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Abstract. The present status of the fully-relativistic nonperturbative calculations of the fundamental

atomic processes with twisted electrons is presented. In particular, the elastic (Mott) scattering, the radiative

recombination, and for the very first time, the Bremsstrahlung processes are considered. The electron-

ion interaction is accounted for in a nonperturbative manner, that allows obtaining reliable results for

heavy systems. We investigate the influence of the “twistedness” of the incoming electron on the angular

and polarization properties of the emitted electrons and photons for the elastic and inelastic scattering,

respectively. It is found that these properties exhibit a strong dependence on the opening angle of the vortex

electron beam in all processes considered.

1. Introduction

The electron is called twisted (or vortex) if it possesses a well-defined total angular momentum

projection onto the propagation direction. Such particles being the solutions of the free Dirac

equation with the imposed cylindrical boundary conditions were predicted theoretically [1] and realized

experimentally [2, 3, 4] about a decade ago. From these articles, the extensive investigations dedicated

to the creation, detection, and application of twisted electrons have started (see [5, 6, 7] for a review and

relevant references). The interest in such particles is caused mainly by the magnitude of their total angular

momentum (TAM) projection ~m. This projection can substantially exceed the one defined solely by the

spin angular momentum of the conventional (plane-wave) electrons. Nowadays, the twisted electrons

with m ∼ 1000 can be routinely produced [8]. The magnetic dipole moment µ = mµB (µB is the Bohr

magneton) of the electrons with such a high TAM projection is by three orders of magnitude larger than

those in the plane-wave case. This fact stimulates investigations of the utility of the twisted electrons for

studying various subtle magnetic effects [9] and magnetic properties of the materials [10, 11, 12, 13].

Interaction of twisted electrons with ionic and atomic targets is of particular interest. Indeed, with

the growth of TAM projection, the spin-orbit interaction increases thus providing a unique opportunity

to get a better insight into the role of the complex interplay between spin and orbital angular momenta

in various atomic processes. This fact has stimulated investigations of processes involving ionic (or
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atomic) targets and twisted electrons. In [14], the transfer of the orbital angular momentum from an

incident vortex beam to the internal motion of the hydrogen electron was studied. The Rutherford

potential scattering of electron vortices was investigated in [15]. Matula and co-authors [16] discussed

the radiative recombination of twisted beams with bare nuclei into the ground states of corresponding

H-like ions. The atom excitation in coarse of the inelastic electron-vortex-beam scattering was studied

in [17]. In [18, 19], the investigation of the beam-size effects in the scattering of the twisted packets by

the hydrogen atom was presented. Serbo et al [20] examined the Mott scattering of high-energy twisted

electrons by neutral atoms whose electrostatic potential was approximated by a sum of three Yukawa

potentials. The detailed description of the hydrogen atom ionization by the vortex beam was presented

in the recent work by Harris and co-authors [21]. It is worth mentioning that only in [20] the relativistic

formalism was utilized meanwhile in other investigations the nonrelativistic approach was used.

All these studies, however, were performed in the framework of the first Born approximation, i.e., the

interaction of the twisted electrons with the target potential was taken into accounted in a perturbative

manner. Such approximation is applicable only for the description of low-Z (Z is the nuclear charge

number) atomic systems and relatively large projectile velocities. Meanwhile, the largest sensitivity to

the “twistedness” is expected in high-Z systems where the spin-orbit interaction is strongly enhanced. To

perform an accurate description of the processes with heavy ions and atoms, one needs to account for the

interaction of the vortex electron with the target potential nonperturbatively. In [22] the fully-relativistic

approach aimed at performing such descriptions was developed. In this formalism, the vortex electron

is described by the wave function being the solution of the Dirac equation with the target potential

and the twisted-wave asymptotic behavior. As a first application of the developed approach, in [22]

the recombination of the vortex electron beams with heavy bare nuclei was described in details. Later,

Kosheleva and co-authors [23] applied a similar method for the investigation of the higher-order effects

beyond the first Born approximation in the process of the elastic (Mott) scattering of twisted electrons

by neutral atoms. Additionally, in this work, the differential cross section and the degree of longitudinal

polarization for scattering by such a heavy element as gold (Z = 79) were evaluated. We also mention

another approach for the description of the twisted electrons in external fields which is based on the

Foldy-Wouthuysen representation of the Dirac equation. This approach was successfully applied by

Silenko and co-authors [24] to study the twisted electrons in electric and magnetic fields.

Here we apply the formalism developed in [22] for the investigation of the fundamental atomic

processes with twisted electrons. In particular, the elastic (Mott) scattering, the radiative recombination,

and the Bremsstrahlung processes are considered. It should be noted that the Bremsstrahlung from

twisted electrons propagating in the field of ionic or atomic targets has not been examined so far. We pay

special attention to the investigation of the influence of the “twistedness” of the incoming electron on

the angular and polarization properties of the emitted electrons and photons for the elastic and inelastic

scattering, respectively. It is found that these properties exhibit a strong dependence on the opening angle

of the vortex electron beam in all processes considered.

