore restrict our investigation to individual factors of a
tensor product of F -algebras.

1.2 Symmetric algebras

In this section, we consider the problem under which conditions J(Z(A)) or soc(Z(A)) are
ideals of A in the special situation where A is a symmetric F -algebra. This is of interest
since symmetric algebras naturally arise in various contexts in representation theory. On
the other hand, the requirement that A is symmetric provides a considerable amount of
information on its structure.

Group algebras, which form a special class of symmetric algebras, will be extensively
studied in the following chapters. Moreover, we investigate symmetric local algebras of
small dimension in Chapter 5. Therefore, we only focus on two aspects of our main problem
in this section: After introducing the necessary theoretical background, we investigate the
transition to quotients of symmetric algebras in Section 1.2.2. In Section 1.2.3, we provide
an answer to Question 1.4 in this special situation.
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1.2.1 Theoretical background

In this part, we introduce symmetric algebras and discuss some of their properties.

Let A be a finite-dimensional F -algebra and consider a bilinear form β : A × A → F .
Recall that β is called non-degenerate if β(a, b) = 0 for all b ∈ A and a fixed element
a ∈ A implies a = 0. The bilinear form is called associative if β(ab, c) = β(a, bc) holds for
any a, b, c ∈ A. Finally, we say that β is symmetric if β(a, b) = β(b, a) holds for all a, b ∈ A.
Now the algebra A is called symmetric if it admits a non-degenerate associative symmetric
bilinear form β : A × A → F . Instead of β, we sometimes consider the associated linear
form λ : A → F, a 7→ β(1, a). In this situation, the kernel of λ contains the commutator
space K(A), but no nonzero left or right ideal of A (see [47, Theorem IV.2.2]). Note that
the class of finite-dimensional symmetric F -algebras is closed under Morita equivalence
(see [47, Corollary IV.4.3]).

Example 1.18. Semisimple F -algebras form a prominent class of examples of symmetric
algebras (see [47, Proposition IV.2.4 and Example IV.2.5]). Moreover, we will see in
Section 2.1 that group algebras of finite groups over fields are symmetric. /

For a subspace X of the symmetric algebra A, we denote by X⊥ its orthogonal space with
respect to the bilinear form β. That is, we have

X⊥ = {a ∈ A : β(a, x) = 0 for all x ∈ X}.

The following properties are well-known:

Lemma 1.19 ([36, Equations (28) – (32)]). Let A be a symmetric F -algebra and consider
subspaces X and Y of A. Then we have the following properties:

(i) dimX + dimX⊥ = dimA.

(ii) (X⊥)⊥ = X.

(iii) Y ⊆ X implies X⊥ ⊆ Y ⊥.

(iv) We have (X ∩ Y )⊥ = X⊥ + Y ⊥ and (X + Y )⊥ = X⊥ ∩ Y ⊥.

(v) For an ideal I of A, we have I⊥ = lAnn(I) = rAnn(I). In particular, I⊥ is an ideal
of A as well.

By the last statement, it follows that the left and right socle of A, that is, the right and left
annihilator of J(A), coincide. Moreover, we obtain J(A) = soc(A)⊥. By [31, Lemma A],
the orthogonal space of K(A) is given by K(A)⊥ = Z(A).

1.2.2 Quotients of symmetric algebras

Throughout, let A be a finite-dimensional symmetric F -algebra with symmetrizing linear
form λ : A→ F . In this part, we consider various quotient algebras of A. Our main result
is the observation that the properties J(Z(A)) E A and soc(Z(A)) E A are inherited by
symmetric quotient algebras of A.

We first prove a criterion for J(Z(A)) E A and soc(Z(A)) E A in terms of the commutator
spaces of certain quotient algebras:
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Lemma 1.20.

(i) J(Z(A)) E A holds if and only if K(Ā) is an ideal of Ā := A/ soc(A).

(ii) soc(Z(A)) E A holds if and only if K(Ā) is an ideal of Ā := A/A · J(Z(A)).

Proof. By Lemma 1.19, J(Z(A)) is an ideal of A if and only if J(Z(A))⊥ is. Note that

J(Z(A))⊥ = (J(A) ∩ Z(A))⊥ = J(A)⊥ + Z(A)⊥ = soc(A) +K(A)

follows by (1.1) and Lemma 1.19. We therefore have A · J(Z(A))⊥ · A ⊆ J(Z(A))⊥ if
and only if A · K(A) · A ⊆ K(A) + soc(A) holds since soc(A) is an ideal of A. Setting
Ā := A/ soc(A), this is equivalent to K(Ā) = K(A) + soc(A)/ soc(A) being an ideal of Ā
(see Lemma 1.8). Similarly, soc(Z(A)) is an ideal of A if and only if soc(Z(A))⊥ is. Note
that

Ann(J(Z(A))) = Ann(A · J(Z(A))) = (A · J(Z(A)))⊥

follows by Lemma 1.19 (v) and hence we have

soc(Z(A)) = Z(A) ∩Ann(J(Z(A)) = Z(A) ∩ (A · J(Z(A)))⊥.

This implies

soc(Z(A))⊥ = Z(A)⊥ +A · J(Z(A)) = K(A) +A · J(Z(A)).

Hence soc(Z(A)) is an ideal of A if and only if K(A) + A · J(Z(A)) is, which is again
equivalent to K(Ā) being an ideal of Ā := A/A · J(Z(A)).

Remark 1.21. By Lemma 1.19 (v), K(A) is an ideal of A if and only if K(A)⊥ = Z(A) is.
Since A is unitary, the latter is the case if and only if A is commutative, that is, if we have
K(A) = 0. If J(Z(A)) or soc(Z(A)) are ideals of A, then the corresponding algebras Ā
defined in the previous result are therefore either commutative or non-symmetric. /

From now on, we study quotient algebras of A which are again symmetric. We emphasize
that this is an additional condition which is not satisfied for arbitrary quotients of A. In
fact, our first result shows that requiring the quotient algebra A/I to be symmetric forces
the ideal I to be of a specific shape.

Lemma 1.22. Let I be an ideal of A such that A/I is symmetric with corresponding linear
form λ̄. Then there exists an element z ∈ Z(A) with I = (Az)⊥ such that λ̄(a+I) = λ(az)
holds for all a ∈ A. Conversely, for any z ∈ Z(A), the algebra A/(Az)⊥ is symmetric with
respect to a linear form λ̄ of the above form.

Proof. The proof is given in [36, pages 429 – 430].

With this characterization, we can simplify the criterion for J(Z(A)) E A in case that A
is a symmetric local algebra.

Lemma 1.23. Let A be a symmetric local algebra. Then J(Z(A)) E A holds if and only
if for all ideals 0 6= I E A such that A/I is symmetric, it follows that A/I is commutative.
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Proof. First assume J(Z(A)) E A and let I be a nonzero ideal of A such that the quotient
algebra A/I is symmetric. The ideal I⊥ is contained in J(A), which yields soc(A) · I⊥ = 0
and hence soc(A) ⊆ (I⊥)⊥ = I. The algebra A/I can therefore be interpreted as a quotient
of Ā := A/ soc(A). By Lemma 1.20, we have K(Ā) E Ā and hence K(A/I) E A/I follows
since K(A/I) is the image of K(Ā) under the quotient map. Since A/I is symmetric, this
is only possible if K(A/I) = 0 holds (see Remark 1.21), so if A/I is commutative.

Conversely, assume that K(A/I) = 0 holds for every ideal 0 6= I E A for which the
quotient algebra A/I is symmetric. By Lemma 1.22, such an ideal is of the form (Az)⊥

with z ∈ J(Z(A)). Lemma 1.8 then yields

K(A) ⊆
⋂

z∈J(Z(A))

(Az)⊥ =

 ∑
z∈J(Z(A))

Az

⊥ = (A · J(Z(A)))⊥

and hence we obtain J(Z(A)) · K(A) ⊆ J(Z(A)) · (A · J(Z(A)))⊥ = 0. By Lemma 1.9,
this implies that J(Z(A)) is an ideal of A.

Now we return to the assumption that A is a (not necessarily local) symmetric algebra.
In the following, we consider an ideal I of A for which the quotient algebra Ā := A/I
is symmetric with a corresponding bilinear form β̄ : Ā × Ā → F and symmetrizing linear
form λ̄ : Ā → F . In the remaining part of this section, we prove that the properties
J(Z(A)) E A and soc(Z(A)) E A are inherited by the quotient algebra Ā.

By Lemma 1.22, the ideal I is of the form (Az)⊥ for some z ∈ Z(A). Recall that the
map λ̄ is then given by λ̄(a + I) = λ(az) for all a ∈ A. In the following, we consider the
canonical projection ν : A→ Ā, a 7→ ā := a+ I and its adjoint map ν∗ : Ā→ A, which is
defined by requiring β(ν∗(x̄), y) = β̄(x̄, ν(y)) for all x, y ∈ A. This is equivalent to

λ
(
ν∗(x̄) · y

)
= λ̄(x̄ · ȳ) = λ(xyz) = λ(xzy)

for all x, y ∈ A. Note that the right ideal
(
ν∗(x̄)−xz

)
A is contained in the kernel of λ for

all x ∈ A, which yields ν∗(x̄) = xz. For all x, y ∈ A, we then obtain

ν∗(x̄) · y = xzy = xyz = ν∗(x̄ · ȳ) (1.4)

and similarly
x · ν∗(ȳ) = xyz = ν∗(x̄ · ȳ). (1.5)

Note that since ν is surjective, the adjoint map ν∗ is injective.

Lemma 1.24. The map ν∗ has the following properties:

(i) ν∗
(
Z(Ā)

)
= Z(A) ∩ Im(ν∗).

(ii) ν∗
(
J(Z(Ā))

)
⊆ J(Z(A)).

(iii) ν∗
(
soc(Z(Ā))

)
⊆ soc(Z(A)).

Proof.
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(i) Consider an element a ∈ A with ā ∈ Z(Ā) and let b ∈ A be an arbitrary element.
Since ā and b̄ commute, we obtain ab−ba ∈ I, which yields 0 = (ab−ba)z = azb−baz.
Since b was arbitrary, this shows ν∗(ā) = az ∈ Z(A)∩Im(ν∗). For the other inclusion,
consider an element ā ∈ Ā with ν∗(ā) ∈ Z(A). For every x ∈ A, (1.4) and (1.5) yield

ν∗(x̄ · ā) = x · ν∗(ā) = ν∗(ā) · x = ν∗(ā · x̄)

and hence we have x̄ · ā = ā · x̄ since ν∗ is injective. This shows ā ∈ Z(Ā), which
proves the equality.

(ii) Consider an element u ∈ A with ū ∈ J(Z(Ā)). By (i), we have ν∗(ū) ∈ Z(A).
Moreover, ū is nilpotent, so there exists some n ∈ N with ūn = 0, which is equivalent
to un ∈ (Az)⊥. This yields un ·z = 0 and hence ν∗(ū)n = (uz)n = unzn = 0, so ν∗(ū)
is contained in J(A). By (1.1), we obtain ν∗(ū) ∈ J(A) ∩ Z(A) = J(Z(A)).

(iii) Let s ∈ A with s̄ ∈ soc(Z(Ā)) and consider an element u ∈ J(Z(A)) = J(A)∩Z(A).
We have ū ∈ J(Ā) ∩ Z(Ā) = J(Z(Ā)) by [41, Theorem 1.10.12]. Then (1.4) yields
ν∗(s̄) · u = ν∗(s̄ · ū) = 0, which shows ν∗(s̄) ∈ soc(Z(A)).

We now prove that the properties J(Z(A)) E A and soc(Z(A)) E A are inherited by
symmetric quotient algebras of A:

Lemma 1.25. Let A be a symmetric algebra and consider an ideal I of A for which the
quotient algebra Ā := A/I is symmetric.

(i) If J(Z(A)) E A holds, then J(Z(Ā)) is an ideal of Ā.

(ii) If soc(Z(A)) E A holds, then soc(Z(Ā)) is an ideal of Ā.

Proof. By Lemma 1.9, the condition J(Z(A)) E A translates to J(Z(A)) ·K(A) = 0. Let
u, k ∈ A be elements with ū ∈ J(Z(Ā)) and k̄ ∈ K(Ā). By Lemma 1.8, we may assume
k ∈ K(A). The preceding lemma yields ν∗(ū) ∈ J(Z(A)) and hence ν∗(ū·k̄) = ν∗(ū)·k = 0
follows by (1.4). Since ν∗ is injective, this yields ū · k̄ = 0. We obtain J(Z(Ā)) ·K(Ā) = 0,
which implies J(Z(Ā)) E Ā again by Lemma 1.9. The second statement can be proven in
a similar way.

Remark 1.26. Later in this thesis (in Example 5.29), we will see an example of a sym-
metric local algebra A which satisfies soc(Z(A)) E A and an ideal I E A such that
soc(Z(A/I)) is not an ideal in A/I. Hence the assumption that the quotient algebra Ā is
symmetric cannot be omitted in Lemma 1.25. /

At the end of this part, we make an observation which will be useful in the context of
group algebras:

Remark 1.27. For any a ∈ Ā, Lemma 1.24 yields the following equivalence:

ν∗(a) ∈ soc(Z(A))⇔ a ∈ Z(Ā) and 0 = ν∗(a) · J(Z(A)) = ν∗(a · ν(J(Z(A)))

⇔ a ∈ Z(Ā) and 0 = a · ν(J(Z(A))).

In the last step, we used that the adjoint map ν∗ is injective. /
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1.2.3 Reynolds ideal in symmetric algebras

The following lemma answers the question under which conditions the Reynolds ideal
R(A) is an ideal of A in the case where A is a symmetric algebra (see Question 1.4).

Lemma 1.28. Let A be a finite-dimensional symmetric F -algebra. Then R(A) is an ideal
of A if and only if A is a basic F -algebra. In this case, we have R(A) = soc(A).

Proof. Assume that R(A) is an ideal of A. By [37, Remark 3.1], we obtain R(A) =
A · R(A) = soc(A) and A is basic in this case. Conversely, assume that A is a basic
F -algebra, which is equivalent to A/J(A) being commutative by [47, Proposition II.6.19].
In particular, we have K(A) ⊆ J(A) and hence soc(A) = J(A)⊥ ⊆ K(A)⊥ = Z(A) by
Lemma 1.19. This implies that R(A) = soc(A) ∩ Z(A) = soc(A) is an ideal of A.

At this point, it becomes clear that the property soc(Z(A)) E A is not preserved under
Morita equivalence:

Example 1.29. Let A = F and letM := Matn(A) for some n > 1 be a matrix algebra with
entries in A. Then soc(Z(A)) E A holds since A is commutative. By [47, Lemma II.6.13],
the algebras A and M are Morita equivalent, but M is not basic. By the preceding result,
this implies R(M) 6EM and hence soc(Z(M)) 6EM follows by Lemma 1.12. /





Chapter 2

General results on group algebras

We now investigate our main problem for the case of group algebras. To this end, we
first introduce the necessary background on groups as well as on group algebras and
rephrase the equivalent condition stated in Lemma 1.9 in this setting. In Section 2.3, we
proceed with some first general results on finite groups G satisfying soc(ZFG) E FG. By
investigating the Reynolds ideal of FG in Section 2.4.1, we find that these groups have a
special structure, which allows us to determine a basis for the Jacobson radical J(ZFG). In
Section 2.5, we focus on the transition to quotient algebras and examine central products.
Both concepts will be crucial for our further derivation. We conclude this part by studying
the special case that G has an abelian Sylow p-subgroup in Section 2.6.

2.1 Groups and group algebras

Here, we collect some group-theoretic results which will be needed in the following chapters.
We assume familiarity with the basic group-theoretic concepts and focus on the results we
frequently need later on. In the second part of this section, we introduce group algebras
and related notions. Most of the group-theoretical results presented in the following can
be found in standard textbooks on group theory, for example [20], [24] and [30], those
concerning group algebras and their blocks are contained [41], [44] and [45]. All occurring
groups are assumed to be finite.

For a group G and two elements x, y ∈ G, we define the commutator [x, y] of x and y as

[x, y] := xyx−1y−1.

With this convention, the following identities hold for all x, y, z ∈ G:

[xy, z] = x[y, z]x−1 · [x, z]

[x, yz] = [x, y] · y[x, z]y−1.

Note that we defined two notions of commutators, which are both denoted by [ . , . ]: Addi-
tionally to the commutator of two group elements introduced above, we defined the com-
mutator of two elements of an algebra in Section 1.1.2. Usually, it will become clear from
the context which notion is meant. As customary, we set [A,B] := 〈[a, b] : a ∈ A, b ∈ B〉
for subgroups A and B of G and write G′ = [G,G] for the derived subgroup of G. The
nilpotency class of a nilpotent group G is denoted by c(G). Recall that every p-group is
nilpotent. The group G is called metabelian if G′ is abelian, that is, if the second derived
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subgroup G′′ := [G′, G′] is trivial. Moreover, we set Z(G) to be the center of G and denote
the centralizer of a subset M ⊆ G in G by CG(M).

By Cl(G), we denote the set of conjugacy classes of G. For g ∈ G, we write [g]G for the
conjugacy class of g in G, which is sometimes also called the G-conjugacy class of g, and
omit the index if it is clear from the context to which group we refer. We write g ∼ h if
g, h ∈ G are conjugate elements. For any g ∈ G, we have

[g] =
{
aga−1 : a ∈ G

}
=
{
aga−1g−1g : a ∈ G

}
= {[a, g]g : a ∈ G} ⊆ G′g = gG′.

We define
Ug := {[a, g] : a ∈ G} ⊆ G′ (2.1)

to be the set of commutators of g with elements in G. In this notation, we have [g] = Ug ·g.
The group G is called a Camina group if [g] = gG′, or equivalently Ug = G′, holds for all
elements g ∈ G\G′.

As customary, the set of prime numbers is denoted by P. For p ∈ P, we write Sylp(G)
for the set of Sylow p-subgroups of G. For a subset π ⊆ P, Oπ(G) denotes the π-core
of G, that is, the product of all normal π-subgroups of G. Note that Oπ(G) itself is a
π-subgroup of G. As usual, we set π′ := P\π. In the special case that π = {p} consists of a
single prime number p ∈ P, we write Op(G) := O{p}(G) as well as Op′(G) := O{p}′(G) and
call these groups the p-core and p′-core of G, respectively. Furthermore, we will encounter
the p′, p-core Op′,p(G) of G, which is defined by the identity

Op′,p(G)/Op′(G) = Op(G/Op′(G)).

We frequently use the following special case of [30, Theorem 6.4.3]:

Theorem 2.1. Let p ∈ P be a prime number and let G be a finite solvable group with
Op′(G) = 1. Then we have

CG(Op(G)) ⊆ Op(G).

In particular, in case that G has a normal Sylow p-subgroup P , we obtain CG(P ) = Z(P ).

Let p ∈ P be a prime number. An element g ∈ G is called a p-element if its order is a
power of p and a p′-element if its order is coprime to p. We denote the set of p-elements
by Gp. Recall that every element g ∈ G can be decomposed in the form g = gp · gp′ with
a p-element gp and a p′-element gp′ satisfying gp · gp′ = gp′ · gp, and this decomposition is
unique. We say that g, h ∈ G lie in the same p′-section of G if gp′ is conjugate to hp′ . For
an element g ∈ G, we denote its corresponding p′-section by Sg. In particular, we see that
Gp = S1 is a p′-section of G, which consists of all elements with trivial p′-part.

Recall that the Frattini subgroup Φ(G) of G is defined as the intersection of all maximal
subgroups of G. For G = 1, we set Φ(G) = 1 since G has no maximal subgroups in
this case. If P is a p-group for some prime number p ∈ P, then its Frattini subgroup is
given by Φ(P ) = P ′ · P p, where P p = 〈up : u ∈ P 〉 is generated by the p-th powers of
the elements in P. In particular, P/Φ(P ) is elementary abelian, and Φ(P ) is the smallest
normal subgroup of P with an elementary abelian quotient (see [24, Satz III.3.14]).
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As customary, Aut(G) denotes the automorphism group of G. A p′-automorphism of a
p-group P is an element of Aut(P ) of order coprime to p. With this, we can state the
following important theorem, which is due to Thompson:

Theorem 2.2 ([20, Theorem 5.3.11]). In every p-group P , there exists a characteristic
subgroup C with the following properties:

(i) c(C) ≤ 2 and C/Z(C) is elementary abelian.

(ii) [P,C] ⊆ Z(C).

(iii) CP (C) = Z(C).

(iv) Every nontrivial p′-automorphism of P induces a nontrivial automorphism on C.

A group C satisfying these conditions is called a critical subgroup of G.

The study of the p′-automorphisms of certain p-groups forms a main ingredient of this
thesis since the existence of such an automorphism inflicts a series of conditions on the
structure of the p-group as well as the action of the automorphism. The following result
is due to Burnside:

Theorem 2.3 ([20, Theorem 5.1.4]). Consider a p′-automorphism α of a p-group P which
induces the identity on P/Φ(P ). Then α is the identity automorphism of P.

The action of a p′-group on a p-group gives rise to the following decomposition, which we
frequently use throughout this thesis:

Theorem 2.4 ([20, Theorem 5.2.3 and 5.3.5]). Let H be a p′-group of automorphisms of
the p-group P. Then we have P = CP (H)[P,H]. If P is abelian, then P = CP (H)× [P,H]
holds.

The following result allows us to relate the decomposition of P given in Theorem 2.4 to
that of a quotient group:

Theorem 2.5 ([20, Theorem 5.3.15]). Let H be a p′-group of automorphisms of a p-
group P and let N be an H-invariant normal subgroup of P. Then CP/N (H) is the image
of CP (H) in P/N.

A group G is called a Frobenius group if it has a nontrivial proper subgroup H such that
H ∩ gHg−1 = 1 holds for all g ∈ G\H. In this case, there exists a normal subgroup
K E G, the Frobenius kernel, such that G ∼= K oH holds. Furthermore, every nontrivial
element of H induces an automorphism of K by conjugation which only fixes the identity
element of K (see [20, Theorem 2.7.6]). The group H is called a Frobenius complement.
It is unique up to conjugation in G whereas the Frobenius kernel is uniquely determined
as the Fitting subgroup, that is, the product of all nilpotent subgroups of G.

We now introduce a subgroup which will play a central role in the classification of the
finite 2-groups P for which soc(ZFP ) E FP holds. Let P be a finite 2-group and consider
a conjugacy class C = {f, g} of length two of P . Every inner automorphism of P either
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fixes both f and g, or it interchanges the two elements. For c := gf−1 ∈ P ′, this yields
CP (f) = CP (g) ⊆ CP (c). For any h ∈ P \ CP (f), we have

hch−1 = hgf−1h−1 = fg−1 = c−1.

This shows that the subgroup YC := 〈c〉 ⊆ P ′ is normal in P . In the following, we consider
the group

Y (P ) := 〈YC : C ∈ Cl(G), |C| = 2〉. (2.2)

Note that Y (P ) is characteristic in P . Moreover, we obtain the following:

Lemma 2.6. Let P be a finite 2-group. Then the subgroup Y (P ) is contained in Z(Φ(P )).
In particular, Y (P ) is abelian.

Proof. Note that Y (P ) ⊆ P ′ is contained in the Frattini subgroup Φ(P ). For any conju-
gacy class C = {f, g} of length two, CP (f) is a maximal subgroup of P . By the above
observation, this implies Φ(P ) ⊆ CP (f) ⊆ CP (gf−1) and hence Φ(P ) centralizes YC . Since
this argument is valid for all conjugacy classes of length two, the Frattini subgroup Φ(P )
centralizes Y (P ). Conversely, Y (P ) is contained in Z(Φ(P )), which is abelian.

Now we move to the concept of central products. Let G1, G2, Z1, Z2 be finite groups with
Zi ⊆ Z(Gi) for i = 1, 2 such that there is an isomorphism ϕ : Z1 → Z2. Then there exists
a group G of the form G = G1G2 with Z1 = G1 ∩ G2 ⊆ Z(G) (identifying Z1 and Z2 at
this point) such that G1 centralizes G2 (see [20, Theorem 2.5.3]). We call G the central
product of G1 and G2 and write G = G1 ∗G2. This group can also be viewed as a quotient
of G1 × G2 by a certain central subgroup. Note that G1 and G2 are normal subgroups
of G and that its derived subgroup is given by G′ = G′1 · G′2. Moreover, for an element
c = c1c2 with c1 ∈ G1 and c2 ∈ G2, the conjugacy class [c] decomposes as [c] = [c1] · [c2]
since for any g1 ∈ G1 and g2 ∈ G2, it follows that

(g1g2) · c · (g1g2)−1 = g1c1g
−1
1 · g2c2g

−1
2 .

Note that the factors c1 and c2 are unique up to multiplication with elements of Z1. In
particular, the lengths of the classes C1 := [c1] and C2 := [c2] are well-defined. More
precisely, we observe that the group G1 acts on C1C2 by conjugation. The orbits are
of the form C1c2 with elements c2 ∈ G2. In particular, two sets of this form are either
equal or disjoint. Furthermore, the group G2 acts transitively on the set of these orbits
R = {C1c2 : c2 ∈ C2} by conjugation. This yields |R| = |G2 : NG2(C1c2)| for any c2 ∈ C2

and we obtain |C1C2| = |R| · |C1|. A similar argument holds for C2.

At the end of our review of group-theoretic results, we introduce the notion of isoclinism,
which will play an important role in our treatment of p-groups. Two finite groups G1 and
G2 are isoclinic if there exist isomorphisms ϕ : G′1 → G′2 and β : G1/Z(G1) → G2/Z(G2)
such that β(a1Z(G1)) = a2Z(G2) and β(b1Z(G1)) = b2Z(G2) for some a1, b1 ∈ G1 and
a2, b2 ∈ G2 implies ϕ([a1, b1]) = [a2, b2]. A group G is called a stem group if Z(G) is
contained in G′. For any finite group G, there exists a stem group H such that G and H
are isoclinic (see [5, Proposition 2.6]). Moreover, we have |H| ≤ |G| in this case (see [5,
page 134]).



2.1 Groups and group algebras 23

Now we move to the investigation of group algebras. Recall that the group algebra FG of
a finite group G over an algebraically closed field F is given as the set

FG =

∑
g∈G

agg : ag ∈ F for all g ∈ G

 ,

together with a “component-wise” addition and scalar multiplication∑
g∈G

agg +
∑
g∈G

bgg =
∑
g∈G

(ag + bg)g

λ ·
∑
g∈G

agg =
∑
g∈G

(λag)g

for all λ, ag, bg ∈ F (g ∈ G), and a multiplicative structure induced by the group multipli-
cation: ∑

g∈G
agg

 ·
∑
g∈G

bgg

 =
∑
h∈G

∑
s,t∈G
st=h

asbt

h.

In particular, FG is an F -vector space with basis G. For a subset X ⊆ G, we define

X+ :=
∑
x∈X

x ∈ FG.

Mostly, this will be used in case that X is a conjugacy class of G. The center and the
commutator space of FG are explicitly given by

ZFG =

 ∑
C∈Cl(G)

aC · C+ : aC ∈ F for all C ∈ Cl(G)


and

K(FG) =

∑
g∈G

agg :
∑
g∈C

ag = 0 for all C ∈ Cl(G)

 ,

respectively (see [41, Theorem 1.5.1 and Proposition 1.5.4]). As mentioned in Exam-
ple 1.18, group algebras form an important subclass of symmetric algebras. The usual
choice for the symmetrizing form is the map

λ : FG→ F,
∑
g∈G

agg 7→ a1 (2.3)

(see [41, Theorem 2.11.2]). Furthermore, recall that by Maschke’s theorem (see [47, The-
orem I.6.18]), the group algebra FG is semisimple if and only if char(F ) = 0 holds or
char(F ) is a prime number not dividing the order of G. Since semisimple algebras were
already considered in Remark 1.6, we usually assume that F is of positive characteristic.
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For a subgroup H of G, we consider the augmentation map

ε : FH → F,
∑
h∈H

ahh 7→
∑
h∈H

ah,

which is a homomorphism of F -algebras. Moreover, we will encounter the augmentation
ideal

ω(FH) := Ker(ε) =

{∑
h∈H

ahh :
∑
h∈H

ah = 0

}
.

A basis of ω(FH) is given by the set {1− h : 1 6= h ∈ H}. In the special case where F is
a field of characteristic p and H is a finite p-group, [41, Theorem 1.11.1] yields

ω(FH) = J(FH). (2.4)

In our derivation, we will also need the structure of the right annihilator of ω(FH) in FG,
which is given by

rAnnFG(ω(FH)) = H+ · FG (2.5)

(see [45, Lemma 3.1.2]). For a normal subgroup N E G, we consider the canonical
projection map

νN : FG→ F [G/N ],
∑
g∈G

agg 7→
∑
g∈G

ag · gN. (2.6)

Note that νN is a homomorphism of F -algebras. This map, together with its adjoint
which we introduce later, will play an important role in order to relate Question 1.1 to
the corresponding problem for certain quotient groups. We obtain the following relation
between the map νN and the augmentation ideal of FN (see [41, Proposition 1.6.4]):

Ker(νN ) = ω(FN) · FG = FG · ω(FN). (2.7)

Later, we encounter the situation that F is a field of characteristic p > 0 and N is a normal
Sylow p-subgroup of G. By [41, Theorem 1.11.10], the previous formula then simplifies to

Ker(νN ) = ω(FN) · FG = J(FG). (2.8)

At the end of this part, we briefly review the concept of blocks of a group algebra. To
this end, let F be an algebraically closed field of characteristic p > 0. Then the group
algebra FG can be decomposed uniquely into a direct sum FG = B1 ⊕ . . . ⊕ Bn of
indecomposable (two-sided) ideals, the p-blocks of FG (see [1, Lemma 1.8.2]). Each of
them is an F -algebra in its own right. To each block B, one associates a conjugacy class
of p-subgroups of G, the defect groups of B. We say that B is of defect d ∈ N0 if its defect
groups have order pd. The block B is called of full defect if its defect groups are Sylow
p-subgroups of G. For every simple FG-module M , there exists a unique block B of FG
which satisfies BM 6= 0. We say that the module M lies in B. The block containing the
trivial FG-module is called the principal block of FG. It has full defect (see [44, page
119]).
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2.2 Condition for group algebras

Throughout, let F be an algebraically closed field and let G be a finite group. By
Lemma 1.9, the condition soc(ZFG) E FG is equivalent to soc(ZFG) · K(FG) = 0.
In this section, we further adapt this statement to our group-theoretic setting. We begin
with a result on the commutator ideal K(FG) · FG = FG ·K(FG) (see Lemma 1.7):

Proposition 2.7. The commutator ideal is given by

FG ·K(FG) = Ker(νG′) = FG · ω(FG′). (2.9)

Proof. Note that the right equality in (2.9) is the statement of (2.7), applied to N = G′.
Now consider the left equality. Since FG/Ker(νG′) ∼= F [G/G′] is commutative, we obtain
FG · K(FG) ⊆ Ker(νG′) by Lemma 1.7. For the other inclusion, we first prove that
1− g ∈ FG ·K(FG) holds for all g ∈ G′. If g = [a, b] holds for some a, b ∈ G, we obtain

1− g = 1− [a, b] = ab(b−1a−1 − a−1b−1) ∈ FG ·K(FG).

An arbitrary element g ∈ G′ can be expressed as a product g = x1 · · ·xn of commutators
x1, . . . , xn. We have

1− x1x2 = x1(1− x2) + (1− x1) ∈ FG ·K(FG)

and hence 1− g ∈ FG ·K(FG) follows by induction. This shows ω(FG′) ⊆ FG ·K(FG)
and hence Ker(νG′) = FG · ω(FG′) ⊆ FG ·K(FG) follows.

The following characterization of the property soc(ZFG) E FG for group algebras will be
used throughout the entire thesis:

Lemma 2.8. The socle soc(ZFG) is an ideal of FG if and only if we have

soc(ZFG) ⊆ (G′)+ · FG.

Proof. By Lemma 1.9, we have soc(ZFG) E FG if and only if K(FG) · soc(ZFG) = 0
holds, which is equivalent to FG ·K(FG) · soc(ZFG) = 0. That is, we have

soc(ZFG) ⊆ AnnFG(FG ·K(FG)) = AnnFG(FG · ω(FG′))

by Proposition 2.7. Note that the left and the right annihilator of FG · K(FG) in FG
coincide by Lemma 1.19 (v). For any x ∈ FG, the condition ω(FG′) · x = 0 is equivalent
to FG · ω(FG′) · x = 0. Therefore, soc(ZFG) is an ideal of FG if and only if we have

soc(ZFG) ⊆ AnnFG(FG · ω(FG′)) = rAnnFG(ω(FG′)) = (G′)+ · FG

(see (2.5)), which finishes the proof.

Remark 2.9. Explicitly, the set (G′)+ · FG is given by

(G′)+ · FG =

∑
g∈G

agg ∈ FG : ag1 = ag2 if g−1
1 g2 ∈ G′ holds

 .
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In other words, every element in (G′)+ · FG has constant coefficients on the cosets of G′

in G. For instance, if there exists a normal subgroup N E G with N+ ∈ soc(ZFG), then
soc(ZFG) E FG implies G′ ⊆ N . /

This allows us to decide whether soc(ZFG) is an ideal of FG by examining the coefficients
of the individual elements in soc(ZFG) instead of determining the structure of this space.
For instance, in order to show that soc(ZFG) is not an ideal of FG, we can construct an
element in ZFG with non-constant coefficients on a certain coset of G′ and show directly
that this element annihilates a basis of J(ZFG).

2.3 Some special elements of FG

Let F be an algebraically closed field and let G be a finite group. From now on, we
assume that F is of characteristic p > 0 since otherwise, FG is semisimple and this case
was already treated in Remark 1.6. We study the case that G has a nontrivial normal
p-subgroup N , which will be automatically ensured later on. From this, we construct a
subgroup M of G such that M+ annihilates a large subset of the conjugacy class sums of G.
In the following, this result will be applied in different circumstances in order to construct
interesting elements in soc(ZFG). We begin with the following simple observation, which
will be used frequently.

Remark 2.10. Consider a normal subgroup L of G and let C ∈ Cl(G). For any c1, c2 ∈ C,
there exists an element x ∈ G with xc1x

−1 = c2. Conjugation with x permutes the
conjugacy class C and maps C ∩ c1L to C ∩ c2L. This shows that the cosets c1L and c2L
contain the same number of elements in C. /

We now move to the construction of the subgroup M . To this end, we first consider the
special case that the normal p-subgroup N is abelian.

Proposition 2.11. Assume that N is an abelian normal p-subgroup of G. We set

M := {x ∈ [N,G] : xp = 1}.

If C ∈ Cl(G) is a conjugacy class with C 6⊆ CG(N), we have νM (C+) = 0. In particular,
this yields M+ · C+ = 0.

Proof. Note that M is a normal subgroup of G. The p-group N acts on C by conjugation.
Let B be an orbit of this action and consider an element b ∈ B. Since C is not contained in
the normal subgroup CG(N), we obtain N 6⊆ CG(b), which yields |B| = |N : CN (b)| 6= 1.
Set X := 〈N,B〉 = 〈N, b〉. For n1, n2 ∈ N, we have [n1n2, b] = [n1, b] · [n2, b] since N is
abelian. Hence the map f : N → N, n 7→ [n, b] is a group endomorphism with image X ′

and kernel CN (b). This yields |B| = |N : CN (b)| = |X ′|, so in particular, |X ′| is a nontrivial
power of p.

Now we consider the quotient group Ḡ := G/M. Again, the group N̄ := N/M acts on
the image C̄ ∈ Cl(Ḡ) of C in Ḡ by conjugation. Let B̄ denote the image of B under the
canonical projection. Note that this is an orbit of the action of N̄ on C̄. Set b̄ := bM and
X̄ := X/M. By carrying out the same argument as before, we obtain

|B̄| = |N̄ : CN̄ (b̄)| = |X̄ ′| = |X ′ : X ′ ∩M |.
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Since X ′ ⊆ [N,G] is a nontrivial p-group, it contains an element of order p. It follows that
|X ′ ∩M | is divisible by p. With this, we obtain

νM (B+) =
|B|
|B̄|
· B̄+ = |X ′ ∩M | · B̄+ = 0.

Since B is an arbitrary orbit of the action of N on C, this yields νM (C+) = 0, which
implies M+ · C+ = 0.

Now we consider the general case, that is, we drop the assumption that N is abelian.

Lemma 2.12. Let N be a normal p-subgroup of G. We set

M :=
{
x ∈ [N,G] : xp ∈ N ′

}
and let C ∈ Cl(G) be a conjugacy class with C 6⊆ CG(N). Then we have νM (C+) = 0,
which implies M+ · C+ = 0.

Proof. Again, the p-group N acts on C by conjugation. Let B be an orbit of this action
and consider an element b ∈ B. As before, |B| = |N : CN (b)| is divisible by p. We now
go over to the quotient group Ḡ := G/N ′ and set b̄ := bN ′ ∈ Ḡ. Note that the image
N̄ := N/N ′ is abelian. First assume CN̄ (b̄) = N̄ . This means that for any n ∈ N, one has
[n, b] ∈ N ′, which implies

νN ′(B
+) = |B| · b̄ = 0.

Since N ′ ⊆ M holds, this yields νM (B+) = 0. Now assume that the centralizer CN̄ (b̄) is
a proper subgroup of N̄ . In particular, we have C̄ 6⊆ CḠ(N̄), where C̄ denotes the image
of C in Ḡ. The preceding lemma then yields νM̄ (C̄+) = 0 for

M̄ := {x ∈ [N̄ , Ḡ] : xp = 1} = M/N ′.

Moreover, we have νN ′(C
+) = |C|

|C̄| · C̄
+ and hence

νM̄ (νN ′(C
+)) =

|C|
|C̄|
· νM̄ (C̄+) = 0.

This yields νM (C+) = 0 since we have Ḡ/M̄ = (G/N ′)/(M/N ′) ∼= G/M and hence the
map νM̄ ◦ νN ′ can be identified with νM .

The following special case will arise frequently:

Corollary 2.13. Let N be a normal p-subgroup of G and consider an element g ∈ G with
g /∈ CG(N). In this case, we have νN ([g]+) = 0. In particular, |[g] ∩ gN | is divisible by p.

Proof. By the preceding lemma, we have νM ([g]+) = 0 for M := {x ∈ [N,G] : xp ∈ N ′},
which yields νN ([g]+) = 0 since N contains M . By Remark 2.10, |[g] ∩ gN | is divisible
by p.

In this section, we did not impose any conditions on the structure of G. In the next section,
we will see that the condition soc(ZFG) E FG forces the group to be of a particular form,
for which we refine the above results in Section 2.4.3.
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2.4 Structure of G

Throughout, G denotes a finite group and F is an algebraically closed field of characteristic
p > 0. In this section, we make some fundamental observations on the structure of the
finite groups G for which soc(ZFG) E FG holds. In Section 2.4.1, we study the Reynolds
ideal R(FG). Our main result is that R(FG) is an ideal in FG if and only if G′ is contained
in the p-core of G. In the subsequent parts, we exploit this structure. First, we investigate
the transition to the p-blocks of FG. In Section 2.4.3, we describe an F -basis for J(ZFG)
which we use throughout this thesis. We conclude this part by showing that FG is an
H-graded algebra and by refining the results obtained in Section 2.3.

2.4.1 Reynolds ideal

In this section, we investigate the Reynolds ideal R(FG) and answer the question under
which conditions it is an ideal of FG (see Question 1.4). Recall that the latter is a necessary
condition for soc(ZFG) E FG by Lemma 1.12. This will lead to a decomposition of G
into a semidirect product, which will be used throughout this entire thesis.

By [36, Equation (39)], the Reynolds ideal of FG is explicitly given as

R(FG) = F
{
S+ : S p′-section of G

}
. (2.10)

In particular, we have G+
p ∈ R(FG), where Gp denotes the set of p-elements of G.

Remark 2.14. We obtain the following chain of inclusions:

R(FG) ⊆ soc(ZFG) ⊆ Op(Z(G))+ · FG.

Note that R(FG) is contained in soc(ZFG) by definition. In order to show the second
inclusion, we consider an element 1 6= z ∈ Op(Z(G)). Since (z − 1)p

n
= zp

n − 1 = 0 holds
for some sufficiently large n ∈ N, the element z−1 ∈ ZFG is nilpotent and hence contained
in J(ZFG). For any element y =

∑
g∈G agg ∈ soc(ZFG), this yields y · (z− 1) = 0, which

translates to agz = ag for all g ∈ G. Since this holds for every 1 6= z ∈ Op(Z(G)), we
obtain soc(ZFG) ⊆ Op(Z(G))+ · FG as claimed. /

The following theorem, which answers Question 1.4 in this case, forms the basis for all
further derivations concerning group algebras.

Theorem 2.15. Let G be a finite group. Then the following are equivalent:

(i) R(FG) is an ideal of FG.

(ii) G′ ⊆ Op(G).

(iii) G = P oH with P ∈ Sylp(G) and an abelian p′-group H.

In this case, we have R(FG) = Op(G)+ · FG.

Proof. We first show the equivalence of (ii) and (iii). Assume G′ ⊆ Op(G). For any Sylow
p-subgroup P of G, we obtain G′ ⊆ Op(G) ⊆ P , so P is a normal subgroup of G. By
the Schur-Zassenhaus theorem (see [30, Theorem 6.2.1]), there exists a Hall p′-subgroup



2.4 Structure of G 29

H of G and we have G = P o H. Moreover, H ∼= G/P is abelian since P contains the
derived subgroup G′. Conversely, assume that G = P oH is a group of the form given in
(iii). Then P is a normal subgroup of G, which implies P = Op(G). Since H is abelian,
we obtain G′ ⊆ P.

Now we show the equivalence of the properties (i) and (ii). Recall that R(FG) E FG is
equivalent to R(FG)⊥ E FG, where R(FG)⊥ denotes the orthogonal space of R(FG) with
respect to a symmetrizing linear form of FG (see Section 1.2 and (2.3)). By Lemma 1.19,
we have

R(FG)⊥ = (ZFG ∩ soc(FG))⊥ = K(FG) + J(FG)

and this space is an ideal of FG if and only if K(FG/J(FG)) = K(FG)+J(FG)/J(FG) is
an ideal in FG/J(FG) (see Lemma 1.8). Since the latter algebra is semisimple and hence
symmetric (see Example 1.18), this is the case if and only if FG/J(FG) is commutative
by Remark 1.21. This in turn is equivalent to ω(FG′) · FG = K(FG) · FG ⊆ J(FG) (see
Proposition 2.7 and Lemma 1.7).

Now if G′ ⊆ Op(G) holds, then G′ is a p-group and we obtain ω(FG′) = J(FG′) ⊆ J(FG)
(see (2.4)), so ω(FG′) · FG ⊆ J(FG) also holds. By the above, R(FG) is an ideal of FG.
Conversely, assume that this holds, so ω(FG′) · FG is contained in J(FG). In particular,
the element g − 1 ∈ ω(FG′) is nilpotent for any g ∈ G′. Hence there exists n ∈ N with
0 = (g − 1)p

n
= gp

n − 1, so g is a p-element. This implies that G′ is a p-group and hence
contained in Op(G), which establishes the equivalence of (i) and (ii).

If G is of the form given in (iii), then the p′-sections of G are of the form hP for h ∈ H.
Since R(FG) is spanned by their sums, we obtain R(FG) = P+ · FG = Op(G)+ · FG
(see (2.10)).

