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Abstract

Symmetries are fundamental to physical theories: they are used to classify, constrain

and simplify. In reality, however, symmetries tend to be broken; the study of sym-

metry breaking thus constitutes an important endeavour. This thesis presents work

pertaining to symmetry and symmetry breaking – in particular to their manifestations

in relativistic hydrodynamics and holography.

Pseudo-spontaneous breaking of U(1) symmetry and phase relaxation are studied

by extending the hydrodynamic analysis of superfluids. For sufficiently small explicit

breaking parameters a hydrodynamic regime may be approximated. The hydrody-

namic modes display the effects of pseudo-spontaneous symmetry breaking and phase

relaxation. It is furthermore shown that, in the probe limit and in the absence of charge

relaxation, the DC conductivity becomes finite but nevertheless the AC conductivity

does not present a Drude-peak.

A viscoelastic hydrodynamic framework for systems with spontaneously broken trans-

lational invariance is also presented. Strain pressure – an effect which appears when

such systems do not minimise the free energy – is discussed. It is shown that the tem-

perature derivative of the strain pressure need not vanish even when strain pressure

is absent. The hydrodynamic modes are found, for which the repercussions of strain

pressure and its temperature derivative are discussed for different scenarios.

The hydrodynamic frameworks are tested numerically against the dynamics of the

lowest quasi-normal modes of holographic models. The presence of strain pressure and

its temperature derivative is confirmed by comparison to the dynamics of a massive

gravity model. The hydrodynamic framework for pseudo-spontaneous U(1) symmetry

breaking is tested against two modifications of the standard holographic superfluid;

their dynamics are considered in the probe limit. The hydrodynamic frameworks match

the quasi-normal modes for both models. It is shown that phase relaxation may appear

due to the interplay of explicit and spontaneous symmetry breaking, in which case it

behaves in accordance with a proposed universal relation. The finite nature of the AC

and DC conductivity, in the relevant regime, is also confirmed.

Finally, motivated by its relevance for a holographic duality involving flat spacetimes,

two-dimensional BMS symmetry is considered. The highest-weight representation of

the bms3 algebra is formulated in terms of the oscillator formalism. The tools inherent

to this construction are used to prove that bms3-blocks exponentiate in the semiclassical

limit. In the semiclassical context also two examples of vacuum bms3-blocks – the

perturbatively heavy, and heavy-light vacuum bms3-blocks – are calculated.





Zusammenfassung

Symmetrien sind grundlegend für physikalische Theorien: Sie werden zu deren Klas-

sifikation, Einschränkung und Vereinfachung verwendet. In der Realität sind Symme-

trien aber meist gebrochen, wodurch das Studium der Symmetriebrechung wichtig wird.

Diese Dissertation befasst sich mit Symmetrien und deren Brechung – insbesondere mit

deren Manifestationen in der relativistischen Hydrodynamik und Holographie.

Durch eine Erweiterung der hydrodynamischen Analyse von Superfluiden werden die

pseudospontane Brechung einer U(1)-Symmetrie und die Phasenrelaxation untersucht.

Für genügend kleine explizit symmetriebrechende Parameter kann ein hydrodynamis-

ches Regime approximiert werden. Die hydrodynamischen Moden zeigen die Effekte

pseudospontaner Symmetriebrechung und Phasenrelaxation.Weiterhin wird gezeigt,

dass, im Grenzfall eines verschwindenden Energie-Impulstensors und ohne Ladungsre-

laxation, die Gleichstromleitfähigkeit endlich wird, die Wechselstromleitfähigkeit aber

kein Drude-Maximum zeigt. Weiterhin wird ein viskoelastisch-hydrodynamischer Zu-

gang für Systeme mit spontan gebrochener Translationssymmetrie präsentiert. Der

Spannungsdruck – ein Effekt, der auch auftritt, wenn solche Systeme die freie Energie

nicht minimieren – wird diskutiert. Es wird gezeigt, dass die Ableitung des Spannungs-

druckes nach der Temperatur auch bei verschwindendem Spannungsdruck endlich sein

kann. Es werden die hydrodynamischen Moden und die Auswirkungen von Spannungs-

druck und dessen Temperaturableitung darauf in verschiedenen Szenarien diskutiert.

Die hydrodynamischen Zugänge werden numerisch gegen die Dynamik der niedrig-

sten Quasinormalmoden von holographischen Modellen getestet. Ein Vergleich mit

einem massiven Modell der Gravitation zeigt die Existenz von Spannungsdruck und

dessen Temperaturableitung. Der hydrodynamische Zugang für pseudospontane Sym-

metriebrechung wird gegen zwei Modifikationen des üblichen holographischen Super-

fluids getestet; deren Dynamik wird im Grenzfall ohne Rückreaktion betrachtet. Es

wird gezeigt, dass Phasenrelaxation aufgrund des Zusammenspiels von expliziter und

spontaner Symmetriebrechung auftreten kann. In diesem Fall verhält sie sich gemäß

einer vorgeschlagenen universellen Relation. Weiterhin wird die endliche Natur der

Gleich- und Wechselstromleitfähigkeit in dem relevanten Regime bestätigt.

Zu guter Letzt wird zweidimensionale BMS-Symmetrie aufgrund ihrer Relevanz für

eine holographische Dualität mit flachen Raumzeiten betrachtet. Die Darstellung der

bms3-Algebra mit dem höchsten Gewicht wird mittels der Oszillatorkonstruktion for-

muliert. Mittels dieser Konstruktion wird gezeigt, dass bms3-Blöcke im semiklassis-

chen Grenzfall exponenzieren. Zudem werden im semiklassischen Kontext auch zwei

Beispiele von Vakuum-bms3-Blöcken – die perturbativ schweren und die schwer-leichten

bms3-Blöcke – berechnet.
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1 Introduction

Humans display a propensity toward symmetry; it appears in our art, architecture and

design. Moreover, many of the physical frameworks from which we have derived much

of our modern understanding of Nature are fundamentally reliant on the mathematical

formalisation of symmetry. For instance, according to Noether’s theorem – which

states that each continuous symmetry is associated to a conserved quantity – energy

and momentum conservation arises as a consequence of translational invariance in time

and space, respectively.

Of particular relevance for fundamental physics is the manifestation of symmetry

in quantum field theory, which finds applications in domains including high energy

and condensed matter physics [5–8]. The role of symmetry in quantum field theory is

aptly illustrated by the Standard Model of particle physics [9–12], wherein three out

of the four fundamental forces of Nature – the strong and weak nuclear forces and

the electromagnetic force – as well as all observed elementary particles are classified

by their properties under symmetry transformations. The fourth fundamental force,

gravity, has yet to realise a complete quantum description.

Beyond microscopic quantum field theories (such as the Standard Model of particle

physics) symmetry is also essential to the construction of effective field theories, for

which the main goal is to describe specific properties of a system without laying claim

to the exact mechanisms behind them [13]. One such effective theory is hydrodynamics

[14, 15], which captures the late-time, small-momentum dynamics of massless degrees

of freedom in many-body systems at finite temperature. A hydrodynamic description

of a theory is fundamentally dependent on its conserved quantities and thus – invoking

Noether’s theorem – its symmetries. The nomenclature recalls the liquid state of matter

but, in fact, hydrodynamics is a universal framework and its applicability ranges from

the quark-gluon plasma produced in heavy-ion collisions [16–18] to the behaviour of

electrons in graphene [19,20]. Hydrodynamics will be a focal point of this thesis.

A physical phenomenon need not submit itself to one unique description; if two

distinct theories have the same number of degrees of freedom and yield equivalent

physical outcomes they are referred to as dual. Dualities appear in many contexts

but one common trait is that they are symmetry preserving. A duality which has

been the recipient of much attention over the past two decades is the holographic

3



1 Introduction

duality, a conjecture which equates a gravitational theory to a quantum field theory

with one spatial dimension lower. An intuitive interpretation of the holographic duality

is that the quantum field theory inhabits the boundary of the gravitational theory. The

most developed incarnation of the holographic duality is the AdS/CFT correspondence

[21–23], where the gravitational theory is a string theory [24–27] – a candidate theory for

quantum gravity – in asymptotically anti-de Sitter (AdS) spacetime, and the quantum

field theory is a conformal field theory (CFT) [28]. Anti-de Sitter spacetime has a

negative cosmological constant; its bulk has a constant negative curvature while its

boundary is flat, i.e. without a cosmological constant. The symmetry at the boundary

of anti-de Sitter spacetime is that of conformal (angle-preserving) transformations [29],

which in turn is inherited by the quantum field theory.

The AdS/CFT correspondence may in principle be utilised in two directions: to study

string theory – and hence quantum gravity – via quantum field theory, or vice versa.

In a certain regime the AdS/CFT duality relates a strongly interacting quantum field

theory to a weakly interacting gravitational theory. Understanding the dynamics of

strongly interacting systems is a persistent frustration in physics in general; however,

the AdS/CFT correspondence promises to make such analyses more manageable by

allowing insights to originate from a weakly interacting theory [30–34].

Hydrodynamics has a formal realisation in AdS/CFT via the so-called fluid/gravity

correspondence [35]. In this setting the properties of a black hole in the gravitational

theory are imposed on the boundary quantum field theory, and the Einstein equations

are equivalent to the hydrodynamic conservation equations. Fluctuations of the black

hole give rise to dynamics in the quantum field theory, which under certain circum-

stances may be captured by hydrodynamics. For example, this paradigm has unveiled a

universal lower bound for the ratio of shear viscosity over entropy in a fluid [36], as well

as found novel hydrodynamic phenomena [37–40] which have since been experimentally

verified [41].

*

Regardless of their mathematical utility and prevalence in theoretical frameworks, Na-

ture tends to break symmetries in reality. Occasionally a symmetry is broken in a

way which may be systematically avoided in a first approximation; often, though, the

symmetry breaking must be incorporated into the relevant analysis in order for the

properties of the system displaying symmetry breaking to be fully understood. Two

symmetry breaking mechanisms will be of particular interest in this thesis: spontaneous

symmetry breaking and explicit symmetry breaking.

Spontaneous symmetry breaking arises when the ground state of a theory no longer

obeys the symmetry, or symmetries, of its defining equations [42]. The conserved

4



quantity associated to a symmetry is not affected if the symmetry is spontaneously

broken. If the spontaneous breaking is of a continuous symmetry a new massless

degree of freedom – the Goldstone boson – must be accounted for in the dynamics of

the system [43–45]. Spontaneous symmetry breaking emerges in many areas of physics;

for example, it is the effects of spontaneous symmetry breaking which generate the

masses of the massive elementary particles in the Standard Model of particle physics

[46–48]. Spontaneous symmetry breaking may also be used as an indicator for phase

transitions [49]. The study of spontaneous symmetry breaking has a long history and

is still ongoing, see for instance [50–56].

Explicit symmetry breaking occurs at the level of the equations which define a theory.

When a symmetry is explicitly broken it is no longer possible to associate it to a

conserved quantity. A straightforward example: Defects in the structure of a crystal

explicitly break spatial translational invariance; as a result momentum is no longer

conserved.

Spontaneous symmetry breaking may coincide with an explicit breaking of the same

symmetry – if the explicit breaking is slight compared to the spontaneous breaking

the combined breaking is called pseudo-spontaneous [57]. In the pseudo-spontaneous

regime the Goldstone bosons associated to the spontaneous breaking gain a mass

(which increases with the amount of explicit breaking) and are referred to as pseudo-

Goldstone bosons. Pions – the lightest composite particles – may be described as

pseudo-Goldstone bosons [58].

In addition to explicit symmetry breaking, Goldstone bosons may fall victim to a

dampening effect called phase relaxation [59, 60]. Phase relaxation can be viewed as

a breaking of the internal symmetries of the Goldstone boson [61–64] but may arise

independently of other explicit symmetry breaking and does not affect the conserved

quantities.

The gentle touch with which spontaneous symmetry breaking treats the conserved

quantities of a theory, and the massless nature of the Goldstone bosons, implies that

investigations of its effects, in an appropriate regime, fall within the scope of hydro-

dynamics. A superfluid, such as liquid Helium, may be modelled as a two-component

fluid where the superfluid component is due to a spontaneously broken phase symme-

try [65–70]. Moreover, elasticity may be described as an effect of spontaneous breaking

of translational invariance and may also be integrated into a hydrodynamic descrip-

tion [60,71–73].

The destructive effects of explicit symmetry breaking, however, make its presence

difficult to reconcile with hydrodynamics – a priori. Nevertheless, if the explicit break-

ing is sufficiently small one may approximate a regime where the conserved quantities

are sufficiently intact and long-lived for the application of hydrodynamics; in the case of

5



1 Introduction

pseudo-spontaneous breaking this also results in a small mass for the pseudo-Goldstone.

Such an approach is called generalised hydrodynamics or quasi-hydrodynamics [74].

Even an infinitesimal explicit breaking plays a role in the hydrodynamic theory.

Symmetry breaking may also be included in holographic models [75]. This is mainly

achieved by constructing a gravity theory whose boundary behaviour breaks the desired

symmetry in the dual quantum field theory. In such scenarios the significance is placed

on the dynamics of the quantum field theory. Different gravitational theories may give

rise to the same symmetry breaking.

* *

When the AdS/CFT duality is employed to study quantum field theories via gravita-

tional theories the results are generically valid for flat spacetimes, which is standard,

albeit with the addition of conformal symmetry. The inverse implementation gives

insight into quantum gravity in spacetimes with a negative cosmological constant. At

large, intergalactic length scales our Universe displays a very small but positive cosmo-

logical constant [76, 77]; however, at astrophysical scales, for instance for black holes,

the influence of the cosmological constant is negligible. Thus, although conceptually

useful, the knowledge gained about quantum gravity from AdS/CFT is at odds with

reality. It is therefore imperative for the holographic approach to quantum gravity that

there exists a duality where the spacetime of the gravitational theory is something other

than anti-de Sitter. Let us turn to flatspace holography [78–81].

An example of a flatspace holographic duality is not yet known. The foundations

of such a duality may however be motivated from symmetry considerations, assuming

the principles which hold for AdS/CFT are transferable.

The boundary symmetries of flat space are enhanced from those in the bulk of the

spacetime, which consist of boost, translational and rotational invariance: Translations

may be angle dependent while rotations become generalised – this is known as Bondi-

Meltzer-Sachs (BMS) symmetry [82,83]. It thus seems plausible that information about

quantum gravity in flat spacetimes may be extracted from BMS-invariant quantum field

theories.

BMS symmetry may be cast in two forms: a version which applies to non-relativistic

systems (where the speeds are small compared to the speed of light) and an ultra-

relativistic version (where the speeds approach the speed of light); the symmetry is the

same but the mathematical properties differ between the two [84,85]. In the context of

flatspace holography the differences between the implementations of BMS symmetry

would also be reflected in the gravitational dual.

* * *
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The work in this thesis aims to contribute to the stories told above.

The second chapter lays the foundations for the AdS/CFT correspondence and in-

troduces features which will be taken advantage of further along in the thesis. The

dynamic equivalence between string theory in anti-de Sitter spacetime and conformal

field theory is discussed, as well as simplifying circumstances which make the duality

more tractable. The holographic dictionary between fields in the gravity theory and

objects in the conformal field theory is derived for the simplest case and presented for

some other quantities of interest. Also, finite temperature quantum field theory and

linear response theory is presented from a holographic perspective.

Chapter 3 begins with a review of hydrodynamics, where key concepts – such as

the constitutive relations and transport properties – are presented. Certain features

of linear response theory are also shown from the hydrodynamic perspective. Subse-

quently, symmetry breaking in hydrodynamics is considered. A review of superfluidity

is followed by novel results due to the addition of explicit symmetry breaking and phase

relaxation [3]. Furthermore, spontaneous translational symmetry breaking is consid-

ered in the context of hydrodynamics, and the appearance of a new effect caused by

thermodynamic instability – called the strain pressure – is discussed [2, 73].

Hydrodynamics and holography are combined in chapter 4. Three classes of holo-

graphic models which give rise to the symmetry breakings of interest are presented:

one for translational symmetry breaking [86–89] and two which are dual to a superfluid

with explicit symmetry breaking [90–92]. Numerical analysis is utilised to validate the

hydrodynamic frameworks of chapter three by comparing the relevant, holographically

dual quantities [1–3].

Chapter 5 takes a more formal approach than the earlier chapters; it considers as-

pects of BMS symmetry motivated by a putative flatspace holographic duality. A

non-relativistic representation of BMS symmetry is found in the so-called oscillator

construction [4]. The validity and utility of this representation is argued by calculating

BMS field theory quantities using methods intrinsic to the oscillator construction.

Lastly, the thesis concludes with a discussion and outlook in chapter 6.
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2 Holography

In physics two theories are said to be dual when they describe the same physical

properties from two different perspectives. The holographic principle [93–96] states

that all information of a spacetime volume may be contained in its spatial boundary.

An example of a holographic duality is the equivalence between superstring theory or

M-theory on AdSd+1 × C – where C is a compact space such that the total dimension

adds up to ten or eleven – and a d-dimensional (super)conformal field theory located

on the flat conformal boundary of the spacetime; this is known as the AdS/CFT

correspondence [21]. The AdS/CFT correspondence may be approached in two ways:

the so-called top-down and bottom-up approaches. In the top-down approach the

full theories are known on both sides of the duality but must be truncated in order

to be tractable. The bottom-up approach is used to model specific properties of a

boundary conformal field theory by the means of a gravity theory in the bulk. In this

chapter the foundations for future considerations involving the AdS/CFT duality will

be presented mainly from the bottom-up perspective. The effects of supersymmetry,

which in principle enter via superstring theory, will not be considered since they will

not appear in the applications of later chapters – the reason for this is mentioned below

equation (2.27). Moreover, the compact space C is irrelevant in the following discussion

since Kaluza-Klein reduction makes the fields of the theory dependent only on the

asymptotically AdS spacetime. Much of the material covered in this chapter is standard

to the topic and may be sourced from a range of literature; see for instance [30,97–102].

2.1 Duality of Partition Functions

The strong form of the AdS/CFT duality states that the partition function of a su-

perstring theory in an asymptotically (d + 1)-dimensional anti-de Sitter spacetime is

equivalent to the partition function of a d-dimensional conformal field theory living

on the flat conformal boundary of the AdS spacetime [22,23]; it may schematically be

expressed as

ZCFT = ZString

∣∣
conformal boundary

, (2.1)

where Z denotes the partition function. The implication of the evaluation at the

conformal boundary will become clear in section 2.2.1. The two partition functions

9



2 Holography

may advantageously be considered separately.

The CFT partition function is given by

ZCFT

[
γµν , {ANµ }, {φMs }

]
= e−WCFT[γµν ,{ANµ },{φMs }], (2.2)

with WCFT being the generating functional of connected correlation functions. WCFT

may be taken to be

WCFT

[
γµν , {ANµ }, {φMs }

]
= − ln

〈
exp

[∫
ddx
√
−γ
(

1

2
T µν(x)γµν(x) + JµN(x)ANµ (x) +OM(x)φMs (x)

)]〉
,

(2.3)

where OM are composite scalar operators; JµN are conserved symmetry currents; T µν

is the boundary energy-momentum tensor; and the respective sources are the scalar

sources φMs ; gauge fields ANµ ; and metric γµν with determinant γ. The vacuum expec-

tation values of the operators follow from the variation of the logarithm of the partition

function with respect to the sources, i.e.

〈OM(x)〉CFT = − δWCFT

δφMs (x)

∣∣∣∣γµν(x)=ηµν
ANµ (x)=0

φMs (x)=0

, (2.4a)

〈JµN(x)〉CFT = − δWCFT

δANµ (x)

∣∣∣∣∣γµν(x)=ηµν
ANµ (x)=0

φMs (x)=0

, (2.4b)

〈T µν(x)〉CFT = − 2√
−γ

δWCFT

δγµν(x)

∣∣∣∣∣γµν(x)=ηµν
ANµ (x)=0

φMs (x)=0

, (2.4c)

where ηµν = diag(−1, 1, . . . , 1) is the Minkowski metric. By extension a connected

n-point correlation function of scalar operators is given by

〈O1(x1)O2(x2) · · · On(xn)〉CFT = − δnWCFT

δφ1
s(x1)δφ2

s(x2) · · · δφns (xn)

∣∣∣∣γµν(x)=ηµν
ANµ (x)=0

φMs (x)=0

, (2.5)

and similarly for correlators involving also symmetry currents (including the energy-

momentum tensor). In the above expression the operators, and hence the sources, may

be identical.

The treatment of the string theory partition function is more challenging; the main

obstacle which needs to be overcome is the fact that the full partition function ZString
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2.2 Field-operator Maps

is not explicitly known nor is there a way to compute it.1 Fortunately, our ignorance

may be circumvented by weakening the duality by a sequence of two limits – first the

semiclassical limit of string theory (ignoring loop corrections) followed by the point-

particle limit – after which the theory takes the form of semiclassical supergravity. In

this regime the string partition function may be given by a saddle point approximation,

i.e.

ZString ≈ e−S
o.s.
Sugra , (2.6)

where So.s.
Sugra is the Euclidean on-shell action of the supergravity theory in the bulk

spacetime.

Recalling the correspondence as given in equation (2.1) it may – given the above

discussion – be expressed in the weaker form

ZCFT = e−S
o.s.
Sugra

∣∣∣
conformal boundary

. (2.7)

The semi-classical limit of the bulk string theory results in a weak string coupling;

consequently, if the boundary conformal field theory is a gauge theory the rank of

its gauge group must be large. Moreover, the point-particle limit in the bulk theory

enforces a large coupling in the boundary field theory. The relation (2.7) thus equates a

weakly coupled semiclassical theory of gravity to a strongly coupled quantum conformal

field theory without gravity.

2.2 Field-operator Maps

The AdS/CFT duality relies on the matching of degrees of freedom of asymptotically

(d+1)-dimensional anti-de Sitter spacetime to those of a d-dimensional conformal field

theory. A guiding principle may be found in the asymptotic symmetries of the bulk

spacetime and their relation to the symmetries of the dual field theory. In particular

the mappings between fields of the gravitational theory and operators of the confor-

mal field theory must respect the representations under which the objects transform.

Scalar fields of the gravitational theory map to scalar operators in the field theory;

similarly gauge fields in AdS map to conserved currents of the CFT, and so on. To

make these principles clear it is helpful to consider the simplest example for which

the duality is applicable: the massive scalar sector of supergravity in asymptotically

(d + 1)-dimensional AdS spacetime. Backreaction onto the metric due to the scalar

field will be neglected.

1This topic has seen recent progress [103].
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2 Holography

2.2.1 Scalar Field

Considering the full bulk supergravity action for a scalar field is beyond the scope of

this thesis; however a simplified toy model – which is sufficiently enlightening – is given

by

SSugra = −1

2

∫
ddx du

√
−g
(
gab∂aφ ∂bφ+m2φ2

)
, (2.8)

where φ(u, x) is a scalar field with mass m; u is the radial coordinate; and gµν is the

metric with determinant g.

The geometry of the bulk anti-de Sitter spacetime is determined by the line element,

which in Poincaré coordinates reads

ds2 = gab dxa dxb =
`2

u2

(
du2 + ηµν dxµ dxν

)
, (2.9)

where the radial coordinate is excluded from the coordinates with greek indices, and `

is the radius of curvature of AdS. The conformal boundary of AdS is located at u = 0.

The equation of motion for the scalar field is the Klein-Gordon equation in AdS,

1√
−g

∂a

(√
−ggab∂bφ

)
−m2φ = 0. (2.10)

Plugging in all relevant quantities, the above equation takes the form

u2∂2
uφ− (d− 1)u∂uφ+ (u2�η −m2`2)φ = 0, (2.11)

where �η is the d’Alembert operator with Minkowski metric.

For the current purpose it is sufficient to solve equation (2.11) at the conformal

boundary. To this end, an ansatz which is well-behaved near the boundary is

φ(u, x) = uαφ(x) + . . . , (2.12)

where the ellipsis signify sub-leading terms for u → 0 and α is a constant to be

determined. Plugging the above ansatz into equation (2.11) and keeping only leading

terms when u→ 0 results in a quadratic equation for α, with roots

α± =
d

2
±
√
d2

4
+m2`2. (2.13)

The solutions α± are real if m2`2 ≥ −d2/4, which means that the scalar fields in anti-de

Sitter spacetime may have a negative mass while remaining well-behaved – this is the

Breitenlohner-Freedman bound [104, 105]. Assuming that α+ and α− are not related

12



2.2 Field-operator Maps

by an integer,2 the near boundary solution takes the form of an expansion with two

independent coefficients

φ(u, x) = φ−(x)ud−α+ + . . .+ φ+(x)uα+ + . . . , (2.14)

where d − α+ = α− and the ellipsis denote subleading terms for each α± whose co-

efficients are determined from the respective φ±.3 The leading term of the expansion

(2.14) is referred to as non-normalisable while the sub-leading term is called normal-

isable; this jargon stems from the behaviour of the on-shell action when using these

solutions.

The discussion so far has taken place in the bulk side of the correspondence, however

the relationship to the boundary conformal field theory is of equal interest. Consider

thus an unspecified d-dimensional conformal field theory action with an additional

source term, i.e.

