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Abstract

Low availability of labeled training data often poses a fundamental limit to the accu-
racy of computer vision applications using machine learning methods. While these
methods are improved continuously, e.g., through better neural network architectures,
there cannot be a single methodical change that increases the accuracy on all possible
tasks. This statement, known as the no free lunch theorem, suggests that we should
consider aspects of machine learning other than learning algorithms for opportunities
to escape the limits set by the available training data.

In this thesis, we focus on two main aspects, namely the nature of the training data,
where we introduce structure into the label set using concept hierarchies, and the
learning paradigm, which we change in accordance with requirements of real-world
applications as opposed to more academic setups.

Concept hierarchies represent semantic relations, which are sets of statements such
as “a bird is an animal”. We propose a hierarchical classifier to integrate this domain
knowledge in a pre-existing task, thereby increasing the information the classifier has
access to. While the hierarchy’s leaf nodes correspond to the original set of classes,
the inner nodes are “new” concepts that do not exist in the original training data.

However, we pose that such imprecise labels are valuable and should occur natu-
rally, e.g., as an annotator’s way of expressing their uncertainty. Furthermore, the
increased number of concepts leads to more possible search terms when assembling
a web-crawled dataset or using an image search. We propose CHILLAX, a method
that learns from semantically imprecise training data, while still offering precise
predictions to integrate seamlessly into a pre-existing application.

The common learning paradigm of “waterfall” learning, where training images
are first collected, then annotated and finally used for learning, does not align well
with real-world applications. When machine learning methods are used to assist
in research projects, e.g., camera trap image analysis, the training data is not fully
available from the beginning. Instead, it is slowly collected over time, and annota-
tion resources are also rarely available all at once. The lifelong learning framework
proposes a learning cycle which consists of repeated selections of unlabeled images,
annotations, and model updates.

We propose an active learning method to intelligently select images for annotation
in a lifelong object detection task, e.g., biodiversity monitoring. To increase the speed
of model updates, we adapt an incremental learning method to the object detector,
eliminating the need for expensive re-training from scratch. We further present
a working implementation of a full lifelong learning system used in a real-world
biodiversity monitoring project.
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Zusammenfassung

Die geringe Verfügbarkeit annotierter Trainingsdaten begrenzt häufig die mögli-
che Genauigkeit von Anwendungen der Bildverarbeitung auf der Grundlage von
maschinellen Lernverfahren. Obwohl diese Methoden stetig verbessert werden, z.B.
durch bessere neuronale Netzarchitekturen, kann es keine einzelne methodische
Veränderung geben, die die Genauigkeit auf allen möglichen Aufgabenstellungen
erhöht. Aufgrund dieses No Free Lunch-Theorems sollten wir uns auf andere Aspek-
te des maschinellen Lernens abseits von Lernalgorithmen konzentrieren, um die
Begrenzungen durch wenig verfügbare Trainingsdaten zu umgehen.

Die zwei Schwerpunkte dieser Arbeit betreffen einerseits die Beschaffenheit der
Trainingsdaten, deren Klassenmenge wir durch Konzepthierarchien Struktur verlei-
hen, und andererseits das Lernparadigma, das wir anpassen, um auf die Bedürfnisse
von Anwendungen in der echten Welt Rücksicht zu nehmen.

Konzepthierarchien sind Repräsentationen semantischer Relationen, also Mengen
von Aussagen wie “ein Vogel ist ein Tier.” Wir stellen einen hierarchischen Klassifi-
kator vor, der dieses Domänenwissen in eine bestehende Aufgabe integriert, sodass
dem Klassifikator mehr Information zugänglich ist. Die Blattknoten dieser Hierarchie
entsprechen der ursprünglichen Klassenmenge, während die inneren Knoten “neue”
Konzepte sind und in den ursprünglichen Trainingsdaten nicht direkt vorkommen.

Solche unpräzisen Annotationen sind unserer Anschauung nach allerdings wert-
voll, und sollten selbstverständlich vorkommen, z.B. damit Annotierende ihre Un-
sicherheit ausdrücken können. Außerdem gibt es durch die höhere Gesamtzahl an
Konzepten mehr mögliche Schlagworte, um Trainingsdaten durch einen Datensatz
aus Bildersuche zu erweitern. Wir stellen CHILLAX vor, eine Methode, die aus se-
mantisch unpräzisen Trainingsdaten lernt, aber dennoch präzise Vorhersagen liefert
und damit nahtlos in eine bestehende Anwendung integriert werden kann.

Das typische Paradigma des “Wasserfall”-Lernens, wobei Trainingsbilder erst ge-
sammelt, anschließend annotiert und letztendlich zum Lernen verwendet werden, ist
nicht gut auf Anwendungen in der echten Welt ausgerichtet. Wenn Forschungsprojek-
te maschinelle Lernverfahren einsetzen, z.B. bei der Analyse von Kamerafallenbildern,
sind die Trainingsdaten nicht von Anfang an voll verfügbar. Sie werden stattdessen
allmählich aufgenommen, und auch die personellen Ressourcen zur Annotation kön-
nen nicht alle auf einmal abgerufen werden. Das Framework des lebenslangen Lernens
schlägt einen Kreislauf vor, der aus wiederholten Auswahlen von nicht annotierten
Bildern, Annotationsanfragen und Modellaktualisierungen besteht.

Wir stellen eine Methode des aktiven Lernens vor, die Bilder für eine Objektde-
tektionsaufgabe, z.B. in der Biodiversitätsüberwachung, intelligent zur Annotation
auswählt. Um das Modell schneller zu aktualisieren, passen wir ein inkrementelles
Lernverfahren an den Detektor an. Zudem stellen wir eine vollständige Implemen-
tierung eines lebenslangen Lernsystems vor, die in einem echten Forschungsprojekt
zur Biodiversitätsüberwachung verwendet wird.
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1. Introduction

There is a global biodiversity crisis (cf. Cardinale et al. 2012; Vié, Hilton-Taylor, and
Stuart 2009; Vogel 2017) which poses a severe threat to our planet’s habitability. Its
main drivers include global phenomena such as climate change (cf. Thomas et al. 2004)
and local effects, e.g., habitat destruction (cf. Tilman et al. 1994). Visual monitoring
using camera traps (see section 7.3.2) is a key ingredient to shaping an appropriate
response and guiding policy.

At the same time, the raw images are not informative on their own. They require
analysis to estimate occupancy, abundance and other indicators, and the scale of
data generated from camera trap operations makes individual viewing of images by
biodiversity researchers infeasible. Automated processing using computer vision
and machine learning is the only practical option for long-term, continuous and
non-invasive biodiversity monitoring.

However, modern and highly accurate methods such as convolutional neural net-
works depend on large quantities of training data, which can be cost-prohibitive
considering the expertise required in order to produce reliable annotations. And
biodiversity research is only one of the applications of computer vision and machine
learning where data availability poses a fundamental limit to performance, and
therefore usefulness. General methodical improvements such as better neural net-
work architectures, loss functions etc. are not guaranteed to translate to any specific
problem, which is the subject of the no free lunch theorem (see section 2.1.1.5). Hence,
we should explore alternative solutions. In this thesis, we explore two main “escape
routes” out of such a situation, which simultaneously address further specific needs
of real-world applications (see section 1.1).

The first escape route concerns the training data. We make use of readily avail-
able concept hierarchies, e.g., the biological taxonomy, which constitute domain
knowledge that can be used in addition to the scarce training data. And as stated in
Shalev-Shwartz and Ben-David (2014, p. 40), “we can escape the hazards foreseen by
the No-Free-Lunch theorem by using our prior knowledge about a specific learning
task”. Accordingly, we leverage concept hierarchies using our probabilistic hierar-
chical classifier, integrating the domain knowledge contained therein for increased
accuracy without more requiring more training data.

However, that is only a first step. With concept hierarchies and our classifier,
we not only improve performance, but also gain access to imprecise training data.
Semantically imprecise data can occur when annotators are only certain of their label
up to a some level of precision, e.g., the family level, while their actual task is to
annotate species. If annotators were then forced to annotate at the species level, they
could introduce errors or refuse to annotate examples unless they are certain enough.
However, if they are allowed to select a less precise label, e.g., a genus or a family, they
can express their knowledge without loss of information or errors. Such a flexible
process is especially relevant for citizen science projects involving people of varying
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1. Introduction

expertise and enables a conscious trade-off between quality and quantity of labels.
Furthermore, when crawling the web for additional data, there is a higher number of
search terms. We propose methods for learning from such imprecise data as well as
probabilistic models of annotator precision.

The second escape route concerns the learning paradigm itself. We acknowledge
that the “waterfall” model of machine learning (see Data Science Process Alliance
2021), where a model is trained once and then used indefinitely, does not align
well with real-world applications. With camera traps for example, new data is
produced continuously, and distributing annotation sessions over time aligns them
more closely with working hours in a project. We propose active learning methods
to intelligently decide which unlabeled images are valuable enough to annotate
and integrate them with a lifelong learning system. Moreover, we consider the
human-machine interaction aspect and investigate a combination of our methods
with a fast annotation process that produces weak labels for object detection.

1.1. Requirements of Real-World Applications

In this section, we explore properties of machine learning and computer vision
applications in the real world, which are not reflected in a typical academic ma-
chine learning environment. The latter is discussed in terms of waterfall learning in
section 7.1.

The first property is the requirement of representative training data (see sec-
tion 2.1.1.7) sampled from an environment distribution. Representativeness implicitly
assumes that all annotations are “correct”, at least in terms of the distribution. How-
ever, human annotators are not perfect (cf. Russakovsky et al. 2015). Furthermore,
they are not all equally knowledgeable (cf. Chang et al. 2021), meaning that each an-
notator should be characterized by their own distribution. It is therefore challenging
to obtain completely representative training data using a group of human annotators,
and also to decide which samples represent the “real” distribution that should be
learned.

Similar concerns can be raised w.r.t. collecting the images, not only the labels. As-
suming a fixed environment distribution discounts the prospect of changes over time.
Whereas in reality, concepts naturally “drift” as time passes. And in a continuous
application such as camera trap analysis, the images simply are not available in full at
the beginning of a project. Instead, they are recorded over time, and older images lose
relevance as concepts and the environment change. Hence, a fixed distribution which
is sampled once to generate training data is not always a reasonable representation
of the real world.

If the environment distribution is allowed to change over time, and images are
represented by a continuous data stream, the annotation process has to be adapted as
well. As old images become irrelevant, so do the respective labels. Regular annotation
sessions have to be coordinated with the availability of new images to capture the
changing distribution. And as the training data changes, models derived from the
data require constant re-training as well.

2



1.2. Overview of Contributions

1.2. Overview of Contributions

This section gives on overview of our contributions in this thesis, which mainly
consist of methods that address the aforementioned requirements, and analyses of
failure cases as well as verification of assumptions made by our methods.

Hierarchical Classification Our hierarchical classifier, as proposed in section 5.2
and published in Brust and Denzler (2019a), integrates domain knowledge and serves
as the foundation for the following methods concerning imprecise data. From the
simple assumptions (see section 5.2.2) of subsumption informed by a hierarchy, e.g., “a
bird has to be an animal”, and a closed world, i.e., “everything is an object”, we derive
a probabilistic model that relates concepts. We use the term concept to differentiate
from classes, which are always assumed to be mutually exclusive (whereas bird
and animal are not). To integrate the probabilistic model into a deep learning setup,
we transform it into a label encoding and a loss function in section 5.2.4. While our
hierarchical classifier is the foundation for the following contributions, it also has
merit on its own as a way of leveraging domain knowledge to improve accuracy.

Learning from Imprecise Data With imprecise data, we allow any concept in a
hierarchy as a label to utilize the individual expertise of each annotator. CHILLAX
(class hierarchies for imprecise label learning and annotation extrapolation) is pro-
posed in section 5.3.2 and published in Brust, Barz, and Denzler (2021b). The method
is based on the aforementioned hierarchical classifier. It interprets imprecise labels
such as animal as uncertain w.r.t. subsumed concepts, meaning “this is certainly
an animal, but I’m unsure which”. CHILLAX learns from such labels, but makes
precise predictions at the same time, i.e., it predicts only leaf nodes in the respective
hierarchy. With this capability, which we call extrapolation, we address the different
levels of expertise in individual annotators as described in section 1.1 and allow for
non-representative training data w.r.t. the label distributions. We further propose
a self-supervised strategy in section 5.3.3 which enables CHILLAX to learn from
effectively unlabeled images.

Lifelong Learning In chapter 7, we consider the specific needs of applications
where the environment distribution changes over time using the framework of
lifelong learning. An active learning method for object detection tasks is proposed in
section 7.2.1 and published in Brust, Käding, and Denzler (2019). Based on uncertainty
heuristics, it intelligently selects unlabeled images for annotation to maximize the
utility given a constrained labeling budget. Moreover, we propose a modification
to YOLO (Redmon et al. 2016) that enables incremental learning in section 7.2.2,
including the addition of new concepts as they are discovered. Incremental learning
significantly reduces training time as new data becomes available by eliminating the
need for re-training.

Real-World Applications We validate our methods not only on benchmark data,
but also apply them to three real-world biodiversity research applications. The first
application concerns moth species classification and is detailed in section 6.5. We map
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1. Introduction

the species in the dataset to the WikiSpecies database (see section 3.3.3.1) to obtain a
complete taxonomy. For each taxon, including genera, families etc., we download
images from Flickr and learn the resulting imprecise data using CHILLAX.

The second application, described in section 7.3 and published in Brust, Käding,
and Denzler (2020), highlights our contributions to lifelong learning in automated
camera trap setup. We implement and validate a complete lifelong learning system
that supports intelligent selection of unlabeled examples, fast incremental learning,
and can accept new annotations at any time. The system is developed specifically for
ease of use and the graphical user interface implementation is published separately
in Brust, Barz, and Denzler (2021a).

Our third application is detailed in section 7.4 and published in Brust et al. (2017).
It considers heuristics to use the combination of face detection and classification for
individual re-identification of gorillas. The heuristics are necessary to map the single
label per image to potentially multiple detected faces correctly. Annotators only have
to provide identification, while the face is detected automatically. This combination
of methods and the separation of concerns allows for high sample efficiency and fast
annotation times.

Analyses We utilize concept hierarchies for their domain knowledge and to intro-
duce structure to a set of labels such that annotators can produce imprecise labels
if they are uncertain. However, both use cases assume that the hierarchy is correct
and that its semantic relation aligns to the visual properties of the corresponding
dataset. We conduct a study, detailed in section 6.6.1 and published in Brust and
Denzler (2019b), where we actually measure the visual-semantic correspondence on
a benchmark dataset to validate the latter assumption. In section 6.6.2, we consider
faulty hierarchies and determine the effects of “swapped” relations on the accuracy
of our hierarchical classifier. We further propose a synthetic dataset with perfect
visual-semantic correspondence in section 6.6.2.2 for additional insight by comparing
it to real-world data.

Since part of our experiments concerning imprecise data rely on models of anno-
tator precision, we conduct an investigation using Flickr to validate these models,
which is published in Brust, Barz, and Denzler (2021b) and described in section 6.6.3.
We determine precision distributions over the image title, caption and further meta-
data, using our algorithm for mapping arbitrary text to WordNet synsets, which we
propose in section 5.1.2.

Open-Source Software We publish the source code of implementations of our
methods wherever possible, and bundle them in reusable projects to encourage
further development and replication. The main software product of this thesis is
CHIA1, which implements our hierarchical classifier (see section 5.2), connections to
knowledge bases (see section 3.3) as well as benchmark datasets (see section 6.2.1).
CHILLAX (see section 5.3.2) is published separately2, including the self-supervised
methods discussed in section 5.3.3.

1
https://github.com/cvjena/chia

2
https://git.inf-cv.uni-jena.de/brust/chillax
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1.3. Remainder of this Thesis

Our contributions in chapter 7 are implemented as part of our deep learning
framework CN243, which uses OpenCL for hardware acceleration. We also publish
the source code of Carpe Diem4, our graphical user interface for lifelong learning of
object detection tasks, which we discuss in detail in section 7.3.4.

All aforementioned projects are published under a 3-clause BSD license. This
license allows for commercial and private use, free distribution as well as modification.
It admits neither warranty nor liability.

1.3. Remainder of this Thesis

In the following, we briefly describe the structure of the thesis and the content of the
chapters following this one.

Chapter 2 introduces foundational concepts in machine learning. We define the
individual components of a machine learning system and make statements w.r.t.
learnability in section 2.1, where we also discuss basic methods and algorithms. In
section 2.2, we acknowledge overfitting as a general problem and detail validation
methods to tackle it. The tasks and challenges associated with computer vision for
machine learning are described in section 2.3. It further introduces feature represen-
tation, and we discuss deep learning as an alternative to hand-engineered features in
section 2.4.

The third chapter concerns concept hierarchies as one representation of semantic
knowledge. We give a formal introduction to concepts and semantic relations in
section 3.1. From these relations, we derive hierarchies and discuss their graph
representations in section 3.2. Finally, section 3.3 explores a large selection of sources
for concept hierarchies including linguistic, biological and medical subjects.

Chapter 4 lists previous work related to our own, where we focus on two main
areas. First, we discuss methods that involve concept hierarchies to integrate their
knowledge directly or indirectly in section 4.1. Second, we consider problem for-
mulations that incorporate quantitatively or qualitatively deficient training data, as
well as methods to solve these problems in section 4.2, where we relate these tasks to
learning from imprecise data.

Chapter 5 bundles our methodical contributions. In section 5.1, we first define
imprecise data formally and propose a probabilistic model of imprecision for various
categories of annotators. We also propose an algorithm to automatically match
concept hierarchies to existing datasets. In section 5.2, we construct our hierarchical
classifier from first principles and develop a deep learning implementation of its
probabilistic model. The classifier is modified in section 5.3 to build CHILLAX,
enabling learning from imprecise data. Furthermore, we analyze drawbacks of
CHILLAX and propose self-supervised methods to counteract them.

The aforementioned methods concerning the “first escape route” are validated
empirically in chapter 6. We first introduce evaluation criteria in section 6.1 and
identify common elements of our experimental setups in section 6.2. Our hierarchi-
cal classifier is tested for its capability of integrating domain knowledge on small-
and large-scale benchmark datasets in section 6.3. We then validate learning from

3
https://github.com/cvjena/cn24

4
https://git.inf-cv.uni-jena.de/LifelongLearning/carpediem

5



1. Introduction

imprecise data using CHILLAX on large-scale benchmark data and compare it to a
competitor in section 6.4. In section 6.5, a real-world biodiversity research application
is improved using imprecise data crawled from the web. The increased complexity of
hierarchical classification also introduces new potentials for errors, which we analyze
in a detailed manner in section 6.6. Finally, section 6.7 summarizes the results and
offers explanations and discussion.

We discuss our contributions to the “second escape route” in chapter 7, starting
with an introduction to the idea of lifelong learning in section 7.1. An active learning
method that intelligently selects unlabeled images for annotation with bounding
boxes is presented in section 7.2. We then introduce a weak annotation mechanism
to the system and evaluate it in a continuous biodiversity monitoring scenario in
section 7.3. In section 7.4, we discuss a further biodiversity application involving
monitoring and re-identification of individuals. As an outlook, we propose a combi-
nation of both escape routes in the form of an active learning method for hierarchical
classification in section 7.5.

The thesis concludes with chapter 8, which summarizes our findings in section 8.1
and gives an overview of promising future research directions in section 8.2.
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2. Machine Learning in the Past and
Present

This chapter introduces the concepts in machine learning that are relevant to this
work. There are many ways to approach an introduction to machine learning which
are equally legitimate. For example, one can look at data as a central topic, or start
with certain models. A historical view can also be enlightening. We choose the
angle of statistical learning theory (Vapnik 1998; Vapnik and Chervonenkis 1971)
as interpreted in Shalev-Shwartz and Ben-David (2014), which has its foundations
in probability theory and statistics. This approach integrates well with this thesis
because we formulate our models in chapter 5 in a probabilistic framework.

Sections 2.1 and 2.2 introduce machine learning in an application-agnostic way.
We build on this foundation in section 2.3, where the specific needs of computer
vision tasks are characterized. In section 2.4, we describe the more recent idea of deep
learning.

2.1. Machine Learning Foundations

Before considering machine learning, one needs to discuss the definition of learning
in general. The Oxford English Dictionary defines learning as “to acquire knowledge
of (a subject) or skill in (an art, etc.) as a result of study, experience, or teaching”
(Oxford English Dictionary 2020). An alternative definition given by Washburne
(1936) is “an increase, through experience, of problem-solving ability.”

Machine learning follows from these definitions by replacing the “learner” with
a machine. We usually stress the latter definition, as the problem-solving ability
is a desirable property. The realization of knowledge in machine learning is less
important for any given problem. It is rather a consequence of which specific method
is used, including some that specify knowledge explicitly (see section 4.1).

In this section, we first build a theoretical foundation in section 2.1.1. We then
introduce implementations in sections 2.1.2 and 2.1.3 and discuss common problem
formulations in section 2.1.4.

2.1.1. Statistical Learning Theory

We introduce the central concepts in machine learning using the framework of
statistical learning theory (Vapnik 1998; Vapnik and Chervonenkis 1971). Initially, we
consider a prediction task. The goal is to infer the state of one random variable, which
is hidden, from the observation of another. This is only possible if the two variables
are dependent in some way.

A common example is that of spam mail. Whether an e-mail is spam or not cannot
be observed by the recipient — the intent is only known to the sender. However, the
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2. Machine Learning in the Past and Present

content of the e-mail can be used to classify it. We assume that there exist features, e.g.,
the presence of certain keywords (viagra, bitcoin), that are related to the intent.

If such a relationship exists, we can formulate rules. For example: “if the mail
contains prince and inheritance, it is spam”. While such simple rules can be
generated ad-hoc, this is not feasible for more complicated problems, e.g., image
classification (see section 2.3.2.1). Instead, we learn the rules from data, which are joint
samples of both the hidden and visible random variables. Through generalization,
these rules also apply to previously unseen observations. In the following, we
formalize this process and the components of a learning system.

2.1.1.1. Ingredients

We consider the main ingredients of a machine learning and their formal definitions
in the context of a prediction task. Our terminology and derivation follows that
of Shalev-Shwartz and Ben-David (2014), which presents a contemporary take on
statistical learning theory.

First, we specify the data on which our prediction system operates. From an
application perspective, a predictor gets an input (e.g., the content of the mail) and
returns an output (whether it is spam or not). The corresponding ranges of input and
output are formalized as follows:

Definition 2.1 (domain set). The domain set X is the set of possible “inputs” to a
predictor, also termed domain points. Elements of this set are to be labeled.

Definition 2.2 (label set). The label set Y is the set of possible “outputs” of a predictor.
These are the labels associated with the elements of the domain set. Depending on the
structure of the label set, we distinguish different tasks:

• Classification if Y is a set of mutually exclusive classes, e.g., Y = {dog, cat, car}.

• Regression if Y is continuous, e.g., Y = R.

The association between domain points and labels is often determined by humans
in an annotation process. The human component is implied by using the word label,
but labels can also be a physical measurement, or any other random variable that
cannot be observed in the future, and thus has to be predicted. In any case, the results
of an annotation or measurement process are combined to form a set of data:

Definition 2.3 (training data). The training data S is a sequence of m pairs in X ⇥ Y .
It is typically indexed, such that S =

�
(x1, y1), . . . , (xm, ym)

�
. While the order of the

pairs should not be of consequence, the training data is not defined as a set because it
could contain the same pair multiple times.

To make a prediction, we use a function that maps from observations in the domain
set to predictions in the label set. Formally, this predictor function is defined as:

Definition 2.4 (hypothesis). A hypothesis is a function h : X ! Y from the domain
set to the label set.

We use the terms hypothesis, model, and predictor interchangeably. One ingredient
still missing is the actual learning step:

8



2.1. Machine Learning Foundations

Definition 2.5 (learner). A learner A(S) is an algorithm that takes training data and
produces a hypothesis.

A complete learning system realizes all of the aforementioned components. While
the domain set and label set are specific to the task or application at hand, there
are many general implementations of learners, which we discuss in the following
sections.

2.1.1.2. Probability Distributions

Before we explore the implementations and details of learners, we further formalize
how our training data is generated. For now, we assume that there exists a function
that can assign the “correct” label to every element of the domain set X (cf. ibid.).

Definition 2.6 (target function). The target function is a function f : X ! Y from the
domain set to the label set. It always assigns the “correct” label y = f (x)

Ideally, a human annotator perfectly executes this target function. A deterministic
functional relationship between domain set and label set is a very strong assumption
that often does not hold in the real world. We discuss a relaxation of this assumption
in section 2.1.1.7. We further assume that there exists a distribution to sample training
data from:

Definition 2.7 (environment distribution). The environment distribution D over the do-
main set X describes the environment. Training data is generated by sampling from
elements from X according to D. The target function is then queried to label each sam-
ple, resulting in a sequence

�
(x1, y1), . . . , (xm, ym)

�
=
�
(x1, f (x1)), . . . , (xm, f (xm))

�
.

2.1.1.3. (Empirical) Risk Minimization

The name “target function” already suggests that it is something to strive for. In fact,
the main goal for a learner is to produce a hypothesis that matches the target function
as closely as possible.

Definition 2.8 (risk). Given the environment distribution D and target function f ,
we define the risk LD, f (h) of a hypothesis h as:

LD, f (h) = Px⇠D

⇥
h(x) 6= f (x)

⇤
.

In other words, the risk is the probability (over the whole domain set) of the hypoth-
esis and the target function disagreeing.

A successful learner should then minimize the risk LD, f to achieve its goal. How-
ever, it cannot do so directly because both D and f are unknown to the learner.
Instead, it has to rely solely on the training data S. We can derive:

Definition 2.9 (empirical risk). Given training data S =
�
(x1, y1), . . . , (xm, ym)

�
, the

empirical risk LS(h) of a hypothesis h is:

LS(h) =
1
m

m

Â
i=1

1[h(xi) 6= yi].
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2. Machine Learning in the Past and Present

Empirical risk can be optimized directly. This type of learning is denoted empirical
risk minimization (ERM). It is the basis for all following methods and algorithms.
However, minimizing empirical risk does not necessarily minimize risk. There
are additional assumptions necessary to relate the two, which are discussed in the
following, and specifically section 2.1.1.5. The relationship between risk and empirical
risk is detailed further in section 2.2.

2.1.1.4. A Trivial Learner

The formalisms outlined up to this point are technically sufficient to construct a
complete learning system. ERM naturally induces a learner as an optimization
problem:

AERM(S) = ERM(S) = arg min
h

LS(h). (2.1)

Note that the search space for h is intentionally vague. This learner allows for
every possible hypothesis. In fact, there are infinitely many trivial solutions with
LS = 0. However, we define the empirical risk as a proxy for the risk only because
our learner lacks access to the environment distribution D and target function f . And
while AERM(S) may be perfectly equal to f on the subset of X supported by S, there
are no constraints on the rest of the domain. In this framework, risk and empirical
risk are not necessarily related, which may seem catastrophic for ERM since our
main goal is the minimization of risk. However, we can relate risk and empirical
risk by introducing assumptions that constrain the search space, e.g., from domain
knowledge. Such an assumption is referred to as an inductive bias. In the following,
we show how bounds on the risk can be obtained from applying such biases.

2.1.1.5. Inductive Biases

The first and most important assumption to make is w.r.t. the training data S. We
require the elements xi to be i.i.d. samples of D, meaning independent and identically
distributed (cf. Shalev-Shwartz and Ben-David 2014, p. 18). The i.i.d. assumption is
fundamental to machine learning. By convention, it is only relaxed on purpose, e.g.,
to learn with time series (Bishop 2008, p. 605).

Our next step is to constrain the allowed hypotheses to some class H. This step is
an opportunity to apply prior knowledge to the problem. Without prior knowledge,
selecting a learner that is generally better than another is impossible, which is also
called the no free lunch theorem (cf. Goodfellow, Bengio, and Courville 2016, p. 116).

For the next section, we temporarily add another constraint to our problem. We
assume that there exists a hypothesis h⇤ 2 H, such that LD, f (h⇤) = 0. This is the
realizability assumption (cf. Shalev-Shwartz and Ben-David 2014, p. 17).

2.1.1.6. PAC Learnability

Not all hypothesis classes are created equal. In the following, we consider definitions
of learnability based on the assumptions made previously.

The first is probably approximately correct (PAC) learnability (Valiant 1984). We
follow the definition given by Shalev-Shwartz and Ben-David (2014, p. 22).
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2.1. Machine Learning Foundations

Definition 2.10 (PAC learnable). A given hypothesis class H is PAC learnable, if a
function mH : (0, 1)2

! N and a learner A exist, such that for every:

• e 2 (0, 1) (accuracy) and d 2 (0, 1) (confidence),

• environment distribution D over X ,

• target function f : X ! {0, 1},

if both the realizability assumption and the i.i.d. assumption on the training data S
hold, then evaluating A(S) with |S| = m � mH(e, d) results in a hypothesis h, where
with probability of at least 1� d, the risk is:

LD, f (h)  e.

If we can find such a PAC learnable class of hypotheses, we finally have a bound
on the risk itself. However, this definition is only valid for binary classification tasks,
where there are exactly two labels. Furthermore, in order for a PAC learnable H to
exist for such a task, a function mH has to exist as well. This function is also termed
sample complexity. For finite hypothesis classes, such a function always exists (cf. ibid.,
p. 23):

mH(e, d)  d
log |H|

d

e
e

2.1.1.7. From Target Function to Loss Function

For practical purposes, we are required to relax our previous assumptions slightly,
even if it should result in a worse lower bound for the risk.

Target Function First, we remove the target function f in favor of an environment
distribution D over X ⇥ Y . The corresponding risk is (cf. ibid., p. 24):

LD(h) = P(x,y)⇠D

⇥
h(x) 6= y

⇤
. (2.2)

The training data is sampled from D in pairs (x, y). While the target function is
deterministic, this formulation in contrast allows for situations where a domain point
is labeled ambiguously. This means that the lower bound for LD may no longer be
zero regardless of H, because the hypothesis is still deterministic. Consequently,
we also remove the realizability assumption since it is unreasonably strong in this
context (cf. ibid., pp. 23 sq.).

Loss Function Since the target function no longer exists in our setting, its range no
longer affects the label set. The range of f as given in definition 2.10 implies Y =
{0, 1}. We remove this restriction to binary classification in favor of an unrestricted
label set Y . However, this relaxation has consequences for the risk. For continuous
Y , e.g., Y = R, the inequality in eq. (2.2) is not appropriate. Instead, we are more
interested in a smooth measure such as the squared difference between prediction
and label (cf. ibid., pp. 25 sq.).
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Clearly, the correct choice of measure depends on the specific learning problem.
We require a definition of risk that is general enough to allow for such a choice,
while still enabling claims about learnability. To this end, define a new function (cf.
Shalev-Shwartz and Ben-David 2014, p. 26):

Definition 2.11 (loss function). For any hypothesis class H, domain set X and label
set Y a loss function is a function L : H⇥X ⇥ Y ! R+.

We can then integrate this into the risk (cf. ibid., p. 26):

LD(h) = E(x,y)⇠D

⇥
L(h, x, y)

⇤
. (2.3)

The empirical risk can be generalized similarly (cf. ibid., p. 27):

LS(h) =
1
m

m

Â
i=1

⇥
L(h, xi, yi)

⇤
. (2.4)

2.1.1.8. Agnostic PAC Learnability

To extend our previous definition of PAC learnability, we introduce a new formulation
that takes into account all the relaxations and generalizations specified in the previous
section (cf. ibid., p. 25):

Definition 2.12 (agnostic PAC learnable). A given hypothesis class H with an as-
sociated loss function L : H⇥ X ⇥ Y ! R+ is agnostic PAC learnable, if a function
mH : (0, 1)2

! N and a learner A exist, such that for every:

• e 2 (0, 1) (accuracy) and d 2 (0, 1) (confidence),

• environment distribution D over X ⇥ Y ,

if the i.i.d. assumption on the training data S holds, then evaluating A(S) with
|S| = m � mH(e, d) results in a hypothesis h 2 H, where with probability of at least
1� d (w.r.t. the sampling of S):

LD(h)  min
h02H

LD(h0) + e,

with LD as given in eq. (2.3).

For a finite hypothesis class H, we can again give a sample complexity mH(e, d),
such that H is agnostic PAC learnable with the ERM learner (cf. ibid., pp. 31–34):

mH(e, d) 
2 log 2|H|

d

e2 .

2.1.1.9. Generalized Loss Function

The previous sections all pertain to prediction tasks. In section 2.1.4, we introduce
machine learning tasks that go beyond prediction. For these, a loss function L :
H ⇥ X ⇥ Y ! R+ might not be applicable. Y may not even exist. We therefore
introduce a more general example set Z with examples z, which happens to be X ⇥ Y
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for prediction tasks (cf. ibid., p. 26). We can then define the generalized loss function
L : H ⇥ Z ! R+ (cf. ibid., 26 sq.). Accordingly, D describes the environment
distribution over Z . The respective modifications to risk and empirical risk follow
intuitively. Agnostic PAC learnability still holds in this general formulation.

With this formulation, we can fully describe a machine learning task by its example
set Z , environment distribution D and loss function L. In practical applications,
samples z ⇠ D are given because the exact D is unknown or intractable.

2.1.1.10. Summary

The tasks, methods and models described in the remainder of this thesis respect the
definitions in the previous sections unless specified otherwise. With agnostic PAC
learnability for generalized loss functions, we can reasonably expect a certain risk
level with some probability, given sufficient training data and correct inductive biases.
PAC learnability can be generalized even further, e.g., to infinite hypothesis classes
with certain properties (cf. ibid., p. 48).

In the following, we discuss implementations of the aforementioned concepts to
obtain a working system. For example, a complete machine learning system can be
constructed using the hypothesis class detailed in section 2.1.2 combined with an
ERM learner. The optimization problem can be solved with one of the methods from
section 2.1.3.

2.1.2. Linear Model

Restricting the hypothesis class H is a way of introducing prior knowledge, and
therefore an inductive bias. A simple, but important class of hypotheses are linear
models:

Hf = {x 7! f(hw, xi+ b), w, x 2 Rd, b 2 R} , (2.5)

where f : R ! Y is a function that maps the scalar result of the affine transform
hw, xi+ b to the label set Y (cf. ibid., 89 sq.). For example, a binary classifier could
use f(s) = sgn(s) for Y = {�1, 1}. Different f result in different hypothesis classes.

2.1.2.1. Linear Separability

Definition 2.13 (linear separability). If a problem defined by an environment distri-
bution D is realizable (see section 2.1.1.5) in Hsgn, it is linearly separable. The term
can also be applied to specific training data.

For linearly separable problems, the ERM learner w.r.t. Hsgn can also be given as
a linear program (cf. ibid., p. 91). Furthermore, the hypothesis space can be made
equivalent to the one used by the perceptron with the correct f (see section 2.4.1.1).
A common example to illustrate the limits of linear separability is the XOR problem
(see fig. 2.1).

2.1.2.2. Logistic Regression

Equation (2.5) is also known as a generalized linear model in literature (cf. Bishop
2008, p. 180). The choice of f determines its functionality and interpretation. For
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example, from a probabilistic viewpoint, f = sgn defines a hypothesis such that:

h(x) = arg max
y2{�1,1}

P(y|x) ,

where P is the distribution as estimated by the generalized linear model.
Knowing this distribution, we can make more fine-grained predictions. For ex-

ample, an application might make use of the probability of a certain class, given a
domain point x. We can formulate such a hypothesis:

h(x) = P(y|x) ,

with f(s) = s(s) = 1
1+exp (s) . This approach is named logistic regression (cf. Shalev-Shwartz

and Ben-David 2014, 97 sq.; cf. Bishop 2008, 205 sq.). It can also be implemented using
neural networks and a sigmoid activation function (see sections 2.4.1.3 and 2.4.1.4).
Support Vector Machines (SVMs) (cf. Bishop 2008, 325 sqq.) are a further possible
implementation.

2.1.3. Gradient-Based Optimization

While ERM is a clearly defined optimization problem, it cannot be implemented
directly in most cases. Searching the space of all hypotheses H for the optimal h⇤ is
only an option for very small H. An exhaustive search is impossible if H is infinite,
e.g. linear models (see section 2.1.2). However, we can adjust the problem in many
helpful ways.

First, we observe a property of the linear model’s hypothesis class. It is parameterized
by w 2 Rd and b 2 R. Instead of searching the hypothesis class, we can express the
ERM learner (see eq. (2.1)) as an optimization over Rd

⇥R:

ERM(S) = arg min
h

LS(h)

= h(·; w⇤, b⇤), where
w⇤, b⇤ = arg min

w,b
LS(h(·; w, b)) . (2.6)

Our search space now has clearly defined structure: a real vector space. We denote
this parameter space Q and a specific instance q. The optimal hypothesis is described
by q⇤.

Second, we allow local minima. We accept that computing the globally optimal
hypothesis is infeasible and settle for one that is optimal within a small neighborhood
in Q (cf. Goodfellow, Bengio, and Courville 2016, 82 sqq.).

Finally, L, and by extension L and h are assumed to be differentiable functions w.r.t.
q. If q⇤ is a local optimum, then:

∂

∂q
LS(h(·; q⇤)) = 0 .

With these assumptions, we can apply the gradient descent algorithm (Cauchy 1847).
Starting with a random initial value q(0) (see also section 2.4.3.1), we use the following
update rule:

q(k) = q(k�1)
� h

∂

∂q
LS(h(·; q(k�1))) , (2.7)
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where h is the learning rate. The learning rate is not part of Q and is not optimized
using the training data. Such parameters are called hyperparameters (cf. Goodfellow,
Bengio, and Courville 2016, p. 98) (see section 2.2.2). It is common practice to change
the learning rate as optimization progresses. Such methods are called learning rate
schedules and are explained in more detail in section 6.2.2.3.

2.1.3.1. Stochastic Gradient Descent

The update rule eq. (2.7) minimizes the loss function over the whole training data in
each step. While this approach is a correct to the optimization problem, it has two
potential disadvantages. First, large datasets such as ImageNet-1k (see section 6.2.1.1)
easily overwhelm the working memory of current computers and graphics cards,
making the approach infeasible. Second, while local minima are considered accept-
able if the respective neighborhood is sufficiently large, minima that are “too local”
are still undesirable. However, the update rule eq. (2.7) will get “stuck” in any local
minimum regardless of its spatial extent.

Stochastic gradient descent (SGD) is one solution to these problems (cf. ibid., 151 sq.).
For each iteration k of the update rule, instead of the whole set S, we randomly
select a minibatch Sk ⇢ S and minimize LSk instead of LS. Minibatches are small
enough for efficient computation, with a typical setting of 32 (cf. Masters and Luschi
2018). Because they are different for each execution of the update rule, there is a high
probability of escaping very local minima of the whole training data simply because
they do not exist in all possible minibatches.

2.1.3.2. Momentum

SGD is often combined with a second strategy for avoiding local minima which is
called momentum (cf. Goodfellow, Bengio, and Courville 2016, 296 sq.). Instead of
computing a direction and distance in Q for each step k, we estimate a change in
direction from the previous step. Effectively, the movement through Q has a velocity
or a momentum. A hyperparameter a is introduced to control the influence of the
previous step on the current step. The momentum update rule is defined as:

q(k) = a(q(k�1)
� q(k�2))| {z }

momentum

+q(k�1)
� h

∂

∂q
LS(h(x; q(k�1))) .

A common choice for a is 0.90. There are alternative formulations which reuse
gradients from previous steps instead of the positions in Q. This is done to reduce
the exponential influence of a.

2.1.3.3. Adam

The idea of gradient descent with momentum (section 2.1.3.2) can be generalized to
estimating statistical moments of individual components of the gradient, which are
then used to influence the movement through Q. Adam, which is proposed in Kingma
and Ba (2014), is an implementation of such a method using first- and second-order
gradient statistics to calculate a separate learning rate for each dimension of q. It has

15



2. Machine Learning in the Past and Present

empirical advantages over SGD with momentum in many cases. Although it has a
larger number of hyperparameters, they are less sensitive to change and present a
larger operating range in practice. As such, Adam is a reasonable choice when there
is little time for hyperparameter optimization.

2.1.4. Supervised Learning and Alternatives

In the previous section, our overall goal is making predictions. Given an input x 2 X ,
we predict the corresponding label y 2 Y by using our hypothesis. A problem
of this sort is called a supervised learning problem, if there exists labeled training
data S =

�
(x1, y1), . . . , (xm, ym)

�
. In the following, we explore alternatives to this

formulation. Further variants are discussed in section 4.2.4 and there is an effort to
formalize different levels of supervision proposed in Damen and Wray (2020).

2.1.4.1. Unsupervised Learning

Machine learning problems do not always require predictions to be made. There
are numerous other tasks (cf. Goodfellow, Bengio, and Courville 2016, 99 sqq.) or
problem formulations (cf. ibid., 104 sqq.) that involve machine learning. Unsupervised
learning removes the label set from the learning problem entirely. Intuitively, it would
seem that there no longer is a problem. Certainly, the risk is now ill-defined. However,
several interesting tasks can be formulated using only the domain set.

For example, exploring a new dataset and finding noteworthy examples, or clusters,
without additional information. Another task that enjoys recent popularity is the
generation of new examples, specifically images. Generative Adversarial Networks
(GANs), presented in Goodfellow et al. (2014), are groundbreaking method in this
field. Learning a compact representation of an unlabeled set of images also has
potential applications in compression. Section 4.2.4.1 gives an overview of relevant
literature relating to unsupervised learning.

2.1.4.2. Semi-Supervised Learning

We can also imagine a middle ground between supervised learning and unsupervised
learning. Such a semi-supervised learning problem starts with a basic supervised
learning task. On top of the labeled training data S =

�
(x1, y1), . . . , (xm, ym)

�
, we

add unlabeled training data S0 = (xm+1, . . . , xm+m0) (cf. Goodfellow, Bengio, and
Courville 2016, 243 sq.).

While S0 would not suffice on its own to approximate a target function, it still
contains useful information. For example, it could be used to learn a better feature
representation (see e.g., sections 2.3.4.1 and 2.4). We discuss implementations in
section 4.2.4.2. Learning from imprecise data (see section 5.1) is a generalization of
semi-supervised learning.

2.1.4.3. Self-Supervised Learning

Although it is not a problem formulation in and of itself, self-supervised learning is
important to mention here. It is a class of methods to tackle semi-supervised learning
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problems where the unlabeled training data is labeled using the hypothesis itself.
Then, the newly labeled data is fed back into the learner to retrieve an improved
hypothesis. Self-supervised learning methods need to be tuned carefully to avoid
a feedback loop where mispredictions are learned and thus amplified. However,
they can achieve remarkable results (cf. Geirhos et al. 2020). Zhai et al. (2019) is a
notable example of this technique, with further works mentioned in section 4.2.4.2.
We propose a self-supervised method in section 5.3.3.

Such techniques can be applied to semi-supervised learning tasks, but also to
weakly supervised learning. This paradigm considers training data where some or all
of the labels are qualitatively worse, or “weak”. Learning from imprecise data, which
is discussed in section 5.1, is such a task.

2.2. Model Selection and Complexity

In section 2.1.1.3, we discuss the notion of risk, which is also called “true error”(see
Shalev-Shwartz and Ben-David 2014, p. 14). The overall goal of machine learning is
risk minimization, however this cannot be tackled directly unless the environment
distribution D is known exactly. Instead, we solve the proxy problem of ERM. The
main issue with ERM is that its optimum can differ significantly from the “true”
minimal risk hypothesis. There are only weak bounds that relate the two (see sec-
tion 2.1.1.8).

For example, consider the nearest neighbor classifier, which uses the label of the
training data element closest to the domain point in question as a prediction. Unless
there are ambiguous samples in the training data, the empirical risk of this classifier
is always zero. This does not imply that it generalizes well, i.e., that the true risk is
zero. If it does not, the classifier exhibits overfitting (cf. ibid., 15 sq.). It fits the training
data better than the actual environment distribution.

Non-representative training data, or too little training data considering the sample
complexity of the given hypothesis class H can contribute to overfitting. It can also
be caused by selecting the wrong model or assuming false inductive biases (see
section 2.1.1.5). The opposite phenomenon, underfitting, is also possible when the
hypothesis class is not complex enough.

Formally, the true error of a hypothesis hS obtained from an ERM learner AERM(S)
can be separated into two types of error: (cf. ibid., 40 sq.)

LD(hS) = eapp + eest ,

where:

• eapp = minh02H LD(h0), the approximation error, is the lowest possible true error
given H and D. It is determined by the inductive biases and choice of H.
If the inductive biases are too strong, or H is not complex enough, a high
approximation error occurs, and vice versa. Note that eapp = 0 iff D is realizable
in H.

