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I. Abstract 

This work investigates possibilities to create a high throughput, GPU-friendly, intra-only, Wavelet-based video 

compression algorithm optimized for visually lossless applications. Addressing the key observation that JPEG 

2000’s entropy coder is a bottleneck and might be overly complex for a medium-to-high bit rate scenario, various 

algorithmic alterations are proposed and evaluated.  

First, JPEG 2000 part-2’s Selective Arithmetic Coding mode is realized on the GPU, but the gains in terms of an 

increased throughput are shown to be limited. Instead, two independent alterations not compliant to the standard 

are proposed, that (1) give up the concept of intra-bit plane truncation points (single-pass mode) and (2) introduce 

a true raw-coding mode that is fully parallelizable and does not require any context modeling. The single-pass 

mode alone yields speed-ups of around 1.3x for the encoder and 1.15x for the decoder at virtually no decrease in 

compression rate. When enabling the raw-coding mode after four (three) bit planes, the speed-up rises to 1.4x 

(1.5x) for the encoder and 1.4x (1.6x) for the decoder. Low-resolution sequences benefit more from the sample-

parallel raw-coding mode, as their relative increase in parallelism is higher compared to 4K/UHD sequences. 

Next, an alternative block coder from the literature, the Bitplane Coder with Parallel Coefficient Processing (BPC-

PaCo), is evaluated. By giving up the context adaptiveness, it increases the parallelism in the block coder by 

processing a 64x64 code block concurrently with 32 arithmetic coders in a tightly synchronized fashion and 

interleaving their bit streams in a deterministic manner. An experiment is conducted that shows how a probability 

model averaged from a representative set of test sequences generalizes well and yields competitive compression 

efficiency. A combination of BPC-PaCo with the single-pass mode is proposed. For the demanding “VQEG crowd 

run” sequence, it increases the speed-up over the original Embedded Block Coder with Optimized Truncation 

(EBCOT) implementation from 2.15x (BPC-PaCo with two passes) to 2.6x (proposed BPC-PaCo with single-pass 

mode) and increases the PSNR penalty (w.r.t. EBCOT) from at most 0.7 dB to at most 1 dB.  

A theoretical runtime model is formulated that allows for predicting the runtime of a kernel on another GPU. The 

model is suitable also for complex data-dependent routines. The prediction accuracy is evaluated for two such 

kernels with three GPUs and shows good results for devices within the same generation.  

After the time-consuming context modeling and arithmetic coding routines are sped up, the Post-Compression 

Rate-Distortion Optimization (PCRD-Opt.) and packetization routines start to weigh in more significantly. An 

algorithm is presented and evaluated that searches for the optimal truncations points (given an available bit rate 

budget) and builds the entire code stream on the GPU in parallel, reducing the amount of data that has to be 

transferred back into host memory to a minimum. 

Lastly, the first ever GPU-decoder realization of the new JPEG XS standard is presented. JPEG XS was designed 

from the grounds to be a low complexity codec and for the first time explicitly demanded GPU-friendliness already 

in the call for proposals. Starting at bit rates above 1 bpp, the decoder is around 2x faster compared to the original 

JPEG 2000 and 1.5x faster compared to JPEG 2000 with the fastest evaluated entropy coder (BPC-PaCo with 

single-pass mode). With a high-end GeForce GTX 1080, a throughput of around 200 fps is achieved for a UHD 

4:4:4 sequence. On a PCI 2.0 16x connection, however, the throughput is limited at 125 fps, when transferring 

decoded frames back to host memory in parallel.  

Finally, all coders are evaluated in terms of quality and throughput. A case study examines the use case of 

transmitting video over a bandwidth-limited channel, e.g. into the cloud, and it is shown that it is beneficial to be 

able to select from a multitude of codecs with different computation complexity trade-offs. 

 

Keywords: JPEG 2000, EBCOT, JPEG XS, GPGPU, CUDA   



3 

II. Zusammenfassung 

Diese Arbeit befasst sich mit der Entwicklung eines GPU-freundlichen, intra-only, Wavelet-basierten 

Videokompressionsverfahrens mit hohem Durchsatz, das für visuell verlustfreie Anwendungen optimiert ist. 

Ausgehend von der Beobachtung, dass der JPEG 2000 Entropie-Kodierer ein Flaschenhals ist und für 

Anwendungen mit mittlerer bis hoher Bitrate zu komplex erscheint, werden verschiedene algorithmische 

Änderungen vorgeschlagen und bewertet. 

Zunächst wird der Selective Arithmetic Coding Mode aus JPEG 2000 Part-2 parallel auf der GPU realisiert, wobei 

sich die Erhöhung des Durchsatzes hierdurch als begrenzt zeigt. Stattdessen werden zwei nicht mit dem JPEG 

2000 Standard kompatible Änderungen vorgeschlagen, die (1) die für hohe Bitraten weniger relevante 

Funktionalität aufgeben Bitströme innerhalb einer Bitebene beschneiden zu können (Single-Pass-Modus) und (2) 

einen echten Rohcodierungsmodus einführen, der sample-weise parallelisierbar ist und keine aufwendige 

Kontextmodellierung erfordert. Der Single-Pass-Modus allein führt bei einer vernachlässigbaren Verringerung der 

Kompressionsrate zu einer Beschleunigung von etwa 1,3x für den Encoder und 1,15x für den Decoder. Wenn der 

Rohcodierungsmodus nach vier (drei) Bitebenen aktiviert wird, steigt die Geschwindigkeit auf 1,4x (1,5x) für den 

Encoder und 1,4x (1,6x) für den Decoder. Niedrigaufgelöste Sequenzen profitieren stärker vom hochparallelen 

Rohcodierungsmodus, da dort die relative Steigerung der Parallelität im Vergleich zu 4K-Sequenzen höher ist. 

Als nächstes wird ein alternativer Entropiekodierer aus der Literatur, der Bitplane Coder with Parallel Coefficient 

Processing (BPC-PaCo), evaluiert. Durch Aufgabe der Kontextadaptivität wird die Parallelität im Blockkodierer 

erhöht, indem ein 64x64-Codeblock gleichzeitig mit 32 arithmetischen Kodierern auf eng synchronisierte Weise 

verarbeitet wird und die Bitströme auf deterministische Weise verschachtelt werden. Es wird gezeigt und evaluiert, 

wie ein aus einem repräsentativen Satz von Testsequenzen ein gemitteltes statisches Wahrscheinlichkeitsmodell 

abgeleitet werden kann und dass dessen Kompressionseffizienz ausreichend nah an den auf die Sequenzen 

zugeschnittenen Modellen liegt. Es wird eine Kombination von BPC-PaCo mit dem Single-Pass-Modus 

vorgeschlagen. Für die anspruchsvolle „VQEG-Crowd-Run“-Sequenz erhöht dies die Geschwindigkeit gegenüber 

dem JPEG 2000 Entropiekodierer, Embedded Block Coder mit Optimized Truncation (EBCOT), von 2,15x (BPC-

PaCo mit zwei Pässen) auf 2,6x (Kombination aus BPC-PaCo mit Single-Pass-Modus), wobei sich die 

Verminderung des Spitzen-Signal-Rausch-Verhältnis (PSNR) von 0,7 dB auf etwa 1 dB erhöht.  

Es wird des Weiteren ein theoretisches Laufzeitmodell formuliert, das es ermöglicht die Laufzeit einer Routine 

auf einer anderen GPU vorherzusagen. Das Modell ist auch auf komplexe datenabhängigen Algorithmen 

anwendbar. Die Vorhersagegenauigkeit wird exemplarisch für zwei Kernels auf drei Grafikkarten untersucht mit 

dem Ergebnis, dass die Laufzeit genau vorhergesagt wird, aber nur innerhalb einer GPU-Serie.  

Nachdem die zeitaufwendigen Routinen des Kontextmodellierers und arithmetischen Coders beschleunigt wurden, 

beginnen die Post-Compression Rate-Distortion Optimization (PCRD-Opt.) und die Paketisierungsroutinen 

stärker ins Gewicht zu fallen. Es wird ein Algorithmus vorgestellt, der im Fall eines limitierten Bitratenbudgets 

die optimalen Bitstrom-Beschneidungspunkte findet und den gesamten Code-Stream parallel auf der GPU 

zusammenbaut. So wird die Datenmenge, die zurück von der GPU in den Hostspeicher übertragen werden muss, 

auf ein Minimum reduziert. 

Schließlich wird erstmals für den neuen Kompressionsstandard JPEG XS eine parallel GPU-Umsetzung 

vorgeschlagen und evaluiert. JPEG XS wurde von Grund auf als Low Complexity Codec konzipiert und forderte 

erstmals explizit GPU-Freundlichkeit bereits im Call for Proposals. Ab Bitraten über 1 bpp ist der Decoder etwa 

2x schneller im Vergleich zu JPEG 2000 und 1,5x schneller im Vergleich zu JPEG 2000 mit dem schnellsten hier 

vorgestellten Entropiekodierer (BPC-PaCo mit Single-Pass-Modus). Mit einer High-End-GeForce GTX 1080 wird 

ein Durchsatz von rund 200 fps für eine UHD-4:4:4-Sequenz erreicht. Bei einer PCI 2.0 16x-Verbindung ist der 

Durchsatz jedoch auf 125 fps begrenzt, wenn dekodierte Bilder parallel zurück in den Hostspeicher übertragen 

werden. 

Abschließend werden alle vorgestellten Verfahren hinsichtlich Qualität und Durchsatz verglichen. In einer 

Fallstudie wird die Übertragung von Video über einen bandbreitenbegrenzten Kanal, z.B. in die Cloud, untersucht 

und gezeigt, dass es von Vorteil ist aus einer Vielzahl von Codecs mit unterschiedlichen Balancen zwischen 

Kompressionsrate und Laufzeit auswählen zu können. 

 

Schlüsselwörter: JPEG 2000, EBCOT, JPEG XS, GPGPU, CUDA 
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1 Introduction 

1.1 Motivation 

The aim of this work is to investigate possibilities to create a GPU-friendly intra-only, Wavelet-based 

video image compression algorithm that is optimized for visually lossless applications. “GPU-friendly” 

here means that the codec can be strongly parallelized and leverage massively parallel architectures such 

as a graphics card that today is equipped with thousands of computing cores. GPUs use very lightweight 

threads that ideally process no more than a handful of samples each. 

The main motivation for this work stems from the author’s previous position in the digital cinema 

research group of Fraunhofer IIS. During this time, cinema worldwide transitioned from distributing 

analog film reels to shipping hard drives containing the so-called Digital Cinema Package (DCP) format 

[1]. In order to guarantee a pristine image quality while still benefitting from relatively high compression 

efficiency (among other reasons), the creators chose the intra-frame compression ISO IEC standard 

JPEG 2000 [2]. Its compression efficiency comes at the cost of a high complexity that makes the codec 

very computationally expensive. While cinema servers contain a dedicated JPEG 2000 FPGA decoder 

to guarantee real-time playback, authoring and quality control tools would be realized more flexibly and 

more cost effectively as software solutions. DCP mastering stations require fast encoders. Real-time 

decoding is required for pre-release screenings as well as quality control. Having been involved in the 

JPEG 2000 Digital Cinema profile standardization, Fraunhofer IIS develops such software solutions. 

The author’s master thesis tackled the problem of developing a decoder capable of playing back DCPs 

in real-time using commodity hardware. At the time, NVIDIA released the first version of its Compute 

Unified Device Architecture (CUDA) that permitted developers to execute arbitrary programs on the 

Graphics Processing Unit (GPU) leveraging its hundreds or thousands of cores [3]. Over the next years, 

a CUDA-accelerated JPEG 2000 codec has been developed. While some coding steps of JPEG 2000 are 

perfectly suited for an execution on a massively parallel device, others, namely the entropy coder, 

require considerable effort. On top of that, it soon became clear that the digital cinema profile - or the 

entire entropy coder named Embedded Block Coder with Optimized Truncation (EBCOT) for that matter 

- had not been specified with massively parallel architectures in mind. The primary focus was to deliver 

superior quality at very low bit rates rather than lowering the complexity at medium to high bit rates. 

More recently, the Interoperable Master Format (IMF) [4] has been created as a business-to-business 

master exchange format superior to the predominant Apple ProRes format and compression scheme [5]. 

Most notably, Netflix asks their suppliers to deliver all UHD and HDR content in this format [6]. While 

initially the broadcast profile had been used, the latest IMF extension specifies that the new IMF JPEG 

2000 profiles be employed which permit bit rates up to 800 Mbit/s as opposed to the maximal 250 Mbit/s 

in the cinema profiles [7–9]. For a 90 minutes feature film this amounts to a maximum theoretical size 



  Introduction 

9 

of over 500 GB per IMF package. This underlines that compression is essential, but at the same time 

creatives expect to be empowered to playback movies in real-time and render them faster than real time, 

requiring high-throughput codecs.  

When computing power is scarce, often cloud computing is a solution. However, for encoding movies 

the challenge is to transfer the input data, often uncompressed video, into the cloud in the first place. 

Chapter 11.4 will examine the relationship between available upload bandwidth, compression efficiency 

and encoding throughput in more detail.  

Beyond digital cinema, other domains such as live TV production require Low Complexity Coding. In 

order to be able to reuse existing IP or SDI infrastructure, a lightweight compression would often suffice 

to accommodate for an increase in resolution or frame rate. For example, a 60 fps 4:2:2 signal with 10 

bits/sample amounts to a raw bandwidth of 9.27 Gbit/s. Taking into account the protocol overhead, a 

compression ratio of around 1:4 would be sufficient for transmitting the signal over an existing dual SDI 

infrastructure with 3 Gbit/s bandwidth. Similarly, an UHD-2 (8K) signal with 37.08 Gbit/s could be sent 

over a 10 Gbit/s Ethernet IP infrastructure, if it were compressed with a little over 1:4. Since higher 

complexity typically demands chips with a larger die size and this increases the cost, a tailored codec 

that is as simple as possible is preferred. 

1.2 Research Objectives 

This work is concerned with the question how high quality intra-frame image compression schemes 

such as JPEG 2000 can be efficiently executed on a massively parallel device architecture. It also asks 

how the inherent trade-off between compression efficiency and computational complexity can be fine-

tuned when targeting parallel devices. Can the throughput be increased considerably while keeping the 

cost of decreased compression efficiency at a minimum? 

The JPEG 2000 standard already offers some optional advanced features to reduce the computational 

complexity. Though the use of these options is prohibited in the cinema, broadcast and IMF profiles, it 

is nonetheless worthwhile to examine their potential for GPU-accelerated image compression and 

decompression. Is there much to gain by permitting these features in the JPEG 2000 profiles employed 

by cinema and broadcast industry? (Chapter 5) 

Extending beyond the scope of the JPEG 2000 standard, how can the compression scheme be altered 

when giving up compatibility? Can the throughput bottleneck be remedied by designing a drop-in 

replacement for the complex entropy coder? (Chapter 7) 

Lastly, how does the requirement to expose as much parallelism as possible to take advantage of 

massively parallel architectures affect the design of a new low complexity codec? At the time this 

manuscript is written, in 2019, the JPEG XS standard is being standardized. It is the first JPEG codec to 
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require explicitly in its call for proposals a compatibility with GPU architectures. As part of this PhD 

thesis, the first GPU-accelerated JPEG XS decoder has been designed and realized. (Chapter 10.3) 

1.3 Publications 

The achieved research results have been published in the IEEE conference papers listed below. All 

publications underwent a full-manuscript (not abstract-only) peer-review process and are available for 

download on IEEE Xplore.1 A more comprehensive list of both published and unpublished contributions 

is given in chapter 13.1. 

1.3.1 PCS’16 - Sample-parallel execution of EBCOT in fast mode 

Bruns, Volker; Martinez-del-Amor, Miguel A., “Sample-parallel execution of EBCOT in fast mode”, Proceedings 2016 

Picture Coding Symposium (PCS), pp. 1–5, Nuremberg, Germany, December 2016 

JPEG 2000’s most computationally expensive building block is the Embedded Block Coder with 

Optimized Truncation (EBCOT). This paper evaluates how encoders targeting a parallel architecture 

such as a GPU can increase their throughput in use cases where very high data rates are used. The 

compression efficiency in the less significant bit planes is then often poor and it is beneficial to enable 

the Selective Arithmetic Coding Bypass style (fast mode) in order to trade a small loss in compression 

efficiency for a reduction of the computational complexity. More importantly, this style exposes a more 

finely grained parallelism that can be exploited to execute the raw coding passes, including bit stuffing, 

in a sample-parallel fashion. For a latency- or memory critical application that encodes one frame at a 

time, EBCOT’s tier-1 is sped up between 1.1x and 2.4x compared to an optimized GPU-based 

implementation. When a low GPU occupancy has already been addressed by encoding multiple frames 

in parallel, the throughput can still be improved by 5% for high-entropy images and 27% for low-entropy 

images. Best results are obtained when enabling the fast mode after the fourth significant bit plane. For 

most of the test images, the compression rate is within 1% of the original.   

1.3.2 ICIP’17 - GPU-friendly EBCOT variant with single-pass scan order  

Bruns, Volker; Martinez-del-Amor, Miguel A.; Sparenberg, Heiko, “GPU-friendly EBCOT variant with single-pass 

scan order and raw bit plane coding”, 2017 IEEE International Conference on Image Processing (ICIP), pp. 3230–3234, 

Beijing, China, September 2017 

A major drawback of JPEG 2000 is the computational complexity of its entropy coder. This paper 

proposes two alterations to the original algorithm that seek to improve the trade-off between 

compression efficiency and throughput. Firstly, magnitude bits within a bit plane are not prioritized by 

their significance anymore, but instead coded in a single pass instead of three, reducing the amount of 

expensive memory accesses at the cost of fewer truncation points. Secondly, low bit planes can entirely 

                                                      
1 

https://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&searchWithin=%22First%20Name%22:volk

er&searchWithin=%22Last%20Name%22:bruns 

https://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&searchWithin=%22First%20Name%22:volker&searchWithin=%22Last%20Name%22:bruns
https://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&searchWithin=%22First%20Name%22:volker&searchWithin=%22Last%20Name%22:bruns
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bypass the arithmetic coder and thus do not require any context modeling. Both the encoder and decoder 

can process such bit planes in a sample-parallel fashion. In contrast, the standard’s Selective Arithmetic 

Coding Bypass option still requires context modelling as only the symbols from two of the three passes 

bypass the arithmetic coder. 

Experiments show average speed-ups of 1.6x (1.8x) for the encoder and 1.5x (1.9x) for the decoder, 

when beginning raw-coding after the fourth (third) bit plane, while the data rate increases only by 1.15x 

(1.3x). 

1.3.3 MMSP’17 - Evaluation of GPU/CPU co-processing models for JPEG 2000 

packetization 

Bruns, Volker; Martinez-del-Amor, Miguel A.; Sparenberg, Heiko, “Evaluation of GPU/CPU co-processing models for 

JPEG 2000 packetization”, 2017 IEEE 19th International Workshop on Multimedia Signal Processing (MMSP), pp. 1–6, 

Luton, UK, October 2017 

With the bottom-line goal of increasing the throughput of a GPU-accelerated JPEG 2000 encoder, this 

paper evaluates whether the post-compression rate control and packetization routines should be carried 

out on the CPU or on the GPU. Three co-processing models that differ in how the workload is split 

between the CPU and GPU are introduced. Both routines are discussed and algorithms for executing 

them in parallel are presented. Experimental results for compressing a detail-rich UHD sequence to 4 

bits/sample indicate speed-ups of 200x for the rate control and 100x for the packetization compared to 

the single-threaded implementation in the commercial Kakadu library. These two routines executed on 

the CPU take four times as long as all remaining coding steps on the GPU and therefore present a 

bottleneck. Even if the CPU bottleneck could be avoided with multi-threading, it is still beneficial to 

execute all coding steps on the GPU as this minimizes the required device-to-host transfer and thereby 

speeds up the critical path from 17.2 fps to 19.5 fps for 4 bits/sample and to 22.4 fps for 0.16 bits/sample. 

1.3.4 PCS’18 - Decoding JPEG XS on a GPU 

Bruns, Volker; Richter, Thomas; Ahmed, Bilal; Keinert, Joachim; Fößel, Siegfried, „Decoding JPEG XS on a GPU“, 

Proceedings 2018 Picture Coding Symposium (PCS), San Francisco, USA, June 2018 

JPEG XS is an upcoming lightweight image compression standard that is especially developed to meet 

the requirements of compressed video-over-IP use cases. It is designed with not only CPU, FPGA or 

ASIC platforms in mind, but explicitly also targets GPUs. Though not yet finished, the codec is now 

sufficiently mature to present a first NVIDIA CUDA-based GPU decoder architecture and preliminary 

performance results. On a 2014 mid-range GPU with 640 cores a 12 bit UHD 4:2:2 (4:4:4) can be 

decoded with 54 (42) fps. The algorithm scales very well: on a 2017 high-end GPU with 2560 cores the 

throughput increases to 190 (150) fps. In contrast, an optimized GPU-accelerated JPEG 2000 decoder 

takes 2x as long for high compression ratios that yield a PSNR of 40 dB and 3x as long for lower 

compression ratios  with a PSNR of over 50 dB. 
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1.3.5 SPIE’17 - Parallel efficient rate control methods for JPEG 2000 (Co-authored) 

Martínez-del-Amor, Miguel Á.; Bruns, Volker; Sparenberg, Heiko, „Parallel efficient rate control methods for JPEG 

2000”, Proc. SPIE 10396, Applications of Digital Image Processing XL, San Diego, USA, Sep. 2017 

Since the introduction of JPEG 2000, several rate control methods have been proposed. Among them, 

Post-Compression Rate-Distortion Optimization (PCRD-Opt) is the most widely used and the one 

recommended by the standard. The approach followed by this method is to first compress all code 

blocks, and subsequently, optimally truncate the set of generated bit streams according to the target bit 

rate constraint. The literature proposes various strategies on how to estimate ahead of time where a block 

will be truncated in order to stop the execution prematurely and save time. However, none of them has 

been defined bearing in mind a parallel implementation. 

Today, multi-core and many-core architectures are becoming popular for JPEG 2000 codecs 

implementations. Therefore, in this paper, we analyze how some techniques for efficient rate control 

can be deployed in GPUs. In order to do that, the design of our GPU-based codec is extended, allowing 

stopping the process at a given point. This extension also harnesses a higher level of parallelism on the 

GPU, leading to up to 40% of speedup with 4K test material on a Titan X. In a second step, three selected 

rate control methods are adapted and implemented in our parallel encoder. A comparison is then carried 

out, and used to select the best candidate to be deployed in a GPU encoder, which gave an extra 40% of 

speedup in those situations where it was really employed. 
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2 Technical Background 

2.1 Image Compression Theory 

The goal of image compression is to reduce the number of bits required to store the image. When the 

reconstructed image 𝐼 is bit-identical to the original image I, the compression scheme is referred to as 

lossless. If the reconstructed image is similar, but not identical to the original image, the compression is 

lossy. The difference between the reconstructed image and the original image is called the error (or 

sometimes noise). The goal of image compression schemes is to reduce the required size as much as 

possible while keeping the error minimal.  

2.1.1 Error 

Various ways of computing the error can be found in the literature. A simple error measure is the Mean 

Squared Error (MSE), which corresponds to the Euclidean Distance. The MSE accumulates the squared 

differences of all corresponding pixels and then normalizes by the number of pixels. Given the width w 

and height h of a monochrome image, the MSE is defined as:  

MSE = 
1

𝑤ℎ
∑ ∑ (𝐼(𝑥, 𝑦) −  𝐼(𝑥, 𝑦))2 ℎ−1

𝑦
𝑤−1
𝑥=0  

Often, the Peak Signal to Noise Ratio (PSNR) is stated instead of the MSE. Given that pixel values are 

stored with a dynamic range of b bits, the PSNR is defined as: 

𝑃𝑆𝑁𝑅 = 10 ∗ log10(
(2𝑏 − 1)2

𝑀𝑆𝐸
 

Since the PSNR is a logarithmic scale, it is expressed with the unit dB. Higher values indicate a smaller 

error.  

A limitation of the MSE or PSNR is that it does not take into account the human visual system (HVS) 

and as such must be used with care when comparing the quality of reconstructed images [10]. To a 

human, the subjective image quality is influenced by how the error is distributed in the image. For 

instance, a small pixel error would be much more noticeable in the context of a blue sky than in the 

context of a tree with many detailed leaves. More involved quality metrics such as the Structured 

Similarity Index (SSIM) [10] or Netflix’s Video Multi-Method Assessment Fusion (VMAF) [11] should 

be used when evaluating the perceived quality of an image compression scheme. In this work, however, 

the codecs are operated in a domain, where the reconstructed image is required to be visually lossless, 

which implies that a human cannot tell the reconstructed image apart from the original one, even at the 

presence of noise. In the literature, a value of 40 db PSNR is sometimes cited as the threshold that marks 

the beginning of the visually lossless coding regime, though it is dependent on image content [12, 13]. 

The majority of the experiments reported in this work regard only compression rate and performance. 
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Those experiments where the impact on the image quality is evaluated, the quality is expressed in terms 

of dB PSNR and as such must be regarded with care as the order in which methods are ranked might 

change when evaluated with a more sophisticated quality measure that takes into account the human 

visual perception.   

2.1.2 Classes 

Image compression schemes can be classified among various dimensions.  

Lossy vs. lossless – As described in the previous chapter, codecs can operate lossy or losslessly. A 

requirement for lossless coding is that the compressed input signal is reconstructed perfectly, i.e. bit-

identically. This is easiest accomplished by performing all operations with integer operations in order 

to prevent rounding errors, though this can also be achieved with floating point arithmetic. Aside from 

rounding errors, information is typically discarded in the encoder’s quantizer and so lossless codecs do 

not quantize.  

Intra vs. Inter - An important attribute is whether each image in a video sequence is compressed 

independently (intra-frame compression) or whether the compressor utilizes the observation that 

subsequent images are often similar to one another and expresses one image in terms of another one 

(inter-frame compression). Inter-frame compression codecs cannot only exploit redundancies within a 

single frame (intra), but can additionally exploit temporal redundancies (inter) and therefore usually 

achieve a higher compression efficiency. A drawback is that transmission or storage errors can propagate 

along the causal chain of coded frames, which makes them much more noticeable to the viewer. Another 

drawback is that frame-accurate random access is more complicated, as it typically requires that, 

multiple other frames are decoded first, which the selected frame depends upon. For this reason, codecs 

used during the movie production and post-production typically do not use inter-frame compression. 

High efficiency vs. low complexity – In distribution scenarios where the bandwidth is very expensive 

(e.g. TV satellite distribution) or where it is simply limited (video streaming) codecs are employed that 

compress the signal as much as possible at the cost of noticeable but tolerable quality loss. A 

comparatively high complexity of employed codecs is acceptable, because in these two examples, the 

number of worldwide receivers is by far large enough to justify the high non-recurring engineering costs 

required for specialized hardware realizations (e.g. video processor on GPU or ASIC) of the decoders 

in order to enable real-time playback in consumer TVs, computers or smartphones. In contribution 

scenarios, such as on-board compression in professional film cameras or video-over-IP transmission 

boxes, however, FPGA-based solutions are preferred. Higher complexity then equals larger die size, 

which equals higher cost. Given that Gigabit Ethernet is now readily available, a codec is desired that 

compresses just well enough to achieve the available bit rate at the lowest possible complexity. 
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Recent examples of high efficiency inter-frame codecs are High Efficiency Video Codec (HEVC) 

standardized by ISO/IEC [14] or AOMedia Video 1 (AV1) developed by the Alliance for Open Media 

(AOMedia) [15].  

This work, however, is only concerned with intra-frame, Wavelet-based contribution codecs of a 

comparatively low complexity. Arguably, JPEG 2000 cannot be regarded as a low-complexity codec, 

but the first half of this work focuses on reducing its complexity.  JPEG XS has been designed from the 

beginning as a low-complexity codec, hence the name, which stands for extra small and extra speed. 

2.2 Wavelet based still image compression 

Both JPEG 2000 and JPEG XS are wavelet-based compression schemes that loosely follow the 

procedure outlined in the figure below. The encoder first seeks to concentrate the image’s energy into 

as few samples as possible. To this end, the first step is typically to decorrelate the colors by transforming 

from the RGB color space into a luminance-chrominance color space. This step is referred to as the 

Multi Component Transform (MCT). Since the human visual system is more perceptible to changes in 

brightness than to changes in color, optionally the chrominance channels can be subsampled.  

Table 2-1: Chroma Subsampling Schemes 

Subsampling scheme Chrominance channels 

4:4:4 Not subsampled 

4:2:2 Width is halved, height stays the same 

4:2:0 Both width and height are halved 

 

Next, each component (color channel) is individually wavelet-transformed with a Discrete Wavelet 

Transform (DWT). The wavelet transform poses an alternative to the Discrete Cosine Transform (DCT) 

that has been employed by many legacy codecs such as JPEG or MPEG-2 (used in DVDs). Whereas a 

cosine transform similar to a Fourier transform divides a localized window in the time-frequency plane 

uniformly, the wavelet transform seeks to make a trade-off between spectral and temporal localization. 

In the case of two-dimensional signals such as images, the time domain translates to spatial information. 

It achieves the desired property that low frequency image contributions are represented with higher 

spectral resolution (and lower spatial resolution) whereas high-frequency contributions are sampled with 

higher spatial resolution (and lower spectral resolution). From this follows the key difference that DWT-

compressed images are less prone to block-artefacts as the image is first wavelet-transformed and then 

the individual subbands are divided into blocks. In lossy coding, blocks in lower-frequency bands are 

quantized less heavily than those in higher-frequency bands. In contrast, DCT-based codecs first split 

the image into blocks in the spatial-domain and then transform each block into the frequency domain. 

The remainder of this chapter explains this in more detail. 
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Figure 2-1 – Filter bank design of Fast Wavelet Transform 

The Fast Wavelet Transform devised by S. Mallat formulates the DWT as a two-channel sub band coder 

as depicted in the above figure for the one-dimensional case [16]. While both multi-resolution coding 

and pyramidal algorithms were already known, Mallat built up on these approaches and introduced the 

use of orthogonal wavelets, devised by I. Daubechies the year before  [17], as a model for decorrelating 

the signal at different resolution levels. It can be computed with quadrature mirror filters (QMF). A 

signal f() is divided into an approximation part and a detail part by processing it with a low-pass and 

high-pass filter. Both parts are subsequently downsampled in order to keep the combined length of 

discrete output signals equal to the input signal. For an input signal of length N, this process can be 

repeated recursively at most log2(N) times by filtering the approximation signal again and again. 
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Figure 2-2 - 2D dyadic wavelet decomposition 

When extending this concept to the case of two-dimension signals, the transform’s separability can be 

utilized. The previous figure shows how an input image is first filtered vertically yielding a subband L 

with the low-frequency approximation signal and a subband H with the high-frequency detail signal. 

The resulting image is then additionally filtered horizontally. Alternatively, the image can be filtered 

along the same direction twice when transposing the intermediate result in-between both operations. 

The resulting image contains four sub-bands. The LL band now contains a lower-resolution version of 

the original image. The HL and LH bands contain horizontal and vertical edges, respectively, and the 

HH band contains diagonal edges. The result after an additional wavelet level is depicted in Figure 2-3.  
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Figure 2-3 - Lenna (left) - 1-level decomposition of Lenna (center) - 2-level decomposition of Lenna (right) (H subbands are 

multiplied by factor 10 for illustrative purposes) 

The individual wavelet subbands can then optionally be quantized. A larger quantization step size will 

cause coefficients to be stored with a lower accuracy. Prioritizing low frequencies over high frequencies, 

more bits are spent on storing coefficients from low-frequency subbands by employing smaller step 

sizes and increasing the step size for higher frequency bands. 

