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Abstract. Full-analytic gravitational wave forms for inspiralling eccentric compact binaries
of arbitary mass ratio have been provided in the frequency domain for the case of vanishing
spins. Tail terms are not considered. In the given prescription, the semi-analytical property of
recent descriptions, which demand inverting the higher order Kepler equation numerically, but
keeping all other computations analytic is avoided.

1. Introduction

The dynamics of inspiralling compact binaries, consisting of neutron stars, black holes or
a mixture of both, can be modelled accurately in the post-Newtonian (PN) approximation
to general relativity. Roughly speaking, the PN approximation provides the equations of
motion of a compact binary as corrections to the Newtonian equations of motion in powers of
(v/c)2 ∼ GM/(c2R), where v, M, and R are the characteristic orbital velocity, the total mass,
and the typical orbital separation of the binary respectively. The PN accurate compact binary
dynamics is required to construct temporally evolving gravitational wave forms associated with
inspiralling compact binaries. Those wave froms are essential to make functioning gravitational
wave astronomy with ground, and space based laser interferometric detectors, for which only the
frequency domain of gravitational waves is crucial. We like to avoid numerical computations,
because of limited computer power resources, so we have aimed to generate analytical frequency
domain expressions (see also [1] for a parameter estimation concerning the second PN accurate
case of decaying orbits, assuming small eccentricities, and [2] for eccentric orbits using the
Newtonian equations of motion and a post-circular expansion). For the sake of simplicity, we
have employed the tool of the spin-2 tensor spherical harmonics, as done in an older publication
[3]. These harmonics are decomposed appropriately, where after several re-casts, the final
expressions can be Fourier transformed analytically.

2. Essential ingredients

2.1. Multipole expansion of the radiation field far away

The far-zone radiation field for a source at the coordinate origin, and an observer at point R

can be expressed in terms of symmetric trace-free (STF) Cartesian tensors with basis:

NAl−2
:= Na1

· · ·Nal−2
, (1)
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where N:= R/R is the direction of the line of sight (source – observer), given in [4, 5] as:

hTT
km(R, t) =

G

c4R
Pkmij(N)

∞∑
l=2

[(
1

c

)l−2( 4

l!

)
(l)

I ijAl−2

(
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R

c

)
NAl−2

+

(
1

c

)l−1( 8l

(l + 1)!

)
εpq(i

(l)

J j)pAl−2

(
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R

c

)
NqAl−2

]
. (2)

The projector Pkmij extracts the STF parts from the explicit sum of time derivatives of mass-
type (I), and current-type (J ) multipole moments. We have truncated this series beyond 2 PN
order and take care of the instantaneous point mass parts only. Because the wave form depends
on the direction of N, the frequency domain will also do so. Therefore, to deal with irreducible
components, we have recast hTT

ij into the basis of the spin-2 tensor spherical harmonics (TE2
ij and

TB2
ij , and the scalar expansion coefficients I and S in the expression below have been processed

further) as:

hTT
ij =

η

c4R

{
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ij

]}
. (3)

The numbers in round brackets denote time derivatives, which are computed using the quasi-
Keplerian parameterization, which we have introduced below. The conservative dynamics of the
binary can be reduced to a one-body dynamics in a non-precessing plane. We can connect the
radial separation r and the orbital phase φ to the elapsed time (t − t0) via the 2 PN Kepler
equation:

r = ar(1 − er cos E) , (4)

(φ − φ0)

Φ/2π
= v + c−4f4φ sin 2v + c−4g4φ sin 3v , (5)

M := N (t − t0) = E − et sin E + c−4
[
Fv−E (v − E) + Fv sin v

]
, (6)

defining v := 2 arctan

[√
1 + eφ

1 − eφ
tan

E

2

]
, (7)

with N := 2π/P as the mean motion (P being the radial period), the functions ar (semi-major
axis), e{r, t, φ} (radial, time and phase eccentricity), f4φ and g4φ are the PN accurate functions
of the binding energy |E|, and the orbital angular momentum L (see e.g., [6]). Using the above
quasi-Keplerian parameterization, and PN accurate expressions for the acceleration in terms of
the separation and velocity, we have been able to express the higher order time derivatives as
functions of r and φ.
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3. Expansion procedure

Our way to full-analytical Fourier-domain wave forms can be compressed symbolically as in the
schedule below:

(i) Write down time derivative of I lm and Slm as functions of the eccentric anomaly E and
collect for even and odd functions separately.