• eest = LD(hS)� eapp, the estimation error, is the difference between the approx-
imation error eapp and true error achieved by AERM(S). In other words, it
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represents the error caused by minimizing the empirical risk using training
data instead of the true risk using the environment distribution. Consequently,
eest can be reduced by a larger training data set. However, it increases with the
complexity of H as opposed to the approximation error, which decreases.

The opposite effects of the complexity of H on approximation and estimation error
are also termed bias-variance trade-off. With knowledge of the individual contributions
towards the true risk LD, we discuss a further aspect of machine learning. Model
selection is the meta-problem of adjusting the complexity and selecting the optimal
hypothesis class to minimize the true risk.

In the following, we discuss how to control under- and overfitting by adjusting the
complexity (section 2.2.1). Furthermore, we explore methods of actually estimating
the true error, measuring generalization and overfitting (section 2.2.2).

Complexity in the context of statistical learning theory is often defined as |H|,
the cardinality of the hypothesis class. (Agnostic) PAC learnability (see sec-
tion 2.1.1.8) assumes a finite H as well. However, most hypothesis classes
used in practice are infinite (see sections 2.1.2 and 2.4.1.1). Their complexity
can be measured in terms of VC-dimension (Vapnik and Chervonenkis 1971) or
Rademacher complexity (Shalev-Shwartz and Ben-David 2014, 325 sqq.).

2.2.1. Regularization

In this section, we examine a learning paradigm that allows for fine-grained control
over the complexity of hypothesis classes. Consider the parameterized version of
ERM as described in eq. (2.6), with which we can apply gradient-based optimization
methods. A simplified variant of the problem, where we consider only one parameter
q is defined as follows:

min
q

LS(h(x; q)) .

We now include a regularization term R(q) with R : Rd
! R to formulate the

regularized loss minimization (RLM) problem (cf. ibid., p. 137):

min
q

LS(h(x; q)) + R(q) ,

where R(q) is a measure of the complexity of the hypothesis class containing the
hypothesis associated with w.

Every value of R(q) corresponds to a specific subset of H. With this construction,
the bias-variance trade-off is an explicit part of the optimization problem. The choice
or parameterization of R(q) remains part of the model selection problem.

2.2.1.1. Tikhonov Regularization

A very simple form of regularization is Tikhonov regularization. It is based on the
assumption that the norm of q is an indicator of the complexity, or irregularity of
the matching hypothesis class. For example, penalizing the norm of weights of a
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linear model (see section 2.1.2) would limit the slope of the decision function, and in
turn reduce the model’s susceptibility to noise. However, it also introduces a bias,
resulting in a high approximation error, should the task actually have too strong a
slope.

One example of a Tikhonov regularizer is the L2 regularizer (cf. ibid., p. 138):

R(q; b) = bkqk2 ,

where b is a coefficient, or hyperparameter, to control the amount of regularization.
With this parameterization, the model selection meta-problem reduces to an optimiza-
tion problem over the continuous b. The Tikhonov regularizer can be generalized to
any norm, not only the 2-norm.

2.2.1.2. Early Stopping

When using gradient-based optimization methods (see section 2.1.3), the number
of optimization steps is an important hyperparameter. It is typically set based on
convergence criteria to obtain the lowest possible loss (cf. Goodfellow, Bengio, and
Courville 2016, p. 643).

However, the number of iterations also affects the complexity of the hypothesis.
When the true risk is measured during optimization, it first decreases as the model
fits the data better and better, and then increases again as a result of overfitting. Early
stopping sacrifices convergence criteria based on (empirical) loss in favor of a lower
true error (cf. ibid., 246 sq.). Effectively, the number of optimization steps is another
hyperparameter to be determined during model selection.

Note that early stopping is considered a regularization method in terms of manag-
ing a hypothesis’ complexity, but is not an instance of RLM.

2.2.2. Validation

In the previous section, we discuss methods of controlling the complexity of hy-
potheses. Using these methods, we can obtain a parameterized variant of the model
selection problem. With parameters q 2 Q of a parameterized hypothesis h, hyper-
parameters w 2 W and an environment distribution D with training data S, we can
formalize the model selection problem as:

min
w2W

LD(h(·; q⇤(w))) ,

where
q⇤(w) = arg min

q
LS(h(·; q)) + R(q; w) .

This formulation does not directly solve the problems of ERM, because it requires
the impossible evaluation of LD. Still, it is possible to estimate the true risk and
select appropriate hyperparameters w. In the following discuss various methods of
estimating the true risk using separate data sets. They are considered instances of
validation (cf. Bishop 2008, p. 32).
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2.2.2.1. Estimating True Risk: Training, Validation and Test Sets

One straightforward way of approximating the true risk is using a validation set (cf.
Bishop 2008, 32 sqq.). Such a set T consists of samples from the environment distribu-
tion D. It should be sampled in the same way as the training data it, independently
and identically distributed. However, its use should be limited to estimating the true
risk to perform model selection. The samples should never be used for learning, i.e.,
minimizing the empirical risk.

There is one philosophical issue with validation. Model selection is a learning
problem as well. While the validation set is used to find the optimal hyperparameters
w and the training data for the parameters q, respectively, the distinction is rather
arbitrary. Thus, it is possible to overfit the model selection problem on a given
combination of validation set and training data. For example, consider a random
seed that is used to sample the initial parameters q(0) for gradient descent. The seed
itself would be thought of as a hyperparameter, but it can be used, with enough time,
to “learn” the validation set.

A solution to this issue is a held-out test set also sampled i.i.d. from D. This held-out
test should be used only once, to validate the results of the model selection process.

While ideally the validation and test sets are additional samples from the
distribution D, it is common practice to split existing training data into training,
validation and test parts. If the i.i.d. assumption holds, there is no difference
except for the sample size.

2.2.2.2. Cross-Validation

The split into training, validation and test sets discussed in the previous section is
typically determined only once and not changed subsequently. However, which
examples end up in which split can significantly affect the results of the model
selection process if the dataset is small to begin with.

There are alternatives for such situations that rely on combining different ways
of splitting a small dataset. k-fold cross-validation (cf. ibid., p. 33) is such a method.
The dataset is first split (evenly) into k subsets. Then, one of the subsets is used as
a validation set, while the rest constitutes the training data. Each of the k different
combinations is evaluated independently, resulting in a better approximation of
the risk. Cross-validation effectively controls for the effects of splitting a dataset in
different ways.

For even smaller datasets, leave-one-out cross-validation is an option. Instead of
splitting into k subsets, where usually k << |S|, each example is considered a single
subset. This results in a very large number of possible combinations.

2.2.2.3. Practical Considerations

We generally assume that training data is sampled independently and identically
(i.i.d.) from D. However, there are cases in practice where this assumption does not
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hold. Certain examples in the training data may be correlated, which needs to be
considered when selecting a subset for validation. If validation and training examples
correlate, then validation no longer approximates the true risk.

For example, consider a medical dataset consisting of many slices of computed
tomography (CT) scans. If there are 1248 slices captured from 63 patients, the slices
cannot be assumed fully independent. As a precaution, when splitting the dataset,
slices from the same patient should not be in multiple splits. It is a common practice
to adapt leave-one-out cross-validation on a patient level, i.e., leave-one-patient-out (cf.
Häfner et al. 2012).

Time series, e.g., videos, financial data, or climate data, pose another problem. All
samples are correlated by design, as a result of natural laws. When splitting such
datasets, the sequence needs to be considered. For example, videos should not be
split on a frame-by-frame basis, but into cohesive segments.

2.3. Machine Learning for Computer Vision

The previous sections (sections 2.1 and 2.2) focus on very general machine learning
concepts and methods. Specifically, we pose no requirements towards the domain set
X , except in section 2.1.2, where we assume a real vector space. In this section, we
explore the area of computer vision, where methods of machine learning are applied
to solve a variety of tasks specific to visual information.

We begin with a formal definition of images, which are the most common data
type in computer vision, and their digital representation in computers. Afterwards,
a selection of relevant tasks is discussed. Finally, we address the special “needs” of
machine learning methods when processing images, and methods to combat the
challenges involved in machine learning for computer vision.

2.3.1. Images

When we mention images in this thesis, we always refer to a representation that is
suitable for processing by a (digital) computer. However, for the purpose of under-
standing the image formation and acquisition process, we start with a continuous
definition (cf. Gonzalez and Woods 2018, p. 18):

Definition 2.14 (Image function). An image function with c color channels is a two-di-
mensional function f : R2

! Rc with c 2 N.

While planar image functions are sufficient for the applications discussed in this
thesis, the definition could be adapted to other situations, e.g., moving images, or
volumes.

2.3.1.1. Discretization

Both the domain and the range of an image function are continuous, and thus
unsuitable for digital storage and processing. They need to be discretized in order to
obtain a digital image, which is defined as follows:
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Definition 2.15 (Image). A digital image with c color channels is a three-dimensional
array F 2 C

w⇥h⇥c, where w and h are width and height, respectively. C denotes the
color space of the image, which is discussed in section 2.3.1.2.

An individual element of F is called a pixel (short for picture element, cf. Gonzalez
and Woods 2018, p. 18). The discretization first involves the domain of the image
function — the coordinates. This step is called sampling (cf. ibid., 63 sqq.) and is
usually part of the acquisition process. For example, a camera sensor is constructed
of a fixed number of individual elements which measure light intensity, sampling the
image plane by design. If an image function contains high-frequency components,
selecting an insufficient amount of pixels for sampling (resulting in a low sampling
frequency) can lead to destructive artifacts. This phenomenon is called aliasing (cf.
ibid., p. 221).

Obtaining a digital representation of the image function’s range is termed quantiza-
tion. While the number of color channels is already discrete, the intensity measure-
ment is not. 8-bit unsigned integers (F256) are a common representation of intensity
values (cf. ibid., p. 70), and we use it unless stated otherwise. However, a number of
machine learning methods are modeled using continuous values, e.g., linear models
(section 2.1.2) or CNNs (see section 2.4). In this case, a floating-point representation
of intensities is used, where the precision is implementation-dependent.

2.3.1.2. Color Space

As introduced in sections 2.3.1 and 2.3.1.1, images have channels, which refer to the
dimensionality of the underlying color space. A color space is used to represent both
the color and the intensity of light captured. The RGB (red, green, blue) color space is
the most common representation in images intended for human viewing on monitors
(cf. ibid., p. 405). It is also used by most capture devices, i.e., video and photo cameras
and scanners (cf. ibid., p. 406). If added together, red, green, and blue can be mixed
into most colors perceptible by humans, but not the complete visible spectrum of
light wavelengths (cf. ibid., p. 402).

RGB is represented by a cube [0, 1]3 in image functions or F256⇥3 in digital images
(cf. ibid., p. 407), such that a single color pixel contains 24 bits of information. Unless
stated otherwise, the RGB color space is assumed throughout this thesis. Alternative
additive color spaces exist, e.g., HSI and CIE (cf. ibid., pp. 411, 419), which also require
three degrees of freedom and can be transformed into one another. For subtractive
color mixing, e.g., by printing, the CMYK color space is common (cf. ibid., 408 sq.).

2.3.2. Computer Vision Tasks

This section formally introduces the tasks that are the building blocks of many
modern computer vision applications based on machine learning. This qualification
is important because there are many computer vision methods and tasks that are
not associated with machine learning at all. The following tasks are all supervised
learning problems (see section 2.1.4) where the domain set is a set of images. They
only differ w.r.t. the label set Y .
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2.3.2.1. Image Classification

If the label set Y is a finite set Y
P with mutually exclusive semantics, e.g., Y

P =
{cat, dog, tv}, then the prediction task characterized by D over I ⇥ Y is called an
image classification task (cf. Gonzalez and Woods 2018, p. 43; cf. Gonzalez and Woods
2018, 903 sqq.). Image classification is by far the most common computer vision task.

There are several popular datasets and benchmarks available, which we explore in
detail in section 6.2.1.1. This thesis focuses on classification tasks as well. Moreover,
a number of datasets used in this thesis represent fine-grained recognition tasks, e.g.,
differentiating between very similar species of birds. However, the exact definition
of fine-grained is subject of debates (cf. Duan et al. 2012; Chang et al. 2021). Further
work in fine-grained recognition can be found in section 4.2.2.

2.3.2.2. Object Detection

Image classification is limited by a shallow description of the image’s content in
terms of a single label. If we aim for a deeper understanding of an image, or a richer
description of its contents, object detection is the logical next step. This task combines
two subtasks (cf. Goodfellow, Bengio, and Courville 2016, p. 453).

First, possible objects in an image are localized. We describe the region these
instances occupy with an axis-aligned bounding box. For example, in a two-dimen-
sional image, such a bounding box is identified in Y

BB = R4 = R2
⇥R2 using the

coordinates of the top-left and bottom-right vertices. Second, each localized object is
classified in a label set Y

P, assuming the same semantics as for image classification.
The label set of the object detection task is a power set because the number of objects

in any given image is not fixed, such that Y = P(YBB
⇥ Y

P). This representation
poses challenges for certain models with fixed dimensionality (for example YOLO,
see section 7.2.1.2).

2.3.2.3. Semantic Segmentation

We can further generalize object detection w.r.t. its spatial component. Semantic
segmentation (cf. Gonzalez and Woods 2018, 699 sqq.) is a task where each individual
pixel of an image is classified in a given Y

P. The label set is a set of functions
Y = { f : {0, . . . , w}⇥ {0, . . . , h}! Y

P
}.

Since labels are essentially images themselves, the hypothesis space is even larger
than for image classification or detection. The consequences are discussed in sec-
tion 2.3.3.1. However, semantic segmentation can be simplified by transforming the
problem into many individual classification problems of local neighborhoods (e.g.
Brust et al. 2015a). This is a trade-off because smaller neighborhoods result in less
context information to help the classifier.

2.3.3. Challenges

Computer vision faces various challenges, most of which are inherited from machine
learning in general. There are also unique challenges resulting from the nature and
representation of images. We address the effects of the high dimensionality of images
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compared to other types of data and their particular technical requirements in the
following.

2.3.3.1. Curse of Dimensionality

The “curse of dimensionality”, introduced in Bellman (1957), describes the exponen-
tial increase in volume when dimensions are added to a vector space. As a result,
it becomes increasingly hard to sample the space with a certain density. However,
representative samples as training data are a fundamental requirement of machine
learning. The UCI repository1, a common benchmark dataset for general machine
learning, contains examples with tens of dimensions. In contrast, CIFAR-100 (sec-
tion 6.2.1.1), a dataset of comparatively small images, already has 3072 dimensions.
Larger images have hundreds of thousands of dimensions. Intuitive reasoning
around high-dimensional data is hard for humans as the relation between distance
and volume behaves unexpectedly (cf. Bishop 2008, p. 36).

At the same time, the number of data points is not very high, ranging from tens of
thousands to millions at most. Consequently, this training data would not appear as
representative as required by theory. Still, real-world applications of computer vision
are feasible and practical. It is assumed that images specifically only occupy a small,
lower-dimensional subspace of their respective space C

w⇥h⇥c — the natural image
manifold (cf. ibid., 37 sq.). The idea of invariances is closely related to this assumption
and discussed in section 2.3.4.2.

2.3.3.2. Computational and Storage Constraints

Recent large-scale benchmark datasets are many, up to hundreds, of gibibytes in size
when compressed, e.g., OpenImages-v62 and ImageNet-1k (see section 6.2.1.1). There
exist datasets that are too large to be stored on single computers, e.g., the JFT-300M
dataset described in Sun et al. (2017a), or an internal dataset used by Facebook
(Mahajan et al. 2008) comprised of billions of images.

Combined with the curse of dimensionality discussed in the previous section,
image are a demanding modality compared to, e.g., sound or financial time series.
Not only does a single example require kibibytes or mebibytes to store, the number of
data points needs to be higher than other modalities as well. Furthermore, randomly
sampled data contains redundant elements (cf. Birodkar, Mobahi, and Bengio 2019).

Processing is a further challenge. Contemporary methods cannot be used on
commodity compute hardware. Instead, they require massively parallel processing
units such GPUs or even task-specific integrated circuits (cf. Wang, Wei, and Brooks
2019). This widespread adoption leads to excessive energy use and in turn, calls
for policies around the use of such methods (cf. Strubell, Ganesh, and McCallum
2019). If compute resources are constrained, which occurs in mobile devices or edge
computing scenarios, special solutions are available, e.g., as discussed in Wang et al.
(2020). However, these methods trade off accuracy in favor of runtime or memory
requirements. In contrast, tasks such as speech recognition can be solved in real-time
with limited resources (cf. Jo et al. 2019).

1
https://archive.ics.uci.edu/ml/index.php (last accessed April 14th, 2021).

2
https://storage.googleapis.com/openimages/web/factsfigures.html
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2.3.4. Feature Extraction and Invariances

All the challenges mentioned in the previous section may lead one to believe that
solving the computer vision tasks described in section 2.3.2 using machine learning
methods is exceedingly hard or impossible. However, that is only the case when
considering machine learning methods that are not image-specific, e.g. SVMs, but
applied directly to images. In the following, we discuss alternative representations of
images that are more suitable for these methods. We also discuss several invariances
that can be exploited in computer vision tasks.

2.3.4.1. Feature Representations

Images represented digitally as matrices are typically not suitable for general machine
learning methods. Instead, we select different representations called features. Features
are “attributes that [. . . ] are going to be of value in differentiating between entire
images or families of images” (Gonzalez and Woods 2018, p. 812).

Ideally, a feature representation has fewer dimensions than the respective image
(see section 2.3.3.1). It should also be constructed to fit the chosen machine learning
method. For example, features should be linearly separable if a linear model is
used (see section 2.1.2). Features can be “hand-crafted”, e.g., by considering several
invariances of images, as discussed in the following section. Building bespoke feature
representations for specific tasks is common. The spatial ray features described in
Kühnl, Kummert, and Fritsch (2012) are a good example of features that are only
really suitable for their intended task. There are also more generally applicable
features, e.g., histogram of oriented gradients (HoG) introduced in Dalal and Triggs
(2005).

Feature representations can also be learned from data given sufficient quantities.
Such methods are commonly considered deep learning methods (see section 2.4), if
the features are learned end-to-end, i.e., together with the classifier or regressor.

2.3.4.2. Invariances

As described in section 2.3.3.1, the ratio between the number of examples in the
training data and the number of dimensions of the domain set is important for the
success of any machine learning application. Images are especially problematic
because of their very high dimensionality. Part of the “value” of features is that they
can reduce dimensionality substantially without loss of relevant information. This
reduction is achieved through invariances.

A task is said to be invariant to a certain transformation on the domain set, if
the transformation does not change the label associated with the domain point. It
is important to note that invariances differ strongly between tasks. The following
invariances are frequently exploited to build features for general object recognition
tasks (cf. Gonzalez and Woods 2018, p. 812):

• Translation When an image is shifted slightly in any direction, the label in terms
of classification should not be affected. In the case of object detection and
semantic segmentation, it changes predictably through the same translation
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as applied to the image. This change is called covariant (cf. Gonzalez and
Woods 2018, p. 812), and is fundamental property of convolutional layers (see
section 2.4.2.2).

• Rotation Similar to translation, this geometric transformation is not expected
to change the classification of an image, and applies to bounding boxes and
segmentation maps in the same way.

• Scale The description of an object does not change depending on the distance to
the camera. Similarly, scale should not affect classification, and transform any
label in the same way as translation and rotation.

All of the transformations listed above are coordinate transforms on the images.
Translation and rotation are rigid transformations as they preserve the (euclidean)
distance between coordinates. Scale is an affine transformation. In all three cases,
the invariance is not global: it is limited to a certain extent, e.g., because important
objects may move outside the image.

In addition, there is a further invariance that is not geometric in nature:

• Illumination The semantics, the position and the boundary of objects should
not be dependent on the lighting, as long as the visibility is not affected. Any
change of lighting, over position in the image, or over time (in the case of
videos) should not have an effect.

2.4. Deep Learning

This section introduces a set of methods commonly known as deep learning. One
important ingredient is the learning of a feature representation from large amounts
of data, replacing “hand-crafted” features (Goodfellow, Bengio, and Courville 2016,
p. 4). Representation learning is made possible by very large (and deep!) neural networks,
which are also associated with the term deep learning. They are called convolutional
neural networks (CNNs). The remainder of this section describes these networks in
detail, proceeding in a roughly chronological order.

2.4.1. Artificial Neural Networks

CNNs are a special variant of artificial neural networks suitable for large-scale image
and signal processing and capable of representation learning. We first discuss neural
networks in general to build a theoretical foundation.

The first mention of neural networks is found in McCulloch and Pitts (1943).
Inspired by the human brain and nervous system, McCulloch and Pitts develop a
temporal first-order predicate calculus. It is built on a set of axioms about neural
interaction derived from theoretical neurophysiology. A neural network consist of
neurons and synapses which interconnect neurons. The topology never changes. A
special case of these neural networks, namely cycle-free topologies, are comparable
to modern neural networks. However, their use of binary logic and some of their
other axioms severely limit possible applications.
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2.4.1.1. Perceptron

The perceptron (Rosenblatt 1958) is a continuous generalization of the McCulloch-Pitts
model. It describes a single neuron in terms of a special case of the linear model (see
section 2.1.2). The perceptron hypothesis is given by (cf. Bishop 2008, p. 192):

h(x; w, b) = f(hw, xi+ b) , (2.8)

with w, x 2 Rd, b 2 R and f(s) = 1[s � 0]. In the context of neural networks
we call f an activation function. x represents the input to the neuron in terms of a
d-dimensional vector. The parameters w and b are called weights and bias, respectively.

2.4.1.2. Multi-Layer Perceptron

The perceptron in eq. (2.8) can realize (w.r.t. the realizability assumption) the same
tasks as the linear model (section 2.1.2). The task, or the training data, has to be
linearly separable (see section 2.1.2.1). In practice, this is problematic. One can easily
imagine a trivial task which is not linearly separable by any means (see fig. 2.1). This
limitation affects single perceptrons. However, multiple perceptrons can be arranged
into layers and combined to solve arbitrarily complex tasks (in terms of function
approximation, cf. ibid., p. 230). The result is a special neural network: a multi-layer
perceptron (MLP). Its hypothesis is defined as:

h(x; (W l , bl)l=1,...,L) = (hL � hL�1 � . . . � h1)(x) , (2.9)

with the weights W 2 Rdl⇥dl�1 , biases b 2 Rdl , and inputs x 2 Rdl�1 .

hl(x; W l , bl) = fl(W lx + bl) . (2.10)

Note that W and b are now a matrix and a vector, respectively. The hypothesis hl ,
or output of the l-th layer represents the activations of several neurons placed next
to each other and all connected to the same set of inputs. Such a layer is called a
fully-connected layer.

We apply the activation function in a point-wise fashion unless specified otherwise.
For the very first layer h1, the input is a domain point. Every following layer has the
output of the previous layer as its input. The output of the final layer is the overall
hypothesis of the MLP. Because of this directionality, an MLP is a feed-forward neural
network.

2.4.1.3. Activation Functions

In the linear model, the function f has the purpose of mapping the intermediate
result s = hw, xi+ b to the label set. The activation function of the last layer in an
MLP is used in the same manner. However, in eq. (2.10), we can see that all layers
have their own activation function, not only the last. These f1, . . . , fL�1 are essential,
but for a different reason. They serve as non-linearities. Without them, the whole
composition hL�1 � . . . � h1 could be described by a single matrix W and vector b,
and in turn by a single perceptron (cf. Goodfellow, Bengio, and Courville 2016, p. 192).
The same is true for linear activation functions.
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Figure 2.1.: The XOR problem, which is not linearly separable (see section 2.1.2.1).

Activation functions should not only be non-linear, but also differentiable for use
with gradient-based optimization techniques (see section 2.1.3). Differentiability rules
out the original perceptron activation function f = sgn. In the following, we discuss
several important activation functions (cf. Goodfellow, Bengio, and Courville 2016,
191 sqq.):

• Sigmoid f(s) = s(s) = 1
1+exp (s) . This function is used for logistic regression (see

section 2.1.2.2). Its range [0, 1] makes it suitable for approximating individual
probabilities.

• Hyperbolic Tangent f(s) = tanh (s) = exp (s)�exp (�s)
exp (s)+exp (�s) . Like s, it has a sigmoidal

shape. However, it has a point symmetry around the origin and locally resem-
bles the identity at tanh (0) = 0, which has benefits for the application of neural
networks in practice.

• Rectified Linear Unit “ReLU” f(s) = max (0, s). First described in Nair and
Hinton (2010), this activation function is obtained by taking the limit of many
neurons with sigmoidal activation functions and randomly distributed b. It is
easy to compute and free of second-order effects because the second derivative
is zero almost everywhere (cf. Goodfellow, Bengio, and Courville 2016, p. 193).
Strictly speaking, it is not differentiable everywhere, which is not problematic
for practical purposes.

• Softmax f(s)k =
exp (sk)

Âd
k0=1 exp (sk0 )

. This activation function is a common choice for the

last layer of a neural network in classification tasks. Its individual components
are never negative and always have the sum 1, which makes softmax ideal
for categorical probability distributions (cf. ibid., p. 81). Furthermore, the
combination of softmax activation function and cross-entropy loss function (see

28



2.4. Deep Learning

section 2.4.1.4) has a derivative that can be calculated very efficiently (cf. ibid.,
p. 222).

2.4.1.4. Loss Functions

Neural networks are learned, or “trained”, from data by solving the ERM problem
(see section 2.1.1.3). The hypothesis space is parameterized by weights and biases,
and the solution is determined using a gradient descent method (see section 2.1.3). For
this approach, we require a differentiable loss function. To calculate the derivatives
w.r.t. the individual layers’ weights, the chain rule is applied. The process is known in
literature as backpropagation (cf. Rumelhart, Hinton, and Williams 1986; Goodfellow,
Bengio, and Courville 2016, p. 204).

Depending on the task, the following loss functions are common choices:

• Mean Squared Error L(h, x, y) = 1
2kh(x) � yk2

2. The mean squared error loss
function (cf. Goodfellow, Bengio, and Courville 2016, p. 108) is suitable for
regression tasks, i.e., prediction of a continuous value. In practice, it is often
prefixed with 1

2 to remove the factor 2 from the derivative. Note that this
definition does not contain a mean explicitly. Instead, the mean operator is part
of the empirical risk (see eq. (2.4)). Minimizing the squared error is equivalent to
maximizing the likelihood assuming a normal distribution of y (cf. ibid., p. 143).

• (Categorical) Cross-Entropy L(h, x, y) = �Âd
k=1 yk log h(x)k. When y and h en-

code categorical probability distributions, this loss function is used for classifi-
cation and combined with the softmax activation function. It can be derived
from likelihood maximization as well (cf. ibid., p. 132). There is an alternative
formulation for binary classification when the last layer’s activation function
is a sigmoid, denoted binary cross-entropy: L(h, x, y) = �y log h(x) + (1 �
y) log (1� h(x)).

2.4.2. Convolutional Neural Networks

The MLP in eq. (2.9) is defined for domain sets that are real vector spaces. Images,
however, are represented as matrices or objects with three indices (see section 2.3.1).
As such, they are incompatible. While images can be “flattened” to vectors, spatial
relations in the image cannot be kept intact this way. Furthermore, this loss of
information complicates feature learning, since many invariances are defined w.r.t.
two-dimensional coordinate transformations.

In this section, we describe a replacement for eq. (2.10) which solves both these
problems. It takes the spatial structure of images into account and is translation
covariant. This new convolutional layer exchanges the matrix-vector product W lx with
a convolution W l ⇤ X (cf. ibid., p. 348):

hl(X; W l , bl)i,j,k = fl

 
w0,h0

Â
i0,j0

dl�1

Â
k0

Wl;i0,j0,k0,kX i�i0+1,j�j0+1,k0 + bk

!
, (2.11)

which transforms an input X of dimensions w⇥ h⇥ c into an output of dimensions
(w� w0 + 1)⇥ (h� h0 + 1)⇥ c0 using a kernel W of size w0 ⇥ h0 ⇥ c0 ⇥ c. While an
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image has a number of channels, the output of a convolutional layer has a number of
feature maps.

2.4.2.1. Implementing Convolutional Layers

Equation (2.11) is a typical implementation of a convolutional layer, but there are
many alternatives. This section discusses possible design choices when constructing
such a layer.

First, we observe that the central operation in eq. (2.11) is only really a convolution
w.r.t. the dimensions of width and height. If we set the kernel’s w0 and h0 sizes to one,
we obtain:

hl(X; W l , bl)i,j,k = fl

 
dl�1

Â
k0

Wl;1,1,k0,kX i,j,k0 + bk

!
.

Reducing the image dimensions w, h and c to one, and removing all indices of
dimensions of size one, the equation becomes:

hl(X; W l , bl)k = fl

 
dl�1

Â
k0

Wl;k0,kXk0 + bk

!

= fl

⇣
(WlX + bk)k

⌘
, or

hl(X; W l , bl) = fl(WlX + b) ,

which is equal to a layer in an MLP. Along the axis of feature maps, the convolutional
layer does not in fact convolve image and kernel, but rather computes a matrix-vector
product.

The second observation is that the output of a convolutional layer as described
in eq. (2.11) has a smaller width and height than the input image. This is necessary
in order to keep the indices of X i�i0+1,j�j0+1,k0 within the range of the image. This
reduction in output size makes the convolution valid (cf. Goodfellow, Bengio, and
Courville 2016, p. 349). Alternatively, one can pad the input image with zeros before
convolution such that the input and output width and height of the layer are equal.
Padding is not indicated along the channel axis because eq. (2.11) is not a convolution
in that respect, as per our first observation.

2.4.2.2. Spatial Pooling

In a convolutional layer, the same filter mask is applied to all spatial locations of the
layer’s input. This property is known as weight sharing (cf. LeCun et al. 1988), and
means that convolutional layers are translation covariant (see section 2.3.4.2). How-
ever, if a neural network should detect the presence of certain objects independent of
their location, translation invariance would be even better.

Spatial pooling layers can provide limited translation invariance. The layer’s input
is divided into regions. Commonly, a grid of equally sized non-overlapping regions
is used (cf. Goodfellow, Bengio, and Courville 2016, p. 342). 2⇥2 pixels is a typical
region size. For each region, an output value representative of all input values
inside the region is determined. Maximum pooling (cf. Zhou and Chellappa 1988) is
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a common implementation. If the input is translated slightly, such that the maxima
remain inside their original regions, the result of maximum pooling is unchanged.

A further benefit of spatial pooling with non-overlapping regions is the dimen-
sionality reduction, which is a possibly greater benefit than the limited translation
invariance. However, a similar reduction can be achieved by implementing strides
inside the convolutional layer (cf. Goodfellow, Bengio, and Courville 2016, 348 sq.).
This effectively results in a spatial pooling where the representative value is always
the upper-left pixel, but at a considerable speed-up compared to maximum pooling.

2.4.3. Implementation Details

While the fundamental building blocks of CNNs are available since the late 1980s
(e.g. LeCun et al. 1988; Zhou and Chellappa 1988), the first “breakthrough” result
(Krizhevsky, Sutskever, and Hinton 2012) of a deep learning system is published in
2012. This coincides with the availability of large-scale labeled training data (see also
section 6.2.1.1), and with the advent of general-purpose GPU computing. In fact, the
neural network architecture in Krizhevsky, Sutskever, and Hinton (ibid.) is simply
the largest that fits the specific GPU hardware and not the result of a model selection
process (see section 2.2).

In the following, we discuss a number of smaller “tweaks” and implementation
details that are also crucial for the successful application of a CNN.

2.4.3.1. Initialization

We train CNNs using gradient-based optimization (see sections 2.1.3 and 2.4.1.4). Its
success is highly dependent upon the correct method of random initialization of the
weights and biases. The symmetry of weights is of particular concern. If two weight
components in the same layer are initialized to identical values, they remain identical
throughout the whole optimization process. This effectively reduces the complexity
of the neural network and leads to redundant calculations.

A simple heuristic initialization procedure is offered in LeCun et al. (1988). Given a
layer with dl�1 input dimensions, each weight component is sampled independently
from a uniform distribution U :

q(0) ⇠ U [�
2.4

dl�1
,

2.4
dl�1

] .

However, this method has a number of drawbacks which are discussed in Glorot
and Bengio (2010), including “vanishing gradients”. If the activation functions used
in the neural network are hyperbolic tangents (see section 2.4.1.3), Glorot and Bengio
propose the following initialization for a layer with dl�1 input dimensions and dl
output dimensions:

q(0) ⇠ U [�

p
6p

dl�1 + dl
,

p
6p

dl�1 + dl
] .

Recent implementations of CNNs often use the ReLU activation function (see
section 2.4.1.3) as opposed to the hyperbolic tangent. In He et al. (2015), the authors
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derive an optimal initialization for such “rectified” neural networks. The weights for
a layer with dl�1 inputs are sampled from a normal distribution N as follows:

q(0) ⇠ N
�
0,

s
2

dl�1

�
. (2.12)

2.4.3.2. Batch Normalization

Gradient descent algorithms (see section 2.1.3) change all weights simultaneously,
during each step. However, the change of an individual weight component, as
determined by the partial derivative, is only “correct” assuming that the remaining
weights are not changed. On the scale of whole layers, this phenomenon is discussed
in Ioffe and Szegedy (2015) as “internal covariate shift”.

To counteract this, Ioffe and Szegedy propose a normalization technique called
batch normalization. The inputs to a layer are normalized element-wise by subtract-
ing the mean and dividing by the standard deviation (cf. Goodfellow, Bengio, and
Courville 2016, p. 268). During training, the statistics can simply be calculated across
a sufficiently large minibatch (see section 2.1.3.1). However, when the model is used
for predictions, the minibatch size is effectively 1, which makes the calculation im-
possible. Instead, moving averages of the normalization coefficients are maintained
during optimization and stored for later use in predictions.

2.4.3.3. Residual Networks

In section 2.4.3.1, we already state the importance of initialization. For very deep
neural network, e.g., with hundreds of layers, it is even more relevant, as a single
badly initialized layer can cause the whole network to fail. If the weights are close
zero, information is destroyed.

Residual networks (cf. He et al. 2016a,b) are a solution to this problem. Instead of
accepting the loss of information with small weights, a reasonable default is provided.
For each layer, its input is added to the output, such that zero weights result in an
identity layer where no loss of information occurs. Only the deviation from the
identity (the residual) has to be learned. A residual convolutional layer is defined as:

hl(X; W l , bl)i,j,k = fl

 
w0,h0

Â
i0,j0

dl�1

Â
k0

Wl;i0,j0,k0,kX i�i0+1,j�j0+1,k0 + bk

!
+ X .

The handling of edge cases, e.g., k0 6= k, is discussed further in He et al. (2016a).
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Knowledge

All I know is that I don’t know
All I know is that I don’t know nothing
And that’s fine. (Operation Ivy)

In this chapter, we abandon the notion of classes in favor of the more general
concepts. By machine learning convention, all classes in a set are assumed to be
mutually exclusive1. Something that is a member of one class cannot be in another
class at the same time. Hence, the corresponding random variables are modeled
using a categorical distribution.

A concept does not have this limitation. For example, an English Cocker Spaniel
can be a dog at the same time. However, restrictions can still exist on a more com-
plex level. The English Cocker Spaniel cannot be a Pembroke Welsh Corgi even
though both are dogs. This is informed by semantic knowledge.

In the following, these restrictions based on semantic knowledge are modeled
by relations between concepts. We then use these relations to nest concepts into
hierarchies. Finally, we explore knowledge bases from which such hierarchies can be
obtained.

3.1. Formal Introduction

Let us start with a simple prediction task. Examples are from the set Z = X ⇥ Y ,
where there exists a domain set X , e.g., images or time series, as well as a label set Y .
If we assume that our task is a classification task, then there exists a set of classes Y

P.
We then define Y = Y

P (see e.g., section 2.3.2.1), such that every domain point x is
described by exactly one class. This restriction is reasonable as long as all classes in
Y

P are mutually exclusive. However, consider the set shown in fig. 3.1 as Y . What
would be a reasonable label for an image of a 1999 Toyota Camry? If we label it as
car, all other possible labels are ruled out. That includes vehicle and object, which
are also reasonable labels. Thus, we need to reformulate T to allow for multiple labels
at the same time, which we call concepts instead of classes to highlight the omission
of mutual exclusivity.

A classification problem where
��YP

�� > 2, but Y = Y
P is called a multi-class

classification problem (cf. Shalev-Shwartz and Ben-David 2014, 25 sq.; cf. Bishop 2008,
182 sqq.). A multi-label classification problem generalizes this, such that any number
of classes per label is allowed, i.e., Y = P(YP). This formulation allows a label like
{object, vehicle, car}. However, it also allows {cat, dog}. Since our task is now

1For example, see the third postulate in Niemann (1983).
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Figure 3.1.: A loose set of concepts, where mutual exclusivity does not hold.

too general, it needs to be restricted again, imposing a new structure on Y . Formally,
this is known as structured output prediction (cf. Shalev-Shwartz and Ben-David 2014,
198 sqq.), and we discuss methods that are formulated in this way in section 4.1.1.
Our hierarchical classifier proposed in section 5.2 fits this definition as well.

In the following, we formally define the intuitions behind sets like in fig. 3.1, and
how relations can be used to structure a label set. We then focus on different types of
semantic relations and the knowledge represented therein.

3.1.1. Concepts

Before we can begin using concepts to structure our models and guide the develop-
ment of our methods, we must first offer a definition. A concept is a semantic entity. In
philosophy, a concept is also seen as a unit of thought. It has two main components,
intension and extension (cf. Fitting 2020). The intension of a concept is the meaning
behind it, its connotation or idea. The extension then specifies what things the concept
applies to in the real world.

3.1.1.1. Formal Concept Analysis

In Wille (1992), the author offers a formal definition. The definition is based on set
theory and is part of a larger theory named formal concept analysis. Concepts cannot
exist in a vacuum. They need a space in which their extension and intension can be
represented. In Wille’s theory, this is called a context C = (G, M, I), where:

• G is a set of objects (“Gegenstände”),

• M is a set of attributes (“Merkmale”) and

• I ✓ G⇥M is a binary relation. gIm means that the object g has the attribute m.

A concept is in this theory is a pair (A, B) with A ✓ G and B ✓ M. The set of
objects A is the extent (from extension) of the concept. Similarly, the set of attributes
B is the intent of the concept. For consistency, it is required that the attributes B are
shared by all objects in A and vice versa. The theory of formal concept analysis is
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developed further in Wille (2005). However, we consider this theory too complex for
our applications. Hence, we simplify it in the following section.

3.1.1.2. Concepts in this Work

For the remainder of this thesis, we do not consider attributes to inform the intension
of concepts. However, it should be noted that learning with attributes is an active
research area and a great example of semantic knowledge integration. We further
simplify our theory by defining both the extension and intension of concepts only
over other concepts. Hence, a context is simply the set of all concepts C. There
are neither separate objects as extensions, nor are there attributes as intensions of
concepts.

The context for the example in fig. 3.1 is the set:

C = {object, vehicle, animal, car, bus, cat, dog}.

On its own, the context has no structure. We intuitively define the extension
E : C ! P(C) of a concept c as all concepts c applies to. For example:

E(animal) = {animal, dog, cat} .

In the same way, we can treat all concepts that apply to a concept c as its intension
I : C ! P(C), such that:

I(animal) = {object, animal} ,

which has an attribute-like interpretation.
A formal definition of intension and extension is provided as eqs. (3.1) and (3.2) in

section 3.1.2.2.
The tuple (C, E, I) is a taxonomy. Clearly, the semantic knowledge necessary to give

a structure to C is contained in E and I. In the following sections, we explore the
sources and representations of such knowledge.

Note that our use of the word concept for elements of the context, while
incompatible with formal concept analysis (cf. Wille 1992), is common in the
field of natural language processing (NLP) (cf. Harispe et al. 2015, 44 sq.) and
also machine learning (cf. Silla and Freitas 2011).

3.1.2. Relations

Relations are a natural description of the extension and intension of concepts. We use
them in following sections to represent concept hierarchies. However, they should
first be defined formally.
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3.1.2.1. Formal Definitions

In general, we use the term relation to mean a binary, homogenous relation. Thus,
a relation R is a (non-strict) subset of the Cartesian product of a set X with itself:
R ✓ X⇥ X (cf. Givant 2017, p. 1).

Let us first consider four special cases of a relation over X. There are (cf. ibid., p. 2):

• The empty relation ∆,

• the universal relation X⇥ X,

• the identity relation id = {(x, y) : x, y 2 X ^ x = y} and

• the diversity relation di = {(x, y) : x, y 2 X ^ x 6= y}.

Relations are sets, and operations such as the complement, union, intersection and
difference extend naturally. There are also binary operations specific to relations. The
composition of two relations R and S, represented in this work as �, is of special
interest. It is defined as (cf. ibid., 6 sq.):

R � S = {(x, z) : 9y : (x, y) 2 R ^ (y, z) 2 S} .

A relation R ✓ X⇥ X is (cf. ibid., p. 13):

• Reflexive if id ✓ R, i.e., every element relates to itself,

• symmetric if (x, y) 2 R =) (y, x) 2 R,

• transitive if (x, y) 2 R ^ (y, z) 2 R =) (x, z) 2 R,

• antisymmetric if (x, y) 2 R ^ (y, x) 2 R =) x = y.

We are mainly interested in relations that are transitive, reflexive and antisymmetric
for the purpose of taxonomies. Relations with these properties define a partial order
(cf. ibid., p. 13). There are also strict partial orders, where the relation is transitive,
irreflexive and asymmetric. They are closely related, and many semantic relationships
can be described in both manners.

With transitivity and the composition operation �, we can define two representa-
tions of relations that are used to transform taxonomies into graphs (see section 3.2.2).
The transitive closure R+ of a relation R is the minimal relation that is both transitive
and contains R. If Ri is the relation obtained by composing R with itself i times, then
R+ =

S•
i=1 Ri. The transitive reduction R� of R is the smallest relation that has the

same transitive closure as R (cf. ibid., 144 sqq.).

3.1.2.2. Semantic Relations

We now explore typical relations between semantic entities. Our main interest is in
relations that can be used to build a taxonomy. However, there are non-taxonomic
relations that also represent semantic knowledge.

The hyponymy relation is also known as the entailment, inclusion or is-a relation
between nouns (cf. Brinton 2000, p. 135; Cruse 2002). It is the foundation for the
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methods and models in this thesis. It relates narrower with more general terms, e.g.,
a car is a vehicle. In linguistics, the hyponymy relation is considered transitive,
irreflexive and asymmetric, i.e., it induces a strict partial order. However, we use it to
describe the extension of a concept as proposed in section 3.1.1.2. Hence, we include
id to form the reflexive and antisymmetric hyponymy relation  is-a, e.g., such that
dog  is-a dog.

Definition 3.1 (Extension and intension). With  is-a, we formally define the exten-
sion E : C ! P(C) of a concept c as:

E(c) = {c0 2 C : c0  is-a c} , (3.1)

and the intension I : C ! P(C) as:

I(c) = {c0 2 C : c  is-a c0} . (3.2)

The inverse relation to hyponymy is called hypernymy.
Troponymy is a relationship between verbs. It is specific to WordNet (Miller 1995,

see also section 3.3.1.1) and proposed in Fellbaum and Miller (1990). Troponymy
describes the “manner” relationship, e.g., sweeping is a manner of cleaning. Like
hyponymy, it is a strict partial order, but on verbs instead of nouns.

A more practical semantic relation, meronymy, connects parts of something to the
whole (Brinton 2000, p. 133). It is relevant for computer vision applications because it
can have a spatial extent. For example, wheel is a part of car — not only in a semantic
sense, but also spatially, and thus, visually. Datasets like Visual Genome (see Krishna
et al. (2017) section 3.3.2.1) encode such relationships. Knowledge of meronymy can
be used to improve generalization (cf. Sirakov et al. 2015).

Hyponymy, troponymy and meronymy all describe nested sets in a sense. This
idea of hierarchy is explored in more detail in section 3.2. However, there is also a
fundamentally different semantic relationship: antonymy (cf. Brinton 2000, p. 136).
There are two kinds. The first kind, binary antonymy, relates complementary concepts
such as dead and alive. The second kind, non-binary antonymy, connects extremes of
a gradual concept, e.g., hot vs. cold.

3.2. Concept Hierarchies

In section 3.1.2.2, we describe different semantic relations between concepts. The
goal is to derive the extension and intension of concepts from these relations to
ultimately build a taxonomy. We specifically focus on the hyponymy relation in this
thesis. However, most of the methods and models apply to any relation with similar
properties w.r.t. to the order they induce.

A useful perspective on a taxonomy of hyponyms and hypernyms is hierarchi-
cal. Concepts are arranged in a hierarchy of nested sets, where concepts subsume
sets of other concepts. This concept hierarchy representation is possible because the
underlying relation is a (partial) order.

