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Abstract. The improvement of image quality in the infrared range on silicon-based sensors is 
one major topics using these long wavelength channels for geometric measurements. The 
reason behind the bad quality of infrared images in comparison with the visible sampling range 
is explained by the wavelength response dependency of the silicon. Photons are able to either 
to pass the sensitive range of the pixel or can tunnel to the neighbor pixel. This effect leads to 
blurred images, which will not only increase the uncertainty of measurement, but also the 
aesthetical quality of the image. In this paper, methods to improve the image quality using 
blind convolution as well as a special infrared focusing to improve the sharpness will be 
presented. 

1. Introduction
Multispectral and hyperspectral imaging technologies allow detecting several features in industrial
inspections tasks using the different spectral channels [1] its applications range from cultural heritage,
arts, remote sensing, environmental monitoring, medicine, biology, food quality control, military
applications, factory automation and manufacturing [2]–[7]. Besides an accurate registration of images
acquired at different wavelengths for the spatial-spectral utilization of multispectral data [8], the
consideration of the semiconductor characteristics is a big issue. Therefore, in [9] a method for the
characterization of pixel inhomogeneity’s caused by the manufacturing process and read out process is
proposed. These investigations show how the specific data can be processed to compensate the
inhomogeneity’s as function of the current integration time. A fact which is actually not discussed in
these works, is the crosstalk characteristics between the pixels in dependence of the wavelength. The
material characteristic plays an important role. The characteristics of penetration depth versus
absorption of photons for different materials are given in [10]. It is shown in [10] and [11] that in the
near infrared region (NIR) the generation of electrons will happen in an range of tens to hundreds of
microns inside the semiconductor. Therewith it is possible that the electrons flow into neighbor pixels,
which is presented in [12]. Finally, these effects in the modular transfer function of the image sensor
and the images have a blurred appearance as well as blurred information across edges, which account
for the deterioration of the accuracy of geometrical measurements in the NIR regime: blurred images
have less sharp edges (see Figure 2) and edge detection based algorithms rely on precise estimation of
edge’s position. Unfortunately, this effect has a statistical behavior so a discrete model based
deconvolution of the blurred image is not possible. In this paper, an approach to improve this
characteristic using a statistical method based on a combined image restauration algorithm is part of
the discussion. Other sources of instabilities and how to tackle them are discussed in [1],[8]-[9],[13].
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2. Analysis of the blurred images in the infrared region
The blurred images caused by the electron generation of the incoming photons and the flow inside the
neighbour pixel regions inside the deep regions of the semiconductor are hardly measurable without
extensive setups. Nevertheless, for practical experiments the estimation of the sharpness on real
pictures can be evaluated. For the investigations in the infrared regions a multispectral filter-wheel
camera was used to generate the image data in the VIS-NIR region from 650-950nm. To minimize the
defocus caused by the optics in the different spectral channels, a refocus for every wavelength has to
be made inside the multispectral imager [1]. Therefore, a high precision sensor actuation inside the
multispectral camera is used [13].

2.1.  Autofocus calculation 
As mentioned in the introduction, the multispectral imager offers the possibility to correct the 
longitudinal chromatic aberration using a linear moving stage to set the image sensor in the correct 
position. To ensure a certain repeatability and to ensure comparability between the different infrared 
channels, Laplace approach for the calculation of the best focus position was applied. The Laplace 
approach uses the Laplace energy as given in equation 1: 

𝑀𝐿𝑎𝑝(𝐼) = ∑(
𝜕2𝐼(𝑥, 𝑦)

𝜕𝑥2
+
𝜕2𝐼(𝑥, 𝑦)

𝜕𝑦2
)2

(𝑥,𝑦)

. (1) 

A linear moving stage inside were actuated and the MLap were calculated for each position. The 
optimal focus position is the sensor position with the highest Laplace energy (Figure 1 c). After the 
focus procedure the Sensor was driven to the optimal position. The different focus positions along the 
optical axis can be stored inside the camera [1]. 