The subbands can then be divided into non-overlapping blocks or precincts that are independently 

entropy-coded. Finally, the packetizer organizes the entropy-coded bit streams into an overall code 

stream comprised of individual packets and headers. The following diagram (Figure 2-4) presents a 

high-level overview of a wavelet-based image encoder. 
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Figure 2-4 - Block Diagram of Wavelet-based Encoder 

The major contrast to a DCT-based intra-frame image codec is that the image is first transformed and 

then divided into relatively large blocks. A DCT codec will divide the color-transformed channels into 

smaller blocks, e.g. of size 8x8, and then apply the DCT on each individual block. In order to leverage 

that adjacent blocks have DC-coefficients of similar magnitude, they are sometimes additionally coded 

with a differential pulse code modulation (DPCM). The AC coefficients of a single block also contain 

redundancy, which can be exploited by ordering them by frequency (“zig-zag order”) and applying a 
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run-length or Huffman coding. For instance, legacy JPEG, Apple ProRes and Avid DNxHD follow this 

scheme. A major drawback is that such coders tend to produce block artefacts at medium to low bit 

rates. For a parallel decoder, an additional drawback is that DCT-blocks cannot immediately be decoded 

concurrently, as the DC-coefficients are usually DPCM-coded and have to be reconstructed first before 

the AC coefficients can be decoded. 

2.3 General Purpose Computing on GPUs 

GPUs have originally been designed to carry out solely graphics-processing related tasks. Driven by the 

ever more demanding computer games, GPUs have become very powerful parallel devices 

outnumbering the number of cores in a CPU by far (Figure 2-5). As the graphics pipeline became more 

customizable by means of writing shader programs researchers began to formulate general purpose 

computations in terms of graphics processing problems in order to be able to execute them on the GPU 

[18]. The concept of carrying out generic computing problems that have traditionally been executed on 

the CPU is referred to General Purpose Computing on GPUs (GPGPU). In 2007, NVIDIA released the 

first version of their CUDA toolkit, simplifying the task of GPGPU significantly.  

 

Figure 2-5 - Floating-Point Operations per Second for the CPU and GPU. Source: [19] 

2.3.1 GPGPU Frameworks 

CUDA is not the only compute API. Though it is free of charge, CUDA is a proprietary solution and 

only works with NVIDIA GPUs. This poses a limitation as most notably Apple computers cannot be 

easily targeted by CUDA-based software. Apple desktop computers have been using AMD cards 

exclusively in the past years.  
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The Khronos Group, most famous for having specified the graphics processing language OpenGL, has 

released an alternative solution called Open Compute Language (OpenCL) [20]. While many concepts 

are very similar to NVIDIA’s CUDA, the single most striking difference is that device code is compiled 

online at runtime just as it is the case with OpenGL GLSL shaders. OpenCL devices are not limited to 

GPUs, but also the CPU is regarded as a parallel device. Altera, later acquired by Intel, has even released 

an SDK for writing FPGA code using OpenCL [21].  

Other compute APIs are AMD’s Heterogeneous Compute (HC) [22], Microsoft’s C++ AMP [23] and 

Apple’s Metal [24]. The OpenMP (“open multi-processing”) API, managed by the “OpenMP 

architecture review board (ARB)” is known to provide a convenient way to parallelize for-loops by 

preceding them with the parallel for pragma directive. In version 4.0 it introduced the target keyword 

that allows offloading code to a particular device target such as a GPU [25]. 

The compute APIs use similar design concepts, but different terminology. A mapping of the different 

terms can be found at [22]. Various cross compilers or source-to-source translators have been developed, 

in particular to translate from CUDA to OpenCL [26, 27]. AMD recently released its Heterogeneous-

Computing Interface for Portability (HIP). It is a C++ dialect that can be compiled either for AMD 

hardware using their HCC compiler or for NVIDIA hardware using the CUDA compiler [22]. A team 

at Google has developed an open source CUDA compiler [28]. 

The algorithms presented in this work have been realized with CUDA and compiled with NVIDIA’s 

CUDA compiler NVCC. While some of the algorithms should be straightforward to translate to other 

compute APIs, others utilize CUDA-specific techniques such as register shuffling or SIMD group voting 

routines in order to achieve the highest performance. A comparison of how the proposed algorithms 

perform when realized in the various compute languages would be interesting and valuable, but has not 

been carried out as it is outside of the scope of this work.    

2.3.2 CUDA Architecture 

In NVIDIA terminology, a GPU is comprised of multiple Streaming Multiprocessors (SM) that each 

have a fixed number of cores. Figure 2-6 shows a multiprocessor of the NVIDIA Pascal architecture 

that is used in the GeForce 10 series. It incorporates 64 single precision floating point cores partitioned 

into two blocks that each have their own scheduler and 32 KB register file.  
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Figure 2-6 – NVIDIA Streaming Multiprocessor for Pascal architecture. Source: [29] 

The 32 cores that share a single instruction scheduler can be regarded as a Single Instruction Multiple 

Data (SIMD) group, termed warp in CUDA terminology. The SIMD width has been 32 since CUDA 

1.0. Fast interactions among threads in a SIMD group, but also across SIMD groups are possible by 

using the 64 KB shared memory.  

2.3.3 CUDA Programming Model 

CUDA introduces some extensions to the C language that are recognized by the NVIDIA C Compiler 

(NVCC). Functions that shall be executed on the GPU are termed kernels. GPU code is parsed offline 

and translated into an intermediate language. When a kernel is launched from a CPU (host) function, 

the caller assigns a threading layout to the kernel. The layout is comprised of a three-dimensional grid 

made up of three-dimensional blocks. Each point in the block represents a single thread and is identified 

by its integer x-, y- and z-coordinate (Figure 2-7).  
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Figure 2-7 - CUDA thread batching model –comprised of grid, blocks and threads. Adapted from: [19] 

The grid and block dimensions as well as the current block and thread IDs are available to the developer 

as built-in variables. This way the SIMD paradigm can be conveniently realized by defining a mapping 

from thread coordinates to input and output data inside the kernel. A block is executed by a single 

multiprocessor and so threads within a block can be synchronized and share data via the on-chip shared 

memory (Figure 2-8). Threads across blocks cannot be synchronized and no assumptions can be made 

as to the order in which the scheduler will swap in blocks. 
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Figure 2-8 - CUDA memory model. Adapted from: [19]  

In the CUDA programming model a parallel program is described in terms of thousands of lightweight 

threads where the programmer intentionally oversubscribes the number of physical cores in the GPU. 

This way the program scales well to more powerful or even future GPUs with more cores (Figure 2-9).  
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Figure 2-9 - left: Automatic Scalability. SM = Streaming Multiprocessor: Source: [19] 

2.3.3.1 Asynchronous Memory Transfer  

Before a kernel can carry out an image operation, pixels need to be transferred from the host’s RAM 

into global graphics memory. Similarly, the result needs to be transferred back from device into host 

memory after the operation has finished. GPU operations such as memory transfers or kernel executions 

can be carried out asynchronously. This way, host (CPU) and device (GPU) can operate concurrently. 

GPUs are also capable of overlapping a memory transfer with a kernel, multiple kernels or even two 

memory transfers of opposite directions, provided they have two copy engines. A prerequisite for non-

blocking memory transfers between host and device is that the host memory is located in non-pageable 

(pinned) memory that is guaranteed not to have been swapped out into the page file by the operating 

system.  

2.3.3.2 Streams 

Overlapping two or more kernels only takes effect when one kernel alone does not fully utilize all 

available GPU resources. Often, this is the case when the previous kernel is almost finished and only 

few thread blocks are left to be executed. Then the scheduler can start assigning the first blocks of the 

next kernel to multiprocessors that were otherwise idle, keeping the overall GPU load high even in 

between kernel launches. Causalities between operations can be modeled by scheduling operations into 

separate streams. Operations within the same stream are guaranteed to be executed in order (unless 

otherwise specified), but operations from separate streams can be overlapped. Inter-stream dependencies 

can be modeled by scheduling synchronization points into streams.  

2.3.3.3 Occupancy 

An important measure of how efficiently a kernel operates is its achieved occupancy. For a single 

multiprocessor i, it is defined as  
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𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦(𝑖) =  
𝑆𝐼𝑀𝐷_𝑔𝑟𝑜𝑢𝑝𝑠𝑎𝑐𝑡𝑖𝑣𝑒

𝑖

𝑆𝐼𝑀𝐷_𝑔𝑟𝑜𝑢𝑝𝑠max 𝑎𝑐𝑡𝑖𝑣𝑒
𝑖

 

A high occupancy indicates a high instruction efficiency. The maximum number of active SIMD groups 

is usually computed by dividing a single multiprocessor’s available resources (registers, number of 

threads, shared memory) by the resources required by one SIMD group since all SIMD groups have to 

share the resources.  

Often it is advantageous to limit the resource consumption of a single thread block in order to enable 

the scheduler to keep two or more blocks resident in the same multiprocessor. This way, if one block is 

stalled, e.g. when waiting for the result of an access to slow global memory, the scheduler can hide the 

latency by executing another block in the meantime.  

2.3.4 Data Transfer 

When using the GPU as a co-processor input data has to be transferred to the GPU and output data has 

to be transferred back to the CPU. For the encoder, the CPU-to-GPU transfer involves more data, for 

the decoder the GPU-to-CPU transfer is more critical. Unless, in case of a decoder, the decoded images 

are directly output to a computer monitor and not transferred back to the CPU, both transfers’ durations 

need to be included in any time measurements in order to achieve a fair comparison with CPU-based 

implementations.  

Modern graphics cards can transfer and compute in parallel. On professional graphics cards, it is in some 

cases even possible to transfer in both directions in parallel. Nonetheless, computing and transferring in 

parallel increases the latency and when the computation kernels are heavily optimized, the parallel data 

transfer could become a bottleneck. The subsequent chapters throughout this work repeatedly address 

how a particular coding mode affects the amount of data that has to be transferred. To this end, it is 

important to assess whether the data transfer rate will likely remain critical in the future or whether it 

will become negligible due to an increasing bandwidth.  

In computers, data is transferred via the Peripheral Component Interconnect Express (PCI Express), 

which is standardized by the PCI Special Interest Group (PCI-SIG) [30]. Figure 2-10 shows for RGB 

image streams with 16 bit per sample and resolutions between HD and 16K, how many images per 

second can be transferred when using 16 lanes. To account for protocol overhead, a netto transfer rate 

of 80% of the theoretically achievable rate is assumed.  
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Figure 2-10 - achievable uncompressed image transfer rates over PCI express [30] 

While initially it took between three and seven years for a new major PCI revision to be released (1.0 in 

2003, 2.0 in 2007, 3.0 in 2010, 4.0 in 2017), beginning with version 4.0 a new major revision has been 

released every other year (4.0 in 2017, 5.0 in 2019, 6.0 in 2021) [30]. So far, with every major release 

the theoretically achievable data rate has doubled. Is the data rate bottleneck a problem of the past that 

will soon be solved by better hardware? Using 16 lanes, the theoretically achievable data rate has 

increased from 4000 MB/sec with version 1.0 in 2003 to 120.000 MB/sec with version 6.0 released in 

2021. When considering a resolution of 4K, already PCI 3 achieves a transfer rate of 263 frames per 

second. However, when assuming a larger image resolution of 8K (8192 x 4095 pixels), PCI 4 released 

only in 2017 is required to achieve more than 100 fps. PCI 5 released recently in 2019 yields 263 fps. 

When the resolution is quadrupled again from 8K to 16K, PCI 5 achieves 66 fps and PCI 6 131 fps.  

In conclusion, it appears that the achievable data transfer rate grows faster than the demand in bandwidth 

due to an increasing image resolution increases. However, another important aspect is to account for a 

significant delay of multiple years that are required for a new standard to penetrate the market and 

become widely available. Especially when targeting existing commodity hardware where it is not given 

that the latest standards are available, it is found worthwhile to consider and minimize, where possible, 

the amount of data transferred between CPU and GPU.  

2.4 Parallel Primitives 

This work proposes several application oriented algorithms that draw heavily on existing parallel 

primitives. Popular open source libraries that offer highly optimized implementation of such primitives 

are CUDA UnBound (CUB) [31], Modern GPU [32] and thrust [33]. A comparison of these libraries 

can be found at [31]. The algorithms implemented in this work utilize the CUB library. It organizes and 

optimizes primitives by their scopes, i.e. whether they are collectively executed  
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1. by a single SIMD-group (“warp-wide”) 

2. by a thread block (“block-wide”) or 

3. by an entire grid of threads (“device-wide”) 

In the following, the scan and reduction primitives are shortly addressed, as these are the ones that are 

most heavily referred to in this work.  

2.4.1 Scan 

When the scan operation is an addition, it is also called a prefix sum. Other binary associative operations 

are supported by the scan algorithm, but this work uses mostly the sum operation.  

inclusive prefix sum: 𝑦[𝑖] = ∑ 𝑥[𝑖]𝑖
𝑗=0   exclusive prefix sum:  𝑦[𝑖] = ∑ 𝑥[𝑖]𝑖−1

𝑗=0  

One distinguishes between an inclusive and external scan. The inclusive scan adds as the current value 

x[i] to the sum, whereas an exclusive prefix sum only considers the previous elements x[0] through  

x[i-1].  

An extension of the continuous prefix scan is a segmented prefix scan. The input signal x[i] is 

accompanied by an equally sized vector of binary flags f[i] e {0,1}, where a 1-flag indicates that the 

prefix sum shall be restarted and a 0-flag indicates that it shall be continued. 

Parallel implementations split the overall operation into small partial sub-tasks, e.g. in the case of a 

prefix sum, the addition of only two values. Recursively, the partial results are combined until the overall 

result is available. An excellent description of how the scan operation can be very efficiently 

implemented for CUDA has been composed by NVIDIA’s Mark Harris et al in the GPU Gems 3 chapter 

Parallel Prefix Sum (Scan) with CUDA [34, 35].  

2.4.2 Reduction 

The goal of the data parallel reduction primitive is to reduce an array of elements to a shorter array or 

even a single element, based on a predefined operation. The operation is often a min-, max- or sum-

operation. Another problem where a reduction is frequently used is to remove elements of a certain 

value (e.g. all zeros) from an input sequence.  

Mark Harris of NVIDIA gave a presentation on how to best implement a reduction with CUDA in 2007 

[36]. Since the shuffle instructions and fast atomic device memory access became available with the 

release of the NVIDIA Kepler architecture, it has been beneficial to implement the reduction primitive 

in a different way as is described in this blog post [37]. 
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3 State of the Art 

3.1 JPEG 2000 

Considerable research has been devoted to re-formulating the individual JPEG 2000 coding-blocks for 

an execution on a GPU. Even before CUDA or OpenCL were released, Tenllado et al presented how to 

implement 2D DWTs efficiently on GPUs by repurposing programmable graphics shaders [18]. More 

recently, it was shown how to leverage CUDA’s register-shuffling intrinsics in a parallel DWT 

implementation [38]. Whereas the default solution for exchanging data among neighboring threads is 

via the on-chip shared memory, the authors propose an implementation where threads from a single 

SIMD-group exchange registers directly using the newly introduced shuffling intrinsics. 

The EBCOT algorithm poses a greater challenge as it does not inherently expose finely grained 

parallelism. A sample-parallel context modeling algorithm was presented in [39] and later in [40] and 

[41]. Whereas in the decoder, a feedback loop between the context-modeler and arithmetic decoder 

exists – the current decoded value is required in order to compute the new context, which is in turn 

required by the arithmetic decoder to decode the next value – the communication in the encoder is 

unidirectional. This can be utilized to decouple context modelling from arithmetic coding. The causal 

dependency introduced by the significance propagation is realized with an iterative loop and the voting 

intrinsic. Since this technique is being employed by the reference GPU-accelerated EBCOT 

implementation used in the work, the concept is described in more detail in chapter 4.2.2.  

A CUDA-based open source encoder, titled cuj2k, was released by the University of Stuttgart, where 

color transform, DWT, quantization and EBCOT are offloaded to the GPU, but PCRD-Opt. and 

packetization are executed on the CPU [42]. The last update is from 2013, though. Another CUDA-

based open source implementation named GPU JPEG2K is published by Poznan Supercomputing and 

Networking Center. The website was also last changed in 2013. It claims to be slightly faster than 

Stuttgart’s cuj2k [43]. According to the published results, both encoders reach only less than 2 fps on a 

GeForce GTX 480 for an UHD RGB24 image. They are therefore not further regarded in the context of 

this work. An EBCOT variant especially tailored for GPU architectures is described in [40].  

Breaking compatibility with the standard, the same paper, [40], introduces a parallelizable arithmetic 

coder (AC) that produces separate interleaved bit streams for each context. The entropy coder variant is 

compared to the reference C implementation, but unfortunately, the gain of the parallel AC over the 

default MQ-coder is not reported. The runtime for tier-1 of entropy coder alone for the 5 MP bike and 

café test images [44] is reported to be below 4 fps on a GeForce GTX 480 (vs. 4-5 secs with the C 

implementation).  

[45] proposes the “ultrafast” mode, where EBCOT is replaced by a fixed codebook Huffman coder 

preceded by an optional prediction step. The work aims for faster CPU implementations and reports 
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speed-ups of up to 1.5x (2.9x) for the encoder (decoder). Since the Huffman coder does not operate bit 

plane-wise, the embeddedness property of the resulting bit streams as well as the possibility for a post-

compression rate control is lost.  

GPU-specific implementation optimizations for the MQ-coder were presented in [46]. Aside from 

research related to parallel architectures, another related field is that of alternate rate control algorithms, 

especially since the standard leaves some room for implementations here. The PCRD-Opt.-based rate 

control was first proposed by Taubman in [47] and adopted as an example into the standard. Many 

algorithms have the goal of estimating prior to compression, which passes will end up being truncated. 

An excellent overview is given by Aulí Llinás’ in his PhD thesis [48]. A discussion of rate control 

heuristics specific to a parallel GPU-implementation can be found in [49]. Since rate-control heuristics 

are not discussed in the context of this work, the topic is not further addressed here. Chapter 11.1 

addresses how the chosen quantization step size affects the achievable quality and impacts the quality. 

Similarly, a heuristic to predict a good quantization ahead of time is not addressed either. 

3.2 BPC-PaCo 

Developed by Aulí Llinás, Enfedeque et al at Universitat Autonoma de Barcelona, the Bit Plane Coder 

with Parallel Coefficient processing (BPC-PaCo) has been published between 2015 and 2017 [50–53]. 

It presents a drop-in replacement for JPEG 2000’s EBCOT entropy coder with the objective of exposing 

more finely grained parallelism. Since it is so closely related to this work, a separate chapter is devoted 

to describing BPC-PaCo in more detail (chapter 8).  

3.3 Low Complexity Coding  

3.3.1 Professional Video Production 

One predominant use case for low complexity coding is the in-house transmission in professional video 

production where the state of the art is uncompressed transmission over SDI. The demand for higher 

resolutions and higher frame rates has been addressed by improving the hardware layer. Available SDI 

bandwidth was increased from 1.5 Gbit/s to 3 Gbit/s, 6 Gbit/s and even 12 Gbit/s. This, however, is still 

not sufficient to transmit uncompressed UHDp60 without chroma subsampling as listed in the following 

table.  
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Table 3-1: uncompressed bandwidth overview. * Does not consider protocol overhead. 

Resolution Frame  

Rate 

Subsampling Bit  

Depth 

Required  

payload bandwidth  

Required Compression Ratio  

incl. Protocol overhead 

HD 60 4:2:2 10 2.31 Gbit/s 1 GigE: 1:3-1:4 

1,5 Gbit/s SDI: 1:3 

HD 60 4:4:4 10 3.47 Gbit/s 1 GigE: 1:5-1:6 

1,5 Gbit/s SDI: 1:3 

UHD 60 4:2:2 10 9.27 Gbit/s 3 Gbit/s SDI: 1:4 

6 Gbit/s SDI: 1:2 

UHD 60 4:4:4 10 13.90 Gbit/s 6 Gbit/s SDI: 1:3 

UHD-2 (8K) 60 4:2:2 10 37.08 Gbit/s 10 GigE: 1:5 

12 Gbit/s SDI: 1:4 – 1:5 

 

Lightweight coding is not likely going to be used for distribution over WAN or contribution, as these 

applications require higher compression ratios. Today, JPEG 2000 is frequently used in this context. 

3.3.2 Video-over-IP 

The lower maximum cable length of the high-bandwidth hardware links poses an additional downside. 

Instead of transmitting video over a dedicated SDI infrastructure, an alternative is to transmit it 

embedded in the IP protocol (video-over-IP). The main advantage of video-over-IP is that existing 

Ethernet infrastructure can be reused. In order to facilitate convenient transitioning between SDI and 

Ethernet infrastructure, initially the approach was simply to transmit entire SDI frames comprising 

audio, video and ancillary data. SMPTE St 2022-6 defines how an SDI frame is encapsulated in the Real-

Time Transfer Protocol (RTP), which operates on top of the UDP and IP layers [54, 55]. A major 

drawback to this approach is that the SDI protocol adds considerable overhead of up to 30% of the net 

data rate. Furthermore, audio and video essences cannot be routed or processed individually.  

These drawbacks have been remedied by the SMPTE St 2110 set of standards. Essences are now directly 

mapped to RTP and streamed separately [56]. At the time this manuscript was written in 2020, only a 

mapping for uncompressed images had been defined. An image compression scheme was not yet 

supported.  

3.3.3 Requirements on Video Codec 

Regardless of whether the link is SDI or IP, transmitting high resolution, high framerate video requires 

a light compression. In a production environment, the image quality needs to be visually lossless and in 

order to support multiple transitions between SDI and IP links, the codec needs to be very robust to 

multiple encoding-decoding cycles. The European Broadcasting Union (EBU) recommend that codecs 

employed during production should yield “quasi-transparent quality”, i.e. no visible degradation,  
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throughout at least seven cycles [57]. Especially in live production, the latency is another important 

criterion. This includes the time it takes from the moment a frame was captured with the camera to the 

time it is displayed on the screen. For sub-frame latency codecs, the latency is measured in number of 

image rows. The encoder compresses the first rows and then emits them as soon as possible so that the 

decoder can reconstruct them in parallel. The decoder releases the first reconstructed rows even before 

the encoder has reached the end of the frame.  

3.3.4 Codecs 

This chapter briefly addresses the main representatives for lightweight image compression codecs. [58] 

discusses in more detail the advantages and drawbacks of the existing codecs. 

SMPTE VC-2 - SMPTE VC-2 is based on the Dirac Pro codec developed by the British Broadcasting 

Corporation (BBC) [59][60]. Dirac is a video compression scheme developed by BBC research starting 

from 2003 as successor for MPEG-2 and targeting HD and beyond applications. It competes with 

H.264/AVC. The full specifications were first released in 2008 [61]. A low-complexity, intra-frame-

only version called Dirac Pro was standardized as SMPTE VC-2 in 2010.  

Dirac’s Main Profile is a hybrid coding scheme with motion estimation and compensation utilizing long 

GOPs with I, P and B frames. The image is converted to the YCoCg color space and then split into 

overlapping blocks of variable size for motion compensation. Motion vectors can be defined per macro-

block (4x4 blocks), sub-macro-block (2x2 blocks) or block with a precision up to 1/8 of a pixel and may 

point into at most two reference frames from the past or future. Optionally, motion vectors can be 

expressed relative to a global motion vector that describes a zoom, tilt or pan. The residual error signal 

is then wavelet-transformed with one of seven wavelet filters, including CDF 9/7, LeGall 5/3 or Haar-

Transform. Sub-bands are then quantized and optionally split into code blocks of arbitrary size. Code-

blocks (or in their absence entire sub-bands) and motion vector data are then entropy-coded with a 

context-adaptive binary arithmetic coder. Code-blocks are traversed with only one pass per bit plane 

and quantization indices are assigned to one of 17 contexts, depending on their state and neighborhood.  

Four profiles are defined: Main (long GOP), Main (Intra, AC), Simple (Intra, no AC) and Low Delay. 

Only the latter three are available in SMPTE VC-2. 

In contrast to Dirac Core, Dirac Pro is an intra-frame only scheme. It is constrained to a 10 bit 4:2:2 

pixel format. Coefficients in the LL0 (aka DC) subband are predicted based on three neighbors (W, NW, 

N). The arithmetic coder is replaced by a computationally less expensive Exp.-Golomb coder in the Low 

Delay profile. Spatially corresponding code blocks from all sub-bands are grouped into slices and 

ordered as such in the output stream, enabling the decoder to independently reconstruct the pixel domain 

area represented by a single slice. Two applications are Dirac Pro 1.5, which achieves a 5:2 compression 

of full HDTV (1080p50/60) for transport over (1.5 Gbit/s) HD-SDI links at a delay of only six HD lines 
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(0.25 msecs) and Dirac Pro 270 for the compression of 1080i50/60 signals for transport over SD-SDI 

links (270 Mbit/s) [60]. 

Apple ProRes / SMPTE RDD 36 – The Apple ProRes collection of codecs supports both chroma-

subsampled and non-subsampled formats with and without an alpha plane (4:2:2, 4:4:4, 4:2:2:4, 4:4:4:4) 

and bit depths of 8, 10 or 12 bits per sample [62, 63]. Similarly to legacy JPEG and MPEG-1 or MPEG-

2, the image is converted into the YCbCr color space and divided into macro-blocks (16x16 pixels) and 

then further into blocks (8x8 samples) that are each DCT-transformed and quantized. For 4:2:2 images, 

a macro-block will contain four blocks from the luminance channel (Y) and two blocks from each of the 

chrominance channels. Up to eight horizontally adjacent macro-blocks are in turn grouped into slices 

that are each independently entropy-coded. For DC coefficients, the prediction residual is coded. AC-

coefficients are run-length-coded in a zig-zag scan order. The resulting symbols are coded in a 

combination of Exp.-Golomb and Golomb-Rice (small values with Golomb-Rice-code, large values with 

Exp.-Golomb code) [62].  

ProRes is a variable-bit rate-coder. According to [63] the variability is small and a maximum bit rate 

exists that is never more than 10% above the target bit rate. The decoding speed for a 1080p 422 HQ 

(4444 XQ, no alpha) frame on a 12-core Mac Pro is stated to be under 2 ms (6 ms). For a 1080p24 

sequence the target data rates lie between 36 Mbit/s for 422 Proxy and 396 Mbit/s for 4444 XQ (no 

alpha). For a 2160p24 (UHD) sequence, the date rate is almost exactly four times as high. The similarity 

to Avid’s DNxHD family of codecs (standardized as SMPTE VC-3) is high [64]. 

Intopix TICO / SMPTE RDD 35 – TICO stands for Tiny Codec and was selected by the JPEG to 

become the basis for the new JPEG XS codec [65]. Images are first wavelet-transformed with an integer-

based LeGall 5/3 wavelet. Coefficients are then quantized and grouped into sets of four samples each. 

A simple entropy coder merely computes the highest significant bit plane index (so-called greatest 

coding line index – GCLI) for each group. Since neighboring GCLIs tend to be similar, their residual is 

computed and run-length-coded. The sign- and magnitude bits between the GCLI bit plane and the 

truncation bit plane (selected by the quantizer) are directly appended to the bit stream. 

3.4 Standardization 

3.4.1 JPEG XS 

The JPEG XS call for proposal was released in March of 2016. JPEG XS is a separate family of 

specifications that currently comprises five parts. The goal was to devise a codec with very low latency 

and complexity that is well suited for operation on professional video links such as SDI or video-over-

IP. The compression rate it was designed for is between 1:2 and 1:6.  
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The call for proposals was answered by various parties. [66] gives an overview on the contributions. In 

the end, Intopix s.a., creators of the TICO (Tiny Codec) lightweight codec, and Fraunhofer IIS were 

tasked to develop the new standard.  

The submission named Fast Block Coding with Optimized Truncation (FBCOT) by David Taubman of 

University of New South Wales was found to be too complex still [12]. It went on to become the basis 

of the subsequent JPEG 2000 High Throughput undertaking. 

The core coding system standard has been published in May of 2019 as “ ISO/IEC 21122-1:2019” [67] 

3.4.2 JPEG 2000 High Throughput 

In summer of 2017 the JPEG 2000 standardization committee released a call for proposals for a high-

throughput drop-in replacement for EBCOT [68]. It was published not as a new standard, but as part 15 

of the JPEG 2000 standards family [69]. The so-called High-Throughput JPEG 2000 (HTJ2K) activity 

aims to increase the throughput at minimal cost in compression efficiency, while keeping compatibility 

with the JPEG 2000 framework as high as possible.  
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4 JPEG 2000 

4.1 Description of the Encoder 

Compression scheme specifications typically define the code stream format and how it shall be 

interpreted by a decoder in order to reconstruct the original data. This leaves vendors some degree of 

freedom in how they implement the encoder. However, this chapter describes the JPEG 2000 

specifications from the encoder’s point of view for better comprehensibility (Figure 4-1).  
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Figure 4-1 – JPEG 2000 encoder block overview 

JPEG 2000 is an intra-frame compression codec. For a single image, it first seeks to compact the energy 

of the image into as few samples as possible. To do that, it first decorrelates luminosity (“brightness”) 

from color information. It then processes each channel individually with an energy compaction 

transform, in the case of JPEG 2000 a Wavelet transform. In the lossy case, it will then quantize the 

coefficients. The quantization step size is typically lower for luminance coefficients than for 

chrominance coefficients. Likewise, it is lower for low-frequency signals and grows towards higher 

frequencies. The encoder will then split each wavelet subband into non-overlapping uniformly sized 

blocks, e.g. of size 32x32, that are each independently entropy-coded into a bit stream. The rate 

controller then truncates the bit streams, if necessary, to meet the maximum bit rate constraint. Lastly, 

the bit streams are organized into a code stream according to a predefined progression order, e.g. by 

quality, by resolution, or by component. The following chapters will elaborate on the individual coding 

steps. 

4.1.1 Multi-Component Transform 

The Multiple Component Transform (MCT) provides a generic way of transforming the input image 

channels into a representation better suited for compression. For the case where the inputs image 

comprises a red, green and blue channel, JPEG 2000 part-1 contains two predefined transforms that 



  JPEG 2000 

33 

separate luminosity from color. The human visual system is more perceptive to changes in luminance 

than in chrominance and this can be exploited by compressing the latter more heavily. In lossy mode, 

the Irreversible Color Transform (ICT) is the standard point-wise linear RGB-to-YCbCr color transform. 

The Reversible Component Transform (RCT), on the other hand, is defined as a non-linear relation 

between original and targeted color space and is implemented using integer arithmetic to prevent 

rounding errors.  

4.1.2 Wavelet Transform 

In JPEG 2000 part-1, bi-orthogonal wavelets are used, specifically the real Cohen-Daubechies-

Feauveau 9-tap/7-tap kernel (CDF 9/7) for the irreversible path and the integer LeGall 5-tap/3-tap 

kernel (LeGall 5/3) for the reversible path. Part-2 allows for employing other wavelet filters as well. 

The number of wavelet levels depends on the image resolution. The standard demands only that the 

lowest subband (LL0) must contain at least 128 samples in each dimension. In the profiles relevant for 

professional media production, five decompositions yielding six embedded resolution levels are 

demanded for HD or 2K images, which yields a LL0 size of approximately 256x256 samples. According 

to JPEG 2000 part-1, the number of horizontal and vertical decompositions must be equal. 

4.1.3 Quantization 

In the irreversible path, a deadzone scalar quantization is employed. In this type of quantization, the 

central interval around zero, referred to as the deadzone, is twice as wide as all other intervals. Step sizes 

may be defined per subband. They are explicitly communicated to the decoder in the code stream as 

subband attributes. In lossless mode, wavelet coefficients are not quantized. For further details regarding 

the theory on quantization and JPEG 2000 specifics, the reader is referred to [70]. 

4.1.4 Block Coding 

Each color channel’s wavelet subbands are then divided into non-overlapping code blocks that are 

independently encoded. The dimensions are defined in the DCI-, IMF- and broadcast-profiles to be 

32x32. For a 2K image with three color channels, this yields roughly 5000-6000 blocks. EBCOT 

encodes each of these blocks into an embedded bit stream. JPEG 2000 employs a post-compression rate-

control. That means it first attempts to compress an image as well as possible, given a user-defined 

quantization step size. If the accumulated length of all code blocks’ bit streams does not exceed the 

desired target, no further work is required. If it has been exceeded, however, some or all of the bit 

streams need to be truncated. The goal is to do this in a fashion that the error introduced by an omission 

of bits is minimized. In order to solve this optimization problem, the block coder computes for some 

points in a single bit stream how much the distortion would be affected by including the additional bits 

since the previous point. Since it is only permitted to truncate the bit stream at any of these points, they 

are referred to as truncation points.  This way, a rate-distortion plot for each code block can be devised, 
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which is then used to determine the most appropriate cut-off point. Without going into details at this 

point, it becomes visible that it is beneficial to have as many potential truncation points as possible. On 

the other hand, increasing the number of truncation points will also raise the amount of required 

computations. In order to yield good quality even at very low bit rates, EBCOT not only adds truncation 

points after each bit plane, but additionally allows for fractional bit planes. In the original EBCOT 

publication, each bit of a bit plane is coded in one of four passes based on how likely it is that the 

inclusion of this bit will decrease the distortion [47]. The passes are executed one after the other, starting 

with the one that is estimated to improve the quality the most. In the course of the standardization, 

however, the number of passes was changed from four to three in order to reduce the computational 

costs.  

