Dielectronic recombination of lithiumlike Xe^{51+} ions: Storage ring experiment and theoretical calculations

D. Bernhardt^{*1}, C. Brandau^{*,†}, Z. Harman^{†,‡}, C. Kozhuharov[§], A. Müller^{*}, S. Schippers^{*}, S. Böhm^{*}, F. Bosch[§], J. Jacobi^{*}, S. Kieslich^{*}, H. Knopp^{*}, P. H. Mokler^{*,‡}, F. Nolden[§], W. Shi^{*}, Z. Stachura[¶], M. Steck[§], Th. Stöhlker^{§,*, \diamond}

* Institut für Atom- und Molekülphysik, Justus-Liebig-Universität, D-35392 Giessen, Germany [†] ExtreMe Matter Institute EMMI and Research Division,

GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany

 ‡ Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany

[§]GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany Instytut Fizyki Jądrowej, PL-31-342 Kraków, Poland

* Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany

* Helmholtz-Institut Jena, D-07743 Jena, Germany

Synopsis Absolute rate coefficients for dielectronic recombination (DR) of Li-like ${}^{136}Xe^{51+}$ have been measured at the heavy-ion storage ring ESR. The experimental results are compared with relativistic distorted-wave calculations employing the multiconfiguration Dirac-Fock method. Based on the DR measurements the $2s - 2p_{1/2}$ and $2s - 2p_{3/2}$ excitation energies in Li-like Xe⁵¹⁺ were determined with a relative accuracy of ~400 ppm.

Absolute rate coefficients for dielectronic recombination (DR) of Li-like ${}^{136}Xe^{51+}$ have been measured by employing the electron-ion mergedbeams technique at the experimental storage ring (ESR) at GSI in Darmstadt, Germany. The present DR measurement closes the gap between measurements for lighter Li-like ions at TSR [1] and earlier results of heavy Li-like ions [2].

The investigated center-of-mass energy range 0 - 505 eV covers all ${}^{136}\text{Xe}^{50+}(2p_{1/2} \ nl_j)_J$ and 136 Xe⁵⁰⁺ $(2p_{3/2} nl_j)_J$ DR resonances associated with 2s - 2p excitations. Strengths and energies of isolated $(2p_{1/2} n)$ and $(2p_{3/2} n)$ DR-resonance groups have been determined for principal quantum numbers n up to 43 and 36, respectively.

In addition to our experimental measurements we have performed relativistic distortedwave calculations employing the multiconfiguration Dirac-Fock (MCDF) method. Figure 1 shows a comparison of measured DRrate coefficients and corresponding theoretical results - taking into account the experimental electron velocity distribution - for the 136 Xe⁵¹⁺(2s)+e⁻ \rightarrow ¹³⁶Xe⁵⁰⁺(2p_{3/2} 9l_i)_J-DR resonance group.

We find excellent agreement between experimental and theoretical resonance structures. By extrapolating measured DR-resonance positions to $n \to \infty$ the $2s - 2p_{1/2}$ and $2s - 2p_{3/2}$ excitation energies were determined. These results are compared with calculations (e.g. [3]) and results from beam-foil-spectroscopy [4, 5].

Figure 1. Small part of the measured 136 Xe⁵¹⁺-DR spectrum (black solid line) in the energy range of the Xe⁵¹⁺(2s) + $e^- \to$ Xe⁵⁰⁺(2 $p_{3/2}$ 9 l_i)_J resonance group. Results of MCDF-calculations, convoluted with the experimental electron velocity distribution and shifted by -0.29 eV and -0.4 eV are shown as dark and light shaded curves for the $(2p_{3/2} \ 9l_i)_J$ and $(2p_{1/2} \ nl_j)_J$ resonances, respectively. Corresponding resonance strengths are given by black and white vertical lines, respectively while shifted energies are indicated by dark grey and light grey vertical bars, respectively.

References

- [1] S. Schippers et al. 2000 Phys. Rev. A. 62 022708
- [2] C. Brandau et al. 2003 Phys. Rev. Lett. 91 073202
- [3] Y. S. Kozhedub et al. 2010 Phys. Rev. A 81 042513
- [4] D. Feili et al. 2000 Phys. Rev. A 62 022501
- [5] S. Martin et al. 1989 Europhys. Lett. 10 645

¹E-mail: Dietrich.Bernhardt@iamp.physik.uni-giessen.de