(a) (b) (c) 
Figure 1: Focused images using Laplace method at (a) 550nm and (b) 900nm, (c) Laplace energy versus sensor position. 

The depicted images (Figure 1) show as an example the difference between an NIR-image and a VIS 
image. Next step is to find a method to get the blured information in an evaluable value. 

2.2.  Approach for the evaluation of the image sharpness 

After the images were refocused for each wavelength, the evaluation of sharpness was processed using 
the edge transition of a chrome glass target depicted in Figure 1. Therefore, search lines along the radii 
will be fitted on the outer contour of the circles. The result of this method delivers a grey value 
transition for each line (normalized grey value (blue) Figure 2), which must be processed.  

Using a normalization method, the edge transition was converted to a normalized region between zero 
and one. With these values a best fit using a gaussian fitting method was applied to get a continuous 
edge transition description. Hence a Heaviside function (Figure 2 black) will be fitted over the real 
edge transition (Figure 2 fitted gaussian error function (red)) and the grey values were normalized to 
that function (min-max grey value). After that, an iterative algorithm tries to get the same area on the 
left and right side of the Heaviside function shifting itself along a virtual x-axis. If the areas are equal, 
the width is calculated by the pixel amounts, which are involved getting the areas equal (this is also 
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known as integral criteria of the photometric middle). The following illustration shows the result of 
applying the proposed method for the evaluation of the wavelength dependent edge transition 
enlargement. As expected the need of the proposed image correction is confirmed.  

 
Figure 2: Edge transition width estimation, method for calculating the image blur. 

 

 
Figure 3: Characteristic edge width behaviour starting in VIS up to the NIR wavelength range, where edge width becomes 
large due to cross-talk between pixels and the transparency of the semicobdctor for higher wavelengths. The seaminly blured 
image found at 400nm can be explained by two factors: low photon count on the UV region (light source depentent), which 
makes necessary higher integration times and with that, higher noise content; and the fact that the Si sensor is less sensitive to 
this region of the spectrum [1].  

3.  Proposed image correction models using an estimation of the point spread function 

3.1.  Direct point spread function measurement 
Figure 6 shows the values representing the edge width in the NIR channels. As a comparison, the 
width in the visible wavelength region is less than 2.5 pixels. To improve the system behaviour in the 
NIR range, discussed in section two, a deconvolution method was chosen to improve performance in 
the NIR. First of all, a method to estimate the point spread function is necessary. To overcome this 
problem two methods were tested. The direct PSF-estimation, which is based on the calculation out of 
a white noise pattern, does not perform accurate. The reasons behind that can be studied in the quality 
of the white noise target.  

3.2.  Point spread function estimation using blind deconvolution 
The second approach uses a blind deconvolution models using the expectation-maximization 
optimization (EM) [14] and the maximum – a – postori estimation (MAP) [15]. While the MAP 
method calculating the PSF and the corrected image simultaneously, the EM method calculates the 
PSF and the image correction separately. This leads to lower number of parameters, which must be 
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calculated during for the EM PSF estimation. Furthermore, the image restauration algorithm can be 
chosen independently from the PSF estimation method. After a few investigations in the 900nm 
infrared channel the EM method delivers more reasonable PSF-functions. The generated PSF using 
MAP delivers approximately the Dirac function as result. With this behaviour, a performant image 
restauration cannot be achieved. Furthermore, the lower number of parameters of the EM method 
leads to a better function performance which leads to the final decision for the EM-processing method. 

3.3.  Spatial PSF Processing using EM method 
The PSF has a spatial dependency. This leads to the necessity of calculating the PSF per the described 
method within a defined image-block region [16]. With the spatial information of the local PSF 
distribution inside the sub image blocks, the image is convoluted using the MAP optimization.  
Taking into consideration the spatial variation of the PSF, the acquired calibration image divided into 
several sub-image blocks. By means of the blind deconvolution, a PSF is calculated for each sub-
image block (as shown in Figure 4). 
Under the assumption that the PSF is piecewise continuous and a soft function, that means, it varies 
slowly along the x and y coordinates, an algorithm for the stitching and merging of neighbouring PSFs 
is applied. Figure 4 illustrates how the algorithm works: 
 

 
Figure 4: Schematic showing the PSF calculation. 