EBCOT consists of two tiers. In tier-1, blocks are processed bit plane by bit plane, starting with the most 

significant magnitude bit plane. All bits are processed in a predefined scan order, passing over each 

plane three times. Each bit, together with a context describing the local neighborhood, is fed to a context-

adaptive binary arithmetic coder, called MQ-coder. Successively, the MQ-coder produces a bit stream. 

With the goal of meeting a user- or profile-defined global bit rate constraint, in tier-2 the set of bit 

streams, one per code block, will be truncated, if necessary. If multiple quality layers are used, tier-2 

will additionally decide when to start allocating bits to the next layer. 

4.1.4.1 Tier-1 – Context Modeling and Entropy Coding 

EBCOT first converts the quantization indices into a sign-magnitude representation. The most 

significant bit plane now represents the signs, with 1-bits indicating a negative sign and 0-bits indicating 

a positive sign. The remaining bit planes present the samples’ magnitudes as visualized in Figure 4-2.  
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Figure 4-2 – bit plane view on 8x8 code block. Magnitudes are stated with five bits precision, the sixth plane with the sign 

bits is not depicted. 

Each bit plane is divided into stripes with four rows each. The scan order is  

1. by bit plane from MSB to LSB (skip initial MSBs that only contain 0 bits) 
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2. three passes per bit plane 

3. in each pass by stripe from top to bottom 

4. by stripe column from left to right 

5. by sample from top to bottom  

Figure 4-3 shows the scan order within one stripe. Initial magnitude bit planes that consist entirely of 0-

bits are skipped. Instead, the number of insignificant MSB bit planes is signaled to the decoder by coding 

it as part of the code block header in the code stream.  

st
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Figure 4-3 – block coding scan order and context modeling 

In a given bit plane, each bit is coded in one of the three passes. The bit value d together with a context 

cx e{0-17} is fed into the MQ-coder. The arithmetic coder maintains separate probabilities for each of 

the 18 contexts. Depending on whether the incoming symbol d equals the most probable symbol (MPS) 

or not, the MQ-coder will update the current context’s MPS probability according to a predefined table 

with 46 static transitions. 

In order to be able to understand how the contexts are formed, the three pass types and four coding 

primitives need to be introduced. Each bit of a bit plane is coded in exactly one of these three passes 

using one of the four coding primitives listed in Table 4-1.  

Table 4-1 - EBCOT Coding Primitives 

Acronym Name Contexts Meaning 

ZC Zero coding 
9, computed from significance of 

neighbors 

Code current magnitude bit, while 

sample is still insignificant 

SC Sign coding 
5, computed based on signs of 

neighbors 

Code sign bit 

MRC 

Magnitude 

refinement 

coding 

3, based on first refinement or not 

and whether neighborhood is 

significant 

Code current magnitude bit, after 

sample has already become significant 

RLC 
Run length 

coding 
1: “uniform probability” 

Code length of zero run within one 

stripe column. Used when entire stripe 

column neighborhood is insignificant  
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The membership for each pass is computed based on a context that is maintained per sample: 

Table 4-2 - EBCOT state variables 

Variable Scope Meaning 

σ across all bit planes Sample is already significant, it is non-zero in decoder’s eyes because 

the first d=1 bit has been emitted 

σ´ across all bit planes Magnitude refinement coding has been applied 

η Current bit plane only Current bit has been coded in SPP 

 

An overview of the three pass types can now be given in terms of the employed coding primitives and 

context variables: 

Table 4-3 - EBCOT pass types 

Acronym Name Eligible 

primitives 

Membership 

Condition 

Meaning 

SPP 

Significance 

Propagation 

Pass 

ZC, SC 
σ[x,y]=0 ˄ 

σ[x±1,y±1] ≠ 0 

“Sample still insignificant, but at least one 

neighbor significant” 

MRP 

Magnitude 

Refinement 

Pass 

MRC 
σ[x,y]=1 ˄ 

η[x,y]=0 

“Sample already significant, but did not only just 

turn significant in this bit plane’s SPP” 

CUP 
Clean-Up 

Pass 

ZC, SC, 

RLC 

σ[x,y]=0 ˄ 

η[x,y]=0 

“Sample not yet significant and has not been 

coded in this bit plane’s SPP” 

 

Significance Propagation Pass 

The significance propagation pass seeks to code all those samples that are still insignificant, i.e. their 

value is zero in the decoder’s eyes, but that are likely to have a value of d=1. This assumption is made 

when at least one of the samples from the 3x3 neighborhood is already significant, i.e. a d=1 value has 

already been emitted to the bit stream. For those samples in the scan order past (W, NW, N, NE) the 1-

bit could have been emitted in the current bit plane or earlier bit planes, for samples from the scan order 

future it must have been emitted in an earlier bit plane. In case d is indeed 1, the sign bit is interleaved 

immediately following the magnitude bit. It is clear why the set of bits that will turn the currently zero-

valued sample (in the eyes of the decoder) into a non-zero value is considered very important and thus 

included before any magnitude refinement bits. A single 1-bit in a high bit plane would reduce the 

difference between the decoder’s currently assumed value (0) and the true value immensely and thus 

reduce the error significantly. At the same time, this information is only valid and useful if the sign is 
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known. By interleaving it right away, a situation is prevented where the bit stream is truncated between 

the most significant magnitude bit and the sign bit. 

Magnitude Refinement Pass 

This pass selects all those samples that have already turned significant in a previous bit plane. Even 

before this pass, the decoder already knew that the sample has a non-zero magnitude. The additional 

information from this pass merely refines the magnitude by informing the decoder whether this less 

significant magnitude bit has a true bit value of zero or one. To give an example, a true value 19 

(0b10011) has already turned significant when the fifth bit plane had been coded. In the significance 

pass of the fifth bit plane a 1-bit had been “sent” from the encoder to the decoder, i.e. in the decoder’s 

eyes the value is now 0b10000 (16). In fact, since the decoder knows that the least significant four bit 

planes have not been coded yet this value could eventually be reconstructed to any value between 

0b11111 (31) and 0b10000 (16). Instead of assuming zeros for all remaining bit planes, it will implicitly 

set the next lower bit in order to “guess” a value in the middle of this range: 0b11000 (24). When the 

fourth bit plane is coded, this value is coded in the magnitude refinement pass, since it has already turned 

significant (first 1-bit send) in the fifth plane. The value 19 contains a 0-bit at the fourth magnitude bit 

plane, and so now the decoder will correct the reconstructed value from 0b11000 (24) to 0b10100 (20). 

In this example, by coding the additional magnitude bit, the error between the reconstructed value (24) 

and the true value (19) has been reduced from 5 to 1. 

Clean-Up Pass 

All remaining bits of the current plane that have not been coded in the previous two passes will be coded 

in this pass. Namely, samples that are still insignificant (zero in the decoder’s eyes) and have a 

neighborhood where all samples are also still insignificant. If this is the case for all four samples in the 

stripe column, the run-length coding primitive will be used. A zero-run is limited to a single stripe 

column, i.e. a length of four. It codes one bit that indicates whether the run is interrupted or not. In case 

it is interrupted, it codes two more bits that together state the length of the zero-run. The remaining bits 

after the interrupted run are then regularly coded with the zero-coding primitive, optionally followed by 

the sign-coding primitive, if necessary.  

The first magnitude bit plane is not separated into three passes. Instead, only the Clean-up-pass is carried 

out. Figure 4-4 visualizes for a high-entropy image, grouped by resolution level, when samples turn 

significant, respectively their sign bit is coded. 
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Figure 4-4 - bytes for sign bits over bit planes grouped by resolution level for standard-compliant JPEG 2000 coding 

4.1.4.2 Tier-2 – Rate Control and Packetization 

Rate Control 

This paragraph stems from the author’s published work [71]. 

Tier-2 is responsible for truncating the code blocks’ bit streams in order to comply with a user- or profile-

defined target bit rate constraint. If the accumulated size of all bit streams exceeds the available bit rate 

budget, the goal is to truncate the set of bit streams in a way that minimizes the error introduced by the 

truncations. The standard proposes the Post-Compression-Rate Distortion-Optimization (PCRD-Opt.) 

algorithm. It relies on the block encoder (tier-1) to provide as side-information an estimate of each 

truncation point’s slope on a rate-distortion plot (Figure 4-5). It is then an optimization problem to find 

the set of truncation points nj - one for every block’s bit stream j - that yields the lowest overall distortion 

while still staying within the available data rate budget. The algorithm is explained in detail in the 

standard [2] and the original publication [47]. To give a brief overview here, it can be shown that only 

the truncation points that lie on the convex hull of their block’s rate distortion plot are viable candidates 

and so all potential points for a single code block have strictly decreasing slopes. It follows that a set of 

truncation points 𝑛𝑗
λ can be constructed by defining a slope threshold λ and then selecting, for each code 

block, the truncation point that has a slope closest to, but not below this threshold. A bisection search 

will gradually lead to the best available slope threshold λ. It starts by probing a threshold half way 

between the minimum and maximum possible slopes.  
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The bit stream lengths and number of included passes for each code block can be computed based on 

the current set of truncation points. Then the packet headers, tile-part headers and main headers are 

simulated and their lengths summed up to give the total code stream size. As long as this computed size 

exceeds (or is too far below) the specified budget, the procedure is repeated with a lower (higher) slope 

threshold. 
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Figure 4-5 – left: Rate-distortion (RD) plot for a single code block. Right: RD-plots for all code blocks 

Packetization 

Structurally, a JPEG 2000 code stream consists of a set of markers that can be categorized into a main 

header and tile parts. A tile part is a sub-portion of the compressed image and its content depends on the 

progression order. The stream is organized according to four dimensions of scalability:  

• Layer. Progression by layer causes a bit stream to be progressive by quality. All data of layer l 

packets appears before any layer l+1 packet. 

• Resolution. Progression by resolution guarantees that resolution level r is brought to full quality 

before any packets from level r+1 are included.  

• Component. Progression by component defines that all packets from component c appear in the 

code stream before any packets containing data from component c+1. 

• Position. Progression by position can be regarded as a spatial progression. Each tile’s packet 

will be ordered according to the tile’s spatial position from top to bottom. 

 

A quality progressive code stream similar to legacy JPEG can be achieved by grouping code block 

contributions in a predefined number of layers, where each layer contains additional information and 

thus further enhances the quality. The user can either manually specify bit rates for each layer or simply 

select the number of layers, leaving it up to the encoder to determine an optimal distribution of bit rates. 

Neither the cinema profiles, nor the broadcast or IMF profiles permit the use of quality layers.  

Multiple of these dimensions can be supported simultaneously. In the same manner, a so-called 

transcoder application is able to perform various operations, like spatial transformations, change of 

progression order or resizing or adjustment of bit rate, without having to decode and re-encode the 

compressed image, by simply re-ordering, dropping or truncating selected packets.  
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When the major progression order is by color channel, each tile-part corresponds to a color channel. The 

main header comprises global properties and coding options required to decode and interpret the image. 

Tile-part headers contain further properties that can vary by tile-part, such as the bit depth. They are 

followed by the tile-part body, which is comprised of a set of packets. Each packet contains the 

compressed code blocks from one particular precinct in one quality layer. Since the use of quality layers 

is prohibited in the DCI, broadcast and IMF profiles, we assume there is only a single quality layer going 

forward. Each packet header contains the code blocks’ number of skipped all-zero bit planes, pass count 

and segment lengths. Since these values are likely to be similar for the code blocks in one precinct, they 

are compressed with tag tree and comma codes. For improved random access, the tile-parts’ lengths can 

be stated in the main header2. This is mandatory in the DCI, broadcast and IMF profiles. 

4.2 Exploiting Parallelism in JPEG 2000 

A parallelization of the color transform is straight forward as each pixel can be transformed 

independently. [38] describes how the DWT can be implemented by utilizing the CUDA register 

shuffling operations in order to avoid having to store intermediate results in shared memory. This chapter 

will instead focus on the entropy coder and discuss if and how the block coder can be executed with 

finely grained concurrency. 

4.2.1 Decoupled Context Modeling and Arithmetic Coding in EBCOT Encoder 

The block coder is by far the most time-consuming coding block of the JPEG 2000 coder [72][34]. In 

terms of being able to parallelize the block coder, a key difference between the encoder and decoder 

needs to be pointed out. On the encoder side, communication between the context modeler and 

arithmetic coder is uni-directional (Figure 4-6). The context modeler pushes context-decision pairs into 

the arithmetic encoder and modeling of subsequent pairs is not dependent upon any return value of the 

arithmetic coder. In the decoder, however, the communication is bi-directional. The context modeler 

pushes the next context in, which the arithmetic decoder requires to be able to decode the next decision 

bit from the bit stream.  

Context
modeler

MQ
encoder

{cx,d}
Pairs

cx

d
bitstream

MQ
decoder

Context
modeler

Encoder Decoder

 

Figure 4-6 - Communication between context modeler and MQ-coder 

It follows, that context modeling and arithmetic coding can be decoupled in the encoder, but not in the 

decoder. This makes it possible to overlap context modeling for bit plane n+1 with MQ-coding of the 

                                                      
2in the Tile-Part Length in Main Header (TLM)-marker  
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context-decision pairs of bit plane n. For this reason, context modeling (CM) and MQ-coding (MQ) are 

implemented in separate kernels that each operate on a single bit plane (Figure 4-7). The loop over all 

bit planes is executed on the host [49]. 

 

Figure 4-7 - overlapped context modeling (CM) and MQ-coder kernels in EBCOT encoder. Diagram copied without changes 

from [49] 

4.2.2 Sample-parallel EBCOT encoding 

Since the per-context probabilities are never reset in the arithmetic coder and significance states can 

propagate throughout a code block, a causal dependency chain exists between the very first bit coded in 

the most significant bit plane’s first pass and the last bit coded in the least-significant plane’s last pass. 

However, the uniform communication between context modeler and MQ-encoder can be exploited to 

reformulate the three pass executions within a single bit plane as a concurrent algorithm [39, 40]. 

Technically, it is possible to assign one thread per sample, but for implementation reasons it is 

advantageous to assign one thread per stripe column. This way the state variables of four samples can 

be coded into a single 32-bit register and additionally the run-length coding primitive is easier to realize. 

The worst-case amount of symbols per stripe column is stated in the following table. 

Table 4-4 - Worst case number of symbols per stripe column 

Pass Symbols Explanation 

SPP 4 x (ZC+SC) = 8 Zero-coding and sign-coding for each sample 

MRP 4 x MRC = 4 MRC for each of the four samples 

CUP RLC + SC + 3 x (ZC+SC) = 10 Run length-coding 1 01 signals that run is interrupted after 1 bit. 

It follows sign-coding for the first sample and then ZC+SC for all 

the remaining samples. 

 

In order to carry out context modeling in parallel, two new state variables, ρ and τ, are introduced [39].  

Table 4-5 – sample-parallel EBCOT state variables 

Variable Scope Meaning 

ρ across all bit planes Sample became significant in any previous bit plane 

τ current bit plane only Sample will become significant during current bit plane’s SPP 

 

In a per-bit plane initialization routine, all threads concurrently determine their values for ρ and τ. It is 

straightforward to compute ρ by simply checking if any previous magnitude bit for the sample is 1.  
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τ is computed iteratively. The current sample will be coded during the current SPP, if it lies in a preferred 

neighborhood, i.e. any neighbor has already become significant in the scan order past. It will additionally 

become significant if the current magnitude bit is 1. Since the significance is propagated along the scan 

order, this routine is repeated until all threads report that their value for τ has not changed anymore 

compared to the previous iteration. This can be implemented with CUDA’s thread voting instructions, 

specifically the any command.  

Once every thread has determined their four samples’ ρ and τ states, they can carry out the four coding 

primitives according to the following membership conditions.  

Table 4-6 – sample parallel EBCOT coding primitives membership conditions for bit plane n 

Acronym Membership Condition Pass 

ZC ρn+1 = 0  (Previous magnitude bits all 0) τ =  {
1 → 𝑆𝑃𝑃
0 → 𝐶𝑈𝑃

 

SC ρn+1 = 0 ˄ d=1 (Current magnitude bit is the first 1-bit) τ =  {
1 → 𝑆𝑃𝑃
0 → 𝐶𝑈𝑃

 

MRC ρn+1 = 1 (any previous magnitude bit is 1) MRP 

RLC 
ρn+1 = 0  ˄ ρ[±1, ±1]n+1 =  0 for all samples in stripe (all samples in 

stripe column and their neighbors insignificant) 

CUP 

 

The context-decision pairs then have to be sorted by pass type and stored to global memory (Figure 4-8) 

so that the subsequent MQ-encoding kernel can read and arithmetically encode them in the correct order 

(Figure 4-9).  

 

Figure 4-8 - Design of the CM kernel (note that code blocks have been simplified to 8x8 here) 
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Figure 4-9 - Design of the MQ kernel  

4.2.3 Conclusion 

A theoretical analysis of the degree of parallelism exposed by the algorithm provides the basis for 

selecting a suitable kernel design and threading layout. Two key observations lead to entirely different 

designs in the encoder and decoder as listed in Table 4-7. 

Table 4-7 - impact of degree of parallelism exposed by algorithm on implementation design 

observation exploitation 

In the encoder, communication between the 

context modeler and arithmetic coder is uni-

directional, while in the decoder it is a bi-

directional feedback loop. 

By decoupling context modeling and arithmetic 

coding into separate kernels, both kernels can run 

in parallel, increasing the GPU utilization 

The encoder has full knowledge of all sample 

values ahead of time. In contrast, the decoder 

knows only the portion of the magnitudes that has 

already been decoded. 

Only in the encoder, context modelling can be 

realized in a sample-parallel fashion by carrying 

out the significance propagation using collective 

thread voting primitives in a pre-processing step.  

 

Due to the points listed in the table above, entropy coding in the encoder is realized in two separate 

kernels that are each spawned once per bit plane. The loop that iterates over all bit planes and schedules 

which code blocks still have pending work must be carried out on the host. In contrast, both for context 

modeling and arithmetic coding a code block is the smallest work unit on the decoder side and cannot 

be further broken down. Consequently, entropy coding can be combined into a single kernel with one 

thread per code block. Here, the loop over each bit plane takes place in the GPU kernel. 



Chapter 4    

44 

The GPGPU programming paradigm is designed for very lightweight threads. Having to assign an entire 

code block to a single thread violates the GPGPU design concept and prevents a good GPU utilization 

and in turn optimal throughput. This motivates to investigate possibilities to change the entropy coder 

design with the goal of mitigating this drawback by exposing a higher degree of parallelism.  
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5 JPEG 2000 Compliant Extensions 

5.1 Motivation: Poor compression efficiency in lower bit planes 

The discussion in this chapter is motivated by the observation that DCI-compliant code streams of 2K 

24 fps DCPs very frequently do not exceed the maximum bit rate of 250 Mbit/s. Consequently, even the 

lower bit planes are processed with three passes each, which takes a lot of effort. The question is whether 

the assumptions made by the context modeler and arithmetic coder on the probability distribution in the 

source signal still hold even at the lowest bit planes.   

The following Figure 5-1 visualizes the results of an experiment run on an image from the DCI Standard 

Evaluation Material (StEM) [73] that contains relatively many details. The stacks show for each 

resolution level of the luminance channels, the mean compression rate separated by pass type and bit 

plane.  

 

Figure 5-1 - Compression efficiency for a frame from the DCI StEM sequence (“MM_2K_XYZ_01571”, Y channel, DCI 2K 

profile). Values below 1 indicate compression, values above 1 expansion. If fast mode starting after fourth bit plane were 

enabled, symbols from SPP and MRP in bit planes marked with an “x” would bypass the MQ-encoder, reaching a value of 1. 

The compression efficiency of any given code-pass can be defined as the inverse ratio of the number of 

symbols that are fed into the MQ-encoder to the number of bits that are emitted by the coder. Ratios 

smaller than one indicate that the MQ-encoder has compressed the signal while ratios larger than one 

indicate an expansion.  

It is evident that across all resolution levels, the compression efficiency is highest in the most significant 

bit planes and decreases towards the LSBs. In some occasions, the bits coded in magnitude refinement 

and significance propagation passes are even expanded, not compressed. The reason is that the Laplacian 

distribution assumed by the coder is not actually present anymore, but instead the signal approaches a 

uniform distribution [74].  
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Figure 5-2- Bytes saved by entropy-coding for (Crowd Run sequence) 

A second example (Figure 5-2) visualizes for the Crowd Run sequence, how many bytes are saved by 

entropy coding, grouped by resolution level and bit plane. Starting from the sixth bit plane, the majority 

of passes get expanded rather than compressed. Moreover, it is visible that in the three most significant 

bit planes, the lower frequencies, i.e. the subbands in the lowest (red bars) and second lowest (brownish 

bars) and third lowest (green bars) resolution levels, compress better than the higher frequencies. 

5.2 Selective Arithmetic Coding Bypass style 

This paragraph stems from the author’s published work [75]. 

To address the issue laid out in the previous chapter, JPEG 2000 defines the Selective Arithmetic Coding 

Bypass style, sometimes also denoted simply as fast mode in the literature. When enabled, symbols from 

the significance propagation and magnitude refinement passes starting from a code block’s fifth 

significant bit plane are directly appended to the bit stream, bypassing the MQ-encoder. Symbols from 

clean-up passes must still be fed into the MQ-encoder as usual, as they typically compress well. A bit 

stream needs to be terminated whenever switching between non-bypassed and bypassed mode so that in 

the end it consists of multiple segments. This coding style is signaled globally for either the entire image 

or image component – it cannot be set on a code-block-by-code-block basis. Part 2 of the standard 

enhances the mode by enabling the user to select whether the arithmetic coder in the significance 

propagation and magnitude refinement passes should already be bypassed as early as in the second, third 

or fourth bit plane. 
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Figure 5-3 - Selective Arithmetic Bypassing Mode 

5.3 Sample-Parallel Execution of EBCOT in Fast Mode 

The fast mode is not permitted in any of the DCI, broadcast or IMF profiles. Nonetheless, it is helpful 

to find out whether a JPEG 2000 encoder running on a GPU can benefit from enabling this mode.  

The contribution presented at the Picture Coding Symposium 2016 [75] is motivated by the observations 

laid out in the previous chapters and answers the following research question: Can an implementation 

of EBCOT that targets parallel architectures such as GPUs benefit from the more finely grained 

parallelism exposed by this coding style and thereby increase its throughput? 

The contents of this chapter have been published in [75]. 

When operating EBCOT without fast mode, context modeling can be executed in a sample-parallel 

manner as previously discussed. Arithmetic encoding, however, does not expose intra-code-block 

parallelism. The MQ-encoding kernel is spawned with one thread per code block, which is far from 

ideal, as it does not meet the CUDA design concept of very lightweight threads. 

With the fast mode enabled, context modeling is only required for the clean-up pass. However, in order 

to determine the pass membership in a concurrent manner, the general structure of the sample-parallel 

algorithm presented before still has to be followed. Magnitude bits from the SP and MR passes are raw-

coded. They are coded in the same scanning order as before, but the coding operation merely appends 

the bit directly to the bit stream.  
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Given that context modeling and raw-coding can be done concurrently, the only coding step that is not 

well parallelizable is MQ-encoding of the context-decision pairs from the clean-up pass. A first question 

is whether this still justifies separating the coding steps into separate kernels with different respective 

threading layouts or whether it is faster to simply fuse all operations into a single kernel.  

A high-level presentation of a parallel EBCOT'’s tier-1 in fast mode, where all coding operations are 

realized in a single kernel, is presented in Algorithm 5-1.  

Algorithm 5-1 - EBCOT tier-1 with bypassed SPP and MRP 

one thread per stripe column 

1. contextModeling() // SPP+MRP+CUP 

 

2. numLocalSyms[] = countLocalSymbols() 

3. shared sharedMem[] // byte buffer 

 

4. // ---- SPP ---- 

5. startIdx = exclScan(numLocalSyms[SPP]) 

6. putBitsAtomic(sharedMem, startIdx,  

7. getLocalSppSyms(), numLocalSyms[SPP]) 

 

8. // ---- MRP ---- 

9. startIdx = exclScan(numLocalSyms[MRP]) 

10. putBitsAtomic(sharedMem, startIdx,  
11. getLocalMrpSyms(), numLocalSyms[MRP]) 
 

12. // ---- SPP + MRP bitstuff & copy ---- 
13. totalNumSyms = scanTotalNumSyms(numLocalSyms) 
14. numBytes = bitstuff(sharedMem,  
15. totalNumSyms[SPP] + totalNumSyms[MRP]) 
16. if (threadId() == 0) // is block leader? 
17.   terminateRawSegm(sharedMem) 
18. if (threadId() < numBytes) 
19.   bitstream[threadId()] = sharedMem[threadId()] 
 

20. // ---- CUP ---- 
21. startIdx = exclScan(numLocalSyms[CUP]) 
22. putBits(sharedMem, startIdx,  
23. getLocalCupCtxds(), numLocalSyms[CUP]) 
 

24. shared mqenc; 
25. if (threadId() == 0) { // is block leader? 
26.   startMqSegm(mqenc) 
27.   for (i = 0; i < numLocalSyms[CUP]; i++)  
28.     mqEncode(mqenc, bit stream, sharedMem[i]) 
29.   terminateMqSegm(mqenc, bit stream); 
30. } 

 

The context modeling related routines as discussed in the previous chapter are summarized in the 

algorithm’s first line. Following the context modeling stage, the collected symbols need to be fed into 

the MQ- or raw-coder in the proper order: first symbols from the SPP, then those from the MRP, and 

finally all remaining symbols from the CUP.  Symbols from the first two passes bypass the MQ-coder 

so that the threads can collaboratively create the bit stream segment in parallel. Each thread knows how 

many symbols it must code for the current pass (line 3).  
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Figure 5-4 – workflow of sample-parallel EBCOT encoder in fast mode 

The offset from the start of the bit stream segment where a thread needs to write the current pass’s 

symbols is defined by the sum of all previous threads’ symbols. It can be efficiently calculated by 

executing a block-wise exclusive prefix scan (lines 7, 12). Next, each thread copies its symbols to the 

bit stream. Since multiple threads will have to write to the same byte, they must use an atomic bitwise 

or operation. An implementation is described in detail in [76]. The proposed algorithm first creates the 

bit stream in an intermediate buffer in shared memory (see Figure 5-4). This is advantageous because 

bit stuffing is separated into a subsequent separate function that will have to read and write the bit stream 

at least one more time. A side-effect is that the implementation benefits from the native support for 

shared memory atomics introduced in NVIDIA’s Maxwell architecture [77]. Next, the same steps need 

to be repeated for the SPP so that afterwards the entire raw bit stream segment will have been written to 

the intermediate buffer in shared memory. 

5.4 Parallel Bit-stuffing 

The JPEG 2000 standard requires that whenever there is a 0xFF byte in the bit stream, the next byte 

must include an extra zero bit stuffed into the MSB. The original motivation behind bit-stuffing is to 

avoid a carry-over in the MQ-encoder, which would in theory render bit stuffing unnecessary for raw 

bit stream segments. However, the fact that after bit stuffing the byte following an 0xFF is guaranteed 

to be in the range of 0x00 to 0x7F is additionally exploited to introduce marker codes, consisting of a 

0xFF byte followed by a byte in the range of 0x90 to 0xFF. For this reason, bit stuffing applies to raw 

bit stream segments just the same. Bit stuffing is trivial when building the bit stream serially. However, 

when done in parallel, it requires some effort. Algorithm 5-2 provides an overview of the basic idea and 

Figure 5-5 visualizes an example.  
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Figure 5-5 - Parallel bit stuffing example. Blue zero bits are inserted. 

Each thread is in charge of writing one byte of the bit-stuffed output bit stream. In case the byte to the 

left is 0xFF and the byte before that is not 0xFF, a thread needs to insert a zero bit in the MSB (see 

thread 3 in Figure 5-5). To ensure that bits are inserted only after every other consecutive 0xFF byte, a 

segmented exclusive scan (see [37]) is used, where a segment represents back-to-back 0xFF bytes. The 

head flag, which indicates that a new segment must be started, is set whenever the previous byte is not 

0xFF. Thread 4 in Figure 5-5 obtains a scan result of n=1, for example, because the previous n+1=2 

bytes consist entirely of 1-bits. A thread needs to insert a zero bit only if the segmented scan result is an 

even number.  

A consequence of inserting a bit is that all subsequent threads then need to reevaluate their decision:  

a) It might be that they, too, inserted a zero bit, but that this is not actually necessary anymore given 

that a bit was inserted earlier on in the bit stream and all other bits were right-shifted. 

b) Oppositely, it might be that they did not insert a zero bit, but now actually have to do it (see thread 

6 at t+1).  

c) Finally, it might be that their decision still holds.  

For this reason, the parallel bit stuffing routine might take multiple iterations to finish. After the initial 

decision, a block vote is conducted. In the first iteration, each thread votes whether or not they think 

they need to insert a zero bit. If none of them vote positively, no bit stuffing is necessary anywhere and 

the routine can finish. If at least one bit-stuff is required, the threads continue and re-evaluate their 

decisions, this time taking into account the previous threads’ actions (after t+1, threads 4-6 know that 

one bit was inserted in an earlier byte). By running an exclusive scan over all threads’ bit stuffing 

decisions, each thread can determine the amount of bit-stuffs in all previous bytes in the bit stream. 

Considering the bit shifts required by the zero bit inserts, they can then figure out which eight bits would 

eventually fall into the byte slot to their immediate left and again check, based on the result of a 

segmented scan, if they are required to insert a zero bit in their byte’s MSB. Once again, each thread 

casts a vote, this time signaling if their decision of whether they need to include a zero bit or not has 

changed compared to the last vote. The entire process is repeated for as long as any of the threads had 

to correct their previous vote. In the end, each thread reads the seven or eight bits from the unstuffed bit 

stream that will fall into their output byte slot, insert a zero bit in the MSB or not, depending on their 

last vote, and finally overwrite the output byte in the bit stream.  
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Algorithm 5-2 - Parallel Bit-stuffing 

one thread per byte 

1. insert = false 

2. numPrevInserts = 0 

3. forever { 

4.   lftFF = read8Bits(bit stream, (threadId()-1)*8- 

5.     numPrevInserts) == 0xFF 

6.   headOfSegm = !lftFF 

7.   n = segmExclScan(lftFF, headOfSegm) 

8.   insertNew = lftFF && isEven(n) 

9.   myVote = insertNew != insert 

10.   anyChanges = blockVote_any(myVote) 
11.   if (!anyChanges) 
12.     break 
13.   numPrevInserts = exclScan(insertNew?1:0) 
14. } 
15. val = read8Bits(bit stream, threadId()*8 
16.                             -numPrevInserts) 
17. if (insert) 
18.   val = (val>>1)&0x8F // insert 0-bit in MSB 
19. bit stream[threadId()] = val 

 

Since in CUDA registers are 32 bits wide, an optimization to the algorithm is for each thread to be in 

charge of writing four output bytes as opposed to only one byte. Special care has to be taken when 

participating in the scan or voting operations. Depending on the type of operation, a thread will have to 

recursively apply it to its four bytes and then contribute the overall result to the block-wide operation. 

The experimental results reported next include this optimization. 