(ii) Convert even terms in E to
∑

m ≥ 0 cm cos mE , and odd terms to
∑

m > 0 sm sin mE .

(iii) Compute coefficients of cos mE =
∑

j ≥ 0 γj cos jM, and sinmE =
∑

j > 0 σj sin jM.

(iv) Perform the Fourier transformation of sines and cosines, which is straightforward.

(v) For the inclusion of radiation reaction, the method of the stationary phase will be applied
for the appearing integrals.

4. Technicalities

The aim is to reduce the treatment of the scalar coefficients I and S to that of their constituents.
We shall first extract the very slow periastron precession from the phase, and convert it to an
overall factor. Defining A(E) := 1 − et cos(E), the structure of the components reads:

I lm = e−imφflm(A(E), sin(E)), (8)

where flm being PN accurate functions, and similarly for S. Extraction of the periastron shift
yields:

I lm = e−imKM
(
f∗

lm(A(E)) + sin(E)f̃∗
lm(A(ε))

)
, (9)

where f∗ and f̃∗ are some polynomials in A(E). An infinite Taylor series in et, and a successive
sorting for trigonometric functions to positive multiples of E gives:

An(E) =
∞∑

j=1

A
(n)
j cos(jE), and

sin(E)

An(E)
=

∞∑
j=0

S
(n)
j sin(jE) . (10)

These trigonometric functions of jE can be further expanded as:

sin(nE) =

∞∑
j=1

S
(n)
j sin(jM) , and cos(nE) =

∞∑
j=0

C
(n)
j sin(jM) . (11)

The coefficients S
(n)
j and C

(n)
j can be obtained by computing Fourier-Bessel integrals, like

S
(n)
j =

∫
sin(nE(M))sin(jM)dM, inserting the 2 PN Kepler equation and expanding each

term up to c−4.

5. Results for the conservative case

Collecting all the intermediate results, we have obtained a time-domain representation for the
non-tail part of the gravitational wave, having sines and cosines of multiples of the mean anomaly.
The frequency domain in the conservative case, from here onwards, is trivial to obtain. It is to
be emphasized that everything is given in the positive domain of the spectrum [7]:

(a)

I am = Iame−miKM
∞∑

j=0

{
sin(jM)

(a)

I am
Sj + cos(jM)

(a)

I am
Cj

}
, and (12)

(b)

S bm = Sbme−miKM
∞∑

j=0

{
sin(jM)

(b)

S bm
Sj + cos(jM)

(b)

S bm
Cj

}
. (13)
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6. Including radiation reaction

Binary systems in the early part of their evolution are characterized by |E| and L as slowly
varying functions of time. In a stage where the variation is estimated to be small enough, the
stationary phase approximation can be applied to compute the frequency domain. We have used
the Peters-Matthews equations for the orbital decay of |E| and et [8]. Under these conditions,
it turns out that the Fourier domain of any term appearing in Eqs. (12) and (13), shorthand
notated by h̃(f), omitting the multipole indices, takes the prototype form:

h̃(f) =

∫
B(t)e2πift−φ(t)dt. (14)

Here, B(t) is an amplitude, slowly varying in time. Having found the stationary point in Φ̇ = 0,
where Φ(t) := 2πft − φ(t), the quantity h̃, consisting of complex sine and cosine contributions
S and C, which are to be read off from Eq. (14), and finally written as:

(n)

h̃ (f)n,m =
1

c4R

∞∑
j=0

1

2

(
iS∗

m(j>0) +
(
1 + θ(m)δ0j

)
C∗

mj

)
×

[
ei

(
Φmj(t

∗

mj )−π/4
)

√
φ̈mj(t

∗
mj)

]
e−imφ0 ,(15)

φ̈mj(t
∗
mj) ≡ N . (j + mK)|t=t∗mj

. (16)

The function θ(m) is “zero” if m = 0 and “one” if m > 0. A quantity with a star has to be
evaluated at the stationary point, which in turn, depends on the number m, and the position j
in the summation.

7. Outlook

For a complete picture of the frequency domain wave forms, tail effects in the far-zone amplitude
are necessary to be included. The inclusion of spin interactions and higher-order radiation
reaction effects are demanded too.
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[3] Junker W and Schäfer G 1992 MNRAS 254 146
[4] Thorne K S 1980 Rev. Mod. Phys. 52 299
[5] Blanchet L, Damour T and Iyer B R 1995 Phys. Rev. D 51 5360
[6] Memmesheimer R M, Gopakumar A and Schäfer G 2004 Phys. Rev. D 70 104011
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