Sboundary = SCFT −
∫

ddxO(x)φs(x), (2.15)

where O(x) is a scalar operator with scaling dimension ∆ and φs(x) is its source. In a

following step, consider a constant rescaling of the boundary coordinates of the form

x 7→ x̃ = λx, (2.16)

for which the transformation behaviour of the scalar operator is fixed by conformal

invariance, while the transformation of the source may be determined by invariance of

the action; the fields thus transform as

O(x) 7→ Õ(x̃) = λ−∆O(x), φs(x) 7→ φ̃s(x̃) = λ∆−dφs(x). (2.17)

The bulk gravitational theory should be invariant under isometries, which includes

rescalings. Invariance of the line element (2.9) under the transformation of the bound-

ary variables (2.16) requires the radial coordinate to behave as

u 7→ ũ = λu. (2.18)

Furthermore, also the scalar fields in the gravity theory should be invariant under

isometries and hence, as a consequence of the above transformation of the radial coor-

2If the two solutions α+ and α− are related by an integer the near boundary expansion may contain
additional logarithmic terms.

3The coefficients φ+ and φ− are only independent at the conformal boundary; regularity of the scalar
field in the bulk imposes non-trivial relations between the two coefficients.
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2 Holography

dinate, the coefficients of the expansion (2.14) must transform as

φ+(x) 7→ φ̃+(x̃) = λ−α+φ+(x), φ−(x) 7→ φ̃−(x̃) = λα+−dφ−(x). (2.19)

By comparing the above transformation properties to the transformations of the CFT

fields (2.17) an intriguing picture appears. By identifying ∆ ≡ α+ the transformation

properties of the two sets of fields suggest the equivalences

φ−(x) ∼ φs(x), φ+(x) ∼ 〈O(x)〉CFT , (2.20)

i.e. that the mode φ+(x) is dual to the vacuum expectation value 〈O(x)〉, while φ−(x)

is dual to the source φs(x).4

Although the association (2.20) appears in a somewhat ad-hoc manner the map

between operators and fields may be derived in more stringent terms via the process

of holographic renormalisation. A full treatment of this procedure is beyond the scope

of this thesis but it may be summarised as follows: The weak form of the duality

formulated in terms of partition functions, as in equation (2.7), in essence equates

the CFT generating functional with the on-shell Euclidean action of supergravity;

divergent terms in the bulk theory must thus be taken care of in order for the CFT

quantities which arise from the generating functional to be free of divergences associated

with the near-boundary behaviour of the supergravity fields – this requires holographic

renormalisation. In the present context one then finds the precise relationships

〈O(x)〉CFT = `d−1(2∆− d)φ+(x), φs(x) = φ−(x), (2.21)

at the conformal boundary. The second of the above identifications fixes a value for

the leading contribution to the scalar field and hence imposes (generalised) Dirichlet

boundary conditions at the conformal boundary. See for instance [106, 107] for more

involved treatments of holographic renormalisation.

With the prescription (2.21) at hand the evaluation at the boundary written in (2.1)

and (2.7) can be made more transparent by expressing the AdS/CFT duality for a

scalar field as

ZCFT

[
φs(x)

]
= e−S

o.s.
Sugra[φ(x,u)]

∣∣∣
lim
u→0

φ(u,x)u∆−d=φs(x)
, (2.22)

where So.s.
Sugra is the renormalised Euclidean on-shell bulk action [106], and the evaluation

4The identification ∆ ≡ α+ assumes ‘standard quantisation’ and (generalised) Dirichlet boundary
conditions for the bulk scalar field. If the scaling dimension of the scalar operator lies within
the range d/2 − 1 < ∆ ≤ d/2 it is instead possible to impose ‘alternate quantisation’ with the
identifications φ+(x) ∼ φs(x) and φ−(x) ∼ 〈O(x)〉CFT, which leads to (generalised) Neumann
boundary conditions [75].
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2.2 Field-operator Maps

at the conformal boundary extracts φ−(x) = limu→0 φ(u, x)u∆−d and equates it to

the scalar source φs(x) in the boundary conformal field theory. The expression for a

connected n-point correlation function of identical scalar operators in the boundary

CFT then follows straightforwardly from (2.5), i.e.

〈O(x1)O(x2) · · · O(xn)〉CFT = −
δnSo.s.

Sugra

[
φ(x, u)

]
δφs(x1)δφs(x2) · · · δφs(xn)

∣∣∣∣∣ lim
u→0

φ(x,u)u∆−d=φs(x)

φs(x)=0

.

(2.23)

The above result can be generalised to non-identical scalars by including further source

terms, as well as interaction terms, in the bulk action.

2.2.2 Energy-momentum Tensor and Current

The analysis carried out in the previous section becomes substantially more technically

involved when applying it to other quantities of interest, such as the boundary energy-

momentum tensor 〈T µν〉 or conserved charge current 〈Jµ〉; nevertheless, the principles

are similar. By matching transformation properties, and performing holographic renor-

malisation, the desired operator dualities may be derived.

The energy-momentum tensor of the conformal field theory is dual to the boundary

components of the fluctuating bulk metric gµν(u, x) via

〈T µν〉CFT = lim
u→0

[
`d−1

ud/2−1

1

8πG

(
Kµν −Kγµν − c1

d− 1

`
γµν + c2

`

d− 2
Gµν

)]
, (2.24)

where G is the (d+1)-dimensional gravitational constant; Kµν is the extrinsic curvature

tensor projected on the conformal boundary and K is its trace; Gµν is the Einstein

tensor for the induced boundary metric γµν ; and c1 = 1 for d ≥ 2, c2 = 1 for d ≥ 3 and

zero otherwise [106, 108]. Moreover, the CFT energy-momentum tensor is sourced by

the leading contribution to the near-boundary expansion of the full AdS metric gmn.

Finally, fluctuations of gauge fields AµN(u, x) in the bulk geometry are dual to con-

served symmetry currents JµN of the boundary conformal field theory in accordance

with

〈JµN〉CFT = lim
u→0

1

ud−1
γµα∂uA

N
α , (2.25)

where JµN is sourced by the leading term of the near-boundary expansion of AkN [109,

110].5

At first glance the right-hand sides of (2.24) and (2.25) appear divergent as u→ 0;

however, one finds that the terms proportional to inverse powers of u cancel with

5Note that N acts as a label and hence its placement is of no concern.
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2 Holography

contributions from the other quantities in the equation.

2.3 Beyond the Vacuum

When establishing the AdS/CFT duality – as has been done in the previous sections

– it is natural to present it in its simplest form: pure anti-de Sitter gravity in the bulk

being dual to a vacuum conformal field theory on the conformal boundary. However,

the applications which will be presented in this thesis require a boundary field theory at

finite temperature; the realisation of this property and the subsequent implementation

of linear response theory – within the context of holography – will be covered in this

section.

2.3.1 Finite Temperature and Black Brane Thermodynamics

Finite Temperature in QFT

At finite temperature T a quantum field theory experiences thermal fluctuations – in

addition to quantum fluctuations – which affect the macroscopic state of the system.

The thermal partition function is given by

Z(β) ≡ trHe
−βH =

∫
dΘ 〈Θ|e−βH |Θ〉 , (2.26)

where the trace runs over the Hilbert space H with basis |Θ〉, H is the Hamiltonian,

and β = 1/T . Wick-rotating the time-direction τ ≡ it allows the integrand in (2.26)

to be interpreted as a transition amplitude between an initial state at imaginary time

τ and final state at τ + β; this may in turn be evaluated via the path integral of the

Euclidean action. Evaluating the standard integration with respect to Θ the result is

Z(β) =

∫
DΘ e−SE

∣∣∣∣
Θ(τ)=±Θ(τ+β)

, (2.27)

where Θ is a fundamental field and anti-periodic boundary condition only apply to

fermionic fields – periodic boundary conditions otherwise. The distinction between

fermions and bosons in terms of the boundary conditions results in spontaneous break-

ing of any supersymmetry.

In equation (2.27) an important property of finite temperature in QFT becomes evi-

dent, namely that it can be captured by Euclidean QFT with a compactified dimension
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2.3 Beyond the Vacuum

with periodicity6

τ ∼ τ + β. (2.28)

With the introduction of a temperature ones gains access to thermodynamics. For

now it is sufficient to introduce the free energy

F = −T lnZ(β). (2.29)

Black Brane in AdS/CFT

By the principles of the holographic duality the introduction of a temperature for the

boundary theory necessitates a dual property in the bulk. In semiclassical gravity the

simplest thermodynamic object is a black brane. Consider thus the (d+1)-dimensional

Euclidean geometry of a black brane in asymptotically anti-de Sitter spacetime – it is

given by the line element

ds2 =
`2

u2

(
f(u) dτ 2 +

du2

f(u)
+ dx2

)
, (2.30)

where x denotes the vector of spatial boundary coordinates; the emblackening factor

f(u) defines the horizon located at uh via f(uh) = 0 while f ′(uh) 6= 0; and f(0) = 1

such that AdS spacetime is recovered at the conformal boundary. Taylor expanding

the emblackening factor near the horizon, i.e.

f(u) = f(uh) + (u− uh)f ′(uh) + . . . , (2.31)

and defining the new coordinates

ρ = 4
u− uh∣∣f ′(uh)∣∣ , ϕ =

τ

2

∣∣f ′(uh)∣∣, (2.32)

the line element takes the approximate form

ds2 ≈ dρ2 + ρ2 dϕ2 + dx2. (2.33)

The line element (2.33) defines a plane in polar coordinates (ρ, ϕ) if the conical sin-

gularity at ρ = 0 is avoided – this requires that the angular coordinate is periodic,

ϕ ∼ ϕ+ 2π, which in terms of τ gives

τ ∼ τ +
4π∣∣f ′(uh)∣∣ . (2.34)

6Another perspective is that the circumference β of the compactified dimension is infinite at vanishing
temperature.
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The above identification is a generic feature of black branes in Euclidean space.

Invoking the AdS/CFT correspondence the non-radial coordinates naturally map

from the bulk to the boundary; the periodicity (2.34) may thus be compared to the

thermal QFT expression (2.28) and thus concluding that the bulk/boundary-system

has the temperature

T =

∣∣f ′(uh)∣∣
4π

, (2.35)

which agrees with the temperature of black hole radiation first derived by Hawking

[111].

In addition to temperature the black brane provides a useful notion of entropy given

by the Bekenstein-Hawking entropy [112,113]

SBH =
A

4G
, (2.36)

where A is the area of the black brane horizon

A =

∫
dd−1x

√
gd−1|u=uh

. (2.37)

Since black brane horizons are non-compact the above integral is proportional to the

infinite volume of Rd−1; it is hence advantageous to work with densities within the

context of holography – in this case entropy density is

s =
1

4G

A

Vol(Rd−1)
. (2.38)

Although the above analysis has been done in Euclidean signature the properties

carry over to Lorentzian signature.

Finite charge

In chapter 4 the holographic duality is applied to study boundary systems with finite

temperature and U(1) charge which is carried by the symmetry current. As mentioned

in section 2.2.2 the symmetry currents of the boundary CFT are dual to gauge fields

in the bulk. Introducing gauge fields to the bulk theory will in principle affect the

Einstein equations and hence, at finite temperature, also the black brane. The analysis

required in such a situation is beyond the scope of this thesis; in fact, the upcoming

considerations of holographic theories with finite charge will be done in the probe limit,

meaning that the metric and hence the black brane are unaffected.

18
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2.3.2 Linear Response Theory

The presence of a black brane places the holographic system at finite temperature while

also establishing a notion of thermodynamic equilibrium. Future applications in this

thesis concern non-equilibrium dynamics of thermal systems. Far-from equilibrium

dynamics of thermal systems is a highly non-trivial subject; however, the the near-

equilibrium regime is more tractable and lies within the domain of linear response

theory. In this section the framework of linear response will be presented for a scalar

operator but it generalises to arbitrary fields.7 In order to discuss time-dependent

dynamics the analysis must be done in Lorentzian spacetime.

In Quantum Field Theory

Linear response arises from a deformation of a time-independent background Hamilto-

nian H by a term of the form

δH = −
∫

ddx δφs(x)O(x), (2.39)

where δφs is a infinitesimal fluctuation of the source of the scalar operator O. The

above deformation of the Hamiltonian in turn shifts the expectation value of the scalar

operator 〈O(x)〉 by

δ 〈O(x)〉 = −
∫

ddx′GR
OO(x− x′)δφs(x′) +O(δφ2

s), (2.40)

where the retarded Green’s function for bosonic operators defined as

GR
ab(x− x′) = −iθ(t− t′) 〈[a(x), b(x′)]〉 , (2.41)

where θ is the Heaviside function and a(x), b(x) represent generic bosonic operators.8

The retarded Green’s function is non-zero only if t′ < t; this introduces causality since

only sources in the past may influence the expectation value δ 〈O(x)〉.
Using the Fourier transform of the Green’s function (2.41) at x′ = 0,

GR
ab(ω,k) =

∫
dd−1x dt e−iωt+ik·xGR

ab(t,x), (2.42)

where ω is the frequency and k the spatial momentum vector, the integral in (2.40)

7Linear response does in general not require finite temperature, however it is particularly relevant
for systems at finite temperature.

8The same expression but with the commutator replaced by an anti-commutator defines the retarded
Green’s function for fermionic opeators.
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may be evaluated – this results in the linear order expression

δ 〈O(ω,k)〉 = GR
OO(ω,k)δφs(ω,k) +O(δφ2

s). (2.43)

Hence, in linear response the Fourier-space retarded Green’s function of scalar operators

can be calculated using the formula

GR
OO(ω,k) =

δ 〈O(ω,k)〉
δφs(ω,k)

+O(δφs). (2.44)

More generally the linear retarded Green’s function between two non-specific operators

is given by

GR
ab(ω,k) =

δ 〈a(ω,k)〉
δjb(ω,k)

+O(jb), (2.45)

where δjb denotes the fluctuation of the source of some operator b(ω,k).

In AdS/CFT

The concepts of linear response theory may be applied within the holographic context;

this will be done via the means of a scalar field fluctuation δφ(u, x) in an asymptoti-

cally AdS black brane spacetime and its dual CFT. Using the Lorentzian analogue of

the metric (2.30) in the formula (2.10) the Fourier transformed (with respect to the

boundary coordinates) equation of motion for the scalar fluctuation is

ud+1∂u

[
u1−df(u)∂uδφ(u, k)

]
+

(
u2

f(u)
ω2 − u2k2

)
δφ(u, k)−m2`2δφ(u, k) = 0, (2.46)

where k = (ω,k) is the d-dimensional momentum vector and the derivatives with

respect to boundary coordinates have been evaluated.

The spacetime remains asymptotically anti-de Sitter and hence the result of the

analysis made for the scalar field in section 2.2.1 may be applied identically to δφ; the

identification with the CFT quantities is thus

δ 〈O(ω,k)〉CFT = `d−1(2∆− d)δφ+(ω,k), δφs(ω,k) = δφ−(ω,k), (2.47)

where the subscripts are the same as in section 2.2.1.

The asymptotic analysis does not account for the causal structure which is important

when calculating the retarded Green’s functions; getting a handle on this requires a

venture into the bulk to solve the equations of motion near the black brane horizon.9

Assuming homogeneity for simplicity, a suitable ansatz which is well-behaved near the

9A near-horizon analysis must also be done for the scalar field background. However, for the back-
ground the horizon conditions are chosen to ensure regularity.
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horizon at uh is

δφ(u, k) = (uh − u)κw(k) + . . . , (2.48)

where the ellipsis denotes subleading terms. Using the above ansatz together with the

Taylor expansion (2.31) the leading terms of (2.46) as u→ uh are

κ2f ′(uh) +
ω2

f ′(uh)
= 0, (2.49)

which has the roots

κ = ± iω

4πT
, (2.50)

where the temperature enters via (2.35). The two roots above correspond to different

behaviours of the fluctuation – this can be seen by restoring the time-dependency;

schematically it reads

δφ(u, x) ∼ e−iω[t∓ 1
4πT

ln(1−u)]eik·x, (2.51)

where uh has been set to one for clarity. Keeping the expression in brackets constant as

t increases means that u must increase when the relative sign is plus, which is the minus

solution of (2.50) – since u = 0 corresponds to the conformal boundary this means that

this fluctuation is approaching the black brane and hence this solution is referred to

as infalling. The opposite is true for the plus solution of (2.50), which is referred to

as the outgoing solution. Due to the presence of the black brane horizon the infalling

solution can only be affected by sources in past, and similarly the outgoing solutions

are only affected by sources in the future. Thus the choice of boundary condition at

the horizon has causal implications.

The discussion above drives one to the conclusion that – using the identifications

(2.47) – the boundary retarded Green’s function (2.44) can be calculated in terms of

bulk quantities as

GR
OO(ω,k) = `d−1(2∆− d)

δφ+(ω,k)

δφ−(ω,k)

∣∣∣∣
infalling

, (2.52)

where the fluctuations satisfy infalling boundary conditions at the horizon. Similar

expressions hold for other operators.

In later chapters it will become evident that in addition to the retarded Green’s

functions themselves also their poles are of interest. These poles lie in the lower-

half complex frequency plane and correspond to the quasi-normal modes of the bulk

spacetime. The quasi-normal modes are probed by imposing homogeneous Dirichlet

boundary conditions at the conformal boundary, i.e. setting the sources of the fluctu-

ations (but not necessarily the background) to zero. Calculating the Green’s functions

requires inhomogenous Dirichlet boundary conditions.
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Hydrodynamics is a universal framework which captures the long-wavelength, late-time

dynamics of massless degrees of freedom in many-body system at finite temperature.

Long-wavelength qualifies as distance scales much greater than the characteristic length

scale of the system – usually the mean free path – while late-time means that sufficient

time should have passed such that the system is perturbatively near thermodynamic

equilibrium.

Hydrodynamics has been fruitfully applied to several physical phenomena, for in-

stance in neutron stars [114], quark-gluon plasma [16–18], and graphene [19, 20]. The

manifestation of the framework in relativistic quantum field theory – which is rele-

vant for the examples mentioned in the previous breath – is referred to as relativistic

hydrodynamics; here the adjective signifies the inclusion of Lorentz invariance rather

than the speed at which the particles travel. The contents of this chapter treat var-

ious aspects of relativistic hydrodynamics in two spatial dimensions. Applications to

holographic systems will guide some discussions throughout the chapter.

3.1 Foundations

This first section reviews some fundamental notions of a parity preserving normal

fluid which will be of importance further along this thesis, following [15]. For more

exhaustive treatments of the topic see for instance [14,15].

3.1.1 Thermodynamics

Given the requirement that the system must be at finite temperature makes thermo-

dynamics a natural starting point. The thermodynamic incarnation of energy conser-

vation is captured by the first law of thermodynamics, which states that the change in

total energy of a system is given by the energy supplied by heat and charge flux, minus

the work done by the system. In differential form the first law may be expressed as

dU = T dS + µ dN − p dV, (3.1)
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where U is the total energy; T is the temperature and S the entropy; µ, N are the

chemical potential and particle number respectively; and p is the pressure while V is

the volume. From the above expression one may deduce the functional dependence of

the thermodynamic potential U = U(S, V,N) and thermodynamic relations

T =

(
∂U

∂S

)
V,N

, µ =

(
∂U

∂N

)
V,S

, −p =

(
∂U

∂V

)
S,N

, (3.2)

where the subscripts below the parenthesis denote quantities which are kept fixed.

Thermodynamic quantities related through derivatives, such as those in equation (3.2),

are said to be conjugate to each other. Homogeneity imposes that the thermodynamic

potential (3.1) must behave as U(λS, λV, λN) = λU(S, V,N) under rescalings of ex-

tensive parameters – this means that (3.1) may be integrated to obtain

U = TS + µN − pV. (3.3)

As noted in section 2.3.1 it is more natural to work with densities rather than total

quantities in the context of holography; for the quantities presented so far it follows

that

s =
S

V
, ε =

U

V
, ρ =

N

V
, (3.4)

for entropy density, energy density, and particle density, respectively. Acting with a

differential on the energy density and simplifying leads to the relation

dε = T ds+ µ dρ, (3.5)

and thus ε = ε(s, ρ). The above expression can be compared to

ε = sT + µρ− p, (3.6)

which follows from ε = U/V ; this result defines the enthaply density

h ≡ ε+ p = Ts+ µρ. (3.7)

From the expression for the energy density (3.6) the free energy density is defined as

fε ≡ ε− sT, (3.8)

which is equal to fε = µρ−p. Taking the differential of the definition of the free energy

density results in

dfε = µ dρ− s dT, (3.9)
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hence the free energy has the functional dependence fε = fε(T, ρ).

In relativistic quantum field theory particle number, and by extension particle den-

sity, is not conserved; it is hence convenient to define the grand canonical potential

(density)

Ω = fε − µρ, (3.10)

In differential form equation (3.10) reads

dΩ = −s dT − ρ dµ, (3.11)

and thus Ω = Ω(T, µ). The definition (3.10) gives Ω = −p, which means p = p(T, µ);

this leads to the equation of state

dp = s dT + ρ dµ, (3.12)

which uniquely fixes the quantities p(T, µ), s(T, µ), ρ(T, µ) and ε = sT + µρ− p.

3.1.2 Near Equilibrium Dynamics

In this section the analysis moves beyond thermodynamics and into the realm of hy-

drodynamics. In the process of doing so a three-dimensional fluid velocity vector-field

uµ(t, x), which is normalised such that uµuµ = −1, is introduced. Moreover, the tem-

perature and chemical potential are promoted to scalar fields T (t, x) and µ(t, x). In

order to satisfy near-equilibrium requirement of hydrodynamics the newly defined fields

are taken to be slowly varying, meaning that their spacetime derivatives may be used

as perturbative parameters.

The next step is to consider the hydrodynamic equations – these are merely the con-

servation equations of the system. A generic quantum field theory demands Poincaré

invariance; hence, as a consequence of Noether’s theorem, the hydrodynamic regime of

a quantum field theory should in principle obey energy-momentum conservation1

∂µ 〈T µν〉 = 0, (3.13a)

where the symmetric energy-momentum tensor 〈T µν〉 is the conserved current for space-

time translational invariance.2 Moreover, if one allows for the presence of an internal

U(1)-symmetry the corresponding equation of charge conservation appears,

∂µ 〈Jµ〉 = 0, (3.13b)

1As will become clear in the following there exists hydrodynamic systems where energy and momen-
tum conservation may be neglected.

2Invariance under rotations and boosts follows from a symmetric Tµν .
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with 〈Jµ〉 being the U(1)-current.

3.1.3 Constitutive relations

The slowly varying nature of the hydrodynamic regime allows the conserved currents

to be expressed as gradient expansions in terms of the hydrodynamic variables uµ(t, x),

T (t, x) and µ(t, x) since each additional derivative of a term decreases its contribution.

The derivative expansions of the conserved currents are referred to as the constitutive

relations.

Zeroth-order

The first terms of the constitutive relations – at zeroth-order in derivatives – is found by

acting with a Lorentz transformation on the static equilibrium energy-momentum ten-

sor and charge current, given by 〈T µν〉 = diag(ε, p, p) and 〈Jµ〉 = (ρ, 0, 0) respectively;

the resulting expressions are

〈T µν〉 = εuµuν + p∆µν , (3.14a)

〈Jµ〉 = ρuµ, (3.14b)

where the projector is given by

∆µν = ηµν + uµuν , (3.15)

with ηµν being the Minkowski metric.

At zeroth-order hydrodynamics describes an ideal fluid, meaning a fluid on which

any perturbation propagates indefinitely. Ideal fluids are not necessarily realistic, the

more realistic description is captured at first-order in derivatives.

First-order

Subtleties arise when considering hydrodynamics at first-order in derivatives. Al-

though the fields uµ(t, x), T (t, x) and µ(t, x) are well-defined at equilibrium their out-

of-equilibrium definitions may differ by derivative corrections which vanish as their

gradients go to zero – this is referred to as the freedom to choose a fluid frame. This

freedom has the consequence that the form of the first-order constitutive relations is

only fixed up to artefacts which depend on the frame choice. The physical observ-

ables, however, are not affected by the frame; thus, the choice of frame is a matter of

convenience.

The full procedure of finding the constitutive relations is beyond the present scope.
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In short, one first writes down all possible terms which satisfy the tensor structure of the

current, after which one restricts the allowed terms based on fluid-specific symmetry

considerations and frame choice. In this thesis the frame of choice is the Landau

frame [14], which is defined by 〈T µν〉uν = −εuµ and 〈Jµ〉uµ = −ρ; in this frame the

constitutive relations take the form

〈T µν〉 = εuµuν + p∆µν − ησµν − ζ1∆µν∂λu
λ +O(∂2), (3.16a)

〈Jµ〉 = ρuµ − σ0T∆µν∂ν

(
µ

T

)
+O(∂2), (3.16b)

with the shear tensor defined as

σµν = ∆µα∆νβ
(
∂αuβ + ∂βuα − ηαβ∂µuµ

)
. (3.17)

The coefficients arising at first order in the constitutive relations are called transport

coefficients; by the second law of thermodynamics they must be non-negative, and

they are functions of the temperature and chemical potential. σ0(T, µ) is the charge

conductivity; η(T, µ) and ζ1(T, µ) are the shear and bulk viscosities, respectively, and

they determine the fluids response to shear and bulk strain. Formulae for the transport

coefficients are discussed in section 3.1.5.