2. Basic formalism

Let us start with the brief recall of the main properties of the free twisted electrons which we take here

in the form of the Bessel waves. The vortex states are characterized by the following set of quantum

numbers: the energy ε, the helicity µ, and the projections of the linear pz and total angular m momenta

onto the propagation direction which is chosen as the z-axis. Twisted electrons also possess a well-

defined transversal momentum κ =
√

ε2 − 1− p2z and the so-called opening angle θp = arctan (κ/pz).
The explicit expression for the wave function of the state with the quantum numbers listed above is given

by [20]

ψκmpzµ(r) =

∫

dp
eimϕp

2πp⊥
δ(p‖ − pz)δ(p⊥ − κ)iµ−mψpµ(r). (1)
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Here p‖ and p⊥ are the longitudinal and perpendicular components of the momentum p, respectively,

and ψpµ is the plane-wave solution of the free Dirac equation

ψpµ(r) =
eip·r

√

2ε(2π)3
upµ, (2)

where upµ is the Dirac bispinor [25, 26] which satisfies the normalization condition u†pµupµ′ = 2εδµµ′ .

Equation (1) implies that in the momentum space, the twisted electron can be represented as a coherent

superposition of the plane-waves with the linear momenta p covering the surface of a cone with the

opening angle θp. Additionally, from equation (1), it is seen that the vortex beam has an inhomogeneous

probability distribution and an inhomogeneous flux density. In particular, the flux density equals

j(tw)
z (r) = ψ†

κmpzµ(r)αzψκmpzµ(r) =
p

ε(2π)3

∑

σ

4µσ
[

d1/2σµ (θp)
]2
J2
m−σ(κr⊥), (3)

where p = |p|, αz is the z component of the vector of Dirac matrices, dJMM ′ (θ) is the small Wigner

matrix [27, 28], Jn is the Bessel function of the first kind [29, 30], and r⊥ is the perpendicular component

of r.

Having discussed the basic properties of the free twisted electrons, we proceed to study their scattering

(elastic and inelastic) by a single ion. First, we fix the z-axis along the propagation direction of

the vortex beam. The position of the ion is given by the impact parameter b = (bx, by, 0), which

defines the relative position of the target and the incident electron. The necessity of this parameter

is provided by the inhomogeneity of the probability flux density (3) of the vortex beam. To describe

the scattering of the vortex beam by heavy ions accurately, one needs to account for the electron-atom

interaction nonperturbatively. It can be performed via the construction of the wave function of the twisted

electron as the solution of the Dirac equation in the external field of the ionic target with the following

asymptotics [31]

Ψ(+)
κmpzµ(r+ b) −−−→

r→∞
ψκmpzµ(r+ b) +G

(tw)
mµ,b(θp,n)

eipr

r
. (4)

HereG(tw) is the bispinor amplitude and the transformed coordinate system r−b → r (being convenient

for practical calculations) is used. The wave function (4) is given by [22]

Ψ(+)
κmpzµ(r+ b) =

∫

dp
eimϕp

2πp⊥
δ(p‖ − pz)δ(p⊥ − κ)iµ−meip·bΨ

(+)
pµ (r), (5)

where Ψ
(+)
pµ describes the conventional (asymptotically plane-wave) electron propagating in the ionic

target potential. The explicit form of this wave function can be found, e.g., in [26, 32, 33]. Utilizing (5)

one can connect the amplitude of the twisted electron scattering with the plane-wave one as follows

τ (tw)
κmpzµ(b) =

∫

eimϕp

2πp⊥
δ(p‖ − pz)δ(p⊥ − κ)iµ−meip·bτ

(pl)
pµ dp. (6)

This amplitude accounts for the electron-ion interaction to all orders and describes the scattering process

uniquely. Thus, the theoretical description is regarded as complete.

The process of the scattering of the vortex beam by a single ion is challenging for the experimental

realization. Here, therefore, a more realistic scenario of the scattering by an infinitely extended

(macroscopic) target is considered. We describe this target as an incoherent superposition of ions being

randomly and homogeneously distributed. The differential cross section for this case is given by [20]:

dσ(tw) =

∫

db

πR2

∣

∣

∣
τ (tw)
κmpzµ(b)

∣

∣

∣

2
=

1

cos θ

∫

dϕp

2π
dσ(pl)(p̂), (7)
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where (πR2) stands for the cross section area (R is the radius of the cylindrical box) and the volumes

of the phase spaces are omitted for brevity. The integrand in this expression designates the differential

cross section for the scattering of the plane-wave electron incoming along p̂ = p/|p| direction. From

equation (7) it is seen that the cross section for the scattering of the twisted electrons by the macroscopic

target does not depend on the TAM projection m. It is worth mentioning that this dependence is restored

if the incident electron is chosen as a superposition of two (or more) vortex states with different TAM

projections [34, 35, 16, 22].

