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Abstract. Using the analytical effective-one-body model and nonlinear 3+1 numerical
relativity simulations, we investigate binary neutron star mergers. It is found that, for
nonspinning binaries, both the mass-rescaled gravitational wave frequency at merger and the
specific binding energy at merger almost uniquely depend on the tidal coupling constants κT

2 ,
which are functions of the stars’ Love numbers, compactnesses and mass ratio. These relations
are quasiuniversal in the sense that there is an additional dependence on the spins, which is
linear for realistic spins values χ . 0.1. In the effective-one-body model, the quasiuniversality is
a direct consequence of the conservative dynamics of tidally interacting bodies. In the context of
gravitational wave astronomy, our findings may be used to constrain the neutron stars’ equation
of state using waveforms that accurately model the merger.

1. Introduction
Coalescing neutron stars are among the most promising sources for the currently operating,
ground-based interferometric gravitational waves (GW) detectors [1]. In particular, starting
from the next few years, the advanced configurations of the LIGO/Virgo network are expected
to detect ∼ 0.4 − 400 events per year [2]. The late part of the coalescing process is likely to
provide, via measurement of the tidal polarizability, crucial information about the neutron stars’
internal structure and equation of state (EOS) [3, 4, 5, 6].

At present time, an accurate modelling of binary neutron star (BNS) mergers is only possible
with numerical relativity (NR). Many improvements have been done in recent years, which led,
e.g., to phasing analysis for multiorbit simulations [7, 8, 9] or to studies of the gauge-invariant
relation between energy and angular momentum [10, 11].

Nevertheless, some important aspects still need to be clarified. For instance, there is
insufficient knowledge about the role of finite mass ratio and finite mass effects at merger. BNS-
related studies (see e.g. [6]) typically neglect these effects, insofar as they estimate the end of the
quasiadiabatic BNS inspiral and the amount of GW energy emitted during the coalescence by
means of the simple Schwarzschild quantities 2MΩSchw

LSO ≈ 0.13608 and ESchw
bLSO ≈ −0.0572 taken

in correspondence of the Schwarzschild last stable orbit (LSO).
We use new multi-orbit NR data and the analytical effective-one-body (EOB) approach to

further investigate neutron stars mergers. We find that the GW frequency and binding energy
at the moment of merger are only characterized, besides of the spins, by certain dimensionless
tidal coupling constants (a fact also empirically observed in [5] for the frequency). For more
details, see Ref. [12].
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2. Methods
2.1. LSO and merger within the EOB
The EOB approach maps the general relativistic 2-body problem into the dynamics of a
particle with mass µ = MAMB/M moving in an effective metric generated by a central mass
M = MA +MB [13]. It consists of three building blocks (see e.g. Ref. [14]): (i) a Hamiltonian
HEOB; (ii) a factorized gravitational waveform; and (iii) a radiation reaction force Fϕ. The EOB

Hamiltonian HEOB = M

√
1 + 2ν(Ĥeff − 1) is constructed upon an effective Hamiltonian, that

in the nonspinning case reads Ĥeff(u, pr∗ , pϕ) =
√
A(u; ν) (1 + p2

ϕu
2 + 2ν(4− 3ν)u2p4

r∗) + p2
r∗.

Here, ν = µ/M , u ≡ 1/r (r is a dimensionless separation radius), while pϕ and pr∗ ≡
√
A/B pr

are dimensionless (orbital and radial) momenta. PN results are included, in a resummed way,
into the potentials A(u; ν) and B(u; ν). We implement the spin following Ref. [15], and taking the
spin-orbit coupling at NNLO [16]. Finite size effects can be reproduced by adding to the point-
mass contribution A0(u; ν) of the radial potential a suitable tidal term AT (u; ν). In A0(u; ν), we
exploit the full analytical information we posses so far, including terms up to 4PN [17], and use
a (1,4)-Padé resummation. Tidal terms formally start at 5PN and are included up to NNLO
order. They have the structure [18]

AT (u) = −
4∑

`=2

κT` u
2`+2(1 + ᾱ

(`)
1 u+ ᾱ

(`)
2 u2), (1)

with only ᾱ
(2),(3)
1,2 known analytically [19]. The full EOS information is encoded into the tidal

coupling constants (` ≥ 2)

κT` ≡ 2

[
1

q

(
XA

CA

)2`+1

kA` + q

(
XB

CB

)2`+1

kB`

]
, (2)

where q = MA/MB ≥ 1, XA ≡ MA/M = q/(1 + q), XB ≡ MB/M = 1/(1 + q), while kA,B
` and

CA,B are the dimensionless Love numbers and compactness of star A and B. We stress that, in
this work, we use a fully analytic EOB model, that does not contain any parameter calibrated
against NR.

For a fixed angular momentum pϕ, circular orbits satisfy ∂uHeff(u, pϕ, pr ≡ 0) = 0. Within
the adiabatic (Fϕ = 0) EOB model, the LSO (uLSO, pϕLSO) is defined as the inflection

point of the radial effective potential Ĥeff(u), and thus must satisfy the additional equation
∂2
uHeff(u, pϕ, pr ≡ 0) = 0. Below u−1

LSO, no stable circular orbit exists, while below pϕLSO no
circular orbit is possible at all. The gravitational wave frequency and the binding energy
at the LSO are simply calculated as MΩLSO = µ−1∂pϕHEOB(uLSO, pϕ, pr ≡ 0)|pϕLSO and
EbLSO = (HEOB(uLSO, pϕLSO, pr ≡ 0)−M)/µ.