3.1.4 Hydrodynamic Modes

The next step in the hydrodynamic process is studying the behaviour of small fluc-

tuations of the hydrodynamic fields. The dynamics of the system is constrained by

the conservation equations (3.13). The constitutive relations (3.16) are expressed in

terms of fluctuations of the hydrodynamic quantities around thermodynamic equilib-

rium and terms up to linear order in fluctuations are considered. The equilibrium state

is characterised by

uµ = (1, 0, 0), T = constant ≡ T̄ , µ = constant ≡ µ̄, (3.18)

where the bar denotes constant equilibrium quantities. Including the fluctuations is

straightforward – the fields read

uµ(t, x) = (1, δui(t, x)), T (t, x) = T̄ + δT (t, x), µ(t, x) = µ̄+ δµ(t, x), (3.19)

where the local fluctuations are taken to be much smaller than the constant values.

Although the analysis so far has been expressed in terms of the fluid velocity uµ,

temperature T and chemical potential µ, the remaining analysis will mainly be done
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in their conjugate variables; in terms of the components of the conserved currents they

are

πi(t, x) = T ti(t, x), ε(t, x) = T tt(t, x), ρ(t, x) = J t(t, x), (3.20)

i.e. from left to right: the momentum density, energy density, and charge density,

respectively. In this context the old variables (3.18) are referred to as sources. In

terms of the variables (3.20) the conservation equations (3.13) linearise and decompose

to take the form

∂tδε(t, x) + ∂iδπ
i(t, x) = 0, (3.21a)

∂tδπ
i(t, x) + ∂jδT

ij(t, x) = 0, (3.21b)

∂tδρ(t, x) + ∂iδJ
i(t, x) = 0. (3.21c)

The linearised constitutive relations for the energy-momentum tensor and charge cur-

rent are still expressed in terms of the velocity, temperature and chemical potential;

using (3.19) the conserved currents take the form

∂jδT
ij = ∂iδp− η

(
∂j∂

iδuj + ∂j∂
jδui − ∂i∂kδuk

)
− ζ1∂

i∂kδu
k, (3.22a)

∂iδJ
i = ρ∂iδu

i − σ0

(
∂i∂

iδµ− µ

T
∂i∂

iδT

)
, (3.22b)

where the pressure has been linearised, and derivatives of equilibrium quantities vanish.

The bars on equilibrium quantities have been dropped. The above expressions may be

written in terms of the energy density, momentum density and charge density by using

δp =

(
∂p

∂ε

)
ρ

δε+

(
∂p

∂ρ

)
ε

δρ, (3.23a)

δµ =

(
∂µ

∂ε

)
ρ

δε+

(
∂µ

∂ρ

)
ε

δρ, (3.23b)

δT =

(
∂T

∂ε

)
ρ

δε+

(
∂T

∂ρ

)
ε

δρ, (3.23c)

δui =
δπi

h
, (3.23d)

with the enthalpy h as defined in equation (3.7). Note that the opposite transformation

– expressing the variables in terms of the sources – is facilitated by the susceptibility
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matrix χab,  δε

δπi

δρ

 =


T
(
∂ε
∂T

)
µ/T

0
(
∂ε
∂µ

)
T

0 h 0

T
(
∂ρ
∂T

)
µ/T

0
(
∂ρ
∂µ

)
T


 δT/T

δui

δµ− µ
T
δT

 (3.24)

Using the transformations (3.23) the currents (3.22) now become

∂jδT
ij =

(
∂p

∂ε

)
ρ

∂iδε+

(
∂p

∂ρ

)
ε

∂iδρ− η

h

(
∂j∂

iδπj + ∂j∂
jδπi − ∂i∂kδπk

)
− ζ1

h
∂i∂kδπ

k,

(3.25a)

∂iδJ
i =

ρ

h
∂iδπ

i − σ0α1∂i∂
iδε− σα2∂i∂

iδρ, (3.25b)

with

α1 =

(
∂µ

∂ε

)
ρ

− µ

T

(
∂T

∂ε

)
ρ

, α2 =

(
∂µ

∂ρ

)
ε

− µ

T

(
∂T

∂ρ

)
ε

(3.26)

The derivatives in the constitutive relations may be evaluated by Fourier transforming

the fluctuations while also, without loss of generality, choosing the momentum to be

in the x-direction; the Fourier transform takes the form

δϑ(t, x) =
1

2π

∫
dωdk e−iωt+ikxδϑ(ω, k), (3.27)

where ϑ(t, x) is some unspecified function representing the hydrodynamic variables

and k is the momentum in the x-direction. Although the momentum has been chosen

to flow in the x-direction the momentum density may still fluctuate in both spatial

directions.

When choosing the momentum in the x-direction the conservation equations simply

decompose into two sectors – one set parallel to and one set transverse to the momentum

flow. After evaluating the derivatives the set of longitudinal equations becomes

0 = −iωδε+ ikδπx, (3.28a)

0 =

(
−iω +

η + ζ1

h
k2

)
δπx + ik

(
∂p

∂ε

)
ρ

δε+ ik

(
∂p

∂ρ

)
ε

δρ, (3.28b)

0 =
(
−iω + σα2k

2
)
δρ+ σ0α1k

2δε+ ik
ρ

h
δπx, (3.28c)

while the transverse sector only contains the equation of momentum conservation(
−iω +

η

h
k2

)
δπy = 0. (3.29)
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Solving the conservation equations for ω results in the hydrodynamic modes. Equation

(3.29) is solved to find a diffusive mode with dispersion relation

ω(k) = −iDk2, D =
η

h
. (3.30)

The longitudinal equations are somewhat trickier – to minimise the clutter the presence

of charge will be ignored for now. The system of equations with (3.28a) and (3.28b)

can be cast into the form of a matrix equation(
−iω ik

ik ∂p
∂ε
−iω + η+ζ1

h
k2

)(
δε

δπx

)
=

(
0

0

)
. (3.31)

The above equation has non-trivial solutions only if the coefficient matrix is non-

invertible, i.e. if its determinant is zero – the modes are thus found by taking the

determinant, setting it to zero and solving the resulting equation for ω pertubatively

in k; this results in a pair of damped propagating sound modes with dispersion relation

ω(k) = ±vsk −
i

2
Γsk

2 + . . . , (3.32)

where the ellipsis signify higher order terms in k. The speed of sound vs and attenuation

constant Γs are given by

v2
s =

(
∂p

∂ε

)
ρ

, and Γs =
η + ζ1

h
. (3.33)

3.1.5 Retarded Green’s functions and Kubo Formulae

Clearly the transport coefficients play a large part in the behaviour of the hydrody-

namic modes in addition to being properties of the fluid themselves. Formulae for

the transport coefficients may be found in terms of retarded Green’s functions of the

system, as defined in section 2.3.2 of chapter 2.

In hydrodynamics the matrix of all retarded Green’s functions is calculated from the

linearised constitutive relations using the equation [15,115]

GR(ω,k) = −
(
1 + iωK−1

)
χ, (3.34)

where k is the spatial momentum vector, K is the coefficient matrix of the hydrody-

namic equations – as in equation (3.31) – and χ is the susceptibility matrix. Since K−1

is proportional to 1/ detK some basic manipulation of the formula (3.34) shows that

the hydrodynamic modes correspond to the poles of the retarded Green’s functions.
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Note also the limiting behaviour

GR
ab(0,k) = −χab. (3.35)

Setting the momentum in the x-direction and using the linearised equations (3.28)

together with the susceptibility matrix (3.24) a set of particularly relevant Green’s

functions whose expansions in momentum read

GR
πxπx(ω, k) =

k2

ω2

[
h

(
∂p

∂ε

)
ρ

+

(
∂p

∂ρ

)
ε

ρ− iω(η + ζ)

]
+ . . . , (3.36a)

GR
ρρ(ω, k) =

k2

ω2

[
ρ2

h
− iωσ0

]
+ . . . , (3.36b)

and from the transverse momentum conservation equation (3.29) one finds

GR
πyπy(ω, k) = −iηk

2

ω
+ . . . . (3.36c)

To arrive at the above equations the thermodynamic relations

1 = α1χ13 + α2χ33, (3.37a)

ρ =

(
∂p

∂ε

)
ρ

χ13 +

(
∂p

∂ρ

)
ε

χ33, (3.37b)

have been used. From the retarded Green’s functions (3.36) the so-called Kubo formu-

lae for the transport coefficients may be deduced, yielding

η = − lim
ω→0

ω lim
k→0

1

k2
Im
[
GR
πyπy(ω, k)

]
, (3.38a)

σ0 = − lim
ω→0

ω lim
k→0

1

k2
Im
[
GR
ρρ(ω, k)

]
, (3.38b)

η + ζ = − lim
ω→0

ω lim
k→0

1

k2
Im
[
GR
πxπx(ω, k)

]
. (3.38c)

The Green’s functions of the hydrodynamic variables may be expressed in terms of the

currents by using the conservation equations and the definition (2.41).

Hydrodynamics is not equipped with the means of determining the values of Green’s

functions or transport coefficients for specific phenomena. Nevertheless, in holography

the definition of the retarded Green’s function (2.45) allows for the calculations of nu-

merical values of transport coefficients from bulk data – this also gives access to the

hydrodynamic modes via the poles of the retarded Green’s functions [116]. Hydrody-

namics in the context of holography will be returned to in chapter 4.
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3.2 Symmetry Breaking in Hydrodynamics

The hydrodynamic discussion above relies heavily on symmetries and their conserved

currents. In reality, however, very few systems satisfy exact symmetries – hydrody-

namics is nevertheless not a lost cause. This section will be devoted to the application

of hydrodynamics to systems with broken symmetries; the focus will be set on sys-

tems which display two forms of symmetry breaking: spontaneous as well as explicit

symmetry breaking.

Spontaneous symmetry breaking occurs when the ground state of a system no longer

satisfies the symmetry of its theory; the symmetry currents, however, are still con-

served. Once a continuous symmetry is spontaneously broken the system gains a new

massless degree of freedom – a Goldstone boson – for each broken symmetry [43–45].

Spontaneous symmetry breaking appears in a vast amount of physical systems, rang-

ing from high energy physics to condensed matter, and underlies several hydrody-

namic phenomena [117]. Two fluids with properties due to spontaneous symmetry

breaking will be considered in this section. Namely, superfluidity can be described by

a hydrodynamic theory with a spontaneously broken global U(1) symmetry [67–70],

while spontaneously broken translational symmetry gives rise to elastic properties in a

fluid [60,71–73].

A symmetry is explicitly broken when it occurs at the level of the equations which

define a theory; in turn the conservation of the current corresponding to the broken

symmetry is rendered void. If a small explicit breaking occurs in a background with a

spontaneous breaking of the same symmetry the associated Goldstone bosons become

massive – they are then referred to as pseudo-Goldstone bosons and the breaking is

called pseudo-spontaneous [57]. Pseudo-spontaneous breaking of U(1) symmetry will

be considered in the context of a superfluid [3].

3.2.1 Review of Relativistic Superfluid

A relativistic superfluid is taken to consist of two components, a normal fluid com-

ponent and a superfluid component [65, 66]. The superfluid component arises due to

a spontaneously broken U(1) symmetry; the corresponding Goldstone boson ϕ(t, x) is

identified with the phase of the scalar condensate and must be accounted for in the

hydrodynamic analysis [118]. Much of the review below follows [69,70].
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Constitutive Relations

The Goldstone is shifted ϕ(x) 7→ ϕ(x) + λg(x) under local U(1) transformations [69];

hence it is necessary to work with the gauge invariant quantity

ξµ(x) ≡ ∂µϕ(x)− Aext
µ (x), (3.39)

with external gauge field Aext
µ which couples to the U(1)-current and transforms as

Aext
µ (x) 7→ Aext

µ (x)+∂µλg(x). In the following the gauge will be fixed such that Aext
µ = 0.

The dynamics of ϕ are governed by the Josephson relation, which results from the

fact that the Goldstone boson is canonically conjugate to the conserved charge of the

spontaneously broken symmetry [67]; for superfluids it reads

uµξµ = −µ. (3.40)

The chemical potential µ is zeroth-order in derivatives and hence ξµ = ∂µϕ is to be

considered zeroth-order in derivatives also.

The Josephson relation may be expanded in a gradient expansion in the same way

as the energy-momentum tensor and charge current. Moreover, superfluid-effects will

make their presence known in the constitutive relations of the energy-momentum tensor

as well as the charge current. The constitutive relations and the expansion of the

Josephson relation read [70]

〈T µν〉 = εuµuν + p∆µν + 2ρsµn
(µuν) + ρsµn

µnν

− ησµν − ηsσµνs − ζ1∆µν∂λu
λ − ζ2∆µν∂σ (ρsn

σ) +O(∂2),
(3.41a)

〈Jµ〉 = ρtu
µ + ρsn

µ − σ0T∆µν∂ν

(
µ

T

)
+O(∂2), (3.41b)

uµ∂µ
(
∆ ρ
ν ξρ

)
= ∆ ρ

ν

[
−∂ρµ+ ζ3∂ρ∂µ (ρsn

µ)
]

+O(∂2), (3.41c)

where ρs is the superfluid charge density; the total charge density is ρt = ρn + ρs, with

ρn the charge density of the normal fluid component; ηs is the superfluid viscosity; ζ2

and ζ3 are bulk viscosities of the superfluid component; and nµ is the relative superfluid

velocity,3 which is related to the U(1) Goldstone boson through

µnµ ≡ ∆µνξν . (3.42)

In accordance with (3.42) the hydrodynamic variable is taken to be the spatial compo-

nents of ξµ. The superfluid shear tensor σµνs takes the form of equation (3.17) with the

3The relative superfluid velocity is defined in the frame where the normal fluid velocity vanishes.
The relative superfluid velocity is taken to be small, nµ � 1.
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normal fluid velocity replaced by the superfluid velocity. Note that equation (3.41c)

is the spatial derivative of the Josephson relation, such that the equation may be

expressed in terms the hydrodynamic variable ξi.

For applications to holography and for compactness of the expressions conformal

invariance will be assumed in the following – tracelessness of the energy-momentum

tensor then requires that ζ1 and ζ2 must vanish. The superfluid viscosity is set to zero,

ηs = 0. In addition to ξi the hydrodynamic variables are taken to be the temperature

T ; the momentum density πi; and the chemical potential µ. The momentum is taken

to flow along the x-direction and hence the superfluid dynamics contribute only in the

longitudinal sector.

Linear Dynamics

The derivative expansions (3.41) may now be linearised in fluctuations and the hydro-

dynamic dispersion relations calculated. The Goldstone is linearised as ϕ → ϕ̄ + δϕ

but since it contributes to the constitutive relations with a derivative it appears as

ξi ≡ δξi.

In the chosen variables the linearised longitudinal conservation equations take the

form

0 = −iω

[
T

(
∂s

∂T

)
µ

+ µ

(
∂ρt
∂T

)
µ

]
δT − iω

[
T

(
∂s

∂µ

)
T

+ µ

(
∂ρt
∂µ

)
T

]
δµ+ ikδπx,

(3.43a)

0 =

(
−iω +

η

h

)
δπx + isk δT + iρtk δµ− ρs

η

h
k2δξx, (3.43b)

0 =

[
−iω

(
∂ρt
∂T

)
µ

− σ0
µ

T
k2

]
δT +

[
−iω

(
∂ρt
∂µ

)
T

+ σ0k
2

]
δµ+ i

ρn
h
kδπx + i

ρssT

µh
kδξx,

(3.43c)

and the Josephson relation to first order in fluctuations reads(
−iω +

ρsζ3w

µh
k2

)
δξx + ikδµ− ζ3ρs

h
k2δπx = 0, (3.43d)

where the total enthalpy density w = h+µρs = ε+p acts as the superfluid momentum

susceptibility [69].

A unique property of a superfluid is that the superfluid component alone can carry

hydrodynamic modes without the presence of the energy-momentum tensor, in addition

to the temperature and normal fluid velocity being held fixed; this regime will be refered
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to as the probe-limit. The relevant linearised equations are then

0 =

[
−iω

(
∂ρt
∂µ

)
T

+ σ0k
2

]
δµ+ i

ρssT

µh
kδξx, (3.44a)

0 =

(
−iω +

ρsζ3w

µh
k2

)
δξx + ikδµ. (3.44b)

Conformal invariance allows the pressure to be expressed in the scaling form

p = T 3%(µ/T ) (3.45)

where %(µ/T ) is an arbitrary dimensionless function. Using the above form of the

pressure it follows from the equation of state (3.12) that the total charge density ρt

and entropy s can be expressed as

ρt =

(
∂p

∂µ

)
T

= T 2%′(µ/T ), (3.46)

s =

(
∂p

∂T

)
µ

= 3T 2%(µ/T )− Tµ%′(µ/T ). (3.47)

In a further step the entropy per particle,

σ = s/ρt, (3.48)

may be introduced [70]. The thermodynamic derivatives (∂ρt/∂T )µ, (∂ρt/∂µ)T , (∂s/∂T )µ,

(∂s/∂µ)T are then expressed in terms of (∂σ/∂T )µ; they read

(
∂ρt
∂T

)
µ

=
∂2p

∂T∂µ
=

(
∂s

∂µ

)
T

=
ρt
w

[
2s− ρtT

(
∂σ

∂T

)
µ

]
, (3.49a)

(
∂ρt
∂µ

)
T

=
ρt
w

[
2s+ ρtT

2

(
∂σ

∂T

)
µ

]
, (3.49b)

(
∂s

∂T

)
µ

=
2(sT − µρt)

T 2
+
µ2

T 2

ρt
w

[
2ρt +

ρtT
2

µ

(
∂σ

∂T

)
µ

]
. (3.49c)

Hydrodynamic Modes

Following the procedure outlined in section 3.1.4 the four equations (3.43) yield four

hydrodynamic modes: two pairs of propagating modes, respectively called first and

second sound, with dispersion relations

ω(k) = ±vjk −
i

2
Γj k

2, j = 1, 2. (3.50)
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The speed and attenuation of first sound are

v2
1 =

1

2
, Γ1 =

η

w
, (3.51)

where the speed of sound is constrained by conformality. For second sound the same

coefficients are

v2
2 =

ρsσ
2

(∂σ/∂T )µw
, Γ2 = σ0

µw

(∂σ/∂T )µT 2ρ2
t

+ η
µρs
wh

+ ζ3
ρsw

µh
. (3.52)

The reduced conservation equations (3.44) give rise to a pair of propagating sound

modes, called fourth sound, with speed and attenuation of sound given by

v2
4 =

ρs
µ(∂ρt/∂µ)

, Γ4 =
σ0

(∂ρt/∂µ)
+ ζ3

ρs
µ
. (3.53)

Kubo Formulae and AC Conductivity

Kubo formulae are required for the new transport coefficients. In order to implement

the canonical approach as in equation (3.34) it is more convenient to work with energy

density ε and charge density ρt as variables, instead of the temperature T and chemical

potential µ. The susceptibility matrix is then given by [119]


δε

δπx

δρt

δξx

 =


T
(
∂ε
∂T

)
µ/T

0
(
∂ε
∂µ

)
T

0

0 w 0 µ

T
(
∂ρt
∂T

)
µ/T

0
(
∂ρt
∂µ

)
T

0

0 µ 0 µ
ρs




δT/T

δux

δµ− µ
T
δT

ρsδnx

 . (3.54)

In these variables the linearised conservation equations and Josephson relation read

0 = −iωδε+ ikδπx, (3.55)

0 = −iωδπx + ikβ1δε+ ikβ2δρt +
η

h
k2δπx − η

h
ρsk

2δξx, (3.56)

0 = −iωδρt + ik
ρn
h
δπx + ik

ρssT

µh
δξx + k2 κ

T
(α1δε+ α2δρt) , (3.57)

0 = −iωδξx + ikγ1δε+ ikγ2δρt + k2 ζ3ρs
h
δπx − k2h+ µρs

hµ
ζ3ρsδξ

x, (3.58)
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where α1, α2 are given by (3.26) with the substitution ρ→ ρt and

β1 =

(
∂p

∂ε

)
ρt

, β2 =

(
∂p

∂ρt

)
ε

, (3.59)

γ1 =

(
∂µ

∂ε

)
ρt

, γ2 =

(
∂µ

∂ρt

)
ε

. (3.60)

Implementing the canonical Green’s function computation (3.34) results in the new

Kubo formula

ζ3 = − lim
ω→0

ω lim
k→0

1

k2
Im
[
GR
ξxξx(ω, k)

]
= lim

ω→0
ω lim
k→0

Im
[
GR
ϕϕ(ω, k)

]
, (3.61)

where the second equality follows from the Fourier-space relation δξx = ikδϕ together

with the definition of the retarded Green’s function (2.41). The other transport coef-

ficients are given by (3.38).

Finally, the retarded Green’s functions allow for the definition of the frequency de-

pendent AC conductivity σ(ω) as [15]

σ(ω) ≡ lim
k→0

i

ω

[
GR
JxJx(ω, k)−GR

JxJx(0, k)
]
. (3.62)

For superfluids as presented in this sections GR
JxJx(0, k) = 0; thus

σ(ω) = σ0 +
i

ω

[
ρ2
n

h
+
ρs
µ

]
. (3.63)

The imaginary part of the above AC conductivity has a 1/ω-pole at ω = 0; according

to the Kramer-Kronig relation the real part of the AC conductivity must therefore

also contain a delta-distribution valued term – which is implicit in hydrodynamics

– representing an infinite DC conductivity [71, 120]. This discussion also holds for

normal fluids, i.e. when ρs = 0; there the infinite DC conductivity is a consequence

of translational invariance (momentum conservation) and may be relaxed by breaking

this symmetry explicitly [60,60,121,122] – this does not hold for superfluids.

3.2.2 Broken Superfluid

In this section the well-known relativistic superfluid of the previous section will be

presented in a novel setting, namely by considering the effects of an additional explicit

breaking of U(1) symmetry [3]. The main way in which an explicitly broken symmetry

affects a hydrodynamic setup is by turning the conservation equation of the affected

symmetry current into a non-conservation equation. In accordance with the discussion

at the beginning of this section – and using the intuition gained from similar consid-
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erations for translational symmetry [60,122] – upon the addition of explicit symmetry

breaking the non-conservation equation for the U(1)-current reads

∂µ 〈Jµ〉 = Γuµ 〈Jµ〉+mϕ, (3.64)

where Γ is the charge relaxation rate and m is related to the mass of the pseudo-

Goldstone, which is still denoted as ϕ [3]. The term proportional to the charge relax-

ation contributes at equilibrium; this subtlety may be addressed by either assuming

that the relaxation time is so long that such contributions may be ignored, or by only

considering this term for fluctuations of the charge current.4 In order for the fluctua-

tions of the charge current to be long-lived Γ and m are assumed to be sufficiently small.

When introducing an explicit breaking all the hydrodynamic fields become dependent

on the breaking parameter, in addition to T and µ.

When explicitly breaking the U(1)-symmetry the traceless nature of the energy-

momentum tensor is violated unless the explicit breaking is done by a marginal de-

formation. For simplicity and compactness of the expressions this scenario will be

assumed.

In addition to the non-conservation equation (3.64) the Josephson relation may be

altered to take the form(
−iω + Ω +

ρsζ3w

µh
k2

)
δξx + ikδµ− ζ3ρs

h
k2δπx = 0, (3.65)

where Ω is the phase relaxation [59, 60, 122]. Solving the relaxed Josephson relation

(without the spatial derivative) for ϕ yields an exponential damping due to Ω. In

principle phase relaxation may appear independently of explicit symmetry breaking.

Dispersion Relations

The equations (3.64) and (3.65) may be used to calculate the dispersion relations in

complete analogy to the previous section – considering the charge relaxation only for

fluctuations allows the terms on the right-hand side of (3.64) to be linearised simply.

The analysis results in a pair of propagating sound modes with dispersion relation

ω0(k) = ±v0k −
i

2
Γ0k

2, (3.66)

where

v2
0 =

1

2
, Γ0 =

η

h
, (3.67)

4The second option may be realised by considering a driven system.
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which is remarkably similar to the normal fluid results (3.33) with conformal speed of

sound (∂p/∂ε)ρ = 1/2 and ζ1 = 0. Moreover, the spectrum contains a pair of gapped

modes with dispersion relation

ω(k) = α± − iD±k2, (3.68)

where the gap takes the form

α± = − i
2

(Γ + Ω)±

√
msµ

(∂σ/∂T )µTρ2
t

− (Γ− Ω)2

4
. (3.69)

The expressions for the constants D± are too unwieldy to display in full here; for the

purpose of illustration, setting Γ = Ω = 0 gives

D± = σ0
µw

2(∂σ/∂T )µT 2ρ2
t

+ ζ3
ρsw

2µh
± i

2

s3/2
√
Tρs

hρt
√

(∂σ/∂T )µmµ
, (3.70)

where the imaginary term will contribute a k2-term to the real part of the dispersion

relation. The limit of zero explicit breaking and phase relaxation must be taken at

the level of the conservation equations and Josephson relation, respectively, before

calculating the dispersion relations.