3. Results and discussions

We apply the approach which is described above for the investigation of the fundamental atomic

processes with the twisted electrons. In particular, the elastic (Mott) scattering, the radiative

recombination, and the Bremsstrahlung processes are studied. Here we restrict ourselves to the

consideration of the scattering of 100 keV twisted electrons by the macroscopic target consisting of

lead (Z = 82) nuclei. Additionally, we consider that the electrons and photons emitted in the course

of the processes under investigation are asymptotically described by the plane waves. This assumption

corresponds to the fact that in experiments the detectors of the conventional (plane-wave) particles are

mostly utilized.

3.1. Elastic (Mott) scattering of twisted electrons

We start with the elastic (Mott) scattering of the twisted electrons. For this process, equation (7) takes

the following form

dσ
(tw)
µfµi

dΩf
=

1

cos θp

∫

dϕp

2π

dσ
(pl)
µfµi

dΩf
(p̂), (8)

where the solid angle of the emitted electron Ωf is defined by the azimuthal ϕf and polar θf angles,

µf and µi are the helicities of the initial and final electron states, respectively. The explicit expression

for the differential cross section of the Mott scattering of the plane-wave electrons can be found, e.g.,

in [36, 37, 38, 39]. On the left panel of figure 1, the differential cross section being averaged over µi
and summed over µf is presented. The right panel of figure 1 displays the degree of the longitudinal

polarization which is defined by

P =
dσ1/2 1/2 − dσ1/2−1/2

dσ1/2 1/2 + dσ1/2−1/2
, (9)

where dσµf µi
≡

dσµfµi

dΩf
and it is assumed that the incident electron is completely longitudinally polarized

(µi = 1/2). From this figure, it is seen that both the differential cross section (left panel) and the degree

of the longitudinal polarization (right panel) exhibit a strong dependence on the opening angle of the

twisted electron. Moreover, one can see that the angular distribution of the emitted electrons has a peak

at the angle equal to the opening angle θp. This feature of the differential cross section can be exploited

for analysis of kinematic properties of the vortex beam. For more details on the Mott scattering of the

twisted electrons, we refer to [20, 23].

3.2. Radiative recombination of twisted electrons

We now turn to the consideration of the radiative recombination of the twisted electrons with lead

(Z = 82) nuclei into the ground 1s state of the corresponding H-like ions. In accordance with (7),

the differential cross section for this process expresses as

dσ
(tw)
χmfµi

dΩk
=

1

cos θp

∫

dϕp

2π

dσ
(pl)
χmfµi

dΩk
(p̂). (10)



ICPEAC2019

Journal of Physics: Conference Series 1412 (2020) 052013

IOP Publishing

doi:10.1088/1742-6596/1412/5/052013

5

104

105

106

107

108

109

1010

1011

1012

0 30 60 90 120 150 180
-1.0

-0.5

0.0

0.5

1.0

0 30 60 90 120 150 180

D
if

fe
re

n
ti

al
cr

o
ss

se
ct

io
n
d
σ
/
d
Ω

f
(b

ar
n
)

Polar scattering angle θf (deg)

plane-wave

θp = 5◦

θp = 15◦

θp = 30◦

D
eg

re
e

o
f

lo
n
g
it

u
d
in

al
p
o
la

ri
za

ti
o
n

Polar scattering angle θf (deg)

plane-wave

θp = 30◦

θp = 45◦

θp = 60◦

Figure 1. The angular and polarization properties of the electrons emitted in the course of the elastic

(Mott) scattering of 100 keV twisted electrons by lead nuclei. On the left panel, the differential cross

section (8) averaged over µi and summed over µf is presented. On the right panel, the degree of the

longitudinal polarization (9) is depicted.

Here χ is the angle of the linear polarization of the emitted photon whose solid angle Ωk is defined by

the azimuthal ϕk and polar θk angles, andmf is the TAM projection of the 1s electron state. The integral

in equation (10) can be readily evaluated with the usage of the well-known expressions from the plane-

wave case, which can be found, e.g., in the review [40]. The differential cross section averaged over

µi and summed over mf and χ is presented on the left panel of figure 2. From this panel, one can see

that the “twistedness” of the incident electron results in qualitative changes of the angular distribution of

the emitted photons. Namely, the photons are predominantly emitted in the forward direction, where the

plane-wave differential cross-section tends to zero. On the right panel of figure 2 we present the degree

of the linear polarization (first Stokes parameter)

Pl = P1 =
dσ90◦ − dσ0◦

dσ0◦ + dσ90◦
, (11)

where dσχ ≡ 1
2

∑

mfµi

dσχmfµi

dΩk
. We note that the second and third Stokes parameters are identically

equal to zero. From the right panel of figure 2, it is seen that at large opening angles, the degree of

the linear polarization takes negative values. That corresponds to the photons polarized perpendicular to

the reaction plane. A similar effect was predicted for the Vavilov-Cherenkov radiation from twisted

electrons [41]. More detailed investigations of the radiative recombination of the twisted electrons

performed in the first Born approximation and within the fully-relativistic nonperturbative treatment

can be found in [16] and [22], respectively.