A more complete approach is provided by the nonadiabatic EOB (Fϕ 6= 0). In this case the
dynamics is continued after the LSO crossing, where it shows, as also NR simulations do, a
characteristic peak in the GW amplitude. We define (for both EOB and NR) the peak of the
l = m = 2 mode as the moment of merger.

2.2. NR simulations
Our NR simulations employ the BAM code and the method described in [20, 21], but with
some different features: (i) we use the Z4c formulation of Einstein’s equations [22]; (ii) GWs
are extracted from an extended wavezone [23]. The binaries are equal-mass, irrotational
configurations with different EOS. A Γ = 2 polytropic EOS model is employed to simulate
different compactnesses. The evolutions cover about ten orbits up to merger. These are among
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Figure 1. Top panels: GW frequency (left) and binding energy (right) at the LSO (adiabatic
EOB) and at merger (nonadiabatic EOB and NR) as a function of κT2 for different EOS. NR data
are fitted with a function of type f(0)(1 + n1κ + n2κ

2)/(1 + d1κ) (black dashed line). Bottom
panels: residuals of the LSO data. The picture is taken from Ref. [12].

the longest BNS simulations ever performed, and some of the few where an error analysis is
available [8, 10]. For each NR data set, we compute the binding energy per reduced mass,
ENR

b , subtracting the GW energy loss from the initial ADM mass, following [24, 10, 11]. Here,
differently from previous works, all the multipoles are included. GW frequency and binding
energy are extracted at the moment of merger. We estimate error bars due to truncation errors
and waveform finite extraction uncertainties from resolution tests for fewer configurations.

3. Quasiuniversal κT` relations
We investigated the dependence of the GW frequency 2ΩLSO and of the specific binding energy
EbLSO at merger on the tidal coupling constant κT2 for different EOS. Within the EOB approach,
we considered 12 realistic EOS and varied the masses from 1.3M� up to the maximum allowed
mass. Instead, for NR simulations, we fixed the isolation mass M = 2× 1.35M� and considered
the set of compactnesses CA = CB = (0.12, 0.14, 0.16, 0.18) for the EOS MS1, MS1b, H4, ALF2,
MPA1, ENG and SLy. We found that both 2ΩLSO and EbLSO, once parametrized by the tidal
coupling constants, are essentially independent of the EOS. From Fig. 1, which shows the plots
for equal mass ratio and no spin, one sees that deviations from universality are below 0.2% in
the EOB-generated curves. Because of the structure given by Eq. (1), this behavior is actually
not surprising. It is a consequence of the fact that, at the LSO, the term κT2 u

6 dominates
over the higher multipoles κT` u

2`+2, ` ≥ 3. As it can be clearly seen, NR results qualitatively
confirm this prediction. At the quantitative level, however, there is a gap between EOB and NR
that is around 20− 30% for 2ΩLSO and 10− 20% for EbLSO. The reason for this disagreement
is due to the fact that our EOB model does not include neither nonlinear tidal interactions,
nor hydrodynamic effects. Despite being incomplete, the EOB is able to catch deep physical
connections in such a complex process as the merger.

We then used the adiabatic EOB to further investigate the merger, adding small spins
χ = ±0.1 and considering the additional mass ratio q = 2. The curves turn out to be almost
independent of the mass ratio (see Fig. 2), despite the fact that the interval of κT2 gets narrower
when q deviates from 1 (which is simply due to the smaller range of possibilities of picking, in
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Figure 2. GW frequency (top) and binding energy (bottom) according to the adiabatic EOB
model at the LSO, for different spins and mass ratios. The picture is taken from Ref. [12].
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Figure 3. Linear dependence of GW frequency (left) and binding energy (right) on small
spins χ1 = χ2 ≡ χ ranging from −0.1 to 0.1, for four different EOS. Both quantities are taken
at the LSO of the adiabatic EOB model, with the tidal coupling contants fixed at the values
κT2 = 95, 100, 105. The small boxes indicate the scale at which deviation from universality shows
up.

the allowed interval, two masses with the wished mass ratio). The difference between q = 1 and
q = 2 is ≤ 0.5%. By contrast, as it can be seen in Figs. 2-3, the curves are sensitive to the spin,
showing an almost linear dependence. Since this implies a certain degeneracy between spin and
tidal coupling constant, we denote the relations as quasi -universal.
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4. Conclusions
We have identified the κT` as fundamental coupling constants of the binary tidal interactions,
together with κT -universal relations and their physical origin. This provides, for instance, a
better insight into the empirical relation found in Ref. [5].

Our findings have implications for GW astronomy. A single measurement of the GW
frequency at merger allows to extract the value of κT` . If both masses can be determined from
the earlier template, it would be consequently possible to strongly constrain the EOS. In view
of this, the κT` relations exhibit certain analogies with the merger properties found in Ref. [25]
and with the so called I − λ − Q relations [26, 27], see also [28]. Of course, a detailed study
about the possibility of constraining the EOS deserves a study on its own.

Finally, the EOB could be used to provide a simple criterion, more precise than the
Schwarzschild LSO, for stopping the waveform template.
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