By Lemma 1.12, R(FG) E FG is a necessary condition for soc(ZFG) E FG and hence
the previous theorem has the following fundamental consequence for the structure of the
finite groups G which satisfy soc(ZFG) E FG:

Corollary 2.16. If soc(ZFG) is an ideal of FG, then G is of the form P o H with
P ∈ Sylp(G) and an abelian p′-group H. In particular, G is solvable.

Note that in this situation, the Sylow p-subgroup P is characteristic in G since any auto-
morphism of G preserves the orders of the group elements. This implies that the derived
subgroups P ′, P ′′ etc. are characteristic in G as well. Moreover, we make the following
observation on the structure of the conjugacy classes of elements in H:

Remark 2.17. Let G be a finite group of the form P o H as in Theorem 2.15 (iii) and
consider an element h ∈ H. For h′ ∈ [h], we write h′ = ch with c ∈ Uh ⊆ G′ (see (2.1)). If
h and c commute, then c is the p-part of h′. Since h and h′ = ch are conjugate elements,
also their p-parts are conjugate, which yields c = 1. This shows that h does not commute
with any nontrivial element of Uh. /

This property will be frequently used in our investigation of group algebras.
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2.4.2 Blocks of group algebras and the p′-core

Let G be a group of the form P o H with P ∈ Sylp(G) and an abelian p′-group H. In
this section, we investigate the condition soc(Z(B)) E B for a p-block B of FG (see
Section 2.1). Many problems can be simplified by studying the p-blocks instead of the
entire group algebra. For our problem, however, this turns out not to be the case since
all p-blocks of FG are isomorphic in this situation. As a consequence, we may pass to
the group algebra of Ḡ := G/Op′(G) and hence restrict our investigation to groups with
trivial p′-core in the following.

Remark 2.18. Let FG = B1 ⊕ . . . ⊕ Bn be the decomposition of FG into its p-blocks
B1, . . . , Bn. By [44, Corollary 3.12], we have

J(ZFG) = J(Z(B1))⊕ . . .⊕ J(Z(Bn)).

Since Bi ·Bj = 0 holds for i, j ∈ {1, . . . , n} with i 6= j, we also obtain

soc(ZFG) = soc(Z(B1))⊕ . . .⊕ soc(Z(Bn)).

In particular, we have soc(ZFG) E FG if and only if soc(Z(Bi)) is an ideal in Bi for
i = 1, . . . , n. Note that we have

R(FG) = R(B1)⊕ . . .⊕R(Bn)

by [37, page 622]. Since R(FG) is an ideal in FG by Theorem 2.15, this yields R(Bi) E Bi
for i = 1, . . . , n. By [37, Proposition 4.1], all blocks of FG are isomorphic to the principal
block, which in turn is isomorphic to the principal block B̄0 of the group algebra FḠ. In
particular, we have soc(ZFG) E FG if and only if soc(Z(B̄0)) E B̄0 holds. /

This has the following important consequence:

Lemma 2.19. We have soc(ZFG) E FG if and only if soc(ZFḠ) E FḠ holds.

Proof. If soc(ZFG) is an ideal of FG, then soc(ZFḠ) E FḠ follows by Lemma 1.25 since
FḠ can be viewed as a quotient algebra of FG (see (2.6)). Now assume that soc(ZFḠ)
is an ideal of FḠ. Note that Ḡ is of the form Ḡ = P̄ o H̄ with a normal Sylow p-
subgroup P̄ and an abelian p′-group H̄. Furthermore, we have Op′(Ḡ) = 1 and hence
Theorem 2.1 yields CḠ(P̄ ) ⊆ P̄ . By [43, Corollary 7.3], the group algebra FḠ consists of
a single block. By the preceding remark, the assumption soc(ZFḠ) E FḠ then implies
soc(ZFG) E FG.

By replacing G by the quotient group G/Op′(G), we may therefore restrict ourselves to
groups with a trivial p′-core.

2.4.3 Basis for J(ZFG)

In this section, we assume that G is a finite group of the form P oH with P ∈ Sylp(G)
and an abelian p′-group H (see Corollary 2.16). In this case, we determine an F -basis for
J(ZFG), which we use throughout this thesis. Since we need the results in the general
setting later on, we do not require the p′-core of G to be trivial.
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We begin by examining the conjugacy classes of G. To this end, we first analyze the
structure of the centralizer CG(P ).

Remark 2.20. Since P = Op(G) ⊆ Op′,p(G) holds, [20, Theorem 6.3.3] implies

CG(P ) ⊆ Op′,p(G) = Op′(G)P = Op′(G)× P.

Conversely, note that [P,Op′(G)] ⊆ P ∩Op′(G) = 1 implies Op′(G) ⊆ CG(P ), which yields

CG(P ) = Op′(G)× Z(P ).

Since H is an abelian group containing Op′(G), we have H ⊆ CG(Op′(G)). The above
argument yields P ⊆ CG(Op′(G)), so we obtain G = PH ⊆ CG(Op′(G)) and hence
Op′(G) ⊆ Z(G). Finally, note that for any g ∈ G, we obtain the equivalence

g ∈ CG(P )⇔ P ⊆ CG(g)⇔ p - |[g]|, (2.11)

since we have |G| = |CG(g)| · |[g]|. /

As before, νP : FG → F [G/P ] denotes the canonical projection onto F [G/P ] (see (2.6)).
By (2.8), its kernel is given by Ker(νP ) = J(FG). In the following, we distinguish two
types of conjugacy classes of G, which are usually treated separately in the following:

Remark 2.21. Let C ∈ Cl(G) be a conjugacy class. Since G/P is abelian, we obtain
|C̄| = 1 for the image C̄ ∈ Cl(G/P ) of C in G/P. Now two cases can occur:

• |C| is divisible by p: In this case, we have νP (C+) = |C| · C̄+ = 0, which yields
C+ ∈ J(FG) ∩ ZFG = J(ZFG).

• |C| is not divisible by p: The equivalence in (2.11) then yields C ⊆ CG(P ). By
Remark 2.20, every element c ∈ C can be expressed in the form sz with s ∈ Op′(G)
and z ∈ Z(P ). Note that the elements s and z are uniquely determined since the
intersection Op′(G) ∩ Z(P ) is trivial. Moreover, s ∈ Z(G) (see Remark 2.20) yields
C = s[z]. Observe that the element C+ − |C| · s = s([z]+ − |[z]| · 1) is contained in
Ker(νP ) ∩ ZFG = J(ZFG). /

According to this distinction, we now associate elements bC ∈ J(ZFG) to the conjugacy
classes C ∈ Cl(G). We do not take the classes of elements in Op′(G) into account since
the corresponding elements of J(ZFG) are zero.

Definition 2.22. Let C ∈ Cl(G) be a conjugacy class with C 6⊆ Op′(G). We set bC := C+

if p divides |C|. Otherwise, we write C = s[z] with s ∈ Op′(G) and 1 6= z ∈ Z(P ) as in
Remark 2.21 and set bC = s([z]+ − |[z]| · 1).

The key observation is that these elements form an F -basis for J(ZFG).

Theorem 2.23. Let G be a finite group of the form G = P o H with P ∈ Sylp(G) and
an abelian p′-group H. Then an F -basis for J(ZFG) is given by

B :=
{
bC : C ∈ Cl(G), C 6⊆ Op′(G)

}
,

where bC denotes the element of J(ZFG) corresponding to C ∈ Cl(G) by Definition 2.22.



32 Chapter 2 General results on group algebras

Proof. Remark 2.21 shows that the elements in B are contained in J(ZFG). Note that
the elements in B ∪ Op′(G) form an F -basis for ZFG. Since the algebra FOp′(G) is
semisimple, the Jacobson radical J(ZFG) is spanned by B.

Remark 2.24. If Op′(G) = 1 holds in the situation of Theorem 2.23, then the given basis
of J(ZFG) simplifies to{

D+ − |D| · 1: 1 6= D ∈ Cl(G), D ⊆ Z(P )
}
∪
{
C+ : C ∈ Cl(G), p divides |C|

}
. /

Note that we have soc(ZFG) = AnnZFG(J(ZFG)) = AnnZFG(B), that is, it suffices to
consider the multiplication with the elements of B. For y ∈ FG, it is often useful to
restate the condition y · bC = 0 in terms of the coefficients of y:

Remark 2.25. For an element y =
∑

g∈G agg ∈ FG and a subset M ⊆ G, we have

y ·M+ = 0⇔
∑
m∈M

awm−1 = 0 for all w ∈ G, (2.12)

since the expression on the right hand side is the coefficient of w in the product y ·M+.
In particular, this will be applied in the case where M = C ∈ Cl(G) is a conjugacy class
of length divisible by p. Similarly, for C ∈ Cl(G) of the form C = sD with s ∈ Op′(G)
and a G-conjugacy class D ⊆ Z(P ), we obtain

y · bC = 0⇔ y · (D+ − |D| · 1) = 0⇔
∑
d∈D

awd−1 = |D| · aw for all w ∈ G. (2.13)

If y is contained in ZFG, setting w = 1 and D = [z−1] for some z ∈ Z(P )\{1} yields

|D| · az = |D| · a1,

since the inverses of the elements in D are conjugate and hence the corresponding coeffi-
cients are equal. Since |D| is not divisible by p (see (2.11)), this yields az = a1. /

2.4.4 Applications

Again, we assume that G is a finite group of the form P o H with P ∈ Sylp(G) and an
abelian p′-group H. In the following, we make use of the basis of J(ZFG) determined in
Section 2.4.3. First we show that the group algebra FG is an H-graded algebra, which
allows us to restrict our investigation to elements which are homogeneous with respect to
this grading. This considerably simplifies our further calculations. Afterwards, we use the
results from Section 2.3 in order to construct interesting elements of soc(ZFG).

We begin by recalling some facts about graded algebras. Further information on this topic
can be found in [42], for example.

Remark 2.26. Let M be a monoid. An F -algebra A is called M -graded if there exists a
decomposition into F -vector spaces

A =
⊕
m∈M

Am
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such that AmAn := F{aman : am ∈ Am, an ∈ An} is contained in Amn for all m,n ∈ M .
An element is called homogeneous if it is contained in Am for some m ∈M . A subspace V
spanned by homogeneous elements is called an M -graded subspace. This is equivalent
to V being of the form

⊕
m∈M (Am ∩ V ). An M -graded subalgebra B of A is a subalgebra

that is an M -graded subspace. Note that B can be viewed as an M -graded algebra with
components Bm := B ∩Am for all m ∈M. Similarly, we define M -graded ideals of A. /

In our situation, the group algebra FG is H-graded in a natural way:

Remark 2.27. For h ∈ H, we consider the F -subspace FP · h = FhP of FG. We have

FG =
⊕
h∈H

FhP

since any element g ∈ G can be expressed as a product hu of elements h ∈ H and u ∈ P
in a unique way. Moreover, Fh1P · Fh2P ⊆ Fh1h2P holds for all h1, h2 ∈ H. In this
way, FG becomes an H-graded algebra. Since the conjugacy class sums of G, which form
a basis for ZFG, are homogeneous with respect to this grading, it follows that ZFG is
an H-graded subalgebra of FG. Note that the basis of J(ZFG) given in Theorem 2.23
also consists of homogeneous elements, so J(ZFG) is a homogeneous subspace of FG. In
particular, we have

J(ZFG) =
⊕
h∈H

(FhP ∩ J(ZFG)) .

It follows that the annihilator soc(ZFG) = AnnZFG(J(ZFG)) is a homogeneous subspace
of FG as well, which implies

soc(ZFG) =
⊕
h∈H

(FhP ∩ soc(ZFG)) .

In order to answer the question whether soc(ZFG) is an ideal of FG, it therefore suffices
to check whether FG · y ⊆ ZFG holds for all homogeneous elements y ∈ soc(ZFG). /

At the end of this part, we apply Lemma 2.12 in order to construct elements in soc(ZFG)
that arise from self-centralizing normal p-subgroups of G. By Lemma 2.19, we may assume
that G has a trivial p′-core.

Lemma 2.28. Assume Op′(G) = 1 and let N ⊆ P be a normal subgroup of G which
satisfies CP (N) ⊆ N. Then we have N+ ∈ soc(ZFG).

Proof. We first show that CG(N) = CP (N) holds. Note that CP (N) = P ∩ CG(N)
is a normal Sylow p-subgroup of CG(N) and hence by the Schur-Zassenhaus theorem,
there exists a p′-subgroup V with CG(N) = CP (N)V . Since V centralizes the p-group
CP (N) ⊆ N , we even obtain CG(N) = CP (N) × V . Hence V is a normal subgroup of
CG(N), which yields V ⊆ Op′(CG(N)) ⊆ Op′(G) = 1. With this, CG(N) = CP (N) follows
as claimed.

Now consider a conjugacy class 1 6= C ∈ Cl(G) and first assume C ⊆ CP (N) ⊆ N . If
p divides |C|, we obtain νN (bC) = νN (C+) = 0. Similarly, if |C| is not divisible by p,
we have νN (bC) = νN (C+ − |C| · 1) = 0. Now let C 6⊆ CP (N) = CG(N). By (2.11),



34 Chapter 2 General results on group algebras

p divides |C| and hence νN (bC) = νN (C+) = 0 follows by Corollary 2.13. Summarizing,
we obtain νN (bC) = 0 and hence N+ · bC = 0 for all 1 6= C ∈ Cl(G), which implies
N+ ∈ soc(ZFG) by Theorem 2.23.

Later on, we also need the following variant of the previous lemma:

Corollary 2.29. Assume Op′(G) = 1 and let M ⊆ P be a normal subgroup of G. For
N := CP (M)M , we obtain N+ ∈ soc(ZFG).

Proof. Note that since CP (N) ⊆ CP (M) ⊆ N follows in this case, the previous lemma
yields N+ ∈ soc(ZFG).

2.5 Relation to smaller groups

Let F be an algebraically closed field of characteristic p > 0. In order to characterize
the finite groups G for which soc(ZFG) is an ideal in FG, it is convenient to address
this question for certain smaller groups. In particular, one might wonder whether this
property is inherited by the group algebra of a quotient group or a subgroup of G. We
have already seen that the transition to symmetric quotient algebras is possible in a more
general context (see Lemma 1.25). In Section 2.5.1, we study this phenomenon for group
algebras in greater detail.

In contrast, the condition soc(ZFG) E FG does in general not imply soc(ZFH) E FH
for every subgroup H of G. We will later present a counterexample (see Example 3.22).
Here, we focus on the particular situation that G = G1 ∗ G2 is a central product of two
subgroups G1 and G2. We show that in this case, soc(ZFG) E FG holds if and only if
both FG1 and FG2 have the corresponding property (see Section 2.5.2).

2.5.1 Quotient groups

Throughout this section, let G be a finite group and consider a normal subgroup N E G
with corresponding quotient group Ḡ := G/N . In this part, we study the transition to
group algebra FḠ in greater detail.

If soc(ZFG) is an ideal of FG, then Lemma 1.25 yields soc(ZFḠ) E FḠ since FḠ is
isomorphic to the quotient algebra FG/ω(FN) · FG (see (2.7)). In this section, we refine
this result by deriving a correspondence between the set N+ · FG ∩ soc(ZFG) and the
elements in AnnZFḠ(S), where S is a subset of the basis elements of J(ZFḠ) introduced
in Definition 2.22. A key observation is that this bijection maps elements of (G′)+ · FG
to elements in (Ḡ′)+ · FḠ and vice versa. By Lemma 2.8, this allows us to transfer the
question whether soc(ZFG) is an ideal of FG to an investigation of certain annihilators
in the group algebra FḠ.

We consider the map

ΛN : FḠ→ FG,
∑
gN∈Ḡ

agN · gN 7→
∑
g∈G

agN · g.
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By identifying FḠ and FG/ω(FN) · FG, we see that ΛN is the adjoint map ν∗N (see
Section 1.2) of the canonical projection νN : FG→ FḠ with respect to the symmetrizing
linear form given in (2.3). We collect some properties of ν∗N :

Lemma 2.30.

(i) For x ∈ G and a ∈ FḠ, we have x · ν∗N (a) = ν∗N (xN · a) and ν∗N (a) · x = ν∗N (a · xN).

(ii) The map ν∗N is linear and injective. Its image is given by N+ · FG = FG ·N+.

(iii) We have ν∗N (ZFḠ) = ZFG ∩ Im(ν∗N ).

(iv) For a ∈ FḠ, the condition a ∈ (Ḡ′)+ · FḠ is equivalent to ν∗N (a) ∈ (G′)+ · FG.

Proof.

(i) This follows from (1.4) and (1.5).

(ii) The map ν∗N is clearly linear and injective. Any x ∈ Im(ν∗N ) has constant coefficients
on cosets of N, so it is an element of N+ · FG = FG · N+. Conversely, we have
N+ = ν∗N (N) ∈ Im(ν∗N ) and hence the claim follows by (i).

(iii) This is the statement of Lemma 1.24, rephrased in this context.

(iv) This follows from the fact that for any x, y ∈ G, we have x−1y ∈ NG′ if and only if
x̄−1ȳ ∈ Ḡ′ holds, where x̄, ȳ denote the images of x, y in Ḡ.

In the remainder of this section, we assume that G is of the form P oH with P ∈ Sylp(G)
and an abelian Hall p′-subgroup H (see Corollary 2.16). Note that Ḡ = P̄ o H̄ has a
similar structure with P̄ := PN/N ∈ Sylp(Ḡ) and the abelian p′-group H̄ := HN/N . We
first investigate the structure of the conjugacy classes in G and their images in Ḡ.

Remark 2.31. We consider a conjugacy class C ∈ Cl(G) with C 6⊆ Op′(G)N and set
C̄ ∈ Cl(Ḡ) to be the image of C in Ḡ. By Remark 2.10, every element in C̄ has k := |C|/|C̄|
preimages in C, so we obtain νN (C+) = k · C̄+. In particular, we have C+ ∈ Ker(νN ) if
and only if k is divisible by p. /

This gives rise to the following distinction:

Definition 2.32. Let C ∈ Cl(G) be a conjugacy class with C 6⊆ Op′(G)N and denote by
C̄ ∈ Cl(Ḡ) the image of C in Ḡ. Then the following cases can arise:

(i) |C|/|C̄| is not divisible by p: We denote the set of these conjugacy classes by Clp′,N (G)
and set

Cl+p′,N (G) :=
{
bC : C ∈ Clp′,N (G)

}
to be the set of corresponding basis elements of J(ZFG) (see Definition 2.22).

(ii) p divides |C|/|C̄|: The set of these classes will be denoted by Clp,N (G). As in the
first case, we set

Cl+p,N (G) := {bC : C ∈ Clp,N (G)} .

In the following, C is always assumed to be a conjugacy class of G and C̄ ∈ Cl(Ḡ) denotes
its image in Ḡ.
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Lemma 2.33. For C ∈ Clp′,N (G), we have C̄ 6⊆ Op′(Ḡ).

Proof. Let C ∈ Clp′,N (G) and assume C̄ ⊆ Op′(Ḡ). By Remark 2.20, Op′(Ḡ) is contained
in Z(Ḡ) and hence we have |C̄| = 1. The assumption C ∈ Clp′,N (G) implies that |C| is
not divisible by p, so by Remark 2.21, there exist elements s ∈ Op′(G) and z ∈ Z(P ) with
C = [sz]. Since we have szN ∈ Op′(Ḡ) as well as sN ∈ Op′(G)N/N ⊆ Op′(Ḡ), we obtain
zN ∈ Op′(Ḡ) and hence z ∈ N since z is a p-element. This implies C ⊆ Op′(G)N , which
contradicts the assumption C ∈ Clp′,N (G).

In particular, for every conjugacy class C ∈ Clp′,N (G), the basis element bC̄ of J(ZFḠ)
corresponding to C̄ (see Definition 2.22) is well-defined and hence the following definition
makes sense:

Definition 2.34. By Clp′,N (G) ⊆ Cl(Ḡ), we denote the set of images of the conjugacy
classes in Clp′,N (G). As before, we set

Cl
+
p′,N (G) :=

{
bC̄ : C̄ ∈ Clp′,N (G)

}
,

where bC̄ denotes the basis element of J(ZFḠ) corresponding to C̄ (see Definition 2.22).

Remark 2.35. For a conjugacy class C̄ ∈ Cl(Ḡ), it is possible that there exist preimages
C1, C2 ∈ Cl(G) of C̄ with C1 ∈ Clp′,N (G) and C2 ∈ Clp,N (G): An example for p = 2 is
given by the 2-group

G = 〈r, s, t | r8 = s2 = t2 = [r, t] = [s, t] = 1, srs = r−1〉 ∼= D16 × C2.

Set C1 := [t] and C2 := [tr2]. Since t ∈ Z(G) holds, we have |C1| = 1. One easily
verifies that C2 = {tr2, tr6} is a class of length two. Now consider the normal subgroup
G′ = 〈r2〉. In G/G′, the images of C1 and C2 coincide, which yields C1 ∈ Cl2′,G′(G) and
C2 ∈ Cl2,G′(G). /

Our aim is to establish a correspondence between the set soc(ZFG) ∩ Im(ν∗N ) and the

annihilator of Cl
+
p′,N (G) in ZFḠ. As a first step, we observe the following:

Remark 2.36. Let a ∈ ZFḠ. By Remark 1.27, we have ν∗N (a) ∈ soc(ZFG) if and only
if a · νN (J(ZFG)) = 0 holds. In order to check whether ν∗N (a) is contained in soc(ZFG),
it therefore suffices to consider the product of a with the images of those basis elements
of J(ZFG) which are not contained in the kernel of νN . /

In the following, we therefore focus on the basis elements of J(ZFG) corresponding to
conjugacy classes in Clp′,N (G). For these, we obtain an equivalent annihilation condition
in the group algebra FḠ.

Lemma 2.37. For a conjugacy class C ∈ Clp′,N (G) with image C̄ ∈ Cl(Ḡ), we have

νN (bC) =
|C|
|C̄|
· bC̄ .

In particular, for a ∈ FḠ, we obtain a · bC̄ = 0 if and only if ν∗N (a) · bC = 0 holds.
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Proof. By Remark 2.31, we have νN (C+) = k · C̄+ for k := |C|/|C̄|. If C is of the form
sD with s ∈ Op′(G) and a G-conjugacy class D ⊆ Z(P ), we have

νN (bC) = νN (C+ − |C| · s) = k(C̄+ − |C̄| · s̄) = k · bC̄ ,

since we have C̄ = s̄D̄, where s̄ ∈ Op′(Ḡ) and D̄ ∈ Cl(Ḡ) as well as D̄ ⊆ Z(P̄ ) hold.
Similarly, if p divides |C|, then we have νN (bC) = νN (C+) = k · C̄+ = k · bC̄ since p
divides |C̄| as well. In both cases, we therefore obtain νN (bC) = k · bC̄ . This yields a chain
of equivalences

ν∗N (a) · bC = 0⇔ ν∗N (a · νN (bC)) = 0⇔ a · νN (bC) = 0⇔ a · k · bC̄ = 0⇔ a · bC̄ = 0.

In the first step, we used Lemma 2.30, in the second the injectivity of ν∗N and in the last
equality that k is invertible modulo p since C ∈ Clp′,N (G) holds.

With this, we obtain the following relation:

Lemma 2.38. For any a ∈ FḠ, there is an equivalence

a ∈ AnnZFḠ
(
Cl

+
p′,N (G)

)
⇔ ν∗N (a) ∈ soc(ZFG).

Proof. First consider an element a ∈ AnnZFḠ(Cl
+
p′,N (G)). Since Lemma 2.30 yields

ν∗N (a) ∈ ZFG, it remains to show that ν∗N (a) · bC = 0 holds for every conjugacy class
C ∈ Cl(G) with C 6⊆ Op′(G). If C ∈ Clp,N (G) holds, we have bC ∈ Ker(νN ). Similarly,
if C ⊆ Op′(G)N holds, then C is of the form [sn] = s[n] with s ∈ Op′(G) ⊆ Z(G) and
n ∈ N\{1}, so we obtain bC = s · b[n] ∈ Ker(νN ). By Remark 2.36, it therefore remains
to consider the case C ∈ Clp′,N (G). By assumption, we have a · bC̄ = 0 and this implies
ν∗N (a) · bC = 0 by Lemma 2.37. Summarizing, this derivation shows ν∗N (a) ∈ soc(ZFG).

Conversely, let a ∈ FḠ be an element with ν∗N (a) ∈ soc(ZFG) and consider a conjugacy
class C̄ ∈ Clp′,N (G). By definition, there exists a preimage C ∈ Clp′,N (G) of C̄. By
assumption, we have ν∗N (a) · bC = 0 and Lemma 2.37 then yields a · bC̄ = 0. Since

a ∈ ZFḠ holds by Lemma 2.30, we obtain a ∈ AnnZFḠ(Cl
+
p′,N (G)) as claimed.

The preceding lemma yields a bijective correspondence

AnnZFḠ
(
Cl

+
p′,N (G)

)
←→ N+ · FG ∩ soc(ZFG)

a←→ ν∗N (a)

Moreover, Lemma 2.30 (iv) shows that a ∈ (Ḡ′)+ ·FḠ is equivalent to ν∗N (a) ∈ (G′)+ ·FG.
In particular, we obtain the following necessary condition for soc(ZFG) E FG:

Theorem 2.39. Let G be a finite group of the form P o H with P ∈ Sylp(G) and an
abelian p′-group H and consider a normal subgroup N E G. If soc(ZFG) is an ideal of
FG, we have

AnnZFḠ
(
Cl

+
p′,N (G)

)
⊆ (Ḡ′)+ · FḠ. (2.14)

In particular, if the set Clp′,N (G) is empty, then Ḡ is abelian.
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Proof. Assume that soc(ZFG) is an ideal of FG. For any a ∈ AnnZFḠ(Cl
+
p′,N (G)), Lem-

mas 2.38 and 2.8 yield
ν∗N (a) ∈ soc(ZFG) ⊆ (G′)+ · FG.

By Lemma 2.30 (iv), this implies a ∈ (Ḡ′)+ · FḠ. If the set Clp′,N (G) is empty, we obtain

ZFḠ = AnnZFḠ
(
Cl

+
p′,N (G)

)
⊆ (Ḡ′)+ · FḠ,

which implies Ḡ′ = 1, that is, Ḡ is abelian.

Throughout this thesis, we obtain information on the structure of G by going over to a
suitable quotient group G/N and determining the set of relevant basis elements Cl

+
p′,N (G).

The inclusion given in (2.14) is then a necessary condition for soc(ZFG) E FG. As a first
application of the above results, we give an alternative proof of the following special case
of Lemma 1.25:

Corollary 2.40. If soc(ZFG) is an ideal of FG, then also soc(ZFḠ) E FḠ holds.

Proof. Assume that soc(ZFG) is an ideal of FG. Since Cl
+
p′,N (G) is a subset of the basis

elements of J(ZFḠ), Theorem 2.39 yields

soc(ZFḠ) = AnnZFḠ J(ZFḠ) ⊆ AnnZFḠ
(
Cl

+
p′,N (G)

)
⊆ (Ḡ′)+ · FḠ

and hence we have soc(ZFḠ) E FḠ by Lemma 2.8.

In general, the necessary condition given in (2.14) is much stronger than the statement of
Corollary 2.40:

Remark 2.41. The set Clp′,N (G) can be much smaller than Cl(Ḡ) or even empty. In terms

of annihilators, this means that soc(ZFḠ) can be a tiny subset of AnnZFḠ(Cl
+
p′,N (G)). In

particular, we frequently encounter the situation that soc(ZFḠ) is an ideal of FḠ, which
translates to soc(ZFḠ) ⊆ (Ḡ′)+ · FḠ by Lemma 2.8, but we have

AnnZFḠ
(
Cl

+
p′,N (G)

)
6⊆ (Ḡ′)+ · FḠ,

which yields soc(ZFG) 6E FG by Theorem 2.39. /

For the conjugacy classes of elements in H, we obtain the following characterization:

Lemma 2.42. Let G = P oH with P ∈ Sylp(G) and an abelian p′-group H and consider
a normal p-subgroup N E G. For the conjugacy class C := [h] of an element h ∈ H with
h /∈ Op′(G), we have C ∈ Clp′,N (G) if and only if h ∈ CG(N) holds.

Proof. If h is not contained in CG(N), we have νN (C+) = 0 by Corollary 2.13 and hence
C /∈ Clp′,N (G). Conversely, assume h ∈ CG(N). By Remark 2.17, we have [g, h] /∈ N
for all g ∈ G\CG(h) since h does not commute with its nontrivial commutators. This
yields |C ∩ hN | = 1 and hence |C ∩ aN | ≤ 1 for all a ∈ G (see Remark 2.10). This yields
|C| = |C̄| and hence C ∈ Clp′,N (G) follows.

By Remark 2.31, we therefore have νN (C+) 6= 0 if and only if C ⊆ CG(N) holds, that is,
we obtain equivalence in Corollary 2.13.
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2.5.2 Central products

After having inspected the transition to quotient groups in detail, we now consider our
main problem in the special situation that G = G1 ∗G2 is a central product of subgroups
G1 and G2. Remarkably, the property soc(ZFG) E FG is inherited by the group algebras
of the factors G1 and G2. Central products will arise naturally in the context of 2-groups
as well as in several other occasions in our treatment of arbitrary finite groups.

Lemma 2.43. Suppose that the finite group G is a central product of two subgroups G1

and G2. In this case, soc(ZFG) E FG is equivalent to soc(ZFGi) E FGi for i = 1, 2.

Proof. If soc(ZFGi) E FGi holds for i = 1, 2, then soc(ZFG) E FG holds by Lemma 1.17
and Corollary 2.40 since G is isomorphic to a quotient group of the direct product G1×G2

and we have F (G1 ×G2) ∼= FG1 ⊗F FG2.

Conversely, assume that soc(ZFG) is an ideal of FG. By Corollary 2.16, G is of the form
P o H with P ∈ Sylp(G) and an abelian p′-group H. In particular, G′1, G

′
2 ⊆ P are p-

groups. By Theorem 2.15, it follows that Gi is of the form Gi = PioHi with Pi ∈ Sylp(Gi)
and an abelian p′-group Hi (i = 1, 2). In particular, there exist bases for J(ZFG) and
J(ZFGi) of the form given in Theorem 2.23.

First assume Op′(G) = 1. This implies Op′(Gi) = Op′(G) ∩ Gi = 1 for i = 1, 2. In this
case, the intersection Z := G1 ∩G2 ⊆ Z(G) is a p-group (see Theorem 2.1). We consider
an element

x1 :=
∑
g1∈G1

ag1g1 ∈ soc(ZFG1).

Our aim is to show x1 ∈ (G′1)+ · FG1. This is achieved by “extending” x1 to an element
y ∈ soc(ZFG). To this end, we decompose every element g ∈ G in the form g = g1g2 with
gi ∈ Gi (i = 1, 2) and set bg := ag1 ∈ F. This is well-defined: Assume that g1g2 = g′1g

′
2

holds for some g′1 ∈ G1 and g′2 ∈ G2. This implies g′1 = g1z and g′2 = g2z
−1 for some

z ∈ Z. Since the p-group Z is contained in Z(G1) ∩ P1, we have z − 1 ∈ J(ZFG1) and
hence x1 · (z − 1) = 0 holds, so ag′1 = ag1z = ag1 follows by Remark 2.25. In the following,
we consider the element

y :=
∑
g∈G

bgg ∈ FG.

Note that y ∈ FG · G+
2 holds. First we show that y is contained in ZFG. To this end,

let g, h ∈ G be two conjugate elements and write g = g1g2 and h = h1h2 with gi, hi ∈ Gi
(i = 1, 2). We can choose h1 and h2 in such a way that g1 and h1 are conjugate. Hence
bg = ag1 = ah1 = bh follows from the fact that x1 has constant coefficients on the conjugacy
classes of G1.

We claim that y is contained in soc(ZFG). For any C ∈ Cl(G) with C 6⊆ Op′(G), we need
to show that y · bC = 0 holds for the basis element bC of J(ZFG) corresponding to C (see
Definition 2.22). Write C = C1 · C2 for some Ci ∈ Cl(Gi) for i = 1, 2. In Section 2.1, we
have shown that there exists a set R2 ⊆ C2 such that C is the disjoint union of the sets C1r
with r ∈ R2. Moreover, we have |C| = |C1| · |R2| and |R2| divides |C2|. By interchanging
the roles of C1 and C2, it follows similarly that C is a disjoint union of the sets rC2 with
r ∈ R1 for a certain subset R1 ⊆ C1. In particular, |C1| and |C2| divide |C|.
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If p divides |C2|, then |C| is divisible by p. Moreover, we then have G+
2 ·C

+
2 = 0 and hence

y · bC = y · C+ =
∑
r∈R1

y · (rC2)+ = 0,

since y is a multiple of G+
2 in FG. Now assume that |C2| is not divisible by p. If p divides

|C1|, we have x1 · C+
1 = 0. For any t = t1t2 with ti ∈ Gi (i = 1, 2), Remark 2.25 then

yields ∑
c∈C

btc−1 =
∑
c1∈C1

∑
r∈R2

at1c−1
1

= |R2| ·
∑
c1∈C1

at1c−1
1

= 0.

Applying Remark 2.25 again, we obtain y · bC = y · C+ = 0.

Now assume that both |C1| and |C2| are not divisible by p. Since |C| divides |C1| · |C2|,
also |C| is not divisible by p, so we have bC = C+ − |C| · 1. First suppose C1 = 1. We
then obtain G+

2 · bC = G+
2 · (C

+
2 − |C2| · 1) = 0 and hence y · bC = 0 since y is a multiple

of G+
2 . Now let C1 6= 1. By (2.11) together with Theorem 2.1, this yields C1 ⊆ Z(P1)

since we have Op′(G1) = 1, and hence x1 · (C+
1 − |C1| · 1) = 0 follows from the assumption

x1 ∈ soc(ZFG1). For any t = t1t2 with ti ∈ Gi (i = 1, 2), this yields∑
c∈C

btc−1 =
∑
c1∈C1

∑
r∈R2

at1c−1
1

= |R2| ·
∑
c1∈C1

at1c−1
1

= |R2| · |C1| · at1 = |C| · bt

and hence y ·bC = 0 follows again by Remark 2.25. In the third step in the above equation,
we use the condition on x1 together with Remark 2.25. Summarizing, the above derivation
shows y ∈ soc(ZFG) ⊆ (G′)+ · FG. For two elements g1, h1 ∈ G1 with g1h

−1
1 ∈ G′1 ⊆ G′,

we therefore obtain ag1 = bg1 = bh1 = ah1 . This yields soc(ZFG1) ⊆ (G1)+ · FG1, which
implies soc(ZFG1) E FG1 by Lemma 2.8. Symmetry yields soc(ZFG2) E FG2, which
proves the claim in the situation where G has a trivial p′-core.

Now we consider the general case, so we do not assume Op′(G) = 1. Set Ḡ := G/Op′(G).
By Lemma 2.19, we obtain soc(ZFḠ) E FḠ, and Ḡ decomposes in the form Ḡ1 ∗ Ḡ2,
where Ḡi denotes the image of Gi in Ḡ for i = 1, 2. By the above argument, we obtain
soc(ZFḠi) E FḠi since Ḡ has a trivial p′-core. Since Op′(Gi) = Op′(G) ∩ Gi holds,
we have Ḡi ∼= Gi/Op′(G) ∩ Gi ∼= Gi/Op′(Gi) and hence soc(ZFGi) E FGi follows by
Lemma 2.19.

Remark 2.44. In case that G1 ∩G2 = 1 holds, the group G is the direct product of the
subgroups G1 and G2. In this case, the statement of the preceding lemma reduces to the
known result that soc(ZF (G1 × G2)) is an ideal of F (G1 × G2) if and only if this holds
for the respective group algebras FG1 and FG2 (see Lemma 1.17). For group algebras,
Lemma 2.43 can therefore be viewed as a generalization of Lemma 1.17. /

2.6 Special case: abelian Sylow p-subgroups

Let F be an algebraically closed field of characteristic p > 0. Throughout, we assume
that G is a finite group of the form P oH with P ∈ Sylp(G) and an abelian p′-group H.
In this section, we additionally require P to be abelian, although this condition will be
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sometimes relaxed to G′ ⊆ Z(P ) and other related properties. We study the conjugacy
class structure of G and prove that soc(ZFG) is an ideal of FG in this situation. Later,
we repeatedly return to this case by going over to the quotient group D = G/P ′.

Recall that for any g ∈ G, we may write [g] = Ug · g with Ug := {[a, g] : a ∈ G} ⊆ G′

(see (2.1)). As before, the p-part and p′-part of g are denoted by gp and gp′ , respectively.
We begin by investigating the conjugacy class structure of G.

Lemma 2.45.

(i) Assume that P is abelian. For g ∈ G, we obtain C := [g] = [gp] · [gp′ ]. Moreover, we
have [gp′ ] = [h] for the element h ∈ H with h ∈ gP .

(ii) Assume G′ ⊆ Z(P ). For any u ∈ P and h ∈ CG(H), we have h[u] ⊆ [hu]. In
particular, Uh is a normal subgroup of G.

Proof.

(i) Since hP is a p′-section of G (see proof of Theorem 2.15), it contains a unique p′-
conjugacy class, namely [h], so we have [gp′ ] = [h]. Since H is abelian, there exists
an element u ∈ P with gp′ = uhu−1. This yields g = uhgpu

−1 since P is abelian
and hence we have [g] = [hgp]. Without loss of generality, we therefore assume
gp′ = h ∈ H. Let x ∈ G and write x = pxhx with px ∈ P and hx ∈ H. Then

xgx−1 = xhx−1 · xgpx−1 = pxhp
−1
x · hxgph−1

x , (2.15)

since both P and H are abelian. This yields

C = {pxhp−1
x : px ∈ P} · {hxgph−1

x : hx ∈ H}
= {xhx−1 : x ∈ G} · {ygpy−1 : y ∈ G}
= [h] · [gp].

(ii) By Theorem 2.4, we have

G = HP = HCP (H)[P,H] = HCP (H)G′, (2.16)

since [P,H] is contained in G′. Hence for every u′ ∈ [u], there exists an element
h′ ∈ HCP (H) with h′uh′−1 = u′ since G′ centralizes P . As h′ ∈ CG(H) holds, we
obtain hu′ = h′huh′−1 ∈ [hu]. Since H is abelian, we have Uh = {[a, h] : a ∈ P}.
Moreover, we obtain [p1p2, h] = [p1, h] · [p2, h] for all p1, p2 ∈ P and hence Uh is a
subgroup of G′. From the first part of this statement, it follows that Uh is a union
of conjugacy classes and hence a normal subgroup of G.

The following observation occasionally simplifies the verification that a given element
y ∈ ZFG is contained in soc(ZFG):

Corollary 2.46. Assume that P is abelian and let h ∈ H. If an element y ∈ ZFG
annihilates [h]+, then it annihilates C+ for every conjugacy class C ⊆ hP.



42 Chapter 2 General results on group algebras

Proof. Let C ⊆ hP be a conjugacy class and consider an element g ∈ C. The group P
acts on C by conjugation and the orbits of this action are of the form u[gp′ ] = u[h] for
elements u ∈ P by Lemma 2.45. In particular, C is a disjoint union of sets of this form.
Hence y · [h]+ implies y · C+ = 0.

The main result of this part is the following:

Theorem 2.47. If G′ ⊆ Z(P ) holds, then soc(ZFG) is an ideal of FG.

Proof. By replacing G by the quotient group G/Op′(G) whose Sylow p-subgroup is iso-
morphic to P , we may assume Op′(G) = 1 (see Lemma 2.19). We consider an element
y =

∑
g∈G agg ∈ soc(ZFG). Let x ∈ G and write x = ub with u ∈ HCP (H) ⊆ CG(H)

and b ∈ G′ (see (2.16)). For b = 1, we have x = u and hence ax = au, so assume b 6= 1.
Observe that m := |[b]| and p are coprime since b centralizes P (see (2.11)). By (2.13),
applied to the conjugacy class [b−1], we obtain

m · au =
∑
b′∈[b]

aub′ = m · aub,

because the elements in u[b] are conjugate by Lemma 2.45 (ii). Since m is invertible
modulo p, we obtain ax = aub = au. This shows that y ∈ (G′)+ · FG holds and hence
soc(ZFG) is an ideal of FG by Lemma 2.8.

Remark 2.48. For an arbitrary finite group G, Theorem 2.15 yields

G′ ⊆ Op(G)⇒ R(FG) E FG,

where R(FG) denotes the Reynolds ideal of FG. In particular, G is of the form P o H
with P ∈ Sylp(G) and an abelian p′-group H in this case. With this, the statement of the
previous theorem reads

G′ ⊆ Z(Op(G))⇒ soc(ZFG) E FG. /

In the next chapter, we prove that if G is a p-group and the characteristic p is odd, then
the condition G′ ⊆ Z(Op(G)) = Z(G) is also necessary for soc(ZFG) E FG to hold. The
next example shows that this statement is not true for arbitrary finite groups, that is,
soc(ZFG) E FG does in general not imply G′ ⊆ Z(Op(G)):

Example 2.49. Let F be an algebraically closed field of characteristic p = 3 and consider
the group G = SmallGroup(216, 86) in the computer algebra system GAP [17]. It is of
the form G′ oH, where G′ is the extraspecial group of order 27 and exponent three, and
H is a cyclic subgroup of order eight, which permutes the eight nontrivial elements of
G′/G′′ transitively and acts on G′′ = Z(G′) by inversion. In particular, G′ = O3(G) is
non-abelian. We now verify that soc(ZFG) is an ideal in FG.

The group G has eight 3′-sections, namely the cosets of G′ in G (see the proof of Theo-
rem 2.15), which further decompose into conjugacy classes. One easily verifies that the
3′-section G′ decomposes into the three conjugacy classes {1}, G′′\{1} and G′\G′′. For
1 6= h ∈ H, the 3′-section hG′ consists of a single conjugacy class for ord(h) = 8 and of
two conjugacy classes for ord(h) ∈ {2, 4}.



2.6 Special case: abelian Sylow p-subgroups 43

By Remark 2.27, the socle soc(ZFG) is a H-graded module. We show that the homoge-
neous component Sh := soc(ZFG) ∩ FhG′ is one-dimensional for every h ∈ H since this
implies Sh = F (hG′)+ and hence soc(ZFG) ⊆ (G′)+ · FG. In the case ord(h) = 8, we
clearly have dimSh = 1. Now consider an element h ∈ H of order ord(h) ∈ {2, 4}. Since
hG′ consists of two conjugacy classes, Sh can be at most two-dimensional. If dimSh = 2
holds, then [h]+ and (hG′)+ form a basis of Sh. Since the element h centralizes G′′ and
acts transitively on the nontrivial cosets in G′/G′′, we obtain (G′′)+ · [h]+ = (hG′)+ 6= 0
by Remark 2.17, which is a contradiction to the assumption [h]+ ∈ soc(ZFG). This
implies dimSh = 1. Furthermore, this calculation shows that (G′′)+ is not contained in
soc(ZFG), so by the same argument as before, we obtain dim S1 = 1. Summarizing, this
yields soc(ZFG) ⊆ (G′)+ · FG and hence soc(ZFG) is an ideal of FG (see Lemma 2.8).
Since G′ is non-abelian, this shows that the condition G′ ⊆ Z(Op(G)) stated in Theo-
rem 2.47 is not necessary for soc(ZFG) E FG to hold. /

In characteristic two, the sufficient condition G′ ⊆ Z(P ) can be relaxed to G′ ⊆ Y (P )Z(P ),
where Y (P ) ⊆ P ′ denotes the subgroup defined in (2.2). Similarly to the case of odd
characteristic, this will be motivated by our results on 2-groups derived in Chapter 3,
which we will also need for the proof. Here, we lay the foundation by proving the following:

Lemma 2.50. Let p = 2. If G′ ⊆ Y (P )Z(P ) holds, we have G = CP (H) ∗ [Z(P ), H]H.
In this case, soc(ZFG) E FG is equivalent to soc(ZFCP (H)) E FCP (H).