Concept hierarchies are introduced in Lu (1997). The idea is more commonly
known as ontology (cf. Lorhardus 1606; Neches et al. 1991). In the following, we discuss
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two ways of representing concept hierarchies. First, as relations and orders, using
the theory introduced in section 3.1.2.1. Second, as graphs, for better algorithmic
processing and improved visual understanding.

3.2.1. Concept Hierarchies from Relations

This section details the process of deriving a hierarchy from an underlying relation.
We begin by addressing the requirements w.r.t. the properties of a relation. The idea
of comparability is also explored.

3.2.1.1. Requirements

To build a hierarchy, we expect the relation to induce a partial order. Such a relation
is reflexive, antisymmetric and transitive (cf. Givant 2017, p. 13). Transitivity is
necessary for nesting, which is a fundamental property of hierarchies.

The hypernymy relation  is-a, the focus of this thesis, is transitive. However, as
mentioned in section 3.1.2.2, it is arguable whether it should be reflexive considering
its original definition. While dog  is-a dog seems like a reasonable statement, the lit-
eral meaning of “hyponym” is “under-name”. It suggests a more strict, non-reflexive
interpretation. In linguistics, the reflexive part of the relation even has a separate
name: autohyponymy (cf. Gillon 1990).

For consistency with linguistics, we would have to consider hyponymy as inducing
a strict partial order, i.e., transitive, but irreflexive and asymmetric. However, we use
the reflexive formulation as it is more practical for our purposes, and the derived
intension and extension are unique for each concept. Furthermore, it allows for more
concise descriptions in section 5.2.

3.2.1.2. Comparability

Relations can have varying degrees of completeness. For example, in a total relation
R, every possible pair (x, y) of elements of the underlying set is comparable. That
means that either (x, y) 2 R or (y, x) 2 R (cf. Givant 2017, p. 39). In an empty relation
∆, no two elements are comparable.

Hyponymy is a partial order, which means that some, but not all elements are
comparable. For example, dog and cat are not hyponyms in either direction. Thus,
it is not always possible to determine the most broad or narrow concept in a given
set. However, when two concepts are not comparable, we can deduce that they are
mutually exclusive in a sense. This type of semantic knowledge is used, e.g., in Deng
et al. (2014). Still, this does not always apply (see section 5.2.2).

Moreover, if a hyponymy relation were total, all concepts would be comparable,
and no concepts would exclude each other. In other words, there would exist only
one class.

3.2.2. Concept Hierarchies as Graphs

Graphs are a popular choice to represent concept hierarchies as they are visually
approachable and many intuitive assumptions about their interpretation align with
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object
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car bus cat dog

catdog

(a) A typical graph representation of a
concept hierarchy defined by a hy-
ponymy relation.

object

vehicle animal

car bus cat dog

catdog

(b) A “correct” graph representation of a
concept hierarchy, where the edges are
the hyponymy relation.

Figure 3.2.: Comparison between different graph representations of the same concept
hierarchy.

hierarchies. Common operations on concept hierarchies are defined using graph
theory, e.g., semantic similarity in terms of distance in a graph (see section 6.1.2.2).
This section details the basics of representing a concept hierarchy as a graph and also
describes specific subtypes of graphs that are especially applicable.

3.2.2.1. Graph Representation

Formally, a graph G is a pair (V, E), where V is the set of vertices, or nodes, and
E ✓ V ⇥ V is the relation describing the edges, or connections between nodes (cf.
Diestel 2017, p. 2).

In this work, we consider directed graphs (cf. ibid., p. 27), i.e., E is not symmetric.
See fig. 3.2a for an example of a directed graph. While this figure visualizes a concept
hierarchy, the relation E is not transitive, and it is not a hyponymy relation.

What we visualize, and store in memory for algorithmic use, is the transitive
reduction (see section 3.1.2.1). Transitivity is implied, and is expressed in the directed
reachability relation over the graph. We can also derive the hyponymy relation using
E+, the transitive closure of the relation of edges E. However, there is another
difference. The relationship is often inverted such that the notions of “parent” and
“child” nodes align with the subsumption of concepts. Directed edges point away
from the “root”, or the most generic concept.

Another benefit of graphs is the concept of connectedness, where every node should
have at least one edge connected to it (cf. ibid., p. 10). This is a requirement for
most implementations of hierarchical classifiers (cf. Silla and Freitas 2011), while the
stronger notation of connexity or totality in relations is not, and is also not compatible
with hyponymy relations (see section 3.2.1.2). The relation equivalent to a connected
graph that represents hyponymy is a directed partial order, where any subset of the
underlying set must have an at least as or more general element in the whole set.
Clearly, it is easier to express this requirement using graph theory.
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animal

cat dog

catdog

Figure 3.3.: A directed cycle in a graph which exhibits a “diamond” pattern.

3.2.2.2. Trees and Directed Acyclic Graphs

There exist two specific types of graphs that lend themselves to representing concept
hierarchies. Both restrict the existence of cycles, i.e., paths of length � 3 where the
first and last node are identical (cf. Diestel 2017, p. 8).

The first type is the tree, a connected acyclic graph (cf. ibid., p. 13). Trees are directed
graphs, but no cycles can exist at all. The second good representation is the directed
acyclic graph (DAG). Here, only directed cycles are forbidden. Undirected cycles,
e.g., “diamonds” can exist (see fig. 3.3). Diamonds are a term from object-oriented
programming, where they represent multiple inheritance.

In practical applications, both types exist. On the one hand, the hyponymy relation
of the popular WordNet database (Miller 1995) is a DAG. Biological taxonomy, on
the other hand, has no cycles at all. Many hierarchical classification methods cannot
process concept hierarchies that are DAGs (cf. Silla and Freitas 2011). The method we
propose in section 5.2 can do so, but cannot assume mutual exclusivity of siblings as
a consequence, which may have performance implications (see section 6.6.2).

There are theoretical advantages to restricting a concept hierarchy to a tree repre-
sentation. For example, the length of the shortest path between two nodes in a tree is
a metric. In a DAG, it is possible that the triangle inequality is violated (cf. Barz and
Denzler 2019). Trees also have the advantage that all shortest paths are unique.

3.3. Semantic Knowledge Bases

Knowledge is a central theme of this thesis. While the actual definition of knowledge
is subject to debate and extensive research (epistemology), we specifically mean the
knowledge contained in a concept hierarchy.

In this section, we show where such semantic knowledge can come from. There
are several types of knowledge bases. We start with lexical databases, which supply
us with concept hierarchies.

Our work assumes that image datasets and semantic knowledge exist separately,
but there are also datasets that combine images with enhanced semantics, which
we describe in the following. We further mention subject-specific knowledge bases.
These are of particular importance because they show that niche applications can also
profit from knowledge integration. We also consider machine-readable knowledge
bases with formalized semantics, which are crucial for cost-effective applications of
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machine learning integrated with semantic knowledge.

3.3.1. Lexical Databases

Lexical databases are one important source for concept hierarchies in this work. A
lexical database is in essence a dictionary, but one that is accessible to algorithms.
Such databases are often enhanced with semantic relations from which a hierarchy
can be constructed (see also section 3.2.1).

3.3.1.1. WordNet

WordNet, presented in Miller (1995), is a crucial resource for research in computer
linguistics and NLP. It is the de-facto standard lexical database and essential for this
thesis. An online browser2 can be used to explore the database, but there are also
programmatic ways to access the data, e.g., NLTK described in Loper and Bird (2002).

The WordNet database contains English words, i.e., nouns, verbs, adjectives and
adverbs. However, the units are not simply words in the lexical sense, but synsets.
Synsets are unordered sets of synonyms, i.e., lemmata that all represent identical
concepts. For example, the synset dog.n.01 contains the lemmata dog, domestic dog,
canis familiaris. The lemma dog, however, appears in six other synsets, e.g., as
a mechanical part. To distinguish them, synsets are numbered, e.g., such that the
animal is dog.n.01, but the part is dog.n.06.

All relations in WordNet are between these synsets. This is ideal for our application.
First, because different lemmata for the same concept are not important for visual
recognition. And second, because the numbering of synsets avoids confusion when
the same lemma has multiple concepts.

For nouns, WordNet offers hyponymy and meronymy relations. Verbs are en-
hanced by troponymy and adjectives have both direct and indirect antonyms. These
correspond to binary and non-binary antonyms as described in section 3.1. There
are also relations between different parts of speech. For example, the pertainymy
relation links nouns with adjectives such that criminal pertains to crime.

Lexical databases such as WordNet that are augmented with relations are also
known as semantic networks.

3.3.1.2. Multilingual WordNet Variants

The WordNet lexical database is of high quality, but limited scope. Most impor-
tantly, it is only available in English. However, several alternatives, extensions and
combinations exist for other languages.

The BabelNet project, proposed in Navigli and Ponzetto (2012), is an effort to create
a very-large-scale multilingual lexical database and semantic network. It aggregates
multiple data sources to reduce or eliminate any human annotation effort. The current
version, BabelNet “live”3, uses at least 16 online sources that are constantly updated.
It is able to cover 284 languages with this strategy. To align the languages, BabelNet

2
https://wordnet.princeton.edu/

3
http://live.babelnet.org/
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relies on translations from Wikipedia, Wikidata and other multilingual knowledge
bases.

While BabelNet attempts to cover almost all possible languages, there are also
smaller-scale efforts that focus on individual languages. MultiWordNet, presented
in Pianta, Bentivogli, and Girardi (2002), is an example of such a project. Its goal is
to provide an Italian version of WordNet that is strictly aligned to the English coun-
terpart. Strict alignment means that all semantic relations are correctly transferable
from the original WordNet. There are also specific annotation for concepts that have
different extensions (see section 3.1.1) in either language, and lexical gaps.

The Global WordNet Association coordinates efforts on multilingual WordNet
developments. Their main goals are the standardization of representations and
the sharing of data between individual projects. The platform also provides
guidelines for building further WordNets in new languages. A summary can
be found in Pease, Fellbaum, and Vossen (2008).

3.3.2. Visual-Semantic Datasets

Technically speaking, most computer vision datasets (see, e.g., section 6.2.1.1) com-
bine some forms of visuals and semantics, typically in the form of images and class
labels. Here, we explore datasets where semantics are enhanced, i.e., contain more
information or have a more complex representation than simple class labels or bound-
ing boxes. Label representations include complex scene descriptions, captions and
question-answer pairs.

It should be noted that datasets based on ImageNet (see section 6.2.1.1), while not
described in detail here, are also semantically enhanced because all labels are synsets
taken directly from WordNet (section 3.3.1.1).

3.3.2.1. Visual Genome

Visual Genome, originally presented in Krishna et al. (2017), is probably the dataset
with the most semantically complex annotations. For each single image, it encodes
objects with semantic and visual relationships, attributes and bounding boxes for
each part. An example image is shown in fig. 3.4, where the large amount of bounding
boxes is clearly visible.

While the annotation complexity is impressive, the utility is further improved by
the feature that all semantic units in all annotations are WordNet synsets. This allows
one to take advantage of additional semantic knowledge from WordNet. The formal
representation is a scene graph. It is similar to a knowledge graph (see section 3.3.3.2)
in that it consists of triples of subject, predicate and object. Each individual element
is associated with a region in the image by a bounding box.

The dataset consists of 108 077 images. In total, there are approximately 2 300 000
relationships encoded, connecting approx. 3 800 000 objects and also approx. 2 300 000
attributes.
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Figure 3.4.: An example from the Visual Genome dataset. Image cap-
tured from https://visualgenome.org/VGViz/explore?query=human%
20behind%20dog on February 10th, 2021.

Figure 3.5.: An example of image captions from the Microsoft COCO dataset. Image
captured from https://cocodataset.org/#captions-2015 on February
11th, 2021.

3.3.2.2. Image Captioning

While scene graphs in Visual Genome (see section 3.3.2.1) allow for an exceptional
degree of scene understanding, such annotations are very expensive and time-con-
suming. Image captions are a less informative, but still semantically rich type of label,
where annotators are simply asked to describe the scene in words. Processing image
captions involves NLP and evaluation schemes can be very complex and difficult (cf.
Chen et al. 2015b).

Microsoft COCO (Common Objects in Context, cf. Lin et al. 2014) is mainly an object
detection dataset. Objects are not just annotated with class labels, but as individual
instances. Segmentation maps are also provided per instance for visually fine-grained
scene understanding. On the semantic side, there are five image captions available for
each of the approximately 328 000 images. Figure 3.5 shows two example captions.

Natural images contain not only objects, but occasionally also text. There are
datasets that combine image captioning with optical character recognition (OCR),
such that image captions also describe any legible text. TextCaps (cf. Sidorov et
al. 2020) relates written text in images to objects and also offers interpretations in
captions, such as signs or public information displays. COCO-Text (cf. Veit et al.
2016) focuses only on the text in images. It differentiates between hand-written and
machine-printed text for a more challenging recognition task.
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Figure 3.6.: A hierarchy of skin lesions. Figure taken from Barata, Marques, and
Celebi (2019).

There is an effort by Google, Conceptual Captions (cf. Sharma et al. 2018), to
automatically generate a very large dataset of more than 3 000 000 images. Instead of
human annotations, they use image captions from websites and perform extensive
filtering. There is a bespoke simplification step called “hypernymization” that makes
the often very specific image captions more general.

3.3.2.3. Visual Question Answering

Visual question answering (VQA) is a complex visual-semantic machine learning
task. The input to such a system is an image with an associated question, while the
answer has to be predicted. This requires an understanding of the scene as well as
the semantics of the question, leading to interesting challenges in model design. For
example, consider a picture of a street and the question “can you park here?” as well
as the knowledge required to answer it.

The eponymous VQA dataset presented in Antol et al. (2015) provides such data.
Images are taken directly from MSCOCO (see section 3.3.2.2). The authors collect
760 000 questions from humans. To avoid challenges (e.g., as in Chen et al. 2015b)
in evaluating the correctness of answers, they also collect ten answers for each
individual question. A predicted answer is then considered correct if it matches at
least three of the human answers.

Further visual-semantic datasets include Fashionpedia (Jia et al. 2019) and Visu-
alSem (Alberts et al. 2020).

3.3.3. Domain-Specific Knowledge Bases and the Semantic Web

WordNet is a helpful resource for general object recognition, as evidenced by its use
in the construction of ImageNet (see section 6.2.1.1). However, industrial, medical or
research applications have separate terminologies, such that we cannot use WordNet
to build a concept hierarchy. For example, biology has its own taxonomy. In medicine,
there are many hierarchies, e.g., of skin lesions (cf. Barata, Marques, and Celebi 2019)
that can be used. We explore potential domain-specific data sources in this section
and also consider the formalization of such knowledge.
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3.3.3.1. Biological

This thesis contains several biological applications, specifically in the field of biodi-
versity (see sections 7.3 and 7.4). In biology, the central hierarchy comes from the
Linnean taxonomy system (cf. Linnæus 1758).

An important resource for taxonomic information is WikiSpecies4. It is represented
as RDF data (see section 3.3.3.2) in the Wikidata5 project, and as such, can be ac-
cessed with structured queries in the SPARQL language. We use it in this thesis for
experiments that require knowledge of relations between species, e.g., in section 6.5.

WikiSpecies is also cross-referenced with other databases, including the Catalogue
of Life6. The catalogue is a meta-database combining 186 individual taxonomic
databases. Hence, there is a high likelihood of finding and relating even the most
obscure species.

While biological taxonomies are easily found in a machine-accessible format, there
are many areas in biology where knowledge is mainly represented in natural lan-
guage. Bioschemas (cf. Gray et al. 2017) is a recent attempt to formalize more areas
by offering a unified markup language and schemas for life sciences.

3.3.3.2. Semantic Web

There are two main ways of accessing knowledge represented in a machine-readable
fashion. The first is to apply NLP methods to process documents like scientific
publications, textbooks and manuals. The second is to store any knowledge in a
machine-readable format is the first place. “Semantic Web” is an umbrella term for
technologies that aid in the second approach. They are also the technical foundation
of databases like Wikidata.

An early semantic web technology is Resource Description Framework (RDF),
proposed In Brickley and Guha (2014). It is a graph-based formalization of semantics.
An RDF model consists of a number of triples with subject, predicate and object. Such
a triplet is called a statement, and they are connected together to form a knowledge
graph. For example, consider this excerpt from the WikiSpecies database (see also
section 3.3.3.1):

Subject: Michotamia aurata (Q1313312)
Predicate: instance of (P31)
Object: taxon (Q16521).
—
Subject: Michotamia aurata (Q1313312)
Predicate: parent taxon (P171)
Object: Michotamia (Q14510436).

Similar to WordNet, each human-readable term like instance of has a unique iden-
tifier (P31) to mitigate potential overlaps.

4
https://species.wikimedia.org/

5
https://www.wikidata.org/

6
https://www.catalogueoflife.org/
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OWL, the Web Ontology Language (cf. W3C OWL Working Group 2012), is a
generalization of the concepts in RDF. It allows for more complex expressions. Tax-
onomies are explicitly modeled by considering classes, properties and instances as
fundamental building blocks.

The Linguistic Linked Open Data platform integrates linguistic knowledge from
a variety of sources using semantic web technologies to allow for easier sharing
of data and automatic access. Their positions are stated in Chiarcos, Hellmann,
and Nordhoff (2011). It is a promising development for semantic knowl-
edge integration because it aims to make even more knowledge accessible to
methods like ours proposed in section 5.2.
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This chapter serves as a broad overview of literature that is relevant to this thesis. The
related work can be divided into roughly two categories. First, we discuss methods of
semantic knowledge integration into classification tasks. The respective knowledge
is almost always a concept hierarchy, however, we also consider other semantic
information such as attributes. In addition to methods of hierarchical classification,
we review several exploratory and analysis works. The second category concerns
problem formulations other than general classification tasks. Here, we focus on
problems that stand to benefit from semantic knowledge integration. We discuss
literature on imprecise data, several alternatives to (fully) supervised learning, and
natural language processing.

4.1. Semantic Knowledge Integration From Concept
Hierarchies

In this section, we review related work that proposes methods of hierarchical clas-
sification, or more generally, methods that incorporate semantic knowledge in the
form of a concept hierarchy to improve a classification task. The term hierarchical
classification subsumes a variety of different tasks and methods (Silla and Freitas
2011). All of them involve a concept hierarchy at some point to either constrain or aid
in the learning of a classifier. In the following, we point out important distinctions
and give an overview of relevant work in this field. We first list approaches where a
hierarchy is used to structure the classifier itself, e.g., to build connections in a neural
network. Afterwards, we discuss the mutually related topics of embeddings and
metric learning. Finally, we point out non-semantic hierarchies one may encounter in
computer vision and a variety of interesting analyses.

4.1.1. Model Structure

A major category of hierarchical classifiers are structural models. We consider a
method structural if the construction of the model itself is informed by a concept
hierarchy. Examples are special layers, or decision trees that are isomorphic to a
hierarchy, i.e., where the model’s architecture is hierarchical. We also list probabilistic
graphical models where the dependency graph is built from a concept hierarchy.
Methods in which a concept hierarchy is used to construct to a loss function are also
included for completeness.
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4.1.1.1. Hierarchical Architecture

An early structural method is presented in Marszalek and Schmid (2007), where
SVMs are nested to represent a given concept hierarchy. This improves both accuracy
and runtime compared to a contemporary one-vs-all SVM. In addition to hyponymy,
the work also explores applications of integrating meronymy and holonymy relations
(see section 3.1.2.2).

Boosting is a meta-learning method, where multiple “weak” classifiers with access
to a subset of features are aggregated into one hypothesis. In Fan, Gao, and Luo
(2008), SVMs are aggregated in a hierarchical boosting approach.

Hwang (2013) proposes a collection of structural hierarchical classification methods,
e.g., the Tree of Metrics. The author also discusses the separation of knowledge between
training data and concept hierarchy, considering the latter “external”, as we do in
this thesis.

Furthermore, the structure of a concept hierarchy can guide the construction
of a neural network. Many approaches consider a simplified hierarchy of classes
and superclasses, i.e., with only two levels. In Ahmed, Baig, and Torresani (2016),
specialist and generalist networks informed by both semantic and visual hierarchies
(see section 4.1.4) are proposed. Goo et al. (2016) considers hierarchical pooling
layers to represent generalization and specialization of features between classes
and superclasses. Knowledge graphs, textual descriptions of concepts and further
knowledge are integrated in Zhang, Lertvittayakumjorn, and Guo (2019), while still
only two hierarchy levels are considered.

Instead of restricting the concept hierarchy to two levels, one can assign one layer
of the neural network directly to one level in the concept hierarchy. For example,
Zhu and Bain (2017) propose one layer with a softmax activation function (see
section 2.4.1.3) per level. Their method is also used in Zhang, Mou, and Xie (2020)
to integrate semantic knowledge for image generation. Similar one-layer-per-level
approaches are discussed in Chen et al. (2018) and La Grassa, Gallo, and Landro
(2021). Roy, Panda, and Roy (2020) uses a “Tree-CNN” not to improve accuracy,
but to increase the complexity as new concepts are encountered in an incremental
learning scenario (see section 7.1.2).

In Li et al. (2021), the authors propose a generalization of hierarchical classification
that allows for multiple hierarchies. The model differentiates between concepts that
occur in multiple hierarchies (“common subclasses”) and concepts that are restricted
to one of the hierarchies (“heterogeneous superclasses”). Each set of concepts is
assigned a separate branch of the underlying convolutional neural network.

The concept of “level” only applies to concept hierarchies that are trees (see
section 3.2.2.2). Hence, the aforementioned methods are not all compatible
with DAGs.
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4.1.1.2. Probabilistic Graphical Models

With the knowledge of a concept hierarchy and additional assumptions, the prob-
abilities of certain combinations of concepts can be inferred (cf. section 5.2). In the
following, we discuss a selection of methods that manipulate probabilities to integrate
knowledge.

Taskar, Guestrin, and Koller (2004) lays out a general framework to combine
probabilistic graphical models with SVMs. While kernel-based SVMs contribute their
capability of learning in high-dimensional feature spaces (see section 2.3.3.1), the
probabilistic graphical models can exploit the problem structure, e.g., as derived from
a concept hierarchy. A similar approach is discussed in Chen et al. (2015a), where
probabilistic graphical models are combined with deep neural networks.

In Deng et al. (2010), the authors explore the special requirements of classification
tasks with tens of thousands of classes. A key insight is that not all confusions, i.e.,
predictions that differ from the ground truth, are of equal consequence. They propose
a misclassification cost based on semantic distance (cf. section 5.1.1.1) and derive
a probabilistic Bayes classifier to minimize this objective. Concept hierarchies are
used to derive prior probabilities for a deep neural network’s weights in Srivastava
and Salakhutdinov (2013). The (posterior) knowledge in the model is updated by
modifying the concept hierarchy, e.g., by removing relations, during training. This
Bayesian approach combines the strengths of prior knowledge and learning from
data.

A conditional random field that combines knowledge from a concept hierarchy as
well as attributes is proposed in Samplawski et al. (2019). Instances of knowledge
are modeled as expressions of propositional and relational logic. The conditional
random field is combined with a deep neural network.

While the aforementioned approaches require special models and learning pro-
cesses, the method proposed in Karthik et al. (2021) can be applied to an already
existing and trained deep neural network. A post-processing step adjusts the con-
fidences scores given by the last layer to improve the quality of mispredictions, i.e.,
lower their semantic distance. This is also known as making “better mistakes” (cf.
Bertinetto et al. 2020).

4.1.1.3. Regularization and Loss Functions

Without affecting the structure of a classifier, or explicit modeling of probabilities,
there is another possibility to integrate knowledge from concept hierarchies into a
machine learning system. Consider Hypotheses obtained from ERM, which are the
result of optimizing a loss function. In section 2.2.1, we already discuss regularization,
where an additional term to the loss function is used to improve generalizability.
Similarly, the loss function can be modified to integrate semantic knowledge.

Fergus et al. (2010) proposes “Label Sharing”, where a one-hot encoded represen-
tation of the ground truth labels is modified to induce knowledge transfer between
concepts. The authors define an affinity matrix which indicates the degree to which
two concepts are related semantically. This matrix is only a slight deviation from
the identity matrix. Each one-hot encoded label is then transformed by the affin-
ity matrix and an adapted cross-entropy loss function (see section 2.4.1.4) enforces
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the prediction of the modified labels, which are interpreted in terms of multi-label
classification.

A loss function specifically tailored to semantically imprecise data is derived in
McAuley, Ramisa, and Caetano (2013). The derivation is by way of an evaluation
metric for imprecise predictions (see section 5.2.3.1).

Xie et al. (2015) introduces hyperclasses, which are identical to the previously dis-
cussed superclasses in a two-level hierarchy. Assuming that there is a comparatively
large amount of training data available that is annotated with hyperclasses, a neural
network is first trained only on hyperclasses. A second neural network then solves
the actual classification task, while a term in the loss function enforces an alignment
between both networks to induce knowledge transfer.

In Chen et al. (2019), a loss function component is added specifically for the
concepts which should be predicted with low probabilities. In a conventional classi-
fication task, these complementary concepts are simply all concepts other than the
ground truth. However, when a concept hierarchy is available, a higher priority
can be assigned to more general complementary concept, which in turn “neutralize”
their hyponyms. This combined loss function is called a “hierarchical complement
objective”.

Goyal and Ghosh (2020) is a unique approach. While other loss functions depend
only on the ground truth and the predictions, this method builds a curriculum, i.e.,
a loss function that depends on the current number of optimization iterations. The
concept hierarchy is used to order the training data, which results in a significant
accuracy increase, and has further theoretical benefits. A similar approach is proposed
in Stretcu et al. (2021).

4.1.2. Embeddings

Another category of approaches for hierarchical knowledge integration into classi-
fication tasks are those based on embeddings. An embedding is a high-dimensional
vector space E equipped with two maps, one from the domain set X to E and one
from the label set Y to E . These maps can be either fixed or learned, e.g., by deep
neural networks. Predictions are inferred by applying the first map from X to E , and
then the inverse of the second map. If the second map is not invertible, a nearest
neighbor approach in E can be applied.

Frome et al. (2013) combines a CNN for image classification with a skip-gram text
model that learns a high-dimensional vector representation of words. Both models
are initialized separately, the vision model on ImageNet-1k (see section 6.2.1.1) and
the text model with data from Wikipedia. The vision model is then fine-tuned
to minimize a similarity metric w.r.t. the vector representation of the labels. This
combination results in qualitatively improved mispredictions (see also Bertinetto
et al. 2020) and enables zero-shot learning (see section 4.2.4.3).

Attributes and superclasses are combined in a label embedding in Hwang and
Sigal (2014). The superclasses reside in the same vector space and are enforced to be
linear combinations of their constituent classes. A similar idea is explored in Norouzi
et al. (2014), where an embedding space is constructed from convex combinations of
one-hot classifier outputs.
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Sun et al. (2017b) allows a CNN to learn an embedding freely in order to exploit
possible relations between labels. It is observed that the learned relations reflect
semantic similarities (see section 6.1.2.2) even though the learning process has no
access to the concept hierarchy (see also section 4.1.5).

While most methods capitalize on the nested subset aspect of concept hierarchies,
Vendrov et al. (2016) considers the partial order represented by a hyponymy relation
(see section 3.1.2.1). The authors propose a label embedding into a real vector space
that, with the reverse product order on its elements, is order isomorphic to the
hyponymy relation.

Embeddings that integrate both similarity and order at the same time are proposed
in Nickel and Kiela (2017) and further generalized in Ganea, Becigneul, and Hofmann
(2018) and Dhall et al. (2020). Nested volumes (cones) in the embedding space
represent concepts such that the nesting matches the concept hierarchy. Crucially, the
hyperbolic geometry enables a volume hierarchy that matches a DAG, i.e., concepts
with multiple hypernyms.

Barz and Denzler (2019) considers a fixed label embedding, such that Euclidean
distances between concepts correspond (inversely) to semantic similarity. The em-
bedding is used for classification and also to provide more reasonable results in
content-based image retrieval (see section 4.2.3). A similar approach is developed in
Jayathilaka, Mu, and Sattler (2020). Learned (instead of fixed) embeddings reflecting
semantic similarities are proposed in Narayana et al. (2019) and Arponen and Bishop
(2019).

4.1.3. Metric Learning

Metric learning methods consider a vector space similar to embedding methods, or
more generally, a manifold. However, there is no explicit mapping from and to of this
space. Instead, metric learning approaches learn and predict distances, or metrics,
between two domain points directly. To perform a classification task using such an
approach, the learned distance can be used to determine the nearest neighbor in the
training data.

In Verma et al. (2012a), a nearest neighbor classifier is equipped with a matrix that
scales the euclidean feature distance according to a concept hierarchy. It is shown to
improve classification accuracy and, as a side effect, can perform zero-shot learning
(see section 4.2.4.3).

A conventional triplet loss (cf. Schroff, Kalenichenko, and Philbin 2015) considers a
triplet of anchor, positive, and negative examples. The positive example should be
close to the anchor, while the negative example should be at least a certain margin
away. Zhang et al. (2016) proposes a hierarchical triplet loss, where the margin
is dependent upon the semantic distance (see section 6.1.2.2) between anchor and
negative example. Similar approaches are described in Faghri et al. (2018), Tonioni
and Di Stefano (2019), and Lin, Gao, and Li (2020). In Wang et al. (2017a), the distance
scale is removed from the triplet loss in favor of enforcing certain angles, which are
determined by a concept hierarchy. Proença, Yaghoubi, and Alirezazadeh (2020)
generalizes the triplet loss to a quadruplet loss, enforcing semantic distances between
two independent pairs.
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Sampling three examples to compute the triplet loss is not trivial and typically
involves complex strategies such as hard negative mining (cf. Schroff, Kalenichenko,
and Philbin 2015). There are works that relax this requirement, including the afore-
mentioned Proença, Yaghoubi, and Alirezazadeh (2020), which can utilize random
samples. He et al. (2021) uses a concept hierarchy to guide the sampling and de-
termine hard triplets more efficiently. A method that requires no sampling at all is
proposed in Qian et al. (2019).

Sanakoyeu et al. (2019) splits the metric learning problem into several smaller
sub-problems along domain points as determined by a concept hierarchy. The less
complex sub-problems result in faster convergence and better generalization.

4.1.4. Non-Semantic Hierarchies

The hierarchies used in this thesis almost always represent semantic knowledge (see
section 3.2). They are nested sets of concepts informed by a hyponymy relation. In
this section, we explore other hierarchical structures that appear in computer vision
tasks, which are mostly visual and spatial hierarchies. These hierarchies are typically
learned or discovered and not supplied as external knowledge.

Deng et al. (2011) learns a tree of classifiers to maximize both accuracy and efficiency.
The sole purpose of this tree is to divide a large classification problem into smaller
subproblems.

HD-CNN proposed in Yan et al. (2015) a further example of learning a hierarchy
from data. “Coarse” categories are defined from a spectral clustering of the confusion
matrix. HD-CNN specifically allows overlapping coarse categories, i.e., hierarchies
that are not trees, but DAGs. The clustering can only rely on visual properties because
the classifier is not aware of semantics. A similar approach is discussed in Fan et al.
(2015), where a hierarchy is constructed by clustering visual features.

Ahmed, Baig, and Torresani (2016) combines a visual hierarchy and a concept
hierarchy in a two-level classification method (see also section 4.1.1.1).

In Fan et al. (2017), visual features of different granularities or levels of abstraction
are acquired by extracting the activations from different layers of a CNN. These visual
features are then used to build a tree classifier similar to Fan et al. (2015), which is
trained jointly with a CNN. Zhao et al. (2018) presents a comparable method.

A visual hierarchy of images is constructed based on visual feature distances in
Ge (2018). Based on this hierarchy, the margins for a triplet loss are computed (see
section 4.1.3). Milbich et al. (2020) discovers “reliable” pairwise relations between
images based on unsupervised clustering of visual features. The result is a feature
representation learned without labels that can be used in downstream tasks, e.g.,
classification.

Knowledge about the spatial relation of components is used in Sirakov et al. (2015)
to accurately identify firearms in X-ray scans even if they are partly occluded or
disassembled. Mo et al. (2019) proposes a three-dimensional point cloud dataset for
segmentation that exposes a nested spatial structure (“parts”).
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4.1.5. Analysis and Exploratory Works

This section briefly lays out several interesting observations and connections related
to concept hierarchies and computer vision tasks.

Bilal et al. (2018) hypothesizes that CNNs naturally learn a concept hierarchy from
training data. The authors show that the confusion probabilities between concepts
exhibit a correlation with the concepts’ semantic similarity, which corroborates the
findings of Deng et al. (2010). We offer a related investigation in section 6.6.1. They
further demonstrate that the depth of a layer in a CNN corresponds to the depth in a
concept hierarchy at which the features from the layer help discriminate.

In Seeland et al. (2019), the authors test whether visual commonalities between
genera or families of plants allow for successful classification of unseen species into
the correct family or genus (see also section 4.2.4.3). They report that classifying new
unseen species is possible, but at a significantly lower accuracy than known species.

Bertinetto et al. (2020) asserts that hierarchical classification methods “make better
mistakes” than conventional classifiers that have no access to semantic knowledge.
The mispredictions of hierarchical methods are “better” in that they are semantically
more similar to the ground truth labels than mispredictions by non-hierarchical
methods. This finding somewhat puts the results of Bilal et al. (2018) into perspective
and suggests that hierarchical methods still have a knowledge advantage compared
to ordinary classifiers, which we quantify in section 6.6.1.

4.2. Problem Formulations

In this section, we explore different formulations of machine learning problems which
stand to benefit from semantic knowledge integration using concept hierarchies.
These include variations of the classification task and also problems that do not
directly involve predictions or even labels.

4.2.1. Imprecise Data

The notion of imprecise data (see section 5.1) has various competing definitions. For
example, they differ in which aspect of the data is imprecise, and in which manner.
Some also consider imprecise predictions (see section 5.2.3.1) while others do not.

Qin and Lawry (2004) is an early work in the field. It defines imprecise concepts as
“fuzzy sets”, i.e., sets where membership is probabilistic. These sets are used in the
computing with words framework (proposed in Lawry 2001) to solve natural language
processing tasks (see also section 4.2.5).

Imprecision in multi-label classification is discussed in Younes, Abdallah, and
Denœux (2010). The authors consider annotations which are missing a fraction
of the labels as imprecise, regardless of the semantics. They propose a modified
k-nearest-neighbor classifier to solve the problem.

Deng et al. (2012) discusses semantically imprecise predictions. They are used to
improve accuracy by trading off precision, which the authors call specificity (see
section 5.1.1.2). Their algorithm “DARTS” can optimize this trade-off to achieve any
given degree of accuracy. A similar trade-off is considered in Wu et al. (2020), where
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the precision of prediction is reduced for concepts that are under-represented in the
training data. Davis et al. (2021) and Wang et al. (2021) optimize this trade-off in a
probabilistic framework. In McAuley, Ramisa, and Caetano (2013), an evaluation
metric that allows for such imprecise predictions is developed. This metric is then
used to derive a corresponding loss function.

Chang et al. (2021) discusses semantic imprecision as a result of varying expertise
or preference between annotators. Their assumptions are similar to our earlier work
Brust, Barz, and Denzler (2021b), but less detailed (see also section 5.1.1.1). An even
simpler model of label imprecision is proposed in Deng et al. (2014).

4.2.2. Fine-Grained and Large-Scale Classification

This section discusses classification tasks that are not special in any fundamental way,
but nevertheless require bespoke methods. These include large-scale classification,
where the number of concepts is too large to apply a simple mutual exclusion model,
e.g., softmax (see section 2.4.1.3). Another concern is the distribution of training data,
which may over- or underrepresent certain concepts. Finally, we consider fine-grained
classification tasks that require discriminating between very similar concepts.

Fergus et al. (2010) seeks to transfer knowledge between concepts such that less
well represented concepts can still be learned reliably (see section 4.1.1.3 for a more
detailed description). The method is proposed for learning with “many categories”,
which in this case is validated on a dataset with 75 000 concepts. In Deng et al.
(2010), a variant of ImageNet (see section 6.2.1.1) with over 10 000 concepts is used
to discover semantic interdependencies in concepts. The same dataset is applied in
Fan et al. (2017) and Zhao et al. (2018). These works are described in more detail in
section 4.1.4.

The special properties of long-tailed classification problems are considered in Wu
et al. (2020) (see also section 4.2.1). In this setting, few concepts are overrepresented,
and most concepts are underrepresented. For example, this is the case when the
training data distribution follows a power law.

Xie et al. (2015), which we elaborate on in section 4.1.1.3, applies the proposed
method to fine-grained classification. The metric learning-based approaches in Zhang
et al. (2016) He et al. (2021) are targeted towards the same application. These methods
are detailed in section 4.1.3. A structural approach is proposed in Chen et al. (2018)
(see also section 4.1.1.1).

Experimental data for fine-grained classification includes the “Stanford Cars”
dataset proposed in Krause et al. (2013), which considers 196 models of cars. “Stan-
ford Dogs” is a further benchmark, where 120 breeds of dogs are extracted from the
ImageNet database. Biological data is of particular interest because species are often
separated by small details, which provides a challenging classification task. The
Caltech-USCD Birds 200 benchmark (CUB-200, cf. Welinder et al. 2010) and the North
American Birds dataset (NABirds, cf. Van Horn et al. 2015) are important entries in
the field as well. iNaturalist, described in Van Horn et al. (2018), is accompanied by
a yearly challenge, and an example of a fine-grained, large-scale (with more than
5000 species) and long-tailed dataset. iWildCam, described in Beery, Cole, and Gjoka
(2020), presents a similar yearly challenge of fine-grained visual recognition.
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In Barz and Denzler (2021b), the authors present a fine-grained dataset of church
images with the goal of classifying the respective architectural style. It exhibits
several challenging properties, including few examples, high intra-class variance, and
imbalanced classes. There is an included class hierarchy and a fraction of imprecise
labels. However, due to the timing of its release two weeks before the submission of
this thesis, it is not included in chapter 6.

Technical details concerning the aforementioned datasets can be found in sec-
tions 6.2.1.1 and 6.2.1.2.

4.2.3. Image Retrieval

In content-based image retrieval, a user provides a query, or reference image. The
goal is to select images from a database that have similar content. Since visual
similarity is often not what users are looking for, several strategies to integrate
semantic knowledge are developed.

The following works all consider image retrieval as a metric learning problem (see
section 4.1.3). A hypothesis has two inputs, the query image and a candidate image.
The output is a predicted similarity score, by which all candidates are sorted.

Wang et al. (2017a), Faghri et al. (2018), Ge (2018), and Barz and Denzler (2019) all
use measures of semantic similarity or distance (see section 6.1.2.2) derived from a
concept hierarchy to inform the learned metric. By contrast, Sanakoyeu et al. (2019)
utilizes a concept hierarchy to structure the learning process for better performance.
Arponen and Bishop (2019) is a hashing method which computes low-dimensional
representations of images. The distance between these hashes then corresponds to a
semantic distance.

4.2.4. Alternatives to Supervised Learning

In section 2.1.4, we discuss supervised learning and its relation to other problem
formulations such as unsupervised learning, semi-supervised learning and self-su-
pervised learning. This section explores literature on the topic of supervision itself,
as well as several methods that implement alternatives to supervised learning.

Damen and Wray (2020) formalizes the concept of supervision. The authors pro-
pose a three-dimensional scale by which the “supervision level” of a task can be
measured. The three dimensions of the scale concern the extent, or coverage, of
the training data, whether any pre-training is involved (see section 6.2.2.2), and the
extent, or coverage, of the labels w.r.t. the training data.

In Geirhos et al. (2020), the processes by which humans, supervised learning
methods and self-supervised learning methods produce predictions are compared.
Interestingly, the inductive biases used by each appear to be similar, resulting in a
preference of certain features, e.g., textures.

Wei et al. (2020) states that labels should be preserved even when the domain
changes in a pre-training and fine-tuning process (see section 6.2.2.2). They conclude
that optimizing w.r.t. any discriminative task, even an unrelated one, results in better
features than a typical fine-tuning step which only considers the “new” task. As such,
the process is similar to the incremental learning method proposed in Käding et al.
(2016b), which is further detailed in section 7.1.2.
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4.2.4.1. Unsupervised Learning

For unsupervised learning (see section 2.1.4.1), concept hierarchies are of little conse-
quence as there are no labels to impose a structure upon. Nevertheless, there is work
exploiting (visual) relations between images, as discussed in section 4.1.4. Milbich
et al. (2020) assumes that any collection of images contains useful and salient pairwise
relations. The authors propose an unsupervised clustering algorithm, which learns
these pairwise relations to produce a reliable feature representation without requiring
any labels.

4.2.4.2. Weakly and Semi-Supervised Learning

Weakly supervised learning (see section 2.1.4.3) assumes that the quality of some or
all of the labels in the training data is diminished in some aspect (cf. Zhou 2017). For
example, it can be extremely noisy or imprecise (see section 5.1). Semi-supervised
learning (see section 2.1.4.2) can be considered an extreme case, where labels are
absent for a fraction of the training data.

In Dawson and Polikar (2021), the authors discuss the differences between honest
mistakes and malicious labeling, which might occur in citizen science scenarios. They
also propose a filtering method based on their insights.

Dehghani et al. (2017) considers learning from a mixture of strongly and weakly
labeled (noisy) training data. A “confidence network” predicts the expected reliability
of each label, which is then used as a weight for optimization. Labels that appear
incorrect to the confidence network have smaller overall influence on the training,
resulting in improved accuracy.

For a similar task, Cheng et al. (2020) exploits a concept hierarchy to obtain individ-
ual weights for elements of the potentially noisy training data. Images are embedded
in a high-dimensional feature space, where distances conform to a semantic distance
in the concept hierarchy. Comparing a prototype associated with the label to the
actual image features results in a confidence score.

Yang et al. (2020) applies a word embedding method based on a concept hierarchy
which compares metadata stored alongside labels to potentially correct them. A
metric learning approach based on a semantically ranked triplet loss is used in Lin,
Gao, and Li (2020) to perform semi-supervised learning.

4.2.4.3. Few-Shot and Zero-Shot Learning

Zero-shot learning is a task which requires a model to generalize not only to new
examples, but also to new concepts that are not represented in the training data. If
there are examples available, but only a small amount, the problem is considered
few-shot learning.

Srivastava and Salakhutdinov (2013) tackles few-shot learning by providing an ini-
tialization for a CNN derived from a concept hierarchy (see section 4.1.1.2). Knowing
the relations between concepts should enable and guide the transfer of knowledge
from comparatively overrepresented concepts.

Zero-shot learning is impossible without domain knowledge in addition to the
training data. However, domain knowledge can be supplied in various forms, in-
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cluding concept hierarchies, attributes, word embeddings derived from large corpora
as well as textual descriptions of concepts. Verma et al. (2012a) use a concept hierar-
chy to learn a linear metric enforcing semantic distances in the feature spaces. The
nearest-neighbor classifier can locate an unseen concept in the concept hierarchy, and
even concepts that are not part of the learned concept hierarchy.

Embedding-based methods (see section 4.1.2) are a further common choice for
zero-shot learning (e.g., Frome et al. 2013; Norouzi et al. 2014; Jayathilaka, Mu,
and Sattler 2020). However, structural models (see section 4.1.1) can be capable of
zero-shot learning as well, as demonstrated in Samplawski et al. (2019) and Zhang,
Lertvittayakumjorn, and Guo (2019).

4.2.5. Natural Language Processing

Most of the aforementioned models and methods leverage the knowledge contained
in concept hierarchies to increase their performance w.r.t. a visual task. This gap
between visual and textual or semantic modalities is not without consequences, as
discussed in more detail in section 6.6.1. Collell Talleda (2016) and Deselaers and
Ferrari (2011) expand further on the gap between the modalities. However, there are
several non-visual machine learning tasks which can benefit from concept hierarchies
in a more direct manner, one of which is NLP.

Benkhalifa, Mouradi, and Bouyakhf (2001) tackles a semi-supervised text cate-
gorization task on news articles. The authors propose a feature representation that
includes knowledge from WordNet (see section 3.3.1.1) in addition to example-specific
features. This representation is used in an agglomerative clustering step to generate
labels for the unannotated fraction of the training data. Using a concept hierarchy in
a zero-shot text categorization task is discussed in Zhang, Lertvittayakumjorn, and
Guo (2019).

In Fu et al. (2014), new hyponymy relations between concepts not represented in
the concept hierarchy are discovered. These new relations are recognized using a
word embedding method (see section 4.1.2). The work focuses on Chinese semantics,
which the authors claim can be “easily adapted to other languages.” Similar relation
discovery tasks are explored in Vendrov et al. (2016), Nickel and Kiela (2017), and
Ganea, Becigneul, and Hofmann (2018).

