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Abstract. This paper presents a new approach to the restoration of dynamic influenced
measurement uncertainties in optical precision coordinate metrology (OPCM) using image
sensors to measure geometrical features. Dynamic measurements within the context of this paper
are based upon relative motion between the imaging setup (CCD-camera and optical system)
and the measuring object respectively the measuring scene. The dynamic image acquisition
causes image motion blur effects, which downgrades the uncertainties of the measurand. The
approach presented deals with a new technique to restore motion degraded images using
different methods to analyze important image features by extending the famous state of the
art Richardson-Lucy image restoration technique using a new convergence criteria based on the
variation of the detectable sub-pixel edge position of each iteration.
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1. Introduction
The primary objective of the new approach is to obtain accurate measurands on dynamic
measurements in optical coordinate metrology (OPCM). Besides the measurement accuracy it
becomes more and more important to provide measurement results at a reasonable time due to
economic reasons. The computation time needed to process acquired images in a suitable way for
metrological applications allocates a small amount of the complete measurement time needed
to finalize a measurement task (often accelerated by multicore CPU-architectures and GPU-
processors). Acquiring static images often consumes a higher amount of time due to repositioning
the camera and freezing the drives. Therefore the image acquisition process actually is a
bottleneck in the whole process chain. Within the context of this paper a static measurement
describes the measurement object in rest relative to the imaging sensor respectively the camera
and the lens. A dynamic measurement instead depicts the measuring object in motion during
the measurement process [1]. The goal of the dynamic measurement is the decrease of the time
consumption at the achievement of a constant measurement accuracy as on static measurement.
High precise measurements in OPCM require high quality imaging of the measurement scene.
Influences like distortion effects caused by the optical system, noise during the sensor integration
time, analog-digital-conversion (ADC) and others reduce the measurement accuracy on static
and dynamic measurements too. A dynamic measurement usually causes blur effects in the image
due to the relative motion between measuring object and image sensor during image acquisition,
so-called motion blur. For metrological purposes the blur effects at intensity transitions (“edges”)
are the major problem since they are used to interpolate subpixel-precise edge positions (SPEPs).
Image blur effects increase the measurement uncertainty U [2] and therefore downgrade the
measurement accuracy. The reachable uncertainty of the image measurement increases with the
velocity of the relative motion. Figure 1 also depicts an dynamical acquired scene of a measuring
object in horizontal motion and the overlay of a typical region-of-interest, which is used for a
search line based detection of SPEPs.
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Figure 1. left: horizontal motion degraded image, right: measurement accuracy downgrade by
increased uncertainties caused by motion-blur-effects [2]

2. State of the Art
2.1. Dynamic measurement in optical precision coordinate metrology
The state of the art approach to reduce image blur effects is to “freeze” the measuring scene
for a short time. A common technique for this approach is to use strobed illumination during
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the shutter time of the CCD-camera, image capturing in a very short exposure time [3, 4].
These methods demand in both cases a powerful illumination of the measuring scene or a high
electronic amplification, which yields higer image noise as the biggest disadvantage. The noise
effects are degradational influences to the measurement of geometrical features and also to the
reachable measurement uncertainties. Another simple method in combination with the other
above mentioned approaches is the reduction of the motion velocity at the exposure time [3],
which is counterproductive in regard to the advantage of saving of time of the dynamic image
acquisition.

2.2. Image degradation process
When modeling the imaging process using linear system theory, the ideal image, described as
f(x, y), is transformed into the captured image g(x, y) by convolving (∗) the ideal image with
a degradation function h(x, y) which is superposed by noise effects n(x, y) during the image
acquisition process (equ. 1 [5]).

g(x, y) = h(x, y) ∗ f(x, y) + n(x, y) (1)

The image degradation function h(x, y) is modeled as a superposition of different degradation
kernels like the optical lens degradation kernel hoptic(x, y) for the static measuring scene. The
optical degradation kernel contains diffraction and optical distortion effects, depending on the
analytic model used. For the dynamic measurement there is an additional image degradation
function called motion blur kernel hmotion(x, y) which depends on the CCD-sensors integration
time, the relative motion velocity ~v, the motion direction as angle α, the lens-magnification β
and the constant pixel-distance on the image sensor dpixelX , dpixelY (see equ. 2).

h(x, y) = hoptic(x, y) + hmotion(x, y) (2)

In case of linear uniform motion, a simple estimation of hmotion(x, y) is used to restore
the image g(x, y) using iterative non-blind deconvolution methods like the Richardson-Lucy
algorithm [6].

2.3. Iterative image restoration
Different non-blind deconvolution algorithms are applicable for the restoration of motion blurred
images with knowledge of the blur kernel h(x, y). Iterative deconvolution methods like the
Richardson-Lucy algorithm (RLA) yield sufficient results on restoration of motion blurred images

using a fixed number of iterations to calculate the unblurred estimation f̂(x, y). The image
estimate of RLAs current iteration is calculated using the following equation 3 [7]:

f̂i = f̂i−1 ·
(
h ∗ g

h ∗ f̂i−1

)
(3)

The main issue on the restoration using the RLA is the estimation of the blur kernel function
and the proper iteration stop criteria.