Proof. Assume that G′ ⊆ Y (P )Z(P ) holds. In particular, G′ is abelian (see Lemma 2.6).
By Theorem 2.4, this yields

P = CP (H)[P,H] = CP (H)G′ = CP (H)Y (P )Z(P ). (2.17)

We first show that P ′ is contained in CP (H)′. By using the decomposition in (2.17), we
obtain

P ′ ⊆ CP (H)′ · [Y (P ), CP (H)]. (2.18)

Observe that CP (H)′ is a normal subgroup of P since G′ is abelian. We consider the
quotient group P̄ := P/CP (H)′ and denote the image of any subgroup S ⊆ P in P̄ by S̄.
Then we have

Y (P ) ⊆ P̄ ′ = [Y (P ), CP (H)] = [Y (P ), P̄ ].

In the second step, we use (2.18). The last equality follows from (2.17) together with the
fact that Y (P ) centralizes G′. Since P̄ is nilpotent, the above inclusion implies Y (P ) = 1,
which translates to Y (P ) ⊆ CP (H)′. Hence P ′ ⊆ CP (H)′ follows by (2.18). This implies
that CP (H) is normal in P and since H centralizes CP (H), we even obtain CP (H) E G.

We claim that G = CP (H)∗W holds for W := H[Z(P ), H]. Note that [P,H] = [Z(P ), H]
follows by (2.17) together with Y (P ) ⊆ CP (H) and hence W is a normal subgroup of G.
Moreover, we obtain P = CP (H)[Z(P ), H], which implies that G is generated by CP (H)
and W . Finally, observe that CP (H) centralizes W ⊆ HZ(P ). Since W has an abelian
Sylow p-subgroup, we obtain soc(ZFW ) E FW by Theorem 2.47. By Lemma 2.43, the
condition soc(ZFG) E FG is therefore equivalent to soc(ZFCP (H)) E FCP (H).

In order to apply the results on p-groups which will be derived in the next chapter to the
group CP (H), we will need the following consequence of the preceding proof:
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Remark 2.51. In the situation of Lemma 2.50, we have Y (P ) ⊆ CP (H) and hence

Y (P )Z(P ) ∩ CP (H) = Y (P ) · (Z(P ) ∩ CP (H)) = Y (P ) · Z(CP (H))

by Dedekind’s identity. We obtain Y (P ) = Y (CP (H)) since P = CP (H)∗ [Z(P ), H] holds
by Lemma 2.50 and [Z(P ), H] centralizes P . Since G′ ⊆ Y (P )Z(P ) holds by assumption,
this implies

CP (H)′ ⊆ G′ ∩ CP (H) ⊆ Y (P ) · Z(CP (H)) = Y (CP (H)) · Z(CP (H)).

In the next section (see Corollary 3.17), we will see that soc(ZFCP (H)) is an ideal of
FCP (H) in this situation. Lemma 2.50 then yields soc(ZFG) E FG. /



Chapter 3

Groups of prime power order

Throughout, we assume that F is an algebraically closed field of characteristic p > 0. The
principal aim of this section is to prove the following characterization of the p-groups G
which satisfy soc(ZFG) E FG:

Theorem 3.1. Let G be a finite p-group. Then soc(ZFG) is an ideal of FG if and only
if one of the following statements holds:

(i) c(G) ≤ 2, that is, G′ ⊆ Z(G).

(ii) p = 2 and G′ ⊆ Y (G)Z(G), where Y (G) is the subgroup generated by all elements
gf−1 for which {f, g} is a conjugacy class of length two in G.

In both cases, we have soc(ZFG) = (Z(G)G′)+ · FG.

This chapter is structured in the following way: In Section 3.1, we begin with some
preliminary results on p-groups which satisfy soc(ZFG) E FG. Afterwards, we distinguish
the cases p ≥ 3 (see Section 3.2) and p = 2 (see Section 3.3).

3.1 Preliminary results

This section consists of general results concerning p-groups G for which soc(ZFG) is
an ideal in FG. They hold independently of the characteristic p being odd or even.
Throughout, we assume that G is a finite p-group. We first observe that G is metabelian
if soc(ZFG) E FG holds. Afterwards, we use an observation on the center of the group
to determine the structure of soc(ZFG) and to treat groups of nilpotency class at most
two. Finally, we show that the property soc(ZFG) E FG is preserved under isoclinism.

The following result will be generalized to arbitrary finite groups in Section 4.2.2:

Lemma 3.2. If soc(ZFG) is an ideal of FG, then G is metabelian.

Proof. Let N be a maximal abelian normal subgroup of G. By [20, Lemma 5.3.12], we have
N = CG(N). Applying Lemma 2.28 yields N+ ∈ soc(ZFG) and hence G′ ⊆ N follows by
Remark 2.9. This implies that G′ is abelian.

The next result, a simple observation on the coefficients of an element of soc(ZFG) on
cosets of Z(G), has remarkable consequences. For instance, it enables us to determine
the structure of soc(ZFG) in case that this set is an ideal of FG and to show that
soc(ZFG) E FG holds if G is of nilpotency class at most two.



46 Chapter 3 Groups of prime power order

Remark 3.3. Since G is a p-group, we have Op(Z(G)) = Z(G) and hence Remark 2.14
translates to soc(ZFG) ⊆ Z(G)+ · FG in this situation. /

Lemma 3.4. If soc(ZFG) is an ideal of FG, then soc(ZFG) = (Z(G)G′)+ · FG holds.

Proof. Assume soc(ZFG) E FG. Lemma 2.8 then yields soc(ZFG) ⊆ (G′)+ · FG. To-
gether with Remark 3.3, this implies soc(ZFG) ⊆ (Z(G)G′)+ · FG. Now consider the
basis of J(ZFG) given in Remark 2.24. Note that Z(G)+ annihilates all basis elements
b[z] = z − 1 with 1 6= z ∈ Z(G). Since every conjugacy class of G is contained in
a certain coset of G′, it follows that (G′)+ annihilates bC = C+ for every C ∈ Cl(G)
with C 6⊆ Z(G). By Remark 2.24, this implies (Z(G)G′)+ ∈ soc(ZFG), which yields
soc(ZFG) = (Z(G)G′)+ · FG as claimed.

Lemma 3.5. If G is of nilpotency class at most two, then soc(ZFG) E FG holds.

Proof. We have G′ ⊆ Z(G) and hence soc(ZFG) ⊆ Z(G)+ · FG ⊆ (G′)+ · FG (see
Remark 3.3). By Lemma 2.8, soc(ZFG) is an ideal of FG.

Surprisingly, the converse of the last statement holds if p is an odd prime number (see
Theorem 3.1). This will be proven in Section 3.2.

We now study the transition from FG to FḠ := F [G/Z(G)] in greater detail. To this end,
we first recall some notions from the second chapter:

Remark 3.6. The set Clp′,Z(G)(G) introduced in Definition 2.32 is explicitly given by

Clp′,Z(G)(G) = {C ∈ Cl(G) : C 6⊆ Z(G), gz /∈ C for all g ∈ C and 1 6= z ∈ Z(G)} .

As before, we denote by Cl+p′,Z(G)(G) the corresponding basis elements of J(ZFG) intro-
duced in Definition 2.22, that is, we have

Cl+p′,Z(G)(G) =
{
C+ : C ∈ Clp′,Z(G)(G)

}
.

Let Clp′,Z(G)(G) and Cl
+

:= Cl
+
p′,Z(G)(G) denote the images of the classes in Clp′,Z(G)(G)

in Ḡ and the corresponding class sums in FḠ, respectively (see Definition 2.34). /

The investigation of FḠ is particularly useful since the necessary condition stated in
Theorem 2.39 is equivalent to soc(ZFG) E FG in this case:

Lemma 3.7. We have soc(ZFG) E FG if and only if AnnZFḠ(Cl
+

) ⊆ (Ḡ′)+ ·FḠ holds.

Proof. If soc(ZFG) is an ideal of FG, then AnnZFḠ(Cl
+

) ⊆ (Ḡ′)+ · FḠ follows by Theo-
rem 2.39. On the other hand, assume that the latter inclusion holds and let x ∈ soc(ZFG).
Set α := ν∗Z(G) : Ḡ → G to be the map introduced in Section 2.5.1. By Remark 3.3, we

then obtain x ∈ Z(G)+ · FG = Im(α) and Lemma 2.30 (ii) implies

α−1(x) ∈ AnnZFḠ(Cl
+

) ⊆ (Ḡ′)+ · FḠ.

By Lemma 2.30, this yields x ∈ (G′)+ ·FG, so soc(ZFG) E FG follows by Lemma 2.8.
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Instead of soc(ZFG), we may therefore examine the annihilator of the set Cl
+

in ZFḠ.
This raises the question whether soc(ZFG1) E FG1 is equivalent to soc(ZFG2) E FG2

for p-groups G1 and G2 with G1/Z(G1) ∼= G2/Z(G2). In order to see that this is not the
case, we consider the following example:

Example 3.8. Let F be an algebraically closed field of characteristic p = 2. Consider
the group G1 = SmallGroup(64, 146) ∼= (C8 × C2 × C2) o C2 in GAP [17], which has the
following presentation:

〈a, b, c, d | a8 = b2 = c2 = d2 = [a, c] = [b, c] = [a, b] = [c, d] = 1, dad = a3, dbd = bc〉.

We have G′1 = 〈a2, c〉 ∼= C4×C2 and Z(G1) = 〈a4, c〉, which yields Ḡ1
∼= C2×D8. A short

computation shows that soc(ZFG1) is an ideal of FG1. As a second example, we consider
the group G2 = SmallGroup(64, 151) ∼= (Q16 × C2) o C2 with the presentation

〈a, b, c, d | a8 = b2a4 = c2 = d2 = [a, c] = [b, c] = [c, d] = 1, [a, b] = a2, dad = a5, dbd = bc〉.

A short computation shows G′2 = 〈a2, c〉 ∼= C4 × C2 and Z(G2) = 〈a4, c〉, which yields
Ḡ2
∼= C2 ×D8. Furthermore, using Lemma 2.8, it is easy to verify that soc(ZFG2) is not

an ideal in FG2. /

This example demonstrates that even if G′1 and G′2 as well as Ḡ1 and Ḡ2 are isomorphic,
the condition soc(ZFG1) E FG1 is not equivalent to soc(ZFG2) E FG2. We additionally
need to require that the two isomorphisms are compatible with each other, which is natu-
rally captured by the notion of isoclinism introduced in Section 2.1. In the following, we
assume that G1 and G2 are isoclinic p-groups with respect to isomorphisms ϕ : G′1 → G′2
and β : Ḡ1 → Ḡ2. We write πi : Gi → Ḡi for the canonical projection onto Ḡi and set
Cli := Clp′,Z(Gi)(Gi) for i = 1, 2. The key observation is a bijection between the sets Cl1
and Cl2, which we establish in the next statement.

Lemma 3.9. For x1 ∈ G1 and x2 ∈ G2 with β(π1(x1)) = π2(x2), we have [x1] ∈ Cl1 if
and only if [x2] ∈ Cl2 holds.

Proof. Let [x2] ∈ Cl2. In particular, we have x2 /∈ Z(G2), which yields x1 /∈ Z(G1).
Assume [x1] /∈ Cl1, that is, there exists an element k1 ∈ G1 with 1 6= [x1, k1] ∈ Z(G1). Let
k2 ∈ G2 with π2(k2) = β(π1(k1)). Then we have

1 = β
(
[π1(x1), π1(k1)]

)
=
[
β(π1(x1)), β(π1(k1))

]
=
[
π2(x2), π2(k2)

]
= π2

(
[x2, k2]

)
.

This implies [x2, k2] ∈ Z(G2), which yields [x2, k2] = 1 since [x2] ∈ Cl2 holds. With this,
we obtain ϕ([x1, k1]) = [x2, k2] = 1, which is a contradiction. The other implication follows
by symmetry.

In particular, this shows that the sets Clp′,Z(G1)(G1) and Clp′,Z(G2)(G2) are in bijective
correspondence under β. This naturally leads to the following equivalence:

Lemma 3.10. We have soc(ZFG1) E FG1 if and only if soc(ZFG2) E FG2 holds.

Proof. Extending the map β F -linearly gives rise to an isomorphism β̃ : FḠ1 → FḠ2 of
F -algebras, which restricts to the respective centers. By the above, we have

β̃
(
AnnZFḠ1

(
Cl

+
p′,Z(G1)(G1)

))
= AnnZFḠ2

(
Cl

+
p′,Z(G2)(G2)

)
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and hence soc(ZFG1) E FG1 is equivalent to soc(ZFG2) E FG2 by Lemma 3.7.

Since every p-group is isoclinic to a stem group, we may therefore restrict our investigation
to p-groups G which satisfy Z(G) ⊆ G′.

We conclude this part with two results which are the main ingredients of the proof of
Theorem 3.1 for p ≥ 3. Nevertheless, they hold in arbitrary positive characteristic.

Lemma 3.11. Let G be an elementary abelian group of order pn ≥ 3 for some n ∈ N.
Then we have

∏
g∈G g = 1.

Proof. If p is odd, then the statement follows from the fact that every nontrivial element
in G differs from its inverse and their product is the identity element. Now we assume
p = 2. We write G = H ∪̇ aH for some a ∈ G with a2 = 1 and a subgroup H ∼= Cn−1

2 .
Since |H| = 2n−1 is even, we obtain∏

g∈G
g =

∏
h∈H

h · (ah) = a|H| ·
∏
h∈H

h2 = 1.

Lemma 3.12. Let G be a p-group of nilpotency class exactly two. There exists an element
y ∈ ZFG\(G′)+ · FG such that y · S+ = 0 holds for all subgroups S ⊆ G′ with |S| ≥ 3.

Proof. Since G′ is an abelian p-group, there exist a nontrivial group homomorphism
α : G′ → F . We define an element y :=

∑
g∈G agg ∈ FG by setting ag := α(g) for g ∈ G′

and ag = 0 otherwise. Then y is contained in ZFG since every element in G′ ⊆ Z(G)
forms a conjugacy class of its own. Moreover, we have

ag1g2 = ag1 + ag2 (3.1)

for all g1, g2 ∈ G′ since α is a group homomorphism. Now consider a subgroup S ⊆ G′

with |S| ≥ 3. By Remark 2.25, we need to show that for all w ∈ G, we have∑
s∈S

aws−1 = 0.

For w /∈ G′, all occurring coefficients are zero, so assume w ∈ G′. In this case, we obtain∑
s∈S

aws−1 = |S| · aw +
∑
s∈S

as−1 =
∑
s∈S

as−1 .

Let {s1, . . . , sk} be a set of representatives for the cosets of S ∩Ker(α) in S. We obtain

∑
s∈S

as−1 =
∑
s∈S

α(s)−1 =

k∑
i=1

∑
g∈S∩Ker(α)

α(sig)−1 = |S ∩Ker(α)| ·
k∑
i=1

α(si)
−1.

In case S ∩ Ker(α) 6= 1 holds, this expression is zero. For S ∩ Ker(α) = 1, the map α
induces an isomorphism between S and α(S). Since α(S) is elementary abelian, so is S.
Lemma 3.11 then yields ∑

s∈S
as−1 = a∏

s∈S s
−1 = a1 = 0.
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3.2 Odd characteristic

Let F be an algebraically closed field of odd characteristic p. We now prove that Theo-
rem 3.1 holds in this case. Recall that Cl

+
denotes the set of class sums Cl

+
p′,Z(G′)(G).

Lemma 3.13. Assume p ≥ 3 and let G be a finite p-group. Then soc(ZFG) is an ideal
of FG if and only if G has nilpotency class at most two.

Proof. In Lemma 3.5, we have already proven that soc(ZFG) is an ideal of FG if G has
nilpotency class at most two. For the converse implication, we proceed by induction on
the nilpotency class c(G). Note that the quotient group Ḡ := G/Z(G) has class c(G)− 1.
First assume c(G) = 3. We apply Lemma 3.12 to Ḡ and consider the element y ∈ ZFḠ
constructed therein. By Lemma 2.45 (ii), any conjugacy class [h] ∈ Clp′,Z(G)(G) is of the
form [h] = Sh for some nontrivial subgroup S ⊆ Ḡ′. Since p is odd, we have |S| ≥ 3 and

hence y · [h]+ = y · (Sh)+ = 0 holds by construction of y. This shows y ∈ AnnZFḠ(Cl
+

).
Since the coefficients of y are not constant on Ḡ′ by construction, Lemma 3.7 implies
soc(ZFG) 6E FG. Now assume c(G) > 3. Since Ḡ has nilpotency class c(G)−1, we obtain
soc(ZFḠ) 6E FḠ by induction, which implies soc(ZFG) 6E FG by Corollary 2.40.

Remark 3.14. In the preceding proof, the fact that p is an odd prime number is only used
in the initial step of the induction. It ensures that the length of any noncentral conjugacy
class of Ḡ is at least three and hence that the corresponding class sum is annihilated by
the element y constructed in Lemma 3.12. This approach fails for p = 2 since Lemma 3.11
is no longer valid if the subgroup S in question has order two. /

This indicates that the conjugacy classes of length two play an fundamental role in the
classification of the 2-groups G which satisfy soc(ZFG) E FG, as we will see in the next
section.

3.3 Characteristic p = 2

In the following, let F be an algebraically closed field of characteristic two and assume
that G is a finite 2-group. In the first part of this section, we prove Theorem 3.1 for this
case, that is, we characterize the 2-groups G for which soc(ZFG) is an ideal in FG. In the
second part, we present some example classes of 2-groups with this property and study
the transition to certain subgroups of G.

3.3.1 Proof of Theorem 3.1

In this section, we prove Theorem 3.1 for the case p = 2 and state some consequences. It
turns out that the group Y (G) introduced in (2.2) plays a central role in this derivation.
It is defined by

Y (G) := 〈YC : C ∈ Cl(G), |C| = 2〉, (3.2)

where we set YC := 〈gf−1〉 for any conjugacy class C = {f, g} of length two. Recall that

CG(f) = CG(g) ⊆ CG(gf−1) (3.3)

holds in this situation. We first note the following:
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Lemma 3.15. We have soc(ZFG) ⊆ Y (G)+ · FG.

Proof. Let y =
∑

g∈G agg ∈ soc(ZFG). For a conjugacy class C = {f, g} of length two,

we have c := gf−1 ∈ Y (G) and the condition y ·C+ = 0 yields ax = axc−1 for all x ∈ G by
Remark 2.25. By induction, this implies ax = axc−1

1 ···c
−1
n

for every x ∈ G and all elements

c1, . . . , cn arising from G-conjugacy classes of length two as above. This shows that y has
constant coefficients on the cosets of Y (G) in G, that is, we obtain y ∈ Y (G)+ · FG.

Now we complete the proof of Theorem 3.1.

Theorem 3.16. Let G be a finite 2-group. Then soc(ZFG) is an ideal in FG if and only
if G′ ⊆ Y (G)Z(G) holds.

Proof. First assume that soc(ZFG) is an ideal of FG and suppose that Y (G)Z(G) does
not contain G′. Then Y (G)Z(G) ∩ G′ is a proper subgroup of G′. By [24, Theorem
III.7.2], there exists a normal subgroup N E G with Y (G)Z(G) ∩ G′ ⊆ N ⊆ G′ such
that |G′ : N | = 2 holds. We set M := Y (G)Z(G)N and show that M+ is contained in
soc(ZFG).

Note that M+ ∈ ZFG holds because M is a normal subgroup of G. Now we show that
M+ annihilates the basis elements of J(ZFG) given in Remark 2.24. For every element
z ∈ Z(G) ⊆ M , we have (1 + z) ·M+ = 0. For a G-conjugacy class C = {f, g} of length
two, we obtain C+ ·Y (G)+ = fY (G)+ + gY (G)+ = 0 since gf−1 ∈ Y (G) holds, and hence
also M+ annihilates C+. By Remark 2.10, every conjugacy class C ∈ Cl(G) with |C| ≥ 4
contains an even number of elements in every coset of N since C is contained in a certain
coset of G′ and |G′ : N | = 2 holds. This implies that C+ is annihilated by N+ and hence
by M+. Summarizing, we obtain M+ ∈ soc(ZFG). Note that we have M ∩G′ = N ( G′,
which implies M+ /∈ (G′)+ · FG. By Lemma 2.8, this yields soc(ZFG) 6E FG, which is a
contradiction. Hence G′ must be contained in Y (G)Z(G).

Conversely, assume that G′ ⊆ Y (G)Z(G) holds. By Remark 3.3 and Lemma 3.15, we have

soc(ZFG) ⊆ (Y (G)Z(G))+ · FG ⊆ (G′)+ · FG

and hence soc(ZFG) is an ideal of FG by Lemma 2.8.

Although the proof above requires p = 2, the statement of Theorem 3.16 remains valid
if p is odd. In this case, the group Y (G) is trivial, which reduces the given condition to
G′ ⊆ Z(G). This is the characterization stated in Theorem 3.1 (i).

We note the following consequence of Theorem 3.16 for arbitrary finite groups over a field
of characteristic two:

Corollary 3.17. Let F be an algebraically closed field of characteristic p = 2 and consider
an arbitrary finite group G with G′ ⊆ Y (O2(G)) · Z(O2(G)). Then soc(ZFG) is an ideal
of FG.

Proof. By Theorem 2.15, the group G is of the form P o H with P ∈ Syl2(G) and an
abelian Hall 2′-subgroup H. By Remark 2.51, we obtain

CP (H)′ ⊆ Y (CP (H)) · Z(CP (H)).
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Theorem 3.16 yields soc(ZFCP (H)) E FCP (H), which implies soc(ZFG) E FG by
Lemma 2.50.

Remark 3.18. Again, let F be an algebraically closed field of characteristic two. For an
arbitrary finite group, the condition G′ ⊆ Y (O2(G)) ·Z(O2(G)) is not necessarily satisfied
if soc(ZFG) E FG holds. For instance, consider the group G := SL2(F3), for which we will
show in Example 4.5 that soc(ZFG) E FG holds. Since G′ = O2(G) is of nilpotency class
exactly two, we have G′ 6⊆ Z(G′) = Y (G′)Z(G′). Note that this phenomenon also occurred
in odd characteristic (see Theorem 3.1 together with Theorem 2.47 and Example 2.49). /

After this brief discussion of arbitrary finite groups, we now return to the investigation of
2-groups and the consequences of Theorem 3.16. The following example shows that the set
of 2-groups of nilpotency class at most two forms a proper subset of the 2-groups G which
satisfy soc(ZFG) E FG. More precisely, there exist 2-groups of arbitrary nilpotency class
with the latter property.

Example 3.19 (Groups of maximal class). Let G be a 2-group of maximal class, that is,
a dihedral, semidihedral or generalized quaternion group. Then soc(ZFG) is an ideal of
FG. By Lemma 3.5, it suffices to show this for |G| ≥ 16 since c(G) ≤ 2 holds otherwise.
For the dihedral group

D2n = 〈r, s | rn = s2 = 1, srs = r−1〉

with n = 2k−1 for some k ≥ 4, we have D′2n = 〈r2〉. Then [r] = {r, r−1} yields D′2n =
〈r2〉 = Y[r] ⊆ Y (D2n). For the semidihedral group

SD2n = 〈r, s | r2n−1
= s2 = 1, srs = r2n−2−1〉

with n ≥ 4, we obtain SD′2n = 〈r2〉 ⊆ Y (SD2n) since we have [r] = {r, r2n−2−1} and hence
Y[r] = 〈r2n−2−2〉 = 〈r2〉. Finally, we consider the generalized quaternion group

Q2n = 〈h, k | h2n−2
= k2, h2n−1

= 1, k−1hk = h−1〉

with n ≥ 4. Again, we obtain Q′2n = 〈h2〉 = Y[h] ⊆ Y (Q2n). By Theorem 3.16, soc(ZFG)
is an ideal of FG for G ∈ {D2n, SD2n , Q2n}. /

As a second application of Theorem 3.16, we classify the finite 2-groups G for which
soc(ZFG) E FG holds and which have a cyclic derived subgroup. By Lemma 3.10, it
suffices to consider stem groups, that is, we may assume Z(G) ⊆ G′.

Lemma 3.20. Let G be a stem 2-group which satisfies soc(ZFG) E FG and assume that
G′ = 〈c〉 is cyclic. We obtain the following classification:

(i) For |G′| = 1, the group G is abelian, so G = 1 holds.

(ii) For |G′| = 2, we have G ∈ {D8 ∗Qr−1
8 , Qr8} for some r ∈ N, where Qt8 := Q8 ∗ . . .∗Q8

for t ∈ N0 denotes the central product of t copies of Q8.

(iii) For |G′| > 2, we either have c(G) = 2 or G = G1 ∗G2 is a central product, where G1

is a dihedral, semidihedral or generalized quaternion group of order 4 · |G′| and we
have G2 ∈ {1, D8 ∗Qr−1

8 , Qr8} for some r ∈ N.
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Proof.

(i) Clear, since G is a stem group by assumption.

(ii) Since Z(G) ⊆ G′ is nontrivial, we have G′ = Z(G). By [4, Lemma 5.2], the quotient
group G/G′ = G/Z(G) is elementary abelian and it follows that G is extraspecial.
Hence we obtain G ∼= Qr8 or G ∼= D8 ∗Qr−1

8 for some r ∈ N by [20, Theorem 5.5.2].

(iii) Assume that G has nilpotency class c(G) > 2, so c is not contained in Z(G). By
Theorem 3.16, we have G′ ⊆ Y (G)Z(G). On the other hand, Y (G) and Z(G) are
contained in G′, which yields equality. Since Z(G) is a proper subgroup of the cyclic
group G′, we even obtain G′ = Y (G). Since Y (G) is cyclic, there exists a conjugacy
class C = {f, g} of length two with Y (G) = YC , so we may assume gf−1 = c.
By (3.3), we have CG(f) = CG(c) = CG(G′). Note that this subgroup has index two
in G. In the following, we fix an element q ∈ G\CG(f) and consider the subgroups
G1 := 〈f, q,G′〉 and G2 := CG(q) ∩CG(G′). Note that G1 is a normal subgroup of G
since it contains G′.

We claim that G is generated by G1 and G2. Since G/CG(G′) is generated by
qCG(G′), it suffices to show CG(G′) = G1G2 ∩ CG(G′). To this end, we consider an
element v ∈ CG(G′) and assume v /∈ G2, that is, v /∈ CG(q). This yields [q, v] = c`

for some ` ∈ N. For k := v−1 · f ` ∈ CG(G′), we then have

[q, k] = [q, v]−1 · [q, f ]` = c−` · c` = 1

and hence k ∈ CG(q) ∩ CG(G′) = G2 follows. This implies v = f ` · k−1 ∈ G1G2 and
the claim is proven. Furthermore, note that the generators of G1 centralize G2 since
G2 ⊆ CG(G′) = CG(f) holds, so G = G1 ∗G2 is a central product of G1 and G2. By
Lemma 2.43, soc(ZFG1) and soc(ZFG2) are ideals in FG1 and FG2, respectively.

Now we determine the structure of the factors G1 andG2. We first show |G1 : G′| = 4.
To this end, we consider the element f2c ∈ G. For any h ∈ CG(c) = CG(f), we obtain
[h, f2c] = 1. For h ∈ G\CG(f), we have hch−1 = c−1 and hence [h, c] = c−2. Since f
and c centralize G′, we obtain

[h, f2c] = [h, f ]2 · [h, c] = c2 · c−2 = 1.

This implies f2c ∈ Z(G) ⊆ G′. Due to |G : CG(G′)| = 2, we have q2 ∈ CG(G′) =
CG(f). Then q2 ∈ Z(G1) ⊆ Z(G) ⊆ G′ follows from the fact that qCG(G′) generates
G/CG(G′). Since the abelian group G1/G

′ is generated by fG′ and qG′, this yields
|G1/G

′| = 4. Note that [q, f ] = c implies G′1 = 〈c〉 = G′. By [20, Theorem 5.4.5],
G1 is a dihedral, semidihedral or generalized quaternion group of order 4 · |G′|. Note
that we have G′2 ⊆ G′ ∩ CG(q) ⊆ Z(G). Since [c] = {c, c−1} holds, we obtain
Z(G) = 〈c|G′|/2〉, which yields |G′2| ≤ 2. If G′2 = 1 holds, we have G2 = Z(G2) ⊆ G′,
which implies G = G1. Otherwise, we have G′2 = Z(G) = Z(G2), so G2 is a stem
group and hence it has the structure described in (ii).
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3.3.2 Transition to subgroups

Now we study the invariance of the property soc(ZFG) E FG under the transition to
certain subgroups of G. This is motivated by the following observation:

Remark 3.21. If p is odd and G is a p-group which satisfies soc(ZFG) E FG, then
c(G) ≤ 2 follows by Theorem 3.1. In particular, the nilpotency class of any subgroup
H ⊆ G is at most two, which implies soc(ZFH) E FH. In other words, the property
soc(ZFG) E FG is passed on to the group algebras of subgroups of G. /

In contrast, the following example illustrates that for p = 2, the analogous statement does
not even hold for normal subgroups of G:

Example 3.22. Consider the group G = SmallGroup(128, 544) ∼= (C8×C2×C2)oC4 of
order 128 in GAP, which has the presentation〈

a, b, c, d

∣∣∣∣ a8 = b2 = c2 = d4 = [a, b] = [b, c] = [a, c] = 1,
[d, a] = a2, [d, b] = a4c, [d, c] = a4

〉
.

One easily verifies that Y (G) = 〈a2〉 and Z(G) = 〈a2c〉 hold. Therefore, the derived
subgroup G′ = 〈a2, c〉 is contained in Y (G)Z(G) and hence soc(ZFG) is an ideal of FG
by Theorem 3.16. We now consider the subgroup Q := 〈a2, b, c, d〉, which is normal in G
since it has index two. A short computation shows Y (Q) = 〈a4〉 ⊆ 〈a2c〉 = Z(Q) and
hence the derived subgroup Q′ = 〈a4, c〉 is not contained in Y (Q)Z(Q). By Theorem 3.16,
this implies soc(ZFQ) 6E FQ. The reason for this phenomenon is that the majority of the
conjugacy classes of G of size two is not contained in the subgroup Q. /

Now we consider centralizers S := CG(N) of normal subgroups N of G. For this par-
ticular class of normal subgroups of G, the question whether soc(ZFG) E FG implies
soc(ZFS) E FS can be answered affirmatively. This investigation is motivated by the
fact that in the study of group algebras, it is often useful to pass to centralizers or normal-
izers of p-subgroups. The following observation is the main ingredient for the transition
to centralizers of normal subgroups:

Remark 3.23. Let G be a finite 2-group which satisfies soc(ZFG) E FG and consider
a normal subgroup N E G. By Corollary 2.29, we have G′ ⊆ CG(N)N . For an element
c := gf−1 originating from a conjugacy class C = {f, g} of length two, we obtain the
stronger condition that c ∈ CG(N) or c ∈ N holds. To see that this is the case, we assume
c /∈ CG(N), which yields f /∈ CG(N) by (3.3). Hence there exists an element n ∈ N with
[n, f ] = c, which implies c ∈ N . /

Lemma 3.24. Let G be a 2-group which satisfies soc(ZFG) E FG. For every normal
subgroup N E G, we then have soc(ZFCG(N)) E FCG(N).

Proof. We set D := CG(N). We first show that YC ⊆ Y (D)Z(D)N holds for all conjugacy
classes C = {f, g} of length two. To this end, set c := gf−1. We may assume c /∈ N , which
yields c ∈ D by the preceding remark, and c /∈ Z(D), since the claim is proven otherwise.
This yields c /∈ Z(G) and hence CG(f) = CG(c) follows by (3.3). In particular, this implies
f ∈ D\Z(D). Observing that [f ]D ⊆ C holds, this yields [f ]D = C. Hence c ∈ Y (D)
follows, which proves the claim. Since C is an arbitrary conjugacy class of length two,
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we obtain Y (G) ⊆ Y (D)Z(D)N . Furthermore, note that Z(G) is contained in Z(D). By
Theorem 3.16, we therefore have

D′ ⊆ G′ ∩D ⊆ Y (G)Z(G) ∩D ⊆ Y (D)Z(D)N ∩D.

Applying Dedekind’s identity and using that N ∩D is contained in Z(D), we obtain

Y (D)Z(D)N ∩D ⊆ Y (D)Z(D)(N ∩D) ⊆ Y (D)Z(D).

Summarizing, this shows D′ ⊆ Y (D)Z(D), which yields soc(ZFD) E FD by Theo-
rem 3.16.

Remark 3.25. We do not know whether Lemma 3.24 holds without the assumption that
N is a normal in G. Using GAP, we have verified this statement for the subgroups of
the stem 2-groups of order at most 256. In contrast, soc(ZFG) E FG does not imply
soc(ZFNG(U)) E FNG(U) for every subgroup U of G. As a counterexample, consider the
group G = SmallGroup(128, 544) in GAP, whose presentation is given in Example 3.22.
We showed that soc(ZFG) E FG holds. Now consider the subgroup U := 〈a2b, c, d〉 of G.
Its normalizer NG(U) is the subgroup Q = 〈a2, b, c, d〉, for which we have already shown
that soc(ZFQ) is not an ideal of FQ (see Example 3.22). /



Chapter 4

Arbitrary finite groups

We fix an algebraically closed field F of characteristic p ∈ P. The aim of this chapter
is to analyze the structure of the finite groups G which satisfy soc(ZFG) E FG. In
Theorem 2.47 and Corollary 3.17, we already stated sufficient conditions for this property,
which generalized our classification result for p-groups (see Theorem 3.1). However, it was
also demonstrated that these properties are in general not fulfilled. In this chapter, we
therefore focus on deriving necessary conditions for soc(ZFG) E FG.

By Remark 1.6, we may assume that p divides the order of G. Furthermore, recall that
soc(ZFG) E FG implies that G is of the form P oH with P ∈ Sylp(G) and an abelian
p′-group H (see Corollary 2.16). By Lemma 2.19, we may assume Op′(G) = 1.

This chapter is organized as follows: First, we use our results on groups with an abelian
Sylow p-subgroup (see Section 2.6) by going over to the group D = G/P ′ whose structure
we analyze in Section 4.1. It turns out that the conjugacy classes of certain elements in H
are of particular relevance in this situation. We examine their structure in Section 4.2.1.
With this, we derive a decomposition of the Sylow subgroup P in Section 4.2.2 which
allows us to restrict to the case P = G′. Afterwards, we analyze the structure of G′ in
greater detail (see Section 4.2.3). Our results show that it is useful to distinguish the cases
CG′(P ) ⊆ P ′ and CG′(P ) 6⊆ P ′. In the first case, we can characterize the structure of G
completely (see Section 4.3) whereas for the second, we give some approaches in special
cases of the problem (see Section 4.4).

4.1 Structure of D

If not stated otherwise, we assume that G is a group with the following properties:

Hypothesis 4.1. Let G be a finite group with Op′(G) = 1 satisfying soc(ZFG) E FG.
We denote the (unique) Sylow p-subgroup of G by P and fix a Hall p′-subgroup H of G
(see Theorem 2.15).

Recall that the group H is abelian in this situation. Since we also want to derive suffi-
cient conditions for soc(ZFG) E FG, we sometimes replace this assumption by weaker
prerequisites. This will then always be stated explicitly.

In this section, we examine the quotient group D := G/P ′. First, we derive a decom-
position of D′ as a direct product which is frequently used throughout this chapter (see
Section 4.1.1). We continue with a brief interlude concerning a special set of conjugacy
classes (see Section 4.1.2). Using these results, we explicitly describe the conjugacy classes
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of certain elements in D′. Their particular structure allows us to choose a set of generators
for H with exceptionally nice properties (see Section 4.1.3).

We use the following notation: Let π : G→ D denote the canonical projection map onto D
and write ḡ := π(g) for the image of g ∈ G in D (similarly for subgroups of G). Note that
the group D is of the form P̄ o H̄. Since the Sylow p-subgroup P̄ of D is abelian, we can
apply the structural results derived in Section 2.6. Moreover, the lengths of all conjugacy
classes C ∈ Cl(D) with C ⊆ P̄ are coprime to p by (2.11). Note that the group H̄ is
isomorphic to H since we have H ∩P ′ = 1. For this reason, we usually identify H̄ and H.

4.1.1 Decomposition of D′

In this section, we derive a decomposition of the group D′ into a direct product of certain
subgroups, which will be fundamental for the entire chapter. Before doing so, we collect
several elementary properties of G and D, which will be used frequently.

Remark 4.2. Instead of Hypothesis 4.1, we only assume that G is a finite group of
the form P o H with P ∈ Sylp(G) and an abelian p′-group H. Theorem 2.4 yields
P = CP (H)[P,H] and P̄ = CP̄ (H) × [P̄ ,H]. Note that the subgroup [P,H] is normal
in G = PH (see [30, Theorem 1.5.5]) and similarly, we obtain [P̄ ,H] E D. Since H is
abelian and P ′ is a normal subgroup of G, this yields

G′ = [PH,PH] = [P, PH] = P ′[P,H].

In particular, we obtain D′ = [P̄ ,H]. /

We now study the structure of the center Z(D) and related subgroups.

Remark 4.3. Again, let G be a finite group of the form P oH with P ∈ Sylp(G) and an
abelian p′-group H such that Op′(G) = 1 holds.

(i) By the preceding remark, we obtain

P̄ = CP̄ (H)× [P̄ ,H] = CP̄ (H)×D′. (4.1)

In particular, we obtain CD′(H) = CP̄ (H) ∩D′ = 1.

(ii) Consider an element h ∈ CH(D′). By (4.1), we have h ∈ CH(P̄ ) = CH(P/P ′).
Since P ′ is contained in Φ(P ), the element h acts trivially on P/Φ(P ) and hence also
on P by Theorem 2.3. Since H is abelian, this implies h ∈ Z(G) ∩H ⊆ Op′(G) = 1.
This yields Op′(D) ⊆ CH(P̄ ) ⊆ CH(D′) = 1 by Remark 2.20.

(iii) Theorem 2.1 yields CD(P̄ ) = P̄ . In particular, the center of D is given by

Z(D) = CD(P̄ ) ∩ CD(H) = P̄ ∩ CD(H) = CP̄ (H). /

We now move to the decomposition of D′ announced at the beginning of this part.

Theorem 4.4. Let G be a finite group with Op′(G) = 1 satisfying soc(ZFG) E FG and
write G = P o H as before. We set D = G/P ′. Then there exists a normal subgroup
L E G with P ′ ⊆ L satisfying the following:
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(i) D′ = (L/P ′)× ZD with ZD := CG′(P )P ′/P ′, and T := L/P ′ is elementary abelian.

(ii) There exists a decomposition

L/P ′ = L1/P
′ × . . .× Ln/P ′

for some n ∈ N0 such that L1, . . . , Ln E G are normal subgroups which satisfy
P ′ ( Li ⊆ G′ and Ti := Li/P

′ is a simple FpH-module for i = 1, . . . , n.

Proof. Consider the normal subgroup N := {x ∈ G′ : xp ∈ P ′} of G. Since G′ = [P,G]
holds by Remark 4.2, applying Lemma 2.12 to P yields N+ · C+ = 0 for all C ∈ Cl(G)
with C 6⊆ CG(P ). As CG(P ) = Z(P ) holds by Theorem 2.1, the element (NZ(P ))+ is
contained in soc(ZFG). By Remark 2.9, this yields G′ ⊆ NZ(P ) and hence

G′ = NZ(P ) ∩G′ = N(Z(P ) ∩G′) = NCG′(P )

by Dedekind’s identity. Since the quotient group N/P ′ is elementary abelian, its H-
invariant subgroup N∩CG′(P )P ′/P ′ has anH-invariant complement in N/P ′ by Maschke’s
Theorem (see [20, Theorem 3.3.2]). This means that there exists a normal subgroup L E G
containing P ′ such that N/P ′ = L/P ′ × (N ∩ CG′(P )P ′)/P ′ holds. Note that L/P ′ is
elementary abelian as well. With this, we obtain

G′/P ′ = (N/P ′)(CG′(P )P ′/P ′) = L/P ′ × CG′(P )P ′/P ′.

By Maschke’s theorem, the FpH-module L/P ′ decomposes into a direct sum T1× . . .×Tn
of simple FpH-modules T1, . . . , Tn for some n ∈ N0. In particular, Ti is a minimal normal
subgroup of D for i = 1, . . . , n and the correspondence theorem yields Ti = Li/P

′ for some
normal subgroup Li E G with P ′ ⊆ Li ⊆ G′. Since Ti is a simple module, P ′ is a proper
subgroup of Li.

Example 4.5.

(i) Let F be an algebraically closed field of characteristic p = 2 and consider the special
linear group G = SL2(F3). Note that it is of the form G = G′oH with G′ ∼= Q8 and
a cyclic subgroup H of order three. We have G′′ = Z(G) = Z(G′) and this group
has order two. Moreover, conjugation with elements of H permutes the nontrivial
elements in G′/G′′ transitively.

We claim that soc(ZFG) is an ideal in FG. Analogously to Example 2.49, we need
to show that dimSh = 1 holds for all h ∈ H, where Sh := soc(ZFG) ∩ FhG′ is the
homogeneous component of soc(ZFG) with respect to the H-grading described in
Remark 2.27. In G′, we have the G-conjugacy classes {1}, Z(G)\{1} and G′\Z(G).
Each of the other two cosets of G′ splits into two G-conjugacy classes, which arise
from each other by multiplication with the nontrivial element in Z(G). In particular,
we have Z(G)+ · [h]+ = (hG′)+ for any 1 6= h ∈ H, that is, Z(G)+ and [h]+ are not
contained in soc(ZFG). As in Example 2.49, this yields dimSh = dimS1 = 1, which
implies soc(ZFG) ⊆ (G′)+ · FG. By Lemma 2.8, soc(ZFG) is an ideal of FG.
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Since conjugation with H permutes the nontrivial elements in D′ = G′/G′′ ∼= C2×C2

transitively, D′ is a simple F2H-module. The decomposition given in Theorem 4.4
therefore consists of a single module, that is, we have n = 1, T = D′ and ZD = 1.

(ii) Now let F be an algebraically closed field of characteristic p = 3 and consider the
group G = SmallGroup(216, 86) in GAP. In Example 2.49, we showed that soc(ZFG)
is an ideal of FG. The group G is of the form G′ o H with G′ ∈ Syl3(G) and a
cyclic group H of order eight, which acts transitively on the nontrivial elements of
D′ = G′/G′′ ∼= C3 × C3. As in the first example, the decomposition of D′ given in
Theorem 4.4 therefore consists of a single module. /

In order to find a group G satisfying soc(ZFG) E FG for which the decomposition of D′

given in Theorem 4.4 consists of n simple modules T1, . . . , Tn for some n ∈ N, one can
simply take the direct (or, more generally, central) product of n copies of one of the groups
in Example 4.5 (see Lemma 2.43).

