
  
 

TU Ilmenau | Universitätsbibliothek | ilmedia, 2024 
http://www.tu-ilmenau.de/ilmedia 

Notni, Gunther; Bräuer-Burchardt, Christian; Heist, Stefan; Brahm, Anika; 
Kühmstedt, Peter 

Irritation-free pattern projection system for accurate 3D face and body scans 

 
Original published in: 2018 Joint IMEKO TC1-TC7-TC13 Symposium: Measurement science 

challenges in natural and social sciences. - [Bristol] : IOP Publishing, 18 
June 2018. - (2018), art. 12040, 6 pp. 
ISBN 978-1-5108-6494-8 
(Journal of physics. Conference Series ; 1044) 

Conference:  IMEKO TC1-TC7-TC13 Joint Symposium : (Rio de Janeiro) ; 2017.07.31-
08.05 

Original published: 2018-06-18 

ISSN: 1742-6596 
DOI: 10.1088/1742-6596/1044/1/012040 
[Visited: 2024-01-25] 
 

   

This work is licensed under a Creative Commons Attribution 3.0 
Unported license. To view a copy of this license, visit 
https://creativecommons.org/licenses/by/3.0/ 

 

http://www.tu-ilmenau.de/ilmedia
https://doi.org/10.1088/1742-6596/1044/1/012040
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


1

Content from this work may be used under the terms of the Creative CommonsAttribution 3.0 licence. Any further distribution

of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890 ‘’“”

2017 IMEKO TC1-TC7-TC13 Joint Symposium IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1044 (2018) 012040  doi :10.1088/1742-6596/1044/1/012040

 
 
 
 
 
 

Irritation-free pattern projection system for accurate 3D face 
and body scans 

G Notni1,2, C Bräuer-Burchardt2, S Heist2, A Brahm2, P Kühmstedt2 
1Technical University Ilmenau, Ehrenbergstraße 29, D-98693 Ilmenau, Germany 
2Fraunhofer IOF Jena, Albert-Einstein-Str. 7, D-07745 Jena, Germany 
 
E-mail: gunther.notni@iof.fraunhofer.de 
 
Abstract. Three dimensional scanning of human bodies or parts of person become more and 
more a matter of interest especially in medical applications. In this paper a new 3D scanning 
system is introduced which is absolutely irritation-free based on the structured light 
illumination by aperiodic sinusoidal fringe patterns in the near infrared range. Hence, it is 
particularly suitable for continuing human face scanning. The system is based on optical stereo 
capturing and structured light illumination using the GOBO principle. The measurement 
principle of the system is explained and examples of face and body scans are given. The 
measurement accuracy was evaluated by experiments and will be presented and discussed as 
well as an outlook to future work. 

1. Introduction 
Three dimensional acquisition of the human face and body is a growing task in medicine, animation, 
virtual life, and computer games and entertainment. Gestures and facial expressions can be used for 
communication tasks or machine control. Although gestures and facial expressions can be detected in 
2D image sequences yet, 3D data may provide more detailed information which for example can help 
to increase the power of gesture and expression analysis systems. 

Optical scanners based on structured light projection technique are increasingly used for gesture 
and facial expression detection and recording [1, 2]. This technique provides the advantage of relative 
high spatial resolution and measurement accuracy. Recently high-speed camera technique provides 3D 
frame rates up to 1 kHz [3, 4]. The basis for many different fields of application of 3D person 
scanning is the technological development of hardware and software components for suitable 3D 
scanning systems. The scanning technology may depend on the fact, whether static or moving objects 
has to be scanned.  

The 3D scanning of moving persons was strongly shifted into the focus of recent research. The 3D 
scanning of static objects or non-moving persons has its history mainly in medical applications such as 
computer-assisted tomography (CAT) [5] and nuclear magnetic resonance imaging (NMRI) [6]. 

An important requirement to 3D scanning systems for a permanent acquisition of human faces is 
the property of irritation freedom, i.e. the scanning process must not disturb the scanned person. This 
could be achieved using passive multi-camera systems. However, structured light illumination 
provides a very higher degree of object resolution and measurement accuracy. The approach for 
irritation free scanning using structured light illumination is using wavelengths at near infrared (NIR). 
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2. The pattern projection system 
Fringe projection profilometry is one of the established methods of structured light projection (see e.g. 
[7]), but other structured illumination patterns (binary dot patterns, speckle patterns, aperiodic 
sinusoidal patterns, see [8]) are also suitable for this technique. This measurement principle works 
well using wavelengths over 780 nm. However, illumination sources should be selected accordingly or 
spectral filters must be used in the case of projected pattern generation. The recording process by one 
or more cameras should be optimized according to the used wavelengths. 

The pattern projection system is based on the measurement principle of stereo observation and 
structured light illumination. It consists of a projection and an observation unit. The observation is 
done by a stereo-camera arrangement with blocking filters for visible light frequencies. The projection 
unit projects structured light patterns onto the measurement object which help to identify 
corresponding points in both cameras. 

