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Abstract. The statistics of intense energy dissipation events in wall-bounded shear flows are
studied using highly resolved direct numerical simulations of turbulent channel flow at three
different friction Reynolds numbers. Distributions of the energy dissipation rate and local
dissipation scales are computed at various distances from the channel walls, with an emphasis
on the behavior of the statistics in the near-wall region. The dependence of characteristic
mean and local dissipation scales on wall distance is also examined over the full channel height.
Systematic variations in these statistics are found close to the walls due to the anisotropy
generated by mean shear and coherent vortical structures. Results near the channel centerline
are consistent with those found in homogeneous isotropic turbulence.

1. Introduction

Prior numerical and experimental studies (Sreenivasan & Antonia, 1997; Ishihara et al., 2009;
Wallace, 2009; Wallace & Vukoslavčević, 2010) have shown that the kinetic energy dissipation
rate, ε(x, t) ≡ ν(∂iu

′
j + ∂ju

′
i)
2/2, in fully developed turbulence is highly intermittent at small

scales, where u′i is the fluctuating velocity and ν is the kinematic viscosity. Consequently, local
values of ε that are orders of magnitude larger than the mean value, 〈ε〉, occur with substantially
higher probability than would be expected if small-scale turbulence were described by Gaussian
statistics. These fluctuating amplitudes can be connected to a range of scales, η, over which
dissipation occurs. This range of scales is in contrast to the Kolmogorov picture of the turbulent
energy cascade (Kolmogorov, 1941), where all dissipation is assumed to take place near the
single scale ηK =(ν3/〈ε〉)1/4.

A natural issue arising from this conceptual framework concerns the variation of distributions
of η in different flows. Definitions for η have been proposed in the past from consideration
of multifractals in turbulence (Paladin & Vulpiani, 1987) and through analogy with ηK
(Sreenivasan, 2004). Here we consider distributions of the more recent definition of η from
Yakhot (2006), which requires that the local Reynolds number, Reη = (δηui) η/ν, associated
with flow regions of size η be O(1), where δηui = |ui(xi + η) − ui(xi)| is a longitudinal velocity
increment over η. Physically, η then corresponds to the scale at which viscous dissipation is of
the same order as inertial effects (Yakhot & Sreenivasan, 2005). The resulting probability density
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Figure 1. Probability density functions of
dissipation rate ε/〈ε〉 as a function of z+ in
the near-wall region for Reτ =590.
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Figure 2. Kolmogorov scale ηK (dashed
lines) and the reference scale η0 (solid lines)
as functions of z+.

functions (pdfs), given by Q(η)=P [η|(δηui)η/ν=1], have been calculated previously in several
different flows, including homogeneous isotropic turbulence (Schumacher, 2007), turbulent pipe
flow (Bailey et al., 2009), and buoyancy-driven turbulence (Zhou & Xia, 2010).

Here we use highly resolved direct numerical simulations (DNS) to examine Q(η) and
other statistics associated with η in turbulent channel flow at friction Reynolds numbers
Reτ = uτL/ν = 180, 381, and 590, where uτ is the friction velocity and L is the channel half-
height. We focus here, in particular, on statistics in the near-wall region for z+ . 120, where
z+ = uτz/ν and z is the direction normal to the channel walls. This includes the log-layer for
z+ ≥ 30 and z/L . 0.3, the buffer layer for 30 > z+ ≥ 5, and the viscous sublayer for z+ < 5
(Pope, 2000). The numerical data used here have also been examined in two previous studies of
dissipation and enstrophy statistics (Boeck et al., 2010; Hamlington et al., 2011), and we now
include the additional simulation for Reτ =590 in the analysis.

2. Channel flow simulations

The numerical simulations used in the present study solve the incompressible Navier Stokes
equations for a fully developed turbulent channel flow using a pseudo-spectral method. The
method is temporally second-order accurate and uses Fourier expansions in the x and y
directions, parallel to the channel walls, and Chebyshev polynomial expansions in the z direction.
The grid dimensions are Nx×Ny ×Nz = 512× 512× 1025 for Reτ = 180, 1024× 512× 1025 for
Reτ = 381, and 2048× 1024× 2049 for Reτ = 590. The number of Fourier or Chebyshev modes
in the simulations is 2/3 the grid dimensions as a result of de-aliasing. The size of the simulation
domain is (Lx×Ly×Lz)/L=4π×2π×2 for Reτ =180 and 2π×π×2 for Reτ =381 and Reτ =590.
The resulting grid spacings are substantially finer than in prior channel flow simulations at
comparable values of Reτ (Moser et al., 1999). Further explanation of the simulations and
numerical method is given in Boeck et al. (2010) and Hamlington et al. (2011).

Temporal snapshots of the flow field are stored every 0.1 convective time units, L/U , for
the Reτ = 180 simulation and approximately every 0.2 units for the other values of Reτ , where
U is the total mean velocity. There are 403 total snapshots for Reτ = 180, 134 snapshots
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Figure 3. Local dissipation scale pdfs, Q(η/η0), as functions of wall distance, z+ (indicated by
labels next to curves). (a) Q(η/η0) computed using streamwise (ux) and spanwise (uy) velocity
increments for Reτ =381. (b) Q(η/η0) computed using streamwise (ux) velocity increments for
all available Reτ . Distributions corresponding to different z+ are shifted down for clarity; pdfs
at z+ = 120 are unshifted. The smooth curves in both (a) and (b) are obtained using spline
interpolation.

for Reτ = 381, and 81 snapshots for Reτ = 590. The statistical analysis is carried out over
all available snapshots, and the resulting data for a single horizontal plane (and its symmetry
counterpart in the upper half of the channel) then consists of between 1.4 × 108 and 3.4 × 108

total points. The fluctuating velocity is calculated separately in each plane as u′i = ui − 〈ui〉,
where 〈·〉 is a z-dependent average over time, x-y planes, and symmetric halves of the channel.