The results (3.67) and (3.70) lend themselves to an interesting observation, namely

that the sum of the coefficients of the k2-terms of the dispersion relations is the same

in the broken paradigm as in the non-broken state, i.e.5

D+ +D− + Γ0 = Γ1 + Γ2. (3.71)

The above sum rule also holds when the charge and phase relaxation are non-zero.

The broken superfluid can still support a mode in the probe limit. When the U(1)-

symmetry is pseudo-spontaneously broken this mode has the dispersion relation

ω(k) = αp
± − iD

p
±k

2, (3.72)

where

αp
± = − i

2
(Γ + Ω)±

√
m

(∂ρt/∂µ)
− (Γ− Ω)2

4
, (3.73)

5There is a slight artefact of convention here. Propagating modes exclude a factor 1/2 in the
definition of Γi. More strictly. the sum involves the full k2-coefficients for each of the pair of
propagating modes, which is equivalent to summing the attenuation constants as they have been
defined previously. With this in mind, the speeds of sound sum to zero in both the non-broken
and broken case.
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and

Dp
± =

1

2

(
σ0

(∂ρt/∂µ)
+ ζ3

ρs
µ

)
± i

2

ζ3ρs(∂ρt/∂µ)(Γ− Ω) + 2ρs − σ0µ(Γ− Ω)

µ
√

4m(∂ρt/∂µ)− (∂ρt/∂µ)2(Γ− Ω)2
. (3.74)

The sum of the k2-coefficients still agree in both the broken and unbroken case,

Dp
+ +Dp

− = Γ4. (3.75)

The superscript p will be dropped in section 4.2.

Probe-limit Green’s Functions

The attention will now be directed towards the retarded Green’s functions, which may

be computed using the canonical approach (3.34). For simplicity only the probe limit

dynamics will be considered, and the charge relaxation rate Γ will be set to zero.6

Using the same set of variables as in section 3.2.1 the susceptibility matrix is given by

χ =

(
χρρ 0

0 χ̃ξξ

)
, (3.76)

where χρρ = ∂ρt/∂µ and χ̃ξξ is the susceptibility of the pseudo-Goldstone boson. Due to

the explicit symmetry breaking, a general k2-dependent parameterisation χ̃ξξ = χξξf(k)

will be allowed, where χξξ is a positive constant. The form of χ̃ξξ is determined by

considering the retarded Green’s functions7

GR
ϕJt(ω, k) =

iµχρρω

p(ω, k)
, (3.77a)

GR
Jtϕ(ω, k) =

iω(mµ+ k2ρs)χξξχρρf(k)

p(ω, k)
, (3.77b)

where p(ω, k) denotes the polynomial

p(ω, k) = mµ−µχρρω(ω+ iΩ)+k2
(
ρs − iζ3ρsχρρω + µσ0(Ω− iω)

)
+k4ζ3ρsσ0. (3.78)

The symmetry requirement GR
ϕJt(ω, k) = GR

Jtϕ(ω, k) fixes f(k) such that the pseudo-

Goldstone susceptibility is given by

χ̃ξξ =
k2χξξ
k2 + m2

, (3.79)

6This limit is suitable for the holographic model in section 4.2.1.
7The subscripts of the retarded Green’s functions will use J t = ρt for notational clarity.
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which constitutes a Gell-Mann-Oakes-Renner relation [58,123] with m2 being the mass

of the pseudo-Golstone boson given by

m2 = χξξm, χξξ =
µ

ρs
. (3.80)

The zero-frequency Green’s function may be deduced from the limiting behaviour

(3.35), i.e.

Gϕϕ(0, k) =
χξξ

k2 + m2
. (3.81)

Proceeding, the retarded Green’s functions at k = 0 are given by

GR
JtJt(ω, 0) =

mµχρρ
mµ− µχρρω(ω + iΩ)

, (3.82a)

GR
ϕJt(ω, 0) =

iµχρρω

mµ− µχρρω(ω + iΩ)
, (3.82b)

and also

lim
k→0

1

k
GR
JxJt(ω, k) = −

χρρω
(
ρs + µσ0(Ω− iω)

)
mµ− µχρρω(ω + iΩ)

, (3.82c)

lim
k→0

1

k
GR
Jxϕ(ω, k) =

iρs + µσ0ω + ρsχρρωΩ/m

mµ− µχρρω(ω + iΩ)
. (3.82d)

Furthermore, the spatial current-current correlator yields

GR
JxJx(ω, 0) =

ρs
µ
− i σ0 ω , (3.83a)

GR
JxJx(0, k) =

mρs
mµ+ k2ρs

, (3.83b)

from which the low-frequency AC conductivity follows,

σ(ω) ≡ lim
k→0

i

ω

[
GR
JxJx(ω, k)−GR

JxJx(0, k)
]

= σ0. (3.84)

Neither the phase relaxation Ω or the parameter m contribute to the above AC conduc-

tivity; nevertheless, this result differs from the AC conductivity of a superfluid (3.63)

– there is no longer a pole at ω = 0 in the imaginary part, hence the DC conductivity

is finite. The way the DC conductivity is rendered finite in (3.84) differs from that

of [59], where phase relaxation appears without explicit symmetry breaking.
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Expanding some of the retarded Green’s functions (3.82) in ω yields

GR
JtJt(ω, 0) = −χρρ −

iω

m
χ2
ρρΩ +O(ω2), (3.85a)

GR
ϕJt(ω, 0) =

iω

m
χρρ −

ω2

m2
χ2
ρρΩ +O(ω3); (3.85b)

from which the following Kubo formula may be extracted

Ω = lim
ω→0

m

ωχ2
ρρ

Im
[
GR
JtJt(ω, 0)

]
, (3.86)

or similarly using GR
ϕJt(ω, 0). The result (3.83a) provides the Kubo formula for σ0 as

σ0 = − lim
ω→0

1

ω
Im
[
GR
JxJx(ω, 0)

]
. (3.87)

Finally, using the transport coefficients above, the superfluid bulk viscosity ζ3 may be

determined from

lim
ω→0

1

ω
lim
k→0

∂2

∂k2
Im
[
GR
JtJt(ω, k)

]
= −2

χ2
ρρ

m2µ

(
ζ3mρs − ρsΩ− µσ0Ω2

)
. (3.88)

The formula for ζ3 above is not the same as the simple superfluid Kubo formula (3.61),

which no longer holds.

3.2.3 Viscoelasticity

Spontaneous symmetry breaking of translational invariance gives rise to elastic be-

haviour; in hydrodynamics, paired with viscosity, such a system is called viscoelastic.

This section will be concerned with charge-neutral viscoelastic hydrodynamics. The

general principles of spontaneous symmetry breaking in hydrodynamics carry over from

the superfluid example in section 3.2.1 and will hence not be repeated in detail.

The spontaneous symmetry breaking is accompanied by one Goldstone boson Φi(t, x)

for each direction in which the translations are broken. Of interest here is a theory

where the translations are spontaneously broken in both spatial directions.8 The Gold-

stone boson of broken translations is referred to as the phonon – in the current analysis

the two phonons have the equilibrium value Φi = αxi, where α(T ) can be viewed as a

parameter controlling the symmetry breaking [2, 73].

A distinct aspect of the viscoelastic hydrodynamics discussed in this section is the

8Goldstone bosons associated to the spontaneous breaking of rotations may be gapped out of the
hydrodynamic spectrum when translational invariance is spontaneously broken in at least one
direction.
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presence of the so-called strain pressure P(T, α), which is defined by

P = 〈T xx〉 − p, (3.89)

and is hence a measure of the difference between the mechanical pressure 〈T xx〉 and

thermodynamic pressure p. A non-zero strain pressure signifies that a system does not

minimise the free energy, i.e. that it is an excited state which is being sustained by

an external strain. The hydrodynamic formalisation of strain pressure and its effects

on the constitutive relations were presented in [73]. Further insights for configurations

with vanishing strain pressure at equilibrium were discussed in [2].

Constitutive Relations

The first point to consider is the constitutive relations; for detailed derivations of

the quantities involved the reader is referred to [73]. The main building block is the

spacetime derivative of the phonons,

eiµ = ∂µΦi, i = 1, 2 (3.90)

which is to be considered as zeroth-order in the derivative expansions. From the above

quantity one may define the metric-like object

hij = eiµe
jµ, (3.91)

which acts as eiµ = h−1
ij e

j
µ and hµν = h−1

ij e
i
µe
j
ν . The strain tensor is defined in terms of

the metric (3.91) as

uµν =
1

2

(
h−1
ij − δij/α2

)
eiµe

j
ν . (3.92)

The constitutive relation of the energy-momentum tensor reads

〈T µν〉 = εuµuν + p∆µν +
(
P + TP ′

)
uλλ∆

µν + Phµν − ησµν − ζ1∆µν∂ρu
ρ

− 2Guµν − (B −G)uλλh
µν +O(∂2),

(3.93)

where B and G are the bulk and shear elastic moduli respectively, and χππ = ε+p+P
is the momentum susceptibility. Prime denotes partial derivative with respect to the

temperature T for fixed α; this means that there is a point to be made regarding the

role of P ′: If the equilibrium configuration for some α∗(T ) is such that P(T, α∗) = 0

then the total derivative should vanish,

dP
dT

=

(
∂P
∂T

)
α

+
dα

dT

∂P
∂α

∣∣∣∣
α=α∗

= 0, (3.94)
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which means that P ′ = (∂P/∂T )α may be non-zero [2]. Hence P ′ should in principle

be considered even for systems which are unstrained at equilibrium – in fact P ′ may be

accounted for as a thermodynamic susceptibility related to thermal expansion [2,124].

Similarly to the superfluid, the dynamics of the Goldstones are constrained by a

Josephson relation. For the two phonons the Josephson relations read

uµeiµ =
hij

γ
∂µ

(
Peµj − (B −G)uλλe

µ
j − 2Guµνejν

)
+O(∂2), (3.95)

where γ is a dissipative coefficient which is characteristic of spontaneously broken

translations.

Linear components

With the energy-momentum tensor and Josephson relation at hand the dispersion

relations may be calculated upon linearisation of the constitutive relations. The hy-

drodynamic variables are the temperature T , spatial fluid velocity ui, and the spatial

derivative of the phonon fluctuations. The relevant object containing the phonons up

to linear order in fluctuations is

eiµ = ∂µΦi = αδiµ + ∂µδΦ
i; (3.96)

for simplicity α will be set to one. Using the above expression, together with the

fluctuating forms of T and ui in (3.19), the components of the energy-momentum

tensor (3.93) up to linear order in fluctuations read

δT tt = ε′δT + (TP ′ − P)∂jδΦ
j, (3.97a)

δT ti = χππu
i − sP(TP ′ − P)

γχππ
∂iδT +

sTP
γχππ

[
2G∂j∂

(iΦj) − (P −B +G) ∂i∂jδΦ
j
]
,

(3.97b)

δT ij =
(
p′ + P ′

)
δijδT − ησij − ζ1δ

ij∂ku
k + (P −B +G) δij∂jδΦ

j − 2G∂(iδΦj).

(3.97c)

Moreover, the Josephson relation reads

∂tδΦ
i = ui − s (TP ′ − P)

γχππ
∂iδT +

sT

γχππ

[
2G∂j∂

(iΦj) − (P −B +G) ∂i∂jδΦ
j
]
. (3.98)

With the information above the hydrodynamic modes may be found by following the

procedure in section 3.1.4; the components (3.97) are readily plugged into the energy-

momentum conservation equations, while a spatial derivative must be applied to the

Josephson relation (3.98) in order to express it in terms of the spatial derivative of the
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phonon fluctuation.

Hydrodynamic Modes and Kubo Formulae

The equations again split into sets transverse and longitudinal to the momentum with

the two phonons contributing to their respective sector. The bulk elastic modulus

allows for a propagating mode in the transverse sector with dispersion relation

ω(k) = ±v⊥k −
i

2
Γ⊥k

2, (3.99)

where

v2
⊥ =

G

χππ
, Γ⊥ =

η

χππ
+
G

γ

s2T 2

χ2
ππ

. (3.100)

The longitudinal sector contains one propagating and one diffusive mode with dis-

persion relations

ω(k) = ±v‖k −
i

2
Γ‖k

2, and ω(k) = −iD‖k2, (3.101)

where the coefficients are given by

v2
‖ =

(s+ P ′)2

s′χππ
+
B +G− P

χππ
, (3.102a)

Γ‖ =
η + ζ1

χππ
+
T 2s2v2

‖

σχππ

(
1− s+ P ′

Ts′v2
‖

)2

, (3.102b)

D‖ =
s2

γs′
B +G− P
χππv2

‖
. (3.102c)

For applications to holography conformal invariance enforces a traceless energy-

momentum tensor; this leads to the constraints

ε = 2(p+ P), TP ′ = 3P − 2B, ζ1 = 0. (3.103)

Moreover, in the conformal setting the speeds of sound of the transverse and longitu-

dinal sectors are related by

v2
‖ = 1/2 + v2

⊥. (3.104)

The scale invariance also affects the attenuation and diffusion constants in the longi-

tudinal sector, which become

Γ‖ =
η

χππ
+
s2T 2G2

γχ3
ππv

2
‖
, D‖ =

s2T (B +G− P)

γ(s+ P ′)(χππ + 2G)
, (3.105)
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where it is evident that strain pressure only contributes to the diffusion constant of the

diffusive mode.

Expressions for the modes in configurations where the strain pressure vanishes at

equilibrium follow directly from the expressions (3.102) and (3.105) by setting P – but

not P ′ – to zero [2], and using χππ = ε + p. Furthermore, a non-zero value of P ′ also

allows for a non-zero bulk modulus in scale invariant theories [2], which follows from

the second equation in (3.103).

Finally, some relevant Kubo formulae are

G = lim
ω→0

ω2 lim
k→0

1

k2
ReGR

πyπy , (3.106a)

(ε+ p)2

γχ2
ππ

= lim
ω→0

lim
k→0

ω ImGR
ΦxΦx , (3.106b)

χππv
2
‖ = lim

ω→0
ω2 lim

k→0

1

k2
ReGR

πxπx , (3.106c)

where (3.106c) can be used to indirectly obtain the bulk modulus B.
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4 Symmetry Breaking and

Hydrodynamics in Holography

Testing theoretical understandings of systems and phenomena requires the engineer-

ing of models which posses the properties that one wishes to probe. In the context

of applied holography this is commonly achieved by the means of bottom-up model

building; in this approach a gravitational theory is constructed with the purpose of

generating some desired properties of the assumed dual conformal field theory, which

is then studied via the holographic dictionary.

Within the scope of this thesis a major motivation for bottom-up holography lies in

confirming the hydrodynamic analysis of chapter 3. In particular, the circumstances

where strain pressure appears, and the independent nature of its temperature deriva-

tive, cannot be confirmed by the hydrodynamic analysis itself. Moreover, the validity

of – or the regime of applicability for – hydrodynamics with explicit symmetry break-

ing is not self-evident. A holographic perspective is also advantageous when exploring

universal properties. Furthermore, successful bottom-up holography provides practical

evidence in favour of the AdS/CFT duality, which is ultimately still a conjecture.

In this chapter the two settings introduced in chapter 3 will be reproduced by holo-

graphic models: one model which gives rise to spontaneous breaking of translational

invariance in the dual conformal field theory, and two models where the boundary the-

ory displays pseudo-spontaneously broken U(1) symmetry. The former is referred to

as a massive gravity model [86–88], while the two latter models are modifications of

a holographic superfluid [90].1 The numerical investigation of the hydrodynamic be-

haviour and other aspects of the respective dual conformal field theories is done using

pseudo-spectral methods [130,131].

Note that the analysis which takes place in this chapter does not constitute a

fluid/gravity approach [35]. Simply put, the fluid/gravity correspondence is used to

find the constitutive relations through a gradient expansion of dual quantities, which

are constrained by the Einstein equations.

1Translational symmetry breaking has also been implemented holographically using other models,
for example [125–128]. Pseudo-spontaneous breaking of U(1) symmetry was considered in another
holographic setting in [129].
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4.1 Holographic Massive Gravity

Translations may be broken by considering a spatially modulated scalar field; if this

is done in a gravitational theory the metric fluctuations gain an effective mass [132].

In the holographic context an effective theory for this scenario is given by the (3 + 1)-

dimensional asymptotically anti-de Sitter massive gravity model defined by the bulk

action [86–88]

SMG = m2
P

∫
d3x du

√
−g
[
R

2
+

3

`2
−m2V (IIJ)

]
, (4.1)

where u is the radial coordinate; R is the Ricci scalar; mP is the Planck mass; ` is the

AdS-radius which will, without loss of generality, be set to one in the following; m is

a parameter related to the graviton mass; and the scalar fields φI with I = 1, 2 enter

via the kinetic matrix

IIJ = gmn∂mφ
I∂nφ

J . (4.2)

Lowercase Latin indices run over the full set of spacetime coordinates. Moreover, 8πGN

has been set to one. For isotropic breaking of translational invariance the potential in

(4.1) may be chosen as V (IIJ) = V (X,Z), with

X =
1

2
tr
[
IIJ
]

and Z = det
[
IIJ
]

; (4.3)

see for example [133]. Most emphasis in this section will be placed on models with

potentials depending on X.

The equations of motion for the scalar field resulting from (4.1) admit a radially

constant, time-independent solution of the form

φI(x) = αxI , (4.4)

where x denotes the spatial boundary coordinates and α is a constant which is related

to m through field redefinitions. The scalar fields φI break the translational invariance

of the boundary theory; the nature of the breaking depends on the boundary conditions

as well as the form of the potential V (X,Z) – these points will be returned to in more

detail below.

The black brane geometry satisfying the Einstein equations of the bulk spacetime is

captured by the line element in Eddington-Finkelstein coordinates,

ds2 =
1

u2

[
−f(u) dt2 − 2 dt du+ dx2 + dy2

]
, (4.5)

where the radial coordinate spans u ∈ [0, uh]. The choice of coordinate system is
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motivated by the numerical methods which will be used in the following. The conformal

boundary is located at u = 0 while the black brane horizon is defined by f(uh) = 0,

where the emblackening factor takes the form

f(u) = 1− u3

u3
h

− u3

∫ uh

u

m2

h4
V (α2h2, α4h4) dh, (4.6)

with integration variable h.

As discussed in section 2.3.1 of chapter 2, the presence of a black brane gives rise

to a finite temperature in the bulk and boundary theories and hence thermodynamic

quantities may be defined. The ensamble of choice is the grand canonical ensamble. The

temperature T of the boundary conformal field theory is identified with the Hawking

temperature (2.35) of the bulk theory, while the entropy density s is proportional the

black brane horizon area as in (2.38). For the model (4.1) these quantites are given by

T =
3−m2Vh

4πuh
, s =

2π

uh
, (4.7)

with the definition Vh = V (α2u2
h, α

4u4
h). In accordance with (2.29) and (2.22) the

free energy density fε of the dual conformal field theory follows from the renormalised

Euclidean on-shell bulk action in the bulk; at zero charge the discussion below equation

(3.10) yields fε = −p and hence the thermodynamic pressure for models with potentials

(4.3) is given by

p =
1

2u3
h

− m2

u3
h

(
1

2
Vh − Uh

)
, (4.8)

with the definition

Uh = −u3

∫ uh

0

h−4V (α2h2, α4h4) dh, (4.9)

where h is an integration variable. The above integral is finite for potentials V (X,Z)

which fall off faster than u3 and the conformal boundary [2].2

The expectation value of the energy-momentum tensor is given by (2.24), which

yields the energy density formula

ε = 〈T tt〉 =
1

u3
h

− m2

u3
h

Uh. (4.10)

Finally, a particularly notable bulk formula is that for the strain pressure (3.89)

which takes the form [2]

P =
m2

u3
h

(
1

2
Vh −

3

2
Uh

)
. (4.11)

It is evident from the above equation that strain pressure may be present in the models

2Cases where this does not hold will be returned to below.
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defined by the action (4.1) – such models will hence be referred to as strained. It is

however possible to find an α = α∗ as a solution to Vh = 3Uh, resulting in unstrained

models with P = 0. Both strained as well as unstrained scenarios will be considered

below.

Beyond thermodynamic quantities, holographic formulae may also be constructed for

some of the transport coefficients of the viscoelastic hydrodynamics [2]. Using (3.103)

and (4.11) the expression for the conformal bulk elastic modulus reads

B =
m2

4u3
h

[
3Vh− 9Uh +

uh(∂Vh/∂uh)(m
2Vh − 3)

m2
(
Vh − uh(∂Vh/∂uh)

)
− 3

]
. (4.12)

Moreover, the dissipative coefficient for the Goldstone is given by

γ =
m2

2α2u3
h

∂Vh
∂uh

. (4.13)

The shear elastic modulus G and shear viscosity η must be calculated using the Kubo

formulae (3.106a) and (3.38a) respectively. For the purpose of holographic calculations

it is convenient to display the Kubo formulae in terms of quantities which are easily

accessible in the bulk; using momentum conservation and the definition (2.44) the

transport coefficients of interest are given by

η = − lim
ω→0

lim
k→0

1

ω
Im
[
GR
TxyTxy(ω, k)

]
, (4.14a)

G = − lim
ω→0

lim
k→0

Re
[
GR
TxyTxy(ω, k)

]
(4.14b)

Holographically the retarded Green’s functions above are found using expressions akin

to formula (2.52), with the appropriate substitutions for the boundary energy-momentum

tensor components.

4.1.1 Strained Models

The first models to be considered are the strained massive gravity models with mono-

mial potentials of the form [89,134]

V (X,Z) = XN , ZM . (4.15)

The strain in these models stems from the equilibrium state φI = αxI not being a

minimum of the free energy, which is discussed below equation (4.20).
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Symmetry Breaking Mechanism

Whether potentials of the form (4.15) result in spontaneous or explicit breaking of

translational invariance in the dual conformal field theory depends on the value of

the exponents N and M , as well as the quantisation scheme and associated boundary

conditions [89]. The breaking mechanism becomes evident from the the near-boundary

expansion of the Stückelberg fields φI , which is given by [89,134]

φI(u, x) = φI(0)(x) + . . .+ φI(1)(x)ua + . . . , (4.16)

where the ellipsis denote subleading terms. The solution for the scalar field (4.4) is

radially constant and may hence be identified as

φI(0)(x) = αxI . (4.17)

The value of the exponent a in the expansion (4.16) depends on the potential and is

given by

a =

5− 2N if V (X,Z) = XN ,

5− 4M if V (X,Z) = ZM .
(4.18)

Assuming standard quantisation the reasoning in section 2.2.1 of chapter 2 may be

applied here: The leading term in the asymptotic expansion (4.16) is the source of a

dual operator in the bulk; the subleading term is dual to the vacuum expectation value

of said bulk operator.

The fall-off behaviour of (4.16) is determined by the exponents (4.18). For mono-

mial potentials with N < 5/2 or M < 5/4 the exponent a is positive and hence φI(0) is

leading as u→ 0; the dual theory thus contains a source given by (4.17), which breaks

translational invariance explicitly. If N > 5/2 or M > 5/4 then φI(0) is subleading

and is hence dual to an expectation value, while the source term with coefficient φI(1)

must vanish in order to preserve the radially constant profile of the scalar field; in

such a situation the ground-state vacuum expectation value breaks translational in-

variance without a corresponding source – this is spontaneous symmetry breaking of

translational invariance.

The scalar field enters with the term m and the constant α and hence their interplay

influences the amount of symmetry breaking. In the numerical calculations the defini-

tions will be fixed such that the breaking is controlled by m; however, in the boundary

conformal theory only dimensionless quantities should be considered – the only other

dimensionful equilibrium parameter is the temperature T and hence the dimensionless

breaking scale is chosen to be m/T . Other quantities will also be made dimensionless

by using factors of T .
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Figure 4.1: Spectrum of quasi-normal modes for the massive gravity model (4.1) with
potential V (X,Z) = X3. Blue dots signify low values of the functional
dependence while red dots show high values. Left: The quasi-normal
mode spectrum for fixed m/T = 0.179 as a function of the dimension-
less momentum k/T ∈ [0.186, 7.45]. Right: The quasi-normal mode spec-
trum for vanishing momentum as a function of the dimensionless parameter
m/T ∈ [0, 6.5].

Quasi-normal Modes

Employing pseudo-spectral methods it is possible to numerically calculate the retarded

Green’s functions using bulk degrees of freedom, in accordance with equation (2.52).

Results will be presented for the longitudinal sector of the system [1,2] – the transverse

sector of the present model was studied and matched to hydrodynamics in [89,134].

Imposing homogeneous Dirichlet boundary conditions sets the sources to zero at the

conformal boundary, which together with infalling boundary conditions at the horizon

yields the quasi-normal modes of the gravitational theory. The quasi-normal modes

are independent of the the retarded Green’s function used to calculate them. The

spectrum of some quasi-normal modes for V (X,Z) = XN with N = 3 are displayed in

figure 4.1.