3.3. Bremsstrahlung from twisted electrons

Let us now briefly discuss the Bremsstrahlung from the twisted electrons scattered by the macroscopic

target consisting of bare lead (Z = 82) nuclei. With the usage of equation (7), one can obtain the double
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Figure 2. The angular and polarization properties of the photons emitted in the course of the radiative

recombination of 100 keV twisted electrons with lead nuclei into the ground 1s state of the corresponding

H-like ions. On the left panel, the differential cross section (10) averaged over µi and summed over mf

and χ is presented. On the right panel, the degree of the linear polarization (11) is depicted.

differential cross section (DDCS) for this process in the following form

dσ
(tw)
χµfµi

dωdΩk
=

1

cos θp

∫

dϕp

2π

dσ
(pl)
χµfµi

dωdΩk
(p̂), (12)

where ω stands for the energy of the emitted photon. In the present paper, for the evaluation of the plane-

wave DDCS, we utilize the theoretical formalism and numerical algorithms developed in [42]. The

results of our calculations for the case of 50 keV Bremsstrahlung are presented in figure 3. On the left

panel of this figure, the DDCS averaged over µi and summed over µf and χ is displayed. The right panel

of figure 3 demonstrates the degree of the linear polarization (first Stokes parameter), which is defined

by a formula similar to (11) with dσχ ≡ 1
2

∑

µfµi

dσχmfµi

dωdΩk
. As in the case of the radiative recombination

process, the second and third Stokes parameters are identically equal to zero. From figure 3, it is seen that,

the “twistedness” of the incoming electrons leads to qualitative changes of the angular and polarization

characteristics. More detailed investigation of the process of the Bremsstrahlung from twisted electrons

will be presented in a forthcoming publication.

4. Conclusion

In the present paper, the fundamental atomic processes with twisted electrons were considered.

In particular, the elastic (Mott) scattering, the radiative recombination, and the Bremsstrahlung

processes were studied within the formalism, which takes into accounts the electron-ion interaction

nonperturbatively. This allows one to obtain reliable results even for such heavy systems as lead (Z = 82)

nuclei. Special attention was paid to the investigation of the influence of the “twistedness” of the

incoming electron on the angular and polarization properties of the emitted particles. It was found
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Figure 3. The angular and polarization properties of 50 keV Bremsstrahlung from 100 keV twisted

electrons scattered by lead nuclei. On the left panel, the scaled double differential cross section (12)

averaged over µi and summed over µf and χ is presented. On the right panel, the degree of the linear

polarization is depicted.

that these properties exhibit a strong dependence on the opening angle of the vortex electron beam in all

considered processes.

Acknowledgments

This work was supported by the grant of the President of the Russian Federation (Grant No. MK-

4468.2018.2), by RFBR (Grant No. 18-32-00602), and by SPbSU-DFG (Grants No. 11.65.41.2017

and No. STO 346/5-1). V.A.Y. acknowledges support by the Ministry of Education and Science of the

Russian Federation Grant No. 3.5397.2017/6.7.

References
[1] Bliokh K Y, Bliokh Y P, Savel’ev S and Nori F 2007 Phys. Rev. Lett. 99 190404

[2] Verbeeck J, Tian H and Schattschneider P 2010 Nature 467 301

[3] Uchida M and Tonomura A 2010 Nature 464 737

[4] McMorran B J, Agrawal A, Anderson I M, Herzing A A, Lezec H J, McClelland J J and Unguris J 2011 Science 331 192

[5] Bliokh K Y et al 2017 Phys. Rep. 690 1

[6] Lloyd S M, Babiker M, Thirunavukkarasu G and Yuan J 2017 Rev. Mod. Phys. 89 035004

[7] Larocque H, Kaminer I, Grillo V, Leuchs G, Padgett M J, Boyd R W, Segev M and Karimi E 2018 Contemp. Phys. 59 126

[8] Mafakheri E et al 2017 Appl. Phys. Lett. 110 093113

[9] Ivanov I P and Karlovets D V 2013 Phys. Rev. Lett. 110 264801

Ivanov I P and Karlovets D V 2013 Phys. Rev. A 88 043840

[10] Rusz J and Bhowmick S 2013 Phys. Rev. Lett. 111 105504
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