Sentiment classification is a very complex NLP task because it has to consider
aspects such as irony and subtext. Hence, reliable annotated training data is rare
and not readily available. Dehghani et al. (2017) add noisy training data, i.e., weakly
supervised learning (see section 4.2.4.2). The authors leverage a concept hierarchy to
estimate the reliability of individual annotations more accurately. Lin, Gao, and Li
(2020) considers a stronger semi-supervised scenario (see section 2.1.4.2) with a very
small fraction of annotated training data.
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Learning from Imprecise Data

In this chapter, we introduce the idea of imprecise data. It is inspired by the concepts
of precision and accuracy concerning measurements, which we apply to labels. After
a formal definition we first outline some important challenges associated with it.
This includes an appropriate mathematical representation and statistical models.
Processing of imprecise data by automatic means is then discussed as well.

The following section details the actual learning from imprecise data. We develop
a probabilistic hierarchical classifier that is capable of integrating semantic knowl-
edge into the classification process. It is derived from a free probabilistic model by
gradually restricting it, introducing assumptions based on semantic knowledge. Ad-
ditionally, we discuss possible problems with these assumptions that can potentially
result in bad performance.

Finally, the task of extrapolating from imprecise data is specified. Even if the
training data is imprecise, we expect precise predictions from a model. We describe a
modification of the aforementioned classifier that allows it to perform this extrapola-
tion. The model is further developed by adding a self-supervised component which
extrapolates even during training.

5.1. Imprecise Data

In this section, we investigate the phenomenon of imprecise data. This phrase
also implies the existence of precise data. Our use of this terminology is inspired
by metrology, the science of measurements, where it originates from. The quality
of a numerical measurement, e.g., that of a scale or a thermometer, is typically
characterized by accuracy and precision (cf. BIPM et al. 2012).

Accuracy is the “closeness of agreement between a measured quantity value and
a true quantity value of a measurand” (ibid., p. 21). This definition differs from the
one used in classification (see section 6.1.1.2). There, the frequency of agreement is
evaluated because categorical variables are not equipped with a natural notion of
“closeness”. Precision is the “closeness of agreement between [. . .] measured quantity
values obtained by replicate measurements” (ibid., p. 22).

Neither accuracy nor precision can be inferred from a measurement without context.
However, there is an agreement to communicate the precision of a measurement in
its numerical representation by the number of significant digits. A similar convention
can be applied to annotations for classification tasks (cf. Chang et al. 2021). For
example, a labeler might not be able to distinguish European Shorthair and British
Shorthair consistently. If they were forced to annotate at the level of cat breeds,
their imprecision would result in alternating annotations which would be partly
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Figure 5.1.: Imprecise (dashed) and precise (solid) concepts in a concept hierarchy.

incorrect. Alternatively, they could be offered to label the image as Cat to express
their imprecision as part of the label. With this intuition, we can then define:

Definition 5.1 (Precise and imprecise concepts). A concept c is (semantically) impre-
cise if there exist hyponyms of c in the relevant context. If no hyponyms of c exist,
then c is a precise concept.

Definition 5.2 (Precise and imprecise data). If training data consists at least partly
of examples where labels are imprecise concepts, it is called (semantically) imprecise
data. Otherwise, it is precise data.

Figure 5.1 visualizes this definition in a graph representation of a concept hierarchy
(see section 3.2.2). It is important to note that this definition is not applicable without
a context (see section 3.1.1). Similar to numerical measurements, there is no absolute
or globally valid distinction between precise and imprecise.

Note that there exist types of imprecision other than semantic in machine learning,
e.g., in multi-label classification (cf. Younes, Abdallah, and Denœux 2010). Further-
more, there is no indication of the actual fraction of imprecise labels in semantically
imprecise data except that it is larger than zero. However, for practical purposes,
each precise concept in the relevant context should occur at least once if a correct
prediction is expected. A task where one or more precise concepts are missing from
the training data entirely is called zero-shot learning (see section 4.2.4.3).

In the following, we describe mathematical models of imprecision and tackle the
more practical problem of aligning existing datasets and concept hierarchies as well
as extracting singular concepts from image descriptions.

5.1.1. Measuring and Modeling Imprecision using Concept Hierarchies

Imbalanced training data, i.e., data where some classes are over- or underrepresented,
is a notable challenge in machine learning. For classification tasks, this phenomenon
can be modeled in terms of probabilities. If the prior probabilities for each class
are known, the imbalance can at least partially be corrected. Probabilities can be
considered during validation and the training data can be resampled or weighted to
be more representative.
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A similar probabilistic model of imprecise data would be helpful, but this data
is not as straightforward to model. Concepts are not mutually exclusive and not
independent. Hence, assigning a single probability to each concept is not reasonable.
Instead, we propose to assign individual probabilities to precise concepts, i.e., leaf
nodes only. In addition, we model precision using a parameterized distribution.

We require a numerical measure of precision to be able to model our data in this
way. In this section, we explore two approaches to precision modeling based on
depth and information content.

5.1.1.1. Depth-Based Models

Partial results of the work presented in this section are published in Brust, Barz, and Denzler (2021b).

A natural approach to modeling semantic precision numerically is the graph distance
from the least precise concept, i.e., the root (see section 3.2.2). We also refer to this
as depth in the hierarchy. In this model, the root, e.g., entity.n.01W is assigned zero
precision. A drawback is that not all leaf nodes have the same numerical precision,
which means that this type of numerical precision cannot be used to distinguish
between precise and imprecise concepts. The advantages of such an approach are
the relative simplicity of modeling and sampling and an intuitive visualization of
distributions as a histogram. It also relates well to certain concept hierarchies where
depths are assigned fixed meanings, e.g., phylum, regnum, etc. in biological taxonomy
(see section 3.3.3.1). A method to sample new imprecise data from originally precise
data is presented in algorithm 1.

Algorithm 1 Sampling algorithm for imprecise labels from precise concepts.
1: procedure SAMPLEIMPRECISELABEL(G, c) . Graph G, precise concept c
2: d depth sampled from precision distribution.
3: if dG(root, c) = d then
4: return c
5: else
6: P all shortest paths from root to c in G
7: p path randomly sampled from P with equal probabilities
8: c0  d-th element of p
9: return c0

10: end if
11: end procedure

If G is a DAG, shortest paths are not unique, making the sampling in line 7
necessary. Note that sampling with equal probabilities is technically not correct,
as elements of different shortest paths could subsume slightly different leaf nodes.
However, the differences are too small to have an effect in real-world applications.

In the following, we give three examples of precision distributions that model
specific sources of imprecise data.
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Volunteers First, we consider labels provided by volunteers. Volunteers are not
paid for their work, but typically have intrinsic motivation to perform to the best of
their abilities. Their interest in a specific field also possibly translates to a slightly
higher expertise compared to the general population. However, they are rarely
formally qualified domain experts, as those can command pay for their abilities.
Overall, we expect most labels to be of high to medium precision. Very precise
or very imprecise labels are less likely. This expectation is captured by a Poisson
distribution.

Web Crawling The second possible source is training data crawled from the web,
e.g., image captions from a search result. Imprecision can come from pre-processing
errors (see sections 5.1.2.1 and 5.1.2.2). Image captions can also be imprecise on
purpose (from a process called hypernymization, see section 3.3.2.2). Annotators are
not aware that they are in fact annotation and do not typically intend to produce as
precise a label as possible. Depending on the context, they may choose to withhold
information deliberately in an attempt to “clickbait”. Optimizing for search engines
(SEO) can also reward overly general image descriptions as they apply to more search
terms. We model this source with a geometric distribution, i.e., a power law. This
is also described qualitatively in Deng et al. (2014), but not used as part of their
evaluation.

Deng et al. (2014) Instead, Deng et al. describe a simpler model of imprecision, or
more precisely, how to generate imprecise data from precise data. We also use this
model in our experiments for comparison purposes. Labels are replaced by a direct
hypernym with a fixed probability. However, this does not impact precision much
in the case of the ImageNet dataset (see section 6.2.1.1) considering the already high
depths � 10. Table 6.4 in section 6.4.1.3 quantifies this impact.

Finally, precise data, e.g., a benchmark dataset, is also easily modeled in terms of
depth using a Dirac delta distribution. However, if the concept hierarchy has precise
concepts at different depths, a distribution over depths cannot correctly describe the
data. In any case, sampling can simply be left out when the goal is precise data. We
visualize all aforementioned distributions in fig. 5.2. An empirical analysis providing
validation on real-world data is presented in section 6.6.3.

5.1.1.2. Information Content

There exist concept hierarchies that match the model of depth as precision (introduced
in section 5.1.1.1). For example, the taxonomy in biology (see section 3.3.3.1) assigns
a name and meaning to each “level”. Other concept hierarchies are unbalanced and
extend to different depths in different subhierarchies, e.g., WordNet (cf. Miller 1995,
also section 3.3.1.1). The resulting discrepancies are not as strong as to invalidate
depth-based models, but there are applications (section 5.3.3 for example) that require
a more consistent and also continuous measure of semantic precision.

Semantic precision is also known as concept specificity in NLP (cf. Harispe et al.
2015, 52 sqq.). There, it is measured in terms of information content (IC). IC takes
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(a) Poisson distribution (volunteers)
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(b) Geometric distribution (web crawling)
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(c) Relabeling to hypernyms after Deng et al.
(2014)
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(d) Benchmark dataset, where all concepts are
as precise as possible

Figure 5.2.: Distributions over depth in a concept hierarchy. Numbers are replaced
with matching levels of the biological taxonomy to give an application-ori-
ented visualization. Figure taken from Brust, Barz, and Denzler (2021b).
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the context of a concept into account and there are two variants of IC which are
distinguished by the type of context considered. Extrinsic IC views a concept in the
context of corpora and is affected by the actual usage of the concept. Conversely,
intrinsic IC is based on a taxonomy, or concept hierarchy (cf. Harispe et al. 2015, p. 55).

There are several competing definitions of intrinsic IC (cf. ibid., p. 55). In this work,
we use a formula proposed in Zhou, Wang, and Gu (2008) unless specified otherwise.
Zhou, Wang, and Gu define their intrinsic IC as:

I(c) = k
⇣

1�
log(|E(c)|)

log(|C|)

⌘
+ (1� k)

log
�
dG(root, c)

�

log
�

maxc02C dG(root, c0)
� , (5.1)

where E(c) is the set of all concepts subsumed by c, including c itself (the extension
of c, see section 3.1.1.2). k is a coefficient to balance the model towards either the
number of subsumed concepts or the depth in the concept hierarchy. If k = 0, the IC
is purely depth-based (cf. section 5.1.1.1). We use the value k = 0.6 as recommended
in Harispe et al. (2015, p. 55).
I is bounded by [0, 1]. The root of the concept hierarchy, e.g., entity.n.01W, has

an IC of 0. I’s upper bound of 1 is assigned to the most precise leaf nodes. However,
depending on the balance of the hierarchy, not all leaf nodes can reach 1, only if they
reside at the maximal distance from the root.

“Measuring” semantic precision by a single number is important for modeling,
benchmark and for describing datasets. However, the idea of assigning a
number to a concept is not without flaws. Numbers can always be compared
and imply a total order. In contrast, not all concepts can be compared in a
meaningful way — at least not through the hyponymy relation which can only
be a partial order. The detailed reasoning is given in section 3.2.1.2.

5.1.2. Mapping Concepts to Datasets

The phrase “integrating domain knowledge” implies that datasets and domain
knowledge (in the form of concept hierarchies, see section 3.3) originate from different
sources. Specifically, the acquisition of labels is performed without awareness of an
existing concept hierarchy. Web crawling is an extreme case where annotators are
not even aware of the labeling task itself, much less a restricted set of concepts. In
this section, we show what actions can be taken to align a given natural language
image description to a concept hierarchy. We focus on WordNet (Miller 1995) as it is
the largest lexical database (see section 3.3.1.1) and relevant to many potential appli-
cations. In section 6.6.3, we demonstrate an application of the procedures described
in the following.

5.1.2.1. Stemming and Lemmatization

Consider an image described as:
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many geese sit in front of a bench overlooking a lake1

After removing uninformative stop words, the following remains:

many geese sit front bench overlooking lake

The overall goal is turning this caption into a single-concept label, i.e., goose.n.01W

or bench.n.01W. A first step towards this goal mapping the individual words to
lemmata, where a lemma is a word as it would appear in a dictionary (cf. Manning,
Raghavan, and Schütze 2008, p. 32). Words in practical use are subject to inflection
of the original lemma, e.g., be! is. Any mapping algorithm should also consider
derivative forms such as poet! poetry, which are different lemmata that share a
stem.

Stemming is a simple approach to the mapping problem (cf. ibid., p. 32). It consists
of a fixed list of rules to remove endings from words and only leave the stem. While
the implementation is easy and rules can be derived from a known grammar, it is an
incomplete solution. Irregular forms, e.g., geese, are not considered unless part of
the list of rules. More importantly, stemming can inadvertently remove derivational
affixes, which is dangerous because lemmata differentiate between derivational forms
of words and the meaning may change substantially (cf. ibid., p. 32).

Alternatively, the more holistic lemmatization can be used. It involves detailed
morphological analysis and a lexical database to cover any irregular forms. As such,
it is the “proper” way to map a word to a lemma (cf. ibid., p. 32). The program MORPHY
is a lemmatizer that ships with WordNet and combines morphological knowledge
with access to the vast amount of lexical data available in it. MORPHY’s development is
detailed in Beckwith and Miller (1990).

5.1.2.2. Lemma Disambiguation

After successful lemmatization, the example in section 5.1.2.1 might look like this:

many goose sit front bench overlook lake

However, this is still not a usable set of concepts in the form of synsets. One synset
can have multiple lemmata that “implement” it. And, crucially, the same lemma can
be associated with more than one synset. Deciding which synset is the right for a
given lemma without further context or knowledge is an ill-posed task known as
disambiguation. Even with context, it is a very complicated problem and subject to
active research, see e.g., Magnini et al. (2001), Kohli (2021), and AlMousa, Benlamri,
and Khoury (2021).

In this thesis, we apply a simple heuristic to map an ambiguous lemma to a synset.
We always choose the least precise synset, where precision is defined as the length
of the shortest path from entity.n.01W to the respective synset in the WordNet
hierarchy (see section 5.1.1.1 for details). This selection has the smallest potential for
errors. However, it should be noted that when an error occurs, which is less likely
than with a different selection, it is also more consequential. Finally, the selected
synsets and their definition from WordNet (cf. Miller 1995, also section 3.3.1.1) are:

1From MSCOCO dataset, see http://cocodataset.org/#explore?id=291980 (last accessed: June
28th, 2021), Lin et al. (2014) and section 3.3.2.2 for more detail.
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1. many.a.01W: a quantifier that can be used with count nouns and is often pre-
ceded by ‘as’ or ‘too’ or ‘so’ or ‘that’; amounting to a large but indefinite number

2. goose.n.03W: flesh of a goose (domestic or wild)

3. sit.v.01W: be seated

4. front.a.01W: relating to or located in the front

5. bench.n.06W: the reserve players on a team

6. overlook.v.01W: look past, fail to notice

7. lake.n.01W: a body of (usually fresh) water surrounded by land

5.1.2.3. Further Challenges

Even if the challenges of lemmatization and disambiguation could be overcome,
there are still problems that remain. A limitation of the word-to-synset formulation
for image captions is the assumption that a single concept can be used to describe
the image reasonably well. This assumption is problematic in an of itself (cf. Brust
and Denzler (2019b) and section 6.6.1), but fundamental to image classification tasks.
In this thesis, we always choose the most precise synset, in terms of depth (see
section 5.1.1.1) out of a list. For our earlier example, the depths are:

0 for many.a.01W, sit.v.01W, front.a.01W,

1 for overlook.v.01W,

4 for bench.n.06W, lake.n.01W,

8 for goose.n.03W.

For general object recognition, we select the most precise noun, i.e., goose.n.03W.
This result is almost correct, but the large potential for errors is apparent from the
examples in sections 5.1.2.1 and 5.1.2.2.

Furthermore, lemmata in WordNet can consist of more than one word, e.g., the
lemma “bird of night” of owl.n.01W. This means that a one-to-one mapping of words
to synset is not necessarily a good choice in the first place. However, if we were to
consider many-to-one mappings, we would almost certainly need a method based
on machine learning to tackle the combinatorial consequences as enumeration and
selection would be intractable otherwise.

Finally, a lemma may in rare cases be associated with synsets of different part-
s-of-speech, i.e., nouns, verbs, or adjectives. It is impossible to heuristically decide
based on measures of precision because they are not comparable between different
parts-of-speech. In practice, we limit the algorithms to nouns for object recognition
purposes, which can result in spurious associations if the image captions contain
verbs or adjectives.
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Overall, it is recommended to adapt the label acquisition step of a machine
learning project to an existing concept hierarchy in the first place. If that is
not possible, the algorithms and heuristics in sections 5.1.2.1 and 5.1.2.2 can be
applied to align training data and concept hierarchy after the fact.

5.1.2.4. Exploration of Subhierarchies

For a given dataset, it is unlikely that the whole WordNet hierarchy of nouns is
necessary. Instead, a new task-specific context should be built for each dataset by
sampling the required parts of WordNet. This also ensures that the leaf nodes of the
resulting concept hierarchy are appropriate for the task and not too precise.

Starting from an empty context, an exploration step is performed for each encoun-
tered concept. All hypernyms of the respective synset are extracted from WordNet
and added to the context together with the respective elements of the hyponymy
relation. This process is recursive as the exploration step also applies to the newly
found hypernyms. It is repeated until no new hypernyms can be found. Option-
ally, the concept hierarchy is simplified by removing all concepts with exactly one
hyponym and connecting the hypernyms.

When a new concept is added during training, the classification algorithm requires
adaption. This can be done without “forgetting” in an incremental learning context
(see section 7.1.2).

5.2. Knowledge Integration by Hierarchical Classification

Partial results of the work presented in this section are published in Brust and Denzler (2019a).

This section lays out the design of a probabilistic hierarchical classifier. It is the
foundation for CHILLAX (proposed in section 5.3.2) which enables learning from
imprecise data. This would not be possible with a conventional CNN or other
approaches built on mutually exclusive classes. More importantly, it is an example
of integrating domain knowledge (the concept hierarchy) into a machine learning
system explicitly and transparently.

Hierarchical classification is not only defined in several ways, but also implemented
using a variety of effective approaches (see section 4.1). Embeddings (see section 4.1.2)
map labels to points in a low-dimensional vector space, typically such that a dis-
tance function in this space matches a semantic distance, e.g., graph distance (see
section 3.2.2). They typically only embed precise concepts because it is not clear what
the distance between a concept and its hypernym should be. Metric learning (see
section 4.1.3) involves learning a distance or similarity metric between two images.
The metric can be given explicitly or implicitly, e.g., by specifying margins based on
semantic distance. Again it is not clear how a concept and its hypernym could be
compared in such a setting.

Instead, we build our classifier in a probabilistic framework. Semantics are modeled
explicitly using a concept hierarchy and two simple assumptions (see section 5.2.2).
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The inference process has several steps (see section 5.2.3) depending on the concept
hierarchy. Hence, when a misclassification occurs, it is easier to hypothesize a cause
based on the specific responsible step compared to a one-shot classifier.

We consider two main use cases for our probabilistic hierarchical classifier, which
we evaluate individually in sections 6.3 and 6.4:

1. Integrating domain knowledge. If a matching concept hierarchy can be obtained,
we can improve the accuracy and error quality (cf. Bertinetto et al. 2020) of
an existing application without requiring additional training data, simply by
integrating the concept hierarchy and assumptions. It is crucially important
that the assumptions hold (see sections 6.6.1 and 6.6.2)

2. Learning from semantically imprecise data. Imprecise data is often available in
larger quantity and for lower cost than precise training data. The classifier
can correctly interpret the labels and still produce precise predictions with
modifications detailed in section 5.3.2.

5.2.1. Internal Representation of Labels

For the use case of integrating domain knowledge, we consider a simple prediction
task. The training data is given as Z = X ⇥ Y , where X is a set of images and Y a
set of labels. A classification task assumes that Y = Y

P
✓ C (see section 2.3.2.1), i.e.,

that each image is associated with a single concept as its label.
Because our primary goal is the improvement of an existing application of classifi-

cation, we keep these definitions such that the concept hierarchy is not apparent to
the application. We also know that the training data only consists of images labeled
as concepts in Y

P. However, our probabilistic model is built on a richer label rep-
resentation, where each individual label is a set of concepts. This internal label set Ỹ

formally represents a multi-label classification task (cf. section 3.1):

P(YP) ✓ Ỹ = P(C) .

In the following section, this overly general task is limited using the concept hier-
archy and assumptions, resulting in a variant of structured output prediction (cf.
Shalev-Shwartz and Ben-David 2014, 198 sqq.).

We define a translation from external labels to internal labels that encapsulates the
internal representation. The internal label is defined as the intension of the external
label (see section 3.1.2.2). It is the set of hypernyms of the concept represented by the
external label, including the concept itself:

ỹ(y) = {c 2 C : y  is-a c} = I(y) . (5.2)

Because the hyponymy relation  is-a is reflexive, there is no need to include y
explicitly as part of the equation.

For example, consider a label y = dog. We then determine the internal label
ỹ = {object, animal, dog}. We also define a shorthand notation to improve the
accessibility of the following sections:

ỹc
+
() c 2 ỹ and

ỹc
�
() c /2 ỹ , (5.3)
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where ỹ 2 Ỹ . The expression ỹc
+ is interpreted as c being given, or true, in ỹ. We

select this terminology because we initially consider the ỹc
+ for different c indepen-

dent Bernoulli, i.e., binary random variables. Given a domain point x 2 X , a free
per-concept hypothesis is then constructed such that:

h(x)c = P(ỹc
+
|x) , (5.4)

where h : X ! [0, 1]|C| (see also section 2.1.2.2). This definition implicitly contains a
translation from Ỹ to Y . The actual hypothesis which maps to a single concept and
takes the concept hierarchy into account is given in section 5.2.3.

In an expression such as h(x)c, we use the concept c as an index. Since the
actual order has no practical effect, we omit a mapping from C to an index
[1, . . . , |C|] \N.

5.2.2. Introducing Assumptions

In this section, we limit the aforementioned free probabilistic model where all con-
cepts are independent. First, we introduce a shorthand notation to allow for a more
concise expression of (semantic) dependencies. Consider the direct hypernyms H " of
a concept c, which are reachable by the transitive reduction  is-a

� of the hyponymy
relation  is-a. In terms of a DAG, these direct hypernyms are also known as parent
nodes. We exclude c explicitly because of the reflexivity of  is-a:

H " (c) = {c0 : c is-a
� c0}\{c} .

Furthermore, we define a shorthand for the situation where any or no hypernym
of c is given. It visually matches eq. (5.3), but generalizes from individual to sets of
internal labels:

ỹH"c
+ =

_

c02H"(c)

ỹc0
+

ỹH"c
� =

^

c02H"(c)

ỹc0
�

We use ỹc
+
|x as a random event which has a unique probability. While ỹH"c

+
|x is not

a random event with an own variable, its probability can be calculated:

P(ỹH"c
+
|x) = 1� ’

c02H"(c)

�
1�P(ỹc0

+
|x)
�

. (5.5)

5.2.2.1. Assumptions

We now introduce our assumptions:

1. Closed world. We assume that only concepts in C will ever be encountered.
Since the root of the concept hierarchy, e.g., entity.n.01W in WordNet (see
section 3.3.1.1), is a hypernym to all other concepts, its probability is one:

P(ỹroot
+) = 1 . (5.6)
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2. Subsumer required. Concepts can only occur together with their hypernyms. We
formulate this assumption in terms of probabilities:

P(ỹc
+
|x)  P(ỹH"c

+
|x) (5.7)

=) P(ỹc
+
|ỹH"c

�, x) = 0 . (5.8)

While eq. (5.7) only refers to the direct hypernyms of a concept, the rule does
apply recursively. Effectively, a concept can only be present with all of its
hypernyms.

These assumptions are the full extent of domain knowledge that is integrated into
the probabilistic model. There are other possible assumptions, most importantly
around exclusion (cf. Deng et al. 2014). For example, a cat excludes a dog which
our model does not state explicitly. Instead, the classifier has to learn this relation.
However, this is a consequence of allowing DAGs as concept hierarchies. While
exclusion is easily modeled correctly when the hierarchy is a tree, cycles in the graph
make this assumption unreliable. Consider for example the existence of a catdog,
which would prohibit the mutual exclusion of cat and dog from a semantic perspective.
Modeling exclusion would also further complicate the inference step if probabilities
are to be computed accurately (cf. Chen et al. 2015a).

5.2.2.2. Modeling Dependencies

We begin building our probabilistic model P(ỹc
+
|x) by decomposition. The first step

is introducing the probabilities of complementary events P(ỹH"c
+
|x) and P(ỹH"c

�
|x):

P(ỹc
+
|x) = P(ỹc

+, ỹH"c
+
|x) + P(ỹc

+, ỹH"c
�
|x) ,

which treats P(ỹc
+
|x) as a marginal distribution whose marginalization is reverted.

We then condition the joint probabilities on P(ỹH"c
+
|x) and P(ỹH"c

�
|x), respectively:

P(ỹc
+
|x) = P(ỹc

+
|ỹH"c

+, x)P(ỹH"c
+
|x) + P(ỹc

+
|ỹH"c

�, x)P(ỹH"c
�
|x) .

This representation allows us to apply our second assumption (eq. (5.8)) such that
the second summand can be removed. The final probabilistic model for inter-concept
dependencies is:

P(ỹc
+
|x) = P(ỹc

+
|ỹH"c

+, x)P(ỹH"c
+
|x) , (5.9)

and, to end the recursion we apply the first assumption (eq. (5.6)):

P(ỹroot
+) = 1 .

5.2.3. Hypothesis

The equations in section 5.2.2.2 model the dependencies between concepts. Given all
relevant P(ỹc

+
|ỹH"c

+, x), we can calculate the probabilities P(ỹc
+
|x) to predict the

concept of an image x. For a complete hypothesis there are two more requirements.
First, we need to account for the label set Y

P, which may only be a subset of C.
Second, the events ỹc

+ pertain to the presence of concepts in a set, an internal label
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ỹ 2 Ỹ . However, our predictions should be in Y = Y
P. While we give a translation

step from Y to Ỹ in eq. (5.2), the inverse mapping remains unspecified.
In the following, we develop a hypothesis which implements the equations from

section 5.2.2.2 while taking the aforementioned requirements into account. We begin
with the outer hypothesis, which maximizes over all concepts in Y

P to address the
first and second requirements simultaneously:

h(x) = arg max
c2YP

h(x)c .

We insert eq. (5.4) to obtain:

h(x) = arg max
c2YP

P(ỹc
+
|x) ,

and apply the dependencies in eq. (5.9):

h(x) = arg max
c2YP

P(ỹc
+
|ỹH"c

+, x) P(ỹH"c
+
|x) .

This recurses until the root of the concept hierarchy is reached, and we obtain

h(x) = arg max
c2YP

P(ỹc
+
|ỹH"c

+, x)P(ỹH"c
+
|ỹH"H"c

+, x) . . . P(ỹroot|x) .

With eq. (5.6) we can simplify slightly to:

h(x) = arg max
c2YP

P(ỹc
+
|ỹH"c

+, x)P(ỹH"c
+
|ỹH"H"c

+, x) . . . .

Finally, we express the hypothesis using subhypotheses h0:

h(x) = arg max
c2YP

h0(x)c · h0(x)H"c · . . . , (5.10)

where
h0(x)c = P(ỹc

+
|ỹH"c

+, x) ,

and
h0(x)root = 1 . (5.11)

With these additions, the model is complete. However, there are considerations
w.r.t. Y

P. Namely, if Y
P = C, the hypothesis is the root regardless of which x is

presented. Precise concepts are almost never predicted because their probabilities are
always lower than or equal to that of their hypernyms due to eq. (5.7). Thus, for the
use case of integrating domain knowledge into an existing classification task, Y

P

should only contain precise concepts that are mutually exclusive. This restriction is
required by the application in any case, so it is not a relevant limitation of the method.

The hypothesis h(x) can only be expressed in the simple chain form of eq. (5.10)
if all concepts along the chain have only one hypernym. If there is more than
one hypernym, the expression is more complicated. The correct value is
obtained by applying eq. (5.5). Note that this leads to repeating terms in
the equation which offer an opportunity for dynamic programming (cf., e.g.,
Bellman 1957).
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object

vehicle animal

car bus cat dog

catdog

(a) Concepts in internal label representa-
tion eq. (5.12).

object

vehicle animal

car bus cat dog

catdog

(b) Concepts that fulfill the right-hand
side of eq. (5.13).

Figure 5.3.: Visualization of label encoding and loss function mask for the precise
label catdog. Dashed nodes represent 0 and bold nodes 1. Figure taken
from Brust and Denzler (2019a).

5.2.3.1. Imprecise Predictions

An application might also allow imprecise predictions or even require them (e.g. Deng
et al. 2012; Wu et al. 2020). However, there is more than one possible interpretation of
such a prediction, depending on the concept hierarchy and the application scenario.
Expressing uncertainty is a useful consideration, where the precision of a prediction
is lowered if the possibility of a misclassification becomes too high. We explore this
angle in more detail in section 5.3.3.

Alternatively, it could also point to an unexplored concept in an open-world
scenario. It does not necessarily violate eq. (5.6). If, e.g., a new species of animal is
observed, it is still an object and an animal, but not part of the concept hierarchy.
For this scenario, we define an alternative hypothesis which includes the probability
P(ỹH#c

�
|ỹ+c , x) that none of the hyponyms of a concept are true:

h(x)c = P(ỹH#c
�
|ỹ+c , x) P(ỹc

+
|ỹH"c

+, x) P(ỹH"c
+
|x) ,

which similarly to eq. (5.10) can be expressed as:

h(x) = arg max
c2YP

h0(x)H#c · h0(x)c · h0(x)H"c · . . .

This hypothesis formulation “naturally” predicts precise concepts even if Y
P is not

limited to them. It will output imprecise predictions to express missing concepts in
the hierarchy, effectively performing novelty detection (see section 7.1.1).

5.2.4. Deep Learning Implementation

In the following, we describe an implementation of the probabilistic model in sec-
tion 5.2.3 using a deep learning method. The central idea is using the last layer of a
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CNN to learn the conditional probabilities P(ỹc
+
|ỹH"c

+, x) such that:

hL(x)c = h0(x)c = P(ỹc
+
|ỹH"c

+, x) .

There are three concerns regarding this implementation. First, we have to define a
numerical label representation encoding the internal labels. Second, the last layer of
the CNN requires appropriate dimensions and a matching activation function (see
section 2.4.1.3). And, finally, a loss function that accounts for the conditional nature
of the h0 is needed.

5.2.4.1. Label Representation

We use a many-hot encoding representing an internal label’s constituent concepts.
An internal label is translated from an external label using eq. (5.2). The encoding
e : Y

P
! {0, 1}

|C| is then defined as:

e(y)c =

(
1 if c 2 ỹ(y)
0 if c /2 ỹ(y)

. (5.12)

Figure 5.3a visualizes the encoding.
The last layer hL should output a |C|-dimensional vector similar to e. A sigmoid

activation function (see section 2.4.1.3) ensures that each element can be interpreted
as a probability.

5.2.4.2. Loss Function

Finally, we define a loss function with two main components. A binary cross-entropy
loss function LX (see section 2.4.1.4) is used to compare the probabilities. It is multi-
plied with a mask that represents the condition state of the conditional probabilities
in h0. We give a visual example of this mask in fig. 5.3b. The whole loss function is
defined as:

L(hL, x, y) = Â
c2C

LX(e(y)c, hL(x)c) ·

(
1 if 9c0 2 C : c is-a

� c0 ^ y is-a
� c0

0 else
.

(5.13)
This formulation has the side effect that the weights of the last layer representing

the root of the concept hierarchy are not changed in almost all cases (except for
hierarchies where the highest depth is 1). Hence, they should be initialized such
that the output is a constant 1. We discuss the implications for imprecise labels in
section 5.3.2.1 and explore a special case in section 6.5.1.3.

5.2.4.3. Implementation Details

Note that both eq. (5.12) and eq. (5.13) are operations on external labels from Y
P.

Internal labels can be completely encapsulated in an implementation and not visible
to the application during both training and prediction.

However, while the training process is fully implemented using eq. (5.12) and
eq. (5.13) in a pre-existing CNN, predictions require further consideration. An
application expects a hypothesis h while the network only provides the output
hL of the last layer. For predictions, eq. (5.10) has to be implemented separately.

73



5. Semantic Knowledge Integration and Learning from Imprecise Data

5.3. Extrapolating Imprecise Data

Partial results of the work presented in this section are published in Brust, Barz, and Denzler (2021b).

In this section, we develop ideas and methods to learn from imprecise data. A
more detailed description of imprecise data is offered in section 5.1 and a number of
potential sources are listed in section 5.1.1.1.

First, we formally define the task. We then explore the concept of extrapolation
and its role in generalization. Afterwards, we provide a detailed description of our
method CHILLAX which implements learning from imprecise data. CHILLAX is
finally augmented with a self-supervised learning strategy to further improve sample
efficiency.

5.3.1. Problem Formulation

In the previous section 5.2, we first consider different label sets. The set Y
P contains

labels found in the training data and used by an application. With the integrated
external knowledge of C (the set of concepts) and the hyponymy relation  is-a we
construct an internal label set Ỹ . However, Ỹ has no effect on the training data: both
the training and the validation set are elements of X ⇥Y

P. These pairs (x, y) are then
used to generate a hypothesis h : X ! Y

P.
For this section, we look at a more complex task, where we differentiate between

label sets for training and for validation and prediction. Given a set of concepts C,
the training label set Y

T should be a (non-strict) subset of C. At the same time, the
validation and prediction label set Y

P should be a strict subset of Y
T, i.e., there should

be concepts in the training data that are not in the validation set and are not expected
to be predicted. Formally, we require Y

P
⇢ Y

T
✓ C. Hence, the training examples

are pairs in X ⇥ Y
T. However, the hypothesis is still a function h : X ! Y

P and
the validation examples are pairs in X ⇥ Y

P. This problem setting is also referred
to as weakly supervised learning (see sections 2.1.4.3 and 4.2.4.2). We visualize the
different label sets in fig. 5.4.

If Y
P contains only precise concepts of C, while Y

T is additionally comprised of
hypernyms of Y

P, we name the task learning from imprecise data. Often, we have
Y

T = C.

5.3.1.1. Generalization

When learning from imprecise data, the generalization effort is considerably higher
than for a conventional prediction task. It requires not only generalization from a set
of representative training data to unseen examples. There is an additional level of
generalization, from a small amount of precise labels and many imprecise labels to
consistently precise predictions.

We term this second instance of generalization annotation extrapolation from impre-
cise to precise concepts. This is not a perfect term because it could be understood to
imply generalization to novel, previously unseen concepts, a task otherwise known
as zero-shot learning (see section 4.2.4.3). An alternative image for this type of gener-
alization is a projection, where an imprecise concept casts a shadow in the light cone
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Training Label Set

Validation and Prediction Label Set

object

vehicle animal

carbus catdog

Figure 5.4.: Examples of training label set Y
T and validation and prediction label set

Y
P.

of the concept hierarchy. This shadow is then visible on the “floor” — the precise
concepts. Dhall et al. (2020) and Ganea, Becigneul, and Hofmann (2018) use similar
imagery to develop an embedding-based method (see section 4.1.2).

5.3.1.2. Practical Considerations

Learning from imprecise data has important implications for evaluation and val-
idation. We must be cautious to avoid situations in which imprecise labels (YT)
and precise labels (YP) are compared. The qualitative difference between training
data and validation data makes advanced approaches like cross-validation (see sec-
tion 2.2.2.2) impossible, because a different split of the dataset might violate the
Y

P
⇢ Y

T condition.
Evaluating the accuracy (see section 6.1.1.2) of predictions on a pre-defined valida-

tion set is still possible and is sufficient for many applications. However, it is also
common practice to observe differences between training and validation accuracy in
order to estimate the impact or presence of overfitting (see section 2.2). This strategy
is impossible when learning from imprecise data because the accuracy of predictions
on the training data (re-classification) cannot be calculated correctly. And while a loss
function can be estimated on both training and validation sets, it is also not compara-
ble if the sets differ in precision. Hierarchical measures that take a concept hierarchy
into account are a viable alternative. For example, hierarchical precision and recall
(see section 6.1.2) are metrics that compare set representations of labels similar to
internal labels from section 5.2.1. However, while they allow for comparisons, they
do not resolve the qualitative differences between training and validation data.

A further consideration for a practical application is the communication with
annotators. Because the acceptance of imprecise data for training already constitutes
a significant trade-off, the instructions to the annotators must clearly relate the desired
interpretation of imprecise labels. The competing interpretations are discussed in
more detail in section 5.3.2.1.
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5.3.2. From Hierarchical Classifier to CHILLAX

Partial results of the work presented in this section are published in Brust, Barz, and Denzler (2021b).

This section describes our method for learning from imprecise data, which we call
CHILLAX. The name is short for class hierarchies for imprecise label learning and
annotation extrapolation.

It is based on the probabilistic hierarchical classifier, which is proposed in section 5.2
and published in Brust and Denzler (2019a). We modify both the input and the
output components of the method. The input is adapted to the correct interpretation
of imprecise labels (see section 5.3.2.1). We restrict the output to precise concepts only
to build a hypothesis h : X ! Y

P. These modifications are minor overall, as most
of the “heavy lifting” w.r.t. concept hierarchies is done by the hierarchical classifier
already.

5.3.2.1. Interpretation of Labels

The hierarchical classifier (section 5.2) expects solely precise labels. If there is an
imprecise label, the interpretation is that it is imprecise only because none of its
hyponyms apply, as a consequence of an incomplete concept hierarchy (see sec-
tion 5.2.3.1). The label is viewed to be as precise as possible given the specific
example and concept hierarchy.

With CHILLAX, we interpret imprecise data differently. An imprecise label means
that the correct precise hyponym is probably a part of the concept hierarchy, but
unknown to the annotator. To represent this new interpretation, we modify the binary
mask in the loss function in eq. (5.13). The new loss function is defined as:

L(hL, x, y) = Â
c2C

LX(e(y)c, hL(x)c) ·

(
1 if 9c0 2 C\y : c is-a

� c0 ^ y is-a
� c0

0 else
.

(5.14)
In fig. 5.5, we visualize the differences between eq. (5.13) and eq. (5.14).

Excluding the ground truth concept y from the list of possible concepts c0 ensures
that weights representing the hyponyms of y are not changed. As a side effect of this
modification, it is not necessary to change the label encoding in eq. (5.12). Because
the relevant parts of this representation would be ignored by eq. (5.14), we apply
eq. (5.12) directly to CHILLAX.

5.3.2.2. Restricting Inference

The inference process of the hierarchical classifier (section 5.2) as described in sec-
tion 5.2.3.1 is capable of generating imprecise predictions. However, we require
only precise concepts as predictions. Hence, we can apply the more simple process
in eq. (5.10) without including the hyponyms of each candidate as a factor. Fur-
thermore, because of the different loss function (eq. (5.14)), using the process in
section 5.2.3.1 would yield false predictions as the corresponding weights are never
learned correctly.
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object

vehicle animal

car bus cat dog

catdog

(a) Probabilistic hierarchical classifier loss
function mask (eq. (5.13)).

object

vehicle animal

car bus cat dog

catdog

(b) CHILLAX modified loss function
mask (eq. (5.14)).

Figure 5.5.: Visualization of loss function masks for the imprecise label vehicle.
Dashed nodes represent 0 and bold nodes 1. Figure taken from Brust,
Barz, and Denzler (2021b).

If the training data consists only of precise examples, i.e., Y
T = Y

P, CHILLAX
behaves identically to the unmodified hierarchical classifier in section 5.2.

5.3.3. Self-Supervised Approach

Partial results of the work presented in this section are published as a pre-print in Brust, Barz, and Denzler (2022).

While CHILLAX (see section 5.3.2) fulfills the requirements for learning from impre-
cise data, it is not optimal. The loss function eq. (5.14) and its CHILLAX counterpart
eq. (5.13), together with the closed-world assumption in eq. (5.6), have a negative
effect on imprecisely labeled examples. Training data examples that are annotated as
the minimally precise concept (the root of the concept hierarchy) always produce a
loss L = 0.

Still, we observe that CHILLAX can learn from imprecise data even in extreme
cases, where only a small fraction of the training data is precise, and nevertheless
make predictions with a relatively much larger accuracy (see section 6.4). This
generalization capability is called extrapolation (see section 5.3.1.1). In the following,
we utilize this capability not only for predictions, but already during training. The
strategy is designed to tackle the problem of effectively unlabeled examples.

Our main scheme is to replace the very or maximally imprecise labels of the training
data with more precise pseudo-labels. The setup is an example of self-supervised
learning (see sections 2.1.4.3 and 4.2.4.2). It is termed self -supervised because we
compute the pseudo-labels using predictions of the same classifier that learns from
the pseudo-labels.

In a conventional classification task, we consider the predicted class scores, or
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probabilities. For example, a hypothesis generates the scores:

(0.1, 0.3, 0.4, 0.05, 0.15) .

If this distribution meets our requirements, e.g., with high enough scores, we generate
a pseudo-label by extrapolating the probabilities (cf. Wang et al. 2017b) to:

(0, 0, 1, 0, 0) .

The new pseudo-label is then used as ground truth for training. Pseudo-labels
are recomputed continually to reflect changed hypotheses. Note that if we skip
the extrapolation step and attempt to learn the predicted probabilities directly, the
corresponding loss function would evaluate to zero. Hence, the extrapolation is
necessary. In the following, we describe methods that build on this concept, but
advance it by increasing not only the individual probabilities, but the precision of the
label.

Formally, we are looking for a mapping from an imprecise example (x, y) to a
precise example (x, ŷ). The label y 2 Y

T can be an imprecise concept, and we call y
the extrapolation source. Consequently, the pseudo-label ŷ 2 Y

T is the extrapolation
target. We do not change the domain point x with the mapping. The following
sections contain several heuristics that implement such a mapping. A common
component is a criterion to first build a set of candidate concepts Ŷ and elect the most
informative or confident candidate concept as a pseudo-label.

5.3.3.1. Known and Unknown Probabilities

While there are many possibilities for a mapping (x, y) 7! (x, ŷ), we can exclude a
subset by imposing one obvious restriction on the pseudo-label ŷ. It should never
“disagree” with the extrapolation source y. Formally, the condition ŷ  is-a y should
always hold true.

We can use this restriction to our advantage because y contains vital information,
unless it is the root. Instead of computing pseudo-labels purely from predictions
based on x, we can replace individual subhypotheses h0(x)c in eq. (5.10) with 0 or 1
wherever they can be determined from the source concept y. Figure 5.6 visualizes the
contributions of the ground truth source and the subhypotheses that make up a final
prediction.

5.3.3.2. Confidence-Based Method

Given a pair (x, y), our goal is to extrapolate a source concept y to a more precise
concept ŷ. After applying the replacements as in section 5.3.3.1, we examine the
individual hypotheses h(x)c as described in eq. (5.4) for all concepts in C. We learn
in section 5.2.3 that comparing h(x)c across the whole set of concepts C always
leaves the least precise concept (the root) as the most probable. Moreover, after
replacing individual subhypotheses h0(x)c with the ground truth y where applicable,
the maximum becomes ambiguous unless y is the root, which further complicates the
situation. Hence, in the following, we describe heuristics that do not rely on extreme
values.
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object, h'=1

vehicle, h'=0 animal, h'=1

car bus cat, h'=0 dog, h'=1

tiger tabby corgi shiba

Figure 5.6.: Subhypotheses h0(x)c for label dog. Bold nodes represent known, dashed
nodes unknown subhypotheses.

Method: Fixed Threshold Instead of considering the most probable concept, we
interpret the predicted probabilities h(x)c as confidence scores (cf. Guo et al. 2017)
and define a minimum confidence threshold q to determine a reliable prediction. A
similar process is proposed in Wang et al. (2017b). The following definition describes
a set of candidate concepts Ŷ that are considered reasonable as a pseudo-label:

Ŷ(x) = {c 2 C : h(x)c � q} .

This equation explicitly fulfills the condition ŷ  is-a y (see section 5.3.3.1) by only
considering hyponyms of y. The threshold q determines a reliable confidence value.
It should be > 0.50 to exclude the exact 0.50 probability given by zero-initialized
untrained elements of the last layer. The final pseudo-label is the candidate concept
with the highest IC I (see section 5.1.1.2):

ŷ = arg max
c2Ŷ

I(c) .

If multiple concepts are tied for highest IC, the pseudo-label is the tied concept with
the highest confidence h(x)c.

We add Gaussian noise with s = 0.00 to all h(x)c independently. This strategy
prevents a non-random selection of concepts that are tied for both IC and
confidence. A tie often happens at the beginning of training where many h(x)c
are equal, i.e., 0.50.