The pixels of the estimated PSFn for different picture blocks are transformed in new images in the 
following manner. The pixels at the same position within each PSF are arranged to a new block, as 
shown in Figure 4, where each pixel from the right handed image comes from the calculated PSF for 
the most upper-left pixel. Each one of these blocks is then filtered with a low-pass filter (Equation 2 
shows the core of the filter). This filter reduces the stochastic error between neighbouring blocks. 

𝐻 = (
1 2 1
2 4 2
1 2 1

).                     (2) 

Filtering ensures a certain uniformity between adjacent PSFs. After this filtering, the pixels are reset to 
their original positions in the PSFn. Subsequently, a threshold-based filtering of the PSF is performed 
by setting the values which lie below a specific location-dependent threshold value to zero. Thereby, 
the noise which is close to the limit of a PSF and and must have a low value is reduced. The 
thresholding windows are defined as follows:  

𝑇(𝑛) ≡

{
 
 

 
 1 0 ≤ |n| ≤ α

N

2

0.5 [1 + cos(𝜋
n − α

N
2

2(1 − α)
N
2

)] α
N

2
≤ |n| ≤ α

N

2

    , (3) 
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where N is the size of the window. This Turkey-window is chosen because the width of the top of the 
window can be chosen by setting the parameter α.  
The threshold operation is then performed by: 

𝑃(𝑥, 𝑦) = {
0 𝑃̃(𝑥, 𝑦) ≤ 𝑃̃𝑚𝑎𝑥 ∙ 𝑇 

𝑃̌(𝑥, 𝑦)       otherwise      
, (4) 

where 𝑃̃𝑚𝑎𝑥 is the maximum value of the unfiltered PSF 𝑃̃(𝑥, 𝑦)of each block, and 𝑃(𝑥, 𝑦) are the
filtered values. Finally, the PSFn are normalized so that the sum of all PSF values is equal to 1. 

3.4.  Image restauration using spatial PSF estimation 
Regarding the location-dependent PSF estimation, each image is also split into several image blocks 
and each image block is restored with the corresponding PSF. There are already a variety of methods 
for image restoration, for example, the Richardson-Lucy method and the Wiener filtering. These 
methods can allow a certain increase in the sharpness of the image, but cause annular artifacts in the 
vicinity of the edges. In order to suppress these effects, the method used in [17] is used in this work, 
which is based on MAP optimization. For the subsequent investigations, the original code is used by 
the author. 

4. Experimental results and Discussion
In order to evaluate the improvement of the sharpness of the restored images, edge detection on five
search lines was performed both on the original and restored images. The positions of the search
beams are indicated in Figure 5 (the search beam for each edge detection is shown in yellow – right
handed image). Point 1 is at the center of the image, and points 2 to 5 are at the four corners of the
calibration target.
Figure 6 shows the edges of the original images and the restored images. It shows that the edge width
can be significantly reduced by image restoration. The average edge width is reduced from 4.15 pixels
to 2.49 pixels, which means that an increased image quality, i.e. sharpness, can be detected.

Figure 5: Shows the postion of five observation points used for benchmarking the algorithm. At each point of the calibration 
target, a search line was placed to measure the edge width for both original and corrected images.  

The experimental results demonstrate that the image restauration works in a proper way. An 
improvement of more than approx. two pixel was achieved in the best case and approx. one and a half 
pixel in the worst case.  
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Figure 6: Experimental results using the image restauration algorithm in the NIR original value (blue), corrected value (red). 

These results lead to better system performance for measurement tasks, which will be realized with 
NIR-imaging. Nevertheless, the error on the target depends additionally on the optics that will be used 
for the application. 
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