4.1.2 A special set of conjugacy classes

We now introduce a subset of the elements in H whose conjugacy classes have a particularly
simple structure. Their existence will form the basis for the derivation of the following
sections. In the first two results, we only assume that D′ = G′/P ′ has the structure
described in Theorem 4.4 instead of requiring soc(ZFG) E FG.

Remark 4.6. Let G be a finite group of the form P oH with P ∈ Sylp(G) and an abelian
p′-group H such that Op′(G) = 1 holds. Moreover, assume that D′ ∼= T1 × . . .× Tn × ZD
holds for ZD := CG′(P )P ′/P ′ and minimal normal subgroups T1, . . . , Tn (n ∈ N0) of D.
For i = 1, . . . , n, we consider the subgroup

Ni :=
⊕
j 6=i

Tj × ZD E D. (4.2)

Note that we have D′ = Ti × Ni. Furthermore, we consider the preimage Mi := π−1(Ni)
of Ni under the canonical projection π : G→ D. Note that Mi is a normal subgroup of G.
Explicitly, it is given by

Mi =
∏
j 6=i

Lj · CG′(P )P ′, (4.3)

where we set Lj = π−1(Tj) for j = 1, . . . , n as before. /

We are interested in the conjugacy classes of the nontrivial elements of the centralizer
CH(Mi). This is motivated by the following result:

Lemma 4.7. Let G be a finite group of the form PoH with P ∈ Sylp(G) and an abelian p′-
group H such that Op′(G) = 1 holds. Moreover, assume that D′ ∼= T1× . . .×Tn×ZD holds
for ZD := CG′(P )P ′/P ′ and minimal normal subgroups T1, . . . , Tn of D. For i = 1, . . . , n,
we consider the subgroup Mi defined in (4.3). Then the following hold:

(i) The centralizer CH(Mi) is a cyclic subgroup of H.

(ii) Let 1 6= h ∈ H and set C := [h] ∈ Cl(G). Then we have h ∈ CH(Mi) if and only if
C ∈ Clp′,P ′(G) holds and its image C̄ ∈ Cl(D) is of the form C̄ = Ti · h̄.
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Proof.

(i) We consider the restriction to CH(Mi) of the canonical projection onto H/CH(Ti)
(identifying H and H̄ as usual):

ϕ : CH(Mi)→ H/CH(Ti), h 7→ hCH(Ti). (4.4)

We have Ker(ϕ) ⊆ CH(Ti)∩CH(Ni) = CH(D′) = 1 by Remark 4.3, so ϕ is injective.
Therefore, the group CH(Mi) is isomorphic to a subgroup of the group H/CH(Ti).
Since Ti is a simple FpH-module, the latter group is cyclic by [20, Theorem 3.2.3],
which implies that CH(Mi) is cyclic as well.

(ii) First let h ∈ CH(Mi). By Lemma 2.45, C̄ can be expressed in the form C̄ = U · h̄
with a normal subgroup U E D. Since P̄ is abelian, the map

α : Ti → Ti, t 7→ [t, h̄]

is a group homomorphism. The element h̄ centralizes Ni and since h̄ /∈ CH(D′) = 1
(see Remark 4.3) and D′ = Ti × Ni hold, the map α is nontrivial. Since Ti is a
simple FpH-module, Schur’s Lemma (see [48, Theorem 2.1.1]) implies that α is an
isomorphism. In particular, Ti is contained in U and since U ∩ Ni = 1 follows by
Remark 2.17, we obtain Ti = U , so C̄ is of the form C̄ = Ti · h̄. Furthermore,
h ∈ CH(Mi) ⊆ CH(P ′) implies [h] ⊆ CG(P ′) since this is a normal subgroup of G.
Applying Lemma 2.42 to the group P ′ then yields C ∈ Clp′,P ′(G).

Conversely, assume that C ∈ Clp′,P ′(G) and C̄ = Ti · h̄ hold. Then νP ′(C
+) is a

nonzero scalar multiple of T+
i . Here, νP ′ : FG → FD denotes the canonical pro-

jection (see (2.6)). On the other hand, the image of T+
i in F [G/Mi] ∼= F [D/Ni] is

given by (D′/Ni)
+, which shows that the image of C+ in F [G/Mi] is nontrivial. By

Corollary 2.13, this implies C ⊆ CG(Mi).

In general, the map ϕ given in (4.4) induces an isomorphism between CH(Mi) and a proper
subgroup of H/CH(Ti). In particular, we will see that the group H acts transitively on
the nontrivial elements of Ti, whereas the action of CH(Mi) is not necessarily transitive.

By Lemma 4.7, the images of the conjugacy classes of the elements in CH(Mi)\{1} have
a particularly simple shape. From now on until the end of Section 4.1, we additionally
assume that soc(ZFG) E FG holds, so we return to Hypothesis 4.1. This ensures that the
centralizer CH(Mi) is nontrivial, that is, it guarantees the existence of such a conjugacy
class. In order to prove this result, we need the following observation:

Remark 4.8. Let Z := π(Z(P )) denote the image of Z(P ) in D. Then Z ∩ D′ = ZD
holds: Using Dedekind’s identity, we obtain

π−1(Z ∩D′) = π−1(Z) ∩ π−1(D′) = Z(P )P ′ ∩G′ = (Z(P ) ∩G′)P ′ = CG′(P )P ′.

Since the map π is surjective, this yields Z ∩D′ = π
(
CG′(P )P ′

)
= ZD. /

Lemma 4.9. Let G be a finite group which satisfies Hypothesis 4.1. Then the centralizer
CH(Mi) is nontrivial for i = 1, . . . , n.
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Proof. Let i ∈ {1, . . . , n}. By Lemma 4.7, it suffices to show that there exists an element
h ∈ H with [h] ∈ Clp′,P ′(G) such that [h̄] = Ti · h̄ holds. Set Z := π(Z(P )) as before.
Dedekind’s identity together with Remark 4.8 shows that the subgroup

ZNi ∩D′ = (Z ∩D′)Ni = ZDNi = Ni (4.5)

is properly contained in D′. In particular, we have (ZNi)
+ /∈ AnnZFD(Cl

+
p′,P ′(G)) since

the latter set is contained in (D′)+ · FD by Theorem 2.39. Thus there exists a conjugacy
class C ∈ Clp′,P ′(G) with (ZNi)

+ · bC̄ 6= 0, where bC̄ denotes the basis element of J(ZFD)
corresponding to C̄ (see Definition 2.22). If C is contained in Z(P ), we have C̄ ⊆ Z ⊆ Z(P̄ )
and hence

(ZNi)
+ · bC̄ = (ZNi)

+ · (C̄+ − |C̄| · 1) = |C̄| · (ZNi)
+ − |C̄| · (ZNi)

+ = 0,

which is a contradiction. It follows that C 6⊆ Z(P ) holds, so |C| is divisible by p. Since
C ∈ Clp′,P ′(G) holds, also |C̄| is divisible by p, which yields C̄ 6⊆ P̄ and hence C 6⊆ P .
Now let g ∈ C and decompose g = gp ·gp′ into its p-part and p′-part. By Corollary 2.13, we
have g ∈ CG(P ′). By conjugating with a suitable element, we may assume that h := gp′ is
contained in H. Since h is a power of g, it centralizes P ′ as well. This yields [h] ∈ Clp′,P ′(G)
by Lemma 2.42. By Corollary 2.46, (ZNi)

+ · C̄+ 6= 0 implies (ZNi)
+ · [h̄]+ 6= 0. This

yields h̄ ∈ CH(ZNi) (see Corollary 2.13). Since we have h̄ /∈ CH(D′) = 1, the element
must act nontrivially on Ti. As in the proof of Lemma 4.7, taking commutators with h̄
therefore induces an automorphism on Ti. This implies [h̄] = Ti · h̄.

Example 4.10. We determine the centralizers CH(Mi) for the groups in Example 4.5.
First consider the special linear group G = SL2(F3). Recall that we have n = 1 in
the decomposition given in Theorem 4.4. We obtain M1 = G′′ = Z(G), which yields
CH(M1) = H for all Hall 2′-subgroups H of G. Also for G = SmallGroup(216, 86), we
have n = 1 and M1 = G′′. Consider a Hall 3′-subgroup H of G. Then H = 〈h〉 is cyclic
of order eight and acts on G′′ by inversion, so CH(M1) = 〈h2〉 is a group of order four in
this case. /

In the next section, we will make use of the existence of these particular elements in order
to determine the structure of the D-conjugacy classes of the elements in T .

4.1.3 Conjugacy classes in T and the structure of H

Throughout, we assume that G satisfies Hypothesis 4.1. In the following, we describe the
D-conjugacy classes of the elements in T . Their special structure enables us to choose a
particularly nice set of generators of the Hall p′-subgroup H afterwards. We begin with
the following preliminary result:

Proposition 4.11. Every normal subgroup N ⊆ T of D is of the form N = Ti1× . . .×Ti`
for some ` ∈ N0 and distinct indices i1, . . . , i` ∈ {1, . . . , n}.

Proof. We may assume N 6= 1. Note that the FpH-modules T1, . . . , Tn are pairwise non-
isomorphic since they have distinct kernels by Lemma 4.7 and Lemma 4.9. Since N is a
semisimple FpH-submodule of T , it decomposes in the form N = Ti1 × . . .× Ti` for some
` ∈ N and some i1, . . . , i` ∈ {1, . . . , n} by [13, page 46].
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Lemma 4.12. For t, t′ ∈ T , we write t = t1 · · · tn and t′ = t′1 · · · t′n with ti, t
′
i ∈ Ti for

i = 1, . . . , n. Then the elements t and t′ are conjugate in D if and only if ti = 1 is
equivalent to t′i = 1 for i = 1, . . . , n.

Proof. Assume that t and t′ are conjugate. For d ∈ D, we have

dtd−1 =
n∏
i=1

dtid
−1

with dtid
−1 ∈ Ti for i = 1, . . . , n. In particular, ti = 1 implies dtid

−1 = 1 and hence t′i = 1.
By symmetry, we obtain the equivalence ti = 1⇔ t′i = 1 for i = 1, . . . , n.

Now assume that t and t′ satisfy the equivalence ti = 1 ⇔ t′i = 1 for i = 1, . . . , n. We
show that they are conjugate in D by using induction on m := |{i ∈ {1, . . . , n} : ti 6= 1}|.
Without loss of generality, we assume ti 6= 1 for i = 1, . . . ,m and tm+1 = . . . = tn = 1.
For m = 0, there is nothing to show. For m ∈ {1, . . . , n}, we consider the group

W := Tm+1 × . . .× Tn.

Note that this is a normal subgroup of D. Moreover, set ` := |[t]| and `′ := |[t′]|, and recall
that both numbers are coprime to p since P̄ is abelian. We now show

y :=
(
`′[t]+ − `[t′]+

)
· (ZW )+ ∈ AnnZFD(Cl

+
p′,P ′(G)),

where Z := π(Z(P )) denotes the image of Z(P ) in D as before. Note that ZW ∩ D′ =
(Z ∩D′)W = ZD×W holds by Dedekind’s identity combined with Remark 4.8 and hence
we have ZW ∩ (T1 × . . .× Tm) = 1. By construction, it follows that y ∈ ZFD.

Consider a conjugacy class C ∈ Clp′,P ′(G). If C is contained in Z(P ), we obtain y · bC̄ = 0
as in the proof of Lemma 4.9. Otherwise both |C| and |C̄| are divisible by p (see (2.11))
and we have bC̄ = C̄+. In particular, C̄ is not contained in P̄ . By Corollary 2.46,
we have y · C̄+ = 0 if y · [h̄]+ = 0 holds for the element h ∈ H with C ⊆ hP . By
Lemma 2.45, [h̄] is of the form Uh̄ for some nontrivial normal subgroup U ⊆ D′ of D. It
therefore suffices to show that y · U+ = 0 holds in order to prove that y annihilates bC̄ .
To this end, we first assume U = Ti for some i ∈ {1, . . . ,m}. By induction, we obtain
Ci := [t1 · · · ti−1 · ti+1 · · · tm] = [t′1 · · · t′i−1 · t′i+1 · · · t′m]. By Remark 2.10, we have

[t]+ · T+
i =

`

|Ci|
· C+

i · T
+
i

and we obtain a similar formula for [t′]+ · T+
i . This yields

(
`′ · [t]+ − ` · [t′]+

)
· T+

i = `′ · `

|Ci|
· C+

i · T
+
i − ` ·

`′

|Ci|
· C+

i · T
+
i = 0

and hence also y · T+
i = 0.

Now we show that y ·U+ = 0 holds for an arbitrary subgroup 1 6= U ⊆ D′ which is normal
in D. If νZW (U+) = 0 holds, then we obtain U+ · (ZW )+ = 0 and hence y · U+ = 0. In
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the case νZW (U+) 6= 0, we have U ∩ ZW = U ∩ ZDW = 1 since U is a union of cosets of
U ∩ ZW , which is a p-group. Hence U+ · (ZW )+ = U+

T · (ZW )+ follows, where

UT := {t ∈ T1 × . . .× Tm : tc ∈ U for some c ∈ ZDW}

denotes the projection of U onto T1 × . . . × Tm. Since y is a multiple of (ZW )+ in
FD, we also obtain y · U+ = y · U+

T . Note that UT is a normal subgroup of D with
|UT | = |U |, so by Proposition 4.11, it is of the form UT = Ti1 × . . . × Tir for some r ∈ N
and i1, . . . , ir ∈ {1, . . . ,m}. We obtain y · U+

T = 0 since UT is a union of cosets of Ti1 and
y annihilates T+

i1
by the above.

This shows y ∈ AnnZFD(Cl
+
p′,P ′(G)). If [t] 6= [t′] holds, then the element y is nonzero.

Furthermore, it has non-constant coefficients on T since the coefficient of 1 ∈ T in y is
zero. This contradicts the assumption soc(ZFG) E FG by Theorem 2.39. Hence t and t′

must be conjugate in D.

We now examine the influence of this result on the structure of H. Since Ti is a simple
FpH-module for i = 1, . . . , n, it follows that H/CH(Ti) is cyclic (see [20, Theorem 3.2.3]).
We fix an element xi ∈ H such that xiCH(Ti) generates H/CH(Ti). The D-conjugacy class
structure of the elements in T now enables us to choose the generators x1, . . . , xn ∈ H in
such a way that 〈xi〉 centralizes Tj for j 6= i and acts transitively on Ti\{1} by conjugation.

Lemma 4.13. The canonical map

ρ : H/CH(T )→ H/CH(T1)× . . .×H/CH(Tn), hCH(T ) 7→
(
hCH(T1), . . . , hCH(Tn)

)
is an isomorphism. In particular, there exist e1, . . . , en ∈ H with H = 〈e1, . . . , en, CH(T )〉
and 〈eiCH(Ti)〉 = H/CH(Ti) such that 〈ei〉 acts transitively on Ti\{1} and centralizes Tj
for i, j ∈ {1, . . . , n} with j 6= i.

Proof. We consider the map

ρ′ : H → H/CH(T1)× . . .×H/CH(Tn), h 7→
(
hCH(T1), . . . , hCH(Tn)

)
.

Clearly, this is a group homomorphism with kernel CH(T1) ∩ . . . ∩ CH(Tn) = CH(T ).
We claim that ρ′ is surjective. To see that this holds, we fix an element ti ∈ Ti\{1} for
i = 1, . . . , n. By Lemma 4.12, the elements t1 · · · tn and x1t1x

−1
1 · t2 · · · tn are conjugate

in D. Since P̄ is abelian, there even exists an element h ∈ H with

h(t1 · · · tn)h−1 = x1t1x
−1
1 · t2 · · · tn.

Since Ti is a normal subgroup of D, htih
−1 ∈ Ti follows for i = 1, . . . , n and hence we have

ht1h
−1 = x1t1x

−1
1 as well as htih

−1 = ti for i = 2, . . . , n. This yields

ρ′(h) =
(
x1CH(T1), CH(T2), . . . , CH(Tn)

)
.

Since this can be carried out similarly for all indices, ρ′ is surjective and hence the map ρ
is an isomorphism. For i = 1, . . . , n, we fix an element ei ∈ H with

eiCH(T ) = ρ−1
(
CH(T1), . . . , CH(Ti−1), xiCH(Ti), CH(Ti+1), . . . , CH(Tn)

)
.
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Then ei acts trivially on Tj for j 6= i and eiCH(Ti) generates H/CH(Ti). Since all nontrivial
elements in Ti are conjugate by elements in H (see Lemma 4.12), 〈ei〉 acts transitively
on Ti\{1}. Furthermore, H/CH(T ) is generated by the images of e1, . . . , en, which yields
H = 〈e1, . . . , en, CH(T )〉.

From now on, we always choose generators xi := ei (i = 1, . . . , n) having the properties
described in the preceding lemma. The following theorem summarizes the results on the
structure of D obtained in this section:

Theorem 4.14. Let G be a finite group with Op′(G) = 1 such that soc(ZFG) E FG
holds. Let P ∈ Sylp(G) and fix a Hall p′-subgroup H of G. As before, we set D := G/P ′.
Then this group has the following properties:

(D1) There exists some n ∈ N0 such that the derived subgroup D′ decomposes as

D′ = T × ZD = T1 × . . .× Tn × ZD (4.6)

with elementary abelian normal subgroups T1, . . . , Tn E D that are simple FpH-
modules and ZD := CG′(P )P ′/P ′.

(D2) There exist e1, . . . , en ∈ H with H = 〈e1, . . . , en, CH(T )〉 and 〈eiCH(Ti)〉 = H/CH(Ti)
such that 〈ei〉 acts transitively on Ti\{1} and centralizes Tj for all i, j ∈ {1, . . . , n}
with i 6= j.

(D3) For i = 1, . . . , n, the centralizer CH(Mi) is nontrivial. Here, Mi denotes the preim-
age of

∏
j 6=i Tj × ZD under the projection onto D.

Later, we provide a reduction to the case P = G′. There, we examine the special situation
Z(G′) ⊆ G′′ (see Section 4.3), which translates to ZD = 1 in the decomposition given
in (4.6). We show that D decomposes as the direct product of the subgroups 〈Ti, ei〉 for
i = 1, . . . , n, which are then isomorphic to affine linear groups (see Lemma 4.31). In this
case, the properties (D1)–(D3) are therefore already sufficient to determine the structure
of D.

At the end of this section, we apply our results to the case that G is a Frobenius group.

Example 4.15 (Frobenius groups). Let G be a finite Frobenius group with Frobenius
kernel K and Frobenius complement A. Recall that K is the Fitting subgroup of G and
that A is nontrivial by definition. We claim that soc(ZFG) is an ideal of FG if and only
if K = G′ is an abelian Sylow p-subgroup of G. In this case, the Hall p′-subgroups of G
are cyclic.

First suppose that soc(ZFG) is an ideal of FG. As before, G = P o H is a semidirect
product of P ∈ Sylp(G) and an abelian Hall p′-subgroup H of G (see Theorem 2.15). The
Sylow subgroup P is a normal nilpotent subgroup of G and hence contained in the Fitting
subgroup K. Because of K ∩A = 1, it follows that A is a p′-group, so it is contained in a
Hall p′-subgroup of G. Without loss of generality, we may assume A ⊆ H. Now for every
element h ∈ H, we have hAh−1 = A since H is abelian and hence A = H follows from the
fact that A ∩ gAg−1 = 1 holds for every g ∈ G\A. With this, we obtain K = P .
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By Theorem 2.4, the group P decomposes as P = CP (H)[P,H]. Since G is a Frobenius
group, we obtain CP (H) = 1, which yields P = G′. Moreover, note that Op′(G) = 1 follows
by Remark 2.20. Again, we consider the group D = G/G′′ and write D = T1×. . .×Tn×ZD
with ZD = Z(G′)/G′′ as in Theorem 4.14. If G′ is not abelian, that is, if n ≥ 1 holds, then
the subgroup CH(M1) is nontrivial by Theorem 4.14. But any element 1 6= h ∈ CH(M1)
centralizes the nontrivial subgroup G′′, which is a contradiction. This yields G′ = Z(G′),
that is, G′ is abelian. Note that if p is an odd prime number, then this also follows directly
from [24, Satz V.8.18]. Moreover, the group H is cyclic by [24, Hauptsatz V.8.7].

Conversely, if G is a Frobenius group with an abelian Frobenius kernel G′ ∈ Sylp(G) and
Frobenius complement A, then G is a semidirect product of G′ by A. In particular, A is
an abelian p′-group and hence soc(ZFG) E FG holds by Theorem 2.47. /

4.2 Structure of G

In the last section, we investigated the structure of D = G/P ′. The information obtained
therein is now exploited in order to understand the structure of the group G itself. We
have encountered a set of particularly relevant conjugacy classes in Section 4.1.2 whose
structure will be further investigated in Section 4.2.1. These results will form the basis
for the second part of this section, which mainly deals with the structure of P . Finally,
we focus on the decomposition of G′ into a central product in Section 4.2.3.

4.2.1 Conjugacy classes of elements in CH(Mi)

Throughout this section, we make the following assumption on G:

Hypothesis 4.16. Let G = P oH be a finite group with P ∈ Sylp(G) and an abelian p′-
group H such that Op′(G) = 1 holds. Moreover, we assume that G satisfies the conditions
(D1)–(D3) described in Theorem 4.14.

Similarly to Section 4.1.2, we replace the requirement soc(ZFG) E FG by the (weaker)
necessary conditions on the structure of D collected in Theorem 4.14. This is essential since
we will eventually use the results of this section to show that these conditions, combined
with some other assumptions, are actually sufficient for soc(ZFG) E FG to hold.

In this section, we use the notation from Theorem 4.14. Additionally, we set Li := π−1(Ti)
for i = 1, . . . , n. Recall the definition of the normal subgroups

Mi := π−1

∏
j 6=i

Tj × ZD

 .

By assumption, the centralizer CH(Mi) is nontrivial for i = 1, . . . , n. Since its elements
play an important role in our derivation, our aim now is to describe the structure of their
conjugacy classes in G. Recall that the images of these classes in D are of a particularly
simple shape (see Lemma 4.7). For g ∈ G, we write [g] = Ugg with Ug ⊆ G′ as in (2.1).
For an element 1 6= h ∈ CH(Mi), we will then show that all nontrivial elements in Uh are
conjugate and that for any other element 1 6= h′ ∈ CH(Mi), the nontrivial elements of Uh



4.2 Structure of G 65

and Uh′ are conjugate as well. Requiring y · [h]+ = 0 for some y ∈ FG therefore often
yields y · [h′]+ = 0 for all h′ ∈ CH(Mi)\{1} automatically.

We make the following observation on the subgroups T1, . . . , Tn:

Remark 4.17. For i = 1, . . . , n, the normal subgroup Ti consists of at least three elements:
By assumption, we have Ti 6= 1. Assume |Ti| = 2, so we have Ti = {1, t} for some t ∈ D′
with t2 = 1. By Remark 4.3, we obtain t ∈ Z(D) ∩ D′ ⊆ CP̄ (H) ∩ D′ = 1, which is a
contradiction. /

Moreover, we make use of the following representation of the elements in Ti:

Remark 4.18. For i = 1, . . . , n, we set si := |Ti| − 1 and fix an element f ∈ G′ with
f̄ ∈ Ti\{1}. Since 〈ei〉 acts transitively on Ti\{1}, we have

Ti = {1} ∪
{
eki f̄ e

−k
i : 0 ≤ k ≤ si − 1

}
. /

Now we collect several properties of the conjugacy classes of the elements in CH(Mi)\{1},
which will be crucial for the derivation in the following sections.

Lemma 4.19. Let G = P o H be a finite group with P ∈ Sylp(G) and an abelian p′-
group H such that Op′(G) = 1 holds. Moreover, assume that G has the properties (D1)–
(D3) described in Theorem 4.14. Let i ∈ {1, . . . , n} and set si := |Ti|−1. For any element
1 6= hi ∈ CH(Mi), the following hold:

(i) Its conjugacy class C := [hi] ∈ Cl(G) is of the form C = Uhi · hi with

Uhi = {1} ∪
{
eki ghie

−k
i : 0 ≤ k ≤ si − 1

}
(4.7)

for some gi := ghi ∈ Li\P ′.

(ii) For any a ∈ CG(H) with ā ∈ CD(Ti), we have [a, gi] = 1. In particular, gi centralizes
CH(T ) as well as CP (H) and commutes with ej for j ∈ {1, . . . , n} with j 6= i.

(iii) The element gi is conjugate to [eki , gi] for k = 1, . . . , si−1, and [gi] is a real conjugacy
class.

(iv) Every element a ∈ G′ can be decomposed in the form

a = a1 · · · an · z (4.8)

with ai ∈ {1} ∪ {eki gie
−k
i : k ∈ N} and z ∈ CG′(P )P ′.

(v) For hi, h
′
i ∈ CH(Mi)\{1}, the elements ghi and gh′i defined in (i) are conjugate in G.

Proof. For the entire proof, we fix an element f ∈ Li\P ′ as in Remark 4.18.

(i) Write C = Uhi · hi with Uhi = {[g, hi] : g ∈ G} ⊆ G′ (see (2.1)). Since H is abelian,
we have H ⊆ CG(hi) and hence |C| is a power of p. Since C ∈ Clp′,P ′(G) holds and
by using Lemma 4.7, we have |C| = |C̄| = |Ti|. Now consider the set

R := {1} ∪
{
eki fe

−k
i : 0 ≤ k ≤ si − 1

}
.
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By Remark 4.18, we have π(R) = Ti. Since h̄i acts on Ti\{1} without fixed points
and centralizes Ni = π(Mi) as well as H, the elements in π(R) form a system of
representatives for the cosets of CD(h̄i) in D. In particular, the elements in R lie in
pairwise different cosets of CG(hi) and since |C| = |C̄| holds, they form a system of
representatives for the cosets of CG(hi) in G. This yields Uhi = {[g, hi] : g ∈ R} and
hence we obtain

Uhi =
{

[eki fe
−k
i , hi] : 0 ≤ k ≤ si − 1

}
∪ {1} =

{
eki [f, hi]e

−k
i : 0 ≤ k ≤ si − 1

}
∪ {1}.

The last equality follows from the fact that eki and hi commute since H is abelian. We
set ghi := [f, hi] ∈ Li. Since h̄i acts on Ti\{1} without fixed points (see Remark 4.18),
we have [f̄ , h̄i] ∈ Ti\{1}, which yields ghi /∈ P ′. Hence Uhi has the form given in (4.7).

(ii) Let a ∈ CG(H) with ā ∈ CD(Ti). In particular, we have āḡiā
−1 = ḡi and hence

agia
−1 ∈ giP ′. Since hi and a commute and we have gihi ∈ [hi], we obtain

agihia
−1 = agia

−1hi ∈ [hi] ∩ gihiP ′ = {gihi}.

Here, we use that |C| = |C̄| holds (see (i)), so every coset of P ′ in G contains at most
one element of C. This yields agia

−1 = gi. For the second statement, note that ej
is contained in CH(Ti) for j 6= i. Moreover, the image of CP (H) in D centralizes Ti
since P̄ is abelian. The other prerequisites are clearly satisfied, so the first part of
the statement can be applied in all stated cases.

(iii) Let a ∈ G. Since C is invariant under conjugation, we obtain

Uhi · hi = C = aCa−1 = aUhia
−1 · ahia−1.

Since all nontrivial elements in Uhi are conjugate by (i), this also follows for the
nontrivial elements in aUhia

−1 = Uhi [a, hi]
−1. Varying a ∈ G, the commutator [a, hi]

runs over all elements of Uhi . This shows that for every u ∈ Uhi , the nontrivial
elements of Uhiu

−1 are conjugate.

Now we choose two distinct nontrivial elements u, u′ ∈ Uhi . This is possible since
|Uhi | = |Ti| ≥ 3 holds by Remark 4.17. By (i), u and u′ are conjugate in G. By the
above, we then obtain

u′u−1 ∼ u−1 ∼ u′−1 ∼ uu′−1 = (u′u−1)−1

and hence the conjugacy class of u−1 is a real conjugacy class, which implies that also
[u] is real. In particular, setting u := gi and u′ := eki gie

−k
i for some k ∈ {1, . . . , si−1},

this yields gi ∼ g−1
i ∼ [eki , gi].

(iv) This follows by condition (D1) in Theorem 4.14 together with Remark 4.18.

(v) Let hi, h
′
i ∈ CH(Mi)\{1} and set gi := ghi and g′i := gh′i as in (i). Since we can replace

g′i by eki g
′
ie
−k
i for some k ∈ {0, . . . , si− 1}, we may assume g′i ∈ giP ′, that is, g′i = gic

for some c ∈ P ′. Now write hiCH(Ti) = ekiCH(Ti) for some k ∈ {1, . . . , si − 1}.
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Since hi acts trivially on Ni = π(Mi) and eki centralizes Tm for m 6= i, we have
hie
−k
i ∈ CH(T ), that is, there exists an element j ∈ CH(T ) with hi = eki j. Then

[hi, gi] = [eki j, gi] = eki [j, gi]e
−k
i · [e

k
i , gi] = [eki , gi]

follows by (ii). Similarly, we obtain [hi, g
′
i] = [eki , g

′
i]. Since hi centralizes P ′, using

(iii) yields
g′i ∼ [eki , g

′
i] = [hi, g

′
i] = [hi, gic] = [hi, gi] = [eki , gi] ∼ gi.

Note that for 1 6= hi ∈ CH(Mi), an element ghi which satisfies (4.7) is unique up to
conjugation with powers of ei. In the preceding proof, we have chosen ghi := [f, hi].

4.2.2 Structure of P

From now on until the end of Section 4.2, we again assume that G satisfies Hypothesis 4.1.
In this section, we focus on the structure of the Sylow p-subgroup P . Our main result is
a decomposition of G into a central product of the centralizer CP (H) and a subgroup GH
of the form G′H oH with G′H ∈ Sylp(GH). Since the structure of the p-group CP (H) is
determined in Theorem 3.1, this allows us to focus on groups G with G′ ∈ Sylp(G) in the
following parts. At the end of this section, we use the decomposition of G in order to
describe soc(ZFG) in case that this space is an ideal of FG.

Again, we use the notation of the previous parts and, in particular, of Theorem 4.14. For
i = 1, . . . , n, we fix a nontrivial element hi ∈ CH(Mi) (see (D3) in Theorem 4.14) and set
gi := ghi , where ghi is defined as in Lemma 4.19 (i).

We begin our investigation by proving the fundamental result that the derived subgroup G′

has nilpotency class at most two if soc(ZFG) is an ideal of FG.

Lemma 4.20. We have
〈[P,G′],Φ(G′)〉 ⊆ Z(G′).

Furthermore, we obtain G′′ ⊆ Z(P ) and G′′′ = 1. In particular, G′ is of nilpotency class
at most two.

Proof. Let C be a critical subgroup of P (see Theorem 2.2). In particular, C is character-
istic in P , so also in G, and we have CP (C) = Z(C). Applying Lemma 2.28 with N := C
yields C+ ∈ soc(ZFG) and hence we obtain G′ ⊆ C by Remark 2.9. By Theorem 2.2 (ii),
we have

[P,G′] ⊆ [P,C] ⊆ Z(C) ⊆ CG(G′).

Since [P,G′] ⊆ G′ holds, this implies [P,G′] ⊆ Z(G′), which yields [[P,G′], G′] = 1. With
the three subgroups lemma (see [30, Satz 1.5.6]), we obtain [G′′, P ] = [[G′, G′], P ] = 1.
Hence G′′ is contained in Z(P ), which implies G′′′ = 1. Finally, for every x ∈ G′ ⊆ C, we
have xp ∈ Φ(C)∩G′ ⊆ Z(C)∩G′ ⊆ Z(G′) by Theorem 2.2 (i). Together with G′′ ⊆ Z(G′),
this yields Φ(G′) = (G′)p ·G′′ ⊆ Z(G′).

As announced at the beginning of this section, we now derive a decomposition of G into
a central product of CP (H) and a subgroup GH with G′H ∈ Sylp(GH). This is achieved
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by decomposing P as the central product P = CP (H) ∗ [G′, H]. The main step will be to
show that in the given situation, the centralizer CP (H) is normal in G. Recall that

P = CP (H)[P,H] = CP (H)G′ (4.9)

holds by Theorem 2.4 and since we have [P,H] ⊆ G′ ⊆ P . This yields G = HCP (H)G′.
Finally, we observe that since all elements of the form e`igie

−`
i for i = 1, . . . , n and ` ∈ Z

centralize CP (H) by Lemma 4.19 (ii), the decomposition of the elements in G′ given in (4.8)
yields

[CP (H), G′] = [CP (H), CG′(P )P ′] = [CP (H), P ′]. (4.10)

The following observation concerning the derived subgroup P ′ is a key step towards the
desired decomposition of G.

Proposition 4.21. The subgroup P ′ decomposes as P ′ = CP ′(H) ·G′′.

Proof. Note that the group CP ′(H) ·G′′ is normal in G since for any element x = ug with
u ∈ HCP (H) and g ∈ G′, we have

xCP ′(H)x−1 = (ug)CP ′(H)(ug)−1 ⊆ uCP ′(H) ·G′′u−1 ⊆ CP ′(H) ·G′′.

We therefore consider the quotient group G̃ := G/CP ′(H)G′′ and set P̃ to be the image
of P in G̃. Then CP̃ (H) is abelian as it is the image of CP (H) under the quotient map

(see Theorem 2.5) and we have CP (H)′ ⊆ CP ′(H). Analogously to (4.9), P̃ decomposes
in the form P̃ = CP̃ (H) · G̃′ and we obtain

P̃ ′ = [P̃ , P̃ ] = [CP̃ (H) · G̃′, CP̃ (H) · G̃′] = [CP̃ (H), G̃′],

since we have CP̃ (H)′ = G̃′′ = 1 and [CP̃ (H), G̃′] is normal in P̃ = CP̃ (H) · G̃′ (see [30,
Theorem 1.5.5]). By (4.10), this yields

P̃ ′ = [CP̃ (H), G̃′] = [CP̃ (H), P̃ ′] = [CP̃ (H) · G̃′, P̃ ′] = [P̃ , P̃ ′].

In the third step, we used that [G̃′, P̃ ′] = 1 holds since G̃′ is abelian. Thus, starting
from P̃ ′, the lower central series of P̃ is stationary. Since P̃ is a nilpotent group, this
yields P̃ ′ = 1 and hence P ′ ⊆ CP ′(H) ·G′′. The other inclusion is clear.

With this, we can show that CP (H) is a normal subgroup of G, which will then allow us
to decompose G.

Lemma 4.22. The centralizer CP (H) is a normal subgroup of G.

Proof. We have

[CP (H), G′] = [CP (H), P ′] = [CP (H), CP ′(H) ·G′′] ⊆ CP (H).

The first equality is due to (4.10), the second follows by Proposition 4.21 and for the
last inclusion, we use that G′′ centralizes CP (H) ⊆ P (see Lemma 4.20). Since CP (H) is
normalized by HCP (H), we have

[CP (H), G] = [CP (H), HCP (H)G′] ⊆ CP (H),
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which proves that CP (H) is a normal subgroup of G.

In order to show that P is the central product of CP (H) and [G′, H], we need to prove
that these two groups commute element-wise.

Proposition 4.23. The elements of CP (H) and [G′, H] commute.

Proof. We first show that the intersection CP (H)∩ [G′, H] = CG′(H)∩ [G′, H] is contained
in Z(G). Since G̃′ := G′/G′′ is abelian, it decomposes as G̃′ = CG̃′(H) × [G̃′, H] by

Theorem 2.4. For any x ∈ CG′(H) ∩ [G′, H], we obtain xG′′ ∈ CG̃′(H) ∩ [G̃′, H] = 1 and
hence x ∈ G′′ ⊆ Z(P ) follows, which implies x ∈ Z(P ) ∩ CP (H) ⊆ Z(G).

Now we prove that the subgroups CP (H) and [G′, H] commute element-wise. To this
end, let a ∈ [G′, H] and write a = a1 · · · an · z with ai ∈ {1} ∪ {eki gie

−k
i : k ∈ Z} and

z ∈ CG′(P )P ′ as in (4.8). Since the elements of CP (H) commute with H-conjugates
of g1, . . . , gn by Lemma 4.19, it remains to show that z centralizes CP (H). Note that
a1, . . . , an are contained in [G′, H] by Lemma 4.19 (i), so we have z ∈ CG′(P )P ′ ∩ [G′, H].
Write z = cu for some c ∈ CCG′ (P )P ′(H) and some u ∈ [CG′(P )P ′, H] (see Theorem 2.4).
Since z and u are contained in [G′, H], we also have c ∈ [G′, H] and hence the first part
of this proof yields c ∈ CP (H) ∩ [G′, H] ⊆ Z(G). Note that we have

[P ′, H] = [CP ′(H) ·G′′, H] ⊆ G′′ ⊆ CG′(P )

by Proposition 4.21 together with Lemma 4.20 and hence u ∈ CG′(P ) follows. In particu-
lar, z = cu centralizes CP (H).

We can now prove the principal result of this section.

Theorem 4.24. Let G = P o H be a finite group with P ∈ Sylp(G) and an abelian p′-
group H such that Op′(G) = 1 holds. Then soc(ZFG) is an ideal of FG if and only if the
following conditions hold:

(i) G = CP (H) ∗GH is a central product of the centralizer CP (H) and GH := H[G′, H].

(ii) soc(ZFCP (H)) and soc(ZFGH) are ideals in FCP (H) and FGH , respectively.

Proof. If the conditions (i) and (ii) hold, then Lemma 2.43 yields soc(ZFG) E FG. From
now on, we therefore assume that soc(ZFG) is an ideal of FG. We first prove that G
is the central product of CP (H) and GH . Note that GH is a normal subgroup of G
since we have [G′, H] = [HCP ′(H)G′, G] = [G,H] and the latter group is normal in G.
Moreover, this yields [P,H] = [G′, H] and hence we obtain P = CP (H)[G′, H] by (4.9).
Since the subgroups CP (H) and [G′, H] commute element-wise by Proposition 4.23, we
obtain P = CP (H) ∗ [G′, H]. This implies G = CP (H) ∗ GH . Lemma 2.43 then yields
soc(ZFCP (H)) E FCP (H) and soc(ZFGH) E FGH .

In the following, we may therefore treat the group algebras of CP (H) and GH separately.

Remark 4.25. Assume that soc(ZFG) E FG holds. Since CP (H) is a p-group, its
structure is determined by Theorem 3.1. In particular, it follows that CP (H), and hence P ,
are metabelian in this situation. In case that p is odd, we even obtain the stronger condition
c(CP (H)) ≤ 2. By Lemma 4.20, we have c(G′) ≤ 2, so also P = CP (H)∗G′ is of nilpotency
class at most two in this case. /



70 Chapter 4 Arbitrary finite groups

It therefore remains to consider the subgroup GH . We show that it has the structure given
in Hypothesis 4.1, albeit with the additional restriction that the derived subgroup G′H is
the (unique) Sylow p-subgroup of GH .

Lemma 4.26. The group GH = H[G′, H] decomposes as GH = G′HoH and G′H = [G′, H]
is a Sylow p-subgroup of GH .

Proof. We have [G′, H]∩H = 1 and hence GH = [G′, H]oH with [G′, H] ∈ Sylp(GH). It
remains to show that [G′, H] is the derived subgroup of GH . By Theorem 4.24, we have
[G′, H] = [CP (H)′ ·G′H , H] = [G′H , H] ⊆ G′H . The other inclusion is clear since G′H ⊆ G′

is a p-group.

Since GH is a normal subgroup of G, we obtain Op′(GH) ⊆ Op′(G) = 1. In the following,
we can therefore restrict our investigation to the group GH while using all results derived
in the previous sections.

At the end of this part, we state a first application of Theorem 4.24 by determining
soc(ZFG) in case that this is an ideal of FG.

Lemma 4.27. Let G be a finite group with Op′(G) = 1 which satisfies soc(ZFG) E FG.
Then soc(ZFG) is given by

soc(ZFG) = (Z(P )G′)+ · FG.

Proof. Note that Z(CP (H)) ⊆ Z(G) holds since we have G = CP (H) ∗ GH by Theo-
rem 4.24. Remark 2.14 therefore yields soc(ZFG) ⊆ Z(CP (H))+ · FG. Together with
Lemma 2.8, this implies

soc(ZFG) ⊆ (Z(CP (H))G′)+ · FG ⊆ (Z(P )G′)+ · FG.

In the last step, we use the identity Z(P ) = Z(CP (H))Z(G′H) ⊆ Z(CP (H))G′. In order to
prove the converse inclusion, set N := Z(P )G′ E G and consider the element N+ ∈ ZFG.
We show that N+ annihilates the basis elements of J(ZFG) given in Theorem 2.23. For
any z ∈ Z(P )\{1}, we have [z] ⊆ N and hence

N+ · b[z] = N+ · ([z]+ − |[z]| · 1) = 0.

Now consider a conjugacy class C ∈ Cl(G) such that p divides |C|. Since C ⊆ gG′ holds
for some g ∈ G, we have (G′)+ · C+ = 0 and hence N+ · bC = N+ · C+ = 0. This shows
N+ ∈ soc(ZFG) and hence we have N+ ·FG ⊆ soc(ZFG), which proves the equality.

Note that this generalizes the corresponding result for p-groups stated in Theorem 3.1.

4.2.3 Structure of G′

Again, we assume that G is a finite group satisfying Hypothesis 4.1. In this section,
we refine our results on the structure of G′ by applying Theorem 4.24. Our aim is to
decompose G′ as a central product of CG′(P )P ′ and the subgroups Li = π−1(Ti) defined
in Theorem 4.4 (i = 1, . . . , n). We use the terminology from the previous parts. As before,
we fix a nontrivial element hi ∈ CH(Mi) for i = 1, . . . , n (see Theorem 4.14) and denote
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by gi a corresponding element of Li\P ′ as defined in Lemma 4.19. Our first result is a
decomposition of Z(G′):

Lemma 4.28. We have Z(G′) = CG′(P )P ′.

Proof. By Theorem 4.24, we have G′ = CP (H)′ ·G′H and hence

[CP (H)′, G′] = [CP (H)′, CP (H)′ ·G′H ] = [CP (H)′, CP (H)′] = 1, (4.11)

since CP (H) is metabelian by Remark 4.25 and centralizes GH . Moreover, we obtain
P ′ = CP (H)′ · G′′ ⊆ Z(G′) by (4.11) and since G′′ ⊆ Z(P ) holds by Lemma 4.20. This
proves the inclusion CG′(P )P ′ ⊆ Z(G′). Now suppose that CG′(P )P ′ is a proper subgroup
of Z(G′). This means that Z := π(Z(G′)) is a normal subgroup of D which properly
contains ZD = CG′(P )P ′/P ′. By Proposition 4.11, it therefore has the form

Z = Ti1 × . . .× Tik × ZD

for some k ∈ N and distinct indices i1, . . . , ik ∈ {1, . . . , n}. Without loss of generality,
we assume i1 = 1. In particular, we have π(g1) ∈ Z, which yields g1d ∈ Z(G′) for some
d ∈ P ′ ⊆ Z(G′). Hence g1 is contained in Z(G′) as well. Since g1 centralizes CP (H) by
Lemma 4.19 (ii), we have g1 ∈ CG′(P ), which yields π(g1) ∈ ZD ∩ T1 = 1. This is a
contradiction to g1 /∈ P ′, which proves the equality CG′(P )P ′ = Z(G′).

Now we proceed with the decomposition of G′ into a central product which we announced
at the beginning of this part:

Theorem 4.29. Let G be finite group for which soc(ZFG) E FG holds and consider the
subgroups L1, . . . , Ln introduced in Theorem 4.4. Then the group G′ decomposes as the
central product

G′ = L1 ∗ . . . ∗ Ln ∗ Z(G′).