As discussed in section 3.1.5 of chapter 3, hydrodynamic modes are poles of the

retarded Green’s functions and are hence dual to specific quasi-normal modes. In

figure 4.1 the hydrodynamic modes are the quasi-normal modes which are located at

the origin for k/T = 0. The hydrodynamic sector of the spectrum thus contains a pair

of propagating modes with real and imaginary parts, and a purely imaginary diffusive

mode. The speed and attenuation of sound, as well as diffusion constants, are extracted

by fitting the lowest quasi-normal modes with polynomials quadratic in the momentum

– this process is repeated for several values of the breaking parameter m/T , after which

the results are presented as data points in plots, such as the right panel in figure 4.2.
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Hydrodynamic Behaviour

The behaviour of the hydrodynamic modes extracted from the quasi-normal modes may

be compared to the theoretical predictions of the viscoelastic hydrodynamics presented

in section 3.2.3. It was shown in [1] that the viscoelastic hydrodynamic theories avail-

able the time – which did not contain strain pressure – could not accurately describe

the hydrodynamic diffusive mode which appears in the quasi-normal mode spectrum

of a massive gravity theory with spontaneously broken translational invariance.

The horizon formulae for the thermodynamic quantities and transport coefficients

require the evaluation of Vh and Uh, which results in

Vh = α2Nu2N
h , Uh =

α2Nu2N
h

3− 2N
. (4.19)

The horizon formulae thus read

T =
3−m2Vh

4π uh
, p =

1

2u3
h

(
1− 2N − 1

2N − 3
m2Vh

)
,

ε =
1

u3
h

(
1 +

m2Vh
2N − 3

)
, P =

N

2N − 3

m2Vh
u3
h

, P ′ = −4π

u2
h

Nm2Vh
3 + (2N − 1)m2Vh

,

B =
Nm2Vh

2u3
h

(
3

2N − 3
+

3−m2Vh
3 + (2N − 1)m2Vh

)
, γ =

Nm2Vh
α2u4

h

. (4.20)

The shear elastic modulus G and shear viscosity η are computed using the Kubo

formulae (4.14). Furthermore, from the viscoelastic hydrodynamic theory of section

3.2.3 the longitudinal attenuation of sound Γ‖ and diffusion constant D‖ are given by

Γ‖ =
η

χππ
+
s2T 2G2

γχ3
ππv

2
‖
, D‖ =

s2T (B +G− P)

γ(s+ P ′)(χππ + 2G)
. (4.21)

Using the relation fε = −p it is evident form the expression for the pressure in the

first line of (4.20) that the free energy receives positive contributions due to the scalar

field for allN 6∈ [1/2, 3/2]. This illustrates that the background solution φI = αxI raises

the free energy within the regime of spontaneous breaking of translational invariance

– it acts as strain in the dual field theory. The would-be minimal solution with α = 0

does not provide a well-defined vacuum due to the gravitational theory being strongly

coupled at this point [89].

The information needed to compare the quasi-normal mode dynamics to the pre-

dictions provided by viscoelastic hydrodynamics is now at hand. For simplicity, and

without loss of generality, the numerical data has been produced with α = uh = 1.

The speed of longitudinal sound is fixed by conformal invariance – the comparison
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Figure 4.2: Left: Speed of longitunidal sound for models with potentials V (X,Z) =
XN with N = 3, 4, 5, 6, 7, 8 (from lighter to darker colour) as a function
of the dimensionless breaking parameter m/T . Right: Real part of the
dispersion relation of the propagating quasi-normal modes for N = 3 at
various m/T ∈ {0, 3.5, 12.6}. The dashed black lines show the speed of
sound which is fixed by conformal invariance.
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Figure 4.3: Quasi normal mode data for the longitudinal sound attenuation and diffu-
sion constants, for models with V (X,Z) = XN and N = 3, 4, 5 (dots, from
top to bottom) as functions of the dimensionless parameter m/T , compared
to their hydrodynamic predictions Γ‖ and D‖ from (4.21) (solid lines).

between the (conformal) hydrodynamic relation v2
‖ = 1/2+v2

⊥ and quasi-normal modes

is displayed in the right-hand panel of figure 4.2 (the speed of sound is given by the

slope of the graphs). The agreement is good.

Quasi-normal mode data – as a function of m/T and for several values of the ex-

ponent N – is compared to the hydrodynamic expressions for the longitudinal sound

attenuation constant Γ‖ and diffusion constant D‖, given by equation (4.21), in figure

4.3. The match is excellent, and in particular the diffusion constant illustrates the

importance of strain pressure in the hydrodynamic theory.

The analysis continues to models with potentials of the form V (X,Z) = ZM , which

yields Vh = α4u4
h and Uh = α4u4

h/(3−4M). The relevant horizon formulae are obtained

by substituting N → 2M in equation (4.20). For models with V (X,Z) = ZM the

shear elastic modulus G is zero. The speed of sound is again constrained by conformal
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Figure 4.4: Quasi normal mode data for the longitudinal sound attenuation and dif-
fusion constants for the model V (X,Z) = Z2 (dots) as a function of the
dimensionless parameterm/T , compared to their hydrodynamic predictions
Γ‖ and D‖ from (4.21) (solid lines).

invariance and is trivially satisfied. The comparison between quasi-normal modes and

the hydrodynamic expressions (4.21) for the sound attenuation and diffusion constant

is presented in figure 4.4. The match is again very good.

4.1.2 Unstrained Models

Although they are theoretically and principally interesting, the strained models with

monomial potentials (4.15) do not have clear real-world applications or interpretations

due to their thermodynamic quirks. However, by implementing models with polynomial

potentials it is possible to find an α = α∗ such that the free energy is minimised. The

model which will be considered here has the potential [2, 135]

V (X,Z) = X + λX2, (4.22)

for some constant λ. This model is plagued by its own unphysical behaviour, as will

become clear; it nevertheless serves a purpose as a toy model for illustrating some key

aspects of the hydrodynamic theory.

Symmetry Breaking

The asymptotic behaviour of polynomial potentials such as (4.22) is controlled by the

leading monomial. For the case at hand this means that the near-boundary expansion

(4.16) becomes

φI(u, x) = φI(0)(x) + . . .+ φI(1)(x)u3 + . . . , (4.23)

which according to standard quantisation would mean that the translational symmetry

is explicitly broken by a non-vanishing source term. However, employing alternate

quantisation the role of the leading and subleading terms are switched [75] – hence if

one assumes alternate quantisation the symmetry breaking becomes spontaneous in the
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same way as for the monomial models (4.15). Alternate quantisation in turn imposes

Neumann boundary conditions at the conformal boundary.

Hydrodynamic Behaviour

The potential (4.22) behaves as u2 at the conformal boundary, meaning that the defi-

nition of Uh must be changed in this instance [2]; it is now instead defined as

Uh = u3
h

∫ ∞
uh

h−4V (α2h2, α4h4) dh. (4.24)

Evaluating the the integral in Vh, and Uh as defined above, yields

Vh = α2 + u2
h + λα4u4

h, Uh = α2 + u2
h − λα4u4

h. (4.25)

Using these values in the formula (4.11) the strain pressure P is set to zero for an

equilibrium value α∗ by solving the constraint with α 6= 0 – this results in

α∗ =
1

2λu2
h

. (4.26)

The hydrodynamic parameters then become

T =
3

4πuh

(
1− m2

4λ

)
, s =

2π

u2
h

, p =
1

2u3
h

(
1− m2

4λ

)
,

ε =
1

u3
h

(
1− m2

4λ

)
, P ′ = − 4π

3u2
h

m2

λ+ 5m2/12
, B =

m2

2λu3
h

λ−m2/4

λ+ 5m2/12
, γ =

2m2

u2
h

,

(4.27)

In the above equations it is manifest that the temperature derivative of the strain

pressure, for fixed α, is non-zero; this in turn allows for a non-zero bulk modulus B as

a consequence of the scale invariance constraints in equation (3.103). In this regime

the longitudinal diffusion constant of the hydrodynamic theory takes the form

D‖ =
s2T (B +G)

γ(s+ P ′)(χππ + 2G)
, (4.28)

with χππ = ε+ p.

Computing the values for G and η numerically the trasverse speed of sound v2
⊥ =

G/χππ and diffusion constant (4.28) may be compared to the quasi-normal mode data

of the holographic model; the results are shown in figure 4.5, as functions of m/T . The

speed of transverse sound is imaginary due to a negative shear elastic modulus G but

nevertheless the hydrodynamic predictions are valid. Most importantly, matching the
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Figure 4.5: Quantities of interest for V (X,Z) = X + X2/2 and P = 0; uh = 1 and
thus α∗ = 1. Left: Quasi-normal modes for transverse speed of sound
v2
⊥ (circles) alongside the hydrodynamic predictions (solid lines). Right:

Quasi-normal mode data for D‖ (circles) alongside the hydrodynamic pre-
diction (4.21) (solid lines).

diffusive constant D‖ evidently relies on the presence of P ′.3

4.2 Holographic Broken Superfluid

The pseudo-spontaneous breaking of U(1) symmetry will be studied holographically

in this section [3]. The theories are formulated in the probe limit, meaning that the

backreaction of the matter fields onto the metric is ignored. The principles behind the

numerical computations are the same as in the previous section and hence their details

will be spared.

4.2.1 Holographic Superfluid

The basis of the holographic analysis is the model proposed in [90], which is given by

the U(1)-invariant bulk action

SSF = −
∫

d3x du
√
−g
[

1

4
FmnFmn +Dmψ(Dmψ)∗ +M2ψψ∗

]
, (4.29)

where u is the radial coordinate and ψ(u) is a radially dependent complex scalar field

with mass M ; F ≡ dA is the field strength tensor of the U(1) gauge field A; and the

covariant derivative is defined as Dm ≡ ∂m − iqAm, where q is the charge of the scalar

operator dual to ψ. The lowercase Latin indices span all bulk spacetime coordinates

while Greek indices do not include the radial direction. The AdS radius of curvature `

has been set to one.

The bulk geometry is that of a AdS4 Schwarzschild black hole in Eddington-Finkelstein

3Signatures of an equivalent phenomena were also seen in [136].
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coordinates and is given by the line element

ds2 =
1

u2

[
−f(u) dt2 − 2 dt du+ dx2 + dy2

]
, with f(u) = 1− u3, (4.30)

where u ∈ [0, 1]. The conformal boundary is located at u = 0 and the black hole horizon

is set at uh = 1. The probe limit is manifest from the simple form of the emblackening

factor f(u) which, from equation (2.35), gives rise to a constant temperature

T =
3

4π
. (4.31)

The equilibrium configuration of the theory defined by (4.29) may be determined by

making the radially dependent ansätze

A = At(u) dt, ψ(u) = ψ1(u)− iψ2(u), (4.32)

which ensure rotational invariance. The asymptotic expansions for the scalar fields ψ1,2

and gauge field component At are given by

ψ(u) = ψ
(l)
I u

3−∆ + . . .+ ψ
(s)
I u∆ + . . . , (I = 1, 2) (4.33a)

At(u) = A
(l)
t + A

(s)
t u+ . . . , (4.33b)

where ∆ is the scaling dimension of the complex scalar operator O dual to ψ; the

superscripts (l), (s) denote the leading and subleading term respectively; and the

ellipsis denotes terms at higher order in u. Standard quantisation is assumed. The

chemical potential µ of the boundary theory is defined as the source of 〈J t〉 and is

hence identified as

µ = A
(l)
t . (4.34)

In order to model a superfluid the theory must exhibit spontaneous symmetry breaking,

where the charged operator O condenses below a critical temperature Tc. Choosing

the boundary condition ψ
(l)
I = 0 removes the source for O. Moreover, the standard

value for the scalar field mass M2 = −2 results in ∆ = 2 and hence O is relevant in the

infrared. In the following sections the consequences of adding a small explicit breaking

of U(1) symmetry on top of the spontaneous breaking will be considered.

4.2.2 Holographic Superfluid with Sourced Charged Scalar

The first means by which an explicit breaking of U(1) symmetry is introduced is by

sourcing the scalar operator O of the boundary theory [3]. The source λ is taken to be

real, which in terms of the boundary expansion (4.33) corresponds to choosing λ = ψ
(l)
1
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with ψ
(l)
2 = 0. Holographic renormalisation results in the expectation value

〈O〉 = 2ψ
(s)
1 + 2iψ

(s)
2 + 2iqµψ

(l)
1 = 2ψ

(s)
1 , (4.35)

where the second equality follows from the constraint ψ
(s)
2 = −qµψ(l)

1 , which is specific

to Eddington-Finkelstein coordinates.

The source λ controls the explicit breaking but must be presented in a dimensionless

form; one possibility is λ/T . Increasing the value of λ/T corresponds to more symmetry

breaking. In the following λ/T will be chosen to be infinitesimal such that the breaking

may be treated as pseudo-spontaneous.

The non-conservation equation for the U(1) current of the boundary theory is given

by

∂µ 〈Jµ〉 =
iq

2

[
ψ(l) 〈O∗〉 −

(
ψ(l)
)∗
〈O〉

]
. (4.36)

For real λ the expectation value 〈O〉 is real at equilibrium, hence the right-hand side

of the above equation vanishes; away from equilibrium it instead reads

∂µ 〈Jµ〉 = λqIm 〈O〉 , (4.37)

see also [123,129,137]. Comparing the non-conservation equation (4.37) to the one used

in the hydrodynamic calculations, equation (3.64), it is evident that this mechanism

for explicit breaking of U(1) symmetry does not result in charge relaxation, i.e. Γ = 0.

Since ϕ in the hydrodynamic theory is the phase of the condensate an appropriate

identification is ϕ ≡ Im 〈O〉 / 〈O〉eq, from which the relationship m = λq 〈O〉eq follows,

where 〈O〉eq is the expectation value at equilibrium.4

The behaviour of this setup lends itself to be studied using numerical techniques.

Without loss of generality q = 1 will be fixed in the remainder of this chapter.

Scalar Condensate and Goldstone Correlation Function

Without the presence of explicit symmetry breaking the scalar condensate 〈O〉 acts

as the order parameter for the superfluid phase transition; it becomes non-zero at a

critical temperature Tc, indicating that the superfluid has formed. The behaviour of

〈O〉 in the presence of explicit breaking is thus of interest – the numerical results for

the dimensionless condensate 〈O〉 /T are shown in the left panel of figure 4.6. As

the dimensionless breaking parameter λ/T is increased the value of the dimensionless

condensate increases and the phase transition goes from sharp to continuous, making

is difficult to define a critical temperature Tc.

4The subscript denoting equilibrium will be dropped in the following.
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Figure 4.6: Colours indicate different values of the dimensionless source λ/T – blue is
5 × 10−10, purple is 10−9, light brown is 10−7, green is 10−6, dark brown
is 10−5, magenta is 10−4, orange is 10−3, and red is 10−2. Left: numerical
results for the dimensionless scalar condensate, near the superfluid phase
transition, as a function of temperature and for different values of the di-
mensionless source λ/T . Right: the pseudo-Goldstone correlator at zero
frequency and finite momentum with fixed T/µ = 0.0575, for different val-
ues of the source λ/T . The dashed lines indicate the hydrodynamic result
presented in equation (4.38)

Moreover, in the right panel of figure 4.6 the zero-frequency Green’s functionGϕϕ(0, k)

obtained from holography is compared to the hydrodynamic formula of section 3.2.2,

Gϕϕ(0, k) =
χξξ

k2 + m2
, (4.38)

for small amounts of explicit breaking. The agreement is excellent for a large range of

values of Gϕϕ(0, k) and confirms the pseudo-Goldstone nature of ϕ.

Zero-momentum Excitations

The quasi-normal modes at zero momentum, for various values of the breaking param-

eter, are shown in figure 4.7. At zero explicit breaking the spectrum contains a pair

of sound modes as well as a non-hydrodynamic diffusive mode with imaginary gap.

As the explicit breaking increases the gapless modes acquire a complex gap while the

non-hydrodynamic mode moves away from the origin along the imaginary axis. For

large explicit breakings the mode with a purely imaginary gap is closer to the origin

than the modes with complex gaps; in this regime the hydrodynamic description must

fail [74].

Since it has been established that the scenario considered here does not display

charge relaxation the behaviour of the modes are in accordance with the dispersion
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4.2 Holographic Broken Superfluid

relation

ω = −iΩ
2
±
√
ω2

0 −
Ω2

4
, ω2

0 =
m

(∂ρt/∂µ)
, (4.39)

with a positive square root. The above dispersion relation stems from the hydrody-

namic expression (3.73), and ω0 denotes the pinning frequency. The superscript used

to denote probe-limit quantities in section 3.2.2 will be dropped.

The behaviour of the phase relaxation Ω and pinning frequency ω0, as functions of

the explicit breaking, may be extracted directly from the zero-momentum quasi-normal

modes – the results are shown in figure 4.8. The pinning frequency, displayed in the left

panel, decreases linearly with the explicit breaking scale and vanishes at zero explicit

breaking; this is a realisation of the Gell-Mann-Oaks-Renner relation [58]. Similarly,

in the right panel the phase relaxation Ω is linearly dependent on the explicit breaking

scale and vanishes at zero explicit breaking; the second property illustrates that in this

model Ω arises due to the interplay of explicit and spontaneous symmetry breaking.

The phase relaxation Ω and pinning frequency ω0 are displayed as functions of the

dimensionless temperature T/µ in figure 4.9; the dots denote quasi-normal mode data

while the dashed lines indicate the Kubo formula for Ω, given in equation (3.86),

and the definitions of the pinning frequency in the dispersion relation (4.39). The

hydrodynamic results are in good agreement with the quasi-normal modes for small

values of λ/T ; for larger values of the explicit breaking the agreement is good until

the mass of the pseudo-Goldstone is of the same order as the square root of the scalar

condensate.

Finite-momentum Excitations

If the hydrodynamic framework constructed in section 3.2.2 is valid, the finite momen-

tum quasi-normal modes of the current treatment of the model (4.29) should obey the

dispersion relations (3.72) with Γ = 0 and

D± =
1

2

(
σ0

(∂ρt/∂µ)
+ ζ3

ρs
µ

)
± i

2

2ρs − ζ3ρs(∂ρt/∂µ)Ω + σ0µΩ

µ
√

4m(∂ρt/∂µ)− (∂ρt/∂µ)2Ω2
. (4.40a)

The real and imaginary parts of (4.40) are plotted alongside quasi-normal mode data

in the top panels of figure 4.10 – the agreement is good for several values of λ/T .

In the bottom panel of figure 4.10 the absolute difference between the hydrodynamic

expression (4.40) and the quasi-normal modes increases with the breaking λ/T but

also decreases with the dimensionless temperature T/µ. For smaller values of T/µ the

value of the scalar condensate is larger, as is evident from figure 4.6, meaning the effects

of the explicit breaking become relatively smaller and hence the pseudo-spontaneous

approximation holds stronger.
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Figure 4.7: The lowest modes in the quasi-normal mode spectrum, at zero momentum,
for values of the source λ/T in the range [10−16, 0.1] at fixed T/µ = 0.0582.
The dashed arrows show the direction of movement towards the limit of
strong explicit breaking, λ/T � 1. The inset displays the modes in the
limit of infinitesimal explicit breaking, λ/T � 1; a pair of sound modes
may be identified – which gain a complex gap once explicit breaking is
added – as well as a pseudo-diffusive mode which moves away from the
origin as the breaking increases.
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Figure 4.8: The dimensionless pinning frequency ω2
0/T

2 (left) and the dimensionless
phase relaxation rate Ω/T (right) as a function of the dimensionless source
λ/T . The dashed green lines are a linear fit to the data, emphasising that
at small explicit breaking both quantities are linear in the explicit breaking
parameter. Colours indicate fixed T/µ – light brown is 0.0582 and black is
0.0434.
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Figure 4.9: The dimensionless phase relaxation (left) and the dimensionless pinning
frequency (right) as functions of the dimensionless temperature T/µ for
different values of the explicit breaking parameter λ/T . Quasi-normal mode
data is displayed by dots while the dashed lines in the left panel are values
of the Kubo formula in (3.86) and in the right panel they correspond to the
definition (4.39). The colours indicate different values of the dimensionless
source λ/T – blue is 5× 10−10, purple is 10−9, light brown is 10−7, green is
10−6, dark brown is 10−5, magenta is 10−4, orange is 10−3, and red is 10−2.

Universal Behaviour of Phase Relaxation

It has been observed in several works [134, 136, 138–148], in various contexts, that

phase relaxation Ω which arises due to the interplay between explicit and spontaneous

symmetry breaking obeys the relation

Ω = m2Dξ, (4.41)

where m is the mass of the pseudo-Goldstone and Dξ denotes the Goldstone diffusivity

which can be calculated from the decoupled Josephson relation in the purely sponta-

neous state. Using the superfluid quantities of section 3.2.2 the phase relaxation Ω for

pseudo-spontaneous breaking of U(1) symmetry reads

Ω = ω2
0ζ3χρρ, (4.42)

where χρρ = ∂ρt/∂µ is the charge susceptibility.

Numerical data for the dimensionless quotient ω2
0ζ3χρρ/Ω, for the model currently

under consideration, is plotted in figure 4.11. All quantities on the right-hand side

of (4.42) have been calculated from the state without explicit breaking. The quotient

tends to one for small explicit breakings, validating the formula (4.42) in the pseudo-

spontaneous regime. Analogously to figure 4.10, the agreement is better for smaller

values of T/µ. Since Ω ≤ ω2
0ζ3χρρ for all breakings the relation (4.42) may also be

63



4 Symmetry Breaking and Hydrodynamics in Holography





































































































































































































































































0.040 0.045 0.050 0.055

0.005

0.010

0.050

0.100

T/μ

Re(D)T












































































0.040 0.045 0.050 0.055

0.1

1

10

100

1000

T/μ

Im(D)T















































0.040 0.045 0.050 0.055

10
-11

10
-9

10
-7

10
-5

0.001

0.100

T/μ

Dqnm -Dhydro

Dqnm +Dhydro

Figure 4.10: Top to panels display a comparison between the k2-coefficients of the low-
est quasi-normal modes (dots) versus the real and imaginary parts of the
hydrodynamic formula (4.40) (lines), as a function of the dimensionless
temperature T/µ. The bottom panel plots the agreement between the
quasi-normal mode data and the hydrodynamic formula; it shows increas-
ing agreement by lowering the temperature, i.e. by making the sponta-
neous symmetry breaking order parameter larger compared to the explicit
breaking scale λ/T . The colours indicate different values of the dimen-
sionless source λ/T – blue is 5×10−10, purple is 10−9, light brown is 10−7,
green is 10−6, dark brown is 10−5, magenta is 10−4, orange is 10−3, and
red is 10−2.
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Figure 4.11: The dimensionless ratio ω2
0ζ3χρρ/Ω as a function of the dimension-

less source λ/T . At small explicit breaking the ratio tends to
one and thus validates the relation in equation (4.42). Different
colours indicate different values of the dimensionless scale T/µ =
{0.0582, 0.0555, 0.0519, 0.0477, 0.0434}, starting from blue. The inset
zooms into the range of larger values of the explicit breaking. The agree-
ment is better for larger chemical potentials (or lower temperatures) which
correspond to a larger spontaneous symmetry breaking scale and therefore
a better approximation for the pseudo-spontaneous approximation.

viewed as an upper bound on the phase relaxation.

Electrical Conductivity

The pseudo-spontaneous hydrodynamic analysis of section 3.2.2 concluded that the AC

conductivity in this regime does not display any influence from the phase relaxation Ω

or the parameter m, nor a pole at zero frequency; as a consequence the DC conductivity

is finite.

The frequency dependent conductivity is plotted for different values of the dimen-

sionless source λ/T in figure 4.12. The hydrodynamic prediction (3.84) is obeyed at

lowest order in the frequency, i.e.

σ(ω) = σ0 +O(ω2) . (4.43)

The real part of the conductivity grows with a ω2 scaling which is beyond the present

scope. Introducing the breaking parameter decreases the value of the real part of σ(ω);

the expectation would be that as the explicit breaking increases a gap appears where

the conductivity is zero at low frequencies. The imaginary part is zero at ω/T = 0.

The hydrodynamic results and the holographic results presented in figure 4.12 may

be compared to those of [59], where phase relaxation in a superfluid appears due to

vortices and hence without explicit symmetry breaking. The AC conductivity of such
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Figure 4.12: Real (left) and imaginary (right) parts of the AC conductivity as a
function of the dimensionless frequency ω/T , for different values of the
dimensionless source λ/T . The dimensionless temperature is fixed at
T/µ = 0.0579. The colours indicate different values of the dimension-
less source λ/T – blue is 5 × 0−10, purple is 10−9, light brown is 10−7,
green is 10−6, dark brown is 10−5, magenta is 10−4, orange is 10−3, and
red is 10−2. The data from most cases are on top of each other.

systems receive contributions due to the phase relaxation in a way which produces a

Drude-peak as well as a finite DC conductivity.

4.2.3 Holographic Superfluid with Massive Gauge Field

Another method of implementing pseudo-spontaneous breaking of U(1) symmetry in

holography is by modifying the action (4.29) to be of the form [91,92,149–151]

S =

∫
d3x du

√
−g

[
−1

4
FmnF

mm − M2
A

2
(Am − ∂mθ) (Am − ∂mθ)− |Dψ|2 −M2|ψ|2

]
,

(4.44)

where MA is the mass of the bulk gauge field Am. The appearance of a mass-term for

the gauge field breaks the local U(1) symmetry which transforms Am 7→ Am + ∂mλg;

this symmetry has in turn been restored by introducing the Stückelberg field θ which

transforms as θ 7→ θ−λg under local U(1) transformations. The configuration is taken

to be static, with ∂tθ = 0. The geometry of the spacetime is unchanged and still given

by (4.30).