5.5 Experimental Results 

Three different strategies for EBCOT’s first tier in fast mode have been evaluated. They differ in how 

the routines for  

1. context modeling 

2. the two raw passes and  

3. the MQ-encoded CUP  

are organized into separate kernels. The starting point was the optimized, non-bypassed EBCOT 

implementation, which launches separate context modeling- (CM) and MQ-encoding- (MQ) kernels for 

every bit plane so that all code blocks are coded in parallel (Figure 4-7). Each code block starts 

processing at its first significant magnitude bit plane. Launching kernels individually for each bit plane 

is beneficial for two reasons. First, the memory required for storing the context-decision pairs collected 

by the CM-kernel and input to the MQ-kernel only has to be large enough to fit the worst-case amount 

of pairs from a single bit plane. Second, the MQ-kernel for bit plane N can be overlapped with the CM-

kernel for bit plane N-1.  
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Figure 5-6 - Comparison of strategies on how to structure sample-parallel EBCOT algorithm in fast mode 

Three-Kernel-Strategy – The first strategy splits the routines into three kernels: one for CM, one for 

coding the two raw passes and one for coding the CUP. The CUP-kernel cannot start before the raw-

passes-kernel has finished, because it needs to know at which exact byte offsets to continue the code 

blocks’ bit streams. However, the next bit plane’s CM-kernel can be overlapped with the current bit 

plane’s CUP-kernel.  

Two-Kernel-Strategy - A drawback of the first approach is that the CM-kernel needs to store the modeled 

context-decision pairs to global memory in order to make them available to the coding kernels. Since 

the CM- and raw-passes-kernels both use an identical thread layout, the Two-Kernel-Strategy fuses them 

together into a single kernel. On the downside, the CUP kernel can then no longer be overlapped.  

One-Kernel-Strategy - Still, the CM-kernel has to write the context-decision pairs for the CUP to global 

memory. The One-Kernel-Strategy fuses all routines into a single kernel. A positive side effect is that 

now the kernel can just as well loop over all bypassed bit planes internally. The drawback is that most 

threads stay idle while the block’s first thread feeds the CUP-context-decision pairs to the MQ-encoder. 

However, the regular MQ-kernel with one thread per code block naturally suffers from high thread-

divergence, which alleviates this drawback to some degree. 
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Figure 5-7 - Impact of fast mode (starting after 3 or 4 magnitude bit planes) on compression efficiency for a range of test 

sequences 

 

Figure 5-8 - Performance increase for EBCOT in fast mode when encoding single images (12 bit 4:4:4, no max. bit rate). 

Experiments show that the One-Kernel-Strategy outperforms the previous two when encoding single 

images. It yields a speed-up of up to 2x compared to EBCOT without fast mode (Figure 5-8). However, 

the speed-up is not equally high for all test images. By enabling the fast mode, only the execution of the 

less significant bit planes (LSBs) is sped up. The number of code blocks that still have pending 

significant bit planes to be processed decreases with every bit plane. By the time the coder gets to the 

bypassed LSBs, the number of remaining code blocks has become so low, that a high-end GPU is 

severely under-occupied. At this point, the duration for processing the remaining LSBs without fast 

mode is almost constant, irrespective of the test image’s resolution and entropy. The execution time for 

the MQ-coded bit planes, though, depends much more heavily on the resolution and entropy. 

Thus, the relative time spent in the bypassed bit planes is lowest for the high-resolution, high-entropy 

images (VQEG, Kodak). The relative speed-up for only the bypassed bit planes is highest for those 

images where the GPU was most severely under-occupied. 
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Figure 5-9 - Performance increase for EBCOT in fast mode, when encoding frames in parallel from the (12 bit, 4:4:4, no 

max. bit rate, 2.7 bit per sample) SteM Confetti. 

An alternative approach to increase the amount of parallel work units is to process code blocks from 

multiple images in parallel. This concept is denoted as group-of-pictures (GOP)-coding here. Figure 5 

compares the throughput for different GOP-sizes. The benefit of the fast mode decreases as the GOP-

size, and with it the number of parallelizable code blocks, increases. However, even at a GOP-size of 

eight, the parallel fast mode implementation yields an increase of throughput of 5-10% for the high-

entropy UHD sequences, 10-15% for the 2K sequences and up to 20% for the low-entropy 4K sequences. 

Since now the overall GPU occupation is higher, the three-kernel-strategy performs best: the timesaving 

gained by overlapping CM and CUP outweighs the cost of additional memory accesses.  

The impact of the bit stuffing routine was only measureable for the high-entropy 4K images, where it 

accounted for less than 3% of the total EBCOT tier-1 runtime. The number of inserted zero bits ranges 

between 30 ppm for the high-entropy Kodak_0003 test image and around 300 ppm for the low-entropy 

4k_sintel_title image. The average number of loop iterations required for the proposed parallel bit 

stuffing algorithm lies between two and three for all test images. 

5.6 Conclusion 

The research question, whether JPEG 2000’s selective arithmetic coding bypass mode (“fast mode”) is 

beneficial to parallel GPGPU implementations can be answered positively. Algorithms for a sample-

parallel execution of the raw-coded passes and subsequent bit stuffing as well as a strategy on how to 

best organize them into GPU kernels were proposed. The increased parallelism speeds up EBCOT tier-

1 by a factor of two for low-entropy images where only very few code blocks have more than four 

significant bit planes. For high-entropy 4K images, a moderate speed-up of between 10% and 30% was 

measured. The compressed size lies within 1% of that of the unmodified EBCOT, with the exception of 

those test images with text, especially Sintel rolling titles (14% larger) and Sintel title (6% larger), where 

the SPP compresses well even in the high-frequency bands and at lower bit planes (Figure 5-7).  

If the increased latency and memory consumption can be tolerated, multiple frames should be encoded 

in parallel in order to increase the GPU-occupancy. In this case, the benefit of the fast mode is 

diminished significantly to speed-ups between 5% for high-entropy images and 27% for low-entropy 

images. 
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6 Rate Control and Parallel Packetization 

Regardless of whether a GPU-accelerated is configured to create DCI- or IMF-compliant code streams 

or operates with the selective arithmetic coding bypass style (or the standard-incompliant modes 

presented in subsequent chapters), once all other coding steps have been optimized, EBCOT tier-2 (rate 

control and packetization) becomes a bottleneck. As this step is concerned with executing the rate 

control and assembling the truncated code block bit streams into a code stream, this is especially true 

for high bit rates (stated in Mbit/sec) and low frame rates, such as an IMF package with only 25 fps, 

when single code streams get very large.  

Research question: how can the PCRD-Opt. and packetization routines be efficiently computed on a 

GPU? Which co-processing model is the fastest? 

The contents of this chapter have been published in [71]. 

6.1 Proposed GPU/CPU Co-Processing Models 

Figure 6-1 shows three possible co-processing models that differ in the points at which to switch the 

execution back from the GPU to the CPU. In the following, three models are proposed: 

 

 

Figure 6-1 – GPU/CPU Co-Processing Models for Rate Control and Packetization 

CPU-heavy - After the code blocks’ bit streams have been produced on the GPU, the final PCRD-Opt. 

and packetization routines are executed by the CPU. Since the GPU and CPU can operate in parallel, 

the packetization of frame N on the CPU is overlapped with the compression of frame N+1 on the GPU. 

However, a packetization on the CPU entails that the required data needs to be transferred into the host 

memory first. Since the bit streams’ lengths are not known ahead of time, they need to be produced into 

dedicated fixed-size slots of a sufficiently large memory block, so that bit streams are eventually 

interspersed with unused gaps. Either the gaps are included in the memory transfer or the bit streams 

need to be compacted first. Additionally, a set of per-code-block metadata is required for the packet 

header construction: the number of all-zero bit planes, number of passes, pass lengths and pass slopes. 

Given that a UHD image without chroma-subsampling comprises around twenty thousand code blocks 

and assuming up to 15 magnitude bit planes per block and two bytes per metadata value, this amounts 
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to ~3.5 MB per image, which is often more than the compressed code stream itself. While this metadata 

is only used internally, it nonetheless increases the PCI traffic significantly to the point where it can 

pose a bottleneck. 

CPU-light – As part of the bisection search for the optimal slope threshold the entire code stream 

creation is simulated multiple times. By far the most computationally demanding sub-routine involved 

in this process is the packet header construction. In the Hybrid co-processing model, this search 

including the code stream simulation is executed on the GPU, and only the final packetization is left for 

the CPU. The pass lengths and slopes then do not have to be transferred, but instead only the total lengths 

of the truncated bit streams.  

GPU-only – in this model, all processing steps are carried out on the GPU. A positive side effect is that 

the device-to-host transfer is decreased to the bare minimum: only the final code stream needs to be 

transferred, no additional per-code block metadata.  

6.2 Parallel Post Compression Rate Control Optimization 

In order to gain from a parallel architecture, the PCRD-Opt. algorithm is redefined to exploit two levels 

of parallelism. Figure 6-2 (a) shows the rate-distortion plot of a single code block. The truncation points 

are laid out on a convex curve. Instead of probing only one slope threshold at a time, multiple slopes 

(dashed lines) that are spaced apart equally in the current search window are probed in parallel. 

Iteratively, the search window is narrowed until a slope threshold is found that yields a code stream size 

sufficiently close to the specified maximum size. A natural choice for the number of simultaneously 

probed thresholds is the GPU architecture’s SIMD-group size LSIMD. Tests with a detail-rich UHD 

sequence showed that for 32 parallel probes, two iterations are usually sufficient to get within 5% of the 

desired code stream size. When probing only one threshold at a time, it requires nine iterations to get 

within 5% and sixteen iterations to get as close as possible.  
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(a) 

 

(b) 

Figure 6-2 – PCRD-Opt. with two dimensions of parallelism: (a) probe multiple slope thresholds in parallel and (b) process 

code blocks and packets in parallel in a two-level reduction 

The second level of parallelism is to process code blocks and packets in parallel. Figure 6-2  (b) shows 

how the overall code stream size is calculated in a two-level reduction.  

1. A first kernel 1) computes per code block and probed slope threshold the number of passes and 

truncated bit stream length. To do that it counts the passes up to the truncation point and sums 

up their compressed byte lengths.  

2. Subsequently, a second kernel 2) with one thread per packet and threshold computes the packet 

lengths by accumulating the bit stream lengths of all code blocks contained in that packet (up 

to 192) and adding to that the length of the simulated packet header.  

3. Packet sizes are accumulated by color channel since for DCI profiles the maximum size per 

channel is also constrained. The fixed overhead for the tile-part headers also counts towards the 

per-channel limit and needs to be accounted for.  

4. Finally, the total code stream size is the sum of all channels plus the fixed overhead of the main 

header.  

6.3 Parallel Packetization 

The code stream anatomy can be described by a table of cells, C, where each cell 𝐶𝑖
𝑎 represents a section 

of the final code stream that is constructed independently, a being the corresponding cell type 

abbreviation and i the occurrence of that cell type. Table 6-1 lists all cell types. 
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Table 6-1 – Code stream anatomy of cell types 

Type Abbr. Occurrences Length 

Main Header MH 1 fixed 

Tile Part Length TLM 1 fixed 

Start of Tile and  

Start of Data 
SOT NTP fixed 

Packet Header PH Npackets dynamic 

Packet Body  

Code-Block 
PB Ncode blocks dynamic 

End of Code stream EOC 1 fixed 

 

The code stream anatomy stays constant for an entire image sequence and serves as a convenient 

indirection in order to hide the progression order from the GPU-kernels. The construction of each code 

stream then comprises three phases (as depicted in Figure 6-3): 

1. Populate a table L[𝐶𝑖
𝑎] with the cells’ exact sizes in bytes 

2. Prefix-Sum over the cell lengths L[𝐶𝑖
𝑎] in order to obtain a table Δ[𝐶𝑖

𝑎] containing the cells‘ 

byte offsets in the final code stream 

3. Construct the cells’ contents and write them to the appropriate positions, obtaining the final 

code stream in GPU memory 
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Figure 6-3 - Overview of parallel packetization 

Given the number of tile-parts, NTP, number of packets, Npackets
,, and the number of code blocks, Ncode 

blocks, the number of cells, CN, is then 

 CN = 1(CMH) + 1(CTLM) + NTP + Npackets
 + Ncode blocks + 1(CEOC) 

In the first phase, a table L[𝐶𝑖
𝑎], containing the lengths in bytes of each cell, is populated. L[CMH] 

comprises the combined lengths of the main header markers3. Instead of transferring all required 

information to the GPU, the main header is constructed on the CPU. As long as the comments text 

marker does not change, this cell’s size remains fixed for an entire image sequence. The size of L[CTLM] 

depends only on NTP and the precision chosen to store the tile-parts’ lengths and tile-part indices. All 

these variables stay constant for an entire image sequence, and thus L[CTLM] remains fixed. The SOT 

and SOD markers have a fixed size per specification.  

Let bj denote the embedded bit stream for code block Bj and 𝑏𝑗
𝑧 the prefix of bj up to and including pass 

z. 𝜆𝑗
𝑧 defines the slope for pass z of code block Bj, and 𝐿𝑗

𝑧 the length of 𝑏𝑗
𝑧. All L[𝐶𝑝

𝑃𝐵  ] can be filled with 

the lengths 𝐿𝑗
𝑧 for all code blocks Bj that belong to precinct p. Thread coordinates can be conveniently 

mapped to cells 𝐶𝑝
𝑃𝐵 via a look-up-table with Ncode blocks entries. The mapping of code blocks to precincts 

is established by a combination of three look-up tables: let 𝑁𝑝
𝑥,𝑦

 denote the number of code blocks (in 

                                                      
3 SOC, SIZ, COD, QCD and COM 
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rows y and columns x), in precinct p and ΔBp the position of the precinct’s first code block x=0, y=0, in 

a list of all code blocks sorted by packet membership �̂�. The code blocks belonging to precinct b are 

then �̂�[ΔBp], …, �̂�[ΔBp + 𝑁𝑝
𝑥,𝑦

 - 1]. 

All L[𝐶𝑝
𝑃𝐻  ] can be computed by simulating the header construction. In fact, the packet headers have 

already been simulated during the last PCRD-Opt. iteration, so an implementation can choose to store 

the packet header sizes and reuse the set for the selected slope threshold λ here.  

Once all cells in the table L[𝐶𝑖
𝑎] have been filled, the cells’ offset in bytes, Δ[𝐶𝑖

𝑎], in the final code 

stream can be computed by executing a device-wide exclusive prefix-sum.  

Δ[Ci]  = ExclusivePrefixSum (L[𝐶𝑖
𝑎]) 

Parallel implementations are available through toolboxes like thrust or cub [31, 33]. The final code 

stream size (excluding the length of the two-byte EOC-marker), Lcode stream, can now be looked up in the 

last element of the table Δ:   

Lcode stream = Δ[𝐶𝑁−1
𝐸𝑂𝐶]+ L[𝐶𝑁−1

𝐸𝑂𝐶] 

In the third phase, the code stream cells are filled with data. A memory block in GPU memory of size 

Lcode stream  needs to be reserved, so that the individual cells can be directly written to their final locations. 

All cells except those of type CMH and CEOC are filled on the GPU. The author opted to split the tasks 

into four kernels – one for each of the remaining cell types. They can operate in parallel.  

The CTLM cell contains the lengths, 𝐿𝑘
𝑇𝑃, of each tile part TPk. Similarly, 𝐶𝑘

𝑆𝑂𝑇  cells contain the length 

and index of their respective tile parts. The length of a tile part can be obtained from Δ[𝐶𝑖
𝑎]:   

𝐿𝑘
𝑇𝑃 = {

𝛥[𝐶𝑘+1
𝑆𝑂𝑇] −  𝛥[𝐶𝑘

𝑆𝑂𝑇], 0 ≤  𝑘 < 𝑁𝑇𝑃 − 1

𝛥[𝐶𝐸𝑂𝐶] −  𝛥[𝐶𝑘
𝑆𝑂𝑇], 𝑘 = 𝑁𝑇𝑃 − 1          

 

The CPH cells contain the side information required by the decoder to correctly interpret the compressed 

code blocks. The construction of tag trees and comma codes is analog to an implementation for a CPU. 

Since packet headers are always padded to byte boundaries, parallel threads will not write to the same 

byte address. Therefore, it is not necessary to write out bits with the atomic or intrinsic and initialize the 

target cell with zeros. Instead, the GPU implementation can collect emitted bits in an intermediate 

register in order to reduce expensive accesses to global memory. The kernel for filling CPH cells is almost 

identical to the simulation kernel used to compute L[CPH]. They only differ in that the latter merely 

counts emitted bits, while the former actually writes them to memory.   

Filling in the CPB cells is essentially a device-to-device copy operation as the individual bit streams bj 

are already located in device memory. However, they are interspersed with gaps and yet untruncated. 

The task at hand is to copy each bit stream’s prefix 𝑏𝑗
𝑧 for the previously determined slope threshold λ 

into the corresponding cells 𝐶𝑗
𝑃𝐵. A naive approach would be to have one thread per code block copy 

the bit stream prefix byte by byte. A faster, because more parallel, solution is to assign multiple threads 
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to each code block and have them copy the bit stream prefix chunk wise. Again, a good choice for the 

amount of threads per code block is the architecture’s SIMD-group size LSIMD. Considering the size of a 

cache line Lcache-line, each thread should then copy N = Lcache-line / LSIMD
 bytes per iteration until 𝐿𝑗

𝑧 bytes 

have been copied by the SIMD group j. The destination address in global memory is defined by the code 

stream offset and therefore alignment constraints cannot be honored, but the source bit streams bj should 

be placed at addresses that are a multiple of Lcache-line. 

After all four kernels have finished populating their respective cells the code stream can be transferred 

into host memory where the remaining two cells CMH and CEOC can be filled. 

6.4 Experimental Results 

 

         (a)                             (b) 

Figure 6-4 - Encoder runtimes, for VQEG Crowd Run UHD sequence, left: 0.16 bits/sample (100 Mbit/s @ 24 fps), right: 4.2 

bits/sample (2500 Mbit/s @ 24 fps), DCI-compliant settings (except bit rate). GPU: GeForce GTX 1080, CPU: Kakadu v6.4 

single-threaded on Intel i7 3960X 

Figure 6-4 shows a comparison of the three evaluated co-processing models. Since the GPU and CPU 

can work on different frames in parallel, their bars are laid out side-by-side. The CPU implementation, 

Kakadu v6.4, does not employ multi-threading for either PCRD-Opt. or packetization since its 

architecture is optimized for streamlined line-by-line encoding, where the image does not have to be 

entirely loaded into memory at any point [78]. For this discussion, we will assume the measured CPU-

runtimes can be divided by the number of CPU cores without overhead. 

In the low-bit rate scenario, Figure 6-4 (a), executing both PCRD-Opt. and packetization on the CPU 

does not present a bottleneck as the GPU-portion of the encoder always takes longer. However, 

executing all stages on the GPU leads to an overall acceleration for concurrently processing a group of 

eight frames from 59 ms (16.9 fps) to 44 ms (22.4 fps). This gain stems from two reasons:  

1. in order to run PCRD-Opt. on the CPU, the pass lengths and slopes of all code blocks have to 

be transferred from the GPU to the CPU, which is no longer necessary in the GPU-only mode  
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2. the device-to-host transfer of the compressed data is also faster, because the portions of the bit 

streams discarded by the rate control are not included anymore and the bit streams are arranged 

back to back without gaps.  

Figure 6-4 (b) shows the runtimes for the same test sequence, when compressed less heavily. Without 

multi-threading, the CPU-portion takes around four times as long as the GPU portion and thus poses a 

bottleneck. In this scenario, a multi-threaded CPU implementation running on at least four cores would 

be required to remove the bottleneck. Although this was neither examined nor the goal of this work, the 

parallel algorithms presented in this paper should also be applicable to a CPU implementation. However, 

the finely grained parallelism should be grouped into coarser work units, reducing the number of threads 

that need to be spawned to an amount that is closer to the number of virtual CPU cores present in modern 

CPUs. 

The GPU portion’s runtime in the CPU-light model stays almost unchanged as the search for the best 

threshold takes only 0.7 ms on the GPU compared to 146 ms on the CPU. Creating the code stream 

entirely on the GPU takes only an extra half a millisecond. Reducing the device-to-host data transfers 

from 13.7 ms to 3.9 ms, the GPU-only model yields an overall gain from 17.2 fps to 19.5 fps, assuming 

the CPU-portion were sufficiently sped up by multi-threading. With respect to the single-threaded 

implementation evaluated here, the encoder’s throughput is increased from 5.3 fps to 19.5 fps. 

 

Figure 6-5 - NVIDIA Nsight profiling timeline with rate control (light blue) and packetization (dark blue) executed on the 

GPU.  

The above figure is a screenshot from the NVIDIA Nsight profiler timeline. It shows how the rate control 

and packetization kernels are executed right after the EBCOT tier-1 context modeling (CM) and MQ-

coding (MQ) kernels.  

6.5 Conclusion 

To answer the research questions, the PCRD-Opt. algorithm can be efficiently executed on a GPU, 

where parallelism in two dimensions can be exploited: (1) probe multiple truncation point sets in parallel 

and (2) process code blocks and packets in parallel. At large bit rates, PCRD-Opt. executed on a CPU 

by a single-threaded implementation was shown to be the bottleneck in an otherwise entirely GPU-

optimized JPEG 2000 encoder. It runs about two orders of magnitudes faster when run on a GPU.  
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Furthermore, a parallel table-driven algorithm for executing the packetization on a GPU was presented. 

It runs 80x faster compared to the single-threaded CPU implementation, but more importantly, it leads 

to an overall speed-up of the encoder, because the amount of data that needs to be transferred into host 

memory is minimized. Table 6-2 lists a condensed summary of the findings. 

Table 6-2 – Comparison of results for co-processing models 

Model Discussion 

CPU-heavy 

• PCRD-Opt. requires multi-threading at high bit rates or else poses bottleneck  

• Packetization uncritical, when done in parallel with GPU, but then leads to 

higher latency 

CPU-light 

• PCRD-Opt. 200x faster for UHD example with 12.5 bpp  

• Discarded portions of bit stream can be omitted from transfer, but requires 

that bit streams are compacted first 

• Per-Code-Block metadata still needs to be transferred for packetization on 

CPU 

GPU-only 

• Packetization 100x faster for UHD example with 12.5 bpp on GPU. 

• Transfer is minimized to bare code stream, which leads to overall speed-up.  

• Lower latency, because no coding steps executed on CPU anymore. 

 

In conclusion, creating the code stream entirely on the GPU pays off. The time saved in the transfer 

outweighs the extra time it takes to run the rate control and packetization on the GPU. This effect weighs 

in more heavily when compressing high-entropy images to low bit rates, but could be alleviated by 

anticipating which passes will end up being discarded by the rate control and not coding them in the 

first place.  

When compressing to high bit rates, on the other hand, it was shown that rate control and packetization 

would need to be multi-threaded when run on the CPU or otherwise the CPU portion will present a 

bottleneck. Creating the code stream entirely on the GPU has the positive side effect that the overall 

runtime is decreased, since then the rate-control is carried out on the GPU and the GPU-to-CPU transfer 

is reduced to the already truncated bit streams. If, on the other hand, the rate control is carried out on 

the CPU, the entire bit streams need to be transferred to the CPU, since it is not yet known if and where 

they will be truncated. This benefit weighs in more heavily at low bit rates when more data is discarded 

by the rate control. If the available bit rate budget is not exhausted, the amount of data to be transferred 

is identical regardless whether the rate control is computed on the GPU or CPU. Additionally, the latency 

is reduced, because the GPU and CPU do not need to operate on different frames in parallel anymore. 

Finally, and this is an important aspect in applications where video compression is only one of many 

parallel tasks, the CPU is left free to do other tasks. 
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7 JPEG 2000 Incompliant Extensions 

Chapter 5.1 pointed out that at high data rates the EBCOT compression efficiency is poor for the lower 

bit planes that contain mainly noise. The standard addresses the high data rate scenario by defining the 

optional selective bypassing mode where part of the samples bypass the arithmetic coder and are raw-

coded. It only imposes a minor penalty, if any, on the compression efficiency. However, the 

experimental results from the previous chapter have shown that the speed-up achieved in a GPU 

implementation is only mediocre.  

This chapter elaborates on the question how the throughput can be further increased on massively 

parallel architectures when giving up compatibility with the JPEG 2000 standard. Two algorithmic 

changes are proposed: 

1. Single-pass scan order 

2. Raw Bit-plane coding 

The research questions that arise are: How much of a speed-up can be achieved? What is the cost in 

terms of a diminished compression efficiency? 

The contents of this chapter have been published in [79]. 

7.1 Single-Pass Scan Order 

When targeting a massively parallel architecture such as a GPU, the goal is to break down the problem 

at hand into as many parallelizable work units as possible.  

Encoder: For each bit plane, an encoder can model the samples’ contexts in a sample-parallel fashion 

by using the iterative significance propagation algorithm presented in [39]. The resulting set of context-

decision pairs is subsequently fed into the MQ-coder. Due to its context-adaptive nature, this arithmetic 

coding step does not expose any intra-block parallelism. Therefore, since both kernels (context modeling 

and MQ-coding) expose very different degrees of concurrency, a separation into two distinct kernels 

that are each invoked once per bit plane in an interleaved order is well suited. For each bit plane p, where 

p=0 is the LSB, the host launches a sample-parallel context modeling kernel (CM-kernelp) followed by 

a block-parallel arithmetic coding kernel (MQ-kernelp). 

Decoder: In contrast to the encoder, the EBCOT decoding routine does not expose any intra-block 

parallelism since the significance propagation for a bit plane cannot be precomputed. Context modeling 

and MQ-decoding are tightly coupled in a feedback loop:  

The context of any sample X[n]p, where n is the location (x,y) with 0 ≤ x < block width and 0 ≤ y < block height, 

cannot be computed without first decoding sample X[n-1]p.  
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A GPU implementation can therefore combine both tasks in a single kernel that does not have to be 

launched individually for each bit plane. Instead, the kernel itself loops over all bit planes with three 

passes each. 

On a modern GPU with thousands of cores, the block-wise MQ-kernel tends to under-occupy the GPU 

due to its coarse parallelism. This effect worsens as the number of code blocks with bit planes pending 

to be processed decreases with every processed bit plane. Implementations can counter-act by 

processing blocks from a group-of-pictures (GOP) simultaneously at the cost of an increased latency. 

With current GPUs, the implementation at hand saturates at a GOP-size of eight for 2K 4:4:4 images 

with approximately 5000 blocks per image. 

The CM- and MQ-kernels are memory bound, which means that the execution of instructions is often 

stalled by pending memory requests. Accordingly, the throughput can be increased by reducing required 

read- or write accesses to memory. The encoder’s context modeling-kernel can be launched with a layout 

as finely grained as one thread per sample. After the initial iterative significance propagation, each 

thread determines their sample’s context by examining the neighbors. Due to the three-pass-scan order, 

the context-decision pairs need to be sorted by pass type before they can be handed over to the MQ-

kernel via global memory (Figure 7-1 left). Each thread needs to find out at which offset to write their 

SPP-, MRP- or CUP-context-decision 

pairs. This can be achieved 

collaboratively by running three prefix-

sum scans [35].  

The proposed single-pass mode renders 

this additional burden unnecessary by 

giving up the separation into three 

passes altogether  (Figure 7-1 right). 

The encoder’s context modeling-kernel 

then requires only a single prefix-sum 

scan in order for each thread to 

determine where to write their context-

decision pairs. Context labeling is not 

affected by the new scan order and can 

remain unchanged. The decoder 

benefits as well in that it does then only 

need to scan through all samples once 

per bit plane. Additionally, the sample 

state representation is simplified by one 

bit, as it is no longer necessary to 

remember for insignificant samples 
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Figure 7-1- Overview Single-Pass mode 

 



Chapter 7    

66 

whether they had already been coded in the SPP in order to determine their membership to the CUP. 

The altered coding procedure is laid out in Algorithm 7-1. 

Algorithm 7-1 - single-pass mode 

1. foreach bit plane  

2.   foreach sample in stripe-oriented scan order 
3.     if (sample is not significant and  

4.         any neighbor is significant) 

5.       zeroCoding() 

6.     if (magnitude bit is 1) 

7.       markSampleAsSignificant() 

8.       signCoding() 

9.     else if (sample is significant) 

10.       magnitudeRefinementCoding() 
11.     else if (first row in stripe and  
12.       all stripe column neighbors insignificant)  
13.       runLengthCoding() 
14.       jumpToEndOfRun() 
15.     else 
16.       zeroCoding() 
17.       if (magnitude bit is 1) 
18.         markSampleAsSignificant() 
19.         signCoding() 

 

There are two downsides to giving up the pass separation.  

- Firstly, the number of eligible truncation points is decreased to a third, leaving the Post-

Compression-Rate-Distortion-Optimizer (PCRD-Opt.) less flexibility when the maximum data 

rate constraint is exceeded. It can be argued that this limitation is not severe when compressing 

to high data rates as is the case in the use-case examined in this work. The literature shows that 

the coding performance achieved by various scanning order strategies is virtually identical at 

the end of each bit plane [51]. 

- Secondly, the neighborhood taken into consideration when computing the context for any of the 

four types of coding operation needs to be constrained to the scan order past. Whereas in the 

original mode, operations carried out during the MRP or CUP can already leverage the 

information whether or not any of the neighbors, past or future, has turned significant during 

the current bit plane’s SPP, this is not possible anymore in the proposed variant. This might 

slightly impact the compression efficiency. 

7.2 Raw Bit plane Coding 

Part-1 of the JPEG 2000 standard defines the selective bypassing mode (fast mode). When enabled, all 

symbols coded during the SP- and MR-passes starting from the fifth coded magnitude bit plane are not 

arithmetically coded anymore, but instead appended directly to the bit stream. The underlying 

assumption is that the compression efficiency for these two pass types is poor at low bit planes, while 

for the CUP it is still reasonable to invoke the MQ-coder. The bit stream is then terminated at every 

switch between the raw and coded mode. A parallel implementation can benefit from this mode by 

separating the raw coding phases into a separate kernel that can be executed in a sample-parallel fashion. 

However, even the partially bypassed bit planes still necessitate the extra tasks of evaluating and 
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updating each sample’s state, including the significance propagation, in order to be able to collect all 

symbols and order them by pass type. 

In line with the single-pass mode, the proposed raw-coding mode is also processed bit-plane-wise 

without a pass separation. Magnitude bits are directly concatenated to the bit stream. A block width of 

32, which is used in DCI and IMF profiles, conveniently matches the SIMD group size and register size 

for NVIDIA CUDA devices. The encoder can collect the magnitude bits from a single row into a 32-bit 

register by using the ballot SIMD-group intrinsic and then write it out to memory. All rows of all blocks 

can be written in parallel. For a block size of 32x32 the magnitude bits amount to a total of 128 bytes 

per bit plane. 

Sign Bits
packed

Magnitude Bits
4 Bytes per Row

compressed
Magnitude & 

Sign Bits
[...]

compressed
Magnitude & 

Sign Bits

bit plane n bit plane n-1 bit plane n-2 bit plane 0

 

Figure 7-2 - Code stream structure when raw coding is entered after the 2nd significant bit plane. Code-block size: 32x32 

Since it is not guaranteed that every sample has already turned significant by the point the first bypassed 

bit plane is processed, not all sign bits have necessarily been coded yet. With the goal of maintaining 

the embeddedness-property of the created code stream, a sample’s sign bit should be coded immediately 

following its first significant magnitude bit. However, due to the lack of sub-bit plane truncation points, 

magnitude and sign bits from the same bit plane do not need to be interleaved. Instead, sign bits for 

newly significant samples are stored after the magnitude bits. This enables a GPU implementation to 

exploit that magnitude bits are laid out in a regular grid and can be accessed in parallel. Figure 7-2 shows 

the resulting code stream structure. 

The proposed implementation strategy is to collect first the sign bits row-wise by again using the ballot 

SIMD-group intrinsic. A first ballot collects which positions in a row have turned significant; a second 

ballot collects the actual sign bits. One thread per row then writes the rows’ new sign bits tightly packed 

to the bit stream. Since multiple threads might simultaneously need to write to the same byte, bits are 

stored using a bitwise atomic or operation [76]. The offset beyond the end of the magnitude bits can be 

computed by scanning the prefix-sum across the numbers of sign bits in each row. 

7.3 Experimental Results 

At first, the impact of the single-pass scan order is evaluated by examining the benchmarking results. 