Proof. Recall that the subgroups L1, . . . , Ln together with Z(G′) = CG′(P )P ′ generate G′

(see Theorem 4.4). It therefore remains to show that the elements of Li and Lj commute
for i, j ∈ {1, . . . , n} with i 6= j. Since CG′(Li) is a normal subgroup of G containing
Z(G′) = CG′(P )P ′, its image in D is of the form

π
(
CG′(Li)

)
= Ti1 × . . .× Tik × ZD

for some k ∈ N0 and distinct indices i1, . . . , ik ∈ {1, . . . , n} by Proposition 4.11. By
Corollary 2.29 and Remark 2.9, we have Li · CG′(Li) = G′. Since π(Li) = Ti holds,
we obtain Ni ⊆ π(CG′(Li)) for the normal subgroup Ni of D defined in (4.2). Since
P ′ ⊆ Z(G′) ⊆ CG′(Li) holds by the previous lemma, we obtain∏

j 6=i
Lj · Z(G′) = π−1(Ni) ⊆ CG′(Li)P ′ = CG′(Li).

In particular, this shows [Li, Lj ] = 1 for j 6= i, which finishes the proof.

In the next section, we study the problem in the special case CG′(P ) ⊆ P ′. In this case,
the structural information derived in this section will enable us to classify the groups G
which satisfy soc(ZFG) E FG.
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4.3 Case CG′(P ) ⊆ P ′

Let G = PoH be a finite group which satisfies the conditions (D1)–(D3) in Theorem 4.14.
In this chapter, we additionally assume CG′(P ) ⊆ P ′, that is, the term ZD in the decom-
position of D′ given in (D1) vanishes. In this situation, we determine conditions under
which soc(ZFG) E FG holds.

Throughout, we use the notation from the preceding parts. This section is organized as
follows: First, we decompose the quotient group D as a direct product of affine linear
groups (see Section 4.3.1) and derive a corresponding decomposition of G into a central
product (see Section 4.3.2). By Lemma 2.43, we may then restrict our investigation to
the case that D′ is a simple FpH-module. For this simplified situation, we determine
necessary and sufficient conditions for soc(ZFG) E FG in Section 4.3.3. In Section 4.3.4,
we collect our preceding results in order to classify the finite groups G of the form P oH
with CG′(P ) ⊆ P ′ which satisfy soc(ZFG) E FG.

4.3.1 Structure of D

As before, we begin by investigating the quotient group D = G/P ′ and use the additional
assumption CG′(P ) ⊆ P ′ in order to simplify the statements given in Theorem 4.14. By
Theorem 4.24, we may restrict ourselves to the case P = G′, for which the condition
CG′(P ) ⊆ P ′ translates to Z(G′) ⊆ G′′. Note that the converse inclusion is given by
Lemma 4.20 if soc(ZFG) is an ideal of FG, so we usually assume G′′ = Z(G′).

Remark 4.30. Let G be a finite group of the form G′ o H with G′ ∈ Sylp(G) and an
abelian p′-group H. Moreover, we assume that Z(G′) = G′′ and Op′(G) = 1 hold and
that G satisfies the conditions (D1) and (D2) in Theorem 4.14. In particular, D′ splits
as a direct product T1 × . . . × Tn of minimal normal subgroups of D for some n ∈ N0

since Z(G′)/G′′ = 1 holds by assumption. Observe that D′ is elementary abelian in this
case. In this decomposition, n = 0 implies G′ = 1, which yields G = Op′(G) = 1. We
therefore focus on the case n ≥ 1. There, the assumption Z(G′) = G′′ implies that G′

has nilpotency class exactly two. Since CH(D′) = 1 holds by Remark 4.3, the group H
is of the form 〈e1, . . . , en〉 by condition (D2), where 〈ei〉 centralizes Tj for j 6= i and acts
transitively on Ti\{1} for i = 1, . . . , n. Note that we have

〈e1〉 ∩ 〈e2, . . . , en〉 ⊆ CH(T2 × . . .× Tn) ∩ CH(T1) = CH(D′) = 1.

Inductively, this yields H ∼= 〈e1〉× . . .×〈en〉. In particular, we have ord(ei) = |Ti|−1 =: si
and the group 〈ei〉 acts on Ti\{1} without fixed points. /

In the given situation, we obtain a natural decomposition of D into a direct product of
affine linear groups:

Lemma 4.31. Let G be a finite group of the form G′ o H with G′ ∈ Sylp(G) and an
abelian p′-group H. Moreover, we assume that Z(G′) = G′′ and Op′(G) = 1 hold. Then G
satisfies the conditions (D1) and (D2) in Theorem 4.14 if and only if there exist n ∈ N0

and d1, . . . , dn ∈ N with

D ∼= AGL(1, pd1)× . . .×AGL(1, pdn). (4.12)
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Here, AGL(1, p`) ∼= Fp`oF×
p`

is the one-dimensional affine linear group over Fp` for ` ∈ N.

Proof. First assume that G satisfies the conditions (D1) and (D2) in Theorem 4.14. For
i = 1, . . . , n, we set Ai := 〈ei, Ti〉. Note that D is generated by A1, . . . , An and that the
elements of Ai and Aj commute for i 6= j (see Remark 4.30). In particular, the subgroups
A1, . . . , An are normal in D. Note that for any i, j ∈ {1, . . . , n} with i 6= j, we have
Ai ∩ Aj ⊆ CD′(H) = 1 (see Remark 4.3). Since every element in D can be expressed
uniquely in the form a1 · · · an with ai ∈ Ai for i = 1, . . . , n, we obtain D = A1 × . . .×An.
Moreover, the group 〈ei〉 acts transitively and without fixed points on Ti\{1}, so Ai ∼=
AGL(1, |Ti|) follows analogously to the proof of [37, Theorem 4.2]. Conversely, if D is
a direct product of one-dimensional affine linear groups as in (4.12), then the conditions
(D1) and (D2) in Theorem 4.14 are naturally satisfied.

4.3.2 Decomposition of G into a central product

In the preceding section, we showed that the group D is isomorphic to a direct product
AGL(1, pd1)×. . .×AGL(1, pdn) of affine linear groups if G satisfies the conditions described
in Theorem 4.14. The aim of this section is to derive a corresponding decomposition of G
into a central product Q1 ∗ . . .∗Qn with Qi/Q

′′
i
∼= AGL(1, pdi) for i = 1, . . . , n if soc(ZFG)

is an ideal of FG. This allows us to restrict ourselves to the case n = 1 in the subsequent
section. Throughout, we make the following assumption:

Hypothesis 4.32. Let G be a finite group with Op′(G) = 1 for which soc(ZFG) E FG
holds. Moreover, we assume that G′ is a Sylow p-subgroup of G with Z(G′) = G′′. As
usual, we fix a Hall p′-subgroup H of G.

Recall that H is of the form 〈e1〉 × . . . × 〈en〉 by Remark 4.30. As before, we fix a
nontrivial element hi ∈ CH(Mi) for i = 1, . . . , n (see (D3) in Theorem 4.14) and consider
a corresponding element gi ∈ Li\G′′ as defined in Lemma 4.19. Here, Li denotes the
preimage of Ti under the projection onto D as usual. For i = 1, . . . , n, we consider the
subgroup

Qi := 〈gi, ei〉. (4.13)

This leads to the desired decomposition of G into a central product:

Lemma 4.33. The group G decomposes as G = Q1 ∗ . . . ∗Qn.

Proof. We set Q := 〈Q1, . . . , Qn〉 and show that this subgroup coincides with G. Since
H = 〈e1, . . . , en〉 is contained in Q, it suffices to show G′ ⊆ Q. By (4.8), any element
u ∈ G′ can be written in the form u = u1 · · ·un · g with ui ∈ {1} ∪ {eki gie

−k
i : k ∈ Z} ⊆ Qi

and g ∈ G′′. Theorem 4.29 yields G′′ = L′1 · · ·L′n. Since the elements in Li are of the
form eki gie

−k
i d for some k ∈ Z and d ∈ G′′ = Z(G′) by (4.8), the derived subgroup L′i is

generated by commutators of the form [eki gie
−k
i , emi gie

−m
i ] for k,m ∈ Z, so it is contained

in Qi. This yields G′′ ⊆ Q, which shows Q = G. Note that [Qi, Qj ] = 1 holds for i 6= j
since the respective generators commute by Lemma 4.19 (ii) and Theorem 4.29. Hence
Q1, . . . , Qn are normal subgroups of G and we obtain G = Q1 ∗ . . . ∗Qn as claimed.

The aim is to reduce our investigation to the study of the individual factors Q1, . . . , Qn of
the central product. To this end, we need the following observations:
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Lemma 4.34. Let i ∈ {1, . . . , n}.

(i) The group Qi satisfies Hypothesis 4.32.

(ii) Q′i/Q
′′
i is a minimal normal subgroup of Qi/Q

′′
i .

Proof.

(i) Since Qj centralizes Qi for j 6= i by Lemma 4.33, every normal p′-subgroup of Qi is
normal in G and hence we have Op′(Qi) ⊆ Op′(G) = 1. Moreover, soc(ZFQi) E FQi
follows by Lemma 2.43. This implies Q′′i ⊆ Z(Q′i) by Lemma 4.20. Therefore, it
remains to show that Q′i is a Sylow p-subgroup of Qi and that Z(Q′i) is contained
in Q′′i .

We first show Q′i ∈ Sylp(Qi). Clearly, we have [ei, gi] ∈ Q′i. The elements [ei, gi] and
gi are conjugate in G by Lemma 4.19 (iii), so also in Qi since Qj centralizes Qi for
j 6= i by Lemma 4.33. Since Q′i is a normal subgroup of Qi, this yields gi ∈ Q′i. Hence
eiQ

′
i generates Qi/Q

′
i, which shows that this quotient is a p′-group. This implies that

Q′i, which is a p-group, is a Sylow p-subgroup of Qi.

Now we show that Z(Q′i) is contained in Q′′i . Applying Remark 4.3 (i) to the group Qi
yields CQ′i/Q′′i (ei) = 1 and hence CQ′i(ei) ⊆ Q

′′
i . Note that we have

Z(Q′i) ⊆ Z(G′) ∩Qi ⊆ G′′ ∩Qi.

By Lemma 4.33, any element g ∈ G′′ can be expressed in the form qi · a for some
qi ∈ Q′′i and a ∈

∏
j 6=iQ

′′
j ⊆ CG′′(ei). If g is additionally contained in Qi, then

a = q−1
i g ∈ Q′i follows, which yields a ∈ CQ′i(ei). With this, we obtain

Z(Q′i) ⊆ G′′ ∩Qi ⊆ CQ′i(ei)Q
′′
i = Q′′i . (4.14)

(ii) As before, we set Q̄i to be the image of Qi in D. Clearly, we have Q′′i ⊆ Qi ∩ G′′,
and by (4.14), we obtain equality. In particular, this yields

Qi/Q
′′
i = Qi/Qi ∩G′′ ∼= QiG

′′/G′′ = Q̄i,

so it suffices to show that Q̄′i is a minimal normal subgroup of Q̄i. Note that Q̄′i
is centralized by ej for j 6= i, so we obtain Q̄′i ⊆ Ti. Since gi ∈ Qi\G′′ holds, the
group Q̄′i is a nontrivial normal subgroup of D, which implies Q̄′i = Ti since Ti is
a minimal normal subgroup of D. In particular, Q̄′i is a minimal normal subgroup
of Q̄i.

Combining Lemma 4.33 and Lemma 4.34, we obtain the main result of this section:

Theorem 4.35. Let G be a finite group with G′ ∈ Sylp(G) such that soc(ZFG) E FG
holds. Moreover, we assume Z(G′) = G′′ and Op′(G) = 1. Then there exist n ∈ N0 and
normal subgroups Q1, . . . , Qn of G with

G = Q1 ∗ . . . ∗Qn

such that the following hold for i = 1, . . . , n:
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(i) The group Qi satisfies Hypothesis 4.32.

(ii) Q′i/Q
′′
i is a minimal normal subgroup of Qi/Q

′′
i .

Remark 4.36. Note that ifG is a group which is a central product of subgroups Q1, . . . , Qn
with soc(ZFQi) E FQi for i = 1, . . . , n, then soc(ZFG) E FG follows by Lemma 2.43.
In this sense, the converse of Theorem 4.35 also holds. /

The above decomposition is related to those introduced earlier in the following way:

Remark 4.37. By Lemma 4.34, we have Q̄′i = Ti for i = 1, . . . , n. Since Li is the preimage
of Ti in G, this yields Q′iG

′′ = Li. In this sense, the decomposition G′ = Q′1 ∗ . . . ∗Q′n can
be viewed as a refinement of the one given in Theorem 4.29. Moreover, note that

Qi/Q
′′
i
∼= Ti o 〈ei〉 ∼= AGL(1, |Ti|)

follows by the proof of Lemma 4.34 as well as Lemma 4.31. This relates the decompositions
of G and D given in Lemmas 4.33 and 4.31, respectively. /

In the following, we treat the groups Q1, . . . , Qn individually. The crucial observation is
that if we apply Theorem 4.14 to the group Qi, then the decomposition of Q′i/Q

′′
i stated

therein consists of a single term since Q′i/Q
′′
i is a minimal normal subgroup of Qi/Q

′′
i .

This allows us to restrict to the case n = 1 in our further investigation.

4.3.3 Special case: D′ simple FpH-module

In this section, we consider the special case that D′ is a simple FpH-module, that is, a
minimal normal subgroup of D. In contrast to the preceding parts, we do not only draw
consequences concerning the structure of G from the assumption soc(ZFG) E FG, but
we also state sufficient conditions for this property. For this reason, we limit ourselves to
the following assumption:

Hypothesis 4.38. Let G be a finite group of the form G = G′oH with G′ ∈ Sylp(G) and
an abelian p′-group H such that Z(G′) = G′′ and Op′(G) = 1 hold. Moreover, we assume
that G has the properties (D1)–(D3) in Theorem 4.14, and that G′/G′′ is a minimal normal
subgroup of D := G/G′′.

Recall that in this context, we have D ∼= AGL(1, |D′|) by Lemma 4.31. In particular,
H = 〈e1〉 is cyclic of order s := |D′| − 1. The condition (D3) in Theorem 4.14 reads
CH(G′′) 6= 1. As before, we fix an element 1 6= h1 ∈ CH(G′′) and a corresponding element
g1 := gh1 ∈ G′\G′′ as defined in Lemma 4.19.

In the first part of this section, we investigate the structure of the conjugacy classes of
certain elements in G. These results will form the basis for the characterization of the
groups G satisfying Hypothesis 4.38 which have the property soc(ZFG) E FG. It is given
in Theorem 4.42, which we prove in the second part of this section.
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4.3.3.1 Conjugacy classes in G

We now collect some preliminary results on the conjugacy class structure of the elements
in G, with a particular focus on the elements in G′.

By (4.8), every element in G′\G′′ can be written in the form ek1g1e
−k
1 d for some d ∈ G′′

and k ∈ Z. For g ∈ G′, we consider the set of commutators

Cg :=
{

[a, g] : a ∈ G′
}
.

Note that we have [g]G′ = Cg · g. By Lemma 2.45, Cg is a subgroup of G′′ since G′ is
of nilpotency class at most two. For the fixed element g1 ∈ G′\G′′, we abbreviate Cg1

by C. With this, the conjugacy classes of the elements in G′ can be characterized in the
following way:

Lemma 4.39.

(i) We have C = 〈[em1 g1e
−m
1 , g1] : m ∈ Z〉.

(ii) Consider an arbitrary element x ∈ G′\G′′ and write x = ek1g1e
−k
1 d for some k ∈ Z

and d ∈ G′′. Then we have Cx = ek1Ce
−k
1 .

(iii) For any x ∈ G′\G′′, we have [x]G′ = [x] ∩ xG′′, which yields

[x] =
s−1⋃
m=0

em1 · [x]G′ · e−m1 . (4.15)

Proof.

(i) Since every element in G′ can be written in the form em1 g1e
−m
1 d with m ∈ Z and

d ∈ G′′ = Z(G′), we have

C =
{

[a, g1] : a ∈ G′
}

= 〈[em1 g1e
−m
1 , g1] : m ∈ Z〉.

(ii) Since G′′ centralizes G′, we have [a, x] = [a, ek1g1e
−k
1 d] = [a, ek1g1e

−k
1 ] for all a ∈ G′

and hence

Cx =
{[
a, ek1g1e

−k
1

]
: a ∈ G′

}
=
{
ek1[a, g1]e−k1 : a ∈ G′

}
= ek1Ce

−k
1 .

In the second step, we use that conjugation with e−k1 permutes the elements of G′.

(iii) We first prove [x]G′ = [x] ∩ xG′′. Clearly, we have [x]G′ ⊆ [x] ∩ xG′′. On the other
hand, assume kxk−1 ∈ xG′′ for some k ∈ G and write k = e`1u with ` ∈ Z and
u ∈ G′. Since uxu−1 ∈ xG′′ holds, conjugation with e`1 fixes xG′′. By Remark 4.30,
this implies e`1 = 1 and hence we have k ∈ G′, which shows the equality.

Now we prove the second part of the statement. Clearly, the set on the right hand
side of (4.15) is contained in [x]. On the other hand, the conjugates of x are contained
in G′\G′′ =

⋃s−1
m=0 e

m
1 xe

−m
1 G′′ and for any m ∈ Z, conjugating with em1 induces a

bijection between [x]G′ = [x] ∩ xG′′ and [x] ∩ em1 xe
−m
1 G′′.
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We observe that the G′-conjugacy classes of the elements in G′\G′′ are all of size |C|.
Furthermore, the preceding lemma yields

G′′ = 〈Cg : g ∈ G′〉 =

〈
s−1⋃
k=0

ek1Ce
−k
1

〉
.

For the conjugacy classes of G which are not contained in G′, we make use of the following
observation:

Lemma 4.40. Every conjugacy class K ∈ Cl(G) with K 6⊆ G′ contains an element ek1d
with k ∈ Z and d ∈ G′′, and we have ek1[d] ⊆ K.

Proof. As before, we denote the image of an element g ∈ G in D by ḡ (similarly for
subsets of G). Let k ∈ Z with K ⊆ ek1G

′ and set B := [ek1] ∈ Cl(G). Since ēk1 is not
contained CH(D′) = 1 (see Remark 4.3), we obtain |B̄| > 1. By Lemma 2.45, B̄ is of the
form ēk1N for a subgroup N ⊆ D′ which is normal in D. Since D′ is a minimal normal
subgroup of D, we obtain N = D′ and hence B̄ = K̄. In particular, K contains an
element ek1d with d ∈ G′′. Since G′ centralizes G′′, we have [d] = {e`1de

−`
1 : ` ∈ Z}, which

yields ek1[d] ⊆ [ek1d] = K.

We conclude this part with the following observation on the conjugacy classes of elements
in H\CH(G′′):

Remark 4.41. Consider the conjugacy class K := [h] of an element h ∈ H\CH(G′′) and
write K = U · h with U ⊆ G′ as in (2.1). As h centralizes H, we have

U = {[g, h] : g ∈ G} =
{

[g, h] : g ∈ G′
}
.

Since h acts on D′\{1} without fixed points (see Remark 4.30), we deduce that [g, h] ∈ G′′
for some g ∈ G′ is equivalent to g ∈ G′′. Moreover, we have [a1a2, h] = [a1, h] · [a2, h] for
all a1, a2 ∈ G′′ since G′′ centralizes G′. This shows that N := U ∩G′′ is a normal subgroup
of G. Since h acts nontrivially on G′′, we have N 6= 1.

Now consider an orbit B of the conjugation action of G′′ on [h] and let b ∈ B. We claim
that B = Nb holds. To this end, write b = ghg−1 for some g ∈ G′. For any n ∈ N , there
exists some d ∈ G′′ with [d, h] = n by the above. Since [d, b] = [d, ghg−1] = [d, h] = n
follows from the fact that g centralizes G′′, we have nb = dbd−1 ∈ B. On the other hand,
[d, h] ∈ N holds for all d ∈ G′′ and hence B ⊆ Nb follows, which proves the equality. In
particular, [h], and hence also U , is a disjoint union of cosets of N . /

4.3.3.2 Main result

In this section, we study groups G which satisfy Hypothesis 4.38 and provide necessary
as well as sufficient conditions under which soc(ZFG) is an ideal in FG. The aim of this
section is the proof of the following statement:

Theorem 4.42. Let G be a finite group of the form G′ o H with G′ ∈ Sylp(G) and an
abelian p′-group H such that Op′(G) = 1 and Z(G′) = G′′ hold. Moreover, we assume that
G has the properties (D1)–(D3) in Theorem 4.14 and that G′/G′′ is a minimal normal
subgroup of D := G/G′′. Then the following are equivalent:
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(i) soc(ZFG) E FG.

(ii) Z(G)Cg = G′′ holds for all g ∈ G′\G′′, that is, G′/Z(G) is a Camina group (see
Section 2.1).

(iii) Z(G)Cg = G′′ holds for some g ∈ G′\G′′.

The proof will be split into several parts. Note that the conditions (ii) and (iii) are
equivalent by Lemma 4.39. We show that condition (ii) implies (i) before proving that
condition (iii) follows from (i).

Proof of the implication (ii) ⇒ (i) in Theorem 4.42. Let G be a finite group which satis-
fies Hypothesis 4.38 and assume that Z(G)Cg = G′′ holds for all g ∈ G′\G′′. Consider an
element y =

∑
g∈G agg ∈ soc(ZFG). By Remark 2.9, we need to show that the coefficients

of y are constant on the cosets of G′ in G.

We first consider the coefficients of elements in G′. For g ∈ G′′, we obtain ag = a1 by
Remark 2.25 since G′′ = Z(G′) holds by assumption. Now let g ∈ G′\G′′. Then g has
a G-conjugate of the form g1d with d ∈ G′′. By assumption, we can write d = cz with
z ∈ Z(G) and c ∈ C. Then we obtain

ag = ag1cz = ag1c = ag1 = a1.

In the second step, we used z ∈ Z(G), which yields ag1cz = ag1c by Remark 2.14. The
third equality follows from the fact that g1c = cg1 is conjugate to g1 by definition of C.
In the last step, we used that [h1] = {1} ∪ {ek1g1e

−k
1 : 0 ≤ k ≤ s − 1} holds for the fixed

element h1 ∈ CH(G′′) (see Lemma 4.19). By Remark 2.25, y · [h1]+ = 0 implies

a1 + s · ag1 = a1 +
s−1∑
i=0

aek1g1e
−k
1

= 0

and hence ag1 = a1 follows. This shows that the coefficients of y on G′ are constant.

Now consider the coset ek1G
′ for some 1 ≤ k ≤ s − 1 and let g ∈ G′. By Lemma 4.40, we

have [ek1g] = [ek1d] for some d ∈ G′′ and hence aek1g
= aek1d

follows. Either d = 1 holds or

we obtain y · b[d−1] = 0 for the basis element b[d−1] of J(ZFG) corresponding to [d−1] (see
Definition 2.22). Setting ` to be the length of [d], Remark 2.25 then yields

` · aek1 −
∑
d′∈[d]

aek1d′
= 0.

All coefficients occurring in the sum are equal since the elements ek1d
′ with d′ ∈ [d] are

conjugate by Lemma 4.40. The above condition therefore reads ` · aek1 − ` · aek1d = 0,
which implies aek1d

= aek1
since ` is coprime to p. Hence the coefficients of y are constant

on ek1G
′.

In the remaining part of this section, we prove that the first condition stated in Theo-
rem 4.42 implies the third one. Additionally to Hypothesis 4.38, we therefore require that
soc(ZFG) is an ideal of FG. In order to derive a contradiction, we assume in the following
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that Z(G)C is a proper subgroup of G′′ and construct an element y ∈ soc(ZFG) which is
not contained in (G′)+ · FG:

Construction 4.43. Since the group D′ is elementary abelian (see Remark 4.30), we
have gp ∈ G′′ = Z(G′) for all g ∈ G′. By [24, Hilfssatz III.1.3], the group G′′ is elementary
abelian, so it can be viewed as an Fp-vector space. In particular, there exists a nontrivial
group homomorphism α : G′′ → Fp with constant values on the cosets of Z(G)C in G′′.
For instance, one could extend an Fp-basis of Z(G)C to a basis of G′′ and map each
element of G′′ to the coefficient of a fixed basis vector v ∈ G′′\Z(G)C. In the following,
we interpret the field Fp as a subset of F . For g ∈ G, we define

ag :=

{
α(u) if g ∼ g1u holds for some u ∈ G′′

0 otherwise
.

Lemma 4.44. The map G→ G, g 7→ ag introduced in Construction 4.43 is well-defined.

Proof. Let g ∈ G and assume that g is conjugate to g1u1 and g1u2 with u1, u2 ∈ G′′. Then
g1u2 is contained in

[g1u1] ∩ g1u1G
′′ = [g1u1]G′ = Cg1u1 = g1u1C

(see Lemma 4.39), which yields u2 ∈ u1C and hence α(u1) = α(u2). In particular, the
image of g is well-defined.

Remark 4.45. Since the map α is a group homomorphism, we have

ag1u1u2 = ag1u1 + ag1u2 (4.16)

for all u1, u2 ∈ G′′. Note that ag = ah holds for all conjugate elements g, h ∈ G. For
k = 1, . . . , s− 1, conjugation with ek1 therefore yields

aek1g1e
−k
1 u1u2

= aek1g1e
−k
1 u1

+ aek1g1e
−k
1 u2

for all u1, u2 ∈ G′′. /

In the following, we consider the element y :=
∑

g∈G agg ∈ FG with the coefficients
described in Construction 4.43. Clearly, we have y ∈ ZFG and the coefficients of y are
not constant on G′ since α is nontrivial. Our aim for the remainder of the section is to
show that y ∈ soc(ZFG) holds. To this end, we need two auxiliary results.

Remark 4.46. For any g ∈ G′′, the element t :=
∏
g′∈[g] g

′ ∈ G′′ = Z(G′) is invariant
under conjugation with e1, which implies t ∈ Z(G). By (4.16), we obtain∑

g′∈[g]

ag1g′ = ag1
∏

g′∈[g] g
′ = ag1t = α(t) = α(1) = 0, (4.17)

since α has constant values on the cosets of Z(G)C in G′′. /

The following observation will later ensure that y annihilates [h]+ for all elements h ∈ H
which do not centralize G′′.
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Proposition 4.47. Let U ⊆ G′′ be a subgroup with |U | > 2. Then we have y · U+ = 0.

Proof. By Remark 2.25, we need to show that
∑

u∈U awu−1 = 0 holds for all w ∈ G. Note
that all summands are zero for w /∈ G′ or w ∈ G′′, so it suffices to consider an element
w ∈ G′\G′′. We write w = ek1g1e

−k
1 d for some k ∈ Z and some d ∈ G′′. Then we have∑

u∈U
awu−1 =

∑
u∈U

aek1g1e
−k
1 du−1 = |U | · aek1g1e

−k
1 d +

∑
u∈U

aek1g1e
−k
1 u−1 = aek1g1e

−k
1

∏
u∈U u

−1

= aek1g1e
−k
1

= 0.

In the second and third step, we apply the homomorphism properties described in Re-
mark 4.45. Moreover, we use that p divides |U | and that

∏
u∈U u

−1 = 1 holds since U is
elementary abelian of order at least three (see Lemma 3.11). The last step follows from
the fact that ek1g1e

−k
1 is conjugate to g1 and we have α(1) = 0.

With these preliminaries, we now show that y annihilates the basis element bC of J(ZFG)
for any conjugacy class 1 6= C ∈ Cl(G) (see Definition 2.22). We begin with the basis
elements corresponding to conjugacy classes which are contained in G′.

Lemma 4.48. For 1 6= g ∈ G′, we obtain y · b[g] = 0.

Proof. First, we assume g ∈ G′′, that is, we have b[g] = [g]+−` ·1 with ` := |[g]|. By (2.13),
we need to show that ∑

g′∈[g]

atg′−1 = ` · at

holds for all t ∈ G. Again, all summands are zero for t ∈ G′′ or t /∈ G′, so let t ∈ G′\G′′
and write t = ek1g1e

−k
1 d′ for some d′ ∈ G′′. Setting d := e−k1 d′ek1, we have t = ek1g1de

−k
1 .

Then ∑
g′∈[g]

atg′−1 =
∑
g′∈[g]

aek1g1de
−k
1 g′−1 =

∑
g′∈[g]

ag1de
−k
1 g′−1ek1

=
∑
g′∈[g]

ag1dg′−1

= ` · ag1d +
∑

g′∈[g−1]

ag1g′ = ` · ag1d = ` · at.

In the third step, we use that conjugation with ek1 permutes the elements of [g]. The fourth
equality is due to (4.16) and in the fifth step, we make use of (4.17).

Now assume g ∈ G′\G′′. Then g is conjugate to an element of the form g1d for some
d ∈ G′′ and without loss of generality, we may assume g = g1d. Note that the group C
is nontrivial since g1 /∈ Z(G′) holds. Suppose that |C| = 2 holds. By Lemma 4.39, it
follows that all conjugacy classes in G′ are of length at most two. Since G′′ = Z(G′) holds,
G′ is an extraspecial group by [26, Proposition 3.1], which implies |G′′| = 2. Hence C
coincides with G′′, which is a contradiction to the assumption Z(G)C < G′′. This shows
that |C| > 2 holds. By Lemma 4.39, [g] is a union of cosets of subgroups of the form
e`1Ce

−`
1 with ` ∈ Z. Since we have |C| > 2, Proposition 4.47 yields y · (e`1Ce

−`
1 )+ = 0 and

hence y annihilates b[g] = [g]+.

Now we show that y annihilates the basis elements bC corresponding to conjugacy classes
C ∈ Cl(G) which are not contained in G′. This problem is solved in two steps. The first one
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concerns the conjugacy classes of the elements in CH(G′′)\{1} and is far more complicated
than the second, in which we summarize the above results (see Lemma 4.50).

Proposition 4.49. The element y annihilates every class sum [h]+ for 1 6= h ∈ CH(G′′).

Proof. Recall that the class [h] is of the form U · h with

U := {1} ∪
{
e`1g
′
1e
−`
1 : 0 ≤ ` ≤ s− 1

}
for some g′1 ∈ G′\G′′ which is conjugate to g1 (see Lemma 4.19). By conjugating, we can
choose g′1 ∈ g1G

′′. By Lemma 4.39, we then have g′1 ∈ g1G
′′ ∩ [g1] = [g1]G′ = g1C, so we

write g′1 = g1c for some c ∈ C. Moreover, note that the condition y · [h]+ = 0 can be
replaced by y · U+ = 0. By (2.12), we need to show that∑

u∈U
atu−1 = 0 (4.18)

holds for all t ∈ G. We may assume t ∈ G′ since all summands are zero otherwise.

First consider an element t ∈ G′\G′′ and write t = ek1g1d
′e−k1 for some k ∈ {0, . . . , s − 1}

and some d′ ∈ G′′. Setting d := c−1d′, this yields t = ek1g
′
1de
−k
1 . We have∑

u∈U
atu−1 =

∑
u∈U

ae−k
1 tu−1ek1

=
∑
u∈U

ag′1de
−k
1 u−1ek1

=
∑
u∈U

ag′1u−1d,

since conjugation with e−k1 permutes the elements of U and we have d ∈ Z(G′). Further-
more, we obtain{

g′1u
−1d : u ∈ U

}
=
{
g′1(e`1g

′−1
1 e−`1 )d : 0 ≤ ` ≤ s− 1

}
∪ {g′1d}

=
{

[g′1, e
`
1]d : 0 ≤ ` ≤ s− 1

}
∪ {g′1d} =: X.

For ` ∈ {1, . . . , s−1}, Lemma 4.19 yields [g′1, e
`
1] = [e`1, g

′
1]−1 ∼ g′−1

1 ∼ g′1. By Lemma 4.39,
this implies that for any d 6= x ∈ X, there exist dx ∈ Cg′1 and mx ∈ {0, . . . , s− 1} with

x = emx
1 g′1dxe

−mx
1 d.

Note that Cg′1 = C holds because g′1 is contained in g1G
′′ (see Lemma 4.39). Since the

elements in U form a system of representatives for the cosets of G′′ in G′, the same holds
for the elements in X since they arise from the elements in U by multiplication with
g′1d. This implies that the correspondence x ↔ mx is one-to-one. Setting vmx

:= dx for
mx ∈ {0, . . . , s− 1}, this yields x = emx

1 g′1vmxe
−mx
1 d for all x ∈ X\{d} and hence

X =
{
em1 g

′
1vme

−m
1 d : 0 ≤ m ≤ s− 1

}
∪ {d}.

Since we have ad = 0, this implies

∑
u∈U

atu−1 =
∑
x∈X

ax =
s−1∑
m=0

aem1 g′1vme
−m
1 d =

s−1∑
m=0

ag′1vme
−m
1 dem1

=
s−1∑
m=0

ag1cvme
−m
1 dem1

,
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since the coefficients of y are constant under conjugation with e−m1 . Recall that g′1 = g1c
holds for some c ∈ C. We obtain

s−1∑
m=0

ag1cvme
−m
1 dem1

=
s−1∑
m=0

ag1e
−m
1 dem1

=
s

|[d]|
∑
d′∈[d]

ag1d′ = 0. (4.19)

In the first step, we use that cvm ∈ C holds for m = 0, . . . , s− 1, which yields

g1cvme
−m
1 dem1 ∈ Cg1e

−m
1 dem1 = [g1e

−m
1 dem1 ]G′

by Lemma 4.39. The second equality in (4.19) follows since the element e−m1 dem1 traverses
the conjugacy class [d] = {e`1de

−`
1 : 0 ≤ ` ≤ |[d]| − 1} exactly s/|[d]| times. In the last step,

we apply (4.17). This shows that the identity given in (4.18) holds for t ∈ G′\G′′.

Now let t ∈ G′′. By Lemma 4.19, there exists an element g ∈ G with g′−1
1 = gg1g

−1. With
this, we obtain

∑
u∈U

atu−1 = at +
s−1∑
i=0

atei1g
′−1
1 e−i

1
=

s−1∑
i=0

at(ei1g)g1(ei1g)
−1 =

s−1∑
i=0

ag1(ei1g)
−1t(ei1g)

.

Since t centralizes G′, we may assume g ∈ H, so e1 and g commute. With t′ = g−1tg, we
therefore have

s−1∑
i=0

ag1(ei1g)
−1t(ei1g)

=

s−1∑
i=0

ag1e
−i
1 t′ei1

= ag1
∏s−1

i=0 e
−i
1 t′ei1

= 0,

where we use Remark 4.45 and the last equality follows by (4.19). Hence the equality
given in (4.18) holds for every t ∈ G, which completes the proof.

This settles the case that C = [h] is a conjugacy class of an element in 1 6= h ∈ CH(G′′).
Now we gather our results in order to prove the following statement:

Lemma 4.50. For any g ∈ G\G′, we have y · [g]+ = 0.

Proof. By Lemma 4.40, it suffices to show that y annihilates all conjugacy class sums of
the form [ek1d]+ with k ∈ {1, . . . , s− 1} and d ∈ G′′. Note that a system of representatives
for the cosets of CG(ek1) in G can be chosen in G′ since ek1 commutes with all elements of H.
Similarly, a system of representatives for the cosets of CG(d) in G can be found in H = 〈e1〉
since d centralizes G′. Since d commutes with the elements of G′ and ek1 centralizes 〈e1〉,
we have [ek1d] = [ek1] · [d]. Moreover, the group G′ acts on [ek1d] by conjugation with orbits
of the form [ek1]d′ with d′ ∈ [d]. In particular, [ek1d] is a disjoint union of sets of this form
and hence [ek1d]+ is a multiple of [ek1]+ in FG. It therefore suffices to prove y · [ek1]+ = 0
in order to show that y annihilates [ek1d]+.

If ek1 ∈ CG(G′′) holds, then y · [ek1]+ = 0 follows by Proposition 4.49. Now let ek1 /∈ CG(G′′)
and write [ek1] = Uek1 with U ⊆ G′ as in (2.1). By Remark 4.41, U is a union of cosets of
the normal subgroup N := U ∩G′′, which is nontrivial, so it suffices to show y ·N+ = 0. If
|N | = 2 holds, we have N ⊆ Z(G), which is a contradiction since ek1 does not commute with
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its nontrivial commutators by Remark 2.17. Hence we have |N | > 2 and Proposition 4.47
yields y ·N+ = 0. Summarizing, we obtain y · [ek1d]+ = 0 in all cases.

With these preliminary results, we can complete the proof of Theorem 4.42:

Proof of the implication (i) ⇒ (iii) in Theorem 4.42. Let G be a finite group satisfying
Hypothesis 4.38 and assume that soc(ZFG) is an ideal of FG. Suppose that Z(G)C is
a proper subgroup of G′′ and consider the element y =

∑
g∈G agg with the coefficients

described in Construction 4.43. Clearly, we have y ∈ ZFG. By Lemmas 4.48 and 4.50,
y annihilates the basis elements of J(ZFG) given in Theorem 2.23. This shows that
y ∈ soc(ZFG) holds. By Remark 2.9, this is a contradiction to soc(ZFG) E FG since y
has non-constant coefficients on G′, so Z(G)C = G′′ follows.

4.3.4 Characterization of the groups G with soc(ZFG) E FG

We finally collect the results obtained in this section in order to classify the finite groups G
of the form P oH with CG′(P ) ⊆ P ′ for which soc(ZFG) is an ideal in FG. Recall that
we may restrict to the case Op′(G) = 1 by Lemma 2.19.

Theorem 4.51. Let G = P oH with P ∈ Sylp(G) and an abelian p′-group H such that
Op′(G) = 1 and CG′(P ) ⊆ P ′ hold. Then soc(ZFG) is an ideal of FG if and only if there
exist normal subgroups K,Q1, . . . , Qn of G for some n ∈ N0 such that

G = K ∗Q1 ∗ . . . ∗Qn

is a central product and the following hold:

(i) K is a p-group with soc(ZFK) E FK,

(ii) Qi = Q′i o Hi, where Q′i is a p-group of nilpotency class exactly two and Hi is a
cyclic group of order |Q′i/Q′′i | − 1 such that Qi/Q

′′
i
∼= AGL(1, |Q′i/Q′′i |) holds,

(iii) CHi(Q
′′
i ) 6= 1,

(iv) Q′i/Z(Qi) is a Camina group.

In this case, we have soc(ZFG) = (Z(P )G′)+ · FG.

Proof. First assume that soc(ZFG) is an ideal of FG. By Lemma 4.27, we then have
soc(ZFG) = (Z(P )G′)+ ·FG. By Theorem 4.24, G decomposes in the form K ∗GH with
K := CP (H) and GH := H[G′, H]. Moreover, soc(ZFK) and soc(ZFGH) are ideals in
FK and FGH , respectively.

In the following, we focus on the group GH . Lemma 4.26 shows G′H ∈ Sylp(GH) and we
have Op′(GH) ⊆ Op′(G) = 1. Furthermore, we have Z(G′H) ⊆ Z(G′) ⊆ G′′ = G′′H since
CP (H) is metabelian by Remark 4.25. This shows that GH satisfies Hypothesis 4.32. By
Lemma 4.33, there exists a decomposition GH = Q1 ∗ . . . ∗ Qn into a central product
such that Qi satisfies Hypothesis 4.32 and Q′i/Q

′′
i is a minimal normal subgroup of Qi/Q

′′
i

for i = 1, . . . , n. In particular, we have soc(ZFQi) E FQi. By Lemma 4.31, we have
Qi/Q

′′
i
∼= AGL(1, |Q′i/Q′′i |). In particular, Qi/Q

′
i is cyclic of order |Q′i/Q′′i | − 1. The



84 Chapter 4 Arbitrary finite groups

condition CH(Q′′i ) 6= 1 follows from Theorem 4.14, applied to the group Qi. Since Qi
satisfies the prerequisites of Theorem 4.42, Q′i/Z(Qi) is a Camina group.

Conversely, assume that G = K ∗ Q1 ∗ . . . ∗ Qn is a central product of normal sub-
groups K,Q1, . . . , Qn which satisfy the conditions (i) – (iv). Note that Op′(G) = 1 im-
plies Op′(Qi) = 1 for i = 1, . . . , n. By Lemma 4.31 and property (iii), Qi satisfies the
conditions (D1)–(D3) given in Theorem 4.14. Moreover, the condition (ii) implies that
Q′i/Q

′′
i is a simple FpHi-module. Since Z(Q′i) is a proper subgroup of Q′i, this yields

Z(Qi)/Q
′′
i = 1 and hence Z(Q′i) = Q′′i . By Theorem 4.42, we obtain soc(ZFQi) E FQi.

Hence soc(ZFG) E FG follows by Lemma 2.43.

4.4 Case CG′(P ) 6⊆ P ′

In this section, we investigate the question under which conditions soc(ZFG) is an ideal
of FG in general, that is, we drop the assumption CG′(P ) ⊆ P ′ from the previous section.
By Theorem 4.24 and Lemma 2.19, we may again assume P = G′ and Op′(G) = 1. More
precisely, we require the following throughout this section:

Hypothesis 4.52. Let G be a finite group in which G′ = Op(G) holds and G′ has
nilpotency class at most two, and fix a Hall p′-subgroup H of G (see Theorem 2.15).
Moreover, we assume Op′(G) = 1 and that G has the properties (D1)–(D3) given in
Theorem 4.14.

Recall that H is abelian in this situation. As before, we first consider the quotient group
D := G/G′′. By the property (D1) in Theorem 4.14, we have D′ ∼= T × ZD, where
T = T1× . . .×Tn is an elementary abelian p-group and ZD = Z(G′)/G′′ can have a larger
exponent. In order to apply methods from linear algebra, it is convenient to pass to the
quotient group GΦ := G/Φ(G′). Its derived subgroup G′Φ, which is elementary abelian,
decomposes in the form T ×Z, where Z denotes the image of Z(G′) under the projection
onto GΦ. We collect some preliminary results on the structure of GΦ in Section 4.4.1.

Since the conjugation action of H on T was already analyzed in the preceding sections, we
focus on the action of H and, in particular, of its subgroup CT := CH(T ) on Z. Setting
CZ := CH(Z), this leads to the following conjecture:

Conjecture 4.53. Let G be a group which satisfies Hypothesis 4.52. We claim that then
the following implication holds:

soc(ZFG) E FG⇒ H = CT × CZ . (4.20)

In Section 4.4.2, we provide evidence for Conjecture 4.53. In particular, we prove it in the
special case that Z is a simple FpH-module. In Section 4.4.3, we conversely assume that
H = CT × CZ holds. This will lead to a decomposition of G into a direct product. To its
factors, one can apply the results from Section 4.3 to decide whether soc(ZFG) is an ideal
of FG. In other words, combined with certain conditions from the preceding sections, the
condition H = CT × CZ ensures that soc(ZFG) is an ideal of FG.
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4.4.1 Structure of G/Φ(G′)

As explained at the beginning, we mainly consider the group GΦ := G/Φ(G′) in this
section. Note that GΦ is of the form G′Φ o H if we identify H and its image in GΦ as
usual. Studying GΦ instead of D is convenient since the elementary abelian group G′Φ can
be interpreted as an Fp-vector space, which often allows us to identify H with a subgroup
of the general linear group GL(G′Φ). On the other hand, any element in H which acts
trivially on G′Φ also acts trivially on G′ by Theorem 2.3.