The ansätze (4.32) are taken also for the model (4.44), however the boundary ex-

pansion of the gauge field (4.33b) is in this case modified to

At(u) ∼ A
(l)
t u−∆A(1+. . . )+A

(s)
t u1+∆A(1+. . . ) with ∆A =

1

2

(
−1 +

√
1 + 4M2

A

)
.

(4.45)

The expectation value of the boundary U(1) current, 〈Jµ〉, is related to A
(s)
µ − ∂µθ(s)
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and its scaling dimension is [Jµ] = 2+∆A. ∆A is thus an anomalous scaling dimension

which grows with MA and indicates that the symmetry is broken and the current no

longer conserved. One may again identify the a boundary quantity µ ≡ A
(l)
t – however,

this should not be interpreted as the chemical potential but rather as a source (with

mass-dimension 1−∆A) in the boundary field theory.

The dynamics of the complex scalar field ψ are unchanged from section 4.2.1. In

contrast to the approach of section 4.2.2 the leading term of the boundary expansion

(4.33a) can be made to vanish by imposing the boundary condition ψ
(l)
I = 0; when a so-

lution for the subleading term exists the scalar sector exhibits spontaneous breaking of

U(1) symmetry, which for small values of MA results in a combined pseudo-spontaneous

breaking regime [3].

The form of the non-conservation equation for the boundary U(1) current 〈Jµ〉 may

be argued for when the dual field theory is four-dimensional [3, 91, 92]; an analogous

expression may on phenomenological grounds be taken also for a three-dimensional

field theory, i.e.

∂µ 〈Jµ〉 = −Γ 〈J t〉 , (4.46)

where Γ is the charge relaxation rate [3]. Comparing the above expression to the

hydrodynamic relation (3.64) it is evident that the parameter m, and hence the pin-

ning frequency ω0, vanishes in the model (4.44). It will also become clear that phase

relaxation Ω is not present in this model.

Phase Diagram

The first observable of interest for the model (4.44) is the dimensionless scalar conden-

sate – the numerical data are displayed as a function of the dimensionless temperature,

for several values of the breaking parameter MA, in figure 4.13. When a finite explicit

breaking is introduced the value of the dimensionless condensate increases but the

phase transition remains sharp. The clearly defined phase transition in this model may

be compared to that of the model in the previous section, where it was smeared; this

difference may be understood intuitively by remembering that in the previous model

the pseudo-Goldstone bosons relax and thus no clear definition of order exists.

Quasi-normal Modes and Hydrodynamics

The quasi-normal modes of the model (4.44) are plotted in figure 4.14. Comparing

the structure of the modes to the hydrodynamic result for the gap, equation (3.73),

the inevitable conclusion is that the phase relaxation Ω and the pinning frequency ω0

vanish. The charge relaxation rate obtained from the quasi-normal modes is plotted

for various breakings in figure 4.16 – they show remarkable agreement to the leading
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Figure 4.13: Plot of the dimensionless scalar condensate as a function of the dimension-

less temperature T/µ1/(1−∆A), for different amounts of explicit breaking.
Colours indicate different values of the breaking parameter M2

A – dark blue
is 10−8, blue is 10−6, purple is 10−5, light brown is 10−4, and orange is
10−3. The condensate and the critical temperature grow with the breaking
but the phase transition remains sharp.

order expression

Γ =
M2

A

χρρ
+ . . . , (4.47)

where the ellipsis indicate terms of higher order in MA and the susceptibility χρρ is

calculated in the state without explicit symmetry breaking. Similar behaviour has been

observed in [86,88,91,92,152,153].

When Ω = ω0 = 0 the hydrodynamic predictions for the modes (3.72) reduce to

ω(k) = −iD+k
2 + . . . , ω(k) = −iΓ− iD− k2 + . . . , (4.48)

where

D+ = ζ3
ρs
µ

+
1

Γ

ρs
µχρρ

, D− =
σ0

χρρ
− 1

Γ

ρs
µχρρ

. (4.49)

In figure (4.16) the k2-coefficients (4.49) are compared to the quasi-normal mode data

for different amounts of breaking; the quantities entering D±, except for Γ, have been

extracted from the state without explicit U(1) symmetry breaking. Moreover, also in

the right-hand panel of figure (4.14) the coefficients (4.49) are compared to the quasi-

normal modes as a function of the dimensionless momentum k/T – the agreement is

good for small k/T and small values of the breaking parameter.
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Figure 4.14: Low-lying quasi-normal modes as a function of the dimensionless momen-
tum k/T (dots). In the right panel the dashed line represent the hy-
drodynamic predictions (4.48) and (4.49), with transport coefficient and
susceptibility data extracted from the purely spontaneous phase. Colours
indicate different values of the breaking parameter M2

A – blue is 10−6, pur-
ple is 10−5, and red is 5× 10−5. Values are shown for fixed dimensionless
temperature T/µ1/(1−∆A) = 0.0582.











0.035 0.040 0.045 0.050 0.055

10
-8

10
-7

10
-6

10
-5

10
-4

0.001

T/μ
1

1-Δ

Γ/T
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light brown is 10−4, and orange is 10−3. Left: Diffusion constant of gapless
mode. Right: The quadratic coefficient of the damped mode.
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Construction

The main goal across the past three chapters has been to understand aspects of sym-

metries in dynamic systems and within this context applying holographic techniques in

order to probe quantities of interest. The contents of this chapter will focus on aspects

of symmetry motivated by the holographic principle itself.

By virtue of the bottom-up approach to the AdS/CFT correspondence (which was

employed in chapters 2 and 4) a bulk gravitational theory has, in this thesis, mainly

been used to study the dynamics of the dual boundary conformal field theory; never-

theless, the correspondence may be used in reverse in order to gain insight into formal

aspects of the gravitational theory governing the bulk, which in the strong form of

the correspondence has the potential to reveal secrets to the nature of quantum grav-

ity. However, our Universe is not asymptotically anti-de Sitter and hence there exists

a non-trivial gap between reality and any understanding gained by studying quan-

tum gravity in the setting of the AdS/CFT correspondence. This raises the question

whether the holographic principle may be applied to a gravitational theories in more

realistic spacetimes, for example one which is asymptotically flat – such a holographic

duality is called flatspace holography.

There are currently no concrete examples of flatspace holographic models;1 there

are however symmetry criteria which must be fulfilled by any candidate theory. In

the AdS/CFT correspondence the conformal invariance of the boundary field theory

is aligned with the asymptotic symmetry group of (d + 1)-dimensional anti-de Sitter

spacetime, namely SO(d, 2), which is isomorphic to the conformal group. For asymp-

totically flat spacetimes the asymptotic symmetry is not Poincaré symmetry but rather

Bondi-Metzner-Sachs (BMS) symmetry [82,83], where translational and rotational in-

variance is promoted to invariance under supertranslations and superrotations [183].

Assuming the generality of the holographic principle, and following the example of the

AdS/CFT correspondence, it is reasonable to conclude that a quantum field theory

dual to an asymptotically flat gravitational theory must obey BMS symmetry [79,85].

1There is nevertheless progress being made in the field of flatspace holography, see for example
[85,154–182] for an incomplete list.
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The properties of the BMS group, and its algebra bms, depend on the spacetime

dimensions. Much like the conformal Virasoro group [28] the incarnation of the BMS

group in two spacetime dimensions is particularly constraining due to the infinite num-

ber of generators in the corresponding bms3 algebra. There are two representation

theories of bms3 and they are both related to two copies of the conformal Virasoro al-

gebra via separate İnönü-Wigner contractions: the highest-weight representation – also

called the Galilean conformal algebra gca2 – is a result of non-relativistic contraction

while the induced representation is ultra-relativistic [84, 85]. Each representation may

be suitable for quantum field theories dual to the appropriate limits of gravitational

theories in three spacetime dimensions, for instance Newton-Cartan gravity [184].

In this chapter the highest-weight representation of bms3 will be considered; its so-

called oscillator construction will be derived and used to calculate bms3-blocks [4],

i.e. objects equivalent to conformal blocks for BMS-invariant theories. The oscillator

formalism has also been applied to the Virasoro algebra in [185–188].

5.1 The bms3 Module

The first task is to formally introduce some important aspects of the highest-weight

representation of bms3, which will also be referred to as the bms3 module [84].

In the context of asymptotically flat gravity the generators of bms3 are those of su-

perrotations Lm and supertranslations Mn; for m,n ∈ Z they satisfy the commutation

relations

[Lm, Ln] = (m− n)Lm+n +
cL

12
m(m2 − 1)δm,−n, (5.1a)

[Lm,Mn] = (m− n)Mm+n +
cM

12
m(m2 − 1)δm,−n, (5.1b)

[Mm,Mn] = 0 , (5.1c)

where cL and cM are (non-negative and real) central charges. Superrotations gener-

ate diffeomorphisms of S1 at asymptotic null infinity and supertranslations are angle

dependent translations.

A primary state |∆, ξ〉 is defined by the eigenvalue equations

L0|∆, ξ〉 = ∆|∆, ξ〉 and M0|∆, ξ〉 = ξ|∆, ξ〉 , (5.2)

where ∆ is the scaling dimension and ξ is the rapidity. A primary state must also

satisfy

Ln|∆, ξ〉 = 0 and Mn|∆, ξ〉 = 0 , (5.3)
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for n > 0. A bms3 primary operator O∆,ξ(t, x) is defined from the primary state via

the operator-state correspondence

|∆, ξ〉 ≡ lim
t,x→0

O∆,ξ(t, x) |0〉 , (5.4)

where t and x are coordinates on the plane. The vacuum state |0〉 is a primary state

with ∆ = ξ = 0 which is annihilated by Ln and Mn with n ≥ −1. The bms3 generators

act on O∆,ξ(t, x) as

[Ln,O∆,ξ(t, x)] = −LnO∆,ξ(t, x), (5.5a)

[Mn,O∆,ξ(t, x)] = −MnO∆,ξ(t, x), (5.5b)

where the differential operators are given by [189]

Ln = −tn+1∂t − (n+ 1)tnx∂x − (n+ 1)(tn∆ + ntn−1xξ) , (5.6a)

Mn = −tn+1∂x − (n+ 1)ξtn. (5.6b)

The operators Ln and Mn satisfy the commutation relations (5.1) with vanishing

central charges.

The bms3 module B
cL,cM
∆,ξ is constructed by acting on the primary state |∆, ξ〉 with

an ordered string of the operators L−n and M−n with n > 0. The vector space of the

highest-weight representation of bms3 is thus spanned by the basis vectors

|(m1, . . . ,ms), (n1, . . . , nl); ∆, ξ〉 = L−m1 · · ·L−msM−n1 · · ·M−nl |∆, ξ〉, (5.7)

where m1 ≥ . . . ≥ ms ≥ 1 and n1 ≥ . . . ≥ nl ≥ 1. Imposing the adjoint relations

L†n = L−n and M †
n = M−n uniquely defines the Hermitian product 〈q|p〉 for states

|p〉 , |q〉 ∈ B
cL,cM
∆,ξ . The Hermitian product of two basis vectors defines an element of the

Gram matrix; the general formula is given by〈
(m′i)

s′

i=1, (n
′
j)
l′

j=1; ∆, ξ
∣∣∣(mi)

s
i=1, (nj)

l
j=1; ∆, ξ

〉
=
〈

∆, ξ
∣∣∣ 1∏
j=l′

Mn′j

1∏
i=s′

Lm′i

s∏
i=1

L−mi

l∏
j=1

M−nj

∣∣∣∆, ξ〉, (5.8)

with the compact notation (mi)
s
i=1 ≡ (m1, . . . ,ms). The Hermitian product of the

highest-weight representation of bms3 is in general not positive semi-definite and hence

the corresponding representation will generically be non-unitary.
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5.2 The Oscillator Construction

The oscillator formalism – or construction – gets its name by associating differential

operators to oscillator modes of a quantum field theory, consequently also expressing

the generators of the algebra in terms of said differential operators. The oscillator

construction of the Virasoro algebra may be found through a linear-dilaton theory [187].

As mentioned at the beginning of this chapter the highest-weight representation of bms3

is related to two copies of the Virasoro algebra via a non-relativistic contraction; its

oscillator construction will thus be derived by performing a non-relativistic contraction

of a generalised, two-dimensional linear-dilaton-like theory [4].

5.2.1 Unravelling the Module

The generalised linear-dilaton-like theory is defined by expressing the components of

the two-dimensional conformal stress-tensor T ≡ Tzz and T̄ ≡ Tz̄z̄, where the bar

denotes quantities belonging to the anti-holomorphic sector of the two-dimensional

conformal algebra, as

T =
∞∑

m=−∞

Lvir
m z
−m+2 , with Lvir

m =
1

2

∞∑
n=−∞

:αm−nαn: +i(m+ 1)V αm (5.9a)

and

T̄ =
∞∑

m=−∞

L̄vir
m z̄
−m+2, with L̄vir

m =
1

2

∞∑
n=−∞

:ᾱm−nᾱn: +i(m+ 1)V̄ ᾱm, (5.9b)

where Lvir
m , L̄vir

m are generators of the Virasoro algebra and satisfy a commutation rela-

tion reminiscent of (5.1a); V , V̄ are complex constants which do not relate by complex

conjugation; and the colons denote normal-ordering. There is no action principle as-

sociated to the kind of theory considered here – which is why it is referred to is as

‘dilaton-like’. The generators obey the conjugation
(
Lvir
m

)†
= Lvir

−m and
(
L̄vir
m

)†
= L̄vir

−m

and the oscillators αm, ᾱm satisfy the canonical commutation relations

[αm, αn] = [ᾱm, ᾱn] = mδm+n,0, [αm, ᾱn] = 0. (5.10)

Non-relativistic Contraction

The bms3 generators will be found by taking the non-relativistic limit on the level

of the generators Lvir
m and L̄vir

m . The contraction is equivalent to taking the linear
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combinations [84,190]

Lm ≡ lim
ε→0

(
Lvir
m + L̄vir

m

)
, (5.11a)

Mm ≡ lim
ε→0

ε
(
Lvir
m − L̄vir

m

)
. (5.11b)

The contractions (5.11) stem from the coordinate rescalings

t 7→ t, x 7→ εx, (5.12)

which means that the velocities of the theory tend to zero in the limit ε→ 0, in units

where c = 1 – thus the regime is non-relativistic.

For the case at hand the limiting parameter ε is introduced into the generators (5.9)

by defining a new pair of oscillator modes as

βm =
1√
ε

(αm − iᾱm) , γm =
√
ε (αm + iᾱm) , (5.13)

together with the linear combinations

WL =
1

2
√
ε

(
V − iV̄

)
, WM =

√
ε

2

(
V + iV̄

)
. (5.14)

The above oscillators satisfy the commutation relations

[βm, γn] = 2mδm+n,0, [βm, βn] = [γm, γn] = 0, (5.15)

which follow the commutation relations (5.10). Imposing the adjoint transformation

properties β†m = β−m and γ†m = γ−m the Virasoro oscillators must transform like

α†m=α−m and ᾱ†m=− ᾱ−m, for m 6= 0. Preserving the adjoint property of the Virasoro

generators then requires V ∗ = V and V̄ ∗ = −V̄ , together with α†0 = α0 + 2iV and

ᾱ†0 = −ᾱ0 − 2iV̄ .

Expressing the Virasoro generators Lvir
m and L̄vir

m in terms of the oscillators (5.13) and

redefinitions (5.14), and taking the non-relativistic limits (5.11), results in

Lm =
1

4

∞∑
n=−∞

:βm−nγn + γm−nβn: +i(m+ 1) (WLγm +WMβm) , (5.16a)

Mm =
1

4

∞∑
n=−∞

:γm−nγn: +i(m+ 1)WMγm. (5.16b)

The generators above satisfy the bms3 algebra (5.1) with the central charges cL =

2 + 48WLWM and cM = 24W 2
M. The adjoints L†m = L−m and M †

m = M−m are enforced;
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5 BMS Symmetry and the Oscillator Construction

the transformation properties of all quantities follow from the above redefinitions.

The task of assigning differential operators to the oscillator modes is made simpler by

expressing the generators Ln and Mn in terms of oscillators which satisfy commutation

relations akin to the canonical ones (5.10). To this end another set of oscillators are

introduced as

am =
1

2
(βm + γm) , âm =

1

2
(βm − γm) , (5.17)

which satisfy the commutation relations

[am, an] = mδm+n,0 , [âm, ân] = −mδm+n,0, [am, ân] = 0 . (5.18)

In terms of the oscillators (5.17) the bms3 generators become

Lm =
1

2

∞∑
n=−∞

:am−nan − âm−nân: +i(m+ 1)
[
(WM +WL) am + (WM −WL) âm

]
,

(5.19a)

Mm =
1

4

∞∑
n=−∞

:am−nan − (am−nân + âm−nan) + âm−nân: +i(m+ 1)WM(am − âm).

(5.19b)

The adjoint properties L†m = L−m and M †
m = M−m are satisfied if a†m = a−m and

a†m = â−m for m 6= 0, and

a†0 = a0 + 2i(WM +WL), â†0 = â0 − 2i(WM −WL). (5.20)

The oscillators am and âm in general have complex eigenvalues – the real parts of their

eigenvalues are respectively parametrised by λ1 and λ2 while the imaginary parts are

fixed by the adjoints (5.20). Defining µ1 = −(WM +WL)/
√

2 and µ2 = (WM−WL)/
√

2

the eigenvalues take the form

a0 ≡
√

2λ1 + i
√

2µ1 , â0 ≡
√

2λ2 + i
√

2µ2, (5.21)

where factors of
√

2 are a normalisation choice.

Differential Operators and Generators

Differential operators may now be assigned to the oscillator modes (5.17) and thus

completing the oscillator formalism expressions for the bms3-generators. The following
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assignments are employed

am =
i

2
√

2

(
∂
v

(1)
m

+ ∂
v

(2)
m

)
, a−m = −im

√
2
(
v(1)
m + v(2)

m

)
, (5.22a)

âm =
i

2
√

2

(
∂
v

(1)
m
− ∂

v
(2)
m

)
, â−m = im

√
2
(
v(1)
m − v(2)

m

)
, (5.22b)

where v
(1)
m and v

(2)
m , with m ∈ N, are complex variables which will be referred to as

oscillator variables [4, 185–188].

Plugging the definitions (5.22) into the generators (5.19), accounting for the nor-

mal ordering and using (5.21) for the terms with n = 0, the oscillator construction

expressions for generators (which are denoted in lowercase) read

l0 = ∆ +
∞∑
n=1

n
(
v(1)
n ∂

v
(1)
n

+ v(2)
n ∂

v
(2)
n

)
, (5.23a)

lk =
∞∑
n=1

n

(
v(1)
n ∂

v
(1)
k+n

+ v(2)
n ∂

v
(2)
k+n

)
− 1

4

k−1∑
n=1

∂
v

(1)
n
∂
v

(2)
k−n

+ Ak∂v(1)
k

+Bk∂v(2)
k
, (5.23b)

l−k =
∞∑
n=1

(k + n)
(
v

(1)
k+n∂v(1)

n
+ v

(2)
k+n∂v(2)

n

)
− 4

k−1∑
n=1

n(k − n)v(1)
n v

(2)
k−n + 4kB̂kv

(1)
k + 4kÂkv

(2)
k ,

(5.23c)

as well as,

m0 = ξ +
∞∑
n=1

nv(1)
n ∂

v
(2)
n
, (5.24a)

mk =
∞∑
n=1

nv(1)
n ∂

v
(2)
k+n
− 1

8

k−1∑
n=1

∂
v

(2)
k−n

∂
v

(2)
n

+ Ak∂v(2)
k
, (5.24b)

m−k =
∞∑
n=1

(k + n)v
(1)
k+n∂v(2)

n
− 2

k−1∑
n=1

n(k − n)v
(1)
k−nv

(1)
n + 4kÂkv

(1)
k , (5.24c)

with k > 0. In (5.23a) and (5.24a) the scaling dimension ∆ and rapidity ξ have been

identified as

∆ ≡ λ2
1 − λ2

2 + µ2
1 − µ2

2 , (5.25a)

ξ ≡ 1

2

[
(λ1 − λ2)2 + (µ1 − µ2)2

]
, (5.25b)

which have been used together with the values of the central charges cL = 2+24
(
µ2

1 − µ2
2

)

77



5 BMS Symmetry and the Oscillator Construction

and cM = 12 (µ1 − µ2)2 to express the coefficients

Ak = − i
2

√
2ξ − cM

12
− k
√
cM

48
, Bk = i

cL − 2− 24∆

48
√

2ξ − cM
12

− k cL − 2

48
√

cM
12

, (5.26a)

Âk =
i

2

√
2ξ − cM

12
− k
√
cM

48
, B̂k = −icL − 2− 24∆

48
√

2ξ − cM
12

− k cL − 2

48
√

cM
12

. (5.26b)

The above coefficients are related by complex conjugation, Âk = A∗k and B̂k = B∗k,

if ξ ≥ cM/24 and for which case l†n = l−n and m†n = m−n. However, if ξ < cM/24

the coefficients (5.26) are real and hence independent; preserving the desired adjoint

property requires an analytic continuation which will be discussed in section 5.3.2. It

is assumed that ξ ≥ cM/24 unless otherwise stated.

States, Hermitian Product and Gram Matrix

In the oscillator formalism the role of a state is played by functions depending on

the full, infinite set of oscillator variables. Equivalence between the bms3 module

B
cL,cM
∆,ξ , presented in section 5.1, and the oscillator construction of the highest-weight

representation of bms3 follows from the definition

fp(v) ≡ 〈v|p〉 , (5.27a)

where |p〉 ∈ B
cL,cM
∆,ξ and 〈v| ≡ |v̄〉† is a generalised coherent state of the bms3 module [4],

where v denotes the infinite set of all oscillator variables v
(1)
n and v

(2)
n , i.e. |v〉 ≡

|v(1), v(2)〉 and the dropped indices indicate a full set. Formally the oscillator generators

act as lnfp(v) = 〈v|Ln|p〉, and similarly for mn. There is also a dual function defined

by

fq(v) = 〈v|q〉 ≡ 〈q|v̄〉 (5.27b)

with |q〉 ∈ B
cL,cM
∆,ξ . The overline operation maps v

(i)
n 7→ v̄

(i)
n and acts as complex

conjugation. The dual functions are acted on by barred generators l̄−n and m̄−n which

are found by acting with an overline operation on the generators l−n and m−n. In

terms of states l̄−nfq(v) = 〈q|Ln|v̄〉 and similarly for m̄−n.

The non-constant terms of l0 and m0 depend on derivatives with respect to the

oscillator variables, hence the requirements of the primary state |∆, ξ〉 are satisfied by

a constant function which is chosen as

f∆,ξ(v) = 〈v|∆, ξ〉 ≡ 1. (5.28)
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In the oscillator formalism the primary state properties (5.2) and (5.3) thus read

l0 · 1 = ∆ , m0 · 1 = ξ , (5.29a)

lk · 1 = 0 , mk · 1 = 0 , (5.29b)

for k > 0. The basis vectors defined in equation (5.7) are thus polynomials given by∏s
i=1 l−mi

∏l
j=1m−nj · 1.

The Hermitian product of the oscillator construction is uniquely defined by the

adjoints l†n = l−n and m†n = m−n. The appropriate expression, in terms of functions

defined in equations (5.27), is found by inserting the completeness relation of the form∫
C∞

[d2v]∆,ξ |v̄〉 〈v| = 1 (5.30)

into the Hermitian product 〈q|p〉 discussed below equation (5.7). The resulting Her-

mitian product for the oscillator construction of the highest-weight representation of

bms3 thus reads

(fq, gp) =

∫
C∞

[d2v]∆,ξ fq(v)gp(v), (5.31)

where the measure is given by

[d2v]∆,ξ =
∞∏
n=1

16n2 exp

[
−4n

(
v(1)
n v̄(2)

n + v(2)
n v̄(1)

n

)]
d2v(1)

n d2v(2)
n , (5.32)

with d2v
(i)
n = dv

(i)
n dv̄

(i)
n . The form of the measure [d2v]∆,ξ is argued for in appendix A

of [4].

The Hermitian product of oscillator monomials satisfies the orthogonality-like rela-

tion ((
v(1)
m

)a (
v(2)
m

)b
,
(
v(1)
m

)c (
v(2)
m

)d)
=

a! b!

(4m)a+b
δa,dδb,c. (5.33)

In the oscillator formalism the general Gram-matrix element (5.8) is given by(
l−m′1 · · · l−m′s′m−n′1 · · ·m−n′l′ · 1 , l−m1 · · · l−msm−n1 · · ·m−nl · 1

)
. (5.34)

Since the basis vectors are polynomials in v
(1)
n and v

(2)
n the orthogonality relation (5.33)

may be applied to their constituent monomials. The entries of of the lowest-level bms3

Gram matrix read

(l−1 · 1, l−1 · 1) = 2∆ , (l−1 · 1,m−1 · 1) = 2ξ ,

(m−1 · 1, l−1 · 1) = 2ξ , (m−1 · 1,m−1 · 1) = 0 .
(5.35)

79



5 BMS Symmetry and the Oscillator Construction

The above matrix components match the results of [191].