The single-pass scan order removes some of the dominant stall reasons identified by profiling the context 

modeling kernel. The below diagrams compare the runtime (Figure 7-3 a, d), workload (Figure 7-3 b, 

e) and instruction efficiency (Figure 7-3 c, f) between the original mode and the single-pass scan order. 

It can be seen how the runtime improves especially in the MSBs, because the workload decreases and 

the efficiency slightly increases. 
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    Three-Passes Context Modeling Kernel 

    

                       (a)                                               (b)                                          (c)  

    Single-Pass Context Modeling Kernel 

    

                        (d)                                              (e)                                            (f)  

Figure 7-3 – Comparison of runtime (a, d) and benchmarking metrics instructions/warp (b, e) and instructions/cycle (c, f) for 

context modeling kernels with three passes (top row) vs. single pass (bottom row). 
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Figure 7-4 – EBCOT encoding time, separated into entropy- and raw-coded bit planes. Source: Tears of Steel, frames 1290-

1547, 4096x1714 

Figure 7-4 compares the EBCOT encoding runtime of the original three-pass mode with and without 

selective arithmetic coding with the new proposed single-pass and raw-coding modes. All experiments 

have been carried out on an NVIDIA GeForce GTX 1080. The speed-up due solely to the proposed 

single-pass mode is approximately 1.4x and can be seen by comparing the two single-colored bars, 

where bit planes never bypass the arithmetic coder. The standard-compliant bypassing mode brings only 

little benefit for the throughput for a GPU implementation. The proposed raw coding of the lower bit 

planes, on the other hand, yields an additional speed-up that grows as more bit planes are bypassed. 

 

Figure 7-5 - Encoding speed-ups per test sequence for single-pass and raw-coding modes  

Figure 7-5 presents an overview of the achieved speed-ups for a range of high-resolution 48 bit RGB 

4:4:4 image sequences. These sequences were chosen instead of the standard test still images, since 

processing blocks from multiple images in parallel increases the throughput significantly. Duplicating a 

still image would produce unrealistic results since then the execution divergence due to different image 

contents is not taken into account.  

The gain is highest for scenes with only few details, since then most code blocks contain only few non-

zero bit planes. In this case, the GPU is most heavily under-occupied without the proposed new coding 

modes, as only few code blocks remain active in the lower bit planes. The average speed-up for the 

single-pass mode is 1.3x with a factor of 1.2x on the low end for the detail-rich VQEG or StEM sequences 
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and almost 1.5x on the high end for the low entropy images from the Sintel or Big Buck Bunny sequences. 

When enabling the raw-coding mode after the fourth (third) significant bit plane, the average speed-up 

is increased to 1.6x (1.8x).  

The impact of the single-pass mode on the decoder is lower, but still yields an average speed-up of 

1.16x. The proposed raw-coding mode works better in the decoder, though, with speed-ups of 1.5x and 

1.9x when enabling it after the fourth or third plane, respectively. 

 

Figure 7-6 - impact per test-sequence of single-pass and raw-coding mode on compression rate 

The down side to the proposed modes is a diminished compression efficiency. Figure 7-6 plots how the 

achieved compression rate decreases as more bit planes are subjected to raw coding. The compression 

rate decrease due to the single-pass mode is only about 0.1%. As expected, the data rate grows 

significantly, as more bit planes are coded raw. 

 

Figure 7-7 - Rate-Distortion Plot for single-pass mode and raw-coding mode vs. the default EBCOT mode.  

The quality loss caused by the lower compression efficiency stays mostly within 0.5 dB PSNR as shown 

in Figure 7-7. The delta between the original and single-pass mode is virtually invisible in the RD-plot. 

The quality loss due to raw-coding is highest for the low-entropy sequences, where the PSNR was high 

to begin with and a slight loss in PSNR is tolerable as it remains in the “visually lossless” domain. 
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All sequences have been compressed with a sufficiently high maximum data rate so that no bit streams 

had to be truncated. It has yet to be examined how the quality compares when compressing to a fixed 

target rate, given that the single-pass mode yields fewer truncation points.   

 

Figure 7-8 - speed-up vs. data rate trade-off per test-sequence for single-pass and raw-coding mode. Points below diagonal line 

present a positive trade-off. 

Ultimately, an assessment of whether the gain in the form of increased encoding or decoding throughput 

outweighs the cost in terms of an increased data rate depends on the use case. An attempt is made here 

by plotting the speed-up vs. the relative increase in data rate (Figure 7-5). Every curve connects five 

points, which represent the result for no bypassing, bypassing after 4, 3, 2 or 1 significant bit planes. 

For those points that lie below the diagonal dashed line, the speed-up is higher than the relative increase 

in data rate. 

All except two sequences stay entirely below the dashed line. The two exceptions correspond to low 

entropy sequences that had a high compression efficiency and throughput to begin with and could 

therefore be regarded as uncritical. 

An attempt to condense these findings further is made in the following table. 

Table 7-1 - Speed-up for single-pass and raw-coding mode. GeForce GTX 1080, 6 bpp, 4:4:4, 36 bit per pixel 

 
No intra TP,  

no raw-coding 

No intra TP 

raw-coding ≥ 4 

No intra TP 

raw-coding ≥ 3 

Encoder up to 1.3x up to 1.4x up to 1.5x 

Decoder up to 1.15x up to 1.4x up to 1.6x 
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7.4 Conclusion 

Based on an examination of the bottlenecks of a JPEG 2000 implementation for GPUs, two new modes 

for its entropy coder EBCOT are proposed that lead to a higher throughput. The variants are standard-

incompliant but compatible with the JPEG 2000 framework and can be losslessly transcoded into 

standard-compliant profiles. The resulting code stream is still embedded so that decoders can apply the 

technique of code-pass skipping in order to increase their throughput further when it is not a strict 

requirement to fully decode the compressed images, e.g. when previewing 36 bit DCPs on a 24 bit 

computer monitor [80]. 

The single-pass mode alone yields speed-ups between 1.2x and 1.5x for the encoder and 1.05x to 1.3x 

for the decoder at virtually no decrease in compression rate.  

The throughput can be further increased by enabling the raw-coding mode on top of the single-pass 

mode. In contrast to the selective-arithmetic coding bypass mode defined in the JPEG 2000 standard, 

this proposed mode can be leveraged by a GPU implementation to increase the throughput significantly. 

This comes at the cost of an increased data rate, but the relative speed-up outweighs the relative increase 

in data rate for all tested detail-rich sequences. It presents an opportunity to flexibly configure the trade-

off between speed and compression rate. 
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8 BPC-PaCo 

Recently, F. Auli-Llinas from the Universitat Autònoma de Barcelona has also proposed an alternative 

GPU-friendly entropy coding scheme, named Bitplane-Coding with Parallel Coefficient Processing 

(BPC-PaCo), that can be dropped into the JPEG 2000 framework, replacing the time-consuming 

EBCOT algorithm [52]. In short, it is laid out for a code block size of 64x64 and employs a scan order 

where each parallel SIMD-thread independently processes in a zig-zag order a vertical stripe of two 

sample columns and feeds symbols into their own local arithmetic coder [51].  

 

Figure 8-1 – BPC-PaCo scanning order, where a MxN code block is processed by a group of M/2 threads in lock-step 

parallelism. Each thread scans through two consecutive columns in a zig-zag scan order. The figure is copied without 

changes from [50] 

The above figure shows how a group of threads walks in a tightly synchronized “lock-step” fashion 

through the rows from top to bottom.  

Compared to EBCOT with 32x32 code blocks, the number of samples per arithmetic coder is reduced 

by eight from 1024 to 128 samples, which would lead to the problem of context dilution. However, this 

problem is avoided by making the trade-off of giving up context adaptiveness and instead use a 

stationary probability model that requires a-priori knowledge about the image characteristics [81–83]. 

The research questions that arise are: How does BPC-PaCo compare to the other coding modes 

presented in this work? What are the drawbacks and advantages in terms of compression efficiency and 

throughput? How strongly are the results affected by the choice of the static probability map created 

offline? Can the coding mode be further optimized for the use case of visually lossless image 

compression? 
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8.1 Stationary Probability Model 

The stationary probability model for the no longer context-adaptive binary arithmetic coder is derived 

from the authors’ insight that the MPS’ probability for any given context does not change significantly 

within a bit plane as shown in the following figure. They propose to give up the context adaption and 

instead devise a static probability map with a probability per context, bit plane, subband and color 

component. For the example of 3 channels, 16 bands per channel (at 5 DWT decompositions), 18 context 

and 14 bit planes, this amounts to ~12.000 probabilities that are stored as 16 bit fixed point values. 

Certainly, the amount could be reduced by choosing a variable amount of bit planes, since 14 bits are 

not required for high frequency bands.  

 

Figure 8-2 – MPS probabilities (dashed line) for one of the significance coding contexts. It is visible that the probability is 

centered on the bit plane’s average probability. The figure is taken without changes from [82] (Figure 3) 

Since the change is ultimately motivated by the goal to devise a faster coder, it is not an option to build 

the probability map at runtime based on the image characteristics due to the time this would take. 

Instead, the authors propose to pre-define models for various classes of images offline and use those. 

The proposed classes are natural, aerial, AVIRIS and XRAY. Results indicate that the proposed scheme 

reaches the same quality as EBCOT for code block sizes of 32x32 or 64x64.  

8.2 Fixed-Length Coding 

In [84], the authors propose to replace the variable-to-variable length MQ-coder used in JPEG 2000 with 

a new variable-to-fixed length coder, named FLW for “fixed-length code words”. 

The MQ-coder creates a single large code word, whose length cannot be predicted beforehand. In order 

to be compatible with registers of limited precision, it needs to renormalize frequently. In contrast, the 

FLW-coder emits a short code word as soon as a predefined bit length is obtained. By design, it does 
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not need to renormalize, which reduces its complexity and leads to a speed gain of 10-30% compared 

to MQ-coder.  

 

Figure 8-3 – fixed-length code words from all parallel threads are interleaved in a deterministic way. The figure is copied 

without changes from [50] 

The code words’ fixed length is then utilized to derive a deterministic scheme on how to interleave the 

threads’ individual entropy coders’ outputs. Whenever a thread is about to start a new code word, it first 

reserves a slot in the output buffer where the code word will be written. The slot is assigned by querying 

each round from all participating threads whether they need a new slot or not using intra-SIMD-group 

voting primitives.  

8.3 Two or three passes per bit plane 

The authors proposes to operate BPC-PaCo with either two or three passes per bit plane. Since both the 

context modeling and arithmetic coding phases are executed with finely grained parallelism, there is no 

need to split these operations into separate kernels. Instead, the entire block coding stage is carried out 

within a single GPU kernel that follows the algorithm laid out below. 

Algorithm 8-1 – Original BPC-PaCo encoding kernel 

one thread per two columns of 64x64 code block 

1. dwtCoeffs2x64[] = Load2x64DwtCoeffs() 

2. MSB = findMsb(dwtCoeffs2x64) 

3. if (use3passes) 

4.   runPass_CUP(MSB-1, dwtCoeffs2x64) 

5. for (b in MSB-1:0) { // for each bit plane b 

6.   runPass_SPP(b, dwtCoeffs2x64) 

7.   runPass_MRP(b, dwtCoeffs2x64) 

8.   if (use3passes) 

9.     runPass_CUP(b, dwtCoeffs2x64) 

10. } 

 

Each thread initially loads their two columns of 64 samples each into thread local memory (line 1). 

Identical to the regular EBCOT context modeling kernel, all threads of a thread block then jointly find 

the most-significant bit plane that contains at least one 1-bit (line 2). Then they iterate over the bit planes 

and execute the two (or three) pass types (lines 5-9). 

The next algorithm shows the significance propagation (SPP) pass. The magnitude refinement and clean 

up passes are structured analogously and will not be repeated here. The threads jointly iterate through 
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each row from top to bottom (line 2) and then code their left and right samples (line 3). The threads 

operate in a tightly synchronized fashion, i.e. all left samples of a row are processed concurrently, 

followed by all right samples. In order to determine the sample’s context from the 3x3 neighborhood, 

the samples need to be loaded (line 4). Since each thread only loaded their own 2x64 samples into local 

memory, the three samples from the left and right thread are accesses via the register-shuffling 

instructions that allow exchanging registers within the threads of a single SIMD-group.  

Algorithm 8-2 - Original BPC-PaCo SPP pass 

one thread per two columns of 64x64 code block 

1. runPass_SPP(b, dwtCoeffs2x64, color, band) { 

2.   for (row r in 0:63) { 

3.     for (col c in 0:1) { // left and right 

4.       nbh3x3[] = load3x3Nbh(r, c) 

5.       if !significance(nbh3x3[4]) { // not yet significant 

6.         // “zc” zero-coding 

7.         ctx = determineZcCtx(nbh3x3)  

8.         prob = LUT(color,band,zc,b,ctx) 

9.         d = (nbh3x3[4]>>b)&1 

10.         acEnc(prob, d) 
11.         // “sc” sign-coding 
12.         if (d) { 
13.           markSignificant(nbh3x3[4]) 
14.           ctx = determineScCtx(nbh3x3) 
15.           prob = LUT(color,band,sc,b,ctx) 
16.           d = sign(nbh3x3[4])  
17.           acEnc(prob, d)  
18.         } 
19.       } // significant? 
20.     } // left and right 
21.   } // for each row 
22. }  

 

One bit of each local sample is used to store whether the sample has already turned significant (line 5). 

The coding rules of the passes have not changed with respect to the regular EBCOT algorithm. When a 

sample is not yet significant, it is coded with the zero-coding primitive. A context is inferred from the 

neighbor’s significance state (line 7). In contrast to EBCOT, which uses a context-adaptive arithmetic 

coder, the probability for the coding operation and context is now looked up from the static look-up 

table (line 8). The decision bit (line 9) and probability are then passed to the fixed-length arithmetic 

coder (line 10). If the decision bit is one (line 12), the sample turns significant and the sign will be coded 

next following the same structure (line 13-17). 

8.4 Proposed change: Single-Pass Scan Order 

Can the coding mode be further optimized for the use case of visually lossless image compression? 

Whereas the previous chapters on BPC-PaCo merely summarized the details published by Auli-Linas 

et al, this chapter discusses original unpublished contributions proposed by the author of this work. 

Analogous to the EBCOT mode proposed in chapter 7.1 "Single-Pass Scan Order“, the original BPC-

PaCo algorithm is modified to remove the concept of code passes. The overhead of having to pass over 

the samples in each bit plane more than once is given up by sacrificing intra-bit-plane truncation points. 

This will cost quality, especially at lower bit rates, but improve the throughput.  
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Algorithm 8-3  – Modified “1pass” BPC-PaCo encoding kernel 

one thread per two columns of 64x64 code block 

1. dwtCoeffs2x64[] = Load2x64DwtCoeffs() 

2. MSB = findMsb(dwtCoeffs2x64) 

3. for (b in MSB-1:0) // for each bit plane b 

4.   uint64_t sigFlagsPerRow[3][2] // sliding window registers:  

5.                                 //   top, center, bottom row 

6.                                 //   left and right 32 cols  

7.   for (r in 0:63) { // for each row r 

8.     loadStateForNewRow(sigFlagsPerRow, r, 

9.                        dwtCoeffs2x64) 

10.     for (c in 0:1) { // left and right column c 
11.       if sigFlagsPerRow[1][c]&threadIdx.x { //significant?                                             
12.         // “mrc” magnitude-refinement-coding 
13.         ctx = determineMrcCtx(sigFlagsPerRow,r,c)  
14.         prob = LUT(color,band,mrc,b,ctx) 
15.         d = (dwtCoeffs2x64[r][c]>>b)&1 
16.         acEnc(prob, d) 
17.       } 
18.       else { // not yet significant 
19.         // “zc” zero-coding 
20.         ctx = determineZcCtx(sigFlagsPerRow,r,c)  
21.         prob = LUT(color,band,zc,b,ctx) 
22.         d = (nbh3x3[4]>>b)&1 
23.         acEnc(prob, d) 
24.         // “sc” sign-coding 
25.         if (d) { 
26.           markSignificant(sigFlagsPerRow,r,c) 
27.           ctx = determineScCtx(sigFlagsPerRow,r,c) 
28.           prob = LUT(color,band,sc,b,ctx) 
29.           d = sign(dwtCoeffs2x64[r][c]) 
30.           acEnc(prob, d)  
31.         } 
32.       } // significant? 
33.     } // left and right 
34.     commitState(dwtCoeffs2x64, sigFlagsPerRow, r) 
35.   }// for each row 
36. } 

 

A significant change compared to the original BPC-PaCo algorithm is that the threads scan only once 

per bit plane over all samples. This also enables the way for accessing the significance states with a 

stenciling technique. When iterating over the 64 rows, the significance bits for a sliding window of three 

rows are maintained in thread-local registers (3x64 bits) (line 7 above, line 1-12 below). After each 

row’s coding operations have been carried out, the sliding window registers are updated with the changes 

from the other threads (line 34 above, lines 16-19 below) and the new significance state is stored to the 

thread local persistent memory (line 22-25 below).  

Algorithm 8-4 – Modified “1pass” BPC-PaCo encoding kernel 

one thread per two columns of 64x64 code block 

1. loadStateForNewRow(sigFlagsPerRow[3][2], r, dwtCoeffs2x64) { 

2.   if (r==0) 

3.     sigFlagsPerRow = {0} 

4.   else { 

5.    sigFlagsPerRow[top] = sigFlagsPerRow[center] 

6.    sigFlagsPerRow[center] = sigFlagsPerRow[bottom] 

7.    sigFlagsPerRow[bottom][left] =  

8.      ballot(significant(dwtCoeffs2x64[r+1][left])) 

9.    sigFlagsPerRow[bottom][right]= // right 

10.      ballot(significant(dwtCoeffs2x64[r+1][right])) 
11.   } 
12. } 
13.  
14. commitState(dwtCoeffs2x64, sigFlagsPerRow[3][2], r) { 
15.   // update local registers 
16.   sigFlagsPerRow[center][left] = 
17.     ballot(sigFlagsPerRow[center][left] & threadIdx.x) 
18.   sigFlagsPerRow[center][right] = 
19.     ballot(sigFlagsPerRow[center][right] & threadIdx.x)    
20.   
21.   // update persistent state 
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22.   if (sigFlagsPerRow[center][left] & threadIdx.x) 
23.     significant(dwtCoeffs2x64[r][left]) = 1 
24.   if (sigFlagsPerRow[center][right] & threadIdx.x) 
25.     significant(dwtCoeffs2x64[r][ right]) = 1t 
26. } 

 

8.5 Look-up Table Structure 

The look-up tables are stored in a CSV format with the following columns: 

 keys 

1. Color channel index: {1-3} 

2. Coding Operation: {sign-coding “sc”, zero-coding “zc”, magnitude-refinement coding 

“mrc”} 

3. Resolution level: {4K: 1-7, 2K: 1-6} 

4. Subband: {resolution level 1: LL, resolution level > 1: LH, HL, HH} 

5. Bit plane: {1 (MSB) – 14 (LSB)} 

6. Context: {sz: 4, mrc:1, zc:9} 

 values 

1. total number of coded symbols: N 

2. number of coded symbols with value 0: N0 

3. probability p e{1-127} that symbol is 0: 𝑝 =  
N0

𝑁
  

The rows are sorted in the order the keys are listed above. Given this predefined order, only the third 

value column with the probabilities needs to be made available to the GPU kernels by uploading it into 

the constant read-only memory during the initialization of the GPU encoder or decoder. 

The BPC-PaCo code published along with the original paper did not include functionality to include 

new LUTs. Instead, the encoder was modified to include a mode where it collects and stores the symbols 

along with the keys listed above. Since both the total number of symbols and number of zero-valued 

symbols per key is known, combining two or more sequence-specific LUTs into an average LUT is 

straight forward and will not be discussed here further. 

8.6 Probability Estimates Variance 

BPC-PaCo relies on probability estimates that are computed offline a-priori for a representative corpus 

of images. In many real-world scenarios, such knowledge about the image characteristics will not be 

available and so a generic default probability map will have to be used. It is thus important to know the 

quality variance between probability estimates inferred from various image corpora. This chapter will 

describe an experiment where probability lookup tables (LUTs) have been specifically computed for 

each of a set of image sequences. Additionally, an average LUT is computed from these specialized 

LUTs. The quality will be reported for each combination of input sequence and LUT. 
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Research question: how strongly does the image corpus used to compute a probability map influence 

the compression efficiency of BPC-PaCo?  

 

Figure 8-4 – Overview of achieved bit rate after compression (without any post-compression truncation) for every combination 

of input sequence and probability look-up table (LUT) for BPC-PaCo with two passes using a base quantization step size of 

128-1. The first two bars for each sequence show the results for EBCOT and the special LUT created by averaging all other 

LUTs. The sequence-specific LUT is marked with a small arrow. 

Before comparing the resulting quality at a given target bit rate it is insightful to check the achievable 

compression rate without providing any limit on the bit rate budget. Figure 8-4 shows the results for the 

combination of all seven test sequences with the probability estimates computed individually for each 

of those sequences as well as the mean probability map over all sequences. Additionally, the results for 

EBCOT are included to serve as a reference. Figure 8-5 visualizes the same data by plotting the delta 

from the BPC-PaCo runs to EBCOT. 

 

Figure 8-5 – Difference of achieved bit rate after compression (without any post-compression truncation) for every combination 

of input sequence and probability look-up table (LUT) from BPC-PaCo with two passes to EBCOT. The values show how 

many more bpp BPC-PaCo requires. The first bars for each sequence show the results for the special LUT created by averaging 

all other LUTs. The sequence-specific LUT is marked with a small arrow. The base quantization step size is 128-1. 

EBCOT yields the lowest bit rate across all test sequences, followed by the probability LUT created 

specifically for the respective input sequence. The mean LUT also performs well, scoring the third place 

in most cases.  
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Noticeably, for the Crowd Run sequence, the sequence-specific LUT and average LUT both perform 

equally well as EBCOT. Crowd Run is the most demanding sequence where the likelihood for the most 

probably symbol, 0 or 1, approaches 0.5 early on, resulting in a poor compression rate of any arithmetic 

coder. The probability LUT originally created for the Sintel title sequence yields by far the worst 

performance for Crowd Run with 1.4 bpp above the best result of 9 bpp, which equals an extra 15%.  

The LUT created from Sintel Title, performs worst for all other sequences. Oppositely, the LUT designed 

for Crowd Run yields the worst result for the Sintel Title sequence. The LUT averaged over all sequences 

performs well in general with a penalty below 0.3 bits/pixel in all cases. 

 

 
 

 

 

Figure 8-6 – Comparison of static probabilities, grouped by bit plane, context and coding operation, between the high entropy 

Crowd Run sequence (top two rows) and the low entropy Sintel Title sequence (bottom two rows). Intersections of bit plane, 

coding operation and context with less than 20 total symbols are omitted. 
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Figure 8-6 allows for comparing the probabilities of the two sequences, plotted over the bit planes from 

MSB to LSB and grouped by coding operation and context. The nine zero-coding contexts are grouped 

in one plot and the single magnitude-refinement-coding context is grouped with the four sign-coding 

contexts in a second plot. Each box represents the set of probabilities over all subbands in all channels. 

Comparing the zero-coding probabilities between Crowd Run and Sintel Title, it is visible that for the 

former, all the contexts approach a uniform probability towards the lower bit planes, whereas for the 

latter, the lower zero-coding contexts that indicate the presence of only few significant samples in the 

neighborhood remain skewed towards a probability of d=0. Another visible difference is that the context 

modeling routine for Sintel Title produces some zero-coding contexts where a symbol value of d=1 is 

more probable, especially for “zc 6” in the second bit plane and “zc 8” in the third bit plane. This is 

never the case for the Crowd Run sequence’s zero-coding contexts. The magnitude-refinement-coding 

probability distribution looks very similar between the two sequences. The sign-coding contexts, 

however, expose significantly more heavily skewed probabilities for the Sintel sequence.  

More important than comparing the achieved bit rates given an unlimited budget is to examine the rate-

distortion relation. Given a predefined bit rate budget, how does the quality, in terms of PSNR, compare 

amongst the different probability tables? 

 

 

Figure 8-7 – Rate-distortion plot for BPC-PaCo with two passes per bit plane for every combination of input sequence and 

probability look-up table (LUT). The top right plot zooms in on the sample values at 4 bpp. The bottom plot shows the 

difference with respect to EBCOT. The base quantization step size is 128-1. 

Figure 8-7 shows a rate-distortion plot for the StEM Confetti sequence. EBCOT performs best across 

the entire range of sample bit rates from 0.5 to 6 bpp, followed by the probability map specifically 
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tailored to the tested sequence. The variance grows with the bit rate. At low bit rates below 1 bpp it 

hardly matters which probability map is employed. At 2 bpp and 3 bpp the gap between the best and 

worst LUT stays reasonable at 0.4 dB. At 5 bpp, the gap has grown to over 1 dB.   

 

 

Figure 8-8 – Matrix with distortions (difference to EBCOT) for each combination of sequence (x-axis) and probability LUT 

(y-axis). Top: 0.5 bpp. Bottom: 6 bpp. Left: BPC-PaCo 1-pass mode. Right: BPC-PaCo 2-pass mode. The base quantization 

step size is 256-1. 

Figure 8-8 shows for the lowest (0.5 bpp, top) and highest (6 bpp, bottom) bit rate the PSNR differences 

to EBCOT for each combination of sequence (x-axis) and probability LUT (y-axis). At 0.5 dB, the 

difference with respect to EBCOT is considerable, especially for the low entropy sequences Bunny 

Closeup and Sintel Title. At 6 bpp, the changes remain visible only for the high entropy sequences. 

Using a probability LUT optimized for the Sintel title sequence does not work well for the Alexa Heli, 

Crowd Run or StEM Confetti sequences. The mean LUT constructed by averaging over all test sequences 

performs well across all four scenarios. The difference between the results of BPC PaCo 2-pass and 1-

pass is marginal and lies within 0.1 dB for the average probability LUT, which lies well below the just 

noticeable difference (JND) according to the author’s own subjective assessment.  
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Figure 8-9 – Matrix with distortions (difference to optimal probability LUT created for the sequence) for each combination of 

sequence (x-axis) and probability LUT (y-axis). Top: 0.5 bpp. Bottom: 4 bpp. Left: BPC-PaCo 1-pass mode. Right: BPC-

PaCo 2-pass mode. The base quantization step size is 256-1. 

Figure 8-9 shows again a matrix of PSNR differences, this time for 0.5 bpp and 4 bpp and with respect 

to the optimal probability LUT that was created from the test sequence itself. In this visualization, the 

intra-LUT variance can be read more conveniently.  

8.7 Experimental Results 

The most recent of a sequence of publications about BPC-PaCo is [53], where the authors publish results 

from a GPU implementation. They experiment with scan orders with two or three passes per bit plane 

and compare the resulting quality to standard JPEG 2000 and the runtime performance to the open source 

cuj2k [42] and GPU JPEG2K implementations [43].  

Here, the scan order with two passes per bit plane will be compared against default JPEG 2000, denoted 

as “EBCOT”, since only the block coder is different, as well as the proposed BPC-PaCo flavor with a 

single-pass scan order described in chapter 8.4. Even though only the block coders are exchanged, all 
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reported throughputs relate to the entire JPEG 2000 encoding and decoding routine, including memory 

transfers (unless otherwise specified). All block coding kernels operate collectively on the set of code 

blocks from a group of eight pictures, since a single image does not contain a sufficient amount of code 

blocks to fully load a high-end GPU. EBCOT uses code blocks of size 32x32, whereas the BPC-PaCo 

kernels use sizes of 64x64. Going forward, the probability map created by averaging over all test 

sequences is employed for experiments.   

 

Figure 8-10 – Rate-Distortion plot for BPC-PaCo and EBCOT over all test sequences. The mean LUT created by averaging 

probabilities over all test sequences is used.  

Since the proposed changes to BPC-PaCo trade intra-bit plane truncation points for higher speed, the 

first check is to compare the distortion. In the rate-distortion plot in Figure 8-10, the difference between 

the two BPC-PaCo flavors is hardly visible. The proposed changes cost no more than 0.3 dB compared 

to the original algorithm. The gap to EBCOT is slightly larger, but mainly stays below 1 dB. This is in 

line with the measurements reported by the original authors in [53]. The Bunny Closeup sequence poses 

an exception. The fact that the curves saturate already at a bit rate of ~1.5 bpp shows that the Full HD 

sequence has only few details and is very easy to compress. The gap between the original BPC-PaCo 

mode and EBCOT is 1.5 dB. The other scene from the Big Buck Bunny movie denoted as Bunny Falling 

Tree also shows differences of over 1 dB.   
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Figure 8-11 – Encoding and Decoding throughput for the Crowd Run test sequence, measured on a NVIDIA GeForce GTX 

1080 graphics card.  The base quantization step size is 128-1. Crowd Run sequence: 3840x2160, RGB 4:4:4, 48 bit per pixel, 

8.3 MPixel, 24.9 MSamples. 

The other key metric beside the quality is the achieved throughput. Figure 8-11 plots for the Crowd Run 

4K sequence how fast the encoder and decoder operate on a NVIDIA GeForce GTX 1080 GPU (released 

in 2016). The encoder throughputs are represented by the dashed lines, the decoder throughputs by solid 

lines. The order of the three modes is consistent between the encoder and decoder.  

For the encoder the throughput is hardly affected by the target bit rate as indicated by the flat dashed 

lines. This is expected. For both the encoder and decoder, the component and wavelet transform coding 

stages are not affected by the bit rate in any case. The most time consuming block coding stage is only 

affected by the image content and quantization on the encoding side. The target bit rate is only met by 

truncating the bit streams for every code block after the block coding stage has finished. Here, no 

heuristic is employed to anticipate preemptively which passes or bit planes will end up getting truncated 

anyway and can already be skipped by the block encoder. The base quantization step size chosen for 

this experiment is 128-1. EBCOT is slowest with 30 fps. The original BPC-PaCo with two passes per bit 

plane increases the encoding throughput by a factor of 2.15x to ~65 fps. The modified BPC-PaCo 

without any intra-bit plane truncation points increases the throughput by another 15 fps to ~80 fps in 

total, which equals a factor of 1.23x. 

The decoding throughput, on the other hand, is heavily influenced by the bit rate as this now directly 

relates to the workload of the time consuming block decoding stage. All three curves are capped at close 

to 120 fps, because downloading the decoded images from the GPU poses a bottleneck. The transfer of 

the previous group of pictures is overlapped with the next group’s compute kernels, but in this case 

downloads take longer than the decoding kernels. As discussed in chapter 2.3.4, this limitation will be 

mitigated when using newer hardware and based on this projection. Figure 8-12 shows a simulation that 

assumes a sufficiently high transfer bandwidth. In the above scenario, the GPU is connected on a PCI-

Express 2.0 (standard released in 2007) bus with 16 lanes. This yields a theoretic transfer rate of 8000 

MB/sec without protocol overhead. The measurements show a true transfer rate (including protocol 

overhead) from device memory into non-pageable host memory of ~6400 MB/sec. The transfer of a 

single frame of 48 MB size (3840 x 2160 samples x 3 channels x 2 Bytes per sample) takes ~7.5 ms 
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(133 fps). Given that the GeForce GPU does not overlap two transfers of opposite directions, the ~1 ms 

it takes to upload the compressed code stream has to be added to the 7.5 ms/frame download time, 

yielding the observed maximum throughput of a little under 120 fps.  In scenarios where it is not required 

to decode the full bit depth of 16 bit per sample, but instead only RGB24 pixels with 8 bit per sample 

need to be reconstructed, the download size halves and the bottleneck posed by the transfer rises to 230 

fps. 

The decoding throughput for EBCOT lies under the transfer bottleneck only at the lowest bit rate of 0.5 

bpp. Immediately, the curve falls gradually, indicating that it is then bound by the computation speed. 

For BPC PaCo with two passes per bit plane, the throughput starts to get computation-bound at 3 bpp, 

for the single-pass extension at 5 bpp. At 5 bpp, the encoding throughput for the three modes lies at 60 

fps, 88 fps and 110 fps. This corresponds to a speed-up of 1.46x for BPC-PaCo 2-pass over EBCOT and 

another 1.25x of BPC-PaCo 1-pass over BPC-PaCo 2-pass. The following figure shows the same plot 

with the limiting data transfer in the decoder excluded. The benefits of the BPC-PaCo modes in terms 

of increased throughputs stay approximately constant throughout the entire sampled bit rate range.   