We first relate the structure of GΦ to that of D.

Remark 4.54. We have

Φ(G′)/G′′ = Φ(G′/G′′) = Φ(D′) = Φ(T × ZD) = Φ(T )× Φ(ZD) = Φ(ZD),

since T is elementary abelian. This yields

G′Φ = G′/Φ(G′) ∼= (G′/G′′)/(Φ(G′)/G′′) = D′/Φ(ZD) ∼= T × (ZD/Φ(ZD)).

Note that this is even an isomorphism of FpH-modules. Identifying Ti with its image in
GΦ for i = 1, . . . , n and setting Z := ZD/Φ(ZD), this yields

G′Φ
∼= T1 × . . .× Tn × Z. (4.21)

Note that we have

Z = ZD/Φ(ZD) ∼= (Z(G′)/G′′)/(Φ(G′)/G′′) ∼= Z(G′)/Φ(G′).

Since Z is a semisimple FpH-module, it can be decomposed into a direct sum Z1× . . .×Zk
of simple FpH-modules Z1, . . . , Zk for some k ∈ N0. /

We collect some first results regarding the conjugation action of the group H on G′Φ.

Remark 4.55.

(i) If h ∈ H acts trivially on the subgroup Z of GΦ, then it also acts trivially on ZD by
Theorem 2.3. This way, we can identify the centralizers CZ and CH(ZD). Similarly,
since Ti and (Ti × Φ(ZD))/Φ(ZD) ⊆ GΦ are isomorphic FpH-modules, we simply
write CH(Ti) for the centralizer of either group in H.

(ii) If an element j ∈ CT centralizes Z, then j acts trivially on G′Φ. By Theorem 2.3 and
Theorem 2.1, this yields j ∈ CH(G′) = CG(G′) ∩H = 1. In other words, we have

CT ∩ CZ = 1. (4.22)

(iii) For i = 1, . . . , n and every h ∈ H, the centralizer CZi(h) is a normal subgroup of GΦ

since it is H-invariant by [20, Lemma 2.6.2] and G′Φ is abelian. As Zi is a simple
FpH-module, we either have CZi(h) = 1, that is, h acts on Zi\{1} without fixed
points, or CZi(h) = Zi, that is, the operation of h on Zi is trivial. /
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In the following, we further analyze the action of H on Z. For i = 1, . . . , k, the group
Hi := H/CH(Zi) is cyclic since Zi is a simple FpH-module (see [20, Theorem 3.2.3]), and
it can be viewed as a subgroup of Aut(Zi). More precisely, we now show that Hi can be
embedded into a cyclic group of automorphisms of Zi that acts transitively on Zi\{1}. In
the following, we set pzi := |Zi| for i = 1, . . . , k.

Lemma 4.56. For i = 1, . . . , k, there exists an element Ai ∈ Aut(Zi) of order pzi−1 with
Hi ⊆ 〈Ai〉 ⊆ Aut(Zi).

Proof. The group algebra FpHi is semisimple. By Wedderburn’s theorem (see [47, Theo-
rem I.6.3]), there exists an isomorphism of Fp-algebras

FpHi
∼= Matn1(F1)⊕ . . .⊕Matnr(Fr) (4.23)

for some n1, . . . , nr ∈ N and skew fields F1, . . . , Fr. Since FpHi has a finite number of
elements, F1, . . . , Fr are finite as well, which implies that they are even fields. Moreover,
since FpHi is commutative, we have n1 = . . . = nr = 1. There exists an index j ∈ {1, . . . , r}
such that Zi and Fj are isomorphic FpHi-modules. In particular, we have |Fj | = pzi .
We obtain EndFpHi(Fj) = EndFj (Fj) since all direct summands in (4.23), except for
Fj , annihilate the FpHi-module Fj . By [47, Lemma I.6.1], the Fp-algebra EndFj (Fj) is
isomorphic to Fj . Since the group Hi acts faithfully on Fj by left multiplication, it can
be identified with a subgroup of EndFj (Fj)

× ∼= F×j . Taking Ai to be a generator of this
cyclic group, the claim follows.

The proof also shows that the group 〈Ai〉 acts transitively on Zi\{1}. Moreover, note that
every nonzero FpHi-endomorphism of Zi is of the form Aki for some k ∈ Z.

4.4.2 Conjecture

In this section, we discuss Conjecture 4.53 in detail. After some preliminary results, which
are given in Section 4.4.2.1, we prove the conjecture for the special case that Z is a simple
FpH-module in Section 4.4.2.2. Subsequently, we describe a possible generalization (see
Section 4.4.2.3). Additionally to Hypothesis 4.52, we assume throughout this section that
soc(ZFG) is an ideal of FG.

4.4.2.1 Preliminary results

Here, we collect several auxiliary results which will be needed later. As before, we fix a
nontrivial element hi ∈ CH(Mi) (see condition (D3) in Theorem 4.14) and set gi := ghi to
be a corresponding element in G′ as defined in Lemma 4.19.

In the following, we use the abbreviations AΦ := Clp′,Φ(G′)(G) and BΦ := Cl
+
p′,Φ(G′)(G)

(see Definition 2.34). The crucial fact that we use in our derivation is that

AnnZFGΦ
(BΦ) ⊆ (G′Φ)+ · FGΦ

is a necessary condition for soc(ZFG) E FG (see Theorem 2.39). To simplify the calcu-
lations, we show that BΦ may be replaced by a smaller set in the above annihilator.
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Lemma 4.57. The annihilator AnnZFGΦ
(BΦ) is given by

S :=
n⋂
i=1

AnnZFGΦ
(T+
i ) ∩

⋂
z∈Z

AnnZFGΦ

(
[z]+ − |[z]| · 1

)
.

Proof. First let y ∈ S ⊆ ZFGΦ. We show that y ·bC̃ = 0 holds for all C̃ ∈ AΦ. To this end,

let C ∈ Clp′,Φ(G′)(G) be a preimage of C̃. If p does not divide |C|, then C is contained

in Z(G′) and hence we have C̃ ⊆ Z. This yields y · bC̃ = y · (C̃+ − |C̃| · 1) = 0 since y

is contained in S. Now assume that p divides |C| and hence also |C̃|. In particular, we
have bC̃ = C̃+. Since G′Φ is abelian, (2.11) yields C̃ 6⊆ G′Φ. Let x ∈ C̃ and write x = hg

for some 1 6= h ∈ H and some g ∈ G′Φ. If y annihilates [h]+, then y · C̃+ = 0 follows by
Corollary 2.46. It therefore suffices to show that y · [h]+ = 0 holds for all 1 6= h ∈ H. We
write [h] = Uh · h with Uh ⊆ G′Φ as in (2.1). By Remark 4.55 (ii), we have CH(G′Φ) = 1
and hence h acts nontrivially on G′Φ.

If [h, Ti] 6= 1 holds for some i ∈ {1, . . . , n}, we obtain Ti ⊆ Uh since all nontrivial elements
in Ti are conjugate (see condition (D2) in Theorem 4.14) and Uh is a normal subgroup of GΦ

by Lemma 2.45. In this case, Uh is a union of cosets of Ti, which yields y·[h]+ = y·U+
h ·h = 0

since y annihilates T+
i by assumption.

If [h, Ti] = 1 holds for i = 1, . . . , n, then there exists an index i ∈ {1, . . . , k} with [h, Zi] 6= 1.
By Remark 4.55, h acts on Zi\{1} without fixed points, so Uh is a union of cosets of Zi.
We obtain

y · Z+
i = y ·

 ∑
[z]⊆Zi

[z]+

 = y ·

 ∑
[z]⊆Zi

[z]+ − |z| · 1

 = 0,

since |Zi| is divisible by p and y annihilates elements of the form [z]+− |[z]| · 1 with z ∈ Z
by assumption. This yields y · [h]+ = 0 and hence S is contained in AnnZFGΦ

(BΦ).

For the other inclusion, consider the conjugacy class C := [hi] of the nontrivial element
hi ∈ CH(Mi) fixed at the beginning of this section (i ∈ {1, . . . , n}). By Lemma 4.7, its
image C̃ in GΦ is of the form Ti · hi and we have C̃ ∈ AΦ. This yields

AnnZFGΦ
(BΦ) ⊆ AnnZFGΦ

(T+
i ).

Now let z ∈ Z\{1} and consider a preimage z′ ∈ Z(G′). Since |[z′]| is not divisible by p,
we have [z] ∈ AΦ, which yields AnnZFGΦ

(BΦ) ⊆ AnnZFGΦ
([z]+ − |[z]| · 1). This shows

that AnnZFGΦ
(BΦ) is contained in S, which proves the equality.

For i = 1, . . . , n, we write ti for the image of the fixed element gi in D′ or G′Φ (with the
identification of Ti and its image in G′Φ given in Remark 4.54) and set t := t1 · · · tn. In the
next sections, we will be mainly concerned with the question under which conditions an
element y ∈ AnnZFGΦ

(BΦ) has constant coefficients on tZ. For this reason, it is essential
to know which elements in tZ are conjugate to a given element tz with z ∈ Z:

Lemma 4.58. For z ∈ Z, we have [tz] ∩ tZ = t[z]CT
, where [z]CT

denotes the set of
elements that arise from z by conjugating with elements of CT .
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Proof. Clearly, t[z]CT
is contained in [tz]∩tZ since conjugation with elements of CT fixes t.

Now consider an element z′ ∈ Z with tz′ ∈ [tz] ∩ tZ. Since G′Φ is abelian, there exists
an element h ∈ H such that tz′ = htzh−1 holds. Writing h = er11 · · · ernn · j for some
r1, . . . , rn ∈ Z and j ∈ CT , this reads

tz′ = ht1 · · · tn · zh−1 = er11 t1e
−r1
1 · · · ernn tne−rnn · hzh−1,

since j commutes with t1, . . . , tn and ei centralizes T` for ` 6= i. Therefore, we have
erii tie

−ri
i = ti and hence erii ∈ CT since 〈ei〉 acts transitively on Ti\{1} for i = 1, . . . , n (see

condition (D2) in Theorem 4.14). This implies h ∈ CT and hence tz′ = thzh−1 ∈ t[z]CT

follows as claimed.

In the next section, we prove that H is of the form CT ×CZ if Z is a simple FpH-module.
By the preceding lemma, this implies t[z] = t[z]CT

⊆ [tz] for all z ∈ Z.

4.4.2.2 Special case: Z simple FpH-module

In this section, we assume that Z is a simple FpH-module, which corresponds to the case
k = 1 in Remark 4.54. The aim of this section is the proof of the following result:

Lemma 4.59. Let G be a group which satisfies Hypothesis 4.52 and suppose that soc(ZFG)
is an ideal of FG. Write G′Φ = T×Z as before and assume that Z is a simple FpH-module.
Then we obtain H ∼= CT × CZ .

In the following, we consider the action of the quotient group H1 := H/CZ on Z. Recall
that H1 is a cyclic group and that the action of H1 on Z is free (see Remark 4.55 (iii)).
By (4.22), the intersection CT ∩CZ is trivial and hence from now on, CT ∼= CT ×CZ/CZ
will be identified with a subgroup of H1.

In the following, we suppose that CT × CZ is a proper subgroup of H or, equivalently,
that CT is a proper subgroup of H1. Under this assumption, we construct an element
in AnnZFGΦ

(BΦ) with non-constant coefficients on G′Φ. Its existence is a contradiction
to soc(ZFG) E FG by Theorem 2.39. We proceed in two steps: First, we derive a
contradiction in the special case that ei /∈ CT × CZ holds for i = 1, . . . , n. This is then
used to prove the general result.

Case 1: In the following, we assume that ei is not contained in CT ×CZ for i = 1, . . . , n.

In order to apply methods from linear algebra, we interpret the elementary abelian group Z
as an Fp-vector space in the following.

Remark 4.60. Let pz := |Z|. Since Z is elementary abelian, there exists an isomorphism
ϕ : Z → VZ onto the additive group VZ of an Fp-vector space of dimension z. Moreover,
there is an isomorphism Φ: Aut(Z) → GL(z, p) (see [24, Bemerkung I.13.13]). By iden-
tifying H1 with its image in GL(z, p), VZ becomes an FpH1-module, which is isomorphic
to Z.

By Lemma 4.56, there exists a Singer cycle A ∈ GL(z, p) with Φ(H1) ⊆ 〈A〉. Write
Φ(H1) = 〈Am〉 with m := (pz − 1)/|H1|. Setting d := |CT | and k := (pz − 1)/d,
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we have Φ(CT ) = 〈Ak〉. Here, we view CT as a subgroup of H1 as explained be-
fore. Fixing a nonzero element f ∈ VZ , the elements of VZ can be labeled in the form
0, Af,A2f, . . . , Ap

z−1f .

In the following, we usually identify H1 and Φ(H1). Note that the action of H1 on Z is
given by conjugation, whereas H1

∼= Φ(H1) acts on VZ by matrix-vector multiplication. /

Since d = |CT | < |H1| ≤ pz − 1 holds by assumption, Ad is not the identity matrix and
hence there exist indices λ1, λ2 ∈ {1, . . . , z} with [Ad]λ1λ2 6= [1]λ1λ2 . Here, [A]λ1λ2 denotes
the entry of the matrix A in the position (λ1, λ2). We now define a map

α : VZ → Fp, α(x) =

{
0 x = 0[
Aid
]
λ1λ2

x = Aif for some i ∈ Z
. (4.24)

Note that α is well-defined as Ai1f = Ai2f for i1, i2 ∈ Z implies Ai1 = Ai2 since A acts on
the nonzero elements of VZ without fixed points. Furthermore, α is non-constant since

α(Af) = [Ad]λ1λ2 6= [1]λ1λ2 = [Akd]λ1λ2 = α(Akf)

holds by our choice of λ1 and λ2.

Remark 4.61. The map α is invariant under the action of CT in the sense that for any
j ∈ CT and x ∈ VZ , we have α(jx) = α(x). This is clear for x = 0. Now write j = A`k

and x = Aif for some `, i ∈ Z. Then we have

α(jx) = α
(
A`k+if

)
= [A(`k+i)d]λ1λ2 = [Aid]λ1λ2 = α(x),

since Akd = Ap
z−1 = 1 holds. /

The following property of α will be the key ingredient to ensure that the element y ∈ FGΦ

which we later construct from α annihilates the basis elements of J(ZFGΦ) given in
Theorem 2.23.

Proposition 4.62. Consider a subgroup L ⊆ H1 with L 6⊆ CT . For x ∈ VZ , we have∑
`∈L

α(`x) = 0.

If |L| > d holds, then for any x, u ∈ VZ , we obtain

1

|L|
∑
`∈L

α(u+ `x) = α(u).

Proof. Note that L = 〈Acm〉 holds for c := |H1|/|L|. We now prove the first equality
stated above. It is obviously true for x = 0, so let x = Awf for some w ∈ Z. We obtain

∑
`∈L

α(`x) =

|L|∑
i=1

α
(
Acmi+wf

)
=

|L|∑
i=1

[
A(cmi+w)d

]
λ1λ2

=

 |L|∑
i=1

A(cmi+w)d


λ1λ2

.
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Set B :=
∑|L|

i=1A
(cmi+w)d. Multiplication with B defines an FpH1-endomorphism of VZ .

By the proof of Lemma 4.56, using that VZ and Z are isomorphic FpH1-modules, we either
have B = 0 or B is of the form Ab for some b ∈ Z. Assume that the latter case applies, so
B is invertible. We observe that

Acmd ·B =

|L|∑
i=1

A(cm(i+1)+w)d =

|L|∑
i=1

A(cmi+w)d = B

holds since we have A(cm(|L|+1))d = Acmd. Since B is invertible, this yields Acmd = 1, which
is a contradiction to Acm /∈ CT . Therefore, we have B = 0 and

∑
`∈L α(`x) = [B]λ1λ2 = 0

follows as claimed.

Now we prove the second part of the statement. To this end, we assume |L| > d. For
u = 0, the claim follows from the first part of this proof, so let u = Arf for some r ∈ Z.
This yields

∑
`∈L

α(u+ `x) =

|L|∑
i=1

α
(
Arf +Acmi+wf

)
=

|L|∑
i=1

α
(
Ar(1 +Acmi+w−r)f

)
.

For i = 1, . . . , |L|, multiplication with Ã := Ar(1 + Acmi+w−r) defines an FpH1-endomor-
phism of VZ . As before, either we have Ã = 0 and hence α(Ãf) = 0, or we have Ã = Ab for
some b ∈ Z, which yields α(Ãf) = [Abd]λ1λ2 . In both cases, we obtain α(Ãf) = [Ãd]λ1λ2 .
This implies

|L|∑
i=1

α
(
Ar(1 +Acmi+w−r)f

)
=

|L|∑
i=1

[(
Ar
(
1 +A(cmi+w−r)

))d]
λ1λ2

=

Ard |L|∑
i=1

(
1 +A(cmi+w−r)

)d
λ1λ2

.

The last equality follows from the fact that A commutes with 1+Ab for all b ∈ Z. Applying
the binomial theorem yields

 |L|∑
i=1

(
1 +A(cmi+w−r)

)d
λ1λ2

=

 |L|∑
i=1

d∑
v=0

(
d

v

)
A(cmi+w−r)v


λ1λ2

=

[
d∑
v=0

(
d

v

)
·Bv

]
λ1λ2

with Bv :=
∑|L|

i=1A
(cmi+w−r)v for v = 0, . . . , d. Note that the matrix Bv is invariant under

multiplication with Acmv. For v 6= 0, the latter is not the identity matrix since we have
ord(Acm) = |L| > d by assumption, so we obtain Bv = 0 as before. This yields

∑
`∈L

α(u+`x) =

[
Ard

d∑
v=0

(
d

v

)
·Bv

]
λ1λ2

=
[
Ard (|L| · 1)

]
λ1λ2

= |L|·α(Arf) = |L|·α(u).
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With the map α defined in (4.24), we can construct an element y ∈ AnnZFGΦ
(BΦ) which

is not contained in (G′Φ)+ · FGΦ:

Construction 4.63. As before, we set t to be the image of g1 · · · gn in GΦ and denote by
ϕ : Z → VZ the isomorphism between Z and VZ . For g ∈ GΦ, we set

ag =

{
α
(
ϕ(zg)

)
if g is conjugate to tzg for some zg ∈ Z

0 otherwise
.

Note that this map is well-defined: If g ∈ G′Φ is conjugate to elements tz1 and tz2 with
z1, z2 ∈ Z, then z1 and z2 are conjugate by some element in CT (see Lemma 4.58), which
yields α

(
ϕ(z1)

)
= α

(
ϕ(z2)

)
by Remark 4.61. In the following, we consider the element

y :=
∑

g∈GΦ
agg ∈ FGΦ.

By construction, we have y ∈ ZFGΦ. Moreover, y is not contained in (G′Φ)+ · FGΦ since
the map α is non-constant. It remains to show that the element y annihilates J(ZFGΦ).
By Lemma 4.57, this reduces to verifying that y annihilates all basis elements b[u] with

u ∈ Z\{1} as well as the sums T+
i for i = 1, . . . , n.

Lemma 4.64. Let u ∈ Z\{1} and consider the element b[u] = [u]+− |[u]| · 1 ∈ J(ZFGΦ).
Then y · b[u] = 0 holds.

Proof. By Remark 2.25, we need to show that for every x ∈ GΦ, we have∑
v∈[u]

axv−1 = |[u]| · ax. (4.25)

All summands in (4.25) are zero unless x is of the form x = t′zx with zx ∈ Z and a
conjugate t′ of t. Since conjugation permutes the elements of [u] and the coefficients of y
are constant on conjugacy classes, we may assume t′ = t. This yields∑

v∈[u]

axv−1 =
∑
v∈[u]

atzxv−1 =
∑
v∈[u]

α
(
ϕ(zxv

−1)
)

=
∑
v∈[u]

α
(
ϕ(zx)− ϕ(v)

)
.

Note that [u] is the orbit of u under the action of H1. Since every nontrivial element of H1

acts on Z\{1} without fixed points, we obtain |[u]| = |H1|. Since ϕ is an isomorphism of
FpH1-modules, we furthermore obtain ϕ(v) = hϕ(u) if v = huh−1 holds for some h ∈ H1.
With this, Proposition 4.62 yields∑

v∈[u]

α
(
ϕ(zx)− ϕ(v)

)
=
∑
h∈H1

α
(
ϕ(zx)− hϕ(u)

)
= |H1| · α

(
ϕ(zx)

)
= |[u]| · ax.

Lemma 4.65. For i = 1, . . . , n, we have y · T+
i = 0.

Proof. It suffices to show the claim for i = 1. Recall that the group T1 is given by

T1 = {1} ∪ {ev1t1e−v1 : v = 0, . . . , s1 − 1}
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with s1 = |T1| − 1. By Remark 2.25, we need to show that

ax +

s1−1∑
v=0

axev1t1e
−v
1

= 0 (4.26)

holds for all x ∈ GΦ. As in the preceding proof, it suffices to consider x ∈ G′Φ. Write
x = x1 · · ·xn · u′ with xi ∈ Ti for i = 1, . . . , n and u′ ∈ Z (see (4.21)) and observe that
all summands in (4.26) are zero unless x2, . . . , xn are nontrivial. By conjugating with a
suitable element e ∈ 〈e2, . . . , en〉 and using that G′Φ is abelian, we then find

ax +

s1−1∑
v=0

axev1t1e
−v
1

= ax1t2···tnu +

s1−1∑
v=0

aev1t1e
−v
1 ·x1t2···tnu (4.27)

with u = eu′e−1. Note that T1 = {x1}∪{ev1t1e
−v
1 x1 : 0 ≤ v ≤ s1−1} holds since multiplying

with x1 permutes the elements of T1. Hence by reordering the summands in (4.27), we
may assume x1 = 1. Then the first term in the above expression is zero. Note that es11

acts trivially on T1 and that s1 = ord(e1CH(T1)) divides ord(e1). In particular, we have

s1−1∑
v=0

aev1t1e
−v
1 ·t2···tnu

=
s1

ord(e1)

ord(e1)−1∑
v=0

aev1t1e
−v
1 ·t2···tnu

=
s1

ord(e1)

ord(e1)−1∑
v=0

ate−v
1 uev1

.

The last equality follows from the fact that the coefficients of y are constant under conju-
gation with e−v1 . Now consider the subgroup L := 〈e1CZ〉 of H1. By assumption, we have
e1 /∈ CT × CZ and hence L 6⊆ CT . Note that |L| divides ord(e1). We then obtain

s1

ord(e1)

ord(e1)−1∑
v=0

ate−v
1 uev1

=
s1

ord(e1)
· ord(e1)

|L|

|L|−1∑
v=0

ate−v
1 uev1

=
s1

|L|
∑
`∈L

α
(
`ϕ(u)

)
= 0.

Here, we use that e
|L|
1 acts trivially on Z. The last equality follows by Proposition 4.62.

Lemmas 4.64 and 4.65, together with the reduction given in Lemma 4.57, show that the
element y annihilates BΦ. As y ∈ ZFGΦ is not contained in (G′Φ)+ · FGΦ, this is a
contradiction to soc(ZFG) E FG by Theorem 2.39.

Case 2: Again, we suppose that CT × CZ is a proper subgroup of H, but we drop the
assumption that ei /∈ CT × CZ holds for i = 1, . . . , n. Without loss of generality, we may
assume e1, . . . , e` /∈ CT × CZ and e`+1, . . . , en ∈ CT × CZ for some ` ∈ {1, . . . , n}. For
i = `+ 1, . . . , n, there exists an element ji ∈ CT with eij

−1
i ∈ CZ . Note that the action of

ei and eij
−1
i on T coincides and that we have

H = 〈e1, . . . , e`, e`+1j
−1
`+1, . . . , enj

−1
n , CT 〉.

By replacing ei by eij
−1
i for i = `+1, . . . , n, we may therefore assume that e`+1, . . . , en act

trivially on Z. Since the elements in H do not commute with their nontrivial commutators
by Remark 2.17, we obtain [e] ⊆ e(T`+1 × . . . × Tn) for any e ∈ 〈e`+1, . . . , en〉 and hence
the subgroup K := 〈e`+1, . . . , en, T`+1, . . . , Tn〉 is normal in GΦ. We now consider the
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quotient group Ĝ := GΦ/K. Observe that H = 〈e1, . . . , e`, CT 〉× 〈e`+1, . . . , en〉 holds since
any element in the intersection of the two factors lies in CT ∩CZ = 1 (see (4.22)). For the
image Ĥ of H in Ĝ, we therefore obtain

Ĥ ∼= H/〈e`+1, . . . , en〉 ∼= 〈e1, . . . , e`, CT 〉.

Note that we have K ∩G′Φ = T`+1 × . . .× Tn. Hence Ĝ′ decomposes as T̂1 × . . .× T̂` × Ẑ
with T̂i ∼= Ti for i = 1, . . . , n and Ẑ ∼= Z. Identifying Ĥ and 〈e1, . . . , e`, CT 〉, this is even
an isomorphism of FpĤ-modules. This yields

CĤ(T̂1 × . . .× T̂`) ∼= CH(T1 × . . .× T`) ∩ 〈e1, . . . , e`, CT 〉 = CT

and
CĤ(Ẑ) ∼= CZ ∩ 〈e1, . . . , e`, CT 〉.

In particular, ei /∈ CĤ(T̂ ) · CĤ(Ẑ) follows for i ∈ {1, . . . , `}. Since Ĝ satisfies the prereq-

uisites of Lemma 4.59, the derivation of the first case, applied to the group Ĝ, leads to a
contradiction. Hence we obtain H = CT × CZ , which finishes the proof of Lemma 4.59.

Remark 4.66. A similar, but more tedious computation shows that H = CT ×CZ follows
from soc(ZFG) E FG also in the case where Z is of the form Z1×Z2 provided that certain
restrictions on the action of CT and H are given. However, it is not clear how to extend
this construction to the general setting. /

4.4.2.3 Outlook: Generalization

We conclude this section on Conjecture 4.53 with a few remarks concerning the general
case. To this end, we assume that Z decomposes in the form Z1 × . . .× Zk with minimal
normal subgroups Z1, . . . , Zk of GΦ (see Remark 4.54). By applying Lemma 4.59 to
suitable quotient groups of GΦ, we obtain H = CT ·CH(Zi) for i = 1, . . . , k. Nevertheless,
CT × CZ might be a proper subgroup of H. In this case, the results from the previous
section can be generalized as follows:

Remark 4.67. We consider a map α : Z → F with the following properties:

(i) The map α is invariant under the action of CT in the sense that α(u) = α(juj−1)
holds for all u ∈ Z and j ∈ CT .

(ii) We have 1
|[u]|

∑
u′∈[u] α(xu′) = α(x) for all x, u ∈ Z.

(iii) We have 1
si

∑si−1
k=0 α(xeki ue

−k
i ) = α(x) for all x, u ∈ Z and i = 1, . . . , n.

With this map, one can construct an element y :=
∑

g∈GΦ
agg in AnnZFGΦ

(BΦ) by setting

ag =

{
α(zg) if g is conjugate to tzg for some zg ∈ Z
α(1) otherwise

.

The proof goes along the lines of that in the preceding subsection. In particular, the
first condition ensures that atz1 = atz2 holds if tz1 and tz2 are conjugate by Lemma 4.58.
The second property is used to show that y annihilates all basis elements of the form



94 Chapter 4 Arbitrary finite groups

[u]+ − |[u]| · 1 for 1 6= u ∈ Z, whereas the third ensures that y · T+
i = 0 holds for

i = 1, . . . , n. Note that for the special case that Z is a simple FpH-module, the map α
introduced in Construction 4.63 satisfies the above conditions: The first property is given
by Remark 4.61 and the last two conditions are covered by the stronger properties given
in Proposition 4.62.

If CT × CZ = H holds, then setting x = 1 in (ii) yields

α(u) =
1

|[u]|
∑
u∈[u]

α(u′) = α(1)

for all u ∈ Z since we have [u] = [u]CT
in this case and hence all summands are equal

by (i). Hence the map α is constant and we have y = α(1)G+
Φ ∈ (G′Φ)+ ·FGΦ. Conversely,

computer-aided experiments suggest that whenever CT · CZ is a proper subgroup of H,
that is, whenever one finds an element z ∈ Z with [z]CT

( [z], then a non-constant map α
satisfying the properties (i) – (iii) exists. The above construction then yields an element
y ∈ AnnZFGΦ

(BΦ) which is not contained in (G′Φ)+ · FGΦ. This is a contradiction to
soc(ZFG) E FG by Theorem 2.39.

Therefore, we conjecture that H = CT × CZ holds if soc(ZFG) is an ideal of FG. /

4.4.3 Converse statement

Here, we consider the case that H = CT × CZ holds, that is, we require the following:

Hypothesis 4.68. Let G be a finite group in which G′ = Op(G) has nilpotency class
at most two and let H be a Hall p′-subgroup of G. Moreover, we assume Op′(G) = 1
and suppose that G satisfies the conditions (D1)–(D3) given in Theorem 4.14. Setting
GΦ = G/Φ(G′) and writing G′Φ = T × Z as in Remark 4.54, we additionally assume that
H = CT × CZ holds for CT = CH(T ) and CZ = CH(Z).

Under this assumption, we show that G can be decomposed into a direct product GT×GZ ,
where GT is a group which satisfies the prerequisites of Theorem 4.51 and GZ is a group
with an abelian Sylow p-subgroup. In particular, soc(ZFG) is an ideal in FG if and only
if soc(ZFGT ) is an ideal in FGT , and the latter can be verified by using the criterion
stated in Theorem 4.51.

Again, we write H = 〈e1, . . . en, CT 〉 as in condition (D2) in Theorem 4.14. By replacing
ei by eij

−1
i for a suitable element ji ∈ CT as in the second case of the proof of Lemma 4.59

(i = 1, . . . , n), we may assume that e1, . . . , en act trivially on Z. As before, we set L to be
the preimage of T under the projection onto D.

Remark 4.69. Since D = T × ZD holds, we have G′ = LZ(G′) and L ∩ Z(G′) = G′′.
Note that we have L′ = G′′ ⊆ Φ(L). On the other hand, T ∼= L/G′′ is elementary abelian,
which yields Φ(L) = G′′. By Theorem 2.3, CT acts trivially on L. /

We begin with the following preliminary result on the center of G′:

Proposition 4.70. We have Z(G′) = G′′× [Z(G′), CT ]. Moreover, CT centralizes G′′ and
CZ acts trivially on [Z(G′), CT ].
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Proof. Theorem 2.4 yields the decomposition

Z(G′) = CZ(G′)(CT )× [Z(G′), CT ], (4.28)

so it remains to show that G′′ = CZ(G′)(CT ) holds. By Remark 4.69, CT centralizes
G′′ ⊆ L. For the other inclusion, we consider the quotient group ZD = Z(G′)/G′′. Since
the elements of CZ act trivially on ZD by Remark 4.55, we have

1 = CZD
(H) = CZD

(CT × CZ) = CZD
(CT ) ∩ CZD

(CZ) = CZD
(CT ),

where the first equality follows by Remark 4.3. This implies CZ(G′)(CT ) ⊆ G′′. The fact
that CZ acts trivially on ZD additionally yields [CZ , Z(G′)] ⊆ G′′. On the other hand,
[Z(G′), CT ] is a normal subgroup of G since it is centralized by G′ and conjugation with
elements of H fixes both Z(G′) and CT . Hence we obtain[

CZ ,
[
Z(G′), CT

]]
⊆ G′′ ∩

[
Z(G′), CT

]
= CZ(G′)(CT ) ∩ [Z(G′), CT ] = 1

by (4.28) and hence CZ acts trivially on [Z(G′), CT ].

We conclude this part by showing that G decomposes as a direct product G = GT ×GZ
of a group GT satisfying the prerequisites of Theorem 4.51 and a group GZ whose Sylow
p-subgroup is abelian.

Theorem 4.71. Let G be a finite group in which G′ = Op(G) is of nilpotency class at most
two and Op′(G) = 1 holds. Moreover, assume that G satisfies the conditions (D1)–(D3)
given in Theorem 4.14. Writing G′/Φ(G′) = T × Z as in Remark 4.54, we assume that
a Hall p′-subgroup H of G decomposes as CT × CZ with CT = CH(T ) and CZ = CH(Z).
Then we have

G = GT ×GZ ,

where GT := LoCZ satisfies the prerequisites of Theorem 4.51 and the Sylow p-subgroup
of GZ := [Z(G′), CT ] o CT is abelian. In particular, soc(ZFG) E FG is equivalent to
soc(ZFGT ) E FGT .

Proof. By Remark 4.69 and Proposition 4.70, we obtain G′ = L × [Z(G′), CT ]. Since
H = CT × CZ holds, G is generated by GT and GZ . Note that CT centralizes L by
Remark 4.69 and CZ centralizes [Z(G′), CT ] by Proposition 4.70. Hence the groups GT
and GZ commute element-wise. Since their intersection is trivial, we have G = GT ×GZ .
Note that the group GT is of the form G′T o CZ and that we have

Z(G′T ) = Z(G′) ∩ L = G′′ = G′′T ,

where the last equality follows from the decomposition of G as a direct product together
with the fact that G′Z = [Z(G′), CT ] is abelian. Moreover, we have Op′(GT ) ⊆ Op′(G) = 1.
This shows that GT satisfies the prerequisites of Theorem 4.51. Since G′Z is abelian,
soc(ZFGZ) is an ideal of FGZ by Theorem 2.47. The condition soc(ZFG) E FG is
therefore equivalent to soc(ZFGT ) E FGT by Lemma 2.43.

If soc(ZFG) is an ideal of FG, the structure of G is therefore altered by the additional
direct summand GZ in comparison to the groups described in Theorem 4.51.
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Symmetric local algebras

In this chapter, we mainly consider symmetric local algebras. Our aim is to find exam-
ples A of minimal dimension such that J(Z(A)) 6E A or soc(Z(A)) 6E A hold, respectively.
An important tool will be the investigation of the Loewy structure of A, for which the
necessary theoretical background is developed in Section 5.1. After that, we consider two
special classes of symmetric local algebras. First, we examine quantum complete intersec-
tion algebras, which arise as basic algebras of certain non-nilpotent blocks (see Section 5.2).
Afterwards, we consider a construction which extends an arbitrary finite-dimensional local
algebra A to a symmetric local algebra T (A) of dimension 2 ·dimA (see Section 5.3). With
the help of these examples, we determine the minimal dimension of a symmetric local al-
gebra A with J(Z(A)) 6E A and we find both upper and lower bounds for the minimal
dimension of a symmetric local algebra A with soc(Z(A)) 6E A (see Section 5.4).

5.1 Loewy structure

Let F be an algebraically closed field of arbitrary characteristic and consider a finite-
dimensional (unitary) F -algebra A with Jacobson radical J := J(A). Note that we do not
require A to be local at this point. In this section, we collect some results on the Loewy
structure of A.

Since the ideal J is nilpotent (see Lemma 1.3), there exists a minimal natural number
` ∈ N such that J ` = 0 holds, where J ` denotes the `-th power of J . We consider the
decreasing chain of ideals

A ⊇ J ⊇ J2 ⊇ . . . ⊇ J ` = 0.

This series is called the Loewy series of A and its length ``(A) := ` is called the Loewy
length of A. For i = 0, . . . , `− 1, the i-th Loewy layer of A is the quotient space J i/J i+1.

The following statement will be used frequently to determine a set of generators for a
Loewy layer J i+m/J i+m+1, provided that a generating set for J i/J i+1 is already known.

Lemma 5.1 ([34, Lemma E]). Let I be an ideal of A and let n,m ∈ N be natural numbers
with m ≤ n. Suppose that

In = F {xi1 · · ·xin : i = 1, . . . , d}+ In+1

holds for some d ∈ N and elements xij ∈ I. Then we have

In+m = F {xj1 · · ·xjmxi1 · · ·xin : i, j = 1, . . . , d}+ In+m+1.
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Moreover, we frequently need the following result on local algebras:

Lemma 5.2 ([10, Lemma 0.3]). Suppose that A is a local algebra. If dim J i/J i+1 = 1
holds for some i ∈ N, then we have J i ⊆ Z(A).

Note that a local algebra A can be expressed in the form A = F · 1 ⊕ J and hence we
obtain

K(A) = [A,A] = [J, J ] ⊆ J2. (5.1)

We now move to the investigation of symmetric local algebras. Throughout, we widely
use the following properties:

Lemma 5.3 ([27, Lemma 2.1]). Let A be a symmetric local algebra. Then:

(i) dim soc(A) = 1.

(ii) soc(A) ⊆ soc(Z(A)).

(iii) K(A) ∩ soc(A) = 0.

(iv) Z(A) is local.

(v) We have J `−1 = soc(A), where ` := ``(A) denotes the Loewy length of A.

In the following, we gather some results which demonstrate that prescribing the structure
of the center of a symmetric local algebra has a strong influence on the structure of the
algebra itself. We begin with a refined version of Lemma 5.2 for symmetric local algebras:

Lemma 5.4 ([34, Lemma G]). Let A be a symmetric local algebra and suppose that
dim J i/J i+1 = 1 holds for some i ∈ N. Then we have J i−1 ⊆ Z(A).

The following statements show that there are few possibilities for the structure of a sym-
metric local algebra A if its center is of small dimension.

Theorem 5.5 ([34, Theorem B]). If A is a symmetric local algebra with dimZ(A) ≤ 4,
then A is commutative.

In the following theorem, we summarize several results obtained in [9] and we use the
ideas of the proofs presented therein.

Theorem 5.6. Let A be a symmetric local algebra with dimZ(A) = 5. Then one of the
following cases occurs:

(i) dimA = 5 and A is commutative.

(ii) dimA = 8 and there are two possibilities for the Loewy structure of A:

(a) dim J/J2 = dim J2/J3 = 3, dim J3/J4 = 1 and J4 = 0, or

(b) dim J/J2 = dim J2/J3 = dim J3/J4 = 2, dim J4/J5 = 1 and J5 = 0.
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Proof. The fact that the algebra A is of dimension five or eight is the main result of [9] and
[11]. If A is of dimension five, then A = Z(A) holds and hence A is commutative. Now
we consider the case dimA = 8. If J3 = 0 holds, then Lemma 5.3 yields dim J2/J3 ≤ 1
and by Lemma 5.4, we obtain J ⊆ Z(A). This implies that A is commutative, which
is a contradiction. Hence we have J3 6= 0, which yields dim J3/J4 ≥ 1 by Nakayama’s
lemma. If dim J3/J4 ≥ 2 holds, then Lemma 5.1 yields dim J/J2 ≥ 2 and dim J2/J3 ≥ 2.
Furthermore, we have dim J4/J5 ≥ 1 by Lemma 5.3. As dimA = 8 and dimA/J = 1
hold, this implies that A has the Loewy structure given in (b). It remains to consider the
case dim J3/J4 = 1. Here, we obtain J2 ⊆ J(A) ∩ Z(A) = J(Z(A)) by Lemma 5.4 and
hence dim J2 ≤ 4 follows. On the other hand, we have K(A) ⊆ J2 and hence

(J2)⊥ ⊆ K(A)⊥ ∩ J = Z(A) ∩ J = J(Z(A)),

which yields dim (J2)⊥ ≤ dim J(Z(A)) = 4. Lemma 1.19 (i) then implies dim J2 =
dim (J2)⊥ = 4 and hence J2 = J(Z(A)) = (J2)⊥. By Lemma 1.19 (v), this implies
J4 = J2 · J2 = J2 · (J2)⊥ = 0 and hence we obtain dim J3 = 1, so A has the Loewy
structure given in (a).

Both Loewy structures given in the theorem occur as the following example demonstrates.

Example 5.7.

(i) For an algebraically closed field K with char(K) = 3, we consider the algebra

A = K〈X,Y, Z〉/〈X4, Y 2, Z2, Y X +XY,ZX +XZ, Y Z −X2, ZY +X2〉.

Here, K〈X,Y, Z〉 denotes the free algebra in variables X,Y, Z. One can show that
dimA = 8 and dimZ(A) = 5 hold, that A is a symmetric local algebra and that the
Loewy structure of A is of type (a) in Theorem 5.6 (ii).

(ii) Let K be a field of characteristic p = 2. Then the group algebra KD8 of the dihedral
group of order eight over K has dimension eight, a five-dimensional center and a
Loewy structure of the second type described in Theorem 5.6 (ii). /

We conclude this collection of results on the Loewy structure of symmetric local algebras
with the following lemma, which is stated in the proof of [39, Theorem 3.2]. It even holds
without the assumption of locality. The proof uses the same arguments as the one of [11,
Lemma 1.1].

Lemma 5.8. Let A be a symmetric algebra. Then either A is commutative or we have
dimA ≥ dimZ(A) + 3.

Proof. Suppose that A is not commutative. Clearly, this implies dimA > dimZ(A).
Assume that dimA = dimZ(A) + 1 holds. Then A is of the form A = Fx ⊕ Z(A) for
some x ∈ A. But then we have K(A) = [Fx ⊕ Z(A), Fx ⊕ Z(A)] = 0, a contradiction
to A being non-commutative. If dimA = dimZ(A) + 2 holds, then A can be expressed
in the form A = Fx ⊕ Fy ⊕ Z(A) for some elements x, y ∈ A. Then K(A) ⊆ F [x, y]
follows and hence we have dimK(A) ≤ 1. Since A is symmetric, this yields dimZ(A) =
dimA− dimK(A) ≥ dimA− 1 > dimA− 2 = dimZ(A), which is a contradiction. Hence
we obtain dimA ≥ dimZ(A) + 3.

Example 5.7 demonstrates that this bound is tight.



100 Chapter 5 Symmetric local algebras

5.2 Quantum complete intersection algebras

Throughout, let F be an algebraically closed field of characteristic p > 0. In this section,
we study our main problem for quantum complete intersection algebras, which form a
special class of symmetric local F -algebras. They arise, for example, as the basic algebras
of certain non-nilpotent blocks containing a single simple module (see [2] and [23]).

We begin our investigation by defining quantum complete intersection algebras and ex-
cluding some trivial cases (see Section 5.2.1). Moreover, we fix a canonical basis of such an
algebra A. In Section 5.2.2, we then study the structure of the basis elements y which are
contained in Z(A) and state conditions which ensure that Ay ⊆ Z(A) holds. Using these,
we find criteria for J(Z(A)) or soc(Z(A)) to be ideals of A in Sections 5.2.3 and 5.2.4,
respectively. We conclude this part by providing counterexamples to some open questions
from the preceding chapters in Section 5.2.5.

5.2.1 Definition and conventions

Before introducing the concept of quantum complete intersection algebras, we point out
that there exist various definitions of these algebras in the literature, including some for
which the resulting algebras are not necessarily symmetric. In our treatment, we always
refer to the following definition, which is taken from [2]:

Definition 5.9. Let c ∈ N. A quantum complete intersection algebra is an F -algebra A
of the form

A := F 〈X1, . . . , Xc〉/〈Xp
1 , . . . , X

p
c , XiXj − qijXjXi〉i>j . (5.2)

Here, F 〈X1, . . . , Xc〉 denotes the free algebra in variables X1, . . . , Xc over F and the quan-
tum parameters qij ∈ F are required to satisfy the relations qp−1

ij = qii = qijqji = 1 for all
indices i, j ∈ {1, . . . , c}.

