Dielectronic recombination of berylliumlike Xe⁵⁰⁺ ions: Measurement and theoretical calculations

D. Bernhardt^{*1}, C. Brandau^{*,†}, C. Kozhuharov[§], A. Müller^{*}, S. Schippers^{*}, S. Böhm^{*}, F. Bosch[§], Z. Harman^{†,‡}, J. Jacobi^{*}, S. Kieslich^{*}, H. Knopp^{*}, P. H. Mokler^{*,‡}, F. Nolden[§], W. Shi^{*}, Z. Stachura[¶], M. Steck[§], Th. Stöhlker^{§,*, \diamond}

* Institut für Atom- und Molekülphysik, Justus-Liebig-Universität, D-35392 Giessen, Germany [†] ExtreMe Matter Institute EMMI and Research Division,

GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany

 ‡ Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany

[§]GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany

Instytut Fizyki Jądrowej, PL-31-342 Kraków, Poland

* Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany

[°] Helmholtz-Institut Jena, D-07743 Jena, Germany

Synopsis Absolute rate coefficients for dielectronic recombination (DR) of Be-like 136 Xe ${}^{50+}$ have been measured at the heavy-ion storage ring ESR. The experimental results are compared with relativistic distorted-wave calculations employing the multiconfiguration Dirac-Fock method. Based on the DR measurements, multiple intra-L-shell excitation energies were determined.

Figure 1. Measured ¹³⁶Xe⁵⁰⁺-DR spectrum (black line) and calculated DR resonance positions (black and gray vertical bars for the initial $2s^2$ ¹S₀ and 2s2p ³P₀ states, respectively) using core excitation energies from [1] and Rydberg electron binding energies. For principal quantum numbers $n \leq 9$ Rydberg binding energies were determined by using the Los Alamos atomic physics program package [2]. States with $n \geq 10$ were assumed to be hydrogenlike with Dirac binding energies.

Absolute DR-rate coefficients of Be-like 136 Xe⁵⁰⁺ have been measured at the experimental storage ring (ESR). The experimental center-of-mass energy range (0-540 eV) covers all resonances associated with the $2s^2 + e^- \rightarrow (2s^2p_{i'})$ $nl_i)_J$ DR processes (figure 1). For the predominant $(2s2p_{1/2} {}^{3}P_{1})n$ and $(2s2p_{3/2} {}^{1}P_{1})n$ DRresonance series the strengths and energies of isolated DR-resonance groups have been determined for principal quantum numbers n up to 34. In addition to the prominent ground-state DR, also resonances associated with metastable 136 Xe⁵⁰⁺ (2s2p ³P₀) parent ions were observed at energies between 1.2 and 2.2 eV [3]. By extrapolating DR resonance positions to $n \rightarrow \infty$, the $2s^{2} {}^{1}S_{0} - 2s2p_{1/2} {}^{3}P_{1}, 2s2p_{3/2} {}^{3}P_{2}, 2s2p_{3/2} {}^{1}P_{1}$ and $2s2p_{1/2} {}^{3}P_{0} - 2p_{1/2}2p_{3/2} {}^{3}P_{1}$ excitation energies were determined with relative accuracies of the order of 10^{-4} . In addition to our experimental measurements we have performed relativistic distorted-wave calculations employing the multiconfiguration Dirac-Fock (MCDF) method [4].

References

- M. S. Safronova et al. 1996 Phys. Rev. A 53 4036
- [2] R. D. Cowan 1981 The Theory of Atomic Structure and Spectra (UC Press, Berkeley)
- [3] D. Bernhardt et al. 2012 J. Phys. Conf. Ser. 388 012007
- [4] Z. Harman et al. 2006 73 052711

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution $(\mathbf{\hat{I}})$ (cc) of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

¹E-mail: Dietrich.Bernhardt@iamp.physik.uni-giessen.de