5.3.3.3. Hierarchy-Informed Methods

The “fixed threshold” method described in the previous section 5.3.3.2 has one
main drawback. It suffers from a potential feedback loop. In the introduction to
section 5.3.3, we discuss the extrapolation of confidence values, e.g., from 0.40 to 1.
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After changing the neural network’s weights to minimize the loss function w.r.t. this
pseudo-label, the exact same domain point x is predicted with different confidence
values. Specifically, the maximum will be higher, e.g., 0.60 instead of the previous
0.40.

This localized increase in confidence has two consequences. First, the average
confidence of the highest-scoring concept increases over time. A fixed threshold q
that is optimal for one time step has to be corrected for subsequent iterations. Second,
consider a situation where the actual correct concept in the previous example is one
with a confidence score of 0.30, while the concept assigned 0.40 is a misclassification.
After learning the incorrect pseudo-label, the error is amplified and the difference in
scores increases, in turn making it less likely that the correct concept is selected as a
pseudo-label later. This feedback loop is a fundamental problem of self-supervised
learning based on extrapolation of confidence scores.

While there is no direct solution for the second point, we can avoid the first conse-
quence by developing a method that relies less on interpreting absolute confidence
values correctly. Instead, we use the concept hierarchy to guide the initial selection of
candidate concepts.

Method: Leaf Node This method is the most direct application of the pseudo-label
approach to self-supervised learning, which is to use (confident) predictions as
training data. For the overall task, we expect predictions to be only precise concepts.
Hence, the pseudo-labels should be precise as well. We define the candidate set as
the set of precise concepts, i.e., leaf nodes of the concept hierarchy graph, that are also
hyponyms of the extrapolation source:

Ŷ(x, y) = {c 2 C : c  is-a y ^ @c0 2 C : c0  is-a c} .

The final selection of a pseudo-label from this set is identical to the process described
in section 5.3.3.2.

Method: d⇤ Steps For this method, we initially consider the set of all hyponyms
of the extrapolation source (its extension, see section 3.1.1.2) instead of only the
most precise to decrease the potential for misclassifications. More precise concepts
are more likely to be misclassified for two reasons. First, there are simply more
concepts to choose from at more precise levels in a concept hierarchy. Second,
there are more individual decisions involved, or to be precise, a multiplication of
more individual probabilities (subhypotheses). We further assume that there is a
“sweet spot” precision level relative to the extrapolation source’s precision where
an optimal trade-off can be achieved. To implement this idea, we model precision
numerically using depth (see section 5.1.1.1). We define an optimal distance d⇤
from the extrapolation source y in the concept hierarchy graph G to build a set of
candidates:

Ŷ(x, y) = {c 2 C : c  is-a y ^ dG(y, c) = d⇤} .

As evident from the formula, we only allow concepts where the distance is exactly
d⇤. However, it is possible that there exist no concepts at the given distance. Conse-
quently, we also allow precise concepts at a lower distance. Note that the distance is
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directional in all cases, i.e., we only tolerate more precise concepts, not less precise
ones. This is enforced by the condition c  is-a y.

We recommend an optional low threshold, e.g., 0.55, to further narrow down the
set of candidates. The remaining process is equal to section 5.3.3.2.

Method: IC Range We discuss the general limitations of modeling concept preci-
sion using graph distances or depth in section 5.1.1.2, which also affect the previously
presented method “d⇤ steps”. There is a further drawback for practical use, namely,
that there are very few different settings because graph distance is a coarse measure-
ment. For a more fine-grained approach, we instead consider the expected increase in
IC (see section 5.1.1.2) between the extrapolation source and candidate pseudo-label.
Because it is unlikely that a match for an exact number exists, we define an allowed
range of IC gain [dImin, dImax]. This range is used to compute the set of candidates as
follows:

Ŷ(x, y) = {c 2 C : c  is-a y ^ dImin  (I(c)� I(y))  dImax} .

Depending on the range, this method suffers from the same problem as “d⇤ steps”,
namely that there might not be any candidate concepts. We apply the same solution,
and also recommend the same optional threshold and perform the final selection as
in section 5.3.3.2.

All of the above definitions contain the condition c 2 C : c  is-a y. This
condition is technically redundant, because predicted probabilities are always
considered for selection. The probabilities are 0 for concepts that are not
hyponyms of the extrapolation source. We include the extraneous condition
for a better intuitive understanding of the individual methods.

5.3.3.4. Adaptive Method

We propose the methods “d⇤ steps” and “IC range” as alternatives to a fixed threshold
based purely on structural criteria, where structural pertains to the concept hierarchy.
However, these methods may not apply equally to all concepts in question, or across
a large precision range. In the following, we aim to relax the hard restrictions of the
structural methods, but still reach a fixed expected IC gain.

Method: Adaptive Threshold We define a threshold q in the same way as sec-
tion 5.3.3.2, but allow its value to change throughout training. The goal is to approach
an expected IC gain dI⇤ over time. In each training step k, we observe the average of
the last 64 realized IC gains d̄I. We apply the following gradient-based update rule
to change the threshold q:

qk = qk�1 + (d̄I� dI⇤) .

Simply put, if the actual IC gain is too high, we increase q to lower it in the future,
and vice versa. To prevent pathological cases, we limit q to the interval [0.55, 1]. It

81



5. Semantic Knowledge Integration and Learning from Imprecise Data

is initialized at the lower bound. The selection of the final pseudo-label matches
section 5.3.3.2.

Since this method is fundamentally a solution to a control problem, it can suffer
from similar failure cases. For example, the threshold could oscillate or react too
slowly to changes in the hypothesis. To prevent such cases, an implementation could
add a “learning rate” to the update rule (see section 2.1.3).
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6. Experiments on Knowledge Integration
and Imprecise Data

In this section, we present a selection of experiments concerning the semantic knowl-
edge integration and imprecise data aspects of this thesis. Experiments regarding the
lifelong learning aspects are detailed in the next chapter 7. We start by describing
evaluation criteria, some of which can take concept hierarchies into account. After-
wards, we lay out technical details pertaining to the experimental setup and give an
overview of generic and biology-specific benchmark datasets.

The first two experiments directly correspond to the proposed use cases for the
hierarchical classifier (see section 5.2). We investigate integrating domain knowledge
on benchmark data in section 6.3 to confirm the correct operation of our hierarchical
classifier. Then, we evaluate learning from imprecise data in section 6.4, where we
consider both CHILLAX (see section 5.3.2) and its self-supervised counterpart (see
section 5.3.3).

A real-world application of imprecise data, where web crawling is used to improve
moth species classification, is presented in section 6.5. We offer a detailed analysis of
possible failure cases due to weak visual-semantic correspondence, faulty concept
hierarchies and inappropriate imprecision modeling in section 6.6.

Finally, we summarize and discuss our findings in section 6.7.

6.1. Evaluation

In the following, we describe all evaluation metrics used in our experiments. Evaluation
metrics are computed to empirically determine the quality of a given hypothesis on
a validation set or held-out test set (see section 2.2.2.1). Similar to loss functions in
section 2.1.1.7, we define an evaluation metric as a function M : H⇥X ⇥ Y ! R+.
For a given validation set T with |T| = m, it is computed as follows, unless specified
otherwise:

MT(h) =
1
m

m

Â
i=1

⇥
M(h, xi, yi)

⇤
.

Since our targeted machine learning task is almost always classification, we first
list metrics relevant to classification in general. Second, we discuss metrics that are
specific to classification with concept hierarchies. We also consider more general
semantic measures, i.e., semantic distances and similarities.

6.1.1. Classification

In section 2.1.1.1, we define classification as a prediction task, where the label set Y is a
set Y

P of mutually exclusive classes, or concepts. We can further differentiate between
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binary classification, which considers only two classes, and multi-class classification.

6.1.1.1. Binary Classification

For problem with only two classes, e.g., Y
P = {�1, 1}, we commonly assign seman-

tics to each class. We consider one negative and the other positive. A comparison
between prediction and ground truth has four possible outcomes: true positive,
true negative, false positive, and false negative. The second word in each phrase
indicates the prediction, while true or false specify if it matches the ground truth. As
evaluation metrics, we define the true positive rate TPR, the false positive rate FPR, and
the respective TNR and FNR as follows:

TPRT(h) =
Âm

i=1 1[h(xi) = 1^ yi = 1]
Âm

i=1 1[h(xi) = 1]
,

FPRT(h) =
Âm

i=1 1[h(xi) = 1^ yi = �1]
Âm

i=1 1[h(xi) = 1]
,

TNRT(h) =
Âm

i=1 1[h(xi) = �1^ yi = �1]
Âm

i=1 1[h(xi) = �1]
,

FNRT(h) =
Âm

i=1 1[h(xi) = �1^ yi = 1]
Âm

i=1 1[h(xi) = �1]
.

This nomenclature is used in machine learning, but also in other applications of
statistics, e.g., medicine. The true positive rate is also known as sensitivity and the
true negative rate as specificity (cf. Yerushalmy 1947).

In retrieval contexts, but also for object detection, precision (PRE) and recall are
common evaluation metrics (cf. Goodfellow, Bengio, and Courville 2016, p. 423):

PRET(h) =
Âm

i=1 1[h(xi) = 1^ yi = 1]
Âm

i=1 1[h(xi) = 1]
,

RECT(h) =
Âm

i=1 1[h(xi) = 1^ yi = 1]
Âm

i=1 1[yi = 1]
= TPRT(h) .

Binary classifiers can predict probabilities instead of making simple decisions (see
section 2.1.2.2). A threshold can then be applied to the predicted probabilities to
reach a decision. This threshold can be optimized, e.g., to prefer true positives or true
negatives. Varying the threshold over its entire range and plotting the respective
precision and recall for each threshold results in the receiver operater characteristics
(ROC) curve (cf. ibid., p. 423). The area under this curve is denoted average precision.

6.1.1.2. Accuracy

For multi-class classification tasks, i.e., where |Y
P
| > 2, the most common evaluation

criterion is accuracy (ACC). It is defined on a per-sample basis as (cf. ibid., 103 sq.):

ACC(h, x, y) = 1[h(x) = y] . (6.1)

The accuracy is the fraction of examples in the validation set that are predicted
correctly. As such, it is exactly complementary to the definition of empirical risk in
section 2.1.1.3.
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If the classifier offers predicted probabilities for individual classes, the resulting
ranking of classes can also be considered for evaluation. For example, the top-k
accuracy indicates the fraction of examples where the ground truth class is in the top
k of predicted classes (cf. Russakovsky et al. 2015).

Equation (6.1), which we also call overall recognition rate, does not consider the dis-
tribution of examples over classes in the validation set. However, if this distribution
is very imbalanced or long-tailed, the average recognition rate (ARR) is a reasonable
alternative:

ARRT(h) =
1

|YP|
Â

c2YP

Âm
i=1 1[h(xi) = c ^ yi = c]

Âm
i=1 1[yi = c]

.

Technically, loss functions could also be used to evaluate a hypothesis. Fur-
thermore, comparing loss functions between training and validation sets (see
section 2.2.2.1) can help detect instances of overfitting. However, the actual
values of loss functions are rarely human-interpretable.

6.1.2. Hierarchical Classification

While hierarchical classifiers are often used to integrate domain knowledge in an
effort to improve the non-hierarchical accuracy (see section 4.1), there are many eval-
uation criteria which can take a concept hierarchy into account. Some are applicable
to non-hierarchical classifiers, and should always be considered, since qualitative
differences between confused concepts are inherently semantic in nature (see sec-
tion 4.1.5). In this section, we consider hierarchical equivalents to criteria from the
previous section. Furthermore, we discuss several semantic measures, which are
ways of comparing two concepts in the presence of a concept hierarchy.

6.1.2.1. Hierarchical Precision and Recall

The correct classification of an individual example can be framed as a retrieval prob-
lem. Here, the ground truth concept is represented by the set of all of its hypernyms
(its intension, see section 3.1.2.2), similar to the internal labels in section 5.2.1. With a
context C, we define hierarchical precision (hPRE) and hierarchical recall (hREC) as (cf.
Kiritchenko, Matwin, and Famili 2005):

hPRE(h, x, y) =
{c 2 C : y  is-a c} \ {c 2 C : h(x)  is-a c}

{c 2 C : h(x)  is-a c}
,

hREC(h, x, y) =
{c 2 C : y  is-a c} \ {c 2 C : h(x)  is-a c}

{c 2 C : y  is-a c}
,

where  is-a is the reflexive hyponymy relation (see section 3.1). Note that there are
competing definitions for hierarchical recall and precision, namely those proposed in
Deng, Berg, and Fei-Fei (2011).

Because hierarchical precision and recall represent a trade-off similar to the choice
of threshold in section 6.1.1.1, we further define a single metric combining the two
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values. The hierarchical F1 score (hF1) is defined as the harmonic mean of hPRE and
hREC:

hF1(h, x, y) =
2

1
hPRE(h,x,y) +

hREC(h,x,y)
1

.

6.1.2.2. Semantic Measures

Most of the aforementioned evaluation metrics boil down to a comparison between
two elements of a label set, one provided by the hypothesis and one by the validation
set. They are specifically designed to measure the performance of a model. However,
there exist metrics that originally serve a different purpose, namely semantic measures
(cf. Harispe et al. 2015). In section 5.1.1.2 we review IC, which is a semantic measure.
For evaluation, we consider semantic measures that compare two concepts, which
can be grouped into measures of semantic distance and semantic similarity.

The Rada distance is defined using a graph representation G of a concept hierarchy
(cf. ibid., p. 61):

DISRada(h, x, y) = dG(h(x), y) . (6.2)

It can be inverted into a measure of semantic similarity (cf. ibid., p. 61):

SIMRada(h, x, y) =
1

DISRada(h, x, y) + 1
. (6.3)

Measuring the depth (see section 5.1.1.1) of the lowest common subsumer (LCS, the
most specific hypernym shared by two concepts) offers an interesting interpretation.
It is the depth, or specificity (see section 5.1.1.2) up to which the hypothesis is, on
average, accurate. Alternatively, the height of the LCS, the shortest path distance to
any leaf in G, can be considered. In Verma et al. (2012b), it is divided by the largest
possible height to normalize the metric, which indicates dissimilarity. We list further
semantic measures in section 6.6.1.1.

6.2. Experimental Setup

Several experiments in the following sections share common elements concerning
their setup. In this section, we describe the datasets, neural network architectures
and pre-processing procedures used in our experiments.

6.2.1. Datasets

As described in sections 2.3.3.1 and 2.3.3.2, acquiring sufficient amounts of training
data for experiments with large neural networks is often cost-prohibitive. Hence, we
rely on publicly available benchmark datasets. These datasets include evaluation
protocols for easier comparison between a large range of methods. Furthermore, the
label acquisition process is often described transparently and in a replicable manner.
In the following, we review several benchmark datasets, which mostly represent
classification tasks. We also describe datasets with biological applications, i.e., species
classification.
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6.2.1.1. General Benchmark Datasets

CIFAR-10 and CIFAR-100 Based on the “80 Million Tiny Images” dataset presented
in Torralba, Fergus, and Freeman (2008), the CIFAR-10 and CIFAR-100 benchmarks
(presented in Krizhevsky and Hinton 2009) are of much smaller scale. Each dataset
consists of 60 000 images 32⇥32 pixels in size. CIFAR-10 and CIFAR-100 differentiate
between 10 and 100 concepts, respectively.

ImageNet The name “ImageNet” describes different databases depending on the
context. In general, it is simply a very large database of medium- to high-resolution
images associated with WordNet synsets (see section 3.3.1.1). Its initial release in 2009,
presented in Deng et al. (2009), consists of approximately 3 200 000 images annotated
with 5247 different synsets.

ImageNet is accompanied by a yearly challenge (the ImageNet Large-Scale Visual
Recognition Challenge, ILSVRC) with a variety of benchmarks including classifica-
tion and object detection tasks. A review of several years of challenges is presented
in Russakovsky et al. (2015). The 2012 iteration is particularly popular, as one of
the entries, Krizhevsky, Sutskever, and Hinton (2012), is considered the “break-
through” of modern CNN approaches. Hence, the name ImageNet often refers to the
ILSVRC 2012 classification benchmark dataset, which is also named ImageNet-1k.
This 1000-class benchmark dataset ships with 1 200 000 training images and 50 000
validation images. The labels of the 100 000 held-out test images remain private.

PASCAL VOC While classification is an attractive task due to its relative simplicity
both in implementation and evaluation, there are object detection benchmarks as well.
“PASCAL Visual Object Classes” (VOC, Everingham et al. (2010, 2015)) is a yearly
challenge and benchmark dataset for a variety of computer vision tasks, including
object detection. The object detection benchmark dataset of the 2012 release is a
common choice for evaluation. It considers only 20 object classes, but contains 11 540
medium-resolution images which are annotated with 27 450 object instances. Each
instance is accompanied by a “difficult” flag, which is set if the object is partially
occluded or otherwise difficult to detect.

6.2.1.2. Biological Benchmark Datasets

We consider biological datasets specifically for two main reasons. First, there is an
agreed upon concept hierarchy, at least for species classification. Hence, even if a
dataset does not include a concept hierarchy, it can be acquired from a biological
knowledge base (see section 3.3.3.1). Second, biodiversity monitoring is a globally
important application which can benefit from semantic knowledge integration. Fur-
thermore, it has several traits that make it an excellent fit for lifelong learning, which
we explore in chapter 7.

CUB-200 Presented in Welinder et al. (2010), the “Caltech-USCD Birds 200” (CUB-
200) dataset is a common benchmark for methods of fine-grained recognition (see
section 4.2.2). The goal is to classify 200 species of birds found mostly in North
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America. There are approximately 6000 medium-resolution images in total. In
addition to labels, the authors provide bounding box annotations as well as attributes.
They warn that an overlap may exist between the test set of CUB-200 and the training
set of ImageNet-1k (see section 6.2.1.1).

NABirds A more large-scale bird classification challenge is posed in Van Horn et al.
(2015) under the name “NABirds”. It is more fine-grained as it requires discriminating
between juvenile and adult birds, not only species. The 555 classes contain 400 species
of birds, which are represented by 48 562 images. While Amazon Mechanical Turk
is a common way of acquiring annotations, NABirds is labeled (for free) by citizen
scientists. The authors claim reduced label noise compared to CUB-200, which they
measured by collaborating with domain experts.

iNaturalist Similar to ImageNet, the name “iNaturalist” has different meanings de-
pending on the context. In general, iNaturalist1 is a citizen science project and social
network to share observations of animals and discuss them with fellow hobbyists and
experts. The project is aimed towards supporting researchers in biodiversity moni-
toring and conservation efforts. iNaturalist also refers to yearly releases of large-scale
fine-grained visual recognition (see section 4.2.2) challenge datasets as described
in Van Horn et al. (2018). For example, the 2017 release consists of approximately
675 000 images which should be classified into 5089 different species. This dataset
also exhibits considerable class imbalance, which is attributed to the observation
frequency of the respective species.

6.2.2. Deep Neural Networks

This section offers technical details concerning the deep neural networks used in our
experiments. We describe neural network architectures as well as initialization and
optimization choices.

6.2.2.1. Architectures

ResNet Residual networks (cf. He et al. 2016a,b), which we describe in more detail
in section 2.4.3.3, are a common choice for contemporary deep learning applications.
There are several available implementations, e.g., Keras2, TensorFlow3, PyTorch4, as
well as the original Torch code5. Because of its relevance for potential applications and
widespread use, we select the ResNet-50 architecture described in He et al. (2016b) for
our experiments, unless specified otherwise. This architecture is sometimes denoted
“ResNet-50 V2” to differentiate it from “V1”, an earlier design from He et al. (2016a).
When configured for ImageNet-1k, it has 25 613 800 individual parameters.

1
https://www.inaturalist.org/

2
https://keras.io/

3
https://www.tensorflow.org/

4
https://pytorch.org/

5
https://github.com/facebookarchive/fb.resnet.torch
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6.2.2.2. Pre-training and Fine-tuning

While large benchmark datasets such as ImageNet-1k (see section 6.2.1.1) are sufficient
to train architectures such as the aforementioned ResNet-50 without significant
overfitting, smaller datasets, e.g., CUB-200 (see section 6.2.1.2), are not. This statement
assumes that training is performed “from scratch”, i.e., with parameters initialized
randomly (see section 2.4.3.1). However, it is common practice to initialize parameters
by copying an already converged hypothesis (cf. Goodfellow, Bengio, and Courville
2016, 323 sqq.). This process is termed fine-tuning a pre-trained model. Using this
method, the sample complexity of the hypothesis is reduced because the initialization
provides an inductive bias, which is assumed to be helpful. Smaller amounts of
training data are necessary to reach a certain true risk if the dataset used to optimize
the pre-trained model contains relevant knowledge. Pre-training can also be useful if
performed multiple times (cf. Cui et al. 2018).

6.2.2.3. Learning Rate Schedules

SGD (see section 2.1.3) does not converge under the same circumstances as regular
gradient descent. The minibatch selection introduces noise such that even if the loss
function w.r.t. the whole training data is minimal, the gradient w.r.t. to the minibatch
is not zero. However, convergence can be improved using a learning rate schedule,
such that each step k uses a different learning rate h(k). If, for k! •, the sum over all
h(k) diverges, but the sum over all (h(k))2 does not, convergence of SGD is guaranteed
(cf. Goodfellow, Bengio, and Courville 2016, 294 sq.). For example, the learning rate
can be reduced linearly until a minimum is reached (cf. ibid., 295, eq. 8.14).

Stochastic gradient descent with warm restarts (SGDR, Loshchilov and Hutter (2017))
is specifically tailored to CNNs. The learning rate is decayed following a cosine
function. However, when the zero crossing of the cosine is reached, the learning rate
is reset to its initial value and the decay begins again. This is denoted a warm restart
because the learning rate is “restarted”, but the parameters q are kept.

6.2.3. Data Processing

The following paragraphs explain the transformations which an image undergoes
from its original state as part of the training data towards a compatible input to a
neural network.

6.2.3.1. Augmentation

In section 2.3.4.2 we discuss several invariances and covariances of computer vision
tasks. Data augmentation (cf. Goodfellow, Bengio, and Courville 2016, 240 sqq.) uses
the knowledge of these invariances to “augment” the training data with transformed
images. For example, if a given classification task is known to be invariant to a
horizontal mirror transform of the coordinates, the training data can be doubled
by adding a mirrored version of each example. The exact invariances are always
task-specific and are a form of domain knowledge. A drawback of data augmentation
is that each invariance has to be learned from the augmented training data, which
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requires time. However, the alternative of constructing a hypothesis class that has the
correct invariance, is not always feasible. Our framework allows for the following
transforms:

• Horizontal and vertical mirroring with a 50 % probability,

• Rotation around the center by a random angle ⇠ U [0, 2p],

• Cropping of a region randomly sized and positioned, which may also extend
outside the original image,

• Gray value transforms to randomly increase or decrease brightness and con-
trast,

• Color transforms to randomly variate hue and saturation.

Unless specified otherwise, we only perform horizontal mirroring, i.e., exchange left
and right.

6.2.3.2. Image Geometry and Representation

While digital images are discrete in both range and domain (see section 2.3.1.1),
the neural networks we apply in our experiments expect a continuous range (see
section 2.4). Continuity is also a requirement of gradient-based optimization (see
section 2.1.3). In this section, we briefly discuss the pre-processing necessary in order
to meet these requirements.

First, we map the original discrete F256⇥3 color space to a floating-point represen-
tation of [0, 1]3 by type casting and dividing by 256. We then subtract the mean color
over the entire training data and divide by the standard deviation to “whiten” the
range of the images. The image is then scaled to a size slightly larger than the neural
network’s input. For example, if the neural network expects an input size of 224⇥224
pixels, we scale each image to 256⇥256 using bilinear interpolation. The final size is
obtained by cropping a fitting area at a random location such that the cropped region
is completely inside the image (cf. Krizhevsky, Sutskever, and Hinton 2012). We only
apply random cropping during training. For predictions, we crop the exact center of
the image.

6.3. Knowledge Integration on Benchmark Datasets

Partial results of the work presented in this section are published in Brust, Barz, and Denzler (2021b) and Brust and

Denzler (2019a).

This experiment should serve as an entry point to the experimental section as a whole.
It concerns the hierarchical classifier proposed in section 5.2, specifically the deep
learning implementation detailed in section 5.2.4. We observe the change in accuracy
(w.r.t. a validation set) of using the hierarchical classifier instead of the conventional
one-hot softmax (OHSM) formulation (see sections 2.4.1.3 and 2.4.1.4).

For the purpose of this thesis, we integrate domain knowledge into a system to
enable the capability of learning from imprecise data, which is not possible with an
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OHSM classifier. Nevertheless, it is important to study the effect of the method itself
to validate its utility and also to more accurately gauge the “value” of imprecise data
on its own. More specifically, the goal is not to improve the performance of a model
by using our hierarchical classifier to integrate domain knowledge. It should be
noted that there are several methods that can improve performance (see section 4.1).
However, they support neither imprecise data nor concept hierarchies that are DAGs
without non-trivial additional assumptions (see section 6.4.2.4).

Hypotheses Our setup combines several individual hypotheses, which are isolated
in subsequent experiments. Interestingly, there are hypotheses to explain a negative,
a positive and also no effect of using the hierarchical classifier. If the assumptions in
section 5.2.2, which are derived from the concept hierarchy, hold true for the specific
training data, accuracy should improve. Because of the structure of the hierarchical
classifier, the model can no longer make predictions that violate the assumptions,
while the OHSM classifier can. It also does not have to learn the relations between
concepts from the training data, which might not be sufficiently representative.

There is also a reason to expect no effect at all. In Bilal et al. (2018), it is shown that
CNNs can already learn the concept hierarchy from training data without explicit
integration (see section 4.1.5).

Furthermore, the hierarchical classifier adds error sources that are not present in
OHSM. The assumptions in section 5.2.2 could be faulty, e.g., because of too weak a
correspondence between visual and semantic features (see section 6.6.1). Moreover,
the concept hierarchy itself could contain erroneous entries (see section 6.6.2). Fi-
nally, the hierarchical classifier does not assume mutual exclusivity between sibling
concepts as that is not trivial with DAG hierarchies, although the assumption would
hold for almost all concepts. All the aforementioned causes could result in decreased
accuracy.

6.3.1. Setup

For clarity, we divide the experiment into two scales of concern w.r.t. computational
resources (see also section 2.3.3.2). Small-scale experiments can perform an indi-
vidual run in less than a day, where a “run” consists of a single full training (until
convergence) and multiple validations of a single neural network. The small scale is
also characterized by constrained computing resources in terms of working memory
(4 GiB of VRAM), leading to small image dimensions and minibatch sizes (see sec-
tion 2.1.3.1). An individual run of our large-scale experiments completes in less than
a week, and has access to reasonable compute and memory amounts, i.e., a single
GPU and 16 GiB of VRAM. It should be noted that our large scale is still several
orders of magnitude from the scale of commercial research organizations such as
Facebook AI6 and OpenAI7.

We perform the small-scale experiments because an interesting side effect of do-
main knowledge integration could be that it counteracts losses incurred from the

6
https://ai.facebook.com/

7
https://openai.com/
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Table 6.1.: Small-scale benchmark comparison of hierarchical classifier and baseline.
For each dataset, we report the accuracy in percent on the respective
validation set. Table compiled of data from Brust and Denzler (2019a).

Accuracy (%)
Dataset |Y

P
| |C| Baseline HC

ImageNet-1k 1000 1860 49.00 ± 0.33 54.20 ± 0.04
NABirds (center crops) 555 1010 56.50 ± 0.49 61.90 ± 0.27
CIFAR-100 100 267 55.40 ± 0.84 54.60 ± 1.03

Table 6.2.: Large-scale benchmark comparison of hierarchical classifier and baseline.
For each dataset, we report the accuracy and hierarchical F1 score (hF1) in
percent on the respective validation set. Table compiled of data from Brust,
Barz, and Denzler (2021b).

Accuracy (%) hF1 (%)
Dataset Baseline HC Baseline HC

ImageNet-1k 65.00 62.52 87.70 86.66
NABirds 82.72 ± 0.14 81.40 ± 0.17 91.15 ± 0.07 90.67 ± 0.08

constrained scale. Furthermore, the small scale should be more representative of ac-
tual field applications in biodiversity research, i.e., on edge devices (see section 2.3.3.2).
The large-scale experiments are run to determine if it is possible to compete at al-
ready very high accuracy levels. However, these experiments are still constrained by
available resources and time much more so than the state-of-the-art models such as
EfficientNet (Tan and Le 2019) or transformers (Dosovitskiy et al. 2021).

Our baseline is an unmodified, conventional OHSM classifier based on a ResNet
architecture (see section 6.2.2.1), depending on the dataset. The hierarchical classifier
setup is identical, except for the last layer of the neural network, which is replaced
as described in section 5.2.4, together with the loss function and label encoding.
As benchmark datasets, we use CIFAR-100 (small-scale only), NABirds, and Ima-
geNet-1k, which are reviewed in detail in section 6.2.1.1. All hyperparameters and
further settings are provided in the appendix, in table A.1 for the small-scale experi-
ments and table A.2 for large-scale. The tables also list the number of experimental
runs used to determine the mean and standard deviation of our measurements. This
number is determined by the respective scale and expected runtime.

The “iNaturalist 2017” initialization specified in table A.2 refers to the results from
Cui et al. (2018), which are available online8.

6.3.2. Results

In the following, we review the results of this experiment. We perform a quanti-
tative evaluation using the measures discussed in section 6.1. For the small-scale
experiments, we focus on accuracy and efficiency. For the large-scale counterparts,

8
https://github.com/richardaecn/cvpr18-inaturalist-transfer/
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we provide a more detailed analysis of the models’ predictions, including hierar-
chical measures (see section 6.1.2). We also perform a qualitative analysis of the
mispredictions.

The results and their consequences as well as possible explanations are discussed
in section 6.7.1.1.

6.3.2.1. Small-Scale Results

Table 6.1 shows the results of our small-scale experiment. When the scale is restricted,
the hierarchical classifier outperforms the OHSM classifier baseline on both NABirds
and ImageNet-1k by a margin of approximately five percent points. However, on
CIFAR-100, the baseline achieves a marginally higher accuracy by less than one
percent point. We further observe that the relative improvement in accuracy scales
according to the number of concepts in the respective dataset.

Since the small-scale experiment should represent limited resources, the efficiency
of training is an important aspect. Specifically, the fewer optimization iterations
required to reach a certain reasonable “working” performance level, the better. In a
lifelong learning system (see section 7.1), where incremental learning is run repeatedly,
faster convergence is crucial. Thus, such a system benefits strongly from an efficient
classifier.

We first consider CIFAR-100, where both the baseline and our hierarchical classifier
reach comparable final results, but at notably different speeds. After the first 500
iterations, the accuracy of the hierarchical classifier is already 10.70 %, while the
OHSM model reaches only 2.80 %. It takes 2100 iterations in total to manage a
comparable result. Hence, the hierarchical classifier might be a better choice in
scenarios where training time is limited, even though the baseline reaches a higher
final accuracy.

Next, we observe the learning pace on NABirds, which has around five times
the number of concepts compared to CIFAR-100. The hierarchical classifier predicts
the validation set with 10.60 % accuracy after the first 5000 iterations. At the same
time, the OHSM baseline’s accuracy is only 0.40 %. The baseline requires 21 000 steps
in total to match the hierarchical classifier’s accuracy at 5000 steps. The resulting
“speed-up” is the same as for CIFAR-100.

The final observations concern ImageNet-1k, which again doubles the scale of
NABirds. We take a first validation measurement after 31 250 steps, where the
hierarchical classifier shows an accuracy of 28.90 %, while the baseline reaches 20.50 %.
In this setting, the baseline reaches a comparable measure after 62 500 steps. As with
NABirds, it never “overtakes” the hierarchical classifier. However, the implied
speedup is smaller than on the other datasets. A discussion of these findings is
offered in section 6.7.1.1.

Concise Results

Small scale: The hierarchical classifier requires fewer training steps to reach a
certain accuracy than the OHSM baseline. It also outperforms the baseline on
two out of three datasets.
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6.3.2.2. Large-Scale Results

The large-scale experimental results are presented in table 6.2.
We first compare accuracies on the ImageNet-1k benchmark dataset. The OHSM

baseline outperforms the hierarchical classifier with a final accuracy of 65.00 % vs
62.52 %. For ImageNet specifically, we can also consider the top-5 accuracy (see
section 6.1.1), which is used for the accompanying challenge. In terms of top-5 accu-
racy, the baseline achieves 86.68 %, while the hierarchical classifier reaches 83.55 %.
Furthermore, the hierarchical F1-Score (see section 6.1.2) is marginally in favor of
the baseline. It produces an hF1 of 87.70 %, compared to the hierarchical classifier’s
86.66 %. Overall, there are only small differences in performance between the OHSM
model and the hierarchical classifier. However, these differences are in favor of the
baseline, and in contrast to the small-scale results, which overall show the hierarchical
classifier as superior.

We also look at the NABirds dataset as a more fine-grained scenario, which is also
more representative of the envisioned biodiversity research applications. Again, the
OHSM baseline slightly outperforms the hierarchical classifier. In terms of accuracy,
the results are 82.72 % against 81.40 % on the validation set. The hierarchical F1
values are even closer at 91.15 % to 90.67 %. Overall, both models exhibit comparable
performance, which is again marginally in favor of the OHSM baseline. We discuss
the results in section 6.7.1.1.

Concise Results

Large scale: The OHSM baseline outperforms the hierarchical classifier in all
settings, but only marginally. This holds true for both generic and hierarchical
evaluation measures.

6.3.2.3. Qualitative Analysis of Large-Scale Results

Even though the OHSM baseline model is not equipped with a concept hierarchy,
we can nevertheless apply hierarchical evaluation criteria to its predictions (see sec-
tion 6.1.2). For example, there is research indicating that hierarchical classifiers make
“better mistakes” (cf. Bertinetto et al. 2020). Such statements could not be made if
it were impossible to measure the quality of mistakes made by the non-hierarchical
model. In the following, we analyze predictions and mispredictions according to
hierarchical criteria to determine whether this research also applies to our hierar-
chical classifier. However, it is also claimed that CNNs learn concept hierarchies
by themselves (cf. Bilal et al. 2018), which could be interpreted as a contradictory
statement. Related analysis works are discussed in section 4.1.5.

In the previous section, we already discuss the hierarchical F1-scores. We now
compare the lowest common subsumer (LCS) depth as explained in section 6.1.2.2.
This measure is slightly more interpretable for applications, e.g., as in “this model is,
on average, accurate up to the species level”.

On ImageNet-1k, the mean LCS depth between prediction and ground truth on the
complete validation set is 9.92 for the baseline, and 9.80 for the hierarchical classifiers.
These measurements are very close. With NABirds, the difference is even smaller,
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both absolutely and relatively, at 4.12 for the baseline against 4.10. Note that the scale
of the numbers themselves depends explicitly on the concept hierarchy. As such,
it cannot be compared across datasets, or even across different concept hierarchies
describing the same dataset.

To gain further insight, we consider the same LCS depth metric, but as an average
of only the mispredictions, instead of the whole validation set. Even if one method
produces more mispredictions, they could still be of a different quality, i.e., “better”.
Starting with ImageNet-1k, LCS depth between mispredictions and the respective
ground truth is 7.22 for the baseline. For the hierarchical classifier, it is 7.16, which
is still slightly worse. On NABirds, we observe the opposite situation. The mispre-
diction LCS depth achieved by the baseline is 2.19. The hierarchical classifier makes
marginally better mistakes at 2.24, which we discuss in section 6.7.1.1.

Concise Results

Large scale: The hierarchical classifier makes “better mistakes” on NABirds,
but it does not on ImageNet-1k.

6.4. Imprecise Data from Benchmark Datasets

Partial results of the work presented in this section are published in Brust, Barz, and Denzler (2021b, 2022).

This experiment is the first in this thesis concerning imprecise data. Imprecise data is
the main motivation for developing the probabilistic hierarchical classifier outlined in
section 5.2. We now consider CHILLAX, described in section 5.3.2, built on top of this
classifier to accept imprecise data. Furthermore, we test the self-supervised variant
proposed in section 5.3.3, which addresses a number of drawbacks of CHILLAX.

As in the previous experiment, we rely on benchmark datasets (see section 6.2.1.1).
We select NABirds for its relevance to our targeted biodiversity applications, and
ImageNet-1k such that we can compare CHILLAX to HEX (cf. Deng et al. 2014),
another method that is compatible with imprecise data.

Both datasets initially contain high-quality annotations. We obtain imprecise data
by purposely reducing the precision of the labels in the training data. Moreover, we
introduce further label noise by performing random confusions.

Our expectation is that the imprecise data can be leveraged by CHILLAX, resulting
in higher performance compared to classifiers that have no access to this data simply
as a consequence of the higher number of samples. However, compared to precise
examples, we expect the added value of imprecise data to be slightly lower. Hence,
we expect the reduction of precision to lead to lower accuracies for all methods, but
to affect CHILLAX the least.

We detail the noise process in the following.
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6.4.1. Simulating Label Noise

When viewing an annotator-provided label as a measurement, there are two main
aspects of concern, namely accuracy and precision. We offer a detailed description of
these measures in section 5.1. In our experiments, our goal is to study the effects of
each aspect on the resulting accuracy of CHILLAX independently.

To this end, we consider synthetic labels, for which known-good annotations
from benchmark datasets are an ideal starting point. We can control the amount of
accuracy and precision directly by adapting our modifications. Only the training
data is modified. We rely on the unaltered validation set to provide a fair comparison
between different qualities of annotations and methods.

6.4.1.1. Introducing Imprecision

First, we describe how we artificially reduce the precision of annotations. For sim-
plicity, we define precision in terms of the depth of a concept in the concept hierarchy.
This depth-based model is described in more detail in section 5.1.1.1. We consider
the following noise models from the aforementioned section:

• No imprecision,

• Poisson distribution: labels by volunteers, parameterized by l,

• Geometric distribution: labels from web crawling, parameterized by q,

• Deng et al. (2014): reduce depth by one, parameterized by p.

The depth reduction of the training data is implemented using algorithm 1. We
validate the aforementioned noise models on real-world data in section 6.6.3.

6.4.1.2. Adding Inaccuracy

Second, we assume that imprecise data is an expression of annotator uncertainty,
e.g., because of a lack of expertise. Hence, annotators only label as precisely as they
are comfortable. However, they could still make mistakes in which they are very
confident, while most other humans might not agree on the decision. By introducing
random confusions independent of the structure of the concept hierarchy, we can
analyze the robustness of CHILLAX to this variant of label noise.

In our implementation, we apply random confusions before we perform the depth
reduction described in the previous section. Since our original training data is
exclusively precise, we only consider random confusions between precise concepts,
i.e., leaf nodes, with equal probabilities. Note that it is possible for the subsequent
depth reduction to “correct” a number of the modified labels. This situation occurs
when the original label and the modified version have a common subsumer (see
section 6.1.2), and the subsequent depth reduction results in this subsumer or an even
less precise concept.
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Table 6.3.: Remaining fraction of precise examples (%) and average IC in the modified
NABirds training set after applying the specified noise models.

Deng et al. p 0.99 0.95 0.9 0.5

Precise Examples 1.00 5.00 10.00 50.00
IC 0.83 0.84 0.85 0.90

Geometric q 0.5 0.8 0.9 0.95

Precise Examples 9.60 45.90 69.00 83.40
IC 0.29 0.63 0.79 0.88

Poisson l 1.0 2.0 3.0 4.0

Precise Examples 4.80 22.70 45.90 65.90
IC 0.32 0.58 0.75 0.85

Table 6.4.: Remaining fraction of precise examples (%) and average IC in the modified
ImageNet-1k training set after applying the specified noise model.

Deng2014 (p) 0.99 0.95 0.9 0.5

Precise Examples 1.00 5.00 10.00 50.00
IC 0.79 0.79 0.80 0.86

6.4.1.3. Statistical Properties of Simulated Labels

Before conducting the actual experiment, we analyze the training data obtained from
the aforementioned modifications. This gives further context to interpret the results
in the following experiments. We consider two statistical aspects. First, the number or
fraction of precise labels that remain in the training data after modification. Initially,
it is 100 %. Second, the average intrinsic IC of the labels as described in section 5.1.1.2.
On NABirds, it is 0.97 initially, while on ImageNet-1k, it is 0.93. Both values are lower
than 1.00 because the concept hierarchies are not balanced. Tables 6.3 and 6.4 show
the statistics on the NABirds and ImageNet-1k datasets, respectively.

6.4.2. Supervised CHILLAX

We first consider the purely and fully supervised variant of CHILLAX, which is
developed in section 5.3.2 on top of the hierarchical classifier from section 5.2. There
are three aspects of interest in this investigation. First, the effect of increasingly
imprecise data on the accuracy of CHILLAX, and two baselines, w.r.t. the unmodified
validation set. Second, the relationship between the average intrinsic IC of the
training data and the resulting accuracy, which could help identify a trade-off between
precision and accuracy. Finally, the comparison to HEX proposed in Deng et al. (ibid.),
which is, to the best of our knowledge, the only competitor to CHILLAX.

97



6. Experiments on Knowledge Integration and Imprecise Data

Table 6.5.: Large-scale benchmark comparison of CHILLAX and baselines on
NABirds. We report the accuracy in percent on the validation set. There
is no imprecision, inaccuracy as indicated. Table compiled of data from
Brust, Barz, and Denzler (2021b).

Inaccuracy — 1 % 10 %

Leaves only 82.80 ± 0.18 81.96 ± 0.19 77.19 ± 0.19
Random leaf 82.64 ± 0.11 82.09 ± 0.10 77.35 ± 0.15
CHILLAX 81.40 ± 0.17 80.91 ± 0.19 75.28 ± 0.39

6.4.2.1. Setup

Our investigation focuses on the NABirds and ImageNet-1k benchmark datasets
(see section 6.2.1.1). The respective hyperparameters are detailed in the appendix, in
table A.3.

Because results for HEX are only available on ImageNet-1k, we provide two
further baselines based on heuristics that make imprecise data precise again. They
are chosen to represent annotators which are only able to make an imprecise decision,
but are forced to give a precise annotation. An OHSM classifier then learns the
resulting training data. The leaves only baseline ignores all elements of the training
data that are not precise, i.e., whose labels are not in Y

P. Depending on the noise
model, this might only leave a small amount of examples (see section 6.4.1.3 for exact
numbers). Alternatively, the random leaf baseline selects a random element of Y

P

for each imprecise label, such that the leaf node is subsumed by the label. For very
imprecise labels, this can introduce a significant amount of noise. However, for slight
imprecision such as occurs in the experimental protocol of Deng et al., it can be a
reasonable choice as the probability of randomly choosing the correct label is up to
50 %.

Note that both baselines only transform imprecise data. Hence, if all labels are
precise, they are identical and equal to an OHSM classifier.

6.4.2.2. Large-Scale Results

For our first large-scale evaluation, we focus on the results on the NABirds dataset (see
section 6.2.1.2). The results on the ImageNet-1k dataset are presented in section 6.4.2.4.
As a point of reference, table 6.5 shows the accuracies produced by CHILLAX and the
two baselines when there is no imprecision and no inaccuracy present. Both baselines
have an advantage of approximately one percent point in accuracy over CHILLAX.

This is a reasonably small difference as long as it can be overcome in the presence of
imprecise data. We introduce imprecision as described in section 6.4.1.1, first without
additional inaccuracy, and obtain the results shown in table 6.6. Starting with the
imprecision model proposed by Deng et al., we observe that CHILLAX outperforms
both baselines by a margin of several percent points. Moreover, there is a substantial
difference in performance between the baselines, which results from the imprecision
model. Since the depth of labels is reduced by one at most, selecting a random leaf is
not unreasonable. However, attempting to learn from only precise examples when
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Table 6.6.: Large-scale benchmark comparison of CHILLAX and baselines on
NABirds. We report the accuracy in percent on the validation set. There
is imprecision as indicated, no inaccuracy. Table compiled of data from
Brust, Barz, and Denzler (2021b).

Deng et al. p 0.99 0.95 0.9 0.5

Leaves only 9.00 ± 0.58 28.21 ± 0.64 45.57 ± 1.61 76.26 ± 0.34
Random leaf 60.91 ± 0.65 61.47 ± 0.45 63.48 ± 0.19 74.34 ± 0.47
CHILLAX 63.24 ± 0.44 70.37 ± 0.65 75.10 ± 0.43 80.94 ± 0.10

Geometric q 0.5 0.8 0.9 0.95

Leaves only 42.89 ± 0.58 75.16 ± 0.29 79.58 ± 0.09 81.38 ± 0.23
Random leaf 12.49 ± 0.39 51.37 ± 0.48 67.92 ± 0.24 75.48 ± 0.27
CHILLAX 48.86 ± 0.97 75.57 ± 0.10 79.07 ± 0.28 80.28 ± 0.11

Poisson l 1.0 2.0 3.0 4.0

Leaves only 26.47 ± 0.82 61.87 ± 0.55 74.87 ± 0.32 79.07 ± 0.23
Random leaf 11.15 ± 0.37 36.82 ± 0.41 58.98 ± 0.51 70.57 ± 0.27
CHILLAX 42.87 ± 0.38 70.13 ± 0.24 77.70 ± 0.31 80.11 ± 0.15

they represent 1 % of the training data predictably results in a comparatively small
accuracy.