3. Extended Richardson-Lucy-Algorithm
The major problem when using the iterative RLA is to find an adequate number of iterations or
any other useful convergence criteria. When using iterative deconvolution algorithms like RLA
in OPCM, the image region to be restored especially the edge transitions are very important
to yield precise SPEPs. In OPCM, an area in the image, so called region-of-interest (ROI),
is selected to obtain measurements results. Such ROIs consist of search lines (see figure 1),
which define the direction to interpolate the image-subpixeling. The new approach utilizes the

IMEKO IOP Publishing
Journal of Physics: Conference Series 588 (2015) 012021 doi:10.1088/1742-6596/588/1/012021

3



variations of typical motion influenced properties in the image, which vary on each RLA iteration
of the restoration. One of these properties is the width of the intensity transition (so-called edge-
width [8]) xW along the motion direction, another property is the detectable subpixel-precise
edge positions ~xSPEP [9]. Since common ROIs are not suitable for the restoration tasks, new
types of ROIs (figure 2) are proposed, which compute the edge position ~xSPEP,j,i and the edge-
width xW,j,i for every search line j in every iteration i in the adjustable motion direction, which
is requested from the drive controller of the coordinate measuring machine (CMM).

Figure 2. special regions-of-interest for the restoration task: left: restoration-arc-ROI, right:
restoration-line-ROI

Figure 3 illustrates the full flow chart of the proposed extended RLA. The motion angle α
(angle between horizontal image axis and motion vector) during exposure time of the sensor
is used for the definition of the restoration-ROI in the image as illustrated in figure 2. The
first step of the extended RLA starts with an initial analysis of the image based on the defined
restoration-ROI, figure 3 - step 1. Every search line j of total countSL is used for the estimation
of the subpixel-precise edge position ~xSPEP,j and the edge-width xW,j . The averaged edge-width
xW and the motion direction angle α are used for computing the motion point-spread-function
h(xW , α). Under the pre-condition of an uniform linear motion, the point-spread-function in case
of a pixel-grid-synchron motion is a vector of the size [xW , 1] estimated by following equation:

h(xW , α, x) =
1

xW
x = [0..xW ] (4)

Non pixel grid motion angles are produced by rotation of the motion vector and bilinear
interpolation [6]. Afterwards the motion point-spread-function is extended to the image size by

zero padding. The main iteration loop of RLA is processing the image estimate f̂i(x, y) for every
iteration i, figure 3 - step 2. The further step 3 is calculating the edge properties SPEP and
edge-width again. The current iterations scalar distance value d of the SPEPs estimated from
current and last RLA iteration is calculated component-by-component in the following way by
the distance vectors absolute value:

d = |~xSPEP,j,i − ~xSPEP,j,i−1| (5)

d = |
(
xj,i
yj,i

)
−
(
xj,i−1

yj,i−1

)
| = |

(
dx
dy

)
| =

√
d2x + d2y (6)

Afterwards the convergence criteria are checked by comparing the estimated values with pre-
defined threshold values (figure 3 - step 4). This loop procedure is repeated until the conditions
are true.
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Figure 3. Extended RLA for motion blur restoration of images used for measurements in
OPCM

4. Experimental results
The new algorithm was tested on different motion acquired images and delivered sufficient
results on the restoration. Figure 4 depicts the restoration levels of an selected image restored
by the proposed algorithm. The image edges were sharpened in a sufficient way to reduce the
reachable uncertainty of the measurement. As seen in figure 5 a) the edge-width decreases on
each iteration of the algorithm. The example image was sharpened from 58 pixel edge-width to
a value of 10 pixel in only 38 RLA iterations. The distance of the SPEPs between two iterations
are also decreasing, see figure 5 b). The charts of both values have an asymptotic characteristics,
therefore pre-defined threshold values (dthreshold, xW,threshold) as stopping criteria could be used.
The distance value of the SPEPs dthreshold converges to zero with a noise depending ripple.
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RLA restoration

For a subpixel-precise estimation of the edge position, an edge-width in the range of 5 to 10
pixel necessary for the interpolation. These values are estimated on real static images and mainly
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Figure 5. a) average edge-width, b) average SPEP distance vs. RLA iteration

depending on the diffraction effects of the lens system. Hence the treshold value xW,threshold is
a-priori defined for the breaking condition to a value of 10 pixel. The SPEPs distance threshold
dthreshold is also a-priori defined to a value of 0.05 pixel and yields a good ratio of performance
and accuracy of the algorithm.

5. Summary
We presented within this paper a new approach on the restoration of motion blurred images in the
field of dynamic measurement using image sensors in the optical precision cooordinate metrology.
The proposed algorithms are based on an extension of the Richardson-Lucy iteration with
special remark to image properties regarding to the uncertainties for measurement applications.
The deconvolution algorithm yields a good performance on motion blurred grayscale images
and delivers sufficient results to the intensity edge transitions, which are important for the
measurement application.
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