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Abstract. The present work reports on a feasibility study commissioned by the Chinese
Academy of Sciences of China to explore various possible mission options to detect gravitational
waves in space alternative to that of the eLISA/LISA mission concept. Based on the relative
merits assigned to science and technological viability, a few representative mission options
descoped from the ALIA mission are considered. A semi-analytic Monte Carlo simulation is
carried out to understand the cosmic black hole merger histories and the possible scientific merits
of the mission options in probing the light seed black holes and their coevolution with galaxies
in early Universe. The study indicates that, by choosing the armlength of the interferometer
to be three million kilometers and shifting the sensitivity floor to around one-hundredth Hz,
together with a very moderate improvement on the position noise budget, there are certain
mission options capable of exploring light seed, intermediate mass black hole binaries at high
redshift that are not readily accessible to eLISA/LISA, and yet the technological requirements
seem to within reach in the next few decades for China.

1. Introduction
The present work originated from a recently completed second phase of the feasibility study
commissioned by National Space Science Center, Chinese Academy of Sciences of China to
explore various possible mission options to detect gravitational waves in space alternative to
that of (e)LISA mission concept. At the beginning of the study dating back to more than three
years ago, the ALIA (Advanced Laser Interferometer Antenna) mission concept first proposed
by Peter Bender [1, 2] was chosen as the starting point. It is conceivably in many ways the
simplest adaptation of the LISA mission concept to a measurement band centered around a few
hundredth Hz. A more detailed study [3] of the possible sciences of the mission further indicates
that, apart from the known LISA sources, the mission also holds the promise in mapping out the
mass and spin distribution of intermediate mass black holes (IMBHs) possibly present in dense
star clusters at low redshift as well as in shedding important light on the structure formation in
the early Universe. However, when the key technologies of the mission is further looked at, the
sub-picometer interferometry requirement in the laser metrology part poses a major obstacle on
the technological side of the mission. With a view that China will have a reasonable chance to
realise the mission in the next few decades and to minimise possible risks in future R&D of the
key technologies, the task of mission descope is inevitably forced upon us.

Upon further evaluation of the relative merits between science and technological viability of
a few representative descope options descended from the ALIA mission, it emerges that there
exists certain class of mission design that is technologically viable within the next few decades for
China, and yet it contains significant science that goes beyond eLISA/LISA. The principal aim
of this report is to outline this set of mission design parameters and briefly sketch the scientific
case study.

The outline of the present work may be described as follows. In Section 2, we will state
the mission design parameters, display the corresponding sensitivity curves and the detection
ranges with respect to black hole binaries with various mass ratios. In Section 3, a semi-analytic
Monte-Carlo simulation is carried out to understand the scientific potential of the prospective
missions in probing the structure formation in early Universe.

2. Mission descope
After some careful considerations, the following set of baseline design parameters will be chosen
for future study and development.
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Table 1.

Armlength Telescope Laser 1-way position Acceleration

(m) diameter (m) power(W) noise ( pm√
Hz

) (m s−2√
Hz

)

3× 109 0.45-0.6 2 5-8 3× 10−15(> 0.1mHz)

5× 108 (ALIA) 1.0 30 0.1 3× 10−16(> 1mHz)

5× 109 (LISA) 0.4 2 18 3× 10−15(> 0.1mHz)

1× 109 (eLISA) 0.2 2 11 3× 10−15(> 0.1mHz)

For reference purpose, the baseline design parameters of ALIA, LISA/eLISA are also given in
Table 1. The relevant sensitivity curves are displayed in Figure 1. Apart from the instrumental
noises, confusion noise generated by both galactic and extra-galactic compact binaries are also
taken into consideration. Relevant confusion levels are converted from estimations by Hils and
Bender [4] and Farmer and Phinney [5].
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Figure 1.

For black hole binaries with mass ratio 1 : 4, typical of what one would expect from
hierarchical black hole growth at high redshift, the all angle averaged detection range are plotted
in Figure 2. Apart from galactic confusion noise [4], upper level (dashed curve) and lower level
(dotted dashed curve) of confusion noise generated by extragalactic compact binaries as those
estimated by [5] are also taken into account.

In calculating the averaged SNR, we have used hybrid waveforms in the frequency domain
with black hole spin not taken into account [6, 7]. For one year of observation before merger, the
contributions in SNR due to large spin is indeed negligible according to our calculations. Spin is
relevant only in the parameter estimation stage, which will not be discussed in the present work.
As may be seen from Figure 2, for a given redshift, the proposed mission concept is capable
of detecting lighter black hole binaries in comparsion with eLISA/LISA and thereby provides
better understanding of the hierarchical assembling process in early Universe.

Apart from IMBH binaries at high redshift, the designed sensitivity at around 0.01Hz
measurement band means that the instrument is also capable of detecting IMRIs (Intermediate
Mass Ratio Inspirals) harboured at globular clusters or dense young star clusters at low redshift
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Figure 2. All-angle averaged detection range under a single Michelson threshold SNR of 7 for
1:4 mass ratio IMBH-IMBH binaries, one year observation prior to merger. For each mission
option, both upper and lower confusion noise levels (represented by the dashed curve and dotted
dashed curve respectively) due to extragalactic compact binaries are considered.