 

Figure 8-12 – Encoding and Decoding throughput for the Crowd Run test sequence. Same as Figure 8-11, except that in the 

decoder, the time for downloading the reconstructed images is not included.  

The following figure shows the analog throughput measurements for the remaining sequences. The 

encoder and decoder throughputs have now been separated into individual plots and the three coding 

modes are distinguished by their line types in addition to the shapes.   
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Figure 8-13 – Encoding (bottom) and decoding (top) throughput for all test sequences coded with (1) EBCOT, (2) the 

original BPC-PaCo with two passes per bit plane and (3) a modified BPC-PaCo with a single-pass scan order. Throughput is 

measured with a NVIDIA GeForce GTX 1080. The base quantization step size is 128-1. 

The trends observed and discussed above for the Crowd Run sequence apply to all other sequences as 

well (Figure 8-13). For the animated Bunny Closeup sequence with Full HD resolution, the encoding 

throughput is raised from 250 fps to ~425 fps and ~475 fps using the BPC-PaCo 2-pass and 1-pass 

modes, respectively. The throughput for the more complex Bunny Falling Tree scene from the same 

movie lies ~50 fps lower for EBCOT and ~75fps lower for the BPC-PaCo modes, confirming again that 

the complexity of the image content has a strong influence on the encoding speed.  

8.8 Conclusion 

How does BPC-PaCo compare to the other coding modes presented in this work? What are the 

drawbacks and advantages in terms of compression efficiency and throughput? The drop-in replacement 

for EBCOT proposed by F. Auli-Llinas et al. is compared against the author’s implementation of 

standard JPEG 2000. Additionally, an alternative single-pass scan order, titled BPC-PaCo 1-pass, is 

proposed. It sacrifices intra-bit plane truncation points for increased throughput by reducing the memory 

accesses and allowing for employing a stenciling technique for computing the context from a sample 

neighborhood’s significance states.  

How strongly is the quality of BPC-PaCo mode affected by the quality of the static probability model? 

To this end, an experiment was conducted where custom-tailored probability look-up tables for each of 

the seven test sequences were created and applied to each test sequence. Figure 8-9 visualizes the results 

for each combination of test sequence and probability map. The maximum difference is 1.7 dB PSNR, 

when applying the LUT created from the detail-rich Crowd Run sequence to the low-detail Sintel Title 



Chapter 8    

88 

sequence. The probability table averaged over all test sequences performs reasonably well, though, with 

a maximum difference of 0.53 dB (for Sintel title).  

The proposed alternative scan order that sacrifices intra-bit plane truncation point lies constantly within 

0.3 dB of the original mode for all test sequences over all sampled bit rates.  

While the “cost” in terms of a diminished image quality was shown to be limited, both for BPC-PaCo 

over EBCOT and for BPC-PaCo 1-pass over BPC PaCo 2-pass, the next research question was: What 

are advantages in terms of an increased throughput? 

 

Figure 8-14 – Speedup for encoding (bottom) and decoding (top) throughput of BPC-PaCo modes over EBCOT for all test 

sequences. Throughput is measured with a NVIDIA GeForce GTX 1080. The base quantization step size is 128-1. A speedup 

of 1x implies identical throughputs. 

Figure 8-14 shows the achieved relative speed-ups over JPEG 2000 with the EBCOT block coder. For 

the encoder, the speed-ups remain constant regardless of the bit rate. They are only affected by the image 

sequence, more precisely by their complexity rather than their resolution. For the Crowd Run 4K 

sequence, the BPC-PaCo modes’ speed-ups over EBCOT are 2.15x and 2.6x, while for the StEM 

Confetti 2K sequence with 2.35:1 aspect ratio they are 2x and 2.3x, respectively. For the remaining 

sequences, except Sintel Title, they lie between 1.6x-1.8x for the original two-pass mode and 1.9x-2.1x 

for the proposed single-pass mode.  

On the decoding side, the impact on the throughput rises slightly in most cases towards the higher bit 

rates. For Crowd Run, the speedups are 1.25x and 1.4x at 0.5 bpp and they rise to 1.5x and 1.9x at 5 

bpp. The reason is that the average number of passes per code block increases as the bit rate budget is 

increased. Since the regular EBCOT decoder is implemented with a single kernel with one thread per 

code block (due to the feedback loop between context modeler and arithmetic coder, the two routines 

cannot be decoupled), increasingly more threads of each thread group stay inactive towards the lower 
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bit planes as they finished processing their code block’s passes. BPC-PaCo does not suffer from this 

problem as each thread-group collectively decodes a single code block.  

The measurements carried out were, in case of the decoder, limited by the available memory bandwidth. 

However, as shown in chapter 2.3.4, the available bandwidth rises fast as newer versions of the PCI 

express protocol are released. This coding mode will continue to benefit from faster computation speed 

provided by future GPU hardware improvements and not be limited by slow transfer rates. 
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9 Runtime Model 

This chapter seeks to analyze and model the performance of a kernel. Predicting the runtime of a kernel 

is very challenging due to the complexity of the hierarchical memory and concurrency architecture of a 

modern GPU. The authors of [85] examined computation-bound kernels with the goal of reverse-

engineering the behavior of the CUDA scheduler in certain scenarios when using more than one CUDA 

stream. [86] and [87] each summarize multiple existing GPU models for predicting the runtime of a 

kernel in order to combine them. They predict the runtime of sample kernels. The use cases involve 

relatively small kernels such as a matrix multiplication or a histogram, where it is possible to count the 

compute and memory instructions in order to calculate the number of instructions.   

Since much of this work is concerned with the JPEG 2000 context modeling and arithmetic coding 

kernels, these are used as examples. In contrast to the small use cases examined in the literature listed 

above, these kernels’ number of instructions cannot be predicted ahead of time as they depend heavily 

on the statistics of the input images. An image with a high entropy will produce more symbols to be 

encoded than a low-entropy image. On top of that, the kernels are very long which renders an instruction 

count impracticable. Instead of predicting the runtime merely based on the source code, an approach is 

taken where the kernels are executed and profiled on one GPU in order to be able to gain an 

understanding of the performance limitations and predict the runtime on another GPU. 

9.1 CUDA Benchmark-based Runtime Model 

This paragraph discusses how the runtime 𝑡𝑘𝑟𝑛𝑙 for a given kernel on a given device can be calculated 

based on a set of contributing metrics. One such key metric is the activity level of the multiprocessors. 

The multiprocessor activity is the percentage of the kernel execution duration a multiprocessor is active 

[88]. Ideally, the multiprocessor activity lies close to 100%. It is lower, for instance, when the workload 

is balanced unevenly across all SMs or when the problem size is too low.  

A single multiprocessor executes multiple thread blocks concurrently. However, blocks resident on the 

same multiprocessor have to share the multiprocessor’s physical resources, and so the number of blocks 

that can be resident on a single multiprocessor depends on a thread block’s resource consumption. The 

following design choices are made either explicitly or implicitly:   

1. Number of SIMD-groups per thread block  

2. Number of registers per thread 

3. Shared memory usage per thread block 

At least one of the above will be the limiting factor. The number of thread blocks resident per 

multiprocessor weighted by the multiprocessor activity yields the amount of active thread blocks per 

multiprocessor:  
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𝑇ℎ𝑟𝑒𝑎𝑑𝐵𝑙𝑜𝑐𝑘𝑠𝑎𝑐𝑡𝑖𝑣𝑒

𝑀𝑢𝑙𝑡𝑖𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟
=

𝑇ℎ𝑟𝑒𝑎𝑑𝐵𝑙𝑜𝑐𝑘𝑠

𝑀𝑢𝑙𝑡𝑖𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟
∗ 𝑀𝑢𝑙𝑡𝑖𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (1) 

The average number of active SIMD-groups per multiprocessor follows: 

 
𝑆𝐼𝑀𝐷𝐺𝑟𝑜𝑢𝑝𝑠𝑎𝑐𝑡𝑖𝑣𝑒

𝑀𝑢𝑙𝑡𝑖𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟
=

𝑇ℎ𝑟𝑒𝑎𝑑𝐵𝑙𝑜𝑐𝑘𝑠𝑎𝑐𝑡𝑖𝑣𝑒

𝑀𝑢𝑙𝑡𝑖𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟
∗

𝑆𝐼𝑀𝐷𝐺𝑟𝑜𝑢𝑝𝑠

𝑇ℎ𝑟𝑒𝑎𝑑𝐵𝑙𝑜𝑐𝑘
 (2) 

The average number of cycles per SIMD-group is calculated from the workload (instructions per SIMD-

group) and the efficiency at which the instructions could be executed (instructions per cycle). Both 

metrics are obtained by running the instruction efficiency benchmark on the profiled kernel. The amount 

of required cycles per SIMD-group already includes any latencies introduced by stalls. 

 
𝐶𝑦𝑐𝑙𝑒𝑠

𝑆𝐼𝑀𝐷𝐺𝑟𝑜𝑢𝑝
=

   
𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠
𝑆𝐼𝑀𝐷𝐺𝑟𝑜𝑢𝑝    

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠
𝐶𝑦𝑐𝑙𝑒

  (3) 

Once the number of cycles per SIMD-group is known, the required number of back-to-back thread-

block executions R can be calculated: 

 
𝑅 =

𝑇ℎ𝑟𝑒𝑎𝑑𝐵𝑙𝑜𝑐𝑘𝑠

𝑇ℎ𝑟𝑒𝑎𝑑𝐵𝑙𝑜𝑐𝑘𝑠𝑎𝑐𝑡𝑖𝑣𝑒

𝑀𝑢𝑙𝑡𝑖𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟
∗ 𝑀𝑢𝑙𝑡𝑖𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠

 
(4) 

To give an example, if the problem were divided into 100 thread blocks, each multiprocessor could 

execute two thread blocks at a time and the GPU comprised five multiprocessors, then each 

multiprocessor would repeat ten rounds (R=10).   

The total amount of cycles for running the entire kernels computes as follows:  

 
𝐶𝑦𝑐𝑙𝑒𝑠

𝐾𝑒𝑟𝑛𝑒𝑙
=

𝐶𝑦𝑐𝑙𝑒𝑠

𝑆𝐼𝑀𝐷𝐺𝑟𝑜𝑢𝑝
∗

𝑆𝐼𝑀𝐷𝐺𝑟𝑜𝑢𝑝𝑠𝑎𝑐𝑡𝑖𝑣𝑒

𝑀𝑢𝑙𝑡𝑖𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠
∗ 𝑅   (5) 

Finally, the kernel’s runtime can be calculated from the required number of cycles and the GPU’s clock 

rate: 

 
𝑡𝑘𝑟𝑛𝑙 =

𝐶𝑦𝑐𝑙𝑒𝑠
𝐾𝑒𝑟𝑛𝑒𝑙

𝐶𝑙𝑜𝑐𝑘𝑅𝑎𝑡𝑒
   

(6) 

 

The following table repeats an overview of the parameters used in the above formulas and groups them 

into GPU-, kernel- and benchmark-specific parameters. 
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Table 9-1 - Parameters required for runtime model 

Parameter Source Description 

𝑻𝒉𝒓𝒆𝒂𝒅𝑩𝒍𝒐𝒄𝒌𝒔

𝑴𝒖𝒍𝒕𝒊𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒐𝒓
 

Combination 

of kernel 

design and 

GPU hardware 

Calculated by dividing the resources (registers, shared 

memory) a multiprocessor offers by the amount of resources 

a single thread block requires. 

𝑺𝑰𝑴𝑫𝑮𝒓𝒐𝒖𝒑𝒔

𝑻𝒉𝒓𝒆𝒂𝒅𝑩𝒍𝒐𝒄𝒌
 

Kernel design  The developer chooses the number of SIMD-groups 

(CUDA: 32 threads each) per thread block 

# ThreadBlocks Problem size The developer chooses how to split the problem into thread 

blocks 

# Multiprocessor GPU hardware High-end GPUs have more multiprocessors than low-end 

models 

Clock Rate GPU hardware Often the same for all GPU models in a series 

Multiprocessor 

Activity 

Benchmark Percentage a multiprocessor is active during the kernel 

runtime 

𝑰𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏𝒔

𝑺𝑰𝑴𝑫𝑮𝒓𝒐𝒖𝒑
 

Benchmark The number of instructions per SIMD-group indicates the 

workload. Ideally it is constant across all multiprocessors or 

else the workload is misbalanced 

𝑰𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏𝒔

𝑪𝒚𝒄𝒍𝒆
 

Benchmark The number of instructions per clock indicates the 

efficiency. This parameter includes latencies induced by 

memory-accesses as well as execution dependencies and 

barrier-induced stalls. 
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9.2 Case Study A: Context Modeling Kernel 

 

Figure 9-1 – Duration of context modeling kernel per bit plane (8 frames per kernel) 

The runtime in milliseconds initially grows and then falls again with a peak at the 2nd to 4th bit plane. 

One key parameter that affects the runtime is the number of code blocks with passes pending to be 

computed. As a reminder, the number of passes differs even among all code blocks due to the subband-

specific bit depths used to store quantization indices. Additionally, initial insignificant magnitude bit 

planes4  are not processed and instead signaled as side-information (in the packet header) to the decoder. 

Therefore, many code blocks, especially from high-frequency subbands, will only contain two or three 

bit planes that need to be encoded while code blocks from lower frequencies might have many more 

passes to be computed. With every bit plane, the number of code blocks with remaining work shrinks.  

 

Figure 9-2 – Number of code blocks with outstanding passes, grouped by bit plane and sequence 

The next plot shows the throughput over each bit plane normalized by the amount of code blocks. The 

first bit plane needs to be examined separately as here a thread is spawned for all code blocks, even for 

those that have no single non-zero magnitude bit plane. The reason is that the number of all-zero bit 

planes is not calculated beforehand, but as part of the first iteration of this kernel. Hence, there might be 

a difference between the amount of code blocks for which threads were spawned and the amount of code 

blocks that “participate” in this bit plane, i.e. have outstanding passes. This plot uses the amount of code 

                                                      
4 all magnitude bits in the bit plane are zero 
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blocks with outstanding work for the first bit plane. In all subsequent bit planes, both values are always 

equal.  

From the 2nd to the 10th bit plane, a trend is visible. The low-entropy 4K Sintel sequence has the highest 

throughput (10 MCblks/s) and the high-entropy 2K StEM and UHD Crowd Run sequences have the 

lowest throughput (6 MCblks/s). Clearly, another factor besides the number of active code blocks has 

an impact on the speed or else all sequences would have roughly the same throughput. The values 

beyond the 10th bit plane are no longer accurate, because the absolute run times are already very low – 

below 0.1 ms - at that point. 

 

Figure 9-3 – Throughput of context modeling kernel normalized by the amount of code blocks with outstanding passes 

One way to examine the workload per code block is to plot the amount of context-decisions pairs 

(symbols) that are coded on average per code block. For a code block size of 32x32 there are 1024 

samples per code block. When a sample’s first 1-bit is coded, the sign bit is interleaved as well, 

increasing the number of symbols per bit plane. More importantly, when a stripe column of four 

vertically adjacent samples as well as their neighborhood are all still insignificant (zero magnitude in 

decoder’s view), they are run-length-coded, usually5 decreasing the number of symbols per bit plane.   

The number of symbols per code block starts low and then rises steeply throughout the first three or four 

bit planes. The explanation is that for the majority of the code blocks, run-length coding can be used 

frequently in the first bit planes. The high-entropy sequences exceed the threshold of one symbol per 

sample at the third or fourth bit plane. This is the point where many samples turn significant and their 

sign bits are interleaved.  

                                                      
5 When the run is interrupted already at the 1st position and all symbols are 1 so that their signs are interleaved as 

well, a single run can produce as many as 12 symbols (worst case) 
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Figure 9-4 – Amount of produced symbols per code block, grouped by bit plane and sequence 

Another way to examine the workload per code block is to plot the global memory accesses. The next 

plot shows only the read-accesses, normalized by the number of code blocks with unfinished passes. 

 

Figure 9-5 – Amount of memory loaded from global memory per code block, grouped by bit plane and sequence 

The amount of loaded global memory normalized per code blocks is roughly identical for all sequences. 

The kernel needs to load a bit more than 4 KB per code block, which equals 4 byte per sample, on 

average. The state and magnitude of four vertically adjacent samples are stored in a 16 bit mask. 

However, since a code block is processed in parallel by 1024/4=256 threads (one thread per four 

samples), each thread needs to load additionally some metadata values from global memory as well. In 

any case, since the values are constant, the global memory read-accesses do not explain why some 

sequences are processed faster than others are. The number of context-decision pairs per code block was 

already shown to be an indicator and since they are written to global memory so that the MQ-kernel can 

subsequently read them from there, the global memory writes should not be constant: 
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Figure 9-6 – Amount of memory stored to global memory per code block, grouped by bit plane and sequence 

Indeed, the amount of stores is higher for the high-entropy sequences (Alexa Drums, Alexa Heli, StEM 

Confetti, Crowd Run) than for the low-entropy sequences (Bunny Closeup, Bunny Falling Tree, Sintel 

Title). The first bit plane again needs to be examined separately as it executes extra work. The data that 

is written in addition to the context-decision pairs (1 byte per pair) is  

 (Fist bit plane only) number of initial all-zero bit planes and the number of passes (2 x 1 byte) 

 Per code block, the number of symbols per pass (3 x 4 bytes)  

 Whether the code block has no more outstanding passes (1 byte) 

 The distortion change that is later required by the post-compression rate-distortion optimization 

routine. In the current implementation, each thread writes any change directly to global memory. 

The distortion is only updated when a 1-bit is coded. Distortion values are stored as 32 bit 

floating point values per pass (variable size). 

 

 

Figure 9-7 – Amount of memory stored to global memory per symbol, distinguished by bit plane and sequence 

A metric more closely related to the measured runtime is the absolute amount of instructions, averaged 

over the amount of launched code blocks. The profiler does not report the amount of instructions 

directly, but only the averaged amount of instructions per SIMD-group, which can then be multiplied 

by the number of SIMD-groups: 
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Figure 9-8 – Number of instructions per code block, grouped by bit plane and sequence 

Indeed, the sequences where the number of instructions is lowest (Sintel Title) show the highest 

throughput in terms of processed code blocks/second (Figure 9-3). However, when plotting the 

instructions per cycle, it can be seen that the number of instructions alone is not sufficient to explain the 

run time. 

 

Figure 9-9 – Number of instructions per cycle, grouped by bit plane and sequence 

Reasons for a low instructions-per-cycle metric are when the latencies introduced by memory accesses 

or execution inter-dependencies cannot be hidden. The next plot shows the percentage of clock cycles 

when one or more SIMD-groups were eligible for execution: 

 

Figure 9-10 – percentage of warps eligible for execution at a given bit plane 



Chapter 9    

98 

 

From the third bit plane on, the efficiency is highest for sequences with fewer details and lowest for the 

detail-rich Crowd Run and StEM Confetti sequences. 

Out of the most prominent stall reasons Instruction Fetch, Execution Dependency, Memory Throttle, 

Memory Dependency, Texture, Synchronization, Constant Miss and Pipe Busy, the three highest-ranking 

ones are plotted next: 

 

 

 

Figure 9-11 – Top 3 stall reasons in context-modeling-kernel 

1. An Execution Dependency stall occurs when the input required by an instruction is not yet 

available.  

2. A Synchronization stall occurs when a warp is blocked at a thread block barrier 

(__syncthreads()). 

3. A Memory Dependency stall occurs when the program has to wait for a load or store operation 

to finish. Especially accesses to the global memory take very long. 

For the high-entropy sequences, where the execution efficiency was measured to be lowest, the most 

frequent stall reason is an Execution Dependency. For the Crowd Run sequence, in the third bit plane, 

execution dependency stalls occur in the following spots 
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1. (~25%) Before significance propagation, where significance states, signs and the current 

magnitude bits from one code block stripe are rotated into three 32 bit integers  

(preprocessBitplane()) 

2. (~25%) sign-coding  

3. (~25%) in the section, where the context-decision pairs from a stripe column (up to ten) are 

sorted by pass type  

4. (~20%) during magnitude-refinement coding and sign-coding when the distortion estimate is 

updated with an atomicAdd() call  

The runtime model presented in the beginning of this chapter can now be fed with 

- the benchmarking results  

o on the workload (instructions per SIMD-group)  

o and the kernel’s efficiency (instructions per cycle)  

- the GPU specifics (here stated for a GeForce GTX 1080) 

o 20 multiprocessors with 64 cores each  

o clock rate of 1.8 GHz 

- and the kernel configuration  

o context modeling 

 256 thread per thread-block = 8 SIMD-groups 

 1 thread block per EBCOT block 

 At most 4 thread blocks fit into a multiprocessor (limited by registers) 

o MQ-encoding 

 64 threads per thread-block = 2 SIMD-groups 

 1 thread per EBCOT block 

 At most 12 thread blocks fit into a multiprocessor (limited by registers) 

o Operating on all code blocks from 8 consecutive frames at once  

A limitation of this model is that the memory accesses are not explicitly modeled. As the scheduler 

attempts to hide memory access latencies by overlapping them with memory independent computations, 

it is very challenging to formulate the memory accesses explicitly and would require inside knowledge 

on the scheduling policies. Instead, the memory access performance is implicitly included in the 

efficiency variable stated in terms of achieved instructions / cycle. This explains why only the GPU’s 

number of processors and their clock rate, but not its memory speed or bus widths can be considered. 

The predicted kernel runtime is compared with the actually measured runtime in Figure 9-12 and 

shows a good accuracy. 
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Figure 9-12 – predicted (‚x‘) vs. measured (‘*’) runtime of the context modeling (left) and arithmetic coding (right) kernels 

The following charts show the results for three different GPUs. The GeForce GTX 1080 and GeForce 

GTX 1060 both stem from the GeForce 10 series and as such, both use the Pascal CUDA architecture. 

The GeForce GTX 1060 (6 GB) contains 1280 cores on 10 multiprocessors and the GeForce GTX 1080 

2560 cores on 20 multiprocessors. With 1780 MHz, the 1080’s clock rate is about 6 % higher. Moreover, 

the 1080 has a memory bus width of 256 bit compared to 192 bit in the 1060. The older GeForce GTX 

750 Ti is from Q1 2014 and uses the Maxwell CUDA architecture. It contains 640 cores distributed 

across five multiprocessors, runs with a clock rate of 1135 MHz and has a bus width of 128 bit. 

  

Figure 9-13 – predicted (‚x‘) vs. measured (‘*’) runtime of the context modeling-kernel for the Alexa Drums sequence on three 

different GPUs. Left: Runtimes are predicted using the respective GPU’s own profiling results. Right: runtimes are predicted 

based on the profiling results for the GeForce GTX 1080.   
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The GeForce GTX 1080 deviates at most 0.1-0.2 ms and the other two devices at most 0.5 ms. The 

difference is highest in the most significant bit planes. In relative terms, the GeForce GTX 1060 is a 

little less than 15% slower than predicted, the GeForce GTX 750 Ti is around 5% faster than predicted 

and the GeForce GTX 1080 is up to 10% faster than predicted.   

When using the benchmarking results from the GeForce GTX 1080 experiments as a basis for predicting 

the runtimes on the other devices, the accuracy becomes worse, especially for the GeForce GTX 750 Ti. 

The first two bit planes are slower than predicted and the fourth and fifth bit planes are a little faster 

than predicted. The reason is that the instructions/cycle metrics yield different results for the devices 

(see Figure 9-14).   

 

Figure 9-14 – Profiling metrics “Instructions/Warp” (left), “Instructions/Cycle” (center) and “Multiprocessor Activity” 

(right) for three GPUs 

The table below shows the results for an entire frame when accumulating the measurements and 

predictions across all bit planes. The first three rows correspond to the results when feeding the 

benchmarking results from each particular GPU into the model. The bottom two rows show the results 

when using the metrics measured on one device (GeForce GTX 1080) and predicting the runtime on 

another device.   

Table 9-2 – predicted runtime of context modeling kernel on three GPUs  

Sequence Measured Predicted Error 

 GPU msec from GPU msec msec 

Alexa  

Drums 

GTX 1080  5.96 GTX 1080 5.86 -0.10 

GTX 1060 6GB 12.54 GTX 1060 6GB 11.52 -1.02 

GTX 750 Ti 37.40 GTX 750 Ti 39.15 +1,75 

     

GTX 1060 6GB 12.53 GTX 1080 12.50 -0.03 

GTX 750 Ti 37.40 GTX 1080 36.76 -0,64 

 

Overall, the accuracy seems sufficiently accurate in order to make a close estimate on the forecasted 

runtime of the kernel on another device.  
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9.3 Case Study B: Arithmetic Coding Kernel 

The arithmetic coding kernel’s thread grid consists of blocks with 64 threads each, where each thread is 

assigned to a single code block. It has a much coarser parallelism than the context modeling kernel, 

where a thread is in charge of only four samples and an entire thread-block is assigned to a single code 

block. 

Each thread loads a variable amount of context-decision pairs from global memory, where they were 

previously written to by the preceding context modeling-kernel. Each context-decision pair is stored in 

one byte where the LSB is the decision bit and the seven MSBs contain the context. The output is a 

compressed bit stream per code block, i.e. per thread. 

  

Figure 9-15 – Duration (left) and throughput in terms of code block / second (right) for the arithmetic encoding kernel operating 

on a group of 8 consecutive frames  

The above two plots show the absolute runtime in milliseconds (left) and the throughput in terms of 

code blocks per second (right). A problem that becomes visible immediately is that the runtime at some 

point (bit plane 7-8) no longer decreases with the amount of active code blocks. Regardless how few 

code blocks remain, the kernel always take at least 2 to 3 milliseconds.  

Since this kernel, in contrast to the context modeling kernel, suffers from low parallelism, an explanation 

could be that the device is under-occupied when only few code blocks, and therefore only few threads, 

are left. Indeed, a plot of the average activity of all multiprocessors supports this hypothesis: 
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Figure 9-16 – Multiprocessor Activity (left) and amount of code blocks with outstanding passes (right) for the arithmetic 

encoding kernel operating on a group of 8 consecutive frames  

Initially the multiprocessors stay occupied between 85% and 100% until at some point between the 7th 

and 10th bit plane the occupancy starts dropping significantly. For HD and 2K images, this point arrives 

earlier than for the UHD and 4K images, and for low-entropy sequences, it is earlier then for high-

entropy sequences.  

When zooming in on the critical ranges and arranging the plots so that they can be compared more 

easily, one can see that for this particular GPU (GeForce GTX 1080) the minimally required number of 

code blocks seems to be at around 500-1000 code blocks. The multiprocessor is considered active when 

at least one SIMD group is currently assigned for execution. Considering that the GeForce GTX 1080 

has 20 multiprocessors, at least 20x32 = 640 code blocks are required to be able to assign at least one 

SIMD-group to each multiprocessor. This is also the reason that there is a benefit to processing a group-

of-pictures (GOP) in parallel as was done in these experiments. With the code blocks from only a single 

frame, the point where there are not enough active code blocks left to occupy the GPU would have 

arrived even earlier.  
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Figure 9-17 – Aligned top-and-bottom view of the amount of code blocks with outstanding passes (top) and the multiprocessor 

activity (bottom).  

As indicated by the decreasing streaming multiprocessor activity shown in Figure 9-17 at higher x-axis 

values, the GPU is under-occupied when the lower bit planes are processed. Possible counter measures 

are: 

1. One strategy could be to decrease the thread-block size so that more thread-blocks are created.  

2. It might also be beneficial to use only a subset of the threads in one SIMD-group and leaving 

the other threads idle (thread under-subscription). This would alleviate the problem of thread 

divergence at the same time.  

3. Thirdly, the workload could be more evenly distributed across the number of kernel invocations 

(load balancing).  

Nevertheless, the majority of the time is spent in the first seven or more bit planes and the question 

remains why some sequences have a higher throughput than others do. The highest throughput in terms 

of code blocks per second is observed for the Sintel Title sequence, which is a 4K sequence with few 

details. On the contrary, the Stem Confetti sequence has the lowest throughput and it is a 2K sequence 

with many details. 

 

  

Figure 9-18 – The MQ-encoding kernel’s workload (left) and execution efficiency (right).  

The above two charts give information on the workload per code block (left) and execution efficiency 

(right). The workload seems to be considerably lower for the Sintel Title sequence, but also for the Bunny 
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Close-up sequence, both of which have comparatively low entropy. The execution efficiency starts at 

0.75 - 1.25 instructions per cycle, which is less than half compared to the context modeling kernel that 

started at 2.25 – 2.75. Then it decreases for some sequences earlier than for others. As fewer active code 

blocks remain left, the scheduler has less flexibility to hide latencies by swapping in other thread-blocks. 

As for the context modeling-kernel, the most important reason for the varying workloads is the amount 

of context-decision pairs per code block: 

  

Figure 9-19 – the number of context-decision pairs to be processed by the MQ-encoding kernel (left) affects the instructions 

per code block (right).  

The global memory accesses per context-decision pair are roughly the same for all sequences: 

   

Figure 9-20 – the number of Bytes loaded (left) and stored (right) per symbol processed by the arithmetic encoding kernel.  

The loads per symbol do not stay constant, because each thread additionally needs to load other inputs 

from global memory, such as the MQ-encoder’s state and code block metadata. Given that the average 

number of context-decision pairs per code block decreases towards the LSB (with exception of Sintel 

Title) the impact of the overhead becomes higher and skews the curves. The same logic also applies for 

explaining why the number of memory write accesses increases towards the MSB. A problem is that the 

amount of bytes stored is not significantly lower than the amount of data loaded, given that the kernel 
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should compress the data. An explanation is that the kernel stores side information in addition to the 

output bit stream. Due to the problem that a single thread is in charge of an entire code block, each 

thread manages their individual MQ-encoder instance. With 64 threads per thread-block the amount of 

registers available to a thread block do not suffice to store all 64 MQ-coders and so they spill to global 

memory. The register file size has stayed constant at 64 KB in all CUDA architectures since version 3.0 

(with one exception in compute capability 3.7 used only in the Tesla K80) and so this limitation will 

likely not go away.  

Figure 9-19 (a) shows that the ratio of cycles when at least one SIMD-group is eligible for execution is 

only around 20%, which is significantly lower than for the context modeling-kernel, where it is between 

40% and 60%. 

The three predominant reasons why a SIMD-group is not eligible for execution in a cycle are Memory 

Dependency, Execution Dependency and Instruction Fetch (Figure 9-19 b-d). 

  

                                  (a)                                                             (b) 

  

                                  (c)                                                             (d) 

Figure 9-21 – Warp issue efficiency (a) and the top three stall reasons: memory dependency (b), execution dependency (c) and 

instruction fetch (d) for arithmetic encoding kernel.  

In the most significant bit planes, instruction fetch is the predominant stall reason. It is a form of latency 

and occurs for instance when the body of a loop is too large to fit into a multiprocessor’s instruction 
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cache. Heavy branching is another reason that causes instruction cache misses. Beginning with the fourth 

bit plane, execution and memory dependency become the more common reasons.  

Below, the predicted runtimes are plotted. Compared to the context modeling-kernel, the prediction error 

introduced by employing the benchmarking metrics measured for the GeForce GTX 1080 for predicting 

the runtimes on a GeForce GTX 750 Ti are larger (see Figure 9-22 right).  

 

Figure 9-22 – predicted (‚x‘) vs. measured (‘*’) runtime of the arithmetic coding kernel for the Alexa Drums sequence on three 

different GPUs. Left: Runtimes are predicted using the respective GPU’s own profiling results. Right: runtimes are predicted 

based on the profiling results for the GeForce GTX 1080.   

The reason is that the difference in the efficiency metric (instructions/cycle) between the two devices is 

larger (see Figure 9-23 center). The workload (instructions/warp) and utilization (multiprocessor 

activity) are largely the same. The order in which the processor usage starts dropping corresponds to the 

order of the number of cores: the biggest GPU starts dropping earliest.  