The geometric noise model, which is designed to represent the distribution of
precision obtained by crawling the web for annotated training data, leads to slightly
different results. For q = 0.9 and q = 0.95, the leaves only baseline outperforms
the competition including CHILLAX. In these cases, the training data consists of
69.00 % and 83.40 % precise examples (see table 6.3). Where imprecision is stronger,
i.e., q = 0.5 and q = 0.8, CHILLAX again performs best, although only marginally at
q = 0.8. The random leaf baseline performs consistently worst.

Moving on to Poisson-distributed imprecision modeling the expertise and be-
havior of volunteer annotators, we observe similar characteristics. In this situation,
CHILLAX reaches the highest accuracies in all settings, but again has only a marginal
advantage when l = 4. Leaves only is only competitive at this highest level of
precision, while random leaf is consistently the worst performer again.

Concise Results

No inaccuracy: Overall, CHILLAX compares favorably to the two baselines
leaves only and random leaf. However, the specific advantage depends on the
amount of imprecision and fades in cases where the training data is largely
precise.

We now introduce inaccuracy (see section 6.4.1.2), starting with random confu-
sions of 1 % of the training data. Table 6.5 shows all accuracies obtained from fully
precise, but inaccurate training data. Compared to the unmodified training data, the
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Table 6.7.: Large-scale benchmark comparison of CHILLAX and baselines on
NABirds. We report the accuracy in percent on the validation set. Impreci-
sion as indicated, 1 % inaccuracy.

Deng et al. p 0.99 0.95 0.9 0.5

Leaves only 8.73 ± 0.66 27.09 ± 1.53 45.92 ± 1.47 75.64 ± 0.23
Random leaf 60.54 ± 0.55 61.77 ± 0.24 63.04 ± 0.37 73.81 ± 0.19
CHILLAX 62.99 ± 0.32 69.53 ± 1.17 73.87 ± 0.59 80.25 ± 0.15

Geometric q 0.5 0.8 0.9 0.95

Leaves only 40.47 ± 0.62 74.70 ± 0.16 78.90 ± 0.26 80.89 ± 0.21
Random leaf 11.96 ± 0.40 51.11 ± 0.09 67.96 ± 0.51 74.92 ± 0.31
CHILLAX 47.27 ± 0.72 74.72 ± 0.21 78.17 ± 0.10 79.75 ± 0.10

Poisson l 1.0 2.0 3.0 4.0

Leaves only 25.29 ± 1.64 60.64 ± 0.58 74.22 ± 0.12 78.51 ± 0.33
Random leaf 10.89 ± 0.12 36.30 ± 0.77 58.38 ± 0.29 70.34 ± 0.21
CHILLAX 41.96 ± 0.29 69.37 ± 0.40 76.79 ± 0.16 79.09 ± 0.17

accuracies are reduced by approximately one half percent point, while the distance
between CHILLAX and the baselines remains small. Combining 1 % inaccuracy and
our three imprecision models, we obtain the results presented in table 6.7.

Concerning the noise model by Deng et al., the results remain qualitatively un-
changed. In the geometric case, we observe similar results, except for q = 0.8,
where the marginal advantage of CHILLAX without inaccuracy is reduced to almost
zero. Poisson-distributed imprecision with inaccuracy again exhibits no qualitative
difference compared to fully accurate training data.

Concise Results

Slight inaccuracy (1 %): CHILLAX again compares favorably to the two base-
lines leaves only and random leaf. The specific advantage still depends on the
amount of imprecision, but is marginally smaller compared to full accuracy.

We finally investigate a scenario with 10 % random confusions, which is represen-
tative of extremely noisy label sources such as web crawling or citizen science projects
with low participation. The results are presented in tables 6.5 and A.4. Qualitatively,
they represent a continuation of the trend we observe when moving from 0 % to
1 % inaccuracy. Specifically, the geometric nose model at q = 0.8 exhibits a new
order, where the leaves only baseline outperforms both CHILLAX and random leaf. In
addition, we observe a similar result for leaves only in Poisson distributed imprecision.
For l = 4, leaves only obtains the highest accuracy of 73.06 % compared to CHILLAX
at 72.81 %. We discuss our findings in section 6.7.1.2.
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Figure 6.1.: Intrinsic IC in relation to accuracy (%) of CHILLAX on NABirds validation
set obtained by applying different models and amounts of imprecision
on training set.

Concise Results

Strong inaccuracy (10 %): CHILLAX still compares favorably to the two base-
lines leaves only and random leaf. The overall advantage is reduced further
compared to 1 % inaccuracy, but is still substantial for Poisson-distributed
imprecision as well as according to Deng et al. When imprecision is distributed
geometrically, CHILLAX only performs best for q = 0.95.

6.4.2.3. Intrinsic Information Content vs. Accuracy

Figure 6.1 considers the average intrinsic IC of the training data after imprecision is
applied. Empirical values and the measurement process are detailed in section 6.4.1.3.
The individual intrinsic IC values are compared to the validation accuracies obtained
by CHILLAX after learning from the respective modified training data.

We observe a similar correlation between the fundamentally different geometric
and Poisson noise models. The model of Deng et al., however, produces substantially
different curves in that a given value of intrinsic IC corresponds to lower accu-
racies than for the other two noise distributions. We discuss the consequences in
section 6.7.1.2.

Concise Results

Accuracy and intrinsic IC: The efficiency implied through certain accuracies
CHILLAX reaches by learning from training data with a specific IC is similar
for imprecision with Poisson and geometric distribution. The imprecision
model by Deng et al. implies a comparatively worse efficiency.
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6.4.2.4. Comparison against HEX

HEX, which stands for Hierarchy and eXclusion, is a competing method for learning
from imprecise data proposed in Deng et al. (2014). To the best of our knowledge, it
is the only method next to CHILLAX capable of this feat. It relies on a larger set of
assumptions, namely that in addition to subsumption (see section 5.2.2), there are
concepts in the concept hierarchy that exclude one another. In their implementation,
they assume that all concepts are mutually exclusive unless they share a common
hyponym. CHILLAX does not make this assumption because it does not apply
trivially to concept hierarchies that are DAGs. It is only straightforward to make
for tree-shape concept hierarchies where no concepts have a common descendant.
Otherwise, additional information is needed to determine whether two concepts that
share a hyponym are mutually exclusive in a semantic sense or not (see section 5.2.2
for an example).

For a fair comparison, we choose hyperparameters such that the performance
without any imprecision is comparable between CHILLAX and HEX. This setup
isolates the effects of imprecision. The accuracies obtained by both baselines as well
as HEX and CHILLAX without imprecision are shown in table 6.8. We also consider
the top-5 accuracies (see section 6.1.1) as used in the ILSVRC2012 challenge (see
section 6.2.1.1).

Introducing imprecision as defined by Deng et al., by replacing labels with their
direct hypernyms with probability p, we obtain the results presented in table 6.9.
With respect to the top-5 accuracy, CHILLAX outperforms HEX and both baselines in
all scenarios. In terms of (top-1) accuracy, HEX produces a higher value of 41.50 %
compared to 38.10 % of CHILLAX for p = 0.99. For p = 0.95 the difference is
slightly smaller at 52.40 % and 52.10 %, respectively. In the remaining cases, CHILLAX
performs best. Notably, the leaves only baseline reaches an accuracy of 60.20 % at p =
0.5, compared to 58.20 % of HEX. We further discuss these results in section 6.7.1.2.

Concise Results

CHILLAX vs. HEX: CHILLAX always performs better than HEX on Ima-
geNet-1k in terms of top-5 accuracy, following the protocol by Deng et al.
However, with respect to top-1 accuracy, HEX produces favorable results for
very high imprecision, i.e., p � 0.95.

6.4.3. Self-Supervised CHILLAX

In section 5.3.3, we argue that the “extrapolation” capability of CHILLAX, i.e., gener-
alizing from imprecise labels to precise predictions, should be applied during training
as well. One reason is CHILLAX’s inability to learn from examples labeled as the
root of the concept hierarchy as a result of its closed-world assumption. To apply
extrapolation during training, we utilize pseudo-labels.

For a fair comparison, the experimental setup is identical to the previous experi-
ments on CHILLAX, described in section 6.4.2.1. Here, we consider only the NABirds
dataset, which allows for faster, and hence a larger number of, experiments com-

102



6.4. Imprecise Data from Benchmark Datasets

Table 6.8.: Large-scale benchmark comparison of CHILLAX, HEX and baselines on
ImageNet-1k. We report the accuracy in percent on the validation set, with
top-5 in parentheses. There is no inaccuracy and no imprecision. Table
compiled of data from Brust, Barz, and Denzler (2021b).

Method

Leaves only 65.19 (86.90)
Random leaf 64.82 (86.46)
HEX 62.60 (84.30)
CHILLAX 62.52 (83.55)

Table 6.9.: Large-scale benchmark comparison of CHILLAX, HEX and baselines on
ImageNet-1k. We report the accuracy in percent on the validation set, with
top-5 in parentheses. There is imprecision as indicated, no inaccuracy.
Table compiled of data from Brust, Barz, and Denzler (2021b) and Deng
et al. (2014).

Deng et al. p 0.99 0.95 0.9 0.5

Leaves only 6.93 (16.45) 30.17 (51.58) 41.58 (64.03) 60.18 (82.25)
Random leaf 32.14 (68.10) 35.68 (71.76) 37.86 (74.22) 56.00 (81.87)
HEX 41.50 (68.50) 52.40 (77.20) 55.30 (79.40) 58.20 (80.80)
CHILLAX 38.08 (68.55) 52.13 (78.07) 55.51 (80.17) 62.14 (83.58)

pared to ImageNet-1k. However, since the self-supervised methods introduce further
hyperparameters, we focus only on a representative subset of the noise models in an
effort to improve readability. We select the following noise models, which shall be
identified by their numeric indices henceforth:

(i) No noise, i.e., no imprecision,

(ii) Relabeling to direct hypernym with p = 0.99 as proposed by Deng et al.,

(iii) Geometric distribution with q = 0.5,

(iv) Poisson distribution with l = 1,

(v) Poisson distribution with l = 2.

The respective fraction of precise labels can be found in table 6.3.
In this section, we offer an empirical evaluation of self-supervised CHILLAX

focusing on three aspects. First, a simulation study to validate the feasibility of
self-supervision on imprecise data and establish performance bounds. Second, an
extensive comparison of the methods proposed in sections 5.3.3.2 to 5.3.3.4. And
third, an analysis of the IC of the pseudo-labels compared to the original training
data.
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Table 6.10.: Hierarchical F1 score in percent between ground truth label in valida-
tion set and extrapolated imprecise label with imprecision model and
extrapolation method as indicated, after learning from respective impre-
cise training data. Table compiled of data from Brust, Barz, and Denzler
(2022).

Noise model (i) (ii) (iii) (iv) (v)

Do nothing 100.00 87.49 59.79 61.73 78.06

Leaf node 100.00 94.75 81.15 79.12 93.20
d⇤ steps (d⇤ = 1) 100.00 94.74 73.97 74.81 87.27
d⇤ steps (d⇤ = 2) 100.00 94.74 79.29 79.03 91.31
d⇤ steps (d⇤ = 3) 100.00 94.72 80.88 79.29 92.91
Fixed threshold (q = 0.55) 100.00 90.99 82.87 81.37 93.66
Fixed threshold (q = 0.8) 100.00 90.72 81.19 80.03 92.99

6.4.3.1. Simulation of a Single Training Step

Self-supervised learning using pseudo-labels can introduce potentially harmful feed-
back loops, which we explain in detail in section 5.3.3.3. To estimate the accuracy of
the generated pseudo-labels in an isolated manner, we consider only a single extrap-
olation step. First, we train one instance of CHILLAX on NABirds for each of the five
noise models (i)-(v) using the respective modified training data. The modification
process is detailed in section 6.4.1.1. Inaccuracy is not introduced.

We then modify the respective validation sets using the same noise models and
apply the methods proposed in sections 5.3.3.2 and 5.3.3.3 to extrapolate predictions
on the modified validation sets, independently for each noise model. Note that
we cannot use the adaptive self-supervised method (see section 5.3.3.4) for this
investigation since it depends on an internal state. As a “sanity check” baseline, we
also compare to a “do nothing” method that performs no extrapolation at all.

Finally, we measure the hierarchical F1 score (hF1, see section 6.1.2) between the
extrapolated predictions and the original labels in the unmodified validation set.
Since the extrapolation results are not guaranteed to be in Y

P, we cannot always
determine the accuracy and have to rely on a hierarchical measure instead.

The results are presented in table 6.10. As a “sanity check”, we observe the results
even when there is no imprecision (i). Because no method will extrapolate to concepts
that are semantically incompatible with the ground truth, the resulting hF1 score
should be exactly 100 %. This phenomenon is detailed in section 5.3.3.1. As a further
consequence, it should be impossible for any method to produce a lower hF1 score
than the control method, since the hierarchical recall cannot decrease. The results
show that both assumptions hold. For noise model (iii), which represents the highest
amount of imprecision in terms of IC (see table 6.3), the control method achieves an
hF1 score of 59.79 %. The self-supervised methods range from 73.97 % up to 82.87 %.
The leaf node method, which does not require any hyperparameter tuning, obtains
81.15 %. Compared to the control method, it recovers more than half of the hF1 score
lost due to the imprecision. Models (iv) and (v) exhibit similar characteristics, with
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fixed threshold always performing best for at least one setting of q.
However, the results for noise model (ii), which is the experimental protocol

introduced by Deng et al., deviate. We already observe this trend in the previous ex-
periment (section 6.4.2.2). Here, the hierarchy-informed methods (see section 5.3.3.3)
clearly outperform the fixed threshold by more than three percent points. Still, all
methods result in a substantial advantage compared to the control method, which
we discuss in section 6.7.1.3.

Concise Results

Simulation: In terms of hierarchical F1, the hierarchy-informed and confi-
dence-based self-supervised CHILLAX variants are able to recover more than
half of the information lost to imprecision by extrapolating using predictions.
The Deng et al. experimental protocol again produces qualitatively different
results to our own noise models.

6.4.3.2. Large-Scale Results

In section 6.4.3.1, we establish that the methods proposed in sections 5.3.3.2 and 5.3.3.3
can recover more than half of the information, in terms of a hierarchical F1 score,
that is lost from introducing imprecision (see section 6.4.1.1). The goal of this ex-
periment is to observe the application of these methods in practice. Except for the
self-supervision aspect, the setup is identical to section 6.4.2.1 without any inac-
curacy, only imprecision. Each method is applied on top of CHILLAX, such that
CHILLAX learns from labels extrapolated as proposed in section 5.3.3. Since the
extrapolations are based on predictions by CHILLAX and accompanying confidence
scores, a potentially harmful feedback loop occurs (see section 5.3.3.3). Furthermore,
accuracy and hierarchical F1 score cannot be compared directly. Hence, the results
from section 6.4.3.1 are likely not transferable.

Table 6.11 shows the results of our large-scale evaluation on NABirds for the
methods in sections 5.3.3.2 and 5.3.3.3. Again, the “do nothing” control method
corresponds to CHILLAX without any modifications. With no imprecision, the
accuracy is 81.63 %, to provide a reference point. The method leaf node achieves
higher accuracies than the control method in all cases, but only by a slim margin
of at most 0.40 percent points. Moreover, there is no setting for which it is the best
method. For d⇤ steps, we observe a strong dependence on an additional confidence
threshold (see section 5.3.3.3). Without the threshold, it consistently performs worse
than CHILLAX on its own. For q = 0.9, the results are competitive, and for the
geometric noise distribution (iii), it achieves the best accuracy of 50.68 % compared
to 49.04 % of CHILLAX.

The fixed threshold method is very competitive, but displays a remarkable depen-
dence on its hyperparameter q. It reaches the highest accuracies for imprecision
models (ii), (iv) and (v) at q = 0.994, q = 0.99 and q = 0.9, respectively. A fixed IC
range has negative effects on the accuracy compared to CHILLAX in all cases except
for (ii), where it reaches an accuracy of 63.43 % compared to CHILLAX at 62.66 %.
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Table 6.11.: Large-scale benchmark comparison of CHILLAX and non-adaptive self-
supervised methods on NABirds. We report the accuracy in percent on
the validation set. There is imprecision as indicated, no inaccuracy. Table
compiled of data from Brust, Barz, and Denzler (2022).

Noise model (ii) (iii) (iv) (v)

Do nothing 62.66 ± 0.82 49.04 ± 1.04 43.18 ± 0.20 70.91 ± 0.34

Leaf node 63.05 ± 1.37 49.36 ± 0.48 43.49 ± 0.20 70.94 ± 0.42
d⇤ steps:
d⇤ = 1.0 61.78 ± 0.27 33.11 ± 0.87 23.49 ± 0.60 65.44 ± 0.83
d⇤ = 1.0, q = 0.8 61.75 ± 0.69 48.09 ± 0.75 40.85 ± 1.26 71.67 ± 0.23
d⇤ = 1.0, q = 0.9 63.13 ± 0.70 49.98 ± 0.55 41.54 ± 1.37 71.75 ± 0.26
d⇤ = 2.0 61.31 ± 0.68 14.53 ± 0.82 12.12 ± 0.96 59.58 ± 0.60
d⇤ = 2.0, q = 0.8 62.07 ± 0.43 48.31 ± 0.84 37.21 ± 0.72 71.74 ± 0.81
d⇤ = 2.0, q = 0.9 62.52 ± 0.68 50.68 ± 0.44 41.78 ± 0.47 71.54 ± 0.33
Fixed threshold:
q = 0.55 61.48 ± 0.36 26.56 ± 0.94 22.68 ± 0.29 65.32 ± 0.53
q = 0.8 61.73 ± 0.54 39.80 ± 0.97 31.15 ± 1.65 69.86 ± 1.23
q = 0.85 61.93 ± 0.25 43.35 ± 0.72 34.60 ± 0.73 70.59 ± 0.17
q = 0.9 62.34 ± 0.33 46.74 ± 1.27 38.03 ± 0.78 71.77 ± 0.00
q = 0.95 62.75 ± 0.21 48.66 ± 1.03 42.11 ± 1.48 71.47 ± 0.44
q = 0.97 63.00 ± 0.58 50.09 ± 0.26 43.20 ± 0.57 71.40 ± 0.25
q = 0.99 63.51 ± 0.52 49.37 ± 0.28 44.02 ± 0.12 71.14 ± 0.15
q = 0.992 63.02 ± 0.57 48.88 ± 0.65 43.78 ± 0.33 71.21 ± 0.51
q = 0.994 63.54 ± 0.51 49.23 ± 0.55 43.61 ± 0.94 70.99 ± 0.27
q = 0.996 63.11 ± 0.60 49.37 ± 0.61 43.69 ± 1.00 71.08 ± 0.45
q = 0.998 63.10 ± 0.83 49.16 ± 0.63 43.81 ± 0.25 70.96 ± 0.22
q = 0.999 62.78 ± 0.48 49.56 ± 1.04 42.92 ± 0.68 71.37 ± 0.39
IC range [0.0, 0.2] 62.11 ± 0.44 46.42 ± 0.71 40.50 ± 0.50 68.39 ± 0.47
IC range [0.1, 0.3] 61.78 ± 0.42 29.77 ± 0.98 26.07 ± 0.67 64.31 ± 1.05
IC range [0.2, 0.4] 63.43 ± 0.42 36.00 ± 1.29 30.64 ± 0.86 68.61 ± 0.22
IC range [0.3, 0.5] 63.23 ± 0.10 35.00 ± 0.46 31.45 ± 0.60 68.55 ± 0.94
IC range [0.4, 0.6] 62.96 ± 0.98 33.24 ± 0.65 27.31 ± 1.41 68.46 ± 0.33
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Concise Results

Large scale: The hierarchy-informed and confidence-based self-supervised
CHILLAX variants perform in different manners. Fixed threshold achieves the
highest accuracies overall, but requires an infeasible amount of fine-tuning.
d⇤ steps and IC range are only beneficial in some cases. Leaf node improves
the accuracy over CHILLAX in all cases and is a simple heuristic without
hyperparameters.

We present the detailed results of the continued large-scale evaluation in the ap-
pendix (table A.5), focusing on the adaptive method proposed in section 5.3.3.4. For
comparison, we include CHILLAX as well as the best performing method from sec-
tion 6.4.3.1 for each noise setting. Notably, in the case of (v), the Poisson distribution
with l = 2, two different settings (dI⇤ = 0.0375 and dI⇤ = 0.5), outperform the
fixed threshold. With models (iii) and (iv), the best accuracy is lower than the highest
performing respective non-adaptive extrapolation method, but still higher than the
CHILLAX control method. However, following the experimental protocol of Deng
et al. in (ii), we again observe opposite results, namely, that all settings of dI⇤ result in
worse accuracy compared to CHILLAX. With dI⇤ = 0.025, adaptive threshold obtains
higher accuracies than CHILLAX by a very small margin, but over all imprecision
models except for (ii). We discuss our findings in section 6.7.1.3.

Concise Results

Large scale: The adaptive self-supervised CHILLAX variant obtains consistent
improvements over a wider range of its hyperparameter than fixed threshold.
However, on average, leaf node performs better even without any parameteri-
zation.

6.4.3.3. Information Content Gain

Both the adaptive threshold and the IC range extrapolation methods rely on the as-
sumption that a certain amount of IC can be gained “safely”, i.e., traded off with a
reasonable fraction of inaccurate pseudo-labels. Regardless of the validity of this
assumption, it is important to verify that the realized differences in IC are in close
agreement to the specified values.

Constructively, the adaptive threshold method has no safeguards against individual
examples deviating strongly from dI⇤. Instead, it attempts to control its threshold
such that the average IC difference matches dI⇤ as closely as possible. IC range does
not allow the IC difference to exceed the specified range’s upper bound for any
example. However, it cannot guarantee the lower bound in all cases, simply because
the concept hierarchy might not allow it. For example, if the IC of an imprecise label
is already 0.95, no extrapolation can result in an IC difference inside [0.1, 0.3]. Hence,
the average IC difference can be biased towards lower values.

Table A.6 shows the realized IC differences during training, averaged over all
optimization iterations. We first observe adaptive threshold. While there is no clearly
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visible bias towards either direction, the realized IC differences are on average higher
than the respective value of dI⇤ for dI⇤  0.3 and lower for dI⇤ > 0.3. The imprecise
labels of imprecision model (ii) have an average IC of 0.83 (see table 6.3), which leads
to an upper limit of 0.14 as the average precise IC is 0.97. Hence, neither method can
actually realize a higher IC gain. IC range on average shows results that are biased
towards lower values. It is not able to enforce a lower limit of 0.30 or higher in any
case. The results are discussed further in section 6.7.1.3.

Concise Results

IC gain: The adaptive threshold method can successfully control the IC gain,
keeping it close to its hyperparameter dI⇤. IC range exhibits a clear bias towards
lower realized IC gains.

6.5. Imprecise Data from Webly Supervision: Moths

In this section, we present a case study for the utility of imprecise data, in the form of
images crawled from the web. The term webly supervised learning, similar to weakly
supervised learning, is used to indicate that the supervision signal has a different
quality (see also section 4.2.4). We consider a very specific problem domain, where
no annotated data is available publicly.

The problem concerns the biodiversity research project AMMOD9 and specifi-
cally moths. In order to determine seasonal, meteorological and other trends in
species abundance, activity and behavior, the project installs “moth scanners”. An
illuminated canvas screen is filmed by a camera, the SpeciesMothCam, in regular
intervals.

This filming results in a dataset, which at the time of writing is not published
separately. However, it is discussed in Böhlke et al. (2021) and available for use in
this thesis. It is a classification dataset which requires distinguishing between 200
different species of methods. There are 2205 images in total, which are split into two
parts with 100 disjoint species each. The parts are denoted “B1” and “B2”. Images
can contain many moths at a time, however crops of a single representative moth per
image are available, which are guaranteed to fit the single annotation.

6.5.1. Setup

This study involves several steps, each further processing the moth dataset. First,
we acquire a taxonomy from WikiSpecies, which is detailed in section 3.3.3.1, to
construct a concept hierarchy. We then compare the accuracy of our hierarchical
classifier (see section 5.2) to an OHSM baseline to measure the effect of integrating
domain knowledge. The technical setup of the hierarchical classifiers and the baseline
match the setup used for NABirds in section 6.4.2.1. However, we reduce the number
of optimization iterations to 9024 for the combined dataset and 4512 for B1 and B2
individually.

9
https://www.ammod.de/ (last accessed July 5th, 2021) and Vogel (2017)
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Second, we download images from Flickr by using each concept in the concept
hierarchy as a search term in the database. We then apply CHILLAX (see section 5.3.2)
to the resulting imprecise data.

Third, we filter the downloaded images using an unsupervised approach leverag-
ing our hierarchical classifier. The predicted probability of the root concept is used to
construct an ordering of the images without regard for the possibly incorrect label.

6.5.1.1. Mapping WikiSpecies to the Dataset

Initially, the moth dataset ships with a set of 200 mutually exclusive species. To
acquire a matching concept hierarchy, we use the WikiSpecies knowledge base (sec-
tion 3.3.3.1).

First, the species names used in the dataset have to be mapped to the respective
taxa as stored in WikiSpecies. In general cases, mapping concepts is highly non-trivial,
which we discuss further in section 5.1.2. However, the species names used in this
biological application are not as flexible as regular words and rarely used in derivative
forms. Thus, an automated mapping of species to taxa should be reliable enough
for a majority of concepts in the dataset. WikiSpecies contains direct matches for
191 of the 200 species. We map the remaining 9 species manually, as specified in
table A.7. Of these species, one is a typing mistake. Six are groups of species, which
we map to their respective genera unless those would overlap other species in the
dataset. In these cases, we create new concepts under the genera. Two are missing
from WikiSpecies.

After the mapping, we build the concept hierarchy by recursively exploring the
supertaxa (hypernyms) of each taxon (concept) in WikiSpecies. We then remove
redundant information in the concept hierarchy, i.e., concepts with exactly one hy-
pernym and one hyponym, while called monotypic taxa. The root is represented by
the species Arthropoda, and in total the concept hierarchy contains 275 concepts.

6.5.1.2. Downloading Data from Flickr

With the complete concept hierarchy, we now submit each concept as a search term in
the Flickr online photo sharing community (see also section 6.6.3). Figure A.1 displays
the average number of search results per concept returned by Flickr, in relation to
the concept’s depth in the hierarchy. It resembles a very rough approximation of a
geometric distribution (see also sections 5.1.1.1 and 6.6.3).

The search, dated January 7th, 2021, produces 1 454 743 results in total, with an
average of 5290 results per concept. From these results, we download up to 75 images
per concept, sorting the results by number of downloads as a coarse indicator of
quality. Since not all searches lead to enough results, only 18 225 of the possible 20 625
images are downloaded. To avoid confusion, we remove images that occur as results
to more than one search term, leaving 16 777 remaining images. Of these, 12 918 are
annotated as one of the 200 leaf nodes representing the original moth species.
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Figure 6.2.: Output of unsupervised filtering process on Flickr moths. Left: highest-s-
coring images. Right: lowest-scoring images. All images downloaded
from Flickr.

6.5.1.3. Unsupervised Filtering

While images on Flickr are annotated manually by humans, its users strive for
different objectives from paid dataset annotators. We discuss the users’ goals in
section 6.7.3.3. Furthermore, the users are not presented with images to annotate, but
submit them themselves. As such, there is no controlled domain of image data in
Flickr, and it is certainly not restricted to moths.

For example, a short exploratory qualitative analysis reveals that certain taxa
are also used as female first names. This results in a number of portraits in the
downloaded images. Moreover, the data is not balanced because of the varying
number of search results per concept.

Hence, we propose to filter the images. We apply the trained hierarchical classifier
obtained from learning the original moth dataset as described in section 6.5.2.1 in its
combined and cropped form. The predicted probability for the root of the concept
hierarchy, Arthropoda, is interpreted as the probability of any image belonging to
the domain of moths. This test of the closed-world assumption (see section 5.2.2)
effectively performs novelty detection (see section 7.1.1). For reference, we show
qualitative examples of extreme probabilities in fig. 6.2.

Note that the filtering process does not use the labels of the Flickr data. It is an
unsupervised process. We keep the 5000 candidates with the highest respective
probabilities for Arthropoda. Of these images, 4339 are labeled as one of the 200 leaf
node, which is a substantially higher fraction than in the unfiltered images.
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Table 6.12.: Accuracy in percent, on validation sets of respective moth dataset part.

Dataset HC Baseline

Cropped to single moth:
B1 95.00 ± 0.94 94.50 ± 1.27
B2 92.74 ± 1.09 92.54 ± 1.27
Both 92.62 ± 0.72 92.07 ± 0.71

Uncropped:
B1 76.50 ± 2.76 81.90 ± 1.75
B2 79.40 ± 1.03 83.68 ± 1.87
Both 70.47 ± 2.87 79.65 ± 1.86

We exploit an implementation detail of the classifier in section 5.2, where
P(ỹroot

+) is not fixed to 1, but learned from the training data. While all
examples are labeled as 1 w.r.t. the root, the predicted probability varies slightly.

6.5.2. Results

We analyze the individual results of this experiment in the same order as the steps
are proposed in section 6.5.1. First, we compare the performance of our hierarchical
classifier against the OHSM baseline to estimate the value of the integrated domain
knowledge from WikiSpecies. Second, we add the (imprecise) data downloaded from
Flickr and measure the performance of CHILLAX and the baseline. Third, we study
the effects of our unsupervised filtering setup. A discussion of the results is offered
in section 6.7.2.

6.5.2.1. Integrating Domain Knowledge

Table 6.12 shows the results of the initial experiment, which compares the hierarchical
classifier (see section 5.2) against the OHSM baseline. When analyzing the cropped
variants of the datasets, the hierarchical classifier reaches a higher accuracy than the
baseline on all combinations. For the combined dataset, it obtains an accuracy of
92.62 % compared to 92.07 % of the baseline. However, concerning the uncropped
datasets, we observe the opposite relation. For example, the baseline reaches 79.65 %
on the uncropped dataset combining both parts, while the hierarchical classifier
shows only 70.47 %.

In the following experiment, we consider only the cropped variant of the combined
datasets. Crops are more likely to be used in a practical application involving moth
classification, as opposed to detection where the uncropped variant would be more
interesting.
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Table 6.13.: Accuracy in percent on combined moth validation set. The training data
is enriched as indicated.

Dataset CHILLAX Baseline Böhlke et al. (2021)

Original data only 92.62 ± 0.72 92.07 ± 0.71 72.75 ± 1.46

Unfiltered Flickr images:
All taxa 96.66 ± 0.45 96.26 ± 0.53
Leaf nodes only 97.21 ± 0.33 97.46 ± 0.21 95.43 ± 0.57

Filtered Flickr images:
All taxa 96.56 ± 0.27 96.66 ± 0.55
Leaf nodes only 97.06 ± 0.76 97.76 ± 0.31 95.93 ± 0.45

6.5.2.2. Adding Webly Supervision

After studying the effects of integrating the taxonomic knowledge from WikiSpecies,
we now add the images downloaded from Flickr. Since many of the labels are
imprecise, we replace our hierarchical classifier with CHILLAX (see section 5.3.2).
The OHSM baseline uses the random leaf strategy as detailed in section 6.4.2.1 to
process imprecise data. The results of this experiment are presented in Table 6.13 (see
the “unfiltered” section).

Overall, incorporating the Flickr data increases the accuracies of both methods on
the moth validation set substantially, by approximately four percent points. Utilizing
the full Flickr data, CHILLAX obtains an accuracy of 96.66 % compared to the baseline
at 96.26 %. In Böhlke et al. (2021), a similar experiment is performed on part B1 of
the dataset. With their approach to web crawling and filtering, the authors obtain an
accuracy of 95.93 % on half of the validation set we use, and only 100 species. Their
filtered dataset consists of 9424 images crawled from the web, including 300 seed
images from the original training data.

To gauge the “value” of the imprecise data on its own, we also analyze a situation
where only the images labeled as leaf nodes are processed. Here, the baseline per-
forms marginally better than CHILLAX. While CHILLAX cannot leverage imprecise
data in this case, it should still have the advantage of integrated domain knowledge.
Either way, the precise Flickr dataset produces better performance than its imprecise
counterpart.

Concise Results

Flickr data: Combining the moth dataset with data downloaded from Flickr
increases accuracy from 92.62 % to 96.66 % for CHILLAX, which outperforms
the baseline in both cases. However, learning from only the precisely labeled
part results in higher accuracies for both methods, and a slight advantage for
the baseline.
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6.5.2.3. Unsupervised Filtering

We finally apply the unsupervised filtering scheme proposed in section 6.5.1.3. The
results of this process are shown together with the previous experiment’s results
in table 6.13. The filtering step harms the accuracy of CHILLAX, but improves
the accuracy of the baseline in each case, imprecise or precise. For CHILLAX, the
filtering leads to a decrease in accuracy by around 0.10 of a percent point. At the
same time, the performance of the baseline increases by approximately 0.40 percent
points, reaching a maximum of 97.76 %.

As a consequence, the overall best performing setup requires the following unintu-
itive steps:

1. Train a hierarchical classifier or CHILLAX (equal for precise data) on the
cropped, combined moth dataset,

2. use this classifier to predict probabilities which inform the filtering process,

3. train an OHSM classifier on the moth dataset, combined with the Flickr data
which is filtered using CHILLAX, but use only the precise examples in each.

Ultimately, the highest performance is achieved by the baseline, but the processing
steps leading to this result require a hierarchical method. We discuss our findings
further in section 6.7.2.

Concise Results

Filtering Flickr data: Using CHILLAX to filter the downloaded images for
outliers improves the performance of the baseline, but has a marginal negative
effect on the accuracy of CHILLAX. Overall, the Flickr images can be used
together with CHILLAX as a filter to increase the accuracy from 92.07 % to
97.76 %.

6.6. Pitfalls and Dangers

The methods and models proposed in chapter 5 introduce a number of highly
non-trivial assumptions. In this section, we perform experiments to verify these as-
sumptions, specifically concerning the correspondence between the visual and seman-
tic domains, the correctness of concept hierarchies and the validity of depth-based
modeling of imprecision (see section 5.1.1.1). Furthermore, we analyze the potential
consequences should the assumptions not hold.

6.6.1. Visual-Semantic Correspondence

Partial results of the work presented in this section are published in Brust and Denzler (2019b).

Images and semantics are unalike modalities, whose differences are analyzed in
Collell Talleda (2016) and Deselaers and Ferrari (2011). This domain gap, related
to the semantic gap discussed in Barz and Denzler (2021a), can present a hurdle
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for integrating domain knowledge in cases where the problem domain and the
knowledge domain are different. For example, the hierarchical classifier described in
section 5.2 leverages semantic knowledge, i.e., concept hierarchies, to solve a visual
problem, i.e., image classification.

It is implicitly assumed that relations between concepts have a counterpart in
relations between images. Hence, some visual features should exist, which are
shared by all concepts subsumed by the same hypernym, but no other concepts (see
section 5.2.2). Other methods make the assumption explicit, e.g., embeddings (see
section 4.1.2) that optimize distances in a visual feature space to match semantic
distances.

However, such a perfect correspondence is unlikely, and it depends strongly on
the specific choice of visual features. For example, consider an image classification
task. There are many possible images of the same object, i.e., with the same semantics.
There can also be many visually different objects within a single concept. Hence,
images have many degrees of freedom w.r.t. their semantics. These are commonly
removed by selecting an appropriately invariant feature representation (see sec-
tion 2.3.4.2). Consequently, a feature representation where distances correspond
perfectly with semantic distances has to map all images of a concept to a single point.
Such a feature representation is already a perfect classifier, which is unlikely to exist.

Furthermore, there are arguments in favor of a “natural” visual-semantic corre-
spondence, which is discovered by CNNs. Confusions of such a network correlate
with semantic distances, even if the network does not integrate a concept hierarchy
(see Bilal et al. (2018) and section 4.1.5). In the following, we explore the correspon-
dence by observing Spearman correlations between different measures of similarity
in the visual and semantic domains. The experiment compares pairwise similarities
over all images and all concepts in the CIFAR-100 dataset (see section 6.2.1.1).

6.6.1.1. Measures of Semantic Similarity

In section 6.1.2.2, we discuss a small selection of measures of semantic similarity
between concepts. For this experiment, we use five different formulations, which
are identified as S1-S5, to obtain as general a sense of semantic similarity as possible.
The measures, which are all computed w.r.t. the WordNet concept hierarchy (see
section 3.3.1.1), are as follows:

S1 Graph distance, or Rada distance dG, see eq. (6.2),

S2 maximum-depth bounded similarity (Resnik 1995, p. 3),

S3 intersection over union of the sets ỹ, see eq. (5.2) and Maedche and Staab (2001,
p. 4),

S4 distinct to shared ỹ feature ratio, see Sánchez et al. (2012, p. 7723), and

S5 IC-based distance (Jiang and Conrath 1997, p. 8) using eq. (5.1).

6.6.1.2. Measures of Visual Similarity

For visual similarity, we again select five different measures to obtain a diverse and
representative sample. Here, our goal is to capture varying levels of abstraction, from
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pixels to complex features learned by CNNs. The following definitions are used in
our experiment, where distances are inverted into similarities as shown in eq. (6.3):

V1 Mean squared difference,

V2 mean absolute difference,

V3 structural similarity index (SSIM) proposed in Wang et al. (2004),

V4 euclidean distance between GIST descriptors (cf. Oliva and Torralba 2001), and

V5 confusions of five OHSM classifiers trained on CIFAR-100 (see section 6.3.1).

We compute V1-V4 on all pairs of images, and then derive pairwise concept similari-
ties by computing the means over the respective concepts. V5 directly gives pairwise
similarities over concepts through its confusion matrix.

6.6.1.3. Results

We first observe the correlations within the two groups of similarity measures, to
determine their mutual agreement. The semantic similarity measures agree with
one another with a high rank-correlation of 0.89 on average, where we exclude the
correlations between identical methods. Figure 6.3a shows the detailed results within
the semantic group. Our methods of measuring visual similarity differ more strongly,
with an inner correlation of only 0.17, suggesting a more diverse measurement.
Correlations between the individual methods are presented in fig. 6.3b.

To bridge the domain gap, we aggregate each group (visual and semantic) by
normalizing the output of the individual methods and computing the average visual
and semantic similarities between concepts. Figure 6.3c shows the correlations
between the two groups of similarity measures resulting from the aggregation. In
this setting, the correlation between visual and semantic similarity on CIFAR-100 is
0.23.

Moreover, we add a “semantic baseline”, a similarity measure which is one for
identical concepts and zero otherwise. This represents the knowledge integrated into
an OHSM classifier, namely that visual features of distinct concepts do not overlap
(cf. Niemann 1983). The correlation between this baseline and the aggregated visual
similarity measures is only 0.17, compared to 0.23 of the actual semantic similarities
based on the concept hierarchy. As a sanity check, we add a random similarity
measure called “semantic noise” (SN), which is, as expected, not correlated with any
measure but itself.

While the correlation is not particularly high, it shows that semantic similarity
and visual similarity are related on a higher-than-trivial level, such that the concept
hierarchy contains true knowledge about visual features that would not be available
to a classifier otherwise. For a qualitative impression on CIFAR-100, we provide
fig. 6.4, which shows pairs of concepts in the dataset where the visual and semantic
similarity measures agree or disagree strongly. The findings are discussed further
in section 6.7.3.1. We also construct a synthetic dataset where this correlation can be
controlled in section 6.6.2.2.
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(a) Semantic similarities (b) Visual similarities (c) Groups of similarities

Figure 6.3.: Matrix of rank correlation coefficients between different measures of sim-
ilarity, grouped by semantic and visual domain. Significance of p < 0.05
except for numbers in parentheses. Main diagonal represents inter-agree-
ment R within the group. Legend: (V) — visual, (S) — semantic, (SN) —
semantic noise, (SB) — semantic baseline. Figure taken from Brust and
Denzler (2019b).

Concise Results

Visual and semantic similarity are (rank-)correlated with a coefficient of R =
0.23, when WordNet is used as a concept hierarchy. The correlation between
the semantic baseline, which considers all distinct concepts equally dissimilar,
and visual similarity is only R = 0.17.

6.6.2. Harmful Hierarchies

In the previous experiment, we investigate the discrepancies between the visual
and semantic domains (section 6.6.1), which may lead a hierarchical classifier to
faulty assumptions (see section 5.2.2), and ultimately, mispredictions. While a weak
correlation between visual and semantic similarity is already cause for concern, there
is one possibly more immediate contributor to mispredictions. The concept hierarchy
itself could be “wrong”, i.e., the hyponymy relation could contain elements that do
not correspond to the real world.

It should be noted that not all concept hierarchies have a true state that can be de-
termined by objective measurements. For example, there is no widespread agreement
on whether the Renault Twizy is a car, and even the legal definition has changed
over time. Still, there exist relations that are grounded objectively, such as some
(but not all!) biological taxonomies that rely on genetics (see section 3.3.3.1). A false
measurement or data entry error could then result in a concept hierarchy that is
objectively wrong, i.e., constitutes false domain knowledge.

In the following, we propose a probabilistic model of such errors, and empirically
evaluate their effects on a hierarchical classifier (see section 5.2) on the NABirds
dataset. To isolate the effect from potentially already existing visual-semantic gaps,
we then describe a synthetic dataset with perfect visual-semantic correspondence on
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Semantic/visual similarity: 20.97 % / 20.98 %

Difference: 0.01 %

Semantic/visual similarity: 87.73 % / 87.72 %

Difference: 0.01 %

Semantic/visual similarity: 30.11 % / 30.10 %

Difference: 0.01 %

(a) Highest agreement

Semantic/visual similarity: 0.27 % / 97.50 %

Difference: 97.23 %

Semantic/visual similarity: 1.53 % / 97.54 %

Difference: 96.01 %

Semantic/visual similarity: 1.53 % / 97.06 %

Difference: 95.53 %

(b) Lowest agreement

Figure 6.4.: Concepts in CIFAR-100 with respective highest and lowest ranking agree-
ment between aggregated visual and semantic similarity measures (S)
and (V). Figure taken from Brust and Denzler (2019b).
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which we repeat the experiment. We compare the hierarchical classifier against an
OHSM baseline. Furthermore, we consider a concept hierarchy where all inner nodes
are removed to estimate the importance of the mutual exclusivity assumption made
by an OHSM classifier.

6.6.2.1. Parent Replacement

For simplicity, we consider tree hierarchies as opposed to DAGs (see section 3.2.2.2)
and assume only one type of error, which we denote as parent replacement. In a parent
replacement, a concept c is assigned an incorrect parent, i.e., hypernym, randomly
chosen out of the parents of all concepts at the same depth as c (see section 5.1.1.1).
Starting from the deepest level in the hierarchy kmax, where the precise concepts
are located, we perform a parent replacement for each concept at depth k with a
probability pk defined as:

pk = qkmax�k
· (1� q) · preplace . (6.4)

We scale the overall effect in our experiments by preplace, such that preplace = 0
represents no modifications. q parameterizes a geometric distribution that determines
the probability of replacement depending on the depth. We set q = 0.2, resulting in
pk = 0.8 for the precise concepts, 0.16 for the level above, etc., for preplace = 1.

We choose a geometric distribution as it encodes our expectation that mistakes are
much more likely in higher depths, i.e., closer to the leaf nodes than the root of the
concept hierarchy. The motivation follows a similar reasoning to the volunteer noise
model described in section 5.1.1.1. We assume that mistakes are easier to make and
to notice when they are less “groundbreaking”. For example, assigning a subspecies
of bird to the incorrect species is more likely to go unnoticed than claiming that a
songbird is an insect.

It should be noted that preplace is somewhat unintuitive in that 1.00 is not the
maximum, i.e., there remains some information in the concept hierarchy, even
if only very little. This is a result of the finite depth k, such that the sum over
all pk does not reach its limit of 1.00.

6.6.2.2. D-CHIVES Synthetic Dataset

In the introduction of this experiment’s section, we determine two possible contrib-
utors to mispredictions of hierarchical classifiers. The first is the weak correlation
between visual and semantic similarity (see section 6.6.1), and the second is a concept
hierarchy that contains false information.

While the experiment aims to study the effects of the latter, the mispredictions
due to the former cannot be separated when using a benchmark dataset consisting
of natural images. To separate the individual effects, we propose a new dataset:
D-CHIVES (dataset and concept hierarchy of images with visuals equal to semantics).