(z < 0.6). See [8] for a further discussion of the capture dynamics of an IMRI in dense star
clusters. Displayed in Fig 3 are the detection ranges of IMRIs with different mass ratios one
year prior to merger. The stellar black hole inspiral into an IMBH is fixed to be 10M⊙, while
the mass of the IMBH is subject to variation to generate different mass ratios in the figure.
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Figure 3. All-angle averaged detection range under a single Michelson threshold SNR of 7
for a stellar mass black hole spiralling into IMBHs with reduced masses of 10M⊙, one year
observation prior to merger. For each mission option, both upper and lower confusion noise levels
(represented by the dashed curve and dotted dashed curve respectively) due to extragalactic
compact binaries are considered.

10th International LISA Symposium (LISAX) IOP Publishing
Journal of Physics: Conference Series 610 (2015) 012011 doi:10.1088/1742-6596/610/1/012011

4



3. Scientific case study
The primary science driver of the ALIA mission is to make direct detection of IMBH binaries
at high redshift descended from the heavy Pop III stars [3, 9, 10] and thereby provide insight
into the physics of the structural formation processes at early Universe. It would be of interest
to find out to what extent this science objective is compromised in the descoped mission. For
this purpose, we carry out a simple Monte Carlo simulation of black hole merger histories based
on the realizations of EPS formalism and semi-analytical dynamics, in accordance with the
prescription given in [11, 12, 13].

Pop III remnant black holes of 150M⊙ are placed in 3.5σ biased halos at z=20 with initial
spins of the seeds generated randomly. By prescribing VHM-type dynamics [11, 12], we trace
downwards the black hole merging history. The halo mass ratio criteria for major merger is set
to be > 0.1. Both the prolonged accretion and the chaotic accretion scenario are considered.
Black hole spins coherently evolve through both mergers and accretions processes and their
magnitudes influence strongly the mass-to-energy conversion efficiency. We assume efficient
gaseous alignment of the black holes so that the hardening time is short and only moderate
gravitational radiation recoils take place. Numerical simulations [14] suggest that the hardening
and merging times scales remain short even in gas free environment. In calculations relevant to
GW observations, we assume a threshold SNR of 7 for detection in the sense of single Michelson
interferometer and one year observation prior to merger. The results are schematically given in
Figure 4 and Figure 5.

We assess our simulations by fitting the black hole mass functions and luminosity functions
at six almost equally divided successive redshift intervals ranging from z=0.4 to 2.1. In the
prolonged accretion scenario, the results deviate from the observational constrains given by
Soltan type argument when going up to redshift z > 1.5. It may therefore underestimate the
black holes growth rate and perhaps also the coalescence rate. Observationally the existence of
very high redshift (z > 6) AGNs implies that feed back mechanisms may be very different at
early epoch so that fast growth of the seed black hole could be possible.

In terms of coalescence rate, our result displayed in Figure 4 is in overall agreement with the
results given by Sesana et al [13, 15] and Arun et al [16], though the coalescence counts given
by their simulations are about two or three times higher. It is likely due to various numerical
discrepancies in the simulations. Overall, our black hole mass growth is slower, particularly in
the prolonged accretion scenario. At z = 15, the total mass of the black hole binaries typically
are still less than 600M⊙ in the prolonged model and this may lead to a smaller counts in
detectable sources. We expect our results yields a very conservative (pessimistic) estimate of
black hole binaries merger event rate.

The astrophysics encapsulated in our simulation represents the state of art understanding of
structural formation after the dark age. Due to our poor understanding of the evolution of the
Universe at this epoch, it is likely that the simulation overlooks many details of the physical
processes involved. The event rate count should be looked upon in a cautious way. Instead of
reading into the precise numbers, it serves as an indication what spaceborne gravitational wave
detector is capable of and in our case, the advantage of setting the most sensitive regime of the
measurement band from a few mHz to 0.01Hz.

Globular cluster harbored IMRIs
Before we conclude, let us also briefly estimate the detection capability for IMRIs in dense star
clusters. The calculations and underlying hypotheses are identical to that in [3](see also [17, 18]).
The results are given in Table 2.

The above event rate estimate is subject to many uncertainties and perhaps we should not
attach too much importance to the precise numbers. Instead, the calculations serves as an
indication of the detection potential of the mission concept as far as IMRIs at low redshift are
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Figure 4. Coalescence rate predicted by the realized simulations.

Figure 5. Event rates for descoped options.

concerned. Further, as event rate goes up as the cubic of the improvement in sensitivity, it also
brings out the advantage of shifting slightly the most sensitive region of the measurement band
to a few hundredth Hz, as far as detection of IMRIs is concerned. It should also be remarked that
collision of dense star clusters [19] constitutes a possible IMBH gravitational wave sources, while
the inspiral of massive black holes (∼ 103M⊙ to ∼ 104M⊙) into the supermassive black hole
at the center of a galaxy is also a promising IMRI source [20, 21]. However, the corresponding
event rates would be difficult to estimate.
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Table 2. Prospective detection rate for IMRIs in globular clusters.

Mission option Upper level of confusion Lower level of confusion

ALIA zc = 5: ∼ 8000 ∼ 12000
zc = 3: ∼ 6000 ∼ 7000

5pm (D=0.6m) ∼ 90 ∼ 130

8pm (D=0.45m) ∼ 26 ∼ 32

LISA ∼ 3

4. Concluding remarks
With the second phase of the feasibility study of gravitational wave detection in space coming
to a close, a preliminary mission design deemed suitable as blue print for future development of
the project in the Chinese Academy of Sciences is put forward. Together with the roadmap to
advance the project step by step, the mission design will serve as a guide for future developments
on both the theoretical as well as technological fronts. We hope to report upon further progress
of the project on various areas soon.
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