The non-unitarity of the highest-weight representation of bms3 is manifest from the

Gram matrix given by the entries in (5.35); if ξ 6= 0 it has one positive and one negative

eigenvalue, resulting in an indefinite Hermitian product.2

5.2.2 Correlation Functions and bms3-blocks

One of the main features of the oscillator formalism is that is provides a unique way

of determining correlation functions and, by extension, bms3-blocks.

Two- and Three-point Correlation Functions

The oscillator formalism expressions for a two-point correlation function of primary

operators is found by inserting the completeness relation (5.30) into its definition,

which gives

〈0|O∆1,ξ1(t1, x1)O∆2,ξ2(t2, x2)|0〉 =

∫
C∞

[d2v]∆,ξ χ∆1,ξ1;∆,ξ(t1, x1; v̄)ψ∆2,ξ2;∆,ξ(t2, x2; v);

(5.36)

and similarly a three-point correlation function takes the form

〈0|O∆1,ξ1(t1, x1)O∆2,ξ2(t2, x2)O∆3,ξ3(t3, x3)|0〉

=

∫
C∞

[d2v]∆,ξ χ∆1,2,ξ1,2;∆,ξ(t1,2, x1,2; v̄)ψ∆3,ξ3;∆,ξ(t3, x3; v), (5.37a)

=

∫
C∞

[d2v]∆,ξ χ∆1,ξ1;∆,ξ(t1, x1; v̄)ψ∆2,3,ξ2,3;∆,ξ(t2,3, x2,3; v). (5.37b)

The right-hand sides of the above equations define the wave functions of the oscillator

construction; the level-one wave functions are given by

ψ∆2,ξ2;∆,ξ(t2, x2; v) = 〈v|O∆2,ξ2(t2, x2)|0〉, (5.38a)

χ∆1,ξ1;∆,ξ(t1, x1; v̄) = 〈0|O∆1,ξ1(t1, x1)|v̄〉, (5.38b)

and the level-two wave functions are

ψ∆2,3,ξ2,3;∆,ξ(t2, x2, t3, x3; v) = 〈v|O∆2,ξ2(t2, x2)O∆3,ξ3(t3, x3)|0〉 , (5.39a)

χ∆1,2,ξ1,2;∆,ξ(t1, x1, t2, x2; v̄) = 〈0|O∆2,ξ2(t2, x2)O∆1,ξ1(t1, x1)|v̄〉 . (5.39b)

2An exception arises for the case cM = 0 and ξ = 0; then the bms3 representation considered
here reduces to a Virasoro highest-weight representation with central charge cL and conformal
dimension h = ∆, provided that one takes a quotient with respect to the null states M−n|∆, 0〉
with n ∈ N [84].
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ψ∆i,j ,ξi,j ;∆,ξ will be referred to as the wave function and χ∆i,j ,ξi,j ;∆,ξ as the dual wave

function. The subscripts ∆i and ξi label the scaling dimension and rapidity of the

external operators, while ∆ and ξ label the bms3 module B
cL,cM
∆,ξ .

Using that Ln |0〉 = Mn |0〉 = 0 for n ≥ −1 it follows that 〈v|O∆2,ξ2Ln|0〉 =

〈v|O∆2,ξ2Mn|0〉 = 0; expressing the product inside the braket in terms of a commuta-

tor and using the definitions of the differential operators (5.5) two sets of differential

equations for the wave function ψ∆2,ξ2;∆,ξ(t2, x2; v) appear,(
l(∆,ξ)n + L(∆2,ξ2)

n

)
ψ∆2,ξ2;∆,ξ(t2, x2; v) = 0, (5.40a)(

m(∆,ξ)
n +M(∆2,ξ2)

n

)
ψ∆2,ξ2;∆,ξ(t2, x2; v) = 0, (5.40b)

for n ≥ −1. By similar arguments the dual wave function χ∆1,ξ1;∆,ξ(t1, x1; v̄) must

satisfy the following set of differential equations,(
l̄(∆,ξ)n − L(∆1,ξ1)

−n

)
χ∆1,ξ1;∆,ξ(t1, x1; v̄) = 0, (5.41a)(

m̄(∆,ξ)
n −M(∆1,ξ1)

−n

)
χ∆1,ξ1;∆,ξ(t1, x1; v̄) = 0, (5.41b)

for n ≥ −1. The wave functions connect oscillator variables and coordinates of the

complex plane and hence the superscripts emphasise the domains of action of the

generators. Solving both sets of differential equations for n ∈ {−1, 0, 1, 2} fixes the

wave functions also for all n > 2; this is related to the fact that two-point functions

are completely determined by the globally well-defined generators Ln and Mn with

n ∈ {−1, 0, 1}, while satisfying the n = 2 differential equations guarantees a solution

for all n.

The differential equations (5.40) and (5.41) have non-trivial solutions only if ∆2 = ∆,

ξ2 = ξ, and ∆1 = ∆, ξ1 = ξ. To keep the notation compact degenerate subscripts of

the wave functions will be dropped. The level-one bms3 wave functions read [4]

ψ∆,ξ(t2, x2; v) = exp

[
4Â1

∞∑
n=1

(
tn2v

(2)
n + nx2 t

n−1
2 v(1)

n

)
+ 4B̂1

∞∑
n=1

tn2v
(1)
n

]
, (5.42a)

χ∆,ξ(t1, x1; v̄) = t−2∆
1 e

−2ξ
x1
t1 exp

[
4A1

∞∑
n=1

(
t−n1 v̄(2)

n − nx1 t
−n−1
1 v̄(1)

n

)
+ 4B1

∞∑
n=1

t−n1 v̄(1)
n

]
,

(5.42b)

where the coefficients A1, B1 and Â1, B̂1 are given by equations (5.26a) and (5.26b)

for k = 1. From the solutions (5.42) the relationship between the wave functions can
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be determined to be

χ∆,ξ(t1, x1; v̄) = t−2∆
1 e

−2ξ
x1
t1 ψ∆,ξ

(
t−1
1 ,−x1t

−2
1 ; v

)
, (5.43)

which also may be motivated by the operator-state correspondence for bra-states

〈∆, ξ| = lim
t→∞

t2∆ e2ξ x
t 〈0| O∆,ξ(t, x) . (5.44)

The bms3 two-point correlation function is found by plugging the wave functions (5.42)

into (5.36), power expanding, and using the orthogonality relation (5.33) on the result-

ing monomials; if ∆1 = ∆2 = ∆ and ξ1 = ξ2 = ξ the expression reads

〈0| O∆1,ξ1(t1, x1)O∆2,ξ2(t2, x2) |0〉 = (t1 − t2)−2∆e
− 2ξ(x1−x2)

(t1−t2) , (5.45)

and zero otherwise. The above result is in agreement with [189].

The reasoning that lead to the differential equations for the level-one wave functions

may be analogously applied to the second-level wave functions. The level-two wave

function is thus constrained by the equations(
l(∆,ξ)n + L(∆1,ξ1)

n + L(∆2,ξ2)
n

)
ψ∆1,2,ξ1,2;∆,ξ(t1, x1, t2, x2; v) = 0, (5.46a)(

m(∆,ξ)
n +M(∆1,ξ1)

n +M(∆2,ξ2)
n

)
ψ∆1,2,ξ1,2;∆,ξ(t1, x1, t2, x2; v) = 0, (5.46b)

and similarly its dual wave function must obey(
l̄(∆,ξ)n − L(∆3,ξ3)

−n − L(∆4,ξ4)
−n

)
χ∆3,4,ξ3,4;∆,ξ(t3, x3, t4, x4; v̄) = 0, (5.47a)(

m̄(∆,ξ)
n −M(∆3,ξ3)

−n −M(∆4,ξ4)
−n

)
χ∆3,4,ξ3,4;∆,ξ(t3, x3, t4, x4; v̄) = 0, (5.47b)

for n ≥ −1. As a consequence of the transformation between bra and ket-states (5.44)

the level-two wave functions are related by

χ∆3,4,ξ3,4;∆,ξ(t3, x3, t4, x4; v̄)

= t−2∆3
3 e

−2ξ3
x3
t3 t−2∆4

4 e
−2ξ4

x4
t4 ψ∆3,4,ξ3,4;∆,ξ(t

−1
3 ,−x3t

−2
3 , t−1

4 ,−x4t
−2
4 ; v).

(5.48)

No closed-form solutions for the level-two wave functions have been found. However,

it is possible to employ the semiclassical limit in order to find approximate solutions

for the second-level wave functions; this point is returned to in section 5.3.
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5.3 Semiclassical bms3-blocks

bms3-blocks

Four-point correlation functions allow for the definition of a bms3-block B∆tot,ξtot;∆,ξ(t, x)

by

B∆tot,ξtot;∆,ξ(t, x) = 〈0|O∆4,ξ4(t4, x4)O∆3,ξ3(t3, x3)P∆,ξO∆1,ξ1(t1, x1)O∆2,ξ2(t2, x2)|0〉,
(5.49)

where P∆,ξ is the projector onto the bms3 module BcL,cM
∆,ξ , which acts as the unit operator

when restricted to the module; and ∆tot = {∆1,∆2,∆3,∆4} and ξtot = {ξ1, ξ2, ξ3, ξ4}.
Inserting a completeness relation allows the bms3-block to be expressed in terms

of second-level wave functions; without loss of generality the point configuration is

restricted to

{(ti, xi)} = {(t, x), (0, 0), (1, 0), (∞, 0)}, (5.50)

such that the bms3-block B∆tot,ξtot;∆,ξ(t, x) is given by

B∆tot,ξtot;∆,ξ(t, x)

= lim
t4→∞
x4→0

t2∆4
4 e

2ξ4
x4
t4

∫
C∞

[d2v]∆,ξ χ∆3,4,ξ3,4;∆,ξ(1, 0, t4, x4; v̄)ψ∆1,2,ξ1,2;∆,ξ(t, x, 0, 0; v) ,

(5.51)

where the prefactor appears due to (5.44). Furthermore, the point configuration (5.50)

simplifies the relationship between the second-level wave function and its dual; it takes

the form

χ∆3,4,ξ3,4;∆,ξ(1, 0, t4, x4; v̄) = t−2∆4
4 e

−2ξ4
x4
t4 ψ∆3,4,ξ3,4;∆,ξ(1, 0, t

−1
4 ,−x4t

−2
4 ; v). (5.52)

Plugging in the above relation into equation (5.51) and implementing the limits results

in the compact formula

B∆tot,ξtot;∆,ξ(t, x) =

∫
C∞

[d2v]∆,ξ ψ∆3,4,ξ3,4;∆,ξ(1, 0, 0, 0; v)ψ∆1,2,ξ1,2;∆,ξ(t, x, 0, 0; v). (5.53)

5.3 Semiclassical bms3-blocks

The remainder of this chapter will be dedicated to bms3-blocks. From the field theory

perspective bms-blocks are of relevance in the bootstrap approach; while in the flatspace

holography context the so called heavy-light bms3-blocks contain information about

probe fields in dual, non-trivial asymptotically flat spacetimes.

Calculating bms3-blocks in full generality is a difficult task; hence some simplifying
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5 BMS Symmetry and the Oscillator Construction

conditions must be implemented. One of the simplifications is the limit given by

cM → ∞, with ∆/cM, ∆i/cM; ξ/cM, ξi/cM, and cL/cM kept fixed; where ∆, ξ ∈ B
cL,cM
∆,ξ

are the scaling dimension and rapidity of the internal primary operator of each block,

while ∆i, ξi with i = 1, .., 4 denote the scaling dimensions and rapidities of the external

operators. In the context of flatspace holography the central charge cM is dual to the

inverse of Newton’s constant [192]; hence the limit considered here corresponds to a

semiclassical limit of an infinitesimal Newton constant. The semiclassical limit will be

implemented by introducing the auxiliary parameter µ as follows,

cM = µ2c̃M , cL = µ2c̃L , ∆ = µ2∆̃ , ∆i = µ2∆̃i , ξ = µ2ξ̃ , ξi = µ2ξ̃i ; (5.54)

hence the the semiclassical limit corresponds to µ → ∞ while keeping the tilde-

quantities fixed. Due to its relation to Newton’s constant cM is dimensionful; when

appropriate the dimensionality will be assigned to the tilde-quantities while µ is di-

mensionless. Dimensionful quantities will always appear in dimensionless products in

physical objects.

5.3.1 Wave Functions and Exponentiation in semiclassical Limit

Determining the bms3-blocks requires information about the wave functions; however,

as mentioned below equation (5.48) no closed form solutions have been found for them.

Nevertheless, in the point configuration (5.50) the set of equations (5.46) with n = 0

fixes the wave function to be of the form

ψ∆1,2,ξ1,2;∆,ξ(t, x, 0, 0; v) = t∆−∆1−∆2 e
x
t

(ξ−ξ1−ξ2) F (η, ν), (5.55)

where F (η, ν) is an unknown functionw which depend on the combination variables

ηn = tnv(1)
n , νn = ntn−1xv(1)

n + tnv(2)
n , (5.56)

where n ∈ N.

As part of the semiclassical limit a saddle-point approximation may be implemented

to evaluate the integral in (5.53). To this end the exponential function in the measure

(5.32) motivates the re-scaling of the oscillator variables

v(i)
n 7→ µv(i)

n , v̄(i)
n 7→ µv̄(i)

n , (5.57)

and as a consequence of this new variables σn and κn are defined by

ηn = µσn, νn = µκn. (5.58)
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5.3 Semiclassical bms3-blocks

Also, an exponential ansatz for the undetermined function in the wave function (5.55)

may be made as

F (σ, κ) = exp
[
µ2S(σ, κ)

]
. (5.59)

Differential Equations

The function S(σ, κ) is uniquely3 determined by the differential equations (5.46) with

n ≥ 1.4 Using the expressions for lk given in (5.23b), mk given in (5.24b), and Lk and

Mk given in (5.6), the leading terms of the differential equations in the limit µ → ∞
read

0 =
∞∑
n=1

n
(
σn
(
∂σk+n

S − ∂σnS
)

+ κn
(
∂κk+n

S − ∂κnS
))

− 1

4

k−1∑
n=1

∂σnS ∂κk−nS + Ãk∂σkS + B̃k∂κkS −
(

∆̃ + k∆̃1 − ∆̃2

)
,

(5.60a)

0 =
∞∑
n=1

nσn
(
∂κk+n

S − ∂κnS
)
− 1

8

k−1∑
n=1

∂κk−nS ∂κnS + Ãk∂κkS −
(
ξ̃ + kξ̃1 − ξ̃2

)
,

(5.60b)

with the definitions

Ak = µ

(
− i

2

√
2ξ̃ − c̃M

12
− k
√
c̃M

48

)
≡ µ · Ãk, (5.61a)

Bk = µ

i c̃L − 24∆̃

48
√

2ξ − c̃M
12

− k c̃L

48
√

c̃M
12

 ≡ µ · B̃k. (5.61b)

for k ≥ 1.

Proof of Exponentiation

Plugging the ansatz (5.59) into the n = 0 solution of the wave function (5.55), and

using relation (5.48), results in exponential wave functions. Expressing the variables

in terms t, x and v
(i)
n , v̄

(i)
n the expression for the bms3-block given in (5.53) reads

B∆tot,ξtot;∆,ξ(t, x)

∼ t∆−∆1−∆2e
x
t

(ξ−ξ1−ξ2)

∫
C∞

(
∞∏
n=1

16n2µ4 d2v(1)
n d2v(2)

n

)
exp

[
µ2I(t, x; v, v̄)

]
,

(5.62)

3See appendix B in [4] for the proof of uniqueness for the functions appearing in the ansatz (5.59).
4The n = −1 equation may be used to reinstate the dependence on the second set of variables.
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5 BMS Symmetry and the Oscillator Construction

with the definitions

I(t, x; v, v̄) = −4
∞∑
n=1

n
(
v(1)
n v̄(2)

n + v(2)
n v̄(1)

n

)
+ S(t, x; v) + S(v) . (5.63)

That the overall factor of µ2 in the exponential function appears as a consequence of

the rescaling (5.57).

The semiclassical limit is implemented by taking µ → ∞; in this regime the expo-

nent of the exponential function in (5.62) is large and the integral is dominated by the

stationary points of I(t, x; v, v̄) – it is then possible to use the saddle-point approxi-

mation in order to evaluate the integral. The stationary points (w, w̄) are found by

extremising I(t, x; v, v̄), they satisfy5

w(1)
m =

1

4m

∂S̄

∂v̄
(2)
m

∣∣∣∣∣
v̄(i)=w̄(i)

, w(2)
m =

1

4m

∂S̄

∂v̄
(1)
m

∣∣∣∣∣
v̄(i)=w̄(i)

, (5.64a)

w̄(1)
m =

1

4m

∂S

∂v
(2)
m

∣∣∣∣∣
v(i)=w(i)

, w̄(2)
m =

1

4m

∂S

∂v
(1)
m

∣∣∣∣∣
v(i)=w(i)

. (5.64b)

Plugging the stationary points (5.64) into the integrand of equation (5.62) results in

the saddle-point approximation of a bms3-block

B∆tot,ξtot;∆,ξ(t, x) ≈ t∆−∆1−∆2 exp

[
x

t
(ξ − ξ1 − ξ2) + µ2I(t, x;w, w̄)

]
, (5.65)

where the overall factor 16n2µ4 in (5.62) cancels with the determinant of the Hessian

evaluated at the stationary point. The factor t∆−∆1−∆2 may be expressed as an expo-

nential of a logarithm and thus the bms3-block takes a unique exponential form in the

semiclassical limit [4].

5.3.2 Perturbatively Heavy Vacuum bms3-block

Two examples of bms3-blocks belonging to the vacuum module BcL,cM
0,0 will be computed

in the following, using the oscillator construction presented in this chapter and the

saddle-point approximation outlined in section 5.3.1. The perturbatively heavy vacuum

bms3-block will be the first example; here ∆ = ξ = 0 and the external parameters ∆i

and ξi are infinitesimal and of the same order ε. For simplicity the external operators

are pairwise identified such that ∆1 = ∆2, ξ1 = ξ2 and ∆3 = ∆4, ξ3 = ξ4. The scaling

dimension and rapidity are set to zero by choosing ∆̃ = ξ̃ = 0 before taking µ→∞.

5It is for simplicity assumed that there exists only a single stationary point (w, w̄).
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5.3 Semiclassical bms3-blocks

Analytic Behaviour

When ξ = ∆ = 0 the coefficients defined in equations (5.26) become purely real due

to negative expressions under the square root; choosing the branch
√
−1 = +i the

resulting coefficients read

Ak = −
√
cM

48
(k − 1) ≡ A+

k , Bk = − cL

2
√

48cM

(k − 1) ≡ B+
k , (5.66a)

Âk = −
√
cM

48
(k + 1) ≡ A−k , B̂k = − cL

2
√

48cM

(k + 1) ≡ B−k . (5.66b)

The absence of imaginary terms in the above expressions renders them immune to

the complex conjugation defined with the overline operation; consequently the bms3

generators ln and mn, and by extension the differential equations (5.60), become in-

dependent of their barred counterparts.6 This motivates a new notation for the bms3

generators, namely ln ≡ l+n , mn ≡ m+
n and l̄n ≡ l−n , m̄n ≡ m−n , where the superscripts

correspond to the superscripts of the coefficients (5.66) which appear in their respective

expressions.

The ineffectiveness of the overline operation means that the relation between the

second-level wave functions, given in equation (5.48), is invalidated – there are instead

two independent wave functions which are defined with respect to the notation in

equation (5.53) as

ψ∆1,ξ1;0,0(t, x, 0, 0; v) ≡ ψ+
∆1,ξ1;0,0(t, x, 0, 0; v), (5.67a)

ψ∆3,ξ3;0,0(1, 0, 0, 0; v) ≡ ψ−∆3,ξ3;0,0(1, 0, 0, 0; v̄), (5.67b)

where the superscripts of the wave functions are the same as the superscripts of the

generators which appear in their differential equations. Subsequently, the n = 0 equa-

tions are independent of the coefficients (5.66) which means that the partial solution

(5.55) may be used to immediately deduce the forms of the wave functions

ψ+
∆1,ξ1;0,0(t, x, 0, 0; v) = t−2∆1 e−2ξ1

x
t F+(η, ν), (5.68a)

ψ−∆3,ξ3;0,0(1, 0, 0, 0; v̄) = F−(η̄, ν̄). (5.68b)

Following the reasoning of section 5.3.1 exponential ansätze for the wave functions are

given as

F+(σ, κ) = exp
[
µ2S+(σ, κ)

]
, F−(σ̄, κ̄) = exp

[
µ2S−(σ̄, κ̄)

]
. (5.69)

6This situation was alluded to below equations (5.26).
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The two functions S+ and S− must be determined separately.

Solving the Differential Equations

The differential equations (5.60) are general enough that their expressions may serve

as equations for the wave functions (5.67) given the appropriate substitutions. For

ψ+
∆1,ξ1;0,0(t, x, 0, 0; v) they read

0 =
∞∑
n=1

n
(
σn
(
∂σk+n

S+ − ∂σnS+
)

+ κn
(
∂κk+n

S+ − ∂κnS+
))

− 1

4

k−1∑
n=1

∂σnS
+ ∂κk−nS

+ + Ã+
k ∂σkS

+ + B̃+
k ∂κkS

+ − ∆̃1(k − 1),

(5.70a)

0 =
∞∑
n=1

nσn
(
∂κk+n

S+ − ∂κnS+
)
− 1

8

k−1∑
n=1

∂κk−nS
+ ∂κnS

+ + Ã+
k ∂κkS

+ − ξ̃1(k − 1);

(5.70b)

and for ψ−∆3,ξ3;∆,ξ(1, 0, 0, 0; v̄) they read

0 =
∞∑
n=1

n
(
σ̄n
(
∂σ̄k+n

S− − ∂σ̄nS−
)

+ κ̄n
(
∂κ̄k+n

S− − ∂κ̄nS−
))

− 1

4

k−1∑
n=1

∂σ̄nS
− ∂κ̄k−nS

− + Ã−k ∂σ̄kS
− + B̃−k ∂κ̄kS

− − ∆̃3(k − 1),

(5.71a)

0 =
∞∑
n=1

nσ̄n
(
∂κ̄k+n

S− − ∂κ̄nS−
)
− 1

8

k−1∑
n=1

∂κ̄k−nS
− ∂κ̄nS

− + Ã−k ∂κ̄kS
− − ξ̃3(k − 1),

(5.71b)

where the tilde denotes quantities which are kept fixed in the limit µ→∞.