We first generate a concept hierarchy. To determine the extent, we specify the
total number of levels as well as upper and lower bounds for the fan-out. Starting
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Figure 6.5.: Example images of the D-CHIVES L dataset. The top row shows images
from different classes, while the bottom row shows images from the same
class.

with a single root, a new level is generated by adding a random number of children
within the specified fan-out bounds to each (current) leaf node. Concept names are
determined randomly by combining pronounceable syllables from a list. We then
generate a fixed amount of individual images.

The image synthesis starts by sampling a random precise concept from the concept
hierarchy as its label. We then compute a feature vector indicating the presence of
each concept in the hierarchy based on the label encoding in section 5.2.4.1. It is one
for the label concept and all its hypernyms up to the root, and zero otherwise. This
feature vector is translated into an image of arbitrary sizes in three steps.

First, the image is initialized with zeros. Second, for each positive entry in the
feature vector, we place a small patch in the image at a random location. It contains
sine waves of random phase and amplitude, which are identical for all instances of a
patch representing the same concept’s presence. Third, random sine waves are added
on top of the image such that “solving” the dataset still requires a certain amount of
generalization, as opposed to memorization.

For our experiment, we use “D-CHIVES L”, which consists of 50 000 images,
256⇥256, pixels in size with an equal training and validation split (see section 2.2.2.1).
The concept hierarchy contains 4927 concepts, 2971 of which are precise. Figure 6.5
shows visual examples from the dataset.

6.6.2.3. Results

The results of our experiment are presented in table 6.14 for both datasets. We initially
focus on NABirds, where several observations of interest can be made.

First, the level-wise parent replacement operation described in section 6.6.2.1
decreases accuracy on average, as expected. While the hierarchical classifier reaches
an accuracy of 81.66 % with the original hierarchy, it decreases to 78.89 % when
preplace = 1. Second, the effect of the level-wise parent replacement procedure on
accuracy is more pronounced for 0.0  preplace  0.6 than it is for the higher settings.
Third, similar to section 6.3.2.2, the OHSM baseline is superior to all settings of the
hierarchical classifier, even if the hierarchy is not modified at all. And finally, there is

119



6. Experiments on Knowledge Integration and Imprecise Data

Table 6.14.: Accuracy (%) of hierarchical classifier and baseline on NABirds and
D-CHIVES L validation sets. Hierarchy modified as indicated.

Method / Dataset NABirds D-CHIVES L

Baseline
No Hierarchy 82.78 ± 0.07 76.02 ± 0.80

Hierarchical Classifier
Flat Hierarchy 1.47 ± 0.45 0.36 ± 0.16
Unmodified Hierarchy 81.66 ± 0.24 88.98 ± 0.07
preplace = 0.2 80.50 ± 0.23 77.39 ± 0.21
preplace = 0.4 79.57 ± 0.09 65.38 ± 0.44
preplace = 0.6 79.35 ± 0.06 55.97 ± 0.88
preplace = 0.8 79.44 ± 0.08 47.90 ± 0.99
preplace = 1.0 78.89 ± 0.08 40.96 ± 0.33

a complete failure of the hierarchical classifier when the inner nodes of the concept
hierarchy are removed, resulting in an accuracy of 1.47 %.

To isolate the effects and offer more robust conclusions to the observations in the
previous section, we repeat the experiment on D-CHIVES L. On this dataset with
perfect visual-semantic correspondence, we make the following observations.

Again, accuracy decreases as preplace increases, confirming the first observation of
the NABirds experiment. However, the effect size is substantially larger. The effect of
the level-wise parent replacement procedure on accuracy is still more pronounced for
lower preplace, but only very slightly. In fact, it is almost linear (R = �0.9443, p < 0.05).
On D-CHIVES L, the OHSM baseline only has comparable accuracy to the hierarchical
classifier for preplace � 0.2. With an unmodified hierarchy, the hierarchical classifier
strongly outperforms the baseline by 12.96 percent points. Finally, the hierarchical
classifier fails again when the concept hierarchy is stripped of inner nodes.

We discuss the aforementioned findings in section 6.7.3.2.

Concise Results

Harmful Hierarchies: Introducing faulty elements to a concept hierarchy
has an adverse effect on accuracy. The effect scales with visual-semantic
correspondence. On NABirds, less than three percent points are lost, while on
D-CHIVES L, accuracy decreases from 88.98 % to 40.96 %.

6.6.3. Imprecision in Real-World Data

Partial results of the work presented in this section are published in Brust, Barz, and Denzler (2021b).

Statistical models of imprecise data are important for benchmark purposes because
they allow for experiments where original, precise labels are known and can be
compared with. However, these models make strong assumptions about the unique

120



6.6. Pitfalls and Dangers

Title “Impressive yachts in the quaint harbor of Korčula”
Description “Croatia is a country in Southeast Europe. It borders Slovenia to the
northwest, Hungary to the northeast, Serbia to the east [. . .]”
Tags trees islands Croatia Kroatië coastline coast Hrvatska nature island Korčula
Korcula. . .

Figure 6.6.: Example photograph and metadata from Flickr. Image captured from
https://flic.kr/p/2jwRjCc on March 2nd, 2021.

properties of data sources. Hence, any results from experiments using them can only
generalize to real-world scenarios if the assumptions are correct. In this section, we
present a study to validate the models described in section 5.1.1.1.

We build a dataset from 1 500 000 photographs which were posted to Flickr10

between January 1st and December 31st, 2019. All images are accompanied by
metadata, i.e., a title, a short textual description, and a set of user-specified tags (see
fig. 6.6 for an example). There is also machine-generated metadata available which we
ignore for the purposes of this study as it is only based on the information supplied
by the user. We attempt to map each photograph to a single WordNet (cf. Miller
1995, also section 3.3.1.1) synset using the metadata and the algorithms described in
section 5.1.2. Each type of metadata has a different purpose from a user’s perspective,
so we investigate synsets extracted from title, description, and tags separately.

The first processing step is tokenization. Title and description are strings and require
splitting into individual words for further analysis. This step also removes spaces
and punctuation. We use NLTK’s TweetTokenizer as it is aware of platform- and
community-specific language phenomena such as emoticons and hashtags. The
resulting collection of words is considered a set, and we ignore the order.

Afterwards, the next step is lemmatization. We use MORPHY (Beckwith and Miller
1990, see also section 5.1.2.1) on each word individually to obtain lemmata. If the
part-of-speech of a word cannot be determined uniquely, we assume nouns — trading
off potential misclassifications for a greater selection of synsets later. Unlemmatized
words that match lemmata in WordNet exactly are associated with the respective
synsets. The remainder is matched after lemmatization. If multiple synsets have
lemmata that match one extracted lemma exactly, we select the least specific synset
by depth (see section 5.1.1.1). We finally use the most specific synset from the results

10
https://www.flickr.com/
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Figure 6.7.: Frequency of synsets at depth (distance from root) in WordNet hierarchy.
Synsets extracted separately from title, description and tags of Flickr
images. Figure taken from Brust, Barz, and Denzler (2021b).

to represent the title, description or taglist.
Figure 6.7 shows the frequency of each possible depth in the WordNet hierar-

chy occupied by synsets extracted from photographs’ metadata. Analyzing the
image title, the most common depth is 6. Typical synsets at the depth are, e.g.,
celebration.n.01W, boulder.n.01W, and sunrise.n.03W. On average, a synset ex-
tracted from the title is at depth 5.38 and the overall frequencies resemble a Poisson
distribution. The synsets extracted from the textual description appear as a shifted
or offset geometric distribution. Here, the mode is 3 with an average depth of 4.56.
One can expect general synsets such as series.n.06W,image.n.07W, or head.n.17W.
Finally, the depth distribution of synsets that are taken from the set of tags is a
mixture of the aforementioned title and textual description distributions. The most
common depth at which a synset occurs is in between, at 4, and the average depth is
4.82. Here we encounter slightly more specific synsets. Examples are night.n.04W,
party.n.05W, and west.n.08W.

We discuss the findings in more detail in section 6.7.3.3.

Concise Results

Imprecision in Flickr: Through the lens of the WordNet hierarchy, we ob-
serve both the Poisson and geometric distributions over precision in the Flickr
metadata. The distributions appear “shifted” towards higher depths.

6.7. Summary and Discussion

This section summarizes our findings from the previous sections. We offer conclu-
sions, discuss the results and propose further hypotheses. To this end, we interleave
experimental evidence and commentary, but provide a visual distinction by format-
ting. Moreover, we explain the omissions and limitations of this work concerning the
selection of datasets, baselines and evaluations performed.
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6.7.1. Benchmark Datasets

We first consider results on benchmark datasets, where we separate the two use cases
of the hierarchical classifier as discussed in section 5.2. Results regarding knowledge
integration are detailed in section 6.3, whereas experiments on imprecise data are
performed in section 6.4.

6.7.1.1. Knowledge Integration

In the small-scale setting, we find that the hierarchical classifier requires fewer training steps
to reach a certain accuracy than the OHSM baseline. It also outperforms the baseline on
two out of three datasets. At large scale, the OHSM baseline outperforms the hierarchical
classifier in all settings, but only marginally. We speculate that the bad performance of
small-scale models compared to their large-scale counterparts is due to two main
reasons. First, the small-scale models produce substantially more errors, which
creates more possibilities for the assumptions in section 5.2.2 to correct potential
mistakes.

Second, the hyperparameters and initialization for the large-scale models, at least
on NABirds, originate from state-of-the-art models (Cui et al. 2018). As such, are
likely fine-tuned through extensive grid search, whereas the hyperparameters for our
hierarchical classifier have not, except for the learning rate. All other hyperparam-
eters remain the same, although they might be overadapted to an OHSM classifier,
resulting in a disadvantage for our hierarchical method.

We attribute the faster training to the simpler per-concept decisions made by the
hierarchical classifier. While a classification involves many of these decisions, each
node is trained simultaneously, resulting in a speed-up.

The hierarchical classifier makes “better mistakes” on NABirds, but it does not on ImageNet-
1k. Making better mistakes (cf. Bertinetto et al. 2020) is a property of hierarchical
classifiers that very likely depends on a strong visual-semantic correspondence (see
section 6.6.1). Since the taxonomy of NABirds is based on biology, it is reasonable
to assume that many classifications of taxa are based on visual properties of the
individuals. In contrast, the WordNet concept hierarchy (see section 3.3.1.1) under-
lying ImageNet-1k is developed by linguists who focus on semantic distinctions.
Consequently, we expect a marginally higher visual-semantic correspondence on
NABirds than ImageNet-1k, which would explain this result.

6.7.1.2. Imprecise Data — Supervised CHILLAX

Without inaccuracy, CHILLAX compares favorably to the two baselines leaves only and
random leaf. However, the specific advantage depends on the amount of imprecision and
fades in cases where the training data is largely precise. CHILLAX is designed specifically
for handling imprecise data. If the training data is completely precise, it behaves
identically to the hierarchical classifier from section 5.2, resulting in the same accuracy
as for the knowledge integration use case. When imprecise data is present, the
advantage over both baselines shows that it is leveraged correctly by CHILLAX.
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Even with strong inaccuracy (10 %), CHILLAX still compares favorably to the two baselines
leaves only and random leaf. The overall advantage is reduced further compared to 1 %
inaccuracy, but is still substantial for Poisson-distributed imprecision as well as according
to Deng et al. When imprecision is distributed geometrically, CHILLAX only performs best
for q = 0.95. The geometric distribution concentrates examples that are labeled as
the root of the concept hierarchy, which would be expected in certain web crawling
scenarios (see section 5.1.1.1). However, such examples cannot be used by CHILLAX
since the loss function is always zero for them, regardless of the prediction (see
section 5.3.2.1). This motivates our self-supervised version proposed in section 5.3.3.

The efficiency implied through certain accuracies CHILLAX reaches by learning from training
data with a specific IC is similar for imprecision with Poisson and Geometric distribution.
The model by Deng et al. implies a comparatively worse efficiency. We discuss the pecu-
liarities of the protocol by Deng et al. in section 6.7.1.3, to which we attribute these
differences. Furthermore, the growth of accuracy as IC increases in fig. 6.1 highlights
the possible efficiency benefit of imprecise data. As long as its cost is proportional
to the information content, a larger increase in accuracy can be bought cheaper at
overall lower levels of precision.

CHILLAX always performs better than HEX on ImageNet-1k in terms of top-5 accuracy,
following the protocol by Deng et al. However, with respect to top-1 accuracy, HEX produces
favorable results for very high imprecision, i.e., p � 0.95. HEX and CHILLAX are both
probabilistic models, however they propose different assumptions. CHILLAX focuses
on subsumption informed by a hyponymy relation. HEX also considers subsumption,
but adds an explicit exclusion relation, which is non-trivial (see section 5.2.2) for DAG
hierarchies such as WordNet (see section 3.3.1.1).

Although there are cases where CHILLAX is not more accurate than HEX, it always
makes better mistakes as evidenced by its top-5 accuracy. This property could be due
to a stronger semantic influence on the classification process (Bertinetto et al. 2020).

6.7.1.3. Imprecise Data — Self-Supervised CHILLAX

In terms of hierarchical F1, the hierarchy-informed and confidence-based self-supervised
CHILLAX variants are able to recover more than half of the information lost to imprecision by
extrapolating using predictions. The Deng et al. experimental protocol again produces quali-
tatively different results to our own noise models. Since the imprecision in the protocol
of Deng et al. is limited to the direct hypernyms of precise concepts, recovering the
information is in most cases a binary classification. Stronger imprecision leaves more
room for actual contributions of the knowledge in the hierarchy and is also more
realistic as determined in section 6.6.3.

The hierarchy-informed and confidence-based self-supervised CHILLAX variants perform
in different manners. Fixed threshold achieves the highest accuracies overall, but requires
an infeasible amount of fine-tuning. d⇤ steps and IC range are only beneficial some cases.
Leaf node improves the accuracy over CHILLAX in all cases and is a simple heuristic
without hyperparameters. While fixed threshold performs best in our experiments, it is
impractical to reliably determine the correct threshold while preventing overfitting
to a certain validation set (see section 2.2.2.2). In contrast, d⇤ steps and IC range have
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hyperparameters that depend on the concept hierarchy and the actual imprecision in
the training data, both of which can be observed. They are also more interpretable.
Simply using a leaf node is most similar to a typical self-supervised setup such as
Wang et al. (2017b), where pseudo-labels are given the highest confidence instead of
a more even distribution.

The adaptive self-supervised CHILLAX variant obtains consistent improvements over a
wider range of its hyperparameter than fixed threshold. However, on average, leaf node
performs better even without any parameterization. While it is clear that leaf node will
produce a high fraction of inaccurate examples (see section 6.4.3.1), we also learn in
section 6.4.2.2 that CHILLAX presents a reasonable robustness against this type of
label noise. Furthermore, we do not observe any catastrophic failures due to feedback
loops in our experiments. However, leaf node has no mechanism to prevent them,
whereas adaptive threshold does.

The adaptive threshold method can successfully control the IC gain, keeping it close to its
hyperparameter dI⇤. IC range exhibits a clear bias towards lower realized IC gains. The bias
of IC range can be explained by its asymmetric enforcement of the bounds. While it
can prevent any violations of the upper bound, it cannot guarantee the lower bound
because a concept might not even exist inside the range. There is no compensation
for this bias in IC range as there is in adaptive threshold, which does not show such a
bias in most cases.

If it does, realized IC gain is lower than the target because both methods are
fundamentally limited by the actual amount of imprecision present in the training
data, which has to be considered when setting hyperparameters.

6.7.2. Webly Supervision

Flickr data: Combining the moth dataset with data downloaded from Flickr increases accu-
racy from 92.62 % to 96.66 % for CHILLAX, which outperforms the baseline in both cases.
However, learning from only the precisely labeled part results in higher accuracies for both
methods, and a slight advantage for the baseline. The OHSM has a slight advantage when
there is only precise data, in line with our discussion in section 6.7.1.2. However, the
fact that removing data increases accuracy is unique to this dataset. A small sampling
of the data shows that search results at intermediate levels in the taxonomy strongly
vary in quality, which we address with our filtering setup in section 6.5.1.3.

Using CHILLAX to filter the downloaded images for outliers improves the performance
of the baseline, but has a marginal negative effect on the accuracy of CHILLAX. Overall,
the Flickr images can be used together with CHILLAX as a filter to increase the accuracy
from 92.07 % to 97.76 %. The fraction of imprecise labels in the filtered data (13.22 %)
is considerably lower than in the original download (23.00 %). While the filter is
working as intended, and would not be possible without the hierarchical classifier, it
does leave CHILLAX too few imprecise examples to work with.

6.7.3. Pitfalls and Dangers

In section 6.6, we present several possible failure cases of hierarchical classification
and learning from imprecise data, which we discuss in the following.
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6.7.3.1. Visual-Semantic Correspondence

Visual and semantic similarity on CIFAR-100 are (rank-)correlated with a coefficient of
R = 0.23, when WordNet is used as a concept hierarchy. The correlation between the semantic
baseline, which considers all distinct concepts equally dissimilar, and visual similarity is
only R = 0.17. Only the difference between these correlations can be leveraged by
integrating domain knowledge. While this finding is somewhat sobering, it could be
a consequence of the semantically reductive nature of labeling for image classification
(cf. Brust and Denzler 2019b). Consequently, semantically richer tasks such as image
captioning or visual question answering (see section 3.3) possibly benefit more from
semantic knowledge integration.

Furthermore, there are machine learning tasks outside of computer vision where
the domain gap to semantics is naturally smaller, for example NLP (see section 4.2.5).

6.7.3.2. Harmful Hierarchies

Introducing faulty elements to a concept hierarchy has an adverse effect on accuracy. The
effect scales with visual-semantic correspondence. On NABirds, less than three percent
points are lost, while on D-CHIVES L, accuracy decreases from 88.98 % to 40.96 %. This
result suggests that, on NABirds, the hierarchical classifier makes little use of visual
features relating to imprecise concepts, possibly because not every imprecise concept
is represented by a single, independent visual feature from the neural network. On
D-CHIVES L, we know constructively that such features exist. The classifier using
these features extensively would explain the substantial penalty from introducing
faults into the hierarchy. A further possible contributor is the larger number of
concepts in D-CHIVES L (4927) compared to NABirds (1010).

We further observe that on D-CHIVES L, the hierarchical classifier and the OHSM baseline
reach parity at around preplace = 0.2. However, on NABirds, the OHSM baseline is always
superior, even if the hierarchy is not modified at all. From this mismatch, it could be
concluded that the combination of NABirds and its taxonomy is already faulty. Still,
we expect that this is largely due to a lower visual-semantic correspondence, at
least lower than the perfect D-CHIVES L, and less because of possible mistakes in
the taxonomy as the comparison to D-CHIVES L would suggest. Although, while
D-CHIVES allows us to isolate the effects of the latter, we cannot distinguish both
causes on a pre-existing dataset, i.e., NABirds.

For NABirds, the effect of the level-wise parent replacement procedure on accuracy is more
pronounced at 0.0  preplace  0.6 than it is for the higher settings. Conversely, on D-
CHIVES L, the effect is almost linear. There are two possible contributors to this effect.
First, if the classifier relies less on visual features relating to imprecise concepts
on NABirds, as speculated above, the replacements at preplace = 0.6 might already
invalidate almost all imprecise concepts whose features are actually utilized. Second,
because visual features relating to imprecise concepts are probably not as simple and
independently present as in D-CHIVES L, there could be a certain interdependence
between features such that a single replacement operation affects predictions w.r.t. to
unrelated concepts as well.
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6.7.3.3. Imprecision in Real-World Data

Through the lens of the WordNet hierarchy, we observe both the Poisson and geometric
distributions over precision in the Flickr metadata. The distributions appear “shifted” towards
higher depths. We postulate that this offset in the distributions is due to concepts in
WordNet that are so general that they don’t exist as real life objects, e.g., entity.n.01W

or abstraction.n.01W. Still, the empirical distributions in fig. 6.7 don’t match the
models exactly because WordNet depth is not an ideal representation of precision. In
section 5.1.1.2, we discuss an alternative measurement.

The distribution obtained from the images’ taglist could appear as a mixture of title
and description depths because tags are typically important keywords taken from the
other metadata. And while we expect a textual description to be more precise than a
short title, it appears that it is not, if it is present at all. In practice, the description is
more of an addition to the title giving further context, hence the occurrence of synsets
such as series.n.06W.

Image title precision is approximately Poisson distributed, which could be due
to users attempting to offer a descriptive and artistic caption (cf. Brust, Barz, and
Denzler 2021b). In contrast, the geometric distribution over the tags’ precision could
be explained by users optimizing for search engines and using purposely generic
words.

6.7.4. Omissions and Limitations

This section briefly lays out and discusses aspects in which this thesis might be
considered limited. We offer arguments for our selection of datasets and methods as
well as the omission of runtime measurements.

6.7.4.1. Datasets

The central “benchmarking” experiments in this thesis (in section 6.4) focus on
the NABirds dataset (see section 6.2.1.2). These experiments involve a number
of repetitions to control for random initialization. Furthermore, specifically the
experiments in section 6.4.3 have such numerous combinations of interventions and
methods that running them on more than one dataset is not feasible computationally.

With this limitation in mind, we select the NABirds dataset for a number of reasons.
First, the taxonomy is aligned to scientific consensus in biology and thus unlikely to
contain incorrect elements (see section 6.6.2). Second, the benchmark task is a good
representation of our recurring example application in biodiversity research, which
stands to benefit from any performance improvement that can be obtained without
additional high-quality training data.

Scale problems also motivate us to use the CIFAR-100 dataset (see section 6.2.1.1)
for the experiment in section 6.6.1. The evaluation requires comparing each image in
the dataset with each other with five different methods. For CIFAR-100, this results
in 249 975 000 total comparisons which is only possible because of the relatively
small-sized images.

Where possible and appropriate, we offer a diverse selection of benchmark datasets,
e.g., in sections 6.3 and 6.4.2.4. Furthermore, we construct a synthetic dataset (see
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section 6.6.2.2) and produce a new dataset from web crawling in section 6.5.

6.7.4.2. Baselines and other methods

Learning from imprecise data (see section 5.1) is comparatively new task, initially
published by us in 2021 in Brust, Barz, and Denzler (2021b). The idea of seman-
tic imprecision in general is not new and there are several methods that apply to
certain partial aspects of imprecise data (see section 4.2.1). However, there are no
methods that solve our specific combination of imprecise training data with precise
predictions, other than HEX (Deng et al. 2014), which is limited by its mutual exclu-
sivity assumptions and complex inference procedure. We compare our method to
HEX in section 6.4.2.4 using the published results. The experiments cannot feasibly
be replicated, as there is no first-party source code available, and the third party
implementations are incomplete and obtain substantially worse results11.

For the simple knowledge integration use case, there are again methods that
tackle the problem partially, which we discuss in section 4.1. However, they also
suffer from limitations which prevent any application in our intended setting. For
example, embedding and metric learning-based methods (see sections 4.1.2 and 4.1.3)
that integrate a distance-like semantic measure (see section 6.1.2.2) struggle with
hierarchies that are DAGs. For these graphs, shortest paths are not necessarily
unique. Furthermore, these methods do not process imprecise concepts at all, except
for volume-based methods such as Ganea, Becigneul, and Hofmann (2018) and Dhall
et al. (2020).

Since knowledge integration is not the main goal of this thesis, but a step towards
enabling learning from imprecise data, we dedicate our resources towards the latter.

6.7.4.3. Runtime Measurements

Since all results in this chapter except for sections 6.5 and 6.6.2 are published over
the span of three years, the results are determined using different generations of
hardware. Repeating all experiments performed over years on identical hardware
for the purpose of determining runtime is not practical, especially considering the
limited insight that can be gained from such an investigation.

Our hierarchical classifier (see section 5.2) as well as CHILLAX (see section 5.3.2)
both represent only small additions compared to the computational costs of the
underlying neural networks (see section 6.2.2.1). In Brust and Denzler (2019a), we
conclude that the computational overhead of our hierarchical classifier compared
to an OHSM baseline is insignificant. We describe two computational scales in
section 6.3.1, which also contains rough estimations of runtimes. These estimations
also apply to section 6.4.

11
https://github.com/kylemin/HEX-graph is the most complete implementation as of July 20th, 2021.

It reaches 54.10 % top-5 accuracy on ImageNet-1k, compared to the original at 68.50 % and CHILLAX
at 68.55 %. https://github.com/ronghanghu/hex_graph is no longer available.
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Data scarcity is the main reason why learning from imprecise data is important. Not
fully utilizing training data can be an unaffordable luxury. To explore the idea of
increasing sample efficiency further, we take a step back from the learning process
and consider the actual labeling process. Active learning assumes that not every
unlabeled element of data is equally worthy of being labeled (cf. Settles 2009).

Combined with an incremental learning method that can gradually improve a
model over time, active learning can be integrated into a feedback loop. Such a
system continuously explores a set of unlabeled data and presents valuable examples
to a human labeler. After labeling, the model can learn from the new examples
and continue the exploration in light of its new knowledge. Repeating this process
continuously is called lifelong learning.

7.1. A Brief Introduction to Lifelong Learning

This section serves as a brief overview of the theoretical foundations of lifelong
learning. For contrast, consider a typical application of machine learning, which
involves several steps. First, training data has to be acquired, e.g., by taking pictures
and annotating them. Afterwards, one needs to decide on an appropriate machine
learning method, or set of methods. The next step is model selection (see section 2.2),
where the optimal risk-minimizing hypothesis and hyperparameters are determined.
Finally, the hypothesis has to be validated using a held-out test set (see section 2.2.2.1),
and then deployed for productive use.

This process, also known as “waterfall” learning (see Data Science Process Alliance
2021) is straightforward, but suffers from a number of drawbacks. Mainly, there is no
consideration for the lifecycle of the hypothesis after its creation. The same is true
for the lifecycle of the respective training data. However, training data can become
less representative of the real world, or the environment distribution, over time. The
appearance of objects changes, and new concepts are introduced as well. A further
disadvantage of waterfall learning concerns the human and computational resources.
It requires a considerable amount in the beginning of a project, when training data is
acquired and hypotheses are tested, and afterwards, only a very small amount for
maintenance and operation. This distribution of resources over time is not ideal for
long-running projects such as biodiversity monitoring.

Lifelong learning addresses the aforementioned lifecycle aspects. It considers
availability of new data over time and integrates with data streaming processes, e.g.,
camera traps (see section 7.3.2). The hypothesis is continually adapted to the changing
environment. In the following sections, we review the individual components of a
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lifelong learning systems, including active learning and incremental learning. We
then describe the assembly into a complete system, and the construction of the
lifelong learning cycle.

7.1.1. Active Learning

Training data is obtained from the environment distribution by sampling (x, y) ⇠ D

(see section 2.1.1.7). In practice, there are two steps. First, the domain points x are
acquired, e.g., by taking pictures or collecting other measurements. Then, they are
annotated with labels y by human annotators.

Active learning acknowledges this separation and seeks to leverage it. It hypothe-
sizes that not all x are equally worthy of annotating (cf. Settles 2009). Consider a set
X = (x1, . . . , xm0) of m0 not yet annotated domain points. We then fix an annotation
budget of m << m0. The goal of active learning methods is to select an optimal
in-budget subset Xopt ⇢ X, where |Xopt| = m. This subset is optimal in terms of true
risk of a hypothesis resulting from annotating Xopt and applying an ERM (see sec-
tion 2.1.1.3) learner. Ideally, the risk is lower than from passive learning, i.e., randomly
selecting a subset.

However, the active learning problem of optimal subset selection is fundamentally
ill-posed. It has no access to the annotations because they have not yet been acquired.
However, without annotations, it is not possible to estimate the risk associated with
any given subset. Hence, several heuristics are proposed as alternatives. Uncertainty
is a common choice (cf. ibid.). Assume that there exists a hypothesis that has not
yet seen X, but is configured correctly for the domain, i.e., with the correct input
dimensionality and number of concepts. We can then apply it to an unlabeled
example and analyze confidence scores, or predicted probabilities, for each concept
(see sections 2.1.2.2 and 5.3.3). A unimodal distribution indicates that the hypothesis is
very confident, while a uniform distribution represents maximal uncertainty. Hence,
entropy is a reasonable indicator of uncertainty (cf. Wang et al. 2017b). A simpler
alternative is 1-vs-2, which is the difference between the confidence scores of the
highest-scoring concept and the second highest.

These indicators are denoted value functions v(x, h). The optimal subset selection of
active learning is performed by computing the value function for all x 2 X and then
selecting the m most valuable examples. For example, given per-concept probabilities
hc, the value function of 1-vs-2 is defined as (cf. ibid.):

v(x, h) = 1�
�

max
c12YP

hc1(x)� max
c22YP\c1

hc2(x)
�

. (7.1)

Examples that strongly influence a model’s parameters, or its predictions, are also
considered valuable, as the changing parameters are associated with “fast” learning
progress. This heuristic is discussed further in Freytag, Rodner, and Denzler (2014)
and Käding et al. (2016a).

Novelty detection is a related task which specifically considers examples containing
previously unseen concepts. While it can be performed as a “side effect” of active
learning, there is research into isolated novelty detection (e.g., Schölkopf et al. 1999;
Bodesheim et al. 2013).
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7.1.2. Incremental Learning

In a system where new training data becomes available over time, a hypothesis has to
be updated frequently. Because predictions are used in active learning to select valu-
able examples for annotation, updates should not be delayed. Otherwise, redundant
examples or even repeated selections can occur. However, training high-performance
models such as CNNs is expensive and time-consuming (see section 2.3.3.2). Fur-
thermore, the training time increases with the amount of training data, which makes
constant re-training from an initial state infeasible at some point.

Incremental learning methods tackle the problem of adding new training data to an
existing model. One particular challenge is catastrophic forgetting (cf. Kirkpatrick et al.
2017): while the risk w.r.t. new training data becomes better, the risk of the hypothesis
over the previous training data increases.

In this work, we use the deep fine-tuning method described in Käding et al. (2016b)
for deep neural networks. It is an approach based on stochastic gradient descent (see
section 2.1.3.1), where the initial parameters are copied from the current hypothesis,
as opposed to a random initialization. To update the hypothesis, a fixed amount of
optimization iterations is performed. Crucially, each minibatch is composed of both
new and already known training data to combat catastrophic forgetting. The ratio of
old to new, l, can be optimized as a hyperparameter, but is usually set to 0.50.

Concept hierarchies are related to incremental learning in two distinct ways. On
the one hand, structural hierarchical classifiers (see section 4.1.1) can implement
incremental learning (cf. Roy, Panda, and Roy 2020). On the other hand, concept
hierarchies can define an ideal order (a “curriculum”) in which examples should be
learned to minimize risk (cf. Goyal and Ghosh 2020).

7.1.3. The Lifelong Learning Cycle

This section lays out the lifelong learning cycle as proposed in Käding et al. (2016a).
It is presented as an alternative paradigm to waterfall learning (see the introduction
to section 7.1).

Initialization The cycle starts with certain initial conditions. An initial set of train-
ing data S(0) has to be sampled randomly and annotated manually. This data is
needed because the active and incremental learning components require a function-
ing hypothesis h(0) that has lower true risk than a random hypothesis. However, there
exists preliminary research around removing this requirement for initial training data
in Penzel (2018).

Cycle After initialization, the cycle is entered. The following steps are repeated
indefinitely, or lifelong.

Iteration k starts with acquiring unlabeled examples. All unlabeled examples
available in this iteration are denoted X(k). We have access to the hypothesis
h(k�1) generated during the last iteration.
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1. Exploration. Compute the value of each unlabeled example using an active
learning value function v(x, h). Determine X(k)

opt by selecting the m most valuable
examples.

2. Interaction. Acquire labels for X(k)
opt from a human annotator to construct

training data S(k).

3. Adaptation. Update the hypothesis h(k�1) with S(k), but without forgetting
S(k�1), . . . , S(0) using incremental learning. This results in the improved h(k).

The lifelong learning cycle has constant human interaction and compute resource
requirements over time, which is suitable for long-running projects. If the availability
of resources changes, m can be changed at any point to adapt to the changes. Note
that we do not consider the memory complexity explicitly and assume an infinitely
increasing set of unlabeled examples X(k). In a practical application, the process
should remove unlabeled examples after they have not been selected for some time
to guarantee infinite execution with limited resources, at least in theory. A similar
process could be applied to training data, where examples could be removed when
they become outdated. All experiments and applications in the following sections
are constructed following the lifelong learning cycle described here.

7.2. Active and Incremental Learning for Object Detection

Partial results of the work presented in this section are published in Brust, Käding, and Denzler (2017, 2019, 2020).

Object detection is a particularly interesting task from the perspective of lifelong
learning in general and active learning specifically. The complexity of the labels and
the higher cost present unique challenges and opportunities. While active learning
methods for classification are not directly applicable to object detection, the potential
for cost savings is much greater. There are also opportunities for improvements of
the human-machine interaction aspect (see section 7.3).

In this section, we use YOLO (You Only Look Once, cf. Redmon et al. 2016) to
apply our active learning methods, which are specific to object detection. While most
are applicable to any detector, we also present bespoke approaches for YOLO. All
methods are validated empirically in a lifelong learning setting on the PASCAL VOC
(Visual Object Classes, cf. Everingham et al. 2010, 2015) dataset.

7.2.1. Active Learning for Object Detection

Most active learning methods assign a value to each example in a set of unlabeled
data (cf. Settles 2009). For image classification tasks (see section 2.3.2), an example is
typically defined as a single image. While object detection would allow for instances
of objects to be considered as examples, we adhere to the former definition because
instances are not known before labeling. It should be noted that predictions from a
pre-trained detector could be used to provide these instances. Another reason for
using images as examples is the increased efficiency of annotating entire images at
once.
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In the following, we propose two types of active learning value functions, one for
object detection in general, and one specific to the YOLO detector.

7.2.1.1. Aggregation of Individual Detections

One active learning strategy in classification is to analyze the predicted probability
distribution (see section 2.1.2.2) of a hypothesis given the image in question (cf. Wang
et al. 2017b). This strategy fits well with lifelong learning where such a hypothesis is
updated continually. We can interpret the prediction of a detector given an image as
a collection of individual predictions, each classifying a detected instance. For the
purpose of active learning, we ignore the localization aspect. There exists preliminary
research on active learning of localization in terms of a regression task in Käding et al.
(2018).

For each detected instance, we can calculate the 1-vs-2 value from the predicted
class probabilities using eq. (7.1). We then aggregate the values into one for the whole
image by taking the sum, the average or the maximum.

7.2.1.2. YOLO-Specific Metrics

YOLO, presented in Redmon et al. (2016), is a significant improvement upon previous
object detectors (e.g., Girshick 2015). Instead of treating localization and classification
as separate, subsequent tasks, they are performed simultaneously. This mode of oper-
ation is called single-stage or single-shot detection and is also used by SSD (Single-Shot
Multibox Detector, cf. Liu et al. 2016).

A fundamental problem for deep learning-based single-stage detection is the en-
coding of a variable amount of instances in a fixed size CNN. YOLO solves the
problem by dividing the image into a grid of fixed size, e.g., 5⇥ 5 or 7⇥ 7 (cf. Red-
mon et al. 2016). Each grid cell is classified unconditionally, i.e., even if there is no
object present. In addition, YOLO predicts an “objectness” score and bounding box
dimensions twice per grid cell. Bounding boxes are always centered in the respective
grid cell, and there is no prediction of locations, only dimensions. For a 7⇥ 7 grid,
there are 49 classification and 98 potential bounding boxes. A threshold on the ob-
jectness is used to filter the predicted bounding boxes, resulting in a variable number
of predicted instances. Non-maximum suppression is applied to remove multiple
detections of the same object (cf. ibid.).

In general, we expect a high maximum class score and a high objectness to be
predicted at the same time. Our first YOLO-specific metric, “Detection-Classification
Difference”, selects cases where the scores disagree strongly, in terms of absolute
difference between maximum class score and objectness. Disagreement points to
either missed localizations or new classes, both of which are interesting in terms of
active learning. We also propose “Weighted Cell Sum”, where we compute a 1-vs-2
value for each grid cell’s classification. The values are weighted according to their
highest objectness score and the added together. Assuming perfect localizations, this
is equal to taking the sum as proposed in section 7.2.1.1, ignoring the non-maximum
suppression.
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7.2.2. Incremental Learning of YOLO

The incremental learning method presented in Käding et al. (2016b) is directly ap-
plicable to YOLO. However, special care needs to be taken when new classes are
encountered. Weights in the last layer of the CNN have to be rearranged depending
on the memory layout of the YOLO implementation. Assume the model is configured
with a 7⇥ 7 grid, two bounding box predictions per grid cell and 20 possible classes.
The number of weights per grid cell is then 20 (class scores) + 2 (bounding box
predictions) ⇥

⇥
4 (dimensions) + 1 (objectness)

⇤
= 30. The last layer has to be

configured with 1470 neurons.
Adding a new class means extending this layer by 49 more weights. We initialize

the new weights with zero. Because YOLO does not use a softmax activation function,
a zero weight actually means the new class is never predicted unless the weight
changes.

7.2.3. Experiments

We validate all methods described in sections 7.2.1 and 7.2.2 empirically. This quanti-
tative evaluation implements a full lifelong learning cycle (see section 7.1.3) to give
the methods an appropriate context. We further provide a qualitative analysis of the
active learning value functions on individual samples of the dataset.

7.2.3.1. Setup

The experiments are performed using the PASCAL VOC dataset. The dataset is pre-
sented alongside a challenge in Everingham et al. (2010, 2015). We use mean average
precision (mAP) as described ibid. to evaluate the object detection performance.

To simulate a lifelong learning application, we split the dataset in two. This affects
both training and validation data in the same manner. One part (A) is used to train
and validate the initial model. The other part (B) is then explored during the lifelong
learning cycle. We split the dataset by classes to force encounters of unseen concepts.
However, the assignment of classes to part A or B can strongly influence the results.
Hence, we employ two ways of splitting the data. The first split assigns bird, cow
and sheep to part B and the rest to part A, while the second split uses tvmonitor, cat
and boat as part B and the remainder for part A.

We implement the “YOLO-Small” architecture exactly as described in Redmon
et al. (2016). Following their implementation, the weights of all but the last layer
are copied from an “Extraction” model1 pre-trained on the ImageNet-1k dataset (see
sections 6.2.1.1 and 6.2.2.2).

The initial model is trained for 24 000 iterations using the Adam optimization
algorithm presented in Kingma and Ba (2014) (see section 2.1.3.3). We use a learning
rate of 1⇥ 10�4 for the first half of this training and 1⇥ 10�5 subsequently. All other
hyperparameters are taken from Redmon et al. (2016), including data augmentation.
Each method — sum, maximum, average and the two YOLO-specific methods —
is evaluated in five runs for each of the two ways of splitting the data. A random
selection baseline is added for comparison.

1Provided by the authors at http://pjreddie.com/media/files/extraction.conv.weights
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7.2.3.2. Implementation of Learning Cycle

After initial training, the model is ready for executing the lifelong learning cycle.
Before, the roughly 600 training examples of part B are randomly assigned to batches
of size 10. These assignments are not changed during the run. Instead of individual
examples, a single batch is selected for each iteration of the cycle. The active learning
value of a batch is determined by the sum of the values of the examples. We then
“annotate” the batch with the correct labels from the dataset. Finally, the model is
updated using the fine-tuning method presented in Käding et al. (2016b) for 100
iterations. Hyperparameters match those given in section 7.2.3.1. After removing the
selected batch from part B, the cycle is repeated until exhaustion, i.e., after 60 batches.

7.2.3.3. Results

Catastrophic forgetting (cf. Kirkpatrick et al. 2017) is a concern in any application of
incremental learning. Hence, we observe not only the performance on the validation
set of part B (the “new” data) but also on part A, which is used to train the initial
model. In the worst single run, the mAP decreases slightly, from 36.70 % down to
32.10 %, but is otherwise not strongly affected.

Table 7.1 shows the performance on part B, the new data, as it is explored. We
mainly focus on the first half of the experiment, i.e., the first 30 batches. This scenario
is more relevant for practical applications, as it reflects situations of high sample
diversity in the unlabeled data pool. Continuous streaming of new data, e.g., from
camera traps, keeps the diversity up. W first investigate the performance after 50 sam-
ples of the part B training set. Both maximum and average aggregations outperform
the random baseline in terms of mAP, while the simple sum and “Detection-Classi-
fication Difference” perform even worse. The YOLO-specific “Weighted Cell Sum”
has the highest mAP.

Over the next 200 samples we observe continuously improving performance, in-
dicating that the incremental learning works as expected. We also observe that the
random baseline is outperformed by most methods more and more as training con-
tinues. A notable exception is “Detection-Classification Difference”, which performs
worst in all comparisons.

For a complete picture, we also analyze the performance after 600 samples, where
there is no more choice for the active learning methods. The final mAP is almost
equal between methods because they can only affect the order in which examples
are learned, but are forced to learn all eventually. Instead, we can observe the area
under the learning curve (AULC), where the learning curve is defined as mAP
sampled every 5 batches. Again, all methods outperform the random baseline,
except for “Detection-Classification Difference”. Maximum aggregation is best by
a small margin, followed by both sum-based methods. We discuss our findings in
section 7.2.4.

7.2.3.4. Sample Valuation of Initial Model

After training an initial model on part A of the dataset as described in section 7.2.3.1,
we evaluate the active learning value of each example in part B using the proposed
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Table 7.1.: mAP (%) and AULC on validation set of part B of split PASCAL VOC
2012 dataset. DCD and WCS refer to Detection-Classification Difference and
Weighed Cell Sum, respectively. Observed samples excluding initial training
data from part A. Table compiled of data from Brust, Käding, and Denzler
(2019, 2020).

Observed samples 50 100 150 200 250 All
(600)

Baseline
Random 8.7/4.3 12.4/14.9 15.5/28.8 18.7/45.9 21.9/66.2 32.4/264.0

YOLO-spec.
DCD 8.5/4.3 12.1/14.6 15.5/28.4 18.7/45.5 21.0/65.3 33.3/255.3
WCS 9.6/4.8 12.9/16.1 16.6/30.8 20.5/49.4 21.9/70.6 32.2/268.1

Aggregated
Max 9.2/4.6 12.9/15.7 15.7/30.0 19.8/47.8 22.6/69.0 32.0/269.3
Avg 9.0/4.5 12.4/15.2 15.8/29.2 19.3/46.8 22.7/67.8 33.3/266.4
Sum 8.5/4.2 14.3/15.6 17.3/31.4 19.8/49.9 22.7/71.2 32.4/268.2

aggregation methods. Figure 7.1 shows the most valuable and least valuable examples
according to each method.

The least valuable examples are the same for each method because they do not
contain any detections at all, resulting in a zero score. The sum aggregation prefers
images containing many instances. In contrast, the most valuable examples according
to maximum and average values mostly have one instance. Because both aggregations
are equal in this case, they share many of the top images.

7.2.4. Summary and Discussion

Assuming that labeling images with more objects in them is more efficient in terms of
instances per time period, we recommend using one of the sum-based aggregation
methods. Because they prefer images with many instances, the hypothesis is changed
more significantly in each iteration of the learning cycle. Still, we do not evaluate the
exact labeling cost for each method, which should be considered in practice.

During most of the time in the experiment, maximum and average aggregation
perform very similarly. This is likely due to the prevalence of single-instance examples
in PASCAL VOC 2012. We can not recommend “Detection-Classification Difference”,
which also exhibited an AP (see section 6.1.1.1) of less than 0.50 in a related novelty
detection experiment. In other words, the inverse of this method is probably a better
choice.
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Most valuable examples (highest score)

Sum
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Least valuable examples (zero score)

All

Figure 7.1.: Most and least valuable examples of validation set of part B of split
PASCAL VOC 2012 dataset. Figure taken from Brust, Käding, and Denzler
(2020).

7.3. Weakly Supervised Lifelong Learning for Object
Detection

Partial results of the work presented in this section are published in Brust, Käding, and Denzler (2020).

Active learning is typically employed in situations where labels are prohibitively
expensive, thus mandating a small, but informed, selection. However, active learning
only considers whether an image should be annotated or not. The quality of the
annotations and the human-machine interaction to acquire them is a separate issue.
Object detection is a good task to explore these areas given the high complexity of
the labels and their large number of degrees of freedom.

7.3.1. Interaction Model

Let us first consider two qualitative extremes of annotations for object detection.
On the one hand, images labeled with perfectly localized bounding boxes are an
expensive, but important ingredient for an accurate model. On the other hand, it is
also possible to learn object detectors from images that are only annotated with class
labels, without any location information. However, this has a strong negative impact
on performance (cf. Song et al. 2014).

In Papadopoulos et al. (2016), the authors propose that neither of these extremes
is optimal. Instead, they offer a trade-off: use a pre-trained detector to generate
proposals, and ask a human annotator only for verification of these proposals. While
a slightly higher number of annotations is needed to reach comparable performance
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on a validation set, the overall speedup in that case is still in the range of 6 to
9. An important ingredient is a tight feedback loop, where the model is updated
continuously. Hence, we consider this annotation process a very good fit for lifelong
learning applications, which provide the feedback loop through iterations of the
cycle, and also specify a human-in-the-loop (see section 7.1.3).