By [3, Lemma 3.1], the algebra A defined in (5.2) is symmetric. For i = 1, . . . , c, we denote
the image of Xi in A by xi. Then the set

BA := {xr11 · · ·x
rc
c : 0 ≤ r1, . . . , rc ≤ p− 1}

forms an F -basis of A. In particular, A is of dimension pc. Since all nontrivial elements
in this basis are nilpotent, it follows that A is a local F -algebra.

Remark 5.10. As mentioned at the beginning, the definition of quantum complete in-
tersection algebras is not consistent in the literature. For example, Holloway and Kessar
[23] replace the condition xp1 = . . . = xpc = 0 by

xp
`1

1 = . . . = xp
`c

c = 0 for some `1, . . . , `c ∈ N.

Bergh [3] even considers relations of the form xa1
1 = . . . = xacc = 0 for arbitrary exponents

a1, . . . , ac ≥ 2 together with relations xixj − qijxjxi = 0 for i > j, thereby omitting the

restriction qp−1
ij = 1 on the quantum parameters. It should be noted that the algebras

arising in the latter way are in general not symmetric. /

We first exclude the case p = 2 and establish some conventions:
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Remark 5.11.

(i) For p = 2, the assumption qp−1
ij = 1 reads qij = 1 for all i, j ∈ {1, . . . , c} and hence

the resulting algebra A is commutative, so J(Z(A)) E A and soc(Z(A)) E A hold
by Example 1.5. In the following, we therefore assume p ≥ 3.

(ii) Let p be an odd prime number. Since qp−1
ij = 1 holds for all i, j ∈ {1, . . . , c}, we may

write qij = qtij for some

tij ∈
{
−p− 1

2
, . . . ,

p− 1

2

}
and a fixed element q ∈ F× of order p − 1. Moreover, since we have qij = q−1

ji , we
may require tij = −tji for i, j ∈ {1, . . . , c}. Then the matrix T := (tij)ij consisting
of the exponents tij is skew-symmetric. /

Summarizing, we make the following assumption throughout our investigation of quantum
complete intersection algebras:

Hypothesis 5.12. Let F be an algebraically closed field of odd characteristic p and let

A := F 〈X1, . . . , Xc〉/〈Xp
1 , . . . , X

p
c , XiXj − qijXjXi〉i>j .

denote a quantum complete intersection algebra with quantum parameters qij = qtij for a
fixed element q ∈ F× of order p− 1 and a skew-symmetric matrix T = (tij)ij with entries

tij ∈
{
−p− 1

2
, . . . ,

p− 1

2

}
.

For the sake of brevity, we introduce the following notation: We set R := {0, . . . , p − 1}
and S := {0, . . . , p−2}. If not stated otherwise, a bold variable, such as r, denotes a vector
of length c with entries r1, . . . , rc ∈ R. In this situation, we set xr := xr11 · · ·xrcc . Moreover,
for i = 1, . . . , c, we define an auxiliary vector ri+ := (r1, . . . , ri−1, ri+1, ri+1, . . . , rc) arising
from r by increasing the i-th component by one.

5.2.2 Ideals in the center

In this section, we study conditions under which certain subsets of Z(A) are ideals in A.
First, we note that the structure of the basis elements in BA gives rise to an Nc0-grading
of A in a natural way, which allows us to restrict our investigation to the elements that
are homogeneous with respect to this grading.

Remark 5.13.

(i) Let n = (n1, . . . , nc) ∈ Nc0 and set An := Fxn. If ni ≥ p holds for some i ∈ {1, . . . , c},
we have An = 0. The algebra A decomposes as

A =
⊕
n∈Nc

0

An

and since An · Am ⊆ An+m holds for any n,m ∈ Nc0, this defines an Nc0-grading on
A (see Remark 2.26).
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(ii) The center Z(A) is a graded subalgebra of A. To see that this is true, we consider

an element 0 6= y ∈ Z(A) and write y =
∑n

k=1 αkx
rk with nonzero coefficients

α1, . . . , αn ∈ F and pairwise distinct vectors r1, . . . , rn ∈ Rc. For all i ∈ {1, . . . , c},
we have xi · y = y ·xi. Note that for each occurring basis element xr

k
, we either have

xi · xr
k

= 0 = xr
k · xi or xi · xr

k
is a nonzero multiple of the basis element xr

k
i+ .

Comparing the coefficients then yields

xi · xr
k

= xr
k · xi.

This shows that the element xr
k

is contained in Z(A) for k = 1, . . . , n. In particular,
the set Z(A) ∩ BA, which consists of homogeneous elements with respect to the
grading given in (i), forms an F -basis for Z(A). Hence Z(A) is a graded subalgebra
of A. Note that J(Z(A)) and soc(Z(A)) are homogeneous subspaces of A as well. /

In the following lemma, we determine which elements of the basis BA are contained in
Z(A). It will form the basis for all further results of this section.

Lemma 5.14. Let y = xr ∈ BA with r ∈ Rc be a basis element. Then y ∈ Z(A) holds if
and only if for all i ∈ {1, . . . , c}, we have

ri = p− 1 or
c∑
j=1

tijrj ≡ 0 (mod p− 1). (5.3)

Proof. Note that the condition y ∈ Z(A) is equivalent to xi · y = y · xi for i = 1, . . . , c.
We fix an index i ∈ {1, . . . , c}. If ri = p − 1 holds, then xi · y = 0 = y · xi follows in any
case. Now assume ri < p − 1, which is equivalent to xri+ 6= 0. In this case, the condition
xi · y = y · xi can be restated in the following way:

i−1∏
j=1

qtijrj · xri+ =
i−1∏
j=1

q
rj
ij · x

ri+ = xi · y = y · xi =
c∏

j=i+1

q
rj
ji · x

ri+ =
c∏

j=i+1

qtjirj · xri+ .

Since we have ord(q) = p− 1, comparing the coefficient of the two expressions yields

i−1∑
j=1

tijrj ≡
c∑

j=i+1

tjirj (mod p− 1).

This is equivalent to
c∑
j=1

tijrj ≡ 0 (mod p− 1),

since tji = −tij holds for i, j ∈ {1, . . . , c} by assumption. Summarizing, we have y ∈ Z(A)
if and only if xi · y = y · xi holds for i = 1, . . . , c, which in turn is the case if and only if
one of the conditions given in (5.3) is satisfied.

Remark 5.15. A basis element y = xr ∈ BA with r ∈ Rc is uniquely determined by the
choice of the set

Iy := {i ∈ {1, . . . , c} : ri < p− 1}
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together with the truncation rIy ∈ S|Iy | of the vector r to the indices in Iy. In this
formalism, the statement of the preceding lemma reads

y ∈ Z(A)⇔ Iy = ∅ or TIy · rIy ≡ 0 (mod p− 1).

Here, TIy := (tij)i,j∈Iy denotes the restriction of the matrix T to rows and columns with
indices in Iy and the above congruence relation is understood entry-wise. In this way, we
obtain a correspondence between the elements in Z(A) ∩BA and the set{

(I,v) : ∅ 6= I ⊆ {1, . . . , c}, v ∈ S|I|, TI · v ≡ 0 (mod p− 1)
}
∪ {∅}. (5.4)

For this reason, we may write rI,v for the vector r ∈ Rc corresponding to the tuple (I,v).

Note that the empty set corresponds to the element xp−1
1 · · ·xp−1

c ∈ Z(A), which spans
the one-dimensional subspace soc(A). In order to determine the set given in (5.4), we use
that the elements in S` are in bijective correspondence with the elements in (Z/(p− 1)Z)`

for any ` ∈ N. /

Now we describe the basis elements y ∈ Z(A) ∩ BA for which the principal ideal Ay is
contained in Z(A).

Lemma 5.16. Consider a basis element y = xr ∈ Z(A) with r ∈ Rc. Then we have
Ay ⊆ Z(A) if and only if Iy = ∅ or TIy = 0 hold.

Proof. For Iy = ∅, we have y = xp−1
1 · · ·xp−1

c ∈ soc(A) and hence Ay ⊆ soc(A) ⊆ Z(A)
follows. Now we assume Iy 6= ∅. First suppose Ay ⊆ Z(A). We fix an index m ∈ Iy and
write xm · y = λ · xrm+ for some λ ∈ F×. Note that xm · y ∈ Z(A) implies xrm+ ∈ Z(A).
For any i ∈ Iy, we now need to show that tim = 0 holds. Since we have tmm = 0 by
assumption, we may suppose i 6= m. This implies i ∈ Ixrm+ and hence (5.3), applied to
xrm+ , yields

0 ≡ tim · (rm + 1) +
∑
j 6=m

tijrj = tim +

c∑
j=1

tijrj ≡ tim (mod p− 1),

which implies tim = 0 by our assumption on T . In the last congruence, we used the
condition y ∈ Z(A) together with (5.3).

On the other hand, assume TIy = 0 and consider an element xs ∈ BA with s ∈ Rc such
that xs · y is nonzero. Note that xs · y is a scalar multiple of y′ := xv with v := r + s and
that we have Iy′ ⊆ Iy. This yields TIy′ = 0, which implies

TIy′ · vIy′ ≡ 0 (mod p− 1).

By Remark 5.15, this yields y′ ∈ Z(A) and hence xs · y ∈ Z(A) follows. Summarizing, we
obtain Ay ⊆ Z(A) in this case.

Remark 5.17. In other words, for a nonempty subset I ⊆ {1, . . . , c} with TI 6= 0, any
solution v ∈ S|I| of the congruence system TI · v ≡ 0 (mod p− 1) gives rise to an element
y = xrI,v ∈ Z(A) ∩ BA with Ay 6⊆ Z(A) by the correspondence given in Remark 5.15.
Note that the tuple (I,v) with I = {1, . . . , c} and v = 0 corresponds to the element y = 1.
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In particular, we find an element y ∈ J(Z(A)) ∩ BA with Ay 6⊆ Z(A) if and only if there
exists a nonempty proper subset I ⊆ {1, . . . , c} with TI 6= 0 or the congruence relation
T · v ≡ 0 (mod p− 1) has a nonzero solution v ∈ Sc. /

5.2.3 Jacobson radical

The following result demonstrates that apart from a single exceptional case, J(Z(A)) is
only an ideal of A if the algebra is commutative.

Lemma 5.18. We have J(Z(A)) E A if and only if one of the following holds:

(i) A is commutative.

(ii) c = 2 and ord(q21) = p− 1.

In the first case, we have J(Z(A)) = J(A), and in the second, we obtain

J(Z(A)) = F {xr11 x
r2
2 : r1, r2 ∈ R, r1 = p− 1 or r2 = p− 1} . (5.5)

Proof. If A is commutative, we have J(Z(A)) = J(A) E A. In the following, we therefore
assume that A is not commutative, which translates to T 6= 0 by our assumption on T . In
particular, this implies c > 1. We begin with the case c = 2, thereby using the criterion
from Remark 5.17. Since the diagonal elements of the matrix T are zero, it suffices to
determine whether there exists a nontrivial solution of T · v ≡ 0 (mod p− 1). Since T is
of the form

T =

(
0 −t21

t21 0

)
,

this is the case if and only if t21 is not invertible modulo p − 1, which is equivalent to
ord(q21) < p− 1. Otherwise, J(Z(A)) is an ideal of A and Remark 5.15 yields

J(Z(A)) ∩BA =
{
xp−1

1 xp−1
2

}
∪ {xrI,v : I ⊆ {1, 2}, |I| = 1, v ∈ S}

=
{
xp−1

1 xv2 : v ∈ R
}
∪
{
xv1x

p−1
2 : v ∈ R

}
.

Finally, let c ≥ 3. Since T is nonzero, there exists a subset I ⊆ {1, . . . , c} with TI 6= 0
such that |I| > 1 is odd. Since TI is skew-symmetric, this yields det(TI) = 0 and hence
Ker(TI) 6= 0. Clearly, then also the congruence system TI · v ≡ 0 (mod p − 1) has a
nontrivial solution. By Remark 5.17, this implies J(Z(A)) 6E A.

5.2.4 Socle

In this section, we examine the socle of Z(A). We focus on the case that the quantum
parameters qij are of order p − 1 for i 6= j and derive a characterization of the quantum
complete intersection algebras A which satisfy soc(Z(A)) E A in terms of the correspond-
ing matrix T . However, if not stated otherwise, we assume that A is an arbitrary quantum
complete intersection algebra subject only to the restrictions stated in Hypothesis 5.12.

First we determine under which conditions a basis element x ∈ Z(A) ∩ BA is contained
in soc(Z(A)), thereby using the correspondence from Remark 5.15. To this end, we need
the following definition:
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Definition 5.19. Let I ⊆ {1, . . . , c} be a nonempty subset and consider a solution v ∈ S|I|
of TI · v ≡ 0 (mod p− 1). We define a vector ṽ = (ṽ1, . . . , ṽc) ∈ Sc by setting ṽi := vi for
i ∈ I and ṽi = 0 otherwise. If T · ṽ ≡ 0 (mod p− 1) holds, we say that the solution v can
be extended to T .

With this, we characterize the elements in soc(Z(A)) ∩BA:

Lemma 5.20. Let I ⊆ {1, . . . , c} be a nonempty subset and consider a vector u ∈ S|I|.
Then y := xrI,u is contained in soc(Z(A)) if and only if the following three conditions hold:

(i) TI · u ≡ 0 (mod p− 1).

(ii) ui ≥ 1 for i = 1, . . . , c.

(iii) For every solution 0 6= v ∈ S|I| of TI ·v ≡ 0 (mod p−1) which can be extended to T ,
there exists an index i ∈ I with ui > p− 1− vi.

Proof. First assume y ∈ soc(Z(A)). Then the property (i) follows by Lemma 5.18. Since
y annihilates xp−1

i ∈ J(Z(A)), we obtain ui ≥ 1 for i = 1, . . . , c. Now let 0 6= v ∈ S|I|
be a solution of the congruence relation TI · v ≡ 0 (mod p − 1) which can be extended
to T . We consider the basis element z := xṽ, where ṽ denotes the extension of v. Then
z ∈ J(Z(A)) follows since we have T · ṽ ≡ 0 (mod p− 1) by assumption and ṽ is nonzero.
This implies yz = 0, so there exists an index i ∈ {1, . . . , c} with ui > p − 1 − vi. Since
ṽ` = 0 holds for every index ` /∈ I, we have i ∈ I.

Conversely, assume that u ∈ S|I| satisfies the conditions (i) – (iii) and consider a basis
element z := xs ∈ J(Z(A)) for some s ∈ Rc. Note that s is nonzero. We claim that
yz = 0 holds. To show this, we may assume s` = 0 for ` /∈ I and si ∈ S for i ∈ I since we
directly obtain yz = 0 otherwise. In particular, we have Iz = {1, . . . , c}, so the condition
z ∈ J(Z(A)) implies T · s ≡ 0 (mod p− 1) (see Lemma 5.18). Note that s is the extension
of sI by zeros, so we have TI · sI ≡ 0 (mod p − 1). By (iii), there exists an index i ∈ I
with ui > p− 1− si and hence y annihilates z = xs. This yields y ∈ soc(Z(A)).

In the situation of Lemma 5.20, the question arises whether the vector u ∈ S|I| itself can
be extended to T if xrI,u is contained in soc(Z(A)). This turns out to be impossible:

Remark 5.21. Let I ⊆ {1, . . . , c} be a nonempty subset and consider a vector u ∈ S|I|
such that y = xrI,u is contained in soc(Z(A)). Suppose that the solution u can be extended
to T . Since ui ≥ 1 holds for all i ∈ I, we have vi := p − 1 − ui ∈ S. For the vector
v := (vi)i∈I , we have

TI · v ≡ TI · (−u) ≡ 0 (mod p− 1).

Moreover, also v can be extended to T , which yields xṽ ∈ J(Z(A)). Note that y · xṽ is
a nonzero multiple of xp−1

1 · · ·xp−1
c , which contradicts y ∈ soc(Z(A)). Hence u cannot be

extended to T . In particular, I is a proper subset of {1, . . . , c} in this situation. /

This leads to the following observation:

Example 5.22. For c ∈ {1, 2}, soc(Z(A)) is an ideal of A: If c = 1 holds, then the algebra
A is commutative and hence soc(Z(A)) = soc(A) is an ideal of A. Now let c = 2 and
consider an element y ∈ soc(Z(A))∩BA. First assume that y is of the form xrI,u for some
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nonempty subset I ⊆ {1, 2} and some u ∈ S|I|. By Remark 5.21, we have |I| = 1 and hence
Ay ⊆ Z(A) follows by Lemma 5.16. Otherwise, we have y ∈ soc(A) (see Remark 5.15)
and hence Ay ⊆ soc(Z(A)) follows. This shows that soc(Z(A)) is an ideal of A in this
case. /

We now move to the characterization of the property soc(Z(A)) E A in the case where
all quantum parameters qij are of order p− 1 for i 6= j. We begin with some preliminary
results on the structure of the solution set of the congruence relation TI ·v ≡ 0 (mod p−1).

Remark 5.23. Consider indices i, j, k ∈ {1, . . . , c} with i < j < k such that tji, tki and
tkj are invertible modulo p− 1 and set I := {i, j, k}. Then TI has the form

TI =

 0 −tji −tki
tji 0 −tkj
tki tkj 0

 .

In particular, the set of solutions of TI ·v ≡ 0 (mod p−1) is given by Z(tkj ,−tki, tji)T . /

For i, j, k ∈ {1, . . . , c} with i < j < k, we define vijk to be the unique vector in S3 with
vijk ≡ (tkj ,−tki, tji)T (mod p− 1). Moreover, let rijk := ṽijk be the extension of vijk by
zeros. Later, we will encounter the situation that T · rijk ≡ 0 (mod p − 1) holds for all
i < j < k. Under this condition, we obtain the following description of the set of solutions
of the congruence relation TI · v ≡ 0 (mod p− 1):

Proposition 5.24. For i, j, k ∈ {1, . . . , c}, let ord(qij) = p− 1 for i 6= j and assume that
T · rijk ≡ 0 (mod p− 1) holds for i < j < k. For a subset I ⊆ {1, . . . , c} with |I| ≥ 3, the
set of solutions of the congruence relation TI · v ≡ 0 (mod p− 1) is given by

Z {(rijk)I : i, j, k ∈ I, i < j < k} .

Proof. Since T · rijk ≡ 0 (mod p− 1) holds for all i, j, k ∈ I with i < j < k, we also obtain
TI · (rijk)I ≡ 0 (mod p− 1) since the remaining entries of the vector rijk are zero. For the
converse inclusion, we may assume I = {1, . . . , `} for some ` ∈ N. Then TI is of the form

TI =


0 −t21 −t31 −t41 . . . −t`1
t21 0 −t32 −t42 . . . −t`2
t31 t32 0 −t43 . . . −t`3
...

...
...

...
. . .

...
t`1 t`2 t`3 t`4 . . . 0

 .

Since we have ord(qij) = p − 1, the entries tij are invertible modulo p − 1 for i 6= j and
hence Gaussian elimination leads to the matrix

t21 0 −t32 −t42 . . . −t`2
0 −t21 −t31 −t41 . . . −t`1
0 0 a33 a34 . . . a3`
...

...
...

...
. . .

...
0 0 a`3 a`4 . . . a``
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with aij = ti1tj2 − ti2tj1 + tijt21 for i, j ∈ {3, . . . , `}. Note that this term is equal to the
product of the i-th row of T and the vector r12j . Since T · r12j ≡ 0 (mod p− 1) holds by
assumption, we obtain aij ≡ 0 (mod p−1). For m ∈ {3, . . . , `}, the m-th basis solution of
the above congruence system is given by (r12m)I and an arbitrary solution is an integral
linear combination of vectors of this form.

We now describe the quantum complete intersection algebras A with ord(qij) = p− 1 for
i 6= j in which soc(Z(A)) is an ideal.

Lemma 5.25. Assume that ord(qij) = p − 1 holds for all i, j ∈ {1, . . . , c} with i 6= j.
Then the following are equivalent:

(i) soc(Z(A)) E A.

(ii) T · rijk ≡ 0 (mod p− 1) holds for all i, j, k ∈ {1, . . . , c} with i < j < k.

In this case, we have

soc(Z(A)) = F

xrii ·∏
j 6=i

xp−1
j : i ∈ {1, . . . , c} and ri ∈ {1, . . . , p− 1}

 . (5.6)

Proof. For c ≤ 2, we have soc(Z(A)) E A by Example 5.22 and the second property is
trivially satisfied. With the explicit description of J(Z(A)) given in Lemma 5.18, one
easily verifies that soc(Z(A)) is of the form given in (5.6). In the following, we therefore
consider the case c ≥ 3.

First assume soc(Z(A)) E A and consider a subset I = {i, j, k} ⊆ {1, . . . , c} with i < j < k.
Suppose that T · rijk 6≡ 0 (mod p − 1) holds. By Remark 5.23, v = 0 is then the only
solution of TI · v ≡ 0 (mod p − 1) in S3 which can be extended to T . Then the vector
vijk ∈ S3 satisfies the criteria given in Lemma 5.20 and we obtain y := x

rI,vijk ∈ soc(Z(A)).
Since TI is nonzero, Lemma 5.16 yields Ay 6⊆ Z(A), which is a contradiction to the
assumption soc(Z(A)) E A.

Now assume conversely that for any choice of i, j, k ∈ {1, . . . , c} with i < j < k, we have
T · rijk ≡ 0 (mod p − 1). We show that Ay ⊆ Z(A) holds for all y ∈ soc(Z(A)) ∩ BA.
Note that this is clear for y ∈ soc(A), so by Remark 5.15, we may write y = xrI,u for some
nonempty set I ⊆ {1, . . . , c} and a vector u ∈ S|I| satisfying TI · u ≡ 0 (mod p − 1). If
|I| ≥ 3 holds, then u can be extended to T by Proposition 5.24, which is a contradiction to
Remark 5.21. Now suppose that I = {i, j} consists of two elements. Since tij is invertible
modulo p− 1, the condition TI · u ≡ 0 (mod p− 1) implies u ≡ 0 (mod p− 1). Since we
have 1 ≤ ui, uj < p − 1 by Lemma 5.20, this is a contradiction. This yields |I| = 1 and
hence Ay ⊆ Z(A) follows by Lemma 5.16. Hence we have

y = xrii ·
∏
j 6=i

xp−1
j

for some i ∈ {1, . . . , c} and some ri ∈ {1, . . . , p − 1}. Conversely, every element of this
form is contained in soc(Z(A)), so this set has the structure given in (5.6).
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In this situation, soc(Z(A)) is an ideal of A for c ≤ 3. This extends Example 5.22.

Remark 5.26. The condition T · rijk ≡ 0 (mod p− 1) is equivalent to

t`itkj − t`jtki + t`ktji ≡ 0 (mod p− 1) for all ` ∈ {1, . . . , c}.

If i, j, k, ` are pairwise distinct, then the square of the left expression, up to sign, equals
the determinant of the matrix TJ with J = {i, j, k, `}. Hence det(TJ) ≡ 0 (mod p− 1) for
all subsets J ⊆ {1, . . . , c} with |J | = 4 is a necessary condition for soc(Z(A)) E A. /

In the special case that ord(qij) = p−1 holds for all i, j ∈ {1, . . . , c} with i 6= j, Lemma 5.25
characterizes the quantum complete intersection algebras A which satisfy soc(Z(A)) E A
in terms of the matrix T . The key insight we used is the fact that the solution set of the
congruence relation TI · v ≡ 0 (mod p − 1) can be described easily. In the general case,
one can proceed similarly, but there might be more solutions of the congruence system,
which complicates the problem. At the end of this section, we examine this question for
the special case where all quantum parameters qij for i > j are equal.

Lemma 5.27. Assume that there exists some t ∈ {1, . . . , p−2} such that qij = qt holds for
all indices i, j ∈ {1, . . . , c} with i > j. Then soc(Z(A)) E A is equivalent to c ∈ {1, 2, 3}.

Proof. Note that u := ord(qt) is a divisor of p− 1 and that we have u ≥ 2 by assumption.
By Example 5.22, soc(Z(A)) is an ideal of A for c ≤ 2. Now let c = 3 and consider an
element y := xw ∈ soc(Z(A)) with w ∈ R3. By Remark 5.21, Iy is a proper subset of
{1, 2, 3}. Suppose that |Iy| = 2 holds. Without loss of generality, we assume Iy = {1, 2}.
Lemma 5.18 yields

0 ≡ TIy ·
(
w1

w2

)
=

(
0 −t
t 0

)(
w1

w2

)
(mod p− 1),

so w1 and w2 are divisible by u. On the other hand, we have w1, w2 > p−1−u since xu1 and
xu2 are contained in J(Z(A)) by Lemma 5.16. Since w1, w2 < p− 1 holds by assumption,
this is a contradiction. Hence |Iy| ≤ 1 follows, which implies Ay ⊆ Z(A) by Lemma 5.16.

Finally let c ≥ 4 and set I := {1, 2, 3}. A vector v ∈ Z3 satisfies TI · v ≡ 0 (mod p − 1)
if and only if v ≡ λ · (1,−1, 1)T (mod u) holds for some λ ∈ Z. In particular, w :=
(p − u, p − 2, p − u)T is a solution to the above congruence system since u divides p − 1.
We show y := xrI,w ∈ soc(Z(A)) by using Lemma 5.20. The first two conditions stated
therein are clearly satisfied. In order to verify the third one, let 0 6= v ∈ S3 be a solution
to the congruence system TI · v ≡ 0 (mod p − 1) which can be extended to T . We write
v = (v1, v2, v3)T = (λ+ k1u,−λ+ k2u, λ+ k3u)T for some k1, k2, k3, λ ∈ Z. Denoting the
extension of v by ṽ as usual, the condition T · ṽ ≡ 0 (mod p− 1) then yields

0 ≡ t · ((λ+ k1u) + (−λ+ k2u) + (λ+ k3u)) ≡ tλ (mod p− 1)

since c ≥ 4 holds, so λ is a multiple of u and hence u divides all entries of v. Since v
is nonzero, this implies vi ≥ u ≥ 2 for some i ∈ {1, 2, 3}, which yields wi > p − 1 − vi.
This shows y ∈ soc(Z(A)) and since the matrix TI is nonzero, we obtain Ay 6⊆ Z(A) by
Lemma 5.16, which implies soc(Z(A)) 6E A.
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5.2.5 Applications

To conclude Section 5.2, we use our results on quantum complete intersection algebras to
provide counterexamples to some open questions arising in the preceding chapters. The
first example demonstrates that for arbitrary symmetric local algebras, soc(Z(A)) is not
necessarily a principal ideal if it is an ideal of A.

Remark 5.28. For a finite p-group G, the group algebra FG is local. If G satisfies
soc(ZFG) E FG, then soc(ZFG) is of the form soc(ZFG) = (Z(G)G′)+ · FG by Theo-
rem 3.1. In other words, soc(ZFG) is the principal ideal of FG generated by the central
element (Z(G)G′)+. A similar statement holds for the group algebras of arbitrary finite
groups (see Lemma 4.27).

In contrast, for an arbitrary symmetric local algebra A, the condition soc(Z(A)) E A does
in general not imply that soc(Z(A)) is of the form As for some s ∈ Z(A). To see that
this is true, let F be an algebraically closed field of odd characteristic p and consider the
quantum complete intersection algebra

A = F 〈X1, X2〉/〈Xp
1 , X

p
2 , X2X1 − qX1X2〉

for some q ∈ F× with ord(q) = p− 1. Again, we write x1 and x2 for the images of X1 and
X2 in A, respectively. By Example 5.22, soc(Z(A)) is an ideal of A. Assume that there
exists an element s ∈ Z(A) with soc(Z(A)) = As. By (5.6), we may write

s =

p−1∑
i=1

αix
p−1
1 xi2 +

p−2∑
j=1

βjx
j
1x
p−1
2

for some coefficients α1, . . . , αp−1, β1, . . . , βp−2 ∈ F . Since xp−1
1 x2 and x1x

p−1
2 are con-

tained in soc(Z(A)) by Lemma 5.25, we find elements a1, a2 ∈ A with a1s = xp−1
1 x2 and

a2s = x1x
p−1
2 . Now write ai = fi + ji with fi ∈ F and ji ∈ J(A) for i = 1, 2. This yields

xp−1
1 x2 = a1s = f1α1x

p−1
1 x2 + f1β1x1x

p−1
2 + r,

where r is a sum of basis elements which contain a factor xp−1
1 x2

2 or x2
1x
p−1
2 . Comparing the

coefficients yields f1α1 = 1 and f1β1 = 0, which implies β1 = 0. The analogous argument
for x1x

p−1
2 yields f2β1 = 1, which is a contradiction. This shows that soc(Z(A)) is not a

principal ideal. /

Next, we see an example of a symmetric algebra Q which satisfies soc(ZFQ) E Q and
a (non-symmetric) quotient algebra A of Q in which soc(Z(A)) is not an ideal (compare
this to Lemma 1.25).

Example 5.29. Let F be an algebraically closed field of characteristic p = 5 and consider
the (non-symmetric) local algebra

A := F 〈X1, X2〉/〈X2
1 , X

4
2 , X1X2 +X2X1〉.

Again, the images of X1 and X2 in A are denoted by x1 and x2, respectively. Note that
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an F -basis of A is given by{
1, x2, x

2
2, x

3
2, x1, x1x2, x1x

2
2, x1x

3
2

}
.

A short computation shows that J(Z(A)) = soc(Z(A)) = F{x2
2, x1x

3
2} is two-dimensional.

By multiplying with the basis elements of A, we see that

A · J(Z(A)) = A · soc(Z(A)) = F
{
x2

2, x
3
2, x1x

2
2, x1x

3
2

}
is of dimension four, so J(Z(A)) = soc(Z(A)) is not an ideal in A. Now consider the
quantum complete intersection algebra

Q := F 〈X1, X2〉/〈X5
1 , X

5
2 , X1X2 +X2X1〉.

This algebra is symmetric and satisfies soc(Z(Q)) E Q by Lemma 5.27. Note that A can be
viewed as a quotient algebra of Q. This demonstrates that for a symmetric algebra Q with
soc(Z(Q)) E Q and an ideal I of Q, the quotient algebra Q/I does not necessarily have
the property soc(Z(Q/I)) E Q/I if it is not symmetric. This proves that the prerequisites
in Lemma 1.25 are necessary. /

5.3 Trivial extension algebras

Let F be an algebraically closed field of arbitrary characteristic and consider a finite-
dimensional F -algebra A. In this section, we introduce a certain symmetric algebra T (A),
the trivial extension algebra, associated with A. These algebras arise in various contexts
in the representation theory of finite-dimensional algebras (for instance, see [16]). We will
use them in the next section in order to find symmetric local algebras in which the socle
of the center is not an ideal. Here, we exhibit conditions on A which ensure that the
Jacobson radical or the socle of the center of T (A) are ideals in T (A), respectively.

We consider the dual space HomF (A,F ) of A, that is, the vector space of F -linear forms
on A. It becomes an A-A-bimodule by setting

(af)(x) := f(xa) and (fa)(x) := f(ax)

for all x, a ∈ A and f ∈ HomF (A,F ). This allows us to make the following definition:

Definition 5.30. For a finite-dimensional F -algebra A, we set T (A) := A⊕HomF (A,F ).
Endowed with the multiplication law

(a, f) · (b, g) := (ab, ag + fb)

for all a, b ∈ A and f, g ∈ HomF (A,F ), the space T (A) becomes an F -algebra, the trivial
extension algebra of A.

By [47, Example IV.2.7], the trivial extension algebra T := T (A) is symmetric and a
corresponding non-degenerate associative symmetric bilinear form is given by

β : T × T → F, ((a, f), (b, g)) 7→ f(b) + g(a).
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It should be noted that as in the case of quantum complete intersection algebras, there
exist generalized versions of the above definition in the literature.

From now on until the end of this section, we additionally assume that A is a local
algebra. In this case, the corresponding trivial extension algebra T is also local (see [10,
Lemma 4.1]). In the following, we view HomF (A/K(A), F ) as a subset of HomF (A,F ) by
identifying the map f ∈ HomF (A/K(A), F ) with f∗ ∈ HomF (A,F ), where f∗ is defined
by f∗(x) := f(x+K(A)) for all x ∈ A. By [10, Lemma 4.3], the center of T is given by

Z(T ) = Z(A)⊕HomF (A/K(A), F ).

For its Jacobson radical, we claim that the following holds:

J(Z(T )) = J(Z(A))⊕HomF (A/K(A), F ). (5.7)

To verify this identity, we consider elements j ∈ J(Z(A)) and f ∈ HomF (A/K(A), F ).
Inductively, one can show that

(j, f)k = (jk, kjk−1f)

holds for any k ∈ N. Since j is nilpotent, there exists an exponent n ∈ N with jn = 0. By
the above identity, we then have (j, f)n+1 = 0 and hence (j, f) is nilpotent, which implies
(j, f) ∈ J(T ) ∩ Z(T ) = J(Z(T )). Since Z(T ) is local, we have

dim J(Z(T )) = dimZ(T )− 1 = dim(J(Z(A))⊕HomF (A/K(A), F ))

and we obtain the equality in (5.7).

Now we answer the question under which conditions the radical J(Z(T )) is an ideal of T .

Theorem 5.31. Let A be a local F -algebra with trivial extension algebra T . Then J(Z(T ))
is an ideal in T if and only if J(Z(A)) and K(A) are ideals in A.

Proof. First assume that J(Z(T )) is an ideal in T . We begin by showing that J(Z(A)) is
an ideal of A in this case. To this end, let b ∈ J(Z(A)) and consider an arbitrary element
a ∈ A. Since (b, 0) ∈ J(Z(T )) holds, we obtain (ab, 0) = (a, 0) · (b, 0) ∈ J(Z(T )), which
implies ab ∈ J(Z(A)) by (5.7). This shows that J(Z(A)) is an ideal of A. Now we prove
that K(A) is an ideal of A. To this end, let g ∈ HomF (A/K(A), F ). The element (0, g)
is contained in J(Z(T )), so for any a ∈ A, we have (0, ag) = (a, 0) · (0, g) ∈ J(Z(T )).
This implies ag ∈ HomF (A/K(A), F ), that is, g(xa) = 0 holds for all x ∈ K(A). Since
g ∈ HomF (A/K(A), F ) was an arbitrary element, we obtain

xA ⊆
⋂

g∈HomF (A/K(A),F )

Ker(g) = K(A)

and hence K(A) ·A = A ·K(A) ⊆ K(A) follows (see Lemma 1.7). This shows that K(A)
is an ideal of A.

Conversely, assume that J(Z(A)) and K(A) are ideals of A and let (b, g) ∈ J(Z(T )).
We show that for any (a, f) ∈ A, the product (a, f) · (b, g) = (ab, ag + bf) is contained
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in J(Z(T )). Note that ab ∈ J(Z(A)) holds since J(Z(A)) is an ideal of A. For all x ∈ K(A),
we obtain (ag + fb)(x) = g(xa) + f(bx) = 0 since we have xa ∈ K(A) ⊆ Ker(g) and
bx ∈ bK(A) = 0 (see Lemma 1.9 (ii)). Hence ag + fb can be viewed as an element of
HomF (A/K(A), F ) and we obtain (ab, ag + bf) ∈ J(Z(T )). This implies that J(Z(T )) is
an ideal of T .

In the special case that the algebra A is symmetric, J(Z(T )) is an ideal of T if and only
if A is commutative (see Remark 1.21). Therefore, we mostly focus on non-symmetric
algebras as bases for the trivial extension.

In the second part of this section, we investigate the corresponding problem for the socle.
As a first step, we determine the structure of soc(Z(T )).

Lemma 5.32. Set I := K(A) +A · J(Z(A)). Then the socle of Z(T ) is given by

soc(Z(T )) = {(b, g) ∈ soc(Z(A))×HomF (A,F ) : Ab ⊆ K(A), g(I) = 0} . (5.8)

Proof. Since T is a local algebra of dimension at least two, we have soc(Z(T )) ⊆ J(Z(T ))
(see Remark 1.14). First consider an element t := (b, g) ∈ soc(Z(T )). For any a ∈ J(Z(A)),
one has (a, 0) ∈ J(Z(T )) and hence 0 = (a, 0) · t = (ab, ag). In particular, this yields
J(Z(A)) · b = 0, which implies b ∈ soc(Z(A)). The condition ag = 0 is equivalent to
g(xa) = 0 for all x ∈ A. This yields g(y) = 0 for all y ∈ A · J(Z(A)) and hence g(I) = 0
follows from the fact that we have g ∈ HomF (A/K(A), F ).

Now consider an arbitrary element (a, f) ∈ J(Z(T )). The condition 0 = (a, f) · t =
(ab, ag+fb) yields g(xa)+f(bx) = 0 for all x ∈ A. Since xa ∈ A ·J(Z(A)) ⊆ Ker(g) holds
by the above, we obtain f(bx) = 0. This yields

Ab = bA ⊆
⋂

f∈HomF (A/K(A),F )

Ker(f) = K(A).

Now we show the other inclusion in (5.8). To this end, let b ∈ soc(Z(A)) with Ab ⊆ K(A)
and g ∈ HomF (A,F ) with g(I) = 0. Note that the element (b, g) is contained in Z(T ).
Now consider an arbitrary element (a, f) ∈ J(Z(T )). Because of b ∈ soc(Z(A)), we have
ab = 0. Moreover, for any x ∈ A, we obtain (ag + bf)(x) = g(xa) + f(bx) = 0 since
we have bx = xb ∈ Ab ⊆ K(A) ⊆ Ker(f) and xa ∈ A · J(Z(A)) ⊆ Ker(g). This shows
(a, f) · (b, g) = 0 and hence (b, g) ∈ soc(Z(T )).

We now characterize the trivial extension algebras T in which soc(Z(T )) is an ideal.

Theorem 5.33. Let A be a local F -algebra with trivial extension algebra T . Then the
socle soc(Z(T )) is an ideal of T if and only if the following two conditions hold:

(i) I := K(A) +A · J(Z(A)) is an ideal of A.

(ii) For all b ∈ soc(Z(A)) with Ab ⊆ K(A), we have Ab ⊆ Z(A).

Proof. Note that the first condition is equivalent to A ·K(A) ⊆ K(A) + A · J(Z(A)) as
A·J(Z(A)) is an ideal of A and A·K(A) = K(A)·A holds by Lemma 1.7. First assume that
soc(Z(T )) is an ideal in T and consider an element t := (b, g) ∈ soc(Z(T )). The previous
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lemma yields b ∈ soc(Z(A)) and Ab ⊆ K(A). For an arbitrary element (a, f) ∈ T , we
have

(ab, ag + fb) = (a, f) · (b, g) ∈ soc(Z(T )).

In particular, this implies ab ∈ soc(Z(A)), so we obtain Ab ⊆ Z(A). By Remark 1.10, this
yields K(A) · b = 0 and hence we have I · b = b · I = 0. Moreover, the preceding result
yields (ag + fb)(I) = 0, that is, we obtain g(xa) = g(xa) + f(bx) = 0 for all x ∈ I since
bx ∈ bI = 0 holds. This yields

A · I = I ·A ⊆
⋂

g∈HomF (A,F ),
I⊆Ker(g)

Ker(g) = I.

Conversely, assume that A satisfies the conditions (i) and (ii). Consider (b, g) ∈ soc(Z(T ))
and let (a, f) ∈ T be an arbitrary element. We show that (ab, ag + fb) = (a, f) · (b, g)
is contained in soc(Z(T )) by using the characterization given in (5.8). By (ii), we have
ab ∈ Z(A), which implies ab ∈ soc(Z(A)). Moreover, it follows that A(ab) ⊆ Ab ⊆ K(A).
It remains to show that I is contained in Ker(ag + fb). Note that for any x ∈ I, we
have (ag + fb)(x) = g(xa) + f(bx) = f(bx) since xa ∈ I ⊆ Ker(g) holds by (i) and (5.8).
First let x ∈ K(A). By (5.8), we have Ab ⊆ K(A), which implies Ab ⊆ Z(A) by (ii).
Remark 1.10 then yields bx ∈ b · K(A) = 0 and hence f(bx) = 0. For x ∈ A · J(Z(A)),
we have bx = 0 since b ∈ soc(Z(A)) holds. Hence f(bx) = 0 follows as well. This shows
(ag + fb)(I) = 0, so (a, f) · (b, g) is contained in soc(Z(T )) by (5.8) and hence soc(Z(T ))
is an ideal of T as claimed.

In this section, we related the properties J(Z(T )) E T and soc(Z(T )) E T to certain
conditions on the basis algebra A of the trivial extension. In the next section, we use these
criteria to construct a symmetric local algebra T of small dimension in which soc(Z(T ))
is not an ideal.

5.4 Small counterexamples

Throughout this section, F is assumed to be an algebraically closed field of arbitrary
characteristic and A is a finite-dimensional symmetric local F -algebra. We are interested
in finding examples of such algebras A of minimal dimension which satisfy J(Z(A)) 6E A
or soc(Z(A)) 6E A, respectively.

5.4.1 Jacobson radical

In this section, we investigate the problem for the Jacobson radical J(Z(A)). In [39,
Theorem 3.2], it is shown that J(Z(A)) E A holds for every symmetric local F -algebra A
of dimension at most ten. Here, we refine this bound by showing that this statement
remains valid for dimA = 11 and providing an example of a twelve-dimensional symmetric
local algebra A with J(Z(A)) 6E A.

Throughout, we abbreviate the powers J i(A) := J(A)i of the Jacobson radical by J i. The
main result in this section is the following theorem:
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Theorem 5.34. Let A be a symmetric local F -algebra. If dim(A) ≤ 11 holds, then
J(Z(A)) is an ideal in A.

Proof. By [39, Theorem 3.2], the statement holds for dimA ≤ 10, so we restrict our
investigation to the case dimA = 11. Suppose that J(Z(A)) is not an ideal of A. In
particular, A is not commutative. Theorems 5.5 and 5.6 yield dimZ(A) ≥ 6, and since
dimA ≥ dimZ(A)+3 holds by Lemma 5.8, we have dimZ(A) ∈ {6, 7, 8}. By Remark 1.10,
there exists an element z ∈ J(Z(A)) with z ·K(A) 6= 0, that is, K(A) 6⊆ (Az)⊥. Setting
A′ := A/(Az)⊥, this algebra is symmetric and local (see Lemma 1.22). Moreover, we have
K(A′) = K(A) + (Az)⊥/(Az)⊥ 6= 0 (see Lemma 1.8), so A′ is not commutative. Again,
Theorems 5.5 and 5.6 yield dimA′ = 8 or dimZ(A′) ≥ 6. In the latter case, Lemma 5.8
implies dimA′ ≥ 9. In any case, we obtain 8 ≤ dimA′ = dimA − dim (Az)⊥ = dimAz.
Since z ∈ J holds, we have Az ⊆ J ( A and hence dimAz ∈ {8, 9, 10}.

If dimAz = 10 holds, then we have J = Az. Writing A = F ·1⊕J yields J = Az = Fz+Jz,
so J = Fz + J2. This shows that the algebra A is generated by {1, z} and hence it is
commutative, which is a contradiction. Now suppose dimAz = 9. Since z ∈ J holds, we
have Jz ⊆ J2 and hence dim J2 ≥ 8. On the other hand, Lemma 5.4 yields dim J/J2 ≥ 2,
which implies dim J2 = 8. In particular, z is not contained in J2. Hence there exists some
element a ∈ J with J = F{a, z}+ J2. This means that A is generated, as an algebra, by
a subset of {1, a, z}, so A is commutative. This is a contradiction.