The infinitesimal nature of the external scaling dimensions and rapidities allows the

equations (5.70) and (5.71) to be simplified. S+ and S− may be treaded as expansions

in the infinitesimal parameters ∆̃1, ξ̃1 and ∆̃3, ξ̃3, respectively, with leading order

ε.7 The leading order of equations (5.70) and (5.71) is ε, hence terms quadratic in

derivatives of S± are of sub-leading order ε2 and may be dropped. Moreover, the saddle

point coordinates (5.64) – using the expansions of S± – have the leading order ε; this

means that products of oscillator variables with S± are sub-leading when evaluated

at the saddle point – for the current purposes such terms may be dropped, too. The

7The leading terms of S+(σ, κ) and S−(σ̄, κ̄) may be constant functions of order one. Such constant
functions only contribute to the bms3-block as inconsequential multiplicative factors and may thus
be dropped.
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equations (5.70) thus reduce to the linear differential equations

0 = Ã+
k ∂σkS

+ + B̃+
k ∂κkS

+ − ∆̃1(k − 1) +O
(
ε2
)
, (5.72a)

0 = Ã+
k ∂κkS

+ − ξ̃1(k − 1) +O
(
ε2
)
, (5.72b)

while (5.71) become

0 = Ã−k ∂σ̄kS
− + B̃−k ∂κ̄kS

− − ∆̃3(k − 1) +O
(
ε2
)
, (5.73a)

0 = Ã−k ∂κ̄kS
− − ξ̃3(k − 1) +O

(
ε2
)
, (5.73b)

where the omitted terms are indicated by their order at the stationary point. Plug-

ging the necessary quantities into the differential equations (5.72b) and (5.73b), and

integrating, results in

S+(σ, κ) = −
√

48

c̃M

ξ̃1

∞∑
n=1

κn + f(σ) +O
(
ε3
)
, (5.74a)

S−(σ̄, κ̄) = −
√

48

c̃M

ξ̃3

∞∑
n=1

n− 1

n+ 1
κ̄n + g(σ̄) +O

(
ε3
)
, (5.74b)

with constants of integration f(σ) and g(σ̄). The functions f(σ) and g(σ̄) are deter-

mined by integrating the equations (5.72a) and (5.73a) after the insertion of the above

results; this yields

f(σ) = −
√

48

c̃M

(
∆̃1 − ξ̃1

c̃L

2c̃M

) ∞∑
n=1

σn +O
(
ε3
)
, (5.75a)

g(σ̄) = −
√

48

c̃M

(
∆̃3 − ξ̃3

c̃L

2c̃M

) ∞∑
n=1

n− 1

n+ 1
σ̄n +O

(
ε3
)
, (5.75b)

where the integration constants have been set to zero. Using the variable transforma-

tions (5.56) and the rescalings (5.57) the leading order solutions for S± read

S+(t, x, 0, 0; v) ≈ −
√

48

c̃M

[(
∆̃1 − ξ̃1

c̃L

2c̃M

) ∞∑
n=1

tnv(1)
n + ξ̃1

∞∑
n=1

(
ntn−1xv(1)

n + tnv(2)
n

)]
,

(5.76a)

S−(1, 0, 0, 0; v̄) ≈ −
√

48

c̃M

[(
∆̃3 − ξ̃3

c̃L

2c̃M

) ∞∑
n=1

n− 1

n+ 1
v̄(1)
n + ξ̃3

∞∑
n=1

n− 1

n+ 1
v̄(2)
n

]
. (5.76b)

The above solutions for S+ and S− are of order ε2 when evaluated at the saddle point.
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Saddle-point Approximation

The oscillator construction formula for the saddle-point approximation of a bms3-block

at the stationary point (w, w̄) is given by equation (5.65) – it is therefore necessary to

determine

I(t, x;w, w̄) = −4
∞∑
n=1

n
(
w(1)
n w̄(2)

n + w(2)
n w̄(1)

n

)
+ S+(t, x;w) + S−(w̄). (5.77)

The coordinates of the stationary point may be found by substituting the solutions

(5.76) into the formulae (5.64), this yields

w(1)
m =

1

4m

∂S−

∂v̄
(2)
m

= − 1

4m

√
48

c̃M

m− 1

m+ 1
ξ̃3, (5.78a)

w(2)
m =

1

4m

∂S−

∂v̄
(1)
m

= − 1

4m

√
48

c̃M

m− 1

m+ 1

(
∆̃3 − ξ̃3

c̃L

2c̃M

)
, (5.78b)

w̄(1)
m =

1

4m

∂S+

∂v
(2)
m

= − 1

4m

√
48

c̃M

ξ̃1t
m, (5.78c)

w̄(2)
m =

1

4m

∂S+

∂v
(1)
m

= − 1

4m

√
48

c̃M

tm
(

∆̃1 − ξ̃1
c̃L

2c̃M

+ ξ̃1m
x

t

)
. (5.78d)

It is sensible to consider the terms of (5.77) separately. Plugging the expressions

(5.78) into the sum of oscillator variables results in

−4
∞∑
n=1

n
(
w(1)
n w̄(2)

n + w(2)
n w̄(1)

n

)
= − 2

c̃M

[(
∆̃3ξ̃1 + ∆̃1ξ̃3 − ξ̃3ξ̃1

c̃L

c̃M

)
F(t) + ξ̃3ξ̃1x∂tF(t)

]
,

(5.79)

which follows from the definition

∞∑
n=2

n− 1

n(n+ 1)
tn =

t2

6
F2 1 (2, 2; 4; t) ≡ 1

6
F(t), (5.80)

with the hypergeometric function F2 1 (2, 2; 4; t). Moreover, F(t) satisfies the identity

F(t) = 6

(
t− 2

t
ln(1− t)− 2

)
. (5.81)

Evaluating S+(t, x; v) and S−(v̄) at the stationary point (w, w̄) yields the same result
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for both functions,

S+(t, x;w) = S−(w̄) =
2

c̃M

[(
∆̃3ξ̃1 + ∆̃1ξ̃3 − ξ̃3ξ̃1

c̃L

c̃M

)
F(t) + ξ̃3ξ̃1x∂tF(t)

]
. (5.82)

The expression for the perturbatively heavy vacuum bms3-block is found by using

(5.79) and (5.82) in (5.77) and plugging the expression into (5.65); the result reads

B∆1,3,ξ1,3;0,0(t, x)

≈ t−2∆1 exp

−2ξ1
x

t
+

2

cM

((
∆3ξ1 + ∆1ξ3 − ξ3ξ1

cL

cM

)
F(t) + ξ3ξ1x∂tF(t)

) ,
(5.83)

where factors of µ have been absorbed by the non-tilde quantities.

5.3.3 Heavy-light Vacuum bms3-block

The second example is the heavy-light vacuum bms3-block, which has two heavy and

two light external operators. It it still appropriate to pairwise identify ∆1 = ∆2,

ξ1 = ξ2 and ∆3 = ∆4, ξ3 = ξ4, and the vacuum block means that ∆ = ξ = 0. The light

operators have infinitesimal scaling dimensions and rapidities of order ε, as in section

5.3.2, while those of the heavy operators are of order one. ∆1, ξ1 are assigned to the

light operators and ∆3, ξ3 to the heavy operators; the quantities which are kept fixed

in the semiclassical limit share the order of these quantities.

Differential Equations

The heavy-light vacuum bms3-block will be determined in a similar fashion as in section

5.3.2. The analysis of equations containing the infinitesimal ∆̃1 and ξ̃1 is unchanged

from that of section 5.3.2; hence the solution for S+ is still given by (5.76a). However,

the finite nature of ∆̃3 and ξ̃3 means that the discussion which leads to the linear

differential equations (5.71) no longer holds; the differential equations and solution for

S− must thus be re-considered.

An appropriate ansatz for S−(σ̄, κ̄) will be motivated by its behaviour at the saddle-

point, and may be found by identifying the lowest order contributions to I(t, x;w, w̄)

given by equation (5.77). The stationary-point coordinates w̄
(i)
m are given by (5.78c)

and (5.78d) and are of infinitesimal order ε, while the coordinates w
(i)
m will be of order

one; hence the sum of oscillator-variable products in I(t, x;w, w̄) is of order ε. Similarly,

from the solution (5.76a) one concludes that S+(t, x;w) is of order ε. Therefore S−(w̄)

may only contribute with terms which are at most order ε since higher orders are sub-
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5 BMS Symmetry and the Oscillator Construction

leading in the saddle-point approximation. The variables κ̄n and σ̄n are of order ε when

evaluated at the stationary point and hence S−(σ̄, κ̄) should at most be linear in its

variables – a suitable ansatz thus reads8

S−(σ̄, κ̄) =
∞∑
n=1

Cnσ̄n +
∞∑
n=1

Dnκ̄n, (5.84)

where the coefficients Cn and Dn depend on ξ̃3, ∆̃3. Plugging the above ansatz into

the differential equations (5.70) yields

0 =
∞∑
n=1

n
(
σ̄n (Ck+n − Cn) + κ̄n (Dk+n −Dn)

)
− 1

4

k−1∑
n=1

CnDk−n

+ Ã−k Ck + B̃−k Dk − ∆̃3(k − 1) ,

(5.85a)

0 =
∞∑
n=1

nσ̄n (Dk+n −Dn)− 1

8

k−1∑
n=1

Dk−nDn + Ã−kDk − ξ̃3(k − 1). (5.85b)

The above equations have the leading order one and the variables σ̄n, κ̄n give rise

to sub-leading terms of order ε at the stationary point – thus terms containing these

variables may be dropped. The remaining set of equations takes the form of recurrence

relations, i.e.

0 = −1

4

k−1∑
n=1

CnDk−n − (k + 1)

√
c̃M

48
Ck − (k + 1)

c̃L

2
√

48c̃M

Dk − ∆̃3(k − 1) +O
(
ε
)
,

(5.86a)

0 = −1

8

k−1∑
n=1

Dk−nDn − (k + 1)

√
c̃M

48
Dk − ξ̃3(k − 1) +O

(
ε
)
, (5.86b)

where the omitted terms are indicated by their order at the stationary point (w, w̄) and

Ã−k and B̃−k are given by (5.66b). Note that for k = 1 the above recurrence relations

fix the initial values C1 = D1 = 0.

The method of generating functions may be used to turn the recurrence relations

(5.86) into differential equations. To this end, the appropriate ansätze are

C(τ) =
∞∑
n=1

Cnτ
n and D(τ) =

∞∑
n=1

Dnτ
n . (5.87)

As a consequence of the above ansätze C(0) = D(0) = 0 and the constraints C1 =

D1 = 0 become the boundary conditions C ′(0) = D′(0) = 0.

8One may again ignore constant terms in the ansatz for S− since those contribute as insignificant
multiplicative factors to the bms3-block.
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5.3 Semiclassical bms3-blocks

The following steps are needed to express the recurrence relation (5.86b) as a differ-

ential equation. First, (5.86b) is multiplied across by
∑∞

k=2 τ
k, which is allowed since

the equation must hold for all values of k; this gives,

− 1

8

∞∑
k=1

k−1∑
n=1

Dk−nDnτ
k −

√
c̃M

48

∞∑
k=1

(k + 1)Dkτ
k −

∞∑
k=1

(k − 1)ξ̃3τ
k = 0 . (5.88)

The powers of τ may be split in the first term, hence

− 1

8

∞∑
k=1

k−1∑
n=1

Dk−nDnτ
k = −1

8

∞∑
k=1

k−1∑
n=1

(
Dk−nτ

k−n
)

(Dnτ
n) . (5.89)

To extract D(τ)-terms from the above expression the two sums must be rewritten as

∞∑
k=1

k−1∑
n=1

≡
∞∑
n=1

∞∑
k=n+1

, (5.90)

such that the first term in (5.88) becomes

− 1

8

∞∑
n=1

Dnτ
n

∞∑
k=n+1

Dk−nτ
k−n = −1

8
D(τ)2 . (5.91)

Taking out a factor of τ in term proportional to k in the second term of (5.88) it

becomes the derivative of D(τ), i.e.

√
c̃M

48

τ ∞∑
k=1

kDkτ
k−1 +

∞∑
k=1

Dkτ
k

 =

√
c̃M

48

(
τ∂τD(τ) +D(τ)

)
. (5.92)

Finally, the last term of (5.88) can be rewritten in terms of the geometric series

ξ̃3

∞∑
k=1

(k − 1)τ k = ξ̃3

∞∑
k=1

kτ k−1τ 2 = ξ̃3
τ 2

(1− τ)2
. (5.93)

Combining the above re-expressions one arrives at

∂τ
(
τ ·D(τ)

)
= −1

8

√
48

c̃M

(
D(τ)

)2 −
√

48

c̃M

ξ̃3τ
2

(1− τ)2
+O(ε2). (5.94a)
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Applying the same reasoning to (5.86a) results in a second differential equation

∂τ
(
τ · C(τ)

)
= −

√
3

c̃M

C(τ)D(τ)−
√

48

c̃M

∆̃3τ
2

(1− τ)2
− c̃L

2c̃M

∂τ
(
τ ·D(τ)

)
+O(ε2).

(5.94b)

The solution procedure of the differential equations (5.94) is detailed in appendix D

of [4]; to leading order in infinitesimal quantities the solutions read

C(τ) ≈ −
τ(1− τ)β3−1

(
24∆̃3 + c̃L(β2

3 − 1)
)

√
3c̃M

(
(1− τ)β3 − 1

)2 ln(1− τ)

− 12∆̃3τ√
3c̃Mβ3

(
(1− τ)β3 + 1

(τ − 1)
(
(1− τ)β3 − 1

))

− c̃L

2
√

3c̃M(τ − 1)

(
τ − 2− τ

β3

(1− τ)β3 + 1(
(1− τ)β3 − 1

)) ,
(5.95a)

D(τ) ≈ −
√
c̃M

3

1

1− τ

(
2− τ + β3τ

(
1− 2

1− (1− τ)β3

))
, (5.95b)

with

β3 =

√
1− ξ̃3

24

c̃M

. (5.96)

The ansatz (5.84) is expressed in terms of the coefficients Cm and Dm, which can be

extracted from the solutions for C(τ) and D(τ) above; however, such an analysis is not

necessary to perform the saddle point and to determine the bms3-block.

Implementing the Saddle-point Approximation

In terms of the rescaled oscillator variables (5.57) the solution for S+ in equation (5.76a)

and ansatz for S− given by (5.84) read

S+(t, x, 0, 0; v) ≈ −
√

48

c̃M

[(
∆̃1 − ξ̃1

c̃L

2c̃M

) ∞∑
n=1

tnv(1)
n + ξ̃1

∞∑
n=1

(
ntn−1xv(1)

n + tnv(2)
n

)]
,

(5.97a)

S−(1, 0, 0, 0; v̄) =
∞∑
n=2

(
Cnv̄

(1)
n +Dnv̄

(2)
n

)
, (5.97b)

where C1 = D1 = 0 has been used such that the sum in S− starts at n = 2.

The next step in determining the saddle-point approximation of the bms3-block is

to evaluate I(t, x;w, w̄). Using (5.97) the coordinates of the stationary point take the
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form

w(1)
m =

1

4m
Dm , w(2)

m =
1

4m
Cm, (5.98a)

w̄(1)
m = − 1

4m

√
48

c̃M

ξ̃1t
m, w̄(2)

m = − 1

4m

√
48

c̃M

tm
(

∆̃1 − ξ̃1
c̃L

2c̃M

+m ξ̃1
x

t

)
. (5.98b)

Inserting the above values into the definition (5.77) yields

I(t, x;w, w̄) = −
√

48

c̃M

∞∑
m=2

1

4m
tm
(
ξ̃1Cm + ∆̃1Dm − ξ̃1

c̃L

2c̃M

Dm +m ξ̃1
x

t
Dm

)
. (5.99)

The terms containing coefficients Cm and Dm, defined in equation (5.87), may be

expressed as the following integrals

∞∑
m=1

1

m
Cmt

m =

∫ t

0

dτ
C(τ)

τ
and

∞∑
m=1

1

m
Dmt

m =

∫ t

0

dτ
D(τ)

τ
; (5.100)

hence

I(t, x;w, w̄) = −1

4

√
48

c̃M

(
ξ̃1

∫ t

0

dτ
C(τ)

τ
+ ∆̃1

∫ t

0

dτ
D(τ)

τ
− ξ̃1

c̃L

2c̃M

∫ t

0

dτ
D(τ)

τ
+ ξ̃1

x

t
D(t)

)
.

(5.101)

Evaluating integrals in (5.100) using the solutions (5.95) gives

t∫
0

dτ
D(τ)

τ
=

√
c̃M

3

(
2 ln
(

1− (1− t)β3

)
− (β3 − 1) ln(1− t)− 2 ln(t)

)
, (5.102)

and

t∫
0

dτ
C(τ)

τ
=

c̃L√
3c̃M

(
ln
(

1− (1− t)β3

)
− ln(t)

)
+

24√
3c̃Mβ2

3

(
∆̃3 −

c̃L

c̃M

ξ̃3

)

+
1

2
√

3c̃Mβ3

24∆̃3 + c̃L(β3 − 1) + (1− t)β3

(
24∆̃3 + c̃L(β3 − 1)(1 + 2β3)

)
1− (1− t)β3

 ln(1− t).

(5.103)

Using the above expressions in (5.101) and in turn plugging that into (5.65) the heavy-
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light vacuum bms3-block takes the form

BHHLL
∆1,3,ξ1,3;0,0(t, x) ≈

(
(1− t)β3−1

(1− (1− t)β3)2

)∆1

exp

[
−ξ1x

(1− t)β3(1 + β3) + β3 − 1

(1− t)(1− (1− t)β3)

]

× exp

 12ξ1

cMβ3

(
ξ3
cL

cM

−∆3

)(
1 + (1− t)β3

1− (1− t)β3

)
ln(1− t)

,
(5.104)

where factors of µ are absorbed by the non-tilde quantities. This result generalises the

heavy-light vacuum bms3-block presented in [193]. Moreover, (5.104) may be consis-

tently (modulo constant prefactors) transformed into the perturbatively heavy vacuum

bms3-block (5.83) by choosing ∆3, ξ3 to be infinitesimal; expanding β3 to first order in

ξ3; and keeping terms up to second order in infinitesimal quantities.
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6 Discussion and Outlook

The work presented in this thesis has considered aspects of symmetries and symmetry

breaking in several contexts: in hydrodynamics, in bottom-up holography, and within

the scope of flatspace holography.

Spontaneous breaking of translational invariance was considered from the perspec-

tive of hydrodynamics. It is well-known that spontaneous breaking of translational

invariance gives rise to phonons and elastic properties; the main focus of this thesis

was novel effects associated to the so-called strain pressure. Strain pressure appears

in systems that spontaneously break translational invariance but which do not min-

imise the free energy – due to external strain which may, for instance, be imposed by

boundary conditions. The main contribution to the topic by the work presented in this

thesis pertains to the temperature derivative of the strain pressure, which was shown

to be generically non-zero even for thermodynamically stable systems that minimise

the free energy [2]. Strain pressure and its temperature derivative directly contribute

to the hydrodynamic dispersion relations in the longitudinal sector of the dynamics,

while implicitly contributing to thermodynamic quantities such as the momentum sus-

ceptibility. In the conformal limit, which is relevant for applications to holography, the

effects of strain pressure only explicitly contribute to the diffusive mode of the longitu-

dinal sector of the hydrodynamics. The temperature derivative of the strain pressure

also allows for a bulk elastic modulus in thermodynamically stable, conformally invari-

ant systems.

A superfluid may be described by including the effects of spontaneous U(1) symmetry

breaking into a hydrodynamic analysis. This well-established phenomenon was consid-

ered in a novel setting by the addition of a small explicit breaking of U(1) symmetry [3].

Such a pseudo-spontaneous regime was achieved via a modification of the conservation

equation for the U(1) symmetry current, rendering the current non-conserved. The

modification consisted of a term corresponding to a mass for the U(1) Goldstone boson,

as well as a term responsible for charge relaxation. Moreover, phase relaxation – which

acts as a dampening for the Goldstone boson and which may appear independently of

the other explicit breaking effects – was included via the Josephson relation, i.e. the

equation which governs the dynamics of the Goldstone. The dynamics of the system

were for simplicity, and later applicability, presented for a conformally invariant system.
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It was found that the Goldstone mass, charge relaxation and phase relaxation all con-

tribute to the dynamics of the system. Without explicit breaking a superfluid supports

several propagating sound modes: first and second sound, and a mode – called fourth

sound – which appears when the dynamics of the energy-momentum tensor are decou-

pled (the probe limit). It was shown that – in the presence of explicit U(1) symmetry

breaking and phase relaxation – the mode which would constitute first sound turned

into a sound mode of a normal conformal fluid, while second and fourth sound gained

a complex gap and became quadratically, rather than linearly, dependent on the mo-

mentum. The sum of attenuation constants in the purely spontaneous state was found

to be equal to the sum of the analogous coefficients in the pseudo-spontaneous phase.

Moreover, a Gell-Mann-Oaks-Renner relation for the mass of the pseudo-Goldstone

was found (in the probe limit) by allowing for a momentum-dependent susceptibility

and imposing symmetry of the off-diagonal retarded Green’s functions. In contrast

to previous work considering phase relaxation in superfluids, the phase relaxation did

not appear in the probe-limit AC conductivity when the U(1) was explicitly broken

(without charge relaxation); nevertheless the usual pole at zero frequency was absent

– but without a Drude-peak – and the DC conductivity was finite.

The hydrodynamic framework with spontaneously broken translational invariance

was examined using a holographic massive gravity model – a bottom-up model which

gives rise to spontaneous breaking of translational invariance in the dual field the-

ory [1,2]. The massive gravity model was considered in two configurations which were

called strained and unstrained; the unstrained set-up was constructed such that its

free energy was minimised, whereas the strained models did not minimise their free

energy. The unstrained configurations had not previously been considered in this con-

text. Holographic formulae for several thermodynamic and hydrodynamic quantities,

including the strain pressure and its temperature derivative, were presented. Numerical

techniques were utilised to successfully compare the dynamics of specific quasi-normal

modes to hydrodynamic dispersion relations, the implications of which were twofold: a

discrepancy between holography and previous hydrodynamic frameworks was resolved;

and the presence and importance of the temperature derivative of the strain pressure

for unstrained configurations was confirmed.

The hydrodynamic framework for pseudo-spontaneous U(1) symmetry breaking was

tested against the probe-limit dynamics of two distinctly modified versions of the stan-

dard holographic superfluid model [3]. The first modification was realised by intro-

ducing a source for the charged operator which is responsible for the superfluid phase

transition in the dual field theory; for small values of the source this results in pseudo-

spontaneous breaking of U(1) symmetry in the dual field theory. As a consequence of

this breaking method the superfluid phase transition became smeared, i.e. no longer
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sharp at a critical temperature – an effect which grew with the amount of explicit break-

ing. Moreover, this model displayed a massive pseudo-Goldstone boson and a phase

relaxation induced by explicit symmetry breaking, but no charge relaxation. The hy-

drodynamic derivation for the mass of the pseudo-Goldstone was shown to hold. The

appearance of an effective phase relaxation was observed when the U(1) symmetry was

explicitly broken; for small amounts of explicit breaking the induced phase relaxation

was shown to obey a relation between the pseudo-Goldstone mass and Goldstone diffu-

sivity, adding evidence for a proposed universal. Moreover, the dispersion relations of

the lowest quasi-normal modes were successfully matched to hydrodynamic formulae

for a range of small explicit breakings. The finite nature of the probe-limit AC and

DC conductivities was also confirmed.

The second modification of the holographic superfluid model was made by introduc-

ing a mass for the bulk gauge field; for small masses the dual field theory displays

pseudo-spontaneous U(1) symmetry breaking, but with substantially different proper-

ties compared to the first modification. The phase transition remained sharp, as in a

normal superfluid, but the critical temperature and value of the condensate increased

with the explicit breaking. This model displayed charge relaxation which (for small

breakings) obeyed a first-order formula depending on the mass of the bulk gauge field,

but the Goldstone remained massless and phase relaxation was absent. The behaviour

of the lowest quasi-normal modes was consistent with the hydrodynamic dispersion

relations mentioned previously, for small breakings.

Formal aspects of Bondi-Meltzer-Sachs (BMS) symmetry have also been considered,

motivated by its relevance to a potential holographic duality involving flat spacetimes.

A novel representation, in terms of the oscillator formalism, was found for the highest

weight representation of the two-dimensional bms3 algebra [4] – this was achieved by

taking a non-relativistic contraction of a linear-dilaton-like theory. As a test of the

representation the Gram matrix was calculated, which was in agreement with previ-

ous results using other methods. Some BMS field theory quantities – namely the two

point correlation function and two bms3-blocks – were calculated by implementing the

tool-set which accompanies the oscillator construction. The bms3-blocks were consid-

ered in the semiclassical limit, which allowed them to be calculated by a saddle-point

approximation – as a consequence the exponentiation of bms3-blocks in the semiclassi-

cal limit was proven. Two examples of semiclassical bms3-blocks were computed: the

pertubatively heavy, and heavy-light vacuum bms3-blocks. The two-point correlation

function was in agreement with existing literature while the heavy-light vacuum bms3-

block generalised previous results; the pertubatively heavy vacuum bms3-block was

consistent with the heavy-light vacuum bms3-block.

*
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There are several avenues worth exploring further.

Future hydrodynamic work may be approached from both theoretical and practi-

cal directions. It would be of great interest to understand the limits of incorporating

explicit symmetry breaking into a hydrodynamic framework, with or without spon-

taneous symmetry breaking. Considering a first-principles approach to this topic –

rather than bending the hydrodynamic rules as in this thesis – may be a worthwhile

endeavour that could yield a framework with a larger range of applicability than what

is currently available. Nevertheless, extending the methodology considered in this the-

sis to more involved, perhaps more realistic scenarios may prove to be useful for initial

explorations. Along such practical lines it would be of interest to search for signatures

of a universal phase relaxation in physical systems exhibiting pseudo-spontaneous sym-

metry breaking. Similarly, understanding the relevance, and detecting the presence,

of strain pressure in condensed matter or solid state systems constitutes another com-

pelling continuation of the work presented in this thesis.

The applied holography perspective considered in this thesis will likely continue to

provide useful guidance for research into the principles of hydrodynamics, as well as

being effective at testing new findings. The investigations of this thesis may be directly

extended upon by including backreaction into the analysis of section 4.2, or by finding

a thermodynamically stable holographic model for spontaneous translational symme-

try breaking which does not exhibit unphysical behaviour of the hydrodynamic modes.

Moreover, building a holographic model which displays phase relaxation without ex-

plicit symmetry breaking would be of interest. Constructing bottom-up holographic

models which capture the full dynamics of realistic systems will however continue to

be a difficult task.

It would be interesting to apply the oscillator construction of bms3 to compute bms3-

blocks – semiclassical or otherwise – beyond the vacuum module, as well as blocks

containing more than four external operators. Another possibility is to consider bms3-

blocks for backgrounds other than the plane – for instance on the torus or on the

cylinder. Furthermore, including supersymmetry could yield additional constraining

powers. Similar considerations would also be of interest for the oscillator construction

of the Virasoro algebra. For applications to unitary and ultra-relativistic theories it

would be important to find an oscillator construction for the induced representation

of bms3; this is perhaps the representation which is the most relevant for flatspace

holography. Finally, it would be valuable to adapt the oscillator formalism for higher-

dimensional incarnations of BMS or conformal symmetry.

Clearly the study of symmetry and symmetry breaking continues to present possi-

bilities to gain many further insights; hopefully the examples discussed above will be

returned to in future work.
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