 

Figure 9-23 – Profiling metrics “Instructions/Warp” (left), “Instructions/Cycle” (center) and “Multiprocessor Activity” 

(right) for three GPUs 
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Table 9-3 – predicted runtime of arithmetic-coding kernel on three GPUs  

Sequence Measured Predicted Error 

 GPU msec from GPU msec msec 

Alexa  

Drums 

GTX 1080 10,82 GTX 1080 9,13 -1.69 

GTX 1060 6GB 17,88 GTX 1060 6GB 15,99 -1.89 

GTX 750 Ti 42,45 GTX 750 Ti 42,83 +0.38 

     

GTX 1060 6GB 17,88 GTX 1080 19,48 +1.6 

GTX 750 Ti 42,45 GTX 1080 57,23 +14.78 
 

In comparison to the context modeling kernel, the prediction accuracy is significantly worse, especially 

when forecasting the runtime on a GeForce GTX 750 Ti using the benchmarking results measured on a 

GeForce GTX 1080. For this kernel, a forecast is only sensible for GPUs of the same architecture.  

9.4 Conclusion 

This chapter presents a runtime model that permits to predict, based on benchmarking metrics measured 

for a particular kernel on one GPU, the runtime on another GPU. In two case studies, the original JPEG 

2000 compliant implementations of the context modeling and arithmetic-coding kernels are evaluated. 

The workload for both kernels depends very strongly on the signal statistics of the source image and so 

a prediction that is not dependent on the benchmark results is infeasible. The context modeling kernel’s 

runtime can be predicted quite accurately from the high-end GeForce GTX 1080 also to the mid-range 

GeForce GTX 1060 (6 GB) and the older mid-range GPU GeForce GTX 750 Ti. The arithmetic-coding-

kernel yields higher differences in the measured kernel efficiency (achieved instructions per clock) and 

so a runtime prediction is only possible with good accuracy between the GeForce 10 GPUs from the 

same architecture. While both kernels achieve a full GPU utilization in the significant bit planes, the 

benchmarking results confirm that the coarse threading layout of the arithmetic coding kernel where a 

single thread processes all context-decision pairs from an entire 32x32 code block’s bit plane is 

problematic. The workload of a single SIMD-group (instructions per warp) is considerably higher and 

the efficiency (instructions / block) lies at only about one third of that of the more finely parallelized 

context modeling kernel. A strategy for increasing the overall throughput must be to break or reduce the 

long causal dependency chains that occur when encoding a long bit stream with a context-adaptive 

entropy coder.  
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10 JPEG XS 

JPEG XS is a recent addition to the JPEG set of still image codecs. The call for proposal was released 

in March of 2016 and the core coding system standard has been published in May of 2019 as “ ISO/IEC 

21122-1:2019” [67] and as such it has been developed during the course of this work. The call for 

proposals was answered by various parties [66]. Intopix s.a., creators of the TICO (Tiny Codec) 

lightweight codec, and Fraunhofer IIS were tasked to develop the new standard. During this time, the 

first GPU-based JPEG XS decoder implementation has been realized. It has been originally published 

in mid-2018 [89] and so before the standard’s first version had been finalized. Subsequently, it became 

part of the commercially available Fraunhofer IIS JPEG XS SDK [90].  

This chapter will first describe the JPEG XS codec itself. The algorithm will be described from the 

encoder’s point of view as it is found that the concepts are easier to understand this way. A GPU encoder 

implementation has not been carried out as part of this work. The GPU realization of a decoder will be 

described in depth in the second half of this chapter, followed by a report of experimental results and 

concluding remarks. The evaluation in this chapter will be limited to a comparison with standard JPEG 

2000. An in-depth comparison of all coding modes investigated and proposed in this work, including 

JPEG 2000 and JPEG XS, is presented in the next chapter. 

10.1 Description of the Encoder 
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Figure 10-1- JPEG XS Encoder Block Diagram 

The above figure (Figure 10-1) shows the major coding blocks of a JPEG XS encoder [67]. Except for 

the uniform quantizer, all coding operations can be realized with integer arithmetic. When selecting the 
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deadzone quantizer, no floating-point operations are required at all. This is not only beneficial for 

reducing the complexity and thereby increasing the throughput, but also for ensuring a very good multi-

generation-coding robustness as rounding errors can be avoided. 

10.1.1 Color Transform 

The color channels are first decorrelated into luminance and chrominance using an integer-based RGB 

to YCbCr transform similar to that of JPEG 2000 operating in lossless mode.  

10.1.2 Wavelet Transform 

JPEG XS employs an asymmetrical LeGall 5/3 DWT. It is identical to the kernel used in JPEG 2000 

when operated in lossless mode, except for the fact that the wavelet structure is asymmetrical. While in 

JPEG 2000 part-1, the number of horizontal and vertical wavelet decompositions is always equal, this 

is not the case in JPEG XS. In order to limit the minimum number of wavelet domain rows the decoder 

requires to reconstruct a single row in spatial domain (which directly affects the achievable latency), the 

number of iterations the image is filtered two-dimensionally, i.e. both horizontally and vertically, is 

limited to a minimum, e.g. only once or twice. Beyond that, the LL band is decomposed further only in 

the horizontal direction.  
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Figure 10-2 – Structure of a Precinct for a DWT with 1 vertical and 3 horizontal decompositions. The four outermost bands are 

each represented by a single packet, so that a decoder can reconstruct a proxy resolution simply by skipping over the packets 

with subbands 4, 5 and 6 

The above figure (Figure 10-2) shows how an image is decomposed once in both horizontal and vertical 

directions and subsequently twice more in the horizontal direction only. The set of all spatially 

corresponding lines is denoted a precinct. Given the number of vertical decompositions v, the number 
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of lines per precinct equals 2v. The combination of a wavelet domain line from a particular subband of 

a particular channel is denoted a level.  

10.1.3 Magnitude Bit Coding 

The encoder processes and emits the precincts from top to 

bottom. Each precinct is quantized and entropy-coded. To do 

that, the quantized coefficients in each subband are split up into 

coding groups of four coefficients each. Looking at the signed 

values in sign-magnitude representation, the encoder then 

determines for each such coding group the smallest common 

MSB Position of the four magnitudes, which is the highest bit 

plane that contains not only zero bits (see Figure 10-3). 

Furthermore, the rate control computes per subband a 

Truncation Position. The magnitude bit planes between the 

MSB Position and the Truncation Position are emitted directly 

to the code stream and not further coded. 

10.1.4 Sign Bit Coding 

Sign bits are processed according to one of two options. If the encoder chooses to employ sign packing, 

the sign bits of only those coefficients that have a non-zero magnitude after truncation are coded. In this 

mode, sign bits will be located in a code stream segment separate from the magnitude bits. The 

alternative option is to interleave the sign bits with the data bits. In this case, the coding group’s four 

sign bits are simply emitted upfront. Sign packing requires a slightly higher computational complexity, 

but yields superior coding efficiency, since sign bits of zero-magnitude coefficients are omitted. 

10.1.5 MSB Position Coding 

The encoder needs to signal both the MSB position (per coding group) and the truncation position (per 

subband) to the decoder. MSB positions can be coded in one of three ways:  

1. In the simplest case, they are coded raw with four bits per value.  

2. Exploiting that MSB positions for adjacent coding groups are often similar, the encoder can 

choose instead to predict a MSB position from the corresponding value in the line above. The 

current MSB position is then coded with a variable length unary code, denoted bounded code, 

where the alphabet is constructed in a fashion that the code word length grows with the 

magnitude of the prediction residual: the residuals 0,-1,+1,-2,+2, etc. are mapped to 0, 10, 110, 

1110, 11110, etc. [91].  

 

Figure 10-3 - Coding Group. Only green bit 

planes are included in code stream 
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3. The third alternative is for the encoder not to employ vertical prediction, in which case the 

alphabet’s code words consist of a 1-bit-sequence with a length equal to the coded MSB position 

value, followed by a 0-bit serving as a comma.  

On top of that, the encoder may optionally omit zero-runs from the code stream. To that end, the concept 

of significance-groups that each comprise eight MSB position values is introduced. One bit per 

significance-group signals whether all values in the group were zero, in which case the group is omitted 

from the code stream. Whether the run refers to residuals or absolute values is indicated globally in the 

picture header. The prediction mode (raw coding, vertical prediction on/off, significance coding on/off) 

can be chosen individually for every subband in a precinct. Precincts are additionally grouped into slices. 

Vertical prediction is prohibited in the first precinct of each slice, facilitating parallel processing of 

slices. 

10.1.6 Truncation Position Signaling 

The truncation position for band b in precinct p, i.e. number of LSB bit planes the encoder cut off in 

order to meet a bit rate constraint, is determined by the rate control and defined by means of a 

quantization value Q[p] and refinement value R[p] stated in the precinct header. Q[p] states an upper 

anchor on how many planes were truncated, which is decreased more for bands with important 

frequencies as specified by a table in the global weights table header. Since the encoder might not have 

exhausted its budget after this coarse bit rate distribution, the number of truncated bit planes can be 

further decreased by one for a subset of the precinct’s bands. The subset consists of the first R[p] entries 

in the subband priority list P[b], also located in the global weights table header. 

10.1.7 Code stream Structure 

Table 10-1 gives an overview of the hierarchal units a JPEG XS code stream is composed of. The code 

stream comprises multiple global headers (most importantly picture header, components table and 

weights table), followed by all the slices. Each slice, in turn, contains a slice header, a payload that 

consists of all the precincts in that slice, and a footer. 

Table 10-1 - JPEG XS code stream Hierarchy 

Hierarchy Level  Description 

Picture Code Stream A single intra-coded image or video frame 

  Slices Each slice can be decoded independently 

    Precincts Collection of subbands that contribute to a given spatial region 

      Packets Segment that contains information from one or multiple subbands 

        Subpackets Packet subsegment containing a single data kind  
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Figure 10-4 - Structure of a precinct (one vertical decomposition) 

The structure of a single precinct is depicted in Figure 10-4. In the case of one vertical wavelet 

decomposition, a precinct comprises two rows split into four packets, each containing the information 

of one of the four outermost high-frequency subbands. This way, the decoder can choose to reconstruct 

only a proxy resolution simply by skipping over the packets 2-4, which contain the HL, LH and HH 

bands. In the case of two vertical decompositions, a precinct contains two additional packets for each of 

the extra three subbands, yielding a total of ten packets. In this scenario, a packet is still restricted to a 

(possibly partial) single row in wavelet domain, but the six packets from the new outermost HL, LH and 

HH bands contain twice as many samples as the original four packets. Each packet comprises a header 

that advertises the bit lengths of the subpackets in the packet body. These subpackets are:  

 the significance flags 

 coded MSB positions (bit plane count in the magnitude bits subpacket) 

 raw magnitude bits  

 and the sign bits.  

When sign-packing is not used, the magnitude and sign bits are interleaved in a single data-subpacket. 

10.2 Encoding JPEG XS on a GPU 

A GPU-accelerated encoder has not been implemented as part of this work.  
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10.3 Decoding JPEG XS on a GPU 
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Figure 10-5 - Overview of decoder architecture. Blue boxes represent GPU kernels. 

The processing power of a GPU stems from its hundreds or thousands of cores that can compute in 

parallel. When mapping any task to a GPU, it needs to be broken down into thousands of individually 

computable subtasks. It is important to oversubscribe the available physical cores in order to enable the 

GPU scheduler to hide unavoidable latencies introduced by accesses to the slow global memory by 

swapping in other threads in the meantime. In light of these requirements, the decoder architecture 

described here is designed to operate on an entire code stream in parallel at the cost of increased latency. 

In this chapter, the blocks lined out in Figure 10-5 will be described. 

Research questions: Has the JPEG XS design goal of making the decoder fully parallelizable been 

achieved? What throughput is achievable on current high-end and mid-range GPUs? Does the use of a 

GPU as a hardware platform in any way limit the use cases of a JPEG XS decoder? 

The contents of this chapter have been published in [89]. 

10.3.1 Depacketization 

Before the decoder can start reconstructing the MSB positions from the code stream it needs to find the 

locations of each subpacket’s MSB position segment in the code stream. Determining the offsets on the 

decoder side is an inherently serial task that consists of iterating over all precinct headers one by one. 

This task will be referred to here as depacketization and is realized in a CPU-function that is executed 

prior to any GPU-kernels.  

10.3.2 Reconstruction of MSB Position 

The first task is to reconstruct the MSB positions for all coding groups in the image. In the design 

proposed here, separate independent paths for raw-coded and unary-coded precincts exist (see Figure 

10-5). Raw-coded precincts can be reconstructed without any further preparation. Given the code stream 

bit offsets, one thread per coding group can be spawned, read the 4-bit MSB position value and store it 

in the MSB position grid. In case not all of the precincts are coded raw, it is beneficial to spawn threads 
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only for raw-coded precincts. This requires a precinct-map that maps thread blocks to precincts. First, a 

list is created with one entry per precinct, stating the precinct index and whether the precinct is raw-

coded or not. The raw-coded precinct map is then derived by removing all entries of unary-coded 

precincts and compacting the remaining entries. The unary-coded precinct map can be created 

analogously. 

Reconstructing the bounded-coded MSB positions requires a more elaborate workflow. We propose to 

first decode the unary-coded values from the code stream and defer their mapping to MSB position 

prediction residuals to a subsequent kernel. Essentially, the lengths of 1-bit sequences that are separated 

by 0-bit “commas” have to be identified. One thread block is assigned to each subpacket. Each thread 

is tasked to decode all code words that end in a 4 byte-range of the subpacket’s bit stream. The threads 

collaboratively loop over the data until the subpacket’s entire MSB position segment has been decoded. 

If the 4 bytes start with a 1-bit, the thread cannot be sure whether the 1-bit-sequence extends further into 

the previous 2 bytes (given a maximum code word length of 16 bits) and so it needs to access those as 

well. In order to compute the location where the decoded symbol must be written, the numbers of 

decoded symbols in all 4-byte segments need to be accumulated. This is efficiently done using the 

parallel prefix-primitive.   

After the variable-length-code has been read, the next kernel, denoted bounded-code-kernel, interprets 

the decoded symbols and restores the MSB position values. Since the MSB positions in many subbands 

will be vertically predicted from the corresponding subbands in the precinct above, this kernel processes 

chains of vertically predicted precincts sequentially. Leveraging that the first precinct in each slice is 

never vertically predicted, all slices are processed concurrently by spawning threads (one per coding-

group) only for the first precinct in each slice. The threads then loop over all precincts in the slice from 

top to bottom, inverting the vertical prediction and interpreting the bounded-code symbols.  

In case the encoder omitted runs of zero-valued MSB positions and signaled this using the significance-

flags, the bounded-code-kernel cannot directly compute which symbol corresponds to which coding 

group. A mapping that states for each significance group the total number of absent symbols in the 

subpacket up to that point needs to be created first. This is achieved by calculating an exclusive prefix-

sum, where one thread per significance-group  

a) contributes a zero, if the corresponding significance-flag indicates that all coding-group 

values in that significance-group were zero,  

b) or contributes the number of coding-groups in the significance-group, if the significance-

flag indicates that at least one coding-group value is non-zero. 

10.3.3 Unpacking Magnitude and Sign bits 

After the MSB positions for all coding-groups have been reconstructed, the number of coded magnitude 

bits per coding-group can be computed and the bits can be extracted (“unpacked”) from the code stream. 
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A single kernel locates and unpacks all magnitude and sign bits, where one block of threads is in charge 

of an entire subpacket. The block loops over the coding groups piece by piece. As indicated in Figure 

10-5, during each iteration, the threads first execute a prefix scan over the number of coded data bits per 

coding group in order to calculate each coding group’s bit offset within the data segment. Then they 

extract the data bits from the code stream. If sign bits are packed and stored in a separate subpacket 

segment, the threads need to calculate another prefix sum over the number of non-zero coefficients per 

coding group, thereby calculating the bit offset in the subpacket’s signs-segment. Next, each thread 

reads in their up to four sign bits. At the end of each iteration, each thread stores their coding group’s 

four signed coefficients to global memory. The aggregates of the current loop’s two prefix scan 

operations are carried over into the next iteration and added to the next prefix sum result.  

Before the inverse DWT can be applied, coefficients first need to be dequantized, converted from sign-

magnitude representation into two-complement representation and upscaled. We propose to carry out 

these operations also within the unpacking kernel in order to minimize accesses to slow global memory. 

Whether the encoder chose the deadzone or uniform quantization option, is signaled globally in the 

picture header. In both cases, the dequantization routine requires the MSB and truncation positions, both 

of which are required in the unpacking kernel anyway. Finally, the unpacking kernel also deinterleaves 

the precincts and color channels. It stores each color channel separately with low vertical frequencies in 

the top half and high vertical frequencies in the bottom half (in the case of only one vertical 

decomposition). 

10.3.4 Inverse DWT 

The inverse DWT employed in this design is based on the fast lifting implementation described in [38], 

which proposes to fuse the horizontal and vertical filter operations into a single kernel. In order to 

accommodate for the asymmetrical DWT required for JPEG XS, a second variant was derived that filters 

only in the horizontal direction. The workflow is shown in Figure 10-5. 

10.3.5 Inverse Reversible Color Transform 

The RCT kernel not only transforms back from YCbCr to RGB, but also scales the samples to the desired 

output bit depth and arranges them in the required pixel format. The kernel is spawned with one thread 

per pixel (two in the case of 4:2:2 chroma subsampling). 
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10.4 Experimental Results 

 

Figure 10-6 - Throughput on GeForce GTX 1080, PCI-E 2.0 x16. Sign-packing and sig-flags enabled, 5 horizontal and 1 

vertical DWT level 

The decoding throughput for various test sequences is compared in Figure 10-6. While the code stream 

upload is included in the throughput calculation, the download of the decoded image is listed separately 

as the decoder uses a three-stage pipeline as shown in Figure 10-7: a frame is downloaded while the 

next frame is decoded. In parallel, the CPU depacketizes frames, but this is uncritical, as it only takes a 

little over one millisecond for a 10 MB UHD 4:4:4 code stream. In theory, a four-stage pipeline (Figure 

10-7 c) could be employed, where upload, decode and download are all executed concurrently at the 

cost of increased latency.  
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Figure 10-7 - three-stage pipeline without (a) and with (b) hardware support for concurrent transfers. c) four-stage pipeline 

with concurrent transfers 

It can be seen in Figure 10-6 that the decoding throughput is not very sensitive to the image content, but 

mostly to the resolution and data rate. Another observation is that on this high-end GPU the download 

poses a bottleneck for UHD sequences reconstructed with 16 bit per sample.  

Table 10-2 - Decoding FPS, excluding device-to-host transfer. Encoding options: sign-packing and sig-flags enabled; 5 

horizontal and 1 vertical DWT levels; 10 bpp 

Format upload and decode download 
 GeForce GTX 750 Ti  

(640 cores) 

GeForce GTX 1080  

(2560 cores) 

PCI-E 2.0 x16  

16 bit/sample 

UHD 422 54 191 193 

UHD 444 42 153 129 

HD 444 145 507 520 

HD 422 189 607 781 
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For a detailed discussion of the available data transfer rates, the reader is referred to chapter 2.3.4. In 

short, already today the download would not pose a bottleneck, when using a mainboard that supports 

PCI 3.0 or newer. The available bandwidth have grown significantly in recent years and so this 

bottleneck will disappear.  

Table 10-2 compares the throughput measured with two different graphics devices. The performance 

scales very well with the number of cores: the penalty for the high-end card is usually within 5% when 

comparing the frames per core.   

 

Figure 10-8 - Detailed throughput for 12 bit UHD Alexa Heli test sequence on GeForce GTX 1080. Encoding options: 

significance-flags enabled, 5 horizontal and 1 vertical DWT level 

In Figure 10-8, the runtime is broken down for the individual kernels. On a high-end GPU, uploading 

the code stream is often the slowest operation. On slower GPUs, the DWT and data unpacking kernels 

are the most expensive kernels. Sign-packing reduces the throughput only by 3-4%.   

At the time of the author’s PCS 2018 publication [89], no other speed-optimized CPU, GPU or FPGA 

implementations of JPEG XS were available. A speed comparison with the verification model would be 

unfair and pointless. The outputs of the GPU decoder and verification model are bit identical. A 

comparison of GPU-based JPEG XS and JPEG 2000 decoders is displayed in Figure 10-9. The 

throughput decreases inversely to the bit rate, but this effect is more drastic for the JPEG 2000 decoder: 

at higher bit rates the JPEG XS decoder is 2x faster and at lower bit rates 3x faster. Moreover, the JPEG 

2000 implementation needs to decode eight frames at once in order to fully load the GPU, because the 

entropy decoder processes code blocks of 32x32 samples with a single thread each. Exploiting intra-

block parallelism is difficult due to the feedback loop between arithmetic decoder and context modeler. 

This increases both latency and memory footprint. The JPEG XS decoder, in contrast, does not require 

frame grouping. Due to the finely grained parallelism exploited in all kernels, it can fully load even a 

high end GPU with only a single frame and will automatically benefit from future GPU generations with 

even more computing cores.  
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Figure 10-9 - JPEG XS vs JPEG 2000. Throughput (upload & compute) measured on a GeForce GTX 1080 for 12 bit UHD 444 Alexa 

Heli sequence. JPEG 2000: lossy, 12 bit, 32x32 code blocks 

10.5 Conclusion 

The first research question “Has the JPEG XS design goal of making the decoder fully parallelizable 

been achieved?” can be positively answered. All major kernels utilize finely grained parallelism by 

mapping one thread to a coding group (four coefficients), a pixel or a sample.  

What throughput is achievable on current high-end and mid-range GPUs? Experiments were carried 

out with a 2017 high-end GeForce GTX 1080 with 2560 cores and a 2014 mid-range GeForce GTX 750 

Ti with 640 cores. The high-end GPU can decode a 10 bpp UHD 4:4:4 sequence with 153 fps. When 

decoded frames need to be downloaded and more than 24 bits precision are required, the throughput is 

limited by the PCI-Express 2.0 bandwidth at 129 fps for a sample format with 6 Bytes per pixel. On the 

mid-range GPU the computation itself presents the bottleneck. UHD sequences can only be decoded 

with 42 fps (4:4:4), respectively 54 fps at this point and so further optimizations are required to enable 

real-time processing of UHDp60.  

Does the use of a GPU as a hardware platform in any way limit the use cases of a JPEG XS decoder? 

The architecture proposed in this paper sacrifices the low-latency feature for increased parallelism. The 

GPU kernels operate back to back on the entire image whereas a decoder optimized for low-latency 

would need to process the precincts one by one, as they arrive at the decoder. Notably, a single frame 

exposes sufficient opportunity for parallel processing to fully load even a high-end GPU. 
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11 Evaluation 

11.1 Impact of Quantization 

In baseline JPEG the compression rate is determined solely by the quantization step size. A coarser 

quantization will lead to more DCT coefficients becoming zero, which in turn leads to a higher 

information loss and increased compression. The codec offers no possibility to specify a target bit rate 

other than experimenting with various quantization step sizes until one results in a compressed size that 

is close to the desired rate.  

JPEG 2000 on the other hand has two means of dropping information. In addition to the quantization, it 

is able to truncate the compressed code block bit streams. This is possible due to their embeddedness 

property. The important difference when considering the throughput of an encoder is that the 

quantization drops information before the time consuming block coder, whereas the post compression 

truncation drops it after the quantization indices have already been encoded. The two mechanisms 

should be carefully coordinated or otherwise two undesirable situations can occur: 

1. coarse quantization with high target bit rate yields sub-optimal quality: the target bit rate 

serves as a maximum budget barrier that must not be exceeded. The encoder will first 

decorrelate, quantize and entropy-code the image and then only activate the rate distortion 

optimization machine when required. If the compressed image size does not exceed the afforded 

bit rate budget, there is no need to truncate any code block bit streams. This situation is 

undesirable as the coarse quantization caused the quality of the resulting compressed image to 

be lower than possible since the bit rate budget is not being exhausted. Selecting a finer 

quantization step size would have yielded a better result with less distortion 

2. fine quantization with low target bit rate yields sub-optimal throughput: The drawback of 

selecting a very finely grained quantization step size is that the block coder will waste time on 

compressing information (low bit planes) that will end up being truncated anyway. Some coders 

employ a heuristic to anticipate preemptively for each code block exactly how many passes 

need to be coded instead of simply always coding all the passes down to the least significant bit 

of the quantized wavelet coefficients [49].  

Since the JPEG 2000 framework employed here to compare the various block coders does not use such 

a heuristic, the selected quantization step size will be reported for all experiments.  

In JPEG 2000, the quantization step sizes are specified per subband. An encoder can choose to include 

only the base quantization step size in the code stream, in which case the decoder will derive all band 

specific step sizes by dividing the base step size by two for every additional decomposition level. The 

JPEG 2000 encoder framework used in this work utilizes the algorithm implemented in the Kakadu 

library to derive discrete step sizes for each subband and signal them explicitly in the code stream.  It 
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computes the energy gains of both the vertical (gv) and horizontal (gh) wavelet kernels. Given a base 

quantization step size of Δref, e.g. 128-1, and band b, the quantization step size Δb is then given by 

Δ𝑏 =  
Δ𝑟𝑒𝑓

√g𝑣(b) ∗ gℎ(b) 
 

For Δref = 128-1, the step size for the LL band after five decompositions, Δ𝐿𝐿0, is 0.000115. The band in 

the outermost resolution level, Δ𝐻𝐻5, on the other hand has a step size of 0.003754. Let εb denote the 

number of bit planes used to store the quantization indices in band b. It is derived from Δ𝑏 such that εb 

is the highest possible integer that guarantees 
1

2ε𝑏
<  Δ𝑏. For the example of Δref = 128-1 and five 

decomposition levels (HD/2K image), the bands from the outermost to the innermost resolution levels 

use 9, 9, 11, 12, 13, 14 bit planes. For further details regarding the procedure for deriving the step sizes 

as well as the theory on quantization and JPEG 2000 specifics, the reader is referred to [70]. 

The following rate-distortion plot (Figure 11-1) shows for all image sequences how the chosen base 

quantization step sizes limit the maximally achievable quality. For the Alexa Heli sequence, for example, 

a coarse base step size of only 
1

64
 is only sufficient for a maximum quality of 42.5 dB PSNR at a bit rate 

of 1.6 bpp. Increasing the bit rate further does not improve the quality without also selecting a finer 

quantization. With 
1

128
 the distortion can be reduced to 45 dB and with 

1

256
 to 49 dB or more. The peak 

quality for coding Alexa Heli with a base step size of 
1

256
 lies beyond the maximally probed bit rate of 6 

bpp.   

 

Figure 11-1 - Impact of base quantization step size on rate and distortion with EBCOT coder.  
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As discussed above, the throughput is significantly impacted by the quantization step sizes as it 

influences the total number of bit planes that need to be processed by the time consuming block coding 

stage. Figure 11-2 plots the encoder throughput for the EBCOT block coder over the bit rate, grouped 

by sequence and base quantization step size.   

 

Figure 11-2 - Impact of base quantization step size on the encoder throughput of EBCOT, measured on a GeForce GTX 1080. 

Figure 11-2 validates that the encoding speed is impacted by the quantization step size rather than the 

bit rate. When comparing only the various block coders with each other in the context of the JPEG 2000 

framework, the chosen quantization is not essential as long as it was the same for all block coders within 

an experiment. However, in order to allow for a comparison also with the JPEG XS codec, the solution 

going forward will be to select for each bit rate, sequence and mode the most appropriate quantization 

step size: as long as two or more step sizes yield the same quality, the coarsest step size will be selected, 

because it yields the best throughput.  

Figure 11-3 below plots on the left as a reference the rate-distortion curve for a constant base 

quantization step size of 
1

256
 and on the right the resulting curve based on the lowest possible quantization 

step sizes. For this sequence, the bit rates of 0.5 bpp and 1 bpp use a base quantization step size of  
1

64
, 

2 bpp and 3 bpp use 
1

128
 and 4-6 bpp use 

1

256
.  
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Figure 11-3 - RD-plot for Alexa Heli sequence coded with various block coding modes. Left: base quantization step size is 

256-1. Right: the smallest possible quantization step size is chosen for each bit rate, as long as it yields an identical distortion 

to the finer step sizes. 

11.2 Quality 

This chapter will discuss the quality differences of the various coding modes. Figure 11-4 shows an 

overview. A visible trend is that there is a clearly visible gap between JPEG XS and JPEG 2000 curves. 

For all sequences except Sintel Title and Bunny Closeup - the two sequences containing the fewest details 

- the differences among the various JPEG 2000 coders are hardly visible in this large plot. While the 

JPEG 2000 modes for these two sequences stop at a maximum quality of close to 60 dB PSNR, the 

JPEG XS curves continue to climb throughout the sample bit rate range. The JPEG 2000 information 

loss could be further reduced beyond 60 dB by decreasing the quantization step size.  

 

Figure 11-4 - RD-plot for all sequences and all modes. 
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Figure 11-5 - RD-plot for Crowd Run sequence.  

Figure 11-5 is a rate-distortion plot only for the Crowd Run sequence. The EBCOT and BPC-PaCo 

modes yield very similar quality within 0.4 dB of each other. Zooming in at the 3 bpp bit range shows 

the order: EBCOT performs best, followed by the singe-pass EBCOT variants, where all (“EBCOT 1-

pass”), only the first three (“raw=3”) and only the first four (“raw=4”) bit planes are arithmetically 

coded. The raw-coded bit planes are directly appended to the bit stream without being prioritized by a 

sophisticated scan order or being arithmetically coded. The two BPC-PaCo modes with two passes and 

one pass per bit plane follow closely. The JPEG XS modes with and without sign coding achieve a 

PSNR of 33 dB and 32.8 dB, respectively, which are 1.55 dB and 1.75 dB lower than EBCOT.   

 

Figure 11-6 - RD-plot for Alexa Heli sequence.  



  Evaluation 

125 

The results are consistent with the Alexa Heli (Figure 11-6) and Bunny Falling Tree (Figure 11-7) 

sequences. The JPEG 2000 block coder’s PSNR values lie within 0.6 dB of each other in the same order 

as for the Crowd Run sequence. JPEG XS with and without sign coding perform 1.4 dB and 2 dB below 

EBCOT.  

 

Figure 11-7 - RD-plot for Bunny Falling Tree sequence.  

11.3 Throughput 

The previous chapter has compared the various introduced coding modes in terms of their impact on the 

achieved quality. Since the objective of this work is to devise coding schemes that prefer throughput 

over quality, the loss in quality is regarded as the cost. The gain, on the other hand, is an increased 

throughput. This metric will be evaluated and discussed in this chapter.  

Figure 11-8 shows for the UHD Alexa Heli sequence the encoder’s and decoder’s throughput over the 

examined range of bit rates. A significant difference between encoder and decoder is that the encoding 

throughput is largely independent of the bit rate, while the decoder performs faster at lower bit rates and 

the performance decreases steadily as the bit rate increases. However, the decoding performance, 

regardless which entropy coding mode, is limited at close to 125 fps, which suggests that the 

performance is not computation-bound. Indeed, the decoding throughput in this experiment is limited 

by the device-to-host transfer of the reconstructed frames. The previously decoded group-of-frames is 

transferred in parallel to the decompression of the current group-of-frames. The JPEG XS decoder 

implementation achieves a better overlap of data transfers with computations compared to the JPEG 

2000 based codecs for reasons explained below.  
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Figure 11-8 - Encoding and decoding throughput of all coding modes for the Alexa Heli sequence encoded with a base 

quantization step size of 256-1. The decoding throughput bottleneck is the device-to-host transfer of the previously decoded 

group-of-frames. Frames are reconstructed with 6 bytes per pixel, so that a single uncompressed frame has a size of close to 

50 MB.   

The reason for this limitation is of an implementational rather than a conceptual nature. The timeline of 

the executed kernels depicted in Figure 11-9 shows that the device-to-host transfer is largely overlapped 

with the computation kernels. In the case of the high bit rate of 6 bpp (bottom), the EBCOT decoding 

kernel alone takes longer than the transfer. The transfer time is completely hidden. For the low bit rate, 

however, the transfer takes longer than the computation kernels. However, for an unknown reason the 

CUDA scheduler only overlaps part of the wavelet kernels with the transfer and delays a few DWT 

kernels as well as all color-transform kernels until after the transfer finished even though they do not 

depend on the transferred data. Possibly, the scheduler queue’s depth is too low.  
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Figure 11-9 – NVIDIA Nsight timeline for JPEG 2000 decoder for the Alexa Drums UHD sequence encoded with 1 bpp 

(top) and 6 bpp (bottom). The decoder process 8 frames in parallel and concurrently transfers the previously decoded 8 

frames from device into host memory (pink blocks, 47,4 MB per frame).  