It follows that dimAz = dimA′ = 8 holds, which yields dim (Az)⊥ = 3. In particular,
Az is not contained in (Az)⊥, which implies z /∈ (Az)⊥. Since A′ is not commutative, we
obtain 5 ≤ dimZ(A′) ≤ dimA′ − 3 = 5 (see Theorem 5.5 and Lemma 5.8). This yields
dimZ(A′) = 5 and hence we have dimK(A′) = dimZ(A′)⊥ = 3. Moreover, note that the
restriction dim J/J2 ≥ 2 (see Lemma 5.4) implies dim J2 ≤ 8. On the other hand, we have
Jz ⊆ J2. Since Az = Fz ⊕ Jz holds, we obtain dim Jz = 7 and hence dim J2 ∈ {7, 8}.
Note that in the case dim J2 = 7 = dim Jz, the element z is not contained in J2.

The two possibilities for the dimensions of the Loewy layers of A′ are given in Theo-
rem 5.6 (ii). Assume that the Loewy structure of A′ is of type (a), so dim J2(A′) = 4
holds. Since we have

J2(A′) = J2 + (Az)⊥/(Az)⊥ ∼= J2/J2 ∩ (Az)⊥, (5.9)

we obtain

dim J2 = dim J2(A′) + dim J2 ∩ (Az)⊥ ≤ dim J2(A′) + dim (Az)⊥ = 7.

By the above, this implies J2 = Jz and dim J2 = 7. As we already observed that z /∈ J2

holds in this case, there exist elements a, b ∈ J with J = F{z, a, b} + J2. We obtain
K(A) ⊆ F [a, b] + J3 and hence

dimK(A) ∩ J3 ≥ dimK(A)− 1. (5.10)

Let s ∈ J\(Az)⊥ with s+(Az)⊥ ∈ soc(A′). In particular, we have s /∈ soc(A) ⊆ (Az)⊥ and
since K(A′)∩soc(A′) = 0 holds by Lemma 5.3 (iii), we obtain s /∈ K(A) by Lemma 1.8. By
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Theorem 5.6 (ii), J3(A′) is one-dimensional, which yields J3(A′) = soc(A′) by Lemma 5.3.
Therefore, we can choose s ∈ J3. This implies

dim J3 ≥ dim(Fs⊕ soc(A)⊕K(A) ∩ J3) = dimK(A) ∩ J3 + 2.

Together with (5.10), we obtain

dimK(A) ≤ dimK(A) ∩ J3 + 1 ≤ dim J3 − 1. (5.11)

Recall that dimZ(A) ∈ {6, 7, 8} holds. If we have dimZ(A) ∈ {6, 7}, then dimK(A) =
11−dimZ(A) ≥ 4 follows and hence dim J3 ≥ 5 holds. This yields dim J2/J3 ≤ 2, which is
a contradiction to dim J2(A′)/J3(A′) = 3. Hence we have dimZ(A) = 8 and dimK(A) =
3 = dimK(A′), which implies K(A) ∩ (Az)⊥ = 0. By (5.10), we have dimK(A) ∩ J3 ≥ 2,
which yields dim J3(A′) ≥ 2 since we have (K(A)∩J3)∩(Az)⊥ = 0. This is a contradiction
to J3(A′) being one-dimensional, so this situation cannot arise.

Now assume that A′ has a Loewy structure of type (b) in Theorem 5.6 (ii). In particular,
we have dim J2(A′) = 5 and dim J3(A′) = 3. If dim J2 = 7, so J2 = Jz, holds, then
dim J2 ∩ (Az)⊥ = 2 follows by (5.9). Since we have z /∈ J2 ∪ (Az)⊥, we find elements
` ∈ (Az)⊥ and a ∈ J with J = F{z, `, a}+ J2. This yields K(A) ⊆ F [`, a] + J3 and hence
K(A′) ⊆ J3(A′). Since dimK(A′) = 3 = dim J3(A′) holds, we obtain equality, which is
a contradiction to Remark 1.21 since A′ is a non-commutative symmetric algebra. Hence
we have dim J2 = 8. If z ∈ J2 holds, then we have Jz ⊆ J3, which implies dim J3 ≥ 7 and
hence dim J2/J3 ≤ 1. This is a contradiction to J 6⊆ Z(A) (see Lemma 5.4). Otherwise,
there exists an element a ∈ J with J = {z, a} + J2. This implies that A is generated
by {1, z, a} as an algebra and hence A is commutative, which is a contradiction. Thus
A cannot have a Loewy structure of type (b) in Theorem 5.6, either. We conclude that
J(Z(A)) is an ideal of A if dimA = 11 holds.

Now we complete this derivation by presenting an example of a symmetric local algebra A
of dimension twelve in which J(Z(A)) is not an ideal.

Example 5.35. Let F be an algebraically closed field of odd characteristic p. We consider
the unitary subalgebra A of Mat12(F ) generated by the matrices

M =



. . . . . . . . . . . .
1 . . . . . . . . . . .
. . . . . . . . . . . .
. 1 . . . . . . . . . .
. . 1 . . . . . . . . .
. . . 1 . . . . . . . .
. . . . 1 . . . . . . .
. . . . . 1 . . . . . .
. . . . . . 1 . . . . .
. . . . . . . 1 . . . .
. . . . . . . . 1 . . .
. . . . . . . . . 1 . .
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and

N =



. . . . . . . . . . . .

. . . . . . . . . . . .
1 . . . . . . . . . . .
. . 1 . . . . . . . . .
. −1 . . . . . . . . . .
. . . . −1 . . . . . . .
. . . 1 . . . . . . . .
. . . . . . 1 . . . . .
. . . . . −1 . . . . . .
. . . . . . . . −1 . . .
. . . . . . . 1 . . . .
. . . . . . . . . . 1 .



.

For the sake of readability, zero entries are represented by dots. A short computation
shows M7 = M5N = 0. Furthermore, we have NM = −MN and N2 = M2. Hence the
set

B :=
{
1,M,N,M2,MN,M3,M2N,M4,M3N,M5,M4N,M6

}
generates A as an F -vector space and we can verify directly that these elements are linearly
independent, so B forms an F -basis of A. In particular, we obtain dimA = 12. Since all
nontrivial basis elements are nilpotent, the algebra A is local.

Let s ∈ soc(A) and write s =
∑

v∈B cvv with coefficients cv ∈ F. The condition sM6 = 0
then translates to c1 = 0 since all other products vanish. Due to M5N = M7 = 0, we
then obtain

0 = s ·M5 = cM ·M6,

so cM = 0, and
0 = s ·M4N = cN ·M6,

which yields cN = 0. Continuing this way, we obtain s = cM6 · M6. Conversely, M6

annihilates all basis elements in B apart from the identity matrix and hence we have
M6 ∈ soc(A). This shows that soc(A) = FM6 is one-dimensional.

Next, we consider the commutator space of A. Recall that the matrices M and N satisfy
the identities NM = −MN and N2 = M2. For i, j ∈ {0, . . . , 5}, we obtain

[M i,M jN ] = M i+jN −M jN ·M i = M i+jN − (−1)iM i+jN = (1− (−1)i) ·M i+jN.

Moreover, we have

[M iN,M jN ] = M iN ·M jN −M jN ·M iN = ((−1)j − (−1)i) ·M i+j+2.

Note that the last term is zero if i and j have the same parity, that is, if i + j + 2 is
even. This shows that K(A) is spanned by the set

{
MN,M2N,M3N,M4N,M3,M5

}
and hence we obtain dimK(A) = 6. In particular, note that K(A) ∩ soc(A) = 0 holds.

Thus we can define a linear form λ : A→ F by setting λ(M6) = 1, λ(v) = 0 for v ∈ K(A),
choosing arbitrary values of λ for the remaining elements in B and extending this linearly
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to A. Then λ(ab) − λ(ba) = λ(ab − ba) = λ([a, b]) = 0 holds and hence λ is symmetric.
Moreover, note that for any 0 6= c ∈ A, there exists an element d ∈ A with dc = fM6

for some f ∈ F× and hence soc(A) is contained in every nontrivial left ideal I of A. In
particular, this implies I 6⊆ Ker(λ). By [47, Theorem IV.2.2], this shows that (A, λ) is a
symmetric local algebra.

By direct computation, we show that the set
{
1,M2,M4,M5,M4N,M6

}
is contained

in Z(A). These elements even form an F -basis of the center since we have dimZ(A) =
dimA − dimK(A) = 6. As Z(A) is a local algebra, we have M2 ∈ J(Z(A)). However,
note that M ·M2 = M3 is not contained in Z(A), which implies that J(Z(A)) is not an
ideal of A. /

The example shows that the bound given in Theorem 5.34 is tight.

5.4.2 Socle

In this section, we investigate the analogous problem for the socle. Again, all occurring
F -algebras are assumed to be finite-dimensional. First we show that soc(Z(A)) E A holds
for all symmetric local algebras A of dimension at most 16. In the second part of this
section, we prove that there exists a trivial extension algebra T of dimension 20 with
soc(Z(T )) 6E T . Additionally, we show that this is the optimal bound achievable in this
way since soc(Z(T )) E T holds for all trivial extension algebras T of dimension at most
18. Summarizing, this yields dimA ∈ {17, 18, 19, 20} for a symmetric local algebra A of
minimal dimension in which soc(Z(A)) is not an ideal.

We first collect some properties of these algebras:

Remark 5.36. Let A be a symmetric local algebra in which soc(Z(A)) is not an ideal.
By Remark 1.10, there exists an element z ∈ soc(Z(A)) with z · K(A) 6= 0 and we set
A′ := A/(Az)⊥ as before. By Lemma 1.22, A′ is a symmetric local algebra. As in the
proof of Theorem 5.34, it follows that A′ is not commutative, which yields dimZ(A′) ≥ 5
(see Theorems 5.5 and 5.6) as well as

dimAz = dimA′ ≥ dimZ(A′) + 3 ≥ 8 (5.12)

by Lemma 5.8. Since z ∈ soc(Z(A)) ⊆ J(Z(A)) holds (see Remark (1.14)), we obtain
z2 = 0. In particular, we have Az ⊆ (Az)⊥ and hence Lemma 1.19 yields

dimA = dimAz + dim (Az)⊥ ≥ 2 · dimAz ≥ 16. (5.13)

Moreover, A not being commutative implies dimZ(A) ≥ 6 by Theorems 5.5 and 5.6. /

Our next aim is to exclude the possibility that A has dimension 16.

Theorem 5.37. Let A be a symmetric local F -algebra. If dim(A) ≤ 16 holds, then
soc(Z(A)) is an ideal in A.

Proof. Assume that A is a symmetric local algebra of dimension at most 16 in which
soc(Z(A)) is not an ideal. Remark 5.36 then yields dimA = 16. Again, let z ∈ A with
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z ·K(A) 6= 0 and set A′ := A/(Az)⊥. In this case, we obtain equality in (5.13) and hence

dimA′ = dimAz = dim (Az)⊥ = 8,

which implies Az = (Az)⊥. Furthermore, we obtain dimZ(A′) = 5 by Theorem 5.5 and
Lemma 5.8, which yields 3 = dimZ(A′)⊥ = dimK(A′) = dimK(A) + (Az)⊥/(Az)⊥. This
implies dimK(A) + (Az)⊥ = 11 and hence

5 = dim (K(A) + (Az)⊥)⊥ = dimZ(A) ∩Az = dimZ(A) ∩ (Az)⊥.

Since J(Z(A)) is contained in Z(A) ∩ (Az)⊥, we find dimZ(A) − 1 = dim J(Z(A)) ≤ 5
and hence dimZ(A) ≤ 6. Remark 5.36 yields dimZ(A) = 6 and hence dimK(A) = 10.

We first show dim J2 = 12. The two possibilities for the Loewy structure of A′ are given
in Theorem 5.6 (ii). In both cases, we have J3(A′) 6= 0 and hence soc(A′) ⊆ J3(A′). Let
s ∈ A with 0 6= s + (Az)⊥ ∈ soc(A′). In particular, we may choose s ∈ J3 and we have
s /∈ K(A) + (Az)⊥ since K(A′) ∩ soc(A′) = 0 holds by Lemma 5.3. This shows that the
sum of subspaces K(A) + soc(A) + Fs ⊆ J2 is in fact direct. It follows that

dim J2 ≥ dimK(A) + dim soc(A) + dimFs = dimK(A) + 2 = 12,

which yields dim J/J2 ≤ 3. By Lemma 5.4, we have dim J/J2 ≥ 2 and by the main
theorem in [15], dim J/J2 = 2 implies dimA ≤ 12. This shows that dim J/J2 = 3 and
hence dim J2 = 12 holds.

Now we prove that dim J3 = 9 and dim J4 = 7 hold. We have dimK(A) ∩ (Az)⊥ =
dimK(A) − dimK(A′) = 7. Since K(A) and soc(A) intersect trivially (see Lemma 5.3),
comparing the dimensions yields (Az)⊥ = K(A)∩(Az)⊥⊕soc(A). In particular, we obtain
(Az)⊥ ⊆ J2, which yields dim J2(A′) = dim J2 − dim (Az)⊥ = 4. This shows that the
Loewy structure of A′ is of type (a) in Theorem 5.6 (ii). We then obtain dim J3(A′) = 1 and
hence dim J2/J3 ≥ dim J2(A′)/J3(A′) = 3. On the other hand, writing J = F{a, b, c}+J2

for elements a, b, c ∈ J , we obtain K(A) ⊆ F{[a, b], [b, c], [a, c]}+ J3 and hence

dimK(A) ≤ dimK(A) ∩ J3 + 3. (5.14)

Since soc(A) ⊆ J3 and s ∈ J3 hold, we obtain

dim J3 ≥ dimK(A) ∩ J3 ⊕ soc(A)⊕ Fs = dimK(A) ∩ J3 + 2. (5.15)

Combining (5.14) and (5.15) yields dim J3 ≥ dimK(A)− 1 = 9, which implies dim J3 = 9
by the above. Because of dim J3∩(Az)⊥ = dim J3−dim J3(A′) = 8, we obtain (Az)⊥ ⊆ J3.
This yields J3 = (Az)⊥ ⊕ Fs as s is not contained in (Az)⊥. In particular, this implies
z ∈ J3 and hence Jz ⊆ J4, which shows that dim J4 ≥ 7 holds. By Lemma 5.4, we have
dim J3/J4 ≥ 2 and hence J4 = Jz follows.

In particular, we obtain J3 · J4 = ((Az)⊥ ⊕ Fs) · Jz = 0 since we have sJ ⊆ (Az)⊥.
Lemma 5.3 (iii) now implies dim J6 ≤ 1, which yields dim J4/J5 ≥ 3 or dim J5/J6 ≥ 3. By
the derivation in [19, Chapter 2.2], which is summarized in Lemma A.1, this is impossible.
Hence every symmetric local algebra A of dimension 16 satisfies soc(Z(A)) E A.
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In the remainder of this section, we find a local F -algebra A of minimal dimension such
that soc(Z(T )) 6E T holds for the corresponding trivial intersection algebra T := T (A)
(see Section 5.3). First, we show that soc(Z(T )) is an ideal of T if dimA ≤ 9 holds. To
this end, we check the criteria stated in Theorem 5.33. By Theorem 5.37, it only remains
to consider the case dim T = 18, that is, dimA = 9. As before, we set J := J(A).

Proposition 5.38. Let A be a local F -algebra with dimA = 9. In this case, the subspace
I := K(A) +A · J(Z(A)) is an ideal of A.

Proof. Suppose that I is not an ideal of A, that is, A ·K(A) = K(A) ·A is not contained
in I. Note that we have A = F · 1 ⊕ J as well as K(A) ⊆ J2 (see (5.1)). If J3 ⊆ Z(A)
holds, then this implies

A ·K(A) ⊆ K(A) + J ·K(A) ⊆ K(A) + J3 ⊆ K(A) +A · J(Z(A)) = I,

which contradicts the assumption. Hence J3 is not contained in Z(A). In particular, the
quotient spaces J/J2, J2/J3 and J3/J4 are of dimension at least two by Lemma 5.2.
Moreover, this yields 0 6= [A, J3] = [J, J3] ⊆ J4 and hence J4 6= 0. In particular, we
obtain dim J/J2 ≤ 3.

First assume dim J/J2 = 2, so J can be written in the form F{a, b}+J2 for some elements
a, b ∈ J. The proof of [10, Lemma 3.5] can be adapted to this situation (see Lemma A.2),
showing that a and b can be chosen in such a way that the elements a2 + J3 and ab+ J3

form an F -basis of J2/J3 (by possibly replacing A by its opposite algebra). Lemma 5.1
then yields dim J i/J i+1 ≤ 2 for i ≥ 3. By the above, the only possibility for the Loewy
structure is dim J = 8, dim J2 = 6, dim J3 = 4 and dim J4 = 2. We either have J5 = 0,
which implies J4 ⊆ Z(A) as before, or dim J5 = 1, which implies dim J4/J5 = 1 and
hence J4 ⊆ Z(A) by Lemma 5.2. In any case, we therefore obtain J4 ⊆ Z(A). Note that
K(A) ⊆ F [a, b] + J3 holds. Moreover, we have

a · [a, b] = a · (ab− ba) = a(ab)− (ab)a = [a, ab] ∈ I (5.16)

and similarly we obtain b · [a, b] = [ba, b] ∈ I. This implies

J ·K(A) ⊆ F{a[a, b], b[a, b]}+ J4 ⊆ I

and hence A ·K(A) ⊆ K(A) + J ·K(A) ⊆ I, which contradicts the assumption.

Now we assume dim J/J2 = 3, that is, we have J = F{a, b, c} + J2 for some elements
a, b, c ∈ J . Since J2/J3 and J3/J4 are of dimension at least two and J4 is nonzero, we
obtain dim J3 = 3 and dim J4 = 1. By assumption, there exists an element k ∈ K(A) with
Ak 6⊆ I. Since K(A) ⊆ F{[a, b], [a, c], [b, c]}+ J3 holds, k can be expressed in the form

k = f1[a, b] + f2[a, c] + f3[b, c] + j

with f1, f2, f3 ∈ F and j ∈ J3∩K(A). Note that Aj ⊆ Fj+J4 ⊆ I holds. Without loss of
generality, we may therefore assume A[a, b] 6⊆ I. Since a[a, b] and b[a, b] are contained in
K(A) (see (5.16)) and J2[a, b] ⊆ J4 ⊆ I holds, we obtain c[a, b] /∈ I. Since dim J2/J3 = 2
holds, the elements [a, b] + J3, [a, c] + J3 and [b, c] + J3 are linearly dependent in J2/J3,
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so there exists a nonzero tuple (λ0, λ1, λ2) ∈ F 3 with

λ0[a, b] + λ1[a, c] + λ2[b, c] ∈ J3.

First assume λ0 6= 0. By scaling, we may assume [a, b] ∈ λ1[a, c] + λ2[b, c] + J3. In this
case, we obtain

c[a, b] ∈ λ1c[a, c] + λ2c[b, c] + J4 ⊆ I,

since c[a, c] and c[b, c] are contained in K(A) (see (5.16)). This is a contradiction, so
λ0 = 0 follows. This yields [λ1a+λ2b, c] = λ1[a, c] +λ2[b, c] ∈ J3. By scaling and possibly
exchanging a and b, we may assume λ2 = 1. This yields

c[a, λ1a+ b] = ca(λ1a+ b)− c(λ1a+ b)a

≡ ca(λ1a+ b)− (λ1a+ b)ca

= [ca, λ1a+ b] (mod J4).

Now we have

c[a, b] = c[a, λ1a+ b] ∈ [ca, λ1a+ b] + J4 ⊆ K(A) + J4 ⊆ I,

which is a contradiction. This shows that A · I ⊆ I holds and hence I is an ideal of A.

Proposition 5.39. Let A be a local F -algebra with dimA = 9. For every z ∈ soc(Z(A))
with Az ⊆ K(A), we have Az ⊆ Z(A).

Proof. Assume that there exists an element z ∈ soc(Z(A)) with Az ⊆ K(A) such that
Az 6⊆ Z(A) holds. The latter property is equivalent to K(A) ·z 6= 0 by Remark 1.10. Since
we have z ∈ K(A) ⊆ J2 (see (5.1)), we obtain J3 6⊆ Z(A) and J4 6= 0. As in the proof
of Proposition 5.38, it follows that J/J2, J2/J3 and J3/J4 are at least two-dimensional.
In particular, assuming dim J/J2 ≥ 4 yields dim J2 ≤ 4, dim J3 ≤ 2 and J4 = 0, which
is a contradiction. In the following, we therefore distinguish the cases dim J/J2 = 2 and
dim J/J2 = 3.

First assume dim J/J2 = 2, that is, we have dim J2 = 6. We write J = F{a, b} + J2 for
some elements a, b ∈ J . By the above, we have dim J3 ≤ 4 and dim J4 ≤ 2. As in the
proof of Proposition 5.38, we obtain J4 ⊆ Z(A). Since Az is not contained in Z(A), this
implies z /∈ J3. Since we have K(A) ⊆ F [a, b] + J3, the element z can be expressed in the
form z = f [a, b] + j for some 0 6= f ∈ F and some j ∈ J3. By scaling, we may assume
z = [a, b] + j. Since we have Az 6⊆ Z(A) and J2z ⊆ J4 ⊆ Z(A), it follows that az /∈ Z(A)
or bz /∈ Z(A) holds. Without loss of generality, we assume az /∈ Z(A). As [az, a] = 0
holds, we must have z[a, b] = [az, b] 6= 0 because A is generated, as an algebra, by a subset
of {1, a, b}. We have 0 = z2 = z[a, b] + zj, which implies zj 6= 0 and hence J5 6= 0. This
yields dim J3 = 4, dim J4 = 2 and dim J5 = 1. Note that bz /∈ Z(A) follows because of
[a, bz] = z[a, b] 6= 0.

In particular, az and bz are not contained in J4. Assume J3 = F{az, bz}+ J4 and write
j = f1az + f2bz + j′ with f1, f2 ∈ F and j′ ∈ J4. But then we obtain zj = 0 since z2 = 0
as well as zj′ ∈ zJ4 ⊆ J6 = 0 hold, which is a contradiction to zj 6= 0. This shows
that az + J4 and bz + J4 are linearly dependent in J3/J4. Without loss of generality, we
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may assume that az = λ1bz + j′ holds for some λ1 ∈ F and some j′ ∈ J4. This implies
z(a − λ1b) = j′ and hence z[a, b] = z[a − λ1b, b] = [j′, b] = 0 due to j′ ∈ J4 ⊆ Z(A). This
is a contradiction to z[a, b] 6= 0, so the case dim J/J2 = 2 cannot arise.

Now assume dim J/J2 = 3, so dim J2 = 5, and write J = F{a, b, c} + J2 for some
a, b, c ∈ J. Similarly to the above derivation, we obtain dim J3 = 3 and dim J4 = 1.
Again, we have J4 ⊆ Z(A), which yields z ∈ J2\J3 and hence K(A) 6⊆ J3. Suppose
that dimF{[a, b], [a, c], [b, c]}+ J3 = dim J3 + 1 holds. Without loss of generality, we may
assume [a, b] /∈ J3 and write [a, c] + J3 = λ1[a, b] + J3 and [b, c] + J3 = −λ2[a, b] + J3

for some λ1, λ2 ∈ F . Replacing c by c̄ := c − λ1b − λ2a yields [a, c̄] = [b, c̄] ∈ J3 and
J = F{a, b, c̄} + J2. We then obtain K(A) ⊆ F [a, b] + J3, so by scaling, we may write
z = [a, b] + j for some j ∈ J3. But then 0 = z2 = z[a, b] + zj = z[a, b] follows since
zj ∈ J5 = 0 holds. This yields z ·K(A) ⊆ Fz[a, b] + J5 = 0, which is a contradiction.

Hence we have dimF{[a, b], [b, c], [a, c]} + J3/J3 = 2 = dim J2/J3. As z /∈ J3 holds,
we may assume without loss of generality that [a, b] + J3 and z + J3 form a basis of
J2/J3. If z[a, b] = 0 holds, we obtain K(A)z ⊆ J2z ⊆ F{[a, b]z, z2} + J5 = 0, which
contradicts our assumption. Hence we have z[a, b] 6= 0, which implies az, bz /∈ Z(A).
Suppose that az + J4 and bz + J4 are linearly dependent in J3/J4. Without loss of
generality, we may assume bz = λ1az + j for some λ1 ∈ F and some j ∈ J4. Then
we obtain z[a, b] = [a, bz] = [a, λ1az + j] = 0 since we have j ∈ J4 ⊆ Z(A). Again,
this is a contradiction, so we have J3 = F{az, bz} + J4. By assumption, we obtain
J2 = F{[a, b], z}+J3 ⊆ F [a, b] +Az ⊆ K(A). Together with (5.1), this yields K(A) = J2.
The derivation in [10, page 15] can also be used in our present context to show that this
is impossible (see Lemma A.3).

Combining the two preceding results, we obtain the following:

Theorem 5.40. Let A be a local F -algebra with trivial extension algebra T := T (A). If
dimA ≤ 9, that is, dimT ≤ 18 holds, then soc(Z(T )) is an ideal of T .

Proof. For dimA ≤ 8, we have dimT ≤ 16 and hence soc(Z(T )) E T holds by Theo-
rem 5.37. Now let dimA = 9. By the preceding results, K(A) + A · J(Z(A)) is an ideal
of A and Az ⊆ Z(A) follows for all z ∈ soc(Z(A)) with Az ⊆ K(A). Therefore, the
conditions (i) and (ii) stated in Theorem 5.33 are fulfilled and hence soc(Z(T )) is an ideal
of T .

In other words, any local trivial extension algebra T := T (A) with soc(Z(T )) 6E T is of
dimension at least 20. The following example shows that this bound is tight.

Example 5.41. Let F be an algebraically closed field of characteristic p = 2. We consider
the unitary subalgebra A of Mat10(F ) generated by the matrices
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M =



. . . . . . . . . .
1 . . . . . . . . .
. . . . . . . . . .
. 1 . . . . . . . .
. . 1 . . . . . . .
. . . 1 . . . . . .
. . . . 1 . . . . .
. . . . . 1 . . . .
. . . . . . 1 . . .
. . . . . . . 1 1 .


and N =



. . . . . . . . . .

. . . . . . . . . .
1 . . . . . . . . .
. 1 . . . . . . . .
. 1 . . . . . . . .
. 1 . . . . . . . .
. 1 . 1 1 . . . . .
. . . 1 . 1 . . . .
. . . . 1 1 . . . .
. . . . . 1 1 1 1 .


.

Again, zero entries are represented by dots. One can check that these matrices satisfy the
relations M6 = N2 = 0 as well as

NM = M2 +MN +M3 +M2N.

As an F -vector space, the algebra A is therefore spanned by elements of the form M `1N `2

with `1 ∈ {0, . . . , 5} and `2 ∈ {0, 1}. Moreover, we can check directly that M4N = M5

and hence M5N = M6 = 0 holds, which yields dimA ≤ 10. On the other hand, we can
verify that the elements in

B :=
{
M `1N `2 : `1 ∈ {0, . . . , 4}, `2 ∈ {0, 1}

}
are linearly independent and hence form a basis for A. This shows that A is of dimension
ten. Note that A is local since all nontrivial elements in B are nilpotent.

As before, we set J := J(A). We have M3N ∈ J4 and hence J4 6⊆ Z(A). By Lemma 5.2,
this yields dim J i/J i+1 ≥ 2 for i = 1, . . . , 4. On the other hand, we have M5 ∈ J5 and
hence dim J5 ≥ 1. This is only possible if dim J i/J i+1 = 2 holds for i = 1, . . . , 4. In
particular, it follows that the elements M i + J i+1 and M i−1N + J i+1 form a basis of
J i/J i+1. By direct computation, we show that K(A) is of the form

K(A) = F
{
M2,M3 +M3N,M2N +M3N,M4,M5

}
.

Furthermore, we have
J(Z(A)) = F{M4,M5} ⊆ K(A)

and A · J(Z(A)) = J(Z(A)). Since M2 ∈ K(A) holds, but M3 is not contained in K(A),
we obtain A · K(A) 6⊆ K(A) = K(A) + A · J(Z(A)) and hence K(A) + A · J(Z(A)) is
not an ideal of A. Setting T := T (A) to be the trivial extension algebra of A, we have
dimT = 20, and Theorem 5.33 implies that soc(Z(T )) is not an ideal in T . /

Note that this result, combined with Theorem 5.37, yields dimA ∈ {17, 18, 19, 20} for a
symmetric local algebra A of minimal dimension in which soc(Z(A)) is not an ideal.







Appendix

In Chapter 5, we used several results of [10] and [19], adapted to our given setting. These
modified versions are presented in the following. The corresponding proofs largely follow
the lines of the original sources [10] and [19].

Throughout, let F be an algebraically closed field of arbitrary characteristic and let A be
a finite-dimensional F -algebra. As before, J := J(A) denotes the Jacobson radical of A.
We begin with the following statement on symmetric local algebras with a six-dimensional
center, which is used in Theorem 5.37. The main ideas of the proof can be found in [19,
Chapter 2.2].

Lemma A.1. Let A be a symmetric local F -algebra with dimZ(A) = 6 which satisfies
dim J/J2 = dim J2/J3 = 3 and dim J3/J4 = 2 as well as dimK(A) = dimK(A)∩J3 + 3.
Then dim J i/J i+1 ≤ 2 holds for all i ≥ 4.

Proof. In order to derive a contradiction, we assume that dim J i/J i+1 ≥ 3 holds for some
i ≥ 4. Write J = F{a, b, c} + J2 with elements a, b, c ∈ J . By [15, Lemma 2.6], we may
assume that J2 = F{a2, ab, ac} + J3 or J2 = F{a2, ab, ba} + J3 holds. In the first case,
we obtain J3 = F{a3, a2b, a2c} + J4 by Lemma 5.1. If we have J3 = F{a3, a2b} + J4,
then Lemma 5.1 yields Jk = F{ak, ak−1b} + Jk+1 for k ≥ 4, so dim Jk/Jk+1 ≤ 2, which
is a contradiction. We can argue similarly for all other choices of the two basis elements
of J3/J4, so this case cannot arise. We therefore assume J2 = F{a2, ab, ba} + J3. Then
there exist coefficients αi, βi, γi ∈ F (i = 1, . . . , 6) with

ac ≡ α1a
2 + β1ab+ γ1ba (mod J3)

b2 ≡ α2a
2 + β2ab+ γ2ba (mod J3)

bc ≡ α3a
2 + β3ab+ γ3ba (mod J3)

ca ≡ α4a
2 + β4ab+ γ4ba (mod J3)

cb ≡ α5a
2 + β5ab+ γ5ba (mod J3)

c2 ≡ α6a
2 + β6ab+ γ6ba (mod J3).

(A.1)

We may assume ac ∈ Fa2 + Fab + J3, which yields γ1 = 0, since we are in the case
J2 = F{a2, ab, ac}+J3 otherwise. By going over to the opposite algebra of A, we similarly
obtain β4 = 0. By replacing c by c−α1a−β1b, we may assume α1 = β1 = 0. Furthermore,
by replacing b by b−γ2a, we suppose that γ2 = 0 holds. Now consider elements λ, µ, ν ∈ F
and set v := λa+ µb+ νc. If J2 = F{va, vb, vc}+ J3 holds, then replacing a by v brings
us back to the case J2 = F{a2, ab, ac}+ J3. Hence we suppose that va+ J3, vb+ J3 and
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vc+ J3 are linearly dependent in J2/J3. Inserting the relations given in (A.1), we obtain

va ≡ (λ+ α4ν)a2 + (µ+ γ4ν)ba (mod J3)

vb ≡ (α2µ+ α5ν)a2 + (λ+ β2µ+ β5ν)ab+ γ5νba (mod J3)

vc ≡ (α3µ+ α6ν)a2 + (β3µ+ β6ν)ab+ (γ3µ+ γ6ν)ba (mod J3).

Since a2 +J3, ab+J3 and ba+J3 form a basis of J2/J3, the linear dependency of va+J3,
vb+ J3 and vc+ J3 translates to

0 = det

 λ+ α4ν 0 µ+ γ4ν
α2µ+ α5ν λ+ β2µ+ β5ν γ5ν
α3µ+ α6ν β3µ+ β6ν γ3µ+ γ6ν


= γ3λ

2µ+ γ6λ
2ν + (β2γ3 − α3)λµ2 + (α4γ3 − α3γ4 − α6 + β2γ6 + β5γ3 − β3γ5)λµν

+ (α4γ6 − α6γ4 + β5γ6 − β6γ5)λν2 + (α2β3 − α3β2)µ3

+ (α2(β3γ4 + β6)− α3(β2γ4 + β5) + α4β2γ3 + α5β3 + α5β3 − α6β2)µ2ν

+ (α2β6γ4 − α3β5γ4 + α4(β2γ6 − β3γ5 + β5γ3) + α5(β3γ4 + β6)− α6(β2γ4 + β5))µν2

+ (α4(β5γ6 − β6γ5) + (α5β6 − α6β5)γ4)ν3.

Since this holds for all choices of λ, µ, ν ∈ F , this implies γ3 = γ6 = α3 = α2β3 = 0 as well
as α6 = −β3γ5. Similarly, the vectors av+ J3, bv+ J3 and cv+ J3 are linearly dependent
in J2/J3 and by inserting the corresponding expressions, we obtain

0 = det

 λ µ 0
α2µ β2µ+ β3ν λ

α4λ+ α5µ− β3γ5ν β5µ+ β6ν γ4λ+ γ5µ


= (α4 + β2γ4 − β5)λ2µ+ (β3γ4 − β6)λ2ν + (β2γ5 − α2γ4 + α5)λµ2 − α2γ5µ

3.

This implies α5 = α2γ4 − β2γ5, β5 = α4 + β2γ4 and α2γ5 = 0. Lemma 5.1 yields

J3 = F{a3, a2b, aba, ba2, bab, b2a}+ J4 = F{a3, a2b, aba, ba2, bab}+ J4. (A.2)

Here, we use that b2a ∈ F{a3, aba}+ J3 holds by (A.1) together with γ2 = 0.

Assume α4 6= 0. Then we can replace a by α4a and assume α4 = 1. The condition
0 ≡ (ac)a− a(ca) (mod J4) yields

a3 ≡ −γ4aba (mod J4) (A.3)

and 0 ≡ (bc)a− b(ca) (mod J4) yields

ba2 ≡ (α2γ
2
4 + β3 − β2γ4)aba (mod J4). (A.4)

If β3 6= 0 holds, then we obtain

0 ≡ (b2)c− b(bc) ≡ (α2a
2 + β2ab)c− β3bab ≡ β2β3a

2b− β3bab (mod J4)

and hence bab ≡ β2a
2b (mod J4). Together with (A.3) and (A.4), this congruence shows
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that J2 = F{a2b, aba}+ J3 holds (see (A.2)), which implies dim J i/J i+1 ≤ 2 for all i ≥ 3
by Lemma 5.1. This is a contradiction and hence β3 = 0 follows. If β2 is nonzero, we may
assume β2 = 1 by replacing b by β−1

2 b. Then 0 ≡ (b2)b− b(b2) (mod J4) yields

bab ≡ (α2 + 1)a2b− α2
2γ

2
4aba (mod J4),

which leads to a contradiction as before. Hence we have β2 = 0, which yields α5 = α2γ4 and
β5 = 1. The condition 0 ≡ (bc)b− b(cb) (mod J4) translates to bab ≡ (α2γ4γ5 − α2

2γ
3
4)aba

(mod J4) and we obtain a contradiction in the same way as above.

We therefore have α4 = 0. Since dimK(A) = dimK(A) ∩ J3 + 3 holds, the elements
[a, b] + J3, [a, c] + J3 and [b, c] + J3 are linearly independent in J2/J3. In particular, [a, c]
is nonzero. This implies γ4 6= 0 and, by replacing b by γ4b, we may assume γ4 = 1. Note
that this yields

0 ≡ a(ca)− (ac)a ≡ aba (mod J4). (A.5)

Moreover, we have

[a, b] ≡ ab− ba (mod J3)

[a, c] ≡ −ba (mod J3)

[b, c] ≡ −α5a
2 + (β3 − β5)ab− γ5ba (mod J3).

Since [a, b] + J3, [a, c] + J3 and [b, c] + J3 are linearly independent in J2/J3, this implies
α5 6= 0. Since α5 = α2 − β2γ5 holds, either α2 or β2 is nonzero. If α2 = 0 holds, then we
may replace a by β2a and assume β2 = 1. This yields β5 = α2 + β2γ4 = 1 and hence

0 = (b2)b− b(b2) ≡ a2b− bab (mod J4)

0 = (ac)b− a(cb) ≡ −α5a
3 − a2b (mod J4).

Together with (A.5), this yields J3 = F{a3, ba2} + J4 (see (A.2)), which leads to a con-
tradiction as in the case α4 6= 0. Now if α2 6= 0 holds, then α2β3 = α2γ5 = 0 implies
β3 = γ5 = 0 and hence we obtain

0 ≡ (ac)b− a(cb) ≡ −α5a
3 − β5a

2b (mod J4)

0 ≡ (bc)b− b(cb) ≡ −α5ba
2 − β5bab (mod J4).

The first congruence relation yields a3 ∈ Fa2b+ J4 since α5 = α2 is nonzero. The second
identity implies ba2 ∈ Fbab + J4. Together with (A.5), we obtain J3 = F{a2b, bab} + J4

(see (A.2)). By [40, Lemma 3.2], this yields dim J i/J i+1 ≤ 2 for all i ≥ 3, which is a
contradiction.

Now we move to the investigation of certain (not necessarily symmetric) local algebras.
The following statement is the content of [10, Lemmas 2.5, 2.7, 3.3 and 3.5], adapted to
our situation.

Lemma A.2. Let A be a local F -algebra with dim J/J2 = 2 and dim J2/J3 ≥ 2 or
dim J/J2 = 3 and dim J2/J3 = dim J3/J4 = 2. Then the following hold:

(i) There exists an element x ∈ J with x2 /∈ J3.
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(ii) There exist elements a, b ∈ J such that a2 + J3 and ab+ J3 or a2 + J3 and ba+ J3

are linearly independent in J2/J3.

Proof.

(i) Assume that x2 ∈ J3 holds for all x ∈ J . First let dim J/J2 = 2 and dim J2/J3 ≥ 2
and write J = F{a, b}+ J2 for some a, b ∈ J . Then we obtain

0 ≡ (a+ b)2 ≡ a2 + ab+ ba+ b2 ≡ ab+ ba (mod J3),

which yields ba ≡ −ab (mod J3). By Lemma 5.1, we have J2 = F{a2, ab, ba, b2} +
J3 ⊆ Fab+ J3, which is a contradiction to dim J2/J3 ≥ 2.

Now let dim J/J2 = 3 and dim J2/J3 = dim J3/J4 = 2 and write J = F{a, b, c}+J2

for some a, b, c ∈ J . By assumption, we have a2, b2, c2, (a+ b)2, (a+ c)2, (b+ c)2 ∈ J3,
which implies ba ≡ −ab (mod J3), ca ≡ −ac (mod J3) and cb ≡ −bc (mod J3) as
before. With this, Lemma 5.1 yields J2 = F{ab, ac, bc}+ J3 and hence

J3 = F{a2b, a2c, abc, bab, bac, b2c}+ J4 = Fabc+ J4,

which is a contradiction to dim J3/J4 = 2.

(ii) First assume dim J/J2 = 2 and dim J2/J3 ≥ 2. By (i), there exists an element a ∈ J
with a2 /∈ J3. We choose an element b ∈ J such that J = F{a, b}+ J2 holds. Again,
we obtain J2 = F{a2, ab, ba, b2} + J3 and we may assume ab, ba ∈ a2 + J3 since
the claim follows otherwise. By exchanging the roles of a and b, we additionally
may assume ab, ba ∈ b2 + J3. In particular, there exist coefficients α, β ∈ F with
ab ≡ αa2 ≡ βb2 (mod J3). Since a2 + J3 and b2 + J3 form a basis of J2/J3, this
yields α = β = 0 and hence ab ∈ J3. Analogously, one shows ba ∈ J3. Then

(a+ b)2 = a2 + ab+ ba+ b2 ≡ a2 + b2 (mod J3)

(a+ b)b = ab+ b2 ≡ b2 (mod J3),

so (a + b)2 + J3 and (a + b)b + J3 are linearly independent in J2/J3, which proves
the claim.

Now assume dim J/J2 = 3 and dim J2/J3 = dim J3/J4 = 2. By (i), we may
write J = F{a, b, c} + J2 for some a, b, c ∈ J with a2 /∈ J3. We may assume
ab, ac, ba, ca ∈ Fa2 + J3 since the claim is proven otherwise. By Lemma 5.1, this
implies

J2 = F{a2, ab, ac, ba, b2, bc, ca, cb, c2}+ J3 = F{a2, b2, bc, cb, c2}+ J3.

Assume b2 /∈ Fa2 + J3. By exchanging the roles of a and b, we may assume
ab, ba, bc, cb ∈ Fb2+J3. Analogously to the above, one can then show that (a+b)2+J3

and (a + b)b + J3 are linearly independent in J2/J3. Hence let b2 ∈ Fa2 + J3 and
c2 ∈ Fa2 + J3. Without loss of generality, we may assume J2 = F{a2, bc}+ J3. But
then J3 = F{a3, abc, ba2, b2c} + J4 = Fa3 + J4 follows by Lemma 5.1, which is a
contradiction to dim J3/J4 = 2.
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The preceding lemma is applied to prove the following modified version of the argument
in [10, page 15], which is used in Proposition 5.39.

Lemma A.3. Let A be a local F -algebra which satisfies dim J/J2 = 3 and dim J2/J3 =
dim J3/J4 = 2. Then K(A) is a proper subset of J2.

Proof. Note that K(A) is contained in J2 by (5.1). In order to derive a contradiction, we
assume K(A) = J2. By the preceding lemma and possibly replacing A by its opposite
algebra, we find elements a, b, c ∈ J such that J = F{a, b, c}+J2 and J2 = F{a2, ab}+J3

hold. By Lemma 5.1, a3 +J4 and a2b+J4 form an F -basis of J3/J4. Write ac ≡ αa2 +βab
(mod J3) for some α, β ∈ F . By replacing c by c̄ := c− αa− βb, we may assume ac ∈ J3.
Furthermore, there exist coefficients αi, βi ∈ F (i = 1, . . . , 4) with

bc ≡ α1a
2 + β1ab (mod J3)

ca ≡ α2a
2 + β2ab (mod J3)

cb ≡ α3a
2 + β3ab (mod J3)

c2 ≡ α4a
2 + β4ab (mod J3).

With this, we obtain

0 ≡ (ac)a ≡ a(ca) ≡ α2a
3 + β2a

2b (mod J4)

0 ≡ (ac)b ≡ a(cb) ≡ α3a
3 + β3a

2b (mod J4)

0 ≡ (ac)c ≡ ac2 ≡ α4a
3 + β4a

2b (mod J4).

Comparing the coefficients yields α2 = β2 = α3 = β3 = α4 = β4 = 0. This implies

0 ≡ bc2 ≡ (bc)c ≡ α1a
2c+ β1abc ≡ β1abc = β1(α1a

3 + β1a
2b) (mod J4),

which yields β1 = 0. Furthermore, we obtain

0 ≡ b(cb) ≡ (bc)b ≡ α1a
2b (mod J4)

and hence α1 = 0. This yields [a, c], [b, c] ∈ J3 and hence

J2 = K(A) ⊆ F{[a, b], [a, c], [b, c]}+ J3 ⊆ F{[a, b]}+ J3,

which is a contradiction to dim J2/J3 = 2.
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