3. Results

Figure 1 shows pdfs of ε/〈ε〉 in the near-wall region (2 ≤ z+ ≤ 120) for Reτ = 590. For
intermediate values of ε/〈ε〉, the pdfs increase from z+=9 to 40, before decreasing again slightly
up to z+ = 120. The pdf in the viscous sublayer immediately at the wall (z+ = 2), however, is
higher in this region than the pdfs for all other values of z+. The widest tails for large ε/〈ε〉 are
found within the log-layer for z+≈ 90, consistent with prior results for Reτ = 381 (Hamlington
et al., 2011).

The variation of the Kolmogorov mean dissipation scale, ηK , is shown for the full channel
height in Fig. 2. We also show the variation of the reference scale, η0, used in prior studies of

Q(η) (Schumacher, 2007; Bailey et al., 2009). Whereas ηK is given by ηK = `Re
−3/4
` , where

Re` = U``/ν, ` is the integral length scale, and U` is the integral velocity scale, η0 accounts for
intermittency corrections (Schumacher, 2007) and scales as η0 = `Re−0.72` . Here we make the
approximation U` ≈ Urms, where Urms is the z-dependent rms turbulent velocity, which allows
ηK and η0 to be related as η0/L = (ηK/L)1.12Re0.12rms, where Rerms = UrmsL/ν.

Figure 2 shows that both ηK and η0 increase with distance from the wall. The curves for
different Reτ show generally close agreement in the log-layer, and become substantially different
only for larger values of z+. In the log-layer, ηK is in good agreement with ηK =(kz+)1/4, where
k = 0.43 is the von Karman constant. This relation is a consequence of the 1/z+ scaling of
〈ε〉 within the log-layer (Pope, 2000). For all locations in the channel and all Reτ , ηK is about
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Figure 4. Peak locations ηmax,x and ηmax,y corresponding to maxima in Q(η) for streamwise
and spanwise velocity increments, respectively, as functions of z in outer units (a) and in friction
units (b).

20− 30% smaller than η0, consistent with results reported for turbulent pipe flow by Bailey et
al. (2009).

Local dissipation scale pdfs, Q(η), are obtained as conditional histograms of η when (δηui) η/ν
is in the interval 0.9 ≤ (δηui) η/ν ≤ 1.1. Figure 3(a) shows Q(η/η0) calculated using both
streamwise, δηux = |ux(x + η, y, z, t) − ux(x, y, z, t)|, and spanwise, δηuy = |uy(x, y + η, z, t) −
uy(x, y, z, t)|, velocity increments for Reτ = 381. For z+≥90, the peaks of the distributions are
located at η ≈ 2η0, and there are only small differences between the streamwise and spanwise
pdfs. As the wall is approached, however, the peaks in the pdfs shift to larger values of η/η0,
and there is an accompanying increase in the separation between the streamwise and spanwise
pdfs. In particular, the streamwise pdfs are peaked at larger values of η than the spanwise pdfs.
These differences may be due to streamwise vortices near the wall, which give smaller differences
in ux, and, hence, larger values of η at which the condition (δηui) η/ν ≈ 1 is satisfied.

The influence of Reynolds number on Q(η/η0) is shown in Fig. 3(b). For the range of wall
distances considered, the pdfs essentially collapse, and small variations in the shapes of the
curves are only seen within the viscous sublayer at z+ = 2. This suggests that, in the inner
region of the channel and outside the viscous sublayer, the shape of Q(η/η0) depends only on
wall distance when z is normalized in friction units.

The peak locations of the pdfs in Fig. 3, denoted ηmax,x and ηmax,y for the streamwise and
spanwise pdfs, respectively, are shown in Fig. 4 for all Reτ . Figure 4(a) shows that, as the wall
is approached from the centerline, both ηmax,x and ηmax,y decrease, before increasing again very
near the wall. At the same time, however, the differences between ηmax,x and ηmax,y become
increasingly large as the wall is approached. This is indicative of the increasing influence of
anisotropy generated by mean shear. Nearly identical values of ηmax,x and ηmax,y are only seen
very close to the channel centerline where the mean shear and anisotropy are small.

Figure 4(a) shows that normalization of ηmax,x and ηmax,y using outer units does not reveal
a distinct location, z/L, where the differences between ηmax,x and ηmax,y cease to be significant.
Normalization by friction units in Fig. 4(b), however, gives a somewhat clearer indication that
substantial differences between ηmax,x and ηmax,y begin to occur, for all Reτ , at z+ ≈ 100. This
normalization also shows that the variations of ηmax,x and ηmax,y are similar for the higher values
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of Reτ , and that there is an approximate plateau in ηmax,x over the interval 20.z+.70.

4. Conclusions

Local dissipation scale pdfs in the near-wall region of turbulent channel flow show systematic
variations with wall distance. When the wall distance is normalized by friction units, the shape
of the pdfs at each z+ appears to be only weakly dependent on Reτ . Within the near-wall
region, pdfs constructed using streamwise and spanwise velocity increments show differences that
reflect the presence of coherent structures in the logarithmic and buffer layers. These differences
decrease, however, near the centerline as the anisotropy generated by the mean shear decreases.
Additional study is required to fully characterize the details of this continuous transition from
anisotropic, shear-dominated turbulence in the near-wall region to homogeneous and isotropic
statistics at the centerline. A more detailed investigation including additional results will be
reported elsewhere (Hamlington et al., in preparation).
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