
TU Ilmenau | Universitätsbibliothek | ilmedia, 2022
http://www.tu-ilmenau.de/ilmedia

Boeck, Thomas; Sanjari, Seyed Loghman; Becker, Tatiana

Dynamics of a magnetic pendulum in the presence of an oscillating conducting 
plate

Original published in: Proceedings in applied mathematics and mechanics. - Weinheim [u.a.] : 
Wiley-VCH. - 20 (2021), 1, art. e202000083, 2 pp. 

Annual Meeting of the International Association of Applied Mathematics 
and Mechanics (GAMM) ; 91 (Kassel) : 2020.03.16-20

Original published: 2021-01-25
ISSN: 1617-7061
DOI: 10.1002/pamm.202000083
[Visited: 2022-03-25] 

This work is licensed under a Creative Commons Attribution 4.0 
International license. To view a copy of this license, visit 
https://creativecommons.org/licenses/by/4.0/

Conference: 

http://www.tu-ilmenau.de/ilmedia
https://doi.org/10.1002/pamm.202000083
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Received: 17 June 2020 Accepted: 24 November 2020

DOI: 10.1002/pamm.202000083

Dynamics of a magnetic pendulum in the presence of an oscillating
conducting plate
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A pendulum with an attached permanent magnet moving near a conductor is a typical experiment for the demonstration of
electromagnetic braking. When the conductor itself moves, it can transfer energy to the pendulum. We study a simple but exact
analytical model where the conductor is a horizontally unbounded flat plate. For this geometry, eddy currents and induced
Lorentz force due to the motion of a magnetic dipole are known analytically in the quasistatic limit. A vertical oscillation of
such a horizontal plate located beneath the magnet is considered. In this setup, the vertical position of the pendulum is an
equilibrium point when the magnetic moment of the magnet is perpendicular to its plane of motion. Depending on the strength
of the magnetic dipole moment, the frequency and amplitude of the plate as well as the distance between plate and magnet,
the plate oscillation can destabilize the equilibrium. The stability limits for weak electromagnetic coupling are computed
analytically using the harmonic balancing method. For stronger coupling, the stability limits are obtained numerically using
Floquet analysis. Chaotic motions with finite amplitudes are also found.
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1 Introduction
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Fig. 1: Sketch of the magnetic pendulum with eigenfrequency ω0 =√
|g|/l. The magnet with mass mb and dipole moment M is attached

to a massless inflexible rod of length l. The conducting plate with
conductivity σ vibrates with angular frequency ω and amplitude Q in
z-direction. The pivot point is at the origin of the coordinate system.
P denotes the vertical distance between magnet and plate in equilib-
rium when Q = 0.

Our work is motivated by the analytical results obtained in
Ref. [1] for the induced eddy currents and resulting Lorentz
force and torque when a magnetic dipole moves slowly along
or rotates slowly about an axis that is parallel to the surface
of an unbounded flat plate. For slow motion, the electro-
magnetic induction equation (derived from Maxwell’s and
Ohm’s laws) simplifies considerably since magnetic diffu-
sion and stretching terms dominate. The induced currents,
forces and torque are then linear functions of the magnet’s
translational or angular velocity. This so-called quasistatic
limit applies when the magnetic Reynolds number is small
[2]. The work in Ref. [1] was in part motivated by the prob-
lem of contactless inductive flow measurement in conduct-
ing liquids, e.g. molten metals. One particular method is
Lorentz force velocimetry (LFV), where a magnet is placed
next to the flow and the induced drag force on the magnet
is measured [3]. A drag force must be present since Lenz’
law states that electromagnetic induction opposes its cause,
i.e. the relative motion between conducting material and the
magnetic field. Since only the relative motion is important
for the induction, the dipole considered in Ref. [1] can also
be regarded as fixed in space while the plate is moving. It
then represents a parallel conducting flow with uniform ve-
locity. With a view to LFV, more complicated velocity distributions unfortunately do not permit analytical solutions. We have
therefore decided to generalize the problem to relative motions between plate and magnet beyond those relevant for LFV,
which leads naturally to the consideration of a magnetic pendulum as sketched in Fig. 1. For the additional vertical motion
between plate and dipole, one can also determine the induced currents, forces and torques analytically in the quasistatic limit.
However, a fixed plate only causes a damped motion of the pendulum. We therefore assume that the plate oscillates vertically
and that the dipole moment is perpendicular to the plane of motion. These choices give rise to a parametric resonance behavior.
The magnet is assumed to be small so that its size can be neglected. The plate surface corresponds to zp = l + P +Q sinωt.
The nondimensional eigenfrequency and geometry parameters of the problem are

A =
4ω2

0

ω2
, B =

2Q

l
, S =

2P

l
.
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2 of 2 Section 5: Nonlinear oscillations
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Fig. 2: Regions of instability in the (A,C)-plane for S = 1 from numerical Floquet analysis.

2 Equation of motion and stability results

The pendulum experiences a torque along the z-direction generated by the Lorentz force acting on the magnet. For the chosen
orientation of the dipole moment there is no electromagnetic torque on the magnet itself. The nondimensional equation of
motion is

θ̈+ θ̇ C
1 + 3 sin2 θ

2 (2− 2 cos θ + S +B sin 2t)
3 +

(
A+ C

2B cos 2t

(2− 2 cos θ + S +B sin 2t)
3

)
sin θ = 0, C =

µ2
0M

2σ

16πmbl3ω
, (1)

where the parameter C characterizes the ratio between electromagnetic and inertial forces. Time is nondimensional with unit
2/ω. To avoid contact between plate and magnet and a corresponding singularity in the coefficients, the constraint S > B
is imposed. To examine the stability, we linearize eq. (1) about θ = 0. The linearized equation is similar to the classical
Mathieu equation with linear viscous damping but both the stiffness coefficient and the damping coefficient are modulated
by anharmonic functions. For small C one can use the harmonic balance method described in Ref. [4] to find conditions for
instability. As for the classical damped Mathieu equation, instability occurs only near the resonance casesA = n2 with integer
n. In addition, analytical constraints for S and B can be derived from the Fourier expansion of the modulated stiffness and
damping coefficients. These constraints agree with results obtained by a standard numerical Floquet analysis using Matlab.
For S = 1, subharmonic instability (A = 1) becomes possible when B > 0.32 and harmonic instability (A = 4) when
B > 0.77. Fig. 2 illustrates that the unstable intervals for A grow with B when C is small. There is also an upper limit for C
at given B, i.e. the damping effect ultimately dominates.

The stabilization of the inverted pendulum (θ = π) is also characterized by the linearized form of eq. (1) for negative A. In
this case, the plate is located above the pivot point. The lower stability limit Amin ≤ 0 in Fig. 2(a) decreases with increasing
B and C except when C is very large, i.e. both effects tend to stabilize the inverted position. The behavior for finite θ requires
a numerical solution of the nonlinear eq. (1). We have considered the parameters B = 0.6 and S = 1. Multiple solutions and
chaotic motion occur for 0 < A . 0.3 and C & 1.

More results including a derivation of eq. (1), consideration of other orientations of the magnetic dipole moment and
bifurcation diagrams of the chaotic solutions are provided in our paper [5] recently submitted for publication.
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