Trading off label quality and quantity in this way is an example of weakly super-
vised learning, which is described in more detail in sections 2.1.4.3 and 4.2.4.2.

7.3.2. Camera Traps

Monitoring the abundance and regional occupancy of animals is an important task
in light of concerning global developments (see chapter 1). Camera traps are an
increasingly popular alternative to invasive and expensive monitoring methods like
capture-mark-recapture (Amstrup, McDonald, and Manly 2010). However, they
can easily produce more data than can be processed manually. Accurate models
require a considerable annotation effort, some of which can be performed by citizen
scientist, e.g., as detailed in Swanson et al. (2015). The specific challenges of camera
trap data are an increasingly popular research subject. Further works tackling these
are Giraldo-Zuluaga et al. (2017, 2019), Gomez Villa et al. (2016), Gomez Villa, Salazar,
and Vargas (2017), and Norouzzadeh et al. (2017).

7.3.3. Experiments

In the following, we detail a first feasibility study of propose-and-confirm annotations
(as shown in Papadopoulos et al. 2016) integrated into a lifelong learning system for
object detection (see section 7.2). The experimental setup is identical to the one in
section 7.2.3.1. We use the (non-YOLO-specific) sum aggregation to select batches.

7.3.3.1. Dataset

The dataset used for this experiment is unpublished. It is part of an iDiv2 study on
the impact of large herbivorous mammals on forest development. 65 camera traps are
deployed in ⇠ 16 km2 and collected data over 3 to 4 months in 2015 and 2016. The
traps are located in Peneda-Gerês National Park in northern Portugal. The dataset
consists of 1 500 000 unlabeled images of 15 mammalian species.

There are numerous challenges (see fig. 7.2) such as occlusions, intentionally cam-
ouflaged animals, motion blur, large herds and strong lighting differences caused by
the day-night cycle. At night, the images are illuminated by infrared, which results
in a complete loss of color information. The cameras can also be triggered spuriously,
without an animal present, by lighting changes, plant movements due to winds and
also researchers traversing the area.

7.3.3.2. Evaluation

There are no bounding box annotations available for this dataset. However, 5000
images are supplied with class labels for the whole image. We use these images to

2German Centre for Integrative Biodiversity Research
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Figure 7.2.: Camera trap images of varying quality from Peneda-Gerês National Park.
Figure taken from Brust, Käding, and Denzler (2020).

validate our model, as there is no viable alternative. The instances detected by the
model are transformed to multi-label classifications. Localization is hence not con-
sidered in this evaluation. However, it should be noted that the intended application
is the counting of animals to estimate species abundance, where localization is not
necessary.

We further use 5000 unlabeled images for training, and select batches of 32 images
for annotation each iteration of the lifelong learning cycle.

7.3.3.3. Results

As described in section 7.2.3.1, the initial model is trained on the PASCAL VOC 2012
dataset (Everingham et al. 2010, 2015). There is some class overlap with our camera
trap dataset. Hence, even the initial model can make some accurate predictions. After
mapping each class in PASCAL VOC 2012 to its counterpart in the camera trap data,
the accuracy is 66.50 %.

We then run the lifelong learning cycle for 16 batches, i.e., 512 images, updating
the model after each batch is labeled by an expert and selecting new images using
the sum aggregation method. This increases the accuracy to 78.70 %.

However, it is important to note that only 37.80 of the examples in the validation
set contain any objects. This is representative of the actual camera trap application
because of spurious triggers of the camera (see section 7.3.3.1). Still, we should ana-
lyze the non-empty portion of the validation set separately. There, the initial model
reaches an accuracy of 25.40 %. After only one batch, i.e., 32 annotated examples, the
accuracy is already increased to 42.60 %. It finally reaches 58.50 % after 512 images
are annotated by the expert.

The scope of this experiment is limited because of the low availability of expert
annotations. However, we consider it a first validation of the combination of weakly
supervised learning and lifelong learning.

7.3.4. Carpe Diem Annotation Tool

Partial results of the work presented in this section are published in Brust, Barz, and Denzler (2021a).

As a practical application of the propose-and-confirm interaction model, combined
with lifelong learning, we develop a graphical user interface. It is intended for
biodiversity researchers, and is thus easy and intuitive to use (see fig. A.2 in the
appendix). We name the tool “Carpe Diem”, in reference to the original meaning of
YOLO (Redmon et al. 2016). Carpe Diem implements all steps of the lifelong learning
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cycle and focuses on human-machine interaction. It allows the user to experience a
continually improving model for regular analyses of camera data.

We use the CN24 deep learning framework presented in Brust et al. (2015a), which
implements YOLO (Redmon et al. 2016) in a way that can cope with the addition of
new classes. This process is described in detail in section 7.2.2. The central object in
Carpe Diem is a project. A project contains the current model and both unlabeled
and labeled data pools.

The first step when starting a new project is the import of unlabeled data. Batches
are automatically assigned randomly, but the batch size is controllable by the user so
that they can choose the length of an annotation session. When the user is ready to
annotate, an active learning method of their choice is executed on all unlabeled data,
selecting the best batch for annotation. The interaction can be done with keyboard
shortcuts or the mouse. If the proposal is either completely correct or a spurious local-
ization, then a single click is enough for annotation. The class label can be corrected
by entering the first few letters of the correct label, aided by auto-completion.

A model update is performed after annotating each batch. On an NVIDIA GeForce
GTX 970 (from 2014), a model update of 32 examples requires 3200 iterations and
completes in around one hour. This GPU can compute ⇠ 4 TFLOP/s, compared
to current (2021) performance of GPUs on the order of ⇠ 150 TFLOP/s (see also
section 2.3.3.2).

7.4. Label-Efficient Gorilla Re-Identification

Partial results of the work presented in this section are published in Brust et al. (2017).

The effects of the global biodiversity crisis are readily apparent when analyzing
threatened species (see chapter 1). Conservation efforts are essential to countering
this development. The effects need to be monitored closely to validate individual
efforts and to guide further strategies. However, biodiversity monitoring is both
expensive and challenging on a technical level (see, e.g., section 7.3.2 and Kühl 2008).

Great apes are critically endangered (cf. Vié, Hilton-Taylor, and Stuart 2009). They
are also unusually difficult to monitor and hard to find in the first place (cf. Kühl 2008).
Still, monitoring them is rewarding as it aids research not only w.r.t. biodiversity,
but also on their behavior and sociodemographics. Fine-grained monitoring on an
individual level is required for many of these studies. It is also the subject of the
following experiment.

Previously, in section 7.3, we acquire images from camera traps and use them to
estimate the abundance of certain species. Automatic camera traps are not always
suitable for individual identification. They produce a low fraction of usable images
and require prohibitive amounts of processing (cf. ibid.). Instead, great apes are
monitored by field photography. Researchers observe the population from a viewing
platform and take pictures using a long telephoto lens. This process results in more
detailed observations and requires less processing. In the following, we describe a
system to identify western lowland gorillas (gorilla gorilla gorilla) using a combination
of face detection and classification based on field photography.
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7.4.1. Re-Identification by Face Detection

Gorillas are commonly identified via their facial features such as the shape of their
ears, crest and brow-ridge (cf. Parnell 2002). Thus, we propose to base our automatic
identification system on the individuals’ faces as well. We apply a face detector and
then classify the extracted faces. This system is an extension of previous work on
chimpanzees presented in Freytag et al. (2016).

7.4.1.1. Face Detection

Any subsequent identification depends on the successful extraction of faces from an
image. Hence, a reliable face detector is essential. In the supplementary material
of Freytag et al. (ibid.), the authors supply a chimpanzee face detector that shows
promising results. We base our detector on the same model.

It is a YOLO model (refer to section 7.2 and Redmon et al. (2016) for details).
Modifications include a high-resolution input (448⇥ 488) and a larger grid size
(9⇥ 9) to allow for the detection of more, smaller objects. While YOLO could also
perform classification, the training data requirement would be too high because of
the spatial dependency of YOLO’s classifier. We rebuild this model in CN24 (Brust
et al. 2015a) to allow for incremental learning.

7.4.1.2. Individual Identification

Quick model updates in the field are essential to a monitoring system that is meant for
daily use. Hence, we rely on a combination of CNN features and SVM classification.
The deep neural network is only trained once and then used as a constant feature
extractor. When new observations are added, the SVM can be trained in less than a
second on commodity hardware. This combination is shown to be effective in Freytag
et al. (2016).

We extract features from the pool5 layer of a BVLC AlexNet variant which is
described in Jia et al. (2014). This AlexNet is pretrained on ImageNet-1k (see sec-
tion 6.2.1.1). While more face-specific models are available (e.g. Parkhi, Vedaldi,
and Zisserman 2015), they tend to perform worse for chimpanzee classification (cf.
Freytag et al. 2016). All pre-processing steps are equal to Jia et al. (2014) to permit a
direct application. A linear SVM performs classification to identify the faces by their
extracted features. We use the LibSVM (Chang and Lin 2011) implementation. Scores
are calculated for all possible individuals to obtain a ranking by confidence.

7.4.2. Experiments

To validate the effectiveness of our system and its individual components, we per-
form a quantitative evaluation. We first measure the sample efficiency of adapting
the chimpanzee detector from Freytag et al. (2016) to gorillas by fine-tuning (see
section 6.2.2.2). Then, we evaluate the accuracy of individual identification on a large
dataset, involving the complete system.
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Figure 7.3.: Example photographs of the Mbeli Bai dataset. Figure taken from Brust
et al. (2017).

7.4.2.1. Dataset

Our dataset consists of observations of western lowland gorillas (gorilla gorilla gorilla)
in Mbeli Bai. The Bai is a large forest clearing in Nouabalé-Ndoki National Park in
the Republic of Congo, where a population of 129 individuals lives. Observations
start in 2012 and end in 2017, resulting in a total of 12 765 photographs (see fig. 7.3).

Each photograph is annotated by two individual observers who determine the
identity of the individual in focus. This system guarantees high-quality labels. How-
ever, there is only one annotation per image (even though there might be multiple
individuals), and there are no bounding boxes.

7.4.2.2. Face Detection Results

To evaluate the detection performance of the YOLO-based chimpanzee detector
(Freytag et al. 2016), and to fine-tune the detector for gorilla faces, we commission
bounding box annotations for 2500 images. Of these, 500 are held out for validation.
We fine-tune the chimpanzee detector separately on 500, 1000, 1500 and 2000 of the
remaining gorilla images. Each fine-tuning consists of 3500 iterations of the Adam
optimization algorithm (Kingma and Ba 2014) with a learning rate of 1⇥ 10�5.

The detailed results on the held-out validation set are presented in the appendix,
in table A.8. Initially, the chimpanzee detector by Freytag et al. (2016) reaches an
average precision (AP) of 29.50 %. However, after fine-tuning it on only 500 images
of gorillas, the AP immediately increases to 86.60 %. Further improvements are small,
reaching a final APs of 90.80 % with 2000 annotated image.

7.4.2.3. Individual Identification Results

Using the best performing face detector from the previous section, we can evaluate
our system’s individual identification accuracy. We use five-fold cross validation (see
section 2.2.2.2) to train a linear SVM using the hyperparameters specified in Freytag
et al. (ibid.).

There is a concern when performing the validation per image and not per face. In
rare cases (4.10 %, see table A.8), the detector produces more than one detection. This
is correct, as photographs are not constrained to a single individual. However, there
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Table 7.2.: Individual identification performance on Mbeli Bai validation sets. Train-
ing images refers to the amount used to train the face detector. Table
compiled of data from Brust et al. (2017).

# Training Images — 500 1000 1500 2000

Highest Score

Accuracy (%) 20 59 60.3 61 61.7
Precision (%) 48.6 55.5 57.9 58 59.5
Recall (%) 20.3 59.9 61.7 62.3 62.5
Top-5 Accuracy (%) 27.6 77.6 78.9 79.3 79.6

Largest Box

Accuracy (%) 20 58.8 61.3 62 62.4
Precision (%) 48.7 55.5 58.7 59 60.2
Recall (%) 20.3 59.9 62.5 63.2 63.1
Top-5 Accuracy (%) 27.8 77.4 79.5 80.1 80.3

is only one annotated individual per image, which is supposed to be the individual
in focus. We propose two heuristics. We either use the bounding box with the highest
confidence value, or use the bounding box with the largest area.

In the following, we evaluate both heuristics separately. Table 7.2 shows the results
over the validation splits. Note that any errors here can occur because of either
misclassification or misdetection, as we have to rely on the detector to correctly
extract faces. With the initial chimpanzee detector, both methods achieve an accuracy
of 20.00 % and a top-5 accuracy of around 27.70 %. Using the detector trained on
only 500 images, selecting the most confidently detected face results in an accuracy
of 59.00 % (top-5: 77.60 %). The largest box heuristic with the same detector reaches
only 58.80 % (top-5: 77.40 %). Finally, we apply the best performing detector (2000
images). “Highest confidence” and “largest box” deliver accuracies of 61.70 % (top-5:
79.60 %) and 62.40 % (top-5: 80.30 %), respectively.

7.4.3. Discussion

A reliable detector for gorilla gorilla gorilla faces can be built with very little anno-
tation effort. Even our smallest labeled batch of 500 images results in comparable
performance to the best result. Additional bounding boxes yield only small returns.
This detector could be reused for related species, as results from using a chimpanzee
detector on gorillas indicate.

In this system, new individuals can be introduced easily and retraining any large
models is not required. While field photography typically generates fewer images
than automatic camera traps in a given time period, a large enough operation might
still overwhelm human annotators. Active learning could be applied directly to
reduce load and increase sample efficiency.
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Figure 7.4.: Predicted probabilities of a hypothesis w.r.t. three different domain points.

7.5. Lifelong Learning with Concept Hierarchies

This section briefly lays out a potential application of concept hierarchies in a lifelong
learning setting. We already discuss implications of concept hierarchies for incre-
mental learning in section 7.1.2, e.g., constructing a curriculum. Active learning also
stands to benefit from integration of semantic knowledge. Birodkar, Mobahi, and
Bengio (2019) states that the redundant examples, which active learning seeks to
eliminate, have unique semantic properties that differentiate them from valuable
examples. However, the authors don’t translate their findings into an active learning
method and simply claim that their “findings may also be of interest to active learning
community.” (sic!)

To integrate semantic knowledge into active learning, we propose hierarchical 1-vs-
2. It is based on the observation that a CNN’s confusion probability between two
concepts (see section 4.1.5) is correlated to their semantic similarity (see section 6.1.2.2).
Hence, it is unlikely that a CNN confuses two concepts that are semantically distant.
We assume that this unlikely occurrence indicates an edge case in the data, and thus,
a valuable example.

Consider the confidence scores shown in fig. 7.4. The conventional 1-vs-2 method
would assign a low value to example (a) because the prediction appears very confi-
dent. However, it would also treat examples (b) and (c) equally, even though they
are qualitatively different. An image that produces similar scores for cat and dog
is reasonably valuable and annotating it might slightly improve the discrimination
between these two concepts. But an image that is equally likely to contain a bus or
a cat must be more “groundbreaking” and result in a fundamental change in the
hypothesis.

We define the hierarchical 1-vs-2 value function as:

v(x, h) = d(c1, c2)
⇥
1�

�
max
c12YP

hc1(x)� max
c22YP\c1

hc2(x)
�⇤

,

where d(c1, c2) is a semantic distance between the concepts c1 and c2, e.g., a graph
distance dG (section 6.1.2.2). We hypothesize that this formulation improves upon
the performance of the conventional 1-vs-2 method.
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8. Conclusion

This chapter concludes the thesis by offering an overarching summary of our findings.
We also point towards promising future work opportunities that arise from open
questions and interesting combinations of methods.

8.1. Summary

In chapter 1, we argue that methodical improvements such as better neural network
architectures or optimization algorithms do not necessarily apply to any given ma-
chine learning task. Formally, this is a consequence of the no free lunch theorem (see
section 2.1.1.5), and is a serious concern for applications where labeled training data
is scarce and expensive, e.g., biodiversity monitoring (see section 7.3.2). We then
identify possible contributions to other aspects of a learning system that are not
subject to this fundamental limit. These two “escape routes” concern the training
data on one hand and the learning paradigm on the other hand. We further consider
properties of real-world applications (see section 1.1) to focus our contributions.

First Escape Route — Training Data

Concept hierarchies (see section 3.2) contain knowledge in the form of relational
statements, e.g., “a bird is an animal”. We replace the classes in a typical classification
tasks with concepts (see section 3.1.1) from such a hierarchy, which are no longer
mutually exclusive. The hierarchy further allows for a distinction of precise and
imprecise concepts (see section 5.1). Precise concepts, e.g., snow bunting, do not
subsume any other concepts. They are the leaf nodes in a graph representation, and
correspond to the original classes. Imprecise concepts, e.g., object or animal, are the
inner nodes, and are not present in a typical classification task.

Knowledge Integration In section 5.2, we introduce a hierarchical classifier that
predicts probabilities for all concepts, precise and imprecise. The probabilistic model
is constrained by the hierarchy, such that the probability of a subsumed concept is
at most equal to the probability of the subsuming concept (see section 5.2.2). We
only allow precise predictions. With this restriction, the hierarchical classifier is a
transparent drop-in replacement for a conventional one-hot softmax classifier. These
constraints integrate the knowledge contained in the concept hierarchy into the
model, and if the knowledge is correct and helpful, should improve the accuracy
without additional training data. The domain knowledge provides a task-specific
inductive bias (see section 2.1.1.5).

We validate this method on multiple computational scales of interest in section 6.3
and the findings are discussed in detail in section 6.7.1.1. On small-scale setups
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with benchmark data, our method shows a substantial increase in both accuracy
and training speed. However, in a large-scale investigation, we observe a small
decrease in accuracy. We identify two possible causes, namely weak visual-semantic
correspondence and faulty concept hierarchies, which we investigate in detail in
section 6.6.1 and section 6.6.2, respectively.

Learning from Imprecise Data Still, knowledge integration is only one application
of concept hierarchies. We propose learning from imprecise data in section 5.1 to
address the real-world nature of annotators with different levels of expertise (see
section 1.1). In this setting, annotators are allowed to use imprecise concepts as
labels to express their uncertainty. If they were forced to select only precise labels,
they would either not label the image in question at all, or guess and possibly make
a mistake. Furthermore, when crawling the web for training data using a search
engine, imprecise concepts offer a larger variety of search terms, and potentially
more results per search as terms become more generic (see fig. 6.7). Our method
CHILLAX (see section 5.3.2) can learn from training data labeled as either precise
or imprecise concepts while still providing precise predictions for easier adaptation
of existing tasks. We refer to this additional generalization step as extrapolation,
and also propose performing extrapolation during training in section 5.3.3, thereby
generating pseudo-labels to further improve performance.

In section 6.4, we conduct a large-scale study of learning from imprecise data on
benchmark datasets, where artificially introduce imprecision to simulate different
data sources, e.g., volunteer annotators or web crawling. These imprecision models
are described in section 5.1.1.1 and validated on real-world data in section 6.6.3.
Compared to two baselines that represent an annotator guessing or not labeling when
they are uncertain, CHILLAX performs substantially better. We also observe that it is
reasonably robust to label noise on top of imprecision and show that it has distinct
advantages over its competitor HEX (Deng et al. 2014).

Analyses While we can use concept hierarchies to structure our models, this process
can only improve the models if the knowledge represented by the hierarchies is
correct and relevant. Because our applications are all computer vision tasks, i.e.,
visual problems, it is not immediately clear where semantic knowledge could be
helpful and in which way the two domains are related. In section 6.6.1, we directly
measure the correlation between semantic and visual measures (see section 6.1.2.2)
on pairs of images and concepts. We show that the correlation between visual and
semantic similarity is stronger when using the concept hierarchy as opposed to a
“flat” hierarchy. The findings are discussed further in section 6.7.3.1.

Even without the visual-semantic domain gap, a concept hierarchy could contain
false statements, e.g., “a bird is a vehicle”. In section 6.6.2, we introduce errors
into a hierarchy in a controlled manner on benchmark data and observe a negative
effect on accuracy. We repeat the experiment on D-CHIVES, a synthetic dataset
with perfect visual-semantic correspondence (see section 6.6.2.2), and find that the
negative effect is substantially stronger. In section 6.7.3.2, we discuss possible causes
of this discrepancy.
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Real-World Data We contemplate several potential sources of imprecise data in
section 5.1.1.1. Web crawling is one possible data source, where websites are scanned
systematically to produce pairs of images and captions. These pairs can be trans-
formed into training data for classification tasks, e.g., using the algorithm in sec-
tion 5.1.2. Alternatively, one can determine the relevant concepts in advance and use
an image search to produce labeled data. Here, imprecise data allows for more search
terms.

We test a webly supervised learning setup in section 6.5, where we augment a
real-world biodiversity monitoring dataset with images downloaded from Flickr and
use a concept hierarchy composed using WikiSpecies queries to determine the search
terms. This example illustrates the relative ease of obtaining a concept hierarchy,
even for a very specific domain. Our hierarchical classifier already has an advantage
on the initial dataset, and CHILLAX outperforms the baseline on the combined data
as well. An off-label use of our hierarchical classifier as a filter further improves
accuracy. The results are laid out and discussed more in section 6.7.2.

Our experiments in section 6.4 rely heavily on the noise models proposed in sec-
tion 5.1.1.1. Hence, it is crucial that we validate the models to support the conclusions
of these experiments. In section 6.6.3, we analyze a whole year of Flickr uploads
instead of focusing on specific search terms. We map individual metadata elements
(title, tags etc.) to concepts using the algorithm in section 5.1.2 and observe the distri-
butions over depth in the hierarchy. The results show that except for a quirk of the
WordNet hierarchy, the real-world distributions fit the model reasonably well. We
further interpret the results in section 6.7.3.3.

Second Escape Route — Learning Paradigm

Lifelong learning (see section 7.1) addresses further differences between the typical
academic setup of “waterfall” learning and the needs of real-world applications (see
section 1.1). It focuses on the distribution of project resources over time, i.e., annotator
sessions and image acquisition. We use camera trap image analysis as a recurring
example of a real-world application with these properties.

Active and Incremental Learning for Object Detection A lifelong learning sys-
tems has two main methodical ingredients in active learning (see section 7.1.1) and
incremental learning (see section 7.1.2). In section 7.2.1, we derive active learning
value functions for object detection tasks where we consider the value of whole
images as opposed to instances. We propose aggregated classification value functions
in section 7.2.1.1 and two metrics specific to the YOLO object detector (Redmon
et al. 2016). To complete the lifelong learning system, we adapt the deep fine-tuning
method from Käding et al. (2016b) to YOLO in section 7.2.2.

In section 7.2.3, we validate the system on benchmark data. It does not exhibit
substantial amounts of catastrophic forgetting, which points to the reliability of the
incremental learning method. The active learning methods that compute sums of the
values of instances perform the best overall, likely due to their preference of examples
with many detections. This preference can be observed qualitatively in section 7.2.3.4
and the results are discussed further in section 7.2.4.
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Carpe Diem — Weakly Supervised Lifelong Object Detection To evaluate the ac-
tive and incremental learning methods in a real-world setting, we develop a graphical
user interface called Carpe Diem (in reference to YOLO). The user experience and
flow of interactions is detailed in section 7.3.4. It integrates the annotation method
of Papadopoulos et al. (2016), where users can only confirm or reject a proposed
bounding box instead of drawing them manually.

Researchers are asked to annotate several batches of camera trap images to validate
the entire system in section 7.3.3. We observe a substantial accuracy increase over the
initial model even after the first batch. The active learning component successfully
selects valuable images from a dataset where almost two thirds of the images are
spuriously triggered and empty.

Whole Image Annotations and Face Detection for Re-Identification Any labeling
process should be as flexible and as accommodating towards annotators as possible
(see section 1.1). In section 7.4, we perform individual classification of gorilla gorilla
gorilla by extracting faces first. Images are only annotated with a single label and
no bounding boxes. Such simple annotations can comfortably and efficiently be
collected in the field during image acquisition.

The images can contain multiple individuals, in which case the annotators consider
the individual in focus. We train a face detector separately from a classifier that
only processes extracted faces. With this process, we can utilize the whole image
annotations, but still leverage strong facial features. When the detector predicts more
than one face, we use heuristics to determine which individual is in focus of the
image. The experiments in section 7.4.2 show that this separation of concerns is
successful despite the accumulation of errors from detector and classifier.

8.2. Future Work

In this section, we identify promising future research directions that continue the
work presented in this thesis. The directions include remaining open questions as
well as new ideas.

Interaction Our motivation for developing methods around imprecise data is that
it allows annotators to express their uncertainty or lack of expertise correctly. In this
thesis, we focus on the processing of the resulting imprecise data. However, human-
machine interaction also affects the efficiency of a learning system (see section 7.3),
and the optimal interaction process for generating imprecise labels is not clear.

A top-down approach, where an annotator starts from the root and navigates
through the hierarchy with increasing precision, could be well suited when there
are numerous concepts. However, it requires many steps for “deep” hierarchies.
Conversely, in a bottom-up approach, the annotator would select multiple concepts
that probably apply to the image in question, and the label is determined by the
lowest common subsumer (see section 6.1.2.2). The bottom-up approach would be
best suited to a small hierarchy. Both approaches could be improved by incorporating
predictions from an already trained model to pre-select relevant concepts and “skip”
levels in the concept hierarchy.
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Probabilistic Connections Our hierarchical classifier is based on the subsumption
assumption (see section 5.2.2). In fact, it plays such a central role that no prediction
of the classifier can possibly violate it. Still, we learn in sections 6.6.1, 6.6.2 and 6.7.3
that there are many reasons why it might not always hold in practice.

To resolve this discrepancy, we propose to regard each individual element of the
hyponymy relation as probabilistic. For example, this probability could be fixed
and equal for the whole relation, adding a global relaxation term to the classifier. It
could also be learned by the hierarchical classifier, which would allow for interesting
insight by studying the distribution over the concept hierarchy.

The setup could further be generalized by also allowing new connections to be
learned. The original concept hierarchy would only be used to initialize (and limit) a
connection matrix, similar to the affinity matrix of Fergus et al. (2010). This matrix is
then refined by the classifier as part of the learning process. Further regularization
would be required to ensure that the matrix actually describes a hierarchical relation
(see section 3.2.1).

Multiple Hierarchies and Parts of Speech In section 3.3, we list several possible
sources of concept hierarchies. Furthermore, we learn in section 5.1.2 that mapping
labels in a dataset to concepts in a hierarchy is not necessarily uniquely defined.
Still, the classifier only considers one “true” set of concepts and a single relation.
While probabilistic connections could resolve this discrepancy, there is an alternative
approach, namely allowing more than one hierarchy.

Such an approach is proposed in Li et al. (2021) and our hierarchical classifier could
similarly be adapted to consider multiple, possibly overlapping, sets of imprecise
concepts. Moreover, this modification would allow for inclusion of different parts of
speech at the same time.

A set of attributes, some of which are shared by different concepts, is semantically
distinct from a hyponymy relation. However, it would fit well with the assumptions
in section 5.2.2 if a global attribute that matches all other attributes and concepts is
introduced to preserve the closed world. Using multiple hierarchies at the same time,
attributes and hyponymy could be combined similar to USE (Hwang and Sigal 2014,
see also section 4.1.2). But unlike USE, this approach would not be limited to two
semantic relations. For example, one could also include antonymy or meronymy (see
section 3.1.2.2).

Lifelong Learning with Imprecise Data In section 7.5, we propose an active learn-
ing value function for classification that considers the semantic distance between
predicted concepts. Otherwise, an example where cat and dog are predicted with
equal confidence would be treated the same as an example where cat and bus are
equally likely. However, hierarchical 1-vs-2 is only designed as a replacement to im-
prove conventional 1-vs-2 in regular classification tasks where only precise concepts
occur, and there is no consideration of imprecise data.

We pose that imprecise data brings further opportunities for changes in the learning
paradigm. For example, an active learning method could not only assign a value
to a certain example, but also request an annotation with only limited precision to
conserve a small annotation budget, assuming that less precise labels can be acquired
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for less cost. Furthermore, it could spend a large fraction of the budget on a single
example to obtain a maximally precise annotation, possibly from multiple annotators,
if the example is considered valuable enough.

Incremental learning requires additional considerations for hierarchical classifica-
tion as well, for example, when new concepts are introduced. Our implementation
CHIA (see section 1.2) can perform incremental learning of our hierarchical classifier
and also discover new relations whenever concepts are added. Such an approach
could be combined with a hierarchy-informed curriculum, e.g., as proposed in Stretcu
et al. (2021) (see section 4.1.1.3). However, this method would have to be adapted to
consider the order of precision in the training data as well, instead of only focusing
on the classifier.
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Table A.1.: Hyperparameters and further setup details of small-scale experiments on
benchmark datasets.

CIFAR-100 NABirds ImageNet-1k

Optimization

Algorithm Adam (see section 2.1.3.3)
Learning Rate 0.00
Minibatch Size 128 64
Iterations 60 000 120 000 234 274
Architecture ResNet-32 ResNet-50 V2
Input Size 32 ⇥ 32 224 ⇥ 224
Initialization Random, eq. (2.12)
Regularization L2, 0.00 L2, 0.00
Processing and Augmentation (see section 6.2.3)

Random Shifts Up to 4 px Up to 32 px
Random Flips Horizontal only
Processing Scaling to [0, 1] only

Experimental Runs 6 3
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Table A.2.: Hyperparameters and further setup details of large-scale experiments on
benchmark datasets.

NABirds ImageNet-1k

Optimization

Algorithm SGD (see section 2.1.3.1), a = 0.9
Learning Rate Schedule SGDR (see section 6.2.2.3)

T0 = 59760, h = 0.003 T0 = 100091, h = 0.2
Minibatch Size 32 128
Iterations 59 760 200 000
Architecture ResNet-50 V2
Input Size 448 ⇥ 448 224 ⇥ 224
Initialization iNaturalist 2017 Random, eq. (2.12)
Regularization None
Processing and Augmentation (see section 6.2.3)

Random Flips Horizontal only
Random Crops Out of 512 ⇥ 512 Out of 256 ⇥ 256
Processing Mean and std. dev. normalization (see section 6.2.3.2)

Experimental Runs 6 1

Table A.3.: Hyperparameters and further setup details of large-scale experiments on
benchmark datasets with imprecise data. Table compiled of data from
Brust, Barz, and Denzler (2021b).

NABirds ImageNet-1k

Optimization

Algorithm SGD (see section 2.1.3.1), a = 0.9
Learning Rate Schedule SGDR (see section 6.2.2.3)

T0 = 59760, h = 0.0044 (CHILLAX) T0 = 100091, h = 0.2
T0 = 59760, h = 0.003 (baselines)

Minibatch Size 32 128
Iterations 59 760 200 000
Architecture ResNet-50 V2
Input Size 448 ⇥ 448 224 ⇥ 224
Initialization iNaturalist 2017 Random, eq. (2.12)
Regularization None
Processing and Augmentation (see section 6.2.3)

Random Flips Horizontal only
Random Crops Out of 512 ⇥ 512 Out of 256 ⇥ 256
Processing Mean and std. dev. normalization (see section 6.2.3.2)

Experimental Runs 6 1
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Table A.4.: Large-scale benchmark comparison of CHILLAX and baselines on
NABirds. We report the accuracy in percent on the validation set. Impre-
cision as indicated, 10 % inaccuracy. Table compiled of data from Brust,
Barz, and Denzler (2021b).

Deng et al. p 0.99 0.95 0.9 0.5

Leaves only 8.19 ± 0.57 23.47 ± 1.11 39.15 ± 1.60 70.48 ± 0.73
Random leaf 57.16 ± 0.04 57.65 ± 0.10 59.17 ± 0.14 69.20 ± 0.37
CHILLAX 58.34 ± 0.70 63.61 ± 0.50 67.76 ± 0.35 74.26 ± 0.50

Geometric q 0.5 0.8 0.9 0.95

Leaves only 36.36 ± 1.01 69.17 ± 0.11 73.75 ± 0.24 75.78 ± 0.34
Random leaf 9.44 ± 0.17 46.58 ± 0.60 62.65 ± 0.15 69.91 ± 0.16
CHILLAX 38.70 ± 0.70 67.35 ± 0.19 72.07 ± 0.15 73.48 ± 0.23

Poisson l 1.0 2.0 3.0 4.0

Leaves only 22.12 ± 0.40 54.38 ± 1.18 67.95 ± 0.07 73.06 ± 0.64
Random leaf 9.99 ± 0.33 33.13 ± 0.57 53.10 ± 0.74 65.44 ± 0.21
CHILLAX 34.61 ± 1.20 60.50 ± 0.33 69.84 ± 0.26 72.81 ± 0.16

Table A.5.: Large-scale benchmark comparison of CHILLAX and adaptive threshold
method on NABirds. We report the accuracy in percent on the validation
set. Imprecision as indicated, no inaccuracy. Table compiled of data from
Brust, Barz, and Denzler (2022).

Noise model (ii) (iii) (iv) (v)

Do nothing 62.66 ± 0.82 49.04 ± 1.04 43.18 ± 0.20 70.91 ± 0.34
Best non-adaptive 63.54 ± 0.51 50.68 ± 0.44 44.02 ± 0.12 71.77 ± 0.00

Adaptive threshold:
dI⇤ = 0.025 61.80 ± 0.69 49.07 ± 0.93 43.35 ± 0.82 71.58 ± 0.40
dI⇤ = 0.0375 61.43 ± 0.51 49.75 ± 1.13 43.11 ± 1.49 72.00 ± 0.43
dI⇤ = 0.05 61.80 ± 0.44 49.52 ± 0.90 42.92 ± 0.42 72.10 ± 0.31
dI⇤ = 0.0625 61.87 ± 0.91 49.57 ± 1.55 42.30 ± 0.35 71.15 ± 0.92
dI⇤ = 0.075 62.20 ± 0.76 49.97 ± 0.59 41.71 ± 1.13 71.37 ± 0.40
dI⇤ = 0.1 61.79 ± 0.30 48.57 ± 0.61 39.72 ± 0.96 70.77 ± 0.34
dI⇤ = 0.15 61.70 ± 0.46 44.53 ± 1.56 33.56 ± 1.16 69.02 ± 0.87
dI⇤ = 0.2 61.68 ± 0.56 41.04 ± 0.51 30.42 ± 0.46 68.56 ± 0.46
dI⇤ = 0.3 61.34 ± 0.35 34.03 ± 1.04 27.30 ± 1.11 66.31 ± 0.52
dI⇤ = 0.4 61.98 ± 0.55 30.49 ± 0.67 25.02 ± 0.78 64.64 ± 1.06
dI⇤ = 0.5 61.69 ± 0.40 26.52 ± 1.28 23.72 ± 0.53 65.04 ± 1.04
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Table A.6.: Realized IC gain of self-supervised CHILLAX methods on NABirds. Im-
precision as indicated, no inaccuracy.

Noise model (ii) (iii) (iv) (v)

Adaptive threshold:
dI⇤ = 0.025 0.03 0.04 0.04 0.04
dI⇤ = 0.0375 0.04 0.05 0.05 0.06
dI⇤ = 0.05 0.05 0.07 0.07 0.07
dI⇤ = 0.0625 0.06 0.08 0.08 0.09
dI⇤ = 0.075 0.07 0.10 0.10 0.10
dI⇤ = 0.1 0.07 0.13 0.13 0.13
dI⇤ = 0.15 0.07 0.18 0.18 0.17
dI⇤ = 0.2 0.07 0.23 0.23 0.21
dI⇤ = 0.3 0.07 0.32 0.32 0.30
dI⇤ = 0.4 0.07 0.41 0.41 0.37
dI⇤ = 0.5 0.07 0.50 0.50 0.39
IC range [0.0, 0.2] 0.07 0.01 0.02 0.03
IC range [0.1, 0.3] 0.07 0.16 0.15 0.10
IC range [0.2, 0.4] 0.00 0.21 0.21 0.15
IC range [0.3, 0.5] 0.00 0.28 0.26 0.17
IC range [0.4, 0.6] 0.00 0.34 0.35 0.18

Table A.7.: The 9 species present in the AMMOD moth dataset are mapped to Wik-
iSpecies as follows.

• amphipyra pyramidea –- berberea! genus Amphipyra

• aplocera plagiata –- efformata! genus Aplocera

• chlroclystis v-ata! species Chloroclystis v-ata

• epirrita autumnata –- dilutata –- christyi! genus Epirrita

• mesapamea spec! genus Mesapamea

• noctua janthina –- janthe! custom concept (Noctua comes also exists)

• oligia latruncula –- strigilis –- versicolor! custom concept (other
Oligia exist)

• sunira circellaris! subgenus Sunira

• thera variata –- britannica! genus Thera
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Figure A.1.: Average number of Flickr search results per moth taxon at depth in the
concept hierarchy.

Table A.8.: Face detection performance on Mbeli Bai held-out validation set. Table
compiled of data from Brust et al. (2017).

# Training Images — 500 1000 1500 2000

Validation set

AP (%) 29.5 86.6 88.4 90.6 90.8
Precision (%) 83.1 85.6 89.4 88.9 90.1
Recall (%) 31.5 88.7 90.3 92.0 92.2

Whole dataset

No Detection (%) 59.8 0.7 0.8 0.3 0.4
1 Detection (%) 39.1 92.3 93.7 93.9 95.4
> 1 Detection (%) 1.1 7.0 5.4 5.9 4.1

Figure A.2.: Carpe Diem graphical user interface. Left: landing page. Right: correct-
ing a class label. Figure taken from Brust, Käding, and Denzler (2020).
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Notation

This section summarizes the notation used throughout this work. We aim for a short,
expressive notation that minimizes potential for ambiguity. It seeks to be mostly
compatible to Shalev-Shwartz and Ben-David (2014) as well as Goodfellow, Bengio,
and Courville (2016).

Basics

a A scalar
a A vector
A A matrix
f (x) A function f : x 7! f (x)

P(A) Probability of event A
E(A) Expectation of random variable A
1[A](x) Indicator function of x for set A (argument can be elided when obvious)

P(A) The power set of set A

Learning

X Domain set
Y Label set
x 2 X An element of the domain set (a domain point)
y 2 Y An element of the label set
S Training data S =

�
(x1, y1), . . . , (xm, ym)

�

h Hypothesis
A Learner
f Target function
D Environment distribution
LD, f (h) Risk
LS(h) Empirical Risk w.r.t. training data and hypothesis
L Loss function

Q Real vector space of parameters
q Element of Q
h Learning rate

I The set of images
Y

BB The set of possible bounding boxes Y
BB = R4 = R2

⇥R2
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Semantics

Y
P The set of labels for prediction and validation

Y
T The set of labels for training

dog A class label
C. diff. A species
C A set of concepts
R A relation over concepts
 is-a The hyponymy relation
E The extension of a concept
I The intension of a concept

G A graph with vertices and edges(V, E)
dG Graph distance
I Information content
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Acronyms

AP average precision.
AULC area under the learning curve.

CNN convolutional neural network.

DAG directed acyclic graph.

ERM empirical risk minimization.

HoG histogram of oriented gradients.

IC information content.

mAP mean average precision.
MLP multi-layer perceptron.

NLP natural language processing.

OCR optical character recognition.
OHSM one-hot softmax.

PAC probably approximately correct.

RDF Resource Description Framework.
RLM regularized loss minimization.
ROC receiver operater characteristics.

SGD stochastic gradient descent.
SVM Support Vector Machine.

VQA visual question answering.
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Glossary

1-vs-2 Active learning strategy, also known as margin
sampling. 130

Activation Function Nonlinear function used in neural networks. 27
Active Learning Methods that can select valuable samples for label-

ing with the highest possible efficiency. 130

Bias Additive term in a linear model. 27
Bounding Box An axis-aligned rectangle that describes a region of

an image. 23

Classification A supervised learning task where the label set is
discrete. 8

Concept A more general term for a class, relaxing the re-
quirement of mutual exclusivity. 33

Concept Hierarchy Set of concepts with structure given by a semantic
relation. 37

Context Structure upon which concepts are defined. 34
Convolutional Layer Layer of neurons where each is connected to a

neighborhood of input neurons and weights are
shared. 29

Convolutional Neural Network Type of neural network used in deep learning. 26,
163

Data Augmentation Set of transforms on training data that exploit in-
variances to increase the sample size. 89

Deep Learning An approach to machine learning where features
are learned from large amounts of data instead of
being defined by hand. 26

Domain Point An element of the domain set. 8
Domain Set The “input” portion of a supervised learning prob-

lem. 8

Empirical Risk Error measure for a given hypothesis and training
data. 9

Environment Distribution The distribution that the training data is sampled
from. 9

Example An element of the task-agnostic example set of
training data. 12
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Glossary

Example Set A task-agnostic way of describing the set from
which training data is sampled. 12

Feature A representation of data with certain properties
that make it useful for machine learning applica-
tions. 25

Feature Map Part of the output of a convolutional layer. 30
Fine-grained Recognition A classification task where classes are closely re-

lated in some fashion. 23
Fully-connected Layer Layer of neurons where each is connected to all

input neurons. 27

Generalized Loss Function A measure of success for a general learning prob-
lem. 13

Gradient Descent A first-order optimization algorithm. 14

Hierarchical Classification Classification task that involves a concept hierarchy.
67

Hyperparameter Parameter that controls optimization, but is typi-
cally not itself optimized using training data. 15

Hyponymy A hyponym is a concept subsumed by a more gen-
eral hypernym, and hyponymy is the correspond-
ing relation between concepts. 36

Hypothesis A function from the domain set to the label set —
the output of a learner. 8

Image A discretized representation of the image function.
22

Image Classification A supervised learning task on the domain of im-
ages where the label set is discrete. 23

Image Function A continuous representation of an image, before
discretization. 21

Imprecise Data Training data that contains semantically imprecise
labels. 60

Incremental Learning Methods that can add new knowledge to an ex-
isting model without causing it to forget previous
data. 131

Inductive Bias Prior knowledge about a task that can be used to
draw further conclusion from training data. 10

Instance A single object, represented by a bounding box, in
the context of object detection. 23

Internal Label Label representation that is used by a method in-
ternally only exposed via a translation process. 68

Internal Label Set Set of internal labels. 68

Kernel Coefficients of a convolution operation. 29
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Glossary

Label An element of the label set. 8
Label Set The “output” portion of a supervised learning

problem. 8
Layer Collection of neurons, organizational unit in a neu-

ral network. 27
Learner An algorithm that produces hypotheses from train-

ing data. 9
Learning Rate Hyperparameter in gradient-based optimization

methods. 15
Lifelong Learning Combination of active learning and incremental

learning in a continuous cycle. 129
Linear Model A hypothesis composed partly of a linear function.

13
Loss Function A measure of success for a prediction problem. 12

Machine Learning A field related to artificial intelligence where pre-
dictions are made based on a mathematical model
created from training data. 7

Multi-layer Perceptron Multiple perceptrons arranged into layers to form
a complex neural network. 27, 163

Neural Network Machine learning method inspired by construction
patterns found in the human brain. 26

Novelty Detection Machine learning task where examples of previ-
ously unseen concepts are detected. 136

Object Detection A supervised learning task where objects in an im-
age are localized by bounding boxes and classifier.
23

Perceptron Mathematical model of a single neuron, the build-
ing block of neural networks. 27

Pixel A single element of a discretized image. 23
Pseudo-label A label that is not annotated by a human, but au-

tomatically generated in the context of self-super-
vised learning. 77

Representation Learning Learning of a feature representation, as opposed
do hand-engineered features. 26

Risk Error measure for a given hypothesis, environment
distribution and target function. 9

Sample Complexity The number of training data samples required to
achieve a certain goal. 11

Self-supervised Learning The use of confident predictions as labels. 16
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Glossary

Semantic Segmentation A supervised learning task where each pixel of an
image is classified individually. 23

Semi-supervised Learning A learning problem where both unlabeled and la-
beled training data is available. 16

Statistical Learning Theory A mathematical framework relating probability
theory and machine learning. 7

Structured Output Prediction A machine learning task with a very large label set
endowed with a structure. 34

Supervised Learning A learning problem where predictions relating “in-
puts” to “outputs” are made by learning from la-
beled training data. 16

Support Vector Machine A linear classifier. 14, 163

Target Function A function that labels every element of the domain
set “correctly”. 9

Task Formal definition of a machine learning problem
and its constituent components. 13

Taxonomy Set of all concepts and their extensions given a con-
text. 35

Training Data A sequence of pairs relating elements of the domain
set to elements of the label set. 8

Unsupervised Learning A learning problem where patterns are discovered
using only unlabeled training data. 16

Validation Set Data sampled from the sample environment distri-
bution as training data, but independent. 20

Weakly Supervised Learning Supervision mode between supervised learning
and unsupervised learning, where the quality of
labels is reduced. 17

Weight Coefficient in a linear model. 27
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