For the JPEG XS decoder, this problem does not exist (see Figure 11-10). Even if the transfer poses the 

bottleneck, the kernels are entirely overlapped and the only additional overhead on top of the device-to-

host transfer is the host-to-device transfer of the current compressed frame. A GeForce card does not 

overlap host-to-device with device-to-host transfers. In NVIDIA GPU products, this functionality is 

limited exclusively to the professional Quadro series.   

 

Figure 11-10 – NVIDIA Nsight timeline for JPEG XS decoder for the Alexa Heli UHD sequence. While decoding the current 

frame, the previously reconstructed frame is transferred from GPU to host memory concurrently. In this example, this 

transfer poses the overall bottleneck.  

Considering use cases, where a transfer of the reconstructed frames back into host memory is not 

required, it is nonetheless worthwhile to examine the throughput when only considering the host-to-

device upload as well as the computation and disregarding the device-to-host transfer of reconstructed 

frames. Figure 11-11 is identical to the plot in Figure 11-8, except that now the time-limiting transfer is 

excluded. The decoding throughput is now no longer limited for the lower bit rates. The decoding 
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throughput is highest for the lowest bit rate (0.5 bpp) and then decreases logarithmically. For 1 bpp and 

higher, the JPEG XS decoder is the fastest. The BPC-PaCo coders are the fastest JPEG 2000 variants. 

The difference to JPEG XS increases from 25 fps at 1 bpp to almost 75 fps at 6 bpp, i.e. the JPEG XS 

decoder is less affected by the increasing bit rate compared to the JPEG 2000 coders.  

 

Figure 11-11 - Encoding and decoding throughput of all coding modes for the Alexa Heli sequence encoded with a base 

quantization step size of 256-1. Measurements only include the code stream upload and computation, not the device-to-host 

transfer of reconstructed images.   

As discussed previously in chapter 11.1, the encoder throughput is almost not affected by the selected 

target bit rate as long as the quantization step size remains unchanged. For lower bit rates, bit planes 

will still be time-consumingly encoded first by the block-coder only to be dropped in the PCRD-Opt. 

stage. Figure 11-12 shows the Alexa Heli measurement again, this time with a dynamically selected 

quantization step size. Since the measurements have only been carried out for three base quantization 

step sizes, the encoding throughput curves have three steps. This effect could be alleviated by 

introducing further quantization step sizes. At 0.5 bpp, the fastest mode, BPC-PaCo 1-pass, achieves 

now around 110 fps compared to 80 fps, because for this image at the low bit rate, it is safe to increase 

the base quantization step size from 
1

256
 to 

1

64
.  

Figure 11-13 shows he results of the same measurement for the Crowd Run sequence. The fact that this 

sequence contains the most details of all the test sequences is reflected in the significantly lower 

encoding times. Compared to throughputs ranging from 70 fps to 110 fps at 0.5 bpp for the Alexa Heli 

sequence, the encoders reach only 40 fps to 85 fps for the more complex Crowd Run sequence. The 

order of the coding modes is consistent, though. Whereas for the Alexa Heli sequence, the quantization 
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needs to be decreased already between 1 bpp and 2 bpp, for Crowd Run the strong quantization only 

becomes limiting between 5 bpp and 6 bpp. Likely, the quantization could have been decreased even 

further beyond 64-1 for the low bit rates for this test sequence. 

 

Figure 11-12 - Encoding and decoding throughput of all coding modes for the Alexa Heli sequence encoded with the appropriate 

base quantization step size of {64-1, 128-1, 256-1}. Measurements only include the code stream upload and computation, not the 

device-to-host transfer of reconstructed images.   

 

Figure 11-13 - Encoding and decoding throughput of all coding modes for the UHD Crowd Run sequence.   
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The decoding throughput for the Alexa Heli and Crowd Run sequences is largely identical. As long as 

the encoder exhausts the available bit rate budget this is to be expected, because then the workload for 

the decoder will be comparable and mostly determined by the resolution (which is UHD in both cases). 

The StEM Confetti sequence also contains many details, but only has a resolution of 2K. Figure 11-14 

and Figure 11-15 show the encoding and decoding results with and without taking into account the time 

required for the device-to-host transfer. For a resolution of 2048 x 857 at 6 bytes per pixel, a single 

uncompressed frame has a size of 10 MB. The transfer limits the decoding throughput at just over 500 

fps. The decoder is not affected by the transfer limit as even the fastest coding mode achieves a 

throughput below this limit. The order of how the coding modes perform is consistent with the 

previously discussed test sequences.  

 

Figure 11-14 - Encoding and decoding throughput of all coding modes for the StEM Confetti sequence. The decoding 

throughput bottleneck is the device-to-host transfer of the previously decoded group-of-frames.   
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Figure 11-15 - Encoding and decoding throughput of all coding modes for the StEM Confetti sequence. Measurements only 

include the code stream upload and computation, not the device-to-host transfer of reconstructed images.   

11.4 Case Study: Compressed Video Transmission 

This chapter discusses the scenario of transmitting video over a channel with limited bandwidth, e.g. 

uploading a video stream into the cloud. The question is whether it is beneficial to compress video 

frames before sending them.  

It is assumed that the scenario is realized in a streaming fashion, where the following processing steps 

are executed concurrently: 

1. Decompression of frame N-1 

2. Transmission of frame N 

3. Compression of frame N+1  

The overall throughput will thus be equal to the lowest of the three individual processing steps. We will 

assume that the following conditions holds: 

Compression Throughput < Decompression Throughput 

As a result, the decompression throughput can be disregarded and either the compression or the 

transmission will pose the bottleneck. The situation can then be modeled using the following variables:   

- Compression throughput βenc [fps] 

- Available transmission bandwidth B [Mbit/sec] 

- Video quality Q [dB PSNR] 
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- Image resolution W x H [pixels] 

- Uncompressed pixel size Praw [bpp] 

- Compressed pixel size Penc [bpp] 

Compressing the frames prior to transmission leads to an increased throughput when the compression 

duration is lower than the transmission duration: 

𝑡𝑒𝑛𝑐  [𝑠𝑒𝑐] <  
𝑆𝑟𝑎𝑤[𝑀𝐵]

𝐵 [
𝑀𝐵

𝑠𝑒𝑐
]

   

where 

𝑡𝑒𝑛𝑐  [𝑠𝑒𝑐] =  
1000

𝛽𝑒𝑛𝑐  [𝑓𝑝𝑠]
     𝑎𝑛𝑑     𝑆𝑟𝑎𝑤[𝑀𝐵] =   

𝑊 ∗ 𝐻 ∗ 𝑃𝑟𝑎𝑤[
𝑏𝑖𝑡

𝑝𝑖𝑥𝑒𝑙
]

1024 ∗ 1024
 

Figure 11-16 plots for the Alexa Drums sequence and a given desired quality of 48 dB PSNR the 

achievable total throughput over a range of available transmission bandwidths.  

 

Figure 11-16 - Overview chart of achievable transmission throughput with the various coding modes for the Alexa Drums 

sequence, when the requirement is a quality of 48 dB PSNR. A single frame has an uncompressed size of 3840 x 2160 x 48 

bit = 48 MB  

The above diagram gives an overview across a wide transmission channel bandwidth range up to 15 

Gbit/s. The flat dashed line shows the achievable throughput in frames/second when transmitting the 

uncompressed UHD sequence with 24 bit per pixel (3840 x 2160 x 24 bit = 48 MB). The solid lines 

show the achievable total throughput when compressing the frames before transmission. At low 

bandwidths where the solid curves rise linearly, the throughput is limited by the transmission and not 

by the compression. Oppositely, the flat plateau portions of the curves indicate the bandwidth range 

where the total throughput is limited by the encoder throughput. The location of the break-even points 

vary for the coding modes, as they require different bit rates for achieving the desired quality and yield 

different encoding throughputs. The required bit rates lie between 3.04 bpp for EBCOT and 3.5 bpp for 
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the BPC-PaCo 1-pass. As a reference, the steeper dashed line shows the achievable throughput for 

transmitting frames compressed at 3 bpp, disregarding any bottleneck posed by the encoder.  

The intersection points between the solid lines and the flatter dashed line indicates the upper limit where 

compression is still beneficial. If the bandwidth of the transmission channel rose beyond this point, 

transmitting the uncompressed video would yield a higher throughput. Given an available bandwidth of 

10 Gbit/s, compressing the video with the original EBCOT mode first would limit the achievable 

throughput at ~28 fps and in fact transmitting the frames uncompressed would increase the throughput 

to a little over 50 fps. By employing the BPC-PaCo 1-pass codec, the throughput can be increased to a 

little over 80 fps while decreasing the bandwidth usage from 10 Gbit/s to only ~2300 Mbit/s (point 

where BPC-PaCo 1-pass curve plateaus).   

  

Figure 11-17 – Zoom-in on the a portion of the previous plot 

Figure 11-17 zooms in at the region of the plot where the throughput transitions from being transmission-

bound to being compression-bound. If the transmission bandwidth were limited to 1000 Mbit/s, for 

example, BPC-PaCo 2-pass outperforms BPC-PaCo 1-pass slightly, because it compresses the images 

better (3.05 bpp instead of 3.5 bpp), which leads to a minimal increase of the total throughput from 40.8 

fps to 41.5 fps. For bandwidths below 930 Mbit/s, employing the original EBCOT instead is the best 

choice, albeit by a very small margin. 
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Figure 11-18 – Transmission of Alexa Drums sequence with a desired quality of 38 dB 

When the video quality is lowered from 48 to 38 dB PSNR, the performance differences at the low-

bandwidth end increase (see Figure 11-18). The most appropriate codec given for an available 

bandwidth is summarized in the following table.  

Table 11-1 – optimal codec choice by available transmission channel bandwidth when transmitting the Alexa Heli sequence 

with 38 dB PSNR. Rows in grey font do not provide a significant benefit and could be omitted.  

Available Bandwidth  

B [Mbit/sec] Codec 

Throughput  

[fps] 

Compressed Bit rate 

[bpp] 

0 < B < 247 EBCOT 60.42 0.518 

247 <  B < 260 EBCOT (bypass=4) 61.76 0.533 

260 <  B < 269 EBCOT (bypass=3)  62.28 0.546 

269 < B < 294 EBCOT 1-pass 67.1 0.554 

294 < B < 318 EBCOT 1-pass (raw=4)  68.78 0.584 

360 < B < 448 BPC-PaCo 2-pass 95.67 0.593 

448 < B < 511 BPC-PaCo 1-pass 105.41 0.612 

 

All codecs, except the “EBCOT 1-pass (raw=3)”, are optimal in certain bandwidth ranges. This shows 

that it is advantageous to have access to a wide range of codecs that can be carefully tuned to a given 

scenario – available bandwidth and desired quality in this case study. However, as some of the windows 

are very small, some of the evaluated coding modes only provide a negligible advantage and could be 

omitted. The coding modes that do not provide a significant benefit in this scenario are indicated by a 

grey text color.  
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12 Summary  

This work presents novel high quality intra-frame image compression approaches tailored for an 

execution on a massively parallel device architecture – in this case on a GPU. The focus is put on 

evaluating and fine-tuning the inherent trade-off between compression efficiency and computational 

complexity, subject to the constraints posed by the architecture of parallel devices.  

Concretely, a majority of this work is concerned with the JPEG 2000 framework. An already heavily 

optimized implementation of the DCI, IMF and broadcast profiles for the NVIDIA CUDA GPU 

architecture represents the starting point. The bottleneck is JPEG 2000’s entropy coder – the Embedded 

Block Coder with Optimized Truncation (EBCOT).  

Chapter 9 presents a runtime model that permits to predict, based on benchmarking metrics measured 

for a particular kernel on one GPU, the runtime on another GPU. In two case studies, the original JPEG 

2000 compliant implementations of the context modeling and arithmetic-coding kernels are evaluated. 

The workload for both kernels depends very strongly on the signal statistics of the source image and so 

a prediction that is not dependent on the benchmark results is infeasible. The benchmarking results 

confirm that the arithmetic coding block, which does not allow for samples or small groups of samples 

to be processed in parallel, but requires for all context-decision pairs from an entire code block’s bit 

plane be processed serially, cannot be executed at full efficiency on a GPU. A strategy for increasing 

the overall throughput must be to break or reduce the long causal dependency chains that occur when 

encoding a long bit stream with a context-adaptive entropy coder.  

Though not permitted in the listed profiles, JPEG 2000 part-2 already contains an optional block coding 

mode for reducing the computational complexity, namely the Selective Arithmetic Coding Bypass mode. 

Starting after three or four bit planes, symbols from two of the three bit plane pass types are no longer 

arithmetically entropy-coded, but instead appended directly to the bit stream. Can an implementation of 

EBCOT that targets parallel architectures such as GPUs benefit from the more finely grained 

parallelism exposed by this coding style and thereby increase its throughput? While the cost in terms of 

a reduced compression efficiency is very limited, the gain for the throughput is also limited. When 

coding only a single frame at a time, a speedup by a factor of two can be achieved, but when coding 

multiple frames at once in order to better utilize the GPU, the speedup decreases to only a few percent. 

The reason is that even for the lower bit planes the mode demands context modeling and iterating over 

the bits in multiple passes.  

Consequently, chapter 7 introduces more profound changes to the block coder to address these 

limitations. On the one hand, a true raw-coding mode that does not require context modeling is 

introduced. It can be activated after an arbitrary amount of entropy-coded bit planes. A sample-parallel 

algorithm for appending magnitude bits as well as sign bits to a code block’s bit stream is proposed. On 
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the other hand, a simpler scan order for reducing the runtime of the entropy-coded bit planes is devised. 

Iterating over all samples in a bit plane in multiple passes increases the amount of memory accesses 

needlessly given that the most significant bit planes are unlikely to be truncated in a visually lossless 

operating domain with sufficient bit rate budget. The single-pass mode gives up the concept of intra-bit 

plane truncation points. How much of a speed-up can be achieved? What is the cost in terms of a 

diminished compression efficiency? The single-pass mode alone yields speed-ups between 1.2x and 1.5x 

for the encoder and 1.05x to 1.3x for the decoder at virtually no decrease in compression rate. The raw-

coding mode yields considerable encoding accelerations of around 50 fps for 2K/HD sequences and 10 

fps for the 4K/UHD sequences. The raw-coding mode allows for a high degree of parallelism as 

individual samples can be processed in parallel.  This benefit weighs in more heavily for lower resolution 

sequences as there the relative increase in parallelism compared to the regular coding mode is higher 

than for 4K/UHD sequences which have four times as many samples and in turn four times as many 

independent work units to begin with.   

Researchers from the University of Barcelona have released an alternative block coder during the course 

of this work, named BPC-PaCo. How does BPC-PaCo compare to the other coding modes presented in 

this work? The block coder gives up the context adaptivity in favor of a static probability model, which 

in turn allows for a highly parallel implementation that processes individual samples in parallel. Chapter 

8 evaluates the block coder in detail. What are the drawbacks and advantages in terms of compression 

efficiency and throughput? A fair comparison is achieved by incorporating the block coder into the same 

JPEG 2000 framework as the other coding modes. Measurements have shown that the PSNR for any 

given bit rate between 0.5 and 6 bpp lies no more than 1 dB below that achieved with the original 

EBCOT coding mode. The achieved encoding speedup lie between 1.35x (Sintel Title, fewest details) 

and 2.15x (Crowd Run, most details). The decoder speed up is lower and ranges from 1.05x (Sintel Title) 

to 1.4x (Crowd Run) (refer Figure 8-14). How strongly are the results affected by the choice of the static 

probability map created offline? Since the static probability model requires a priori knowledge about 

the sequences to be coded, an experiment is conducted that evaluates the impact of using various 

probability maps on the coding efficiency. It shows that a model averaged over all test sequences 

performs reasonably well. The maximum PSNR difference with respect to the optimal probability table 

created especially for the respective test sequences is 0.5 dB. Can the coding mode be further optimized 

for the use case of visually lossless image compression? A combination of BPC-PaCo with a single-

pass scan order is proposed: BPC-PaCo 1-pass. It outperforms the original BPC-PaCo 2-pass mode, 

while staying within 0.3 dB PSNR. The encoder speedup range increased from 1.35x-2.15x to 1.5x-

2.6x, the decoder speedup from 1.05x-1.4x to 1.25x-1.9x (refer Figure 8-14). To give an example, the 

compression of the Crowd Run sequence is increased from 30 fps to 65 fps by replacing EBCOT with 

BPC-PaCo 2-pass and to 80 fps by using the proposed BPC-PaCo 1-pass modification. Decoding at 0.5 

bpp, it is increased from 180 fps (EBCOT) to 225 fps (BPC-PaCo 2-pass) to 250 fps (1-pass) and at 6 

bpp from 50 fps (EBCOT) to 75 fps (2-pass) to 95 fps (1-pass) (refer Figure 8-12).   
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Importantly, with JPEG XS another coding framework outside of JPEG 2000 is additionally discussed, 

evaluated and compared against the JPEG 2000 based coding modes. The JPEG XS standard has been 

developed during the course of this work with involvement of Fraunhofer IIS, who has won the call for 

proposals alongside Belgian company IntoPix who submitted their TICO codec. The development of 

the CUDA-based JPEG XS decoder started based on early specifications and one of the main reasons to 

start early was to ensure that the codec’s design exposes sufficient parallelism to leverage the full 

potential of a GPU architecture. Has the JPEG XS design goal of making the decoder fully parallelizable 

been achieved? What throughput is achievable on current high-end and mid-range GPUs? A mid-range 

GeForce GTX 750 Ti with 640 cores decodes a UHD (HD) 4:2:2 sequence with 54 fps (190 fps). The 

fact that a high-end GeForce GTX 1080 with 2560 cores achieves a throughput of 190 fps for UHD and 

600 fps for HD shows that the codec scales well and exposes sufficient parallelism. When reconstructing 

an accuracy of 48 bit per pixel, transferring decoded frames back into host memory over PCI-E 2.0 x16     

poses a bottleneck of 190 fps for 4:2:2 and 130 fps for 4:4:4. Does the use of a GPU as a hardware 

platform in any way limit the use cases of a JPEG XS decoder? One of the capabilities of the JPEG XS 

standard is its low sub-frame latency that makes it an ideal codec also for live-production or KVM-

extension scenarios. An implementation capable of achieving the sub-frame low-latency would process 

images row by row or rather packet by packet in a pipelined fashion. This, however, would not yield an 

amount of parallel jobs sufficient to load all the hundreds or thousands of cores available on a modern 

GPU. The decoder proposed here operates on an entire frame and transfers the previously decoded frame 

back to the host memory concurrently. Compared to the JPEG 2000 coder implementations that batch 

multiple frames together in order to increase the amount of parallelizable EBCOT blocks, the JPEG XS 

decoder implementation has a significantly lower latency. However, it does not fully utilize the sub-

frame latency feature available in JPEG XS. 
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13 Conclusion 

Can the throughput be increased considerably while keeping the cost of decreased compression 

efficiency at a minimum? Yes, all the proposed coding modes yield a relative speedup at a marginal 

quality loss. Figure 13-1 plots the change in PSNR over the speedup relative to the original EBCOT 

mode (“1x”) for all sequences and all coding modes for a bit rate of 3 bpp. It can be observed that the 

point cloud spreads horizontally, indicating that the speedup clearly outweighs the quality loss.  

The recommended JPEG 2000 variant is BPC-PaCo with a single-pass scan order. With respect to the 

author’s GPU-accelerated standard JPEG 2000 implementation, it speeds up encoding by a factor of two 

and decoding by a factor of 1.5 in most cases. The quality loss as indicated by a decrease of the PSNR 

is very limited (see Figure 13-1).  

The JPEG XS decoder is even faster – its relative speed up grows towards higher bit rates up to a factor 

of 3x - 4x for UHD sequences coded at 6 bpp (Figure 11-11). This comes at the cost of a lower 

compression efficiency, though. For a given bit rate, the achieved quality in PSNR is often 1-2 dB lower 

than the proposed EBCOT variants.  

 

Figure 13-1 – Relative increase in throughput and quality at 3 bpp 
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Is there much to gain by permitting these features in the JPEG 2000 profiles employed by cinema and 

broadcast industry? Especially in contexts, where a visually lossless quality is demanded and relatively 

high bit rates are used, the default EBCOT entropy coder has a poor tradeoff between complexity and 

quality. At high bit rates, it attempts to code information even in the least significant bit planes where 

the entropy coder’s assumption about a skewed probability estimation function do not hold anymore. 

Since the profiles state a maximum bit rate irrespective of the resolution and frame rate, the problem is 

particularly evident at low resolutions and frame rates such as a 2K movie with 24 fps, which is still the 

most common cinema format today.  

Extending beyond the scope of the JPEG 2000 standard, how can the compression scheme be altered 

when giving up compatibility? Can the throughput bottleneck be remedied by designing a drop-in 

replacement for the complex entropy coder? Yes, various drop-in replacements for EBCOT have been 

evaluated. The coding modes benefit from three alterations:  

1. only the first few bit planes are entropy coded. Lower bit planes that will not get compressed as 

efficiently anyway are coded raw 

2. intra-bit plane truncation points are sacrificed. A single-pass mode decreases the complexity 

and required amount of memory accesses 

3. BPC-PaCo sacrifices context adaptivity, introducing instead a fixed probability model that is 

computed offline and transported as side-information. The map contains probabilities for each 

band, bit plane, coding operation and context.  

They all maintain the embeddedness property and still allow a post-compression distortion that is key 

to utilizing the available data budget down to the last bytes without multi-pass encoding.  

How does the requirement to expose as much parallelism as possible to better leverage massively 

parallel architectures impact the design of a new low complexity codec? The degree of exposed 

parallelism is an important metric that should be addressed in future codec designs. For the first time, 

this has been an explicit requirement in the JPEG XS call for proposals. In this example, especially the 

prediction mode is a technique that stands in the way of finely grained parallelism. Long vertical causal 

prediction chains are interrupted at the slice boundary. They effectively present sync points and enable 

a decoder to process slices in parallel. The idea of intra-precinct horizontal prediction has been discarded 

in the end, enabling a decoder to process all samples in a precinct in a sample-parallel fashion.    

In JPEG 2000 EBCOT’s default coding mode, the causal dependency chain stretches from a code 

block’s top-left position in the most significant bit plane’s first pass to the least significant bit plane’s 

bottom right position in the last pass. Consequently, the unit of parallelism in the decoder is an entire 

32x32 EBCOT block, which contradicts the lightweight threading model in a GPU that is designed to 

enable sample-parallel processing. The JPEG 2000 encoder can somewhat mitigate this problem by 

decoupling context modeling and arithmetic coding. At least the context modeling routine can be 

implemented sample-parallel, but the arithmetic coder’s context adaptiveness requires that all symbols 
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from an entire code block are processed sequentially, forcing a thread layout where a single thread is in 

charge of an entire code block containing up to 1024 samples. Such circumstances must be avoided in 

GPU-friendly low complexity codecs.  

Furthermore, the embeddedness property in JPEG 2000 requires that samples are processed bit-plane-

wise. This increases the number of computations and memory accesses. In JPEG XS, on the hand, 

samples are coded as a whole.  

In summary, it can be concluded that it is advantageous to constrain a new codec to a narrow bit rate 

range in order to be able to select an appropriate amount of coding tools. The complexity required to 

achieve good visual results at very low bit rates needlessly slows down a codec when used at higher bit 

rates. Additionally, long dependency chains must be avoided. High-end GPUs today already have over 

4000 cores and the number can be expected to grow further. In order to hide latencies, the GPU’s 

scheduler prefers a massive oversubscription in terms of the number of spawned threads. Future GPU-

friendly codecs should therefore ensure that a single frame exposes multiple thousands concurrently 

processable coding units.  

13.1 Contributions 

The novelties introduced in this work and the contributing publications are as follows: 

JPEG 2000 part-2 Selective Arithmetic Bypassing Mode for a GPU: A sample-parallel algorithm 

for executing the significance-propagation pass magnitude-refinement pass is presented and multiple 

concepts for organizing the passes in GPU kernels are proposed and evaluated.  

Parallel Bit Stuffing Algorithm: A sample-parallel bit stuffing algorithm that utilizes efficient thread-

group internal voting instructions specific to the CUDA language was devised.   

EBCOT single-pass scan order for GPU: The concept of sacrificing intra-bit plane truncation points 

in favor of increased throughput is formulated and an execution algorithmic is proposed. The effect on 

compression efficiency and runtime are evaluated.  

Parallel EBCOT raw-coding mode: Motivated by the fact that at medium to high bit rates the EBCOT 

compression efficiency at less significant bit planes drops to the point that bit planes are occasionally 

expanded and not compressed, a raw-coding mode is formulated. In comparison to the selective 

arithmetic bypass mode, it deliberately sacrifices context modeling in order to lower the computational 

complexity further. It accounts for sign bits that might not have been coded yet during the arithmetically 

coded most significant bit planes. 

Parallel JPEG 2000 packetization: When all other coding steps, even EBCOT, are heavily optimized, 

the Post-Compression Rate-Distortion Optimization (PCRD-Opt.) and subsequent packetization may 

become a bottleneck. The packetization routine including PCRD-Opt. is formulated in a parallel manner 

so that the completely assembled code stream can be downloaded from the GPU. 
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Runtime Prediction Model: Two exemplary kernels’ benchmarking results are analyzed and it was 

found that it is not feasible to predict the runtime merely based on statistics of the input image that are 

available a priori. Instead, an approach is presented where the kernel is benchmarked on one GPU and 

its runtime is formulated in terms of various GPU and kernel dependent variables. By assuming the 

kernel dependent variables (workload and work efficiency) to be constant and merely exchanging the 

GPU-specific variables, the runtime can then be predicted for another GPU. 

Additional evaluation of BPC-PaCo: BPC-PaCo with two or three passes per bit plane has been 

introduced in the literature during the course of this work. This work in turn contains a previously 

unpublished independent evaluation of the coder. Additionally, the impact of the static probability maps 

that are created offline a priori and are inferred from representative video sequences has been shown 

with the finding that a map created by averaging over multiple test sequences presents a feasible way.  

BPC-PaCo single-pass scan order mode: The concept of the single-pass mode previously formulated 

for EBCOT has been transferred to BPC-PaCo. This opens up possibilities for algorithmic optimizations 

such as stenciling that result in an additional significant speedup. 

JPEG XS GPU decoder: The JPEG XS standardization took place during the course of this work. The 

first JPEG XS GPU decoder was presented, including a comparison to the JPEG 2000 GPU decoder. 

13.2 Limitations and Future Work 

13.2.1 Limitations 

NVIDIA CUDA: The experiments have been run with an implementation that uses NVIDIA CUDA. 

The implementations draw heavily on intrinsics and optimization guidelines for the CUDA architecture 

and porting the proposed algorithms to other frameworks such as OpenCL or Metal may not be straight-

forward in all cases. The SIMD-group voting intrinsics are a prominent example. 

13.2.2 Future Work 

JPEG XS Encoder: As part of this work, an NVIDIA CUDA implementation of a JPEG XS decoder has 

been developed, but no encoder. Future work will be to implement a GPU-accelerated encoder as well 

and compare it carefully with the introduced JPEG 2000 based encoders.   

JPEG 2000 High Throughput: As addressed in chapter 3.4.2, an initiative to standardize a lower-

complexity block coder for JPEG 2000 has been started during the course of this work and was published 

as part 15 of the standard in October 2019. When encoder and decoder implementation are available, it 

would be interesting to compare them with the modes presented in this work. 

Per-Block Raw-Coding mode: The raw-coding mode proposed in chapter 7.2 is signaled globally and 

activated after a certain bit plane has been reached. Instead, it might be beneficial to activate the raw-
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coding mode independently for each code block. This way the encoder could activate it precisely when 

the entropy coding efficiency falls below a given threshold.  

BPC-PaCo with raw-coding: Raw-coding has been evaluated here in conjunction with the single-pass 

mode. Alternatively, it could be combined with the BPC-PaCo mode in order to see if the performance 

can been increased further. 

2D+t DWT: It has been mentioned that the EBCOT kernels process code blocks from multiple frames 

in parallel in order to fully utilize all available GPU cores. The DWT could also leverage this by 

executing a wavelet kernel along the time axis in order to compact the present energy further into fewer 

coefficients. It is an interesting research question whether the time required to execute the DWT along 

the additional dimension is compensated for by the expected decrease in the EBCOT runtime.  

Motion compensated 2D+t DWT: For best results, a motion-compensated wavelet should be employed 

[92]. It has been shown that the motion vectors from a HEVC video coder can be reused to predict the 

optical flow [93]. NVIDIA GeForce cards are equipped with AVC and HEVC ASICs that are accessible 

via the NVIDIA Codec SDK. This has a motion-vector-only mode that might be leveraged to speed up 

the runtime of a motion-compensated 2D+t wavelet.  

Hardware Dependency: In this work, the algorithms were evaluated on a small set of NVIDIA GeForce 

GPUs. In chapter 9 the runtime on a mid- and high-end GPU within the same GeForce series as well as 

between GPUs from two series has been compared and closely examined. Beyond this, a more detailed 

investigation of a larger scale into how the algorithms perform on various hardware platforms would be 

worthwhile. In particular, it would be valuable to gain knowledge on how a codec’s runtime performance 

scales as new hardware generations are released. 

Automatic Implementation Optimization: Optimizing an implementation in terms of the achievable 

throughput is a very time consuming process. In this work, an iterative process has been followed where 

an implementation was profiled with the development tools provided by NVIDIA and then potential 

improvements have been derived, implemented and the process was repeated over. Future research can 

be spent on streamlining this process and gaining more objective results that are not subject to manual 

optimizations. An even more ambitious goal is to strive for a fully automatic optimization that translates 

a given algorithm for a given hardware, possibly at runtime.   
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Appendix A – Test Sequences 

“VQEG Crowd Run”, 3840 x 2160, RGB, 48 bit, entropy6 =7.71  

ftp://vqeg.its.bldrdoc.gov/HDTV/SVT_MultiFormat/2160p50_CgrLevels_Master_SVTdec05_/ 

 

 

“ARRI Alexa Drums”, 3840 x 2160, RGB, 36 bit, entropy = 7.65

 

                                                      
6 calculated on 24 bit grey image 

ftp://vqeg.its.bldrdoc.gov/HDTV/SVT_MultiFormat/2160p50_CgrLevels_Master_SVTdec05_/
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„ ARRI Alexa Helicopter“, 3840 x 2160, RGB, 36 bit, entropy = 7.10 

 

 

„StEM Confetti“, 2048 x 857, 48 bit, entropy = 6.48 

https://www.smpte.org/store/stem-materials 

 

 

 

 

 

 

 

https://www.smpte.org/store/stem-materials
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Big Buck Bunny „Falling Tree Trunk“, 1920 x 1080, 48 bit , entropy = 6.74 

https://peach.blender.org/ 

 

 

Big Buck Bunny „Closeup “, 1920 x 1080, 48 bit, entropy =  6.93 

https://peach.blender.org/ 

 

 

 

https://peach.blender.org/
https://peach.blender.org/
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“Sintel title”, 4096 x 2160, RGB, 48 bit, entropy = 6.50 

https://durian.blender.org/ 

 

 

“Sintel rolling titles”, 4096 x 2160, RGB, 48 bit 

https://durian.blender.org/ 

 

 

 

 

 

https://durian.blender.org/
https://durian.blender.org/
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“VQEG Park Joy”, 3840 x 2160, RGB, 48 bit  

ftp://vqeg.its.bldrdoc.gov/HDTV/SVT_MultiFormat/2160p50_CgrLevels_Master_SVTdec05_/ 

 

 

 

“Kodak” test set “001” (top left), “002” (top right), “003” (bottom left), “004” (bottom right) –  

3072 x 2048 

    

   

ftp://vqeg.its.bldrdoc.gov/HDTV/SVT_MultiFormat/2160p50_CgrLevels_Master_SVTdec05_/