From the several possibilities for the used pattern for the structured illumination we applied 
aperiodic sinusoidal fringe patterns [3, 4]. The generation of the pattern sequence (n patterns) was 
realized by a so-called GOBO projector, that performs the projection by a rotating wheel with radially 
arranged fringes, illuminated by a high power LED lamp (see figure 1). 

The GOBO principle is particularly known in the theatre-industry and means to place a partly 
transparent slide with a certain pattern is placed before a light source. The name GOBO is derived 
from “GOes Before Optics", describing that the pattern-depending slide object is positioned between 
the light source and the lenses. Usually, a GOBO projector contains a light source (e.g. a gas-filled 
tube or halogen lamp), a light collector (ellipsoidal reflector or condenser), a slide (e.g., made of steel 
or glass), and an imaging optical system (with fixed focal length or zoom lens) as optical components.  
For more details concerning the GOBO principle see [3]. 

The high power LED at 850 nm emission wavelength was used and homogenized with a light 
funnel made of mirrors with a protected gold coating. The aperiodic sinusoidal patterns were 
generated using a glass GOBO wheel (according to Heist et al. [3]) on which the pattern was made of 
a chrome coating. Thus, only the near-infrared radiation is projected into the measurement plane for an 
irritation-free measurement. Two CMOS cameras, each with a maximum resolution of 4 MPx were 
arranged in stereo-vision setup with a baseline of approximately 300 mm. For the working frame rate 
of 360 Hz, a resolution of only 1Mpx (in the image centre) is used. Exposure time is typically 2.7 ms.  

 

 
Figure 1. Principle of the irritation-free pattern projection system 

 
 
To avoid overexposure and disruptive effects from the visible wavelength range, both cameras 

were equipped with an additional band-pass filter with cut-on and –off wavelengths of 830 nm and 
870 nm, respectively. The working distance of the system can be scaled from 0.5 m to 1.5 m in which 
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the measurement area varied from 0.3 x 0.3 m2 to about 1.0 x 1.0 m2, depending on the optics. The 
image acquisition was done by a frame grabber via Camera Link connection. 

In order to get colour information additionally to the 3D data a colour camera is included in the 
system. The additional colour camera also has a resolution of 4MPx and can capture images with 
frame rates up to 90 Hz. Colour data are recorded with a resolution of 4 MPx with lower frame rate 
than the measurement cameras and transferred via USB 3.0. 

The connection between the calculated 3D data and the colour information is realized by a 2D-3D 
mapping. The corresponding transformation matrix is obtained by inclusion of the colour camera into 
the calibration process. The complete 3D scanning system is shown in figure 2. 

 
 

  
Figure 2. Complete Scanner  system, front view(left and view from above (right) 

 
 
The recorded data are processed to 3D data very quickly using a GPU-processing procedure 

(NVIDIA Geforce 1070 GTX) and the resulting images are displayed on a monitor in real-time. The 
latency from image recording to 3D point-calculation is only a few more than 100 ms. Furthermore, 
displaying the data on the screen needs some more time, depending on the hardware properties. 

3. Measurement system evaluation 
In order to evaluate the accuracy of the obtained 3D data the 3D scanner was used to perform 
measurements with certain specimens with known geometric properties. A flatness standard made of 
ceramic with a size of 300 x 50 x 40 mm³, a ball bar with length between the sphere centre-points of 
about 200 mm and a sphere with a diameter of 50.1 mm were used as specimens (see figure 3). 

In order to quantify the measurement accuracy the characteristic parameters flatness measurement 
error ΔF, length measurement error ΔL, and probing error Ps were determined similar to the VDI/VDE 
guidelines [9] concerning optical measuring systems. The measurement volume was set to a size of 
approximately 0.5 x 0.5 x 0.5 m³. Sequences of either six or ten aperiodic sinusoidal fringe patterns 
were used. For the determination of each of the characteristic parameters at least six measurements 
were performed. The characteristic parameters were determined similar to the VDI/VDE guidelines 
with the supplement of complete noise removal at the determination of the flatness parameter ΔF by 
subtraction of six times standard deviation σ in order to exclude the influence of noise. 

The parameters were defined as follows. Flatness measurement error is the maximum value of 
flatness deviation ΔFi at n certain positions i of the flatness standard in the measurement volume. 

 

 
ni

iFF
,...,1

max


    with  iiii ddF  6minmax    (1) 

 
Here, di

max is the highest positive and di
min is the highest negative Euclidean distance of the 3D points 

from a fitted plane and σi are the standard deviations of the Euclidean distances (noise). 
Length measurement error is defined as the span of the length measurements of the ball bar: 
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minmax LLL  ,    (2) 

 
where Lmax is the largest and Lmin is the smallest of the measured distances between the centre-points of 
the spheres of the ball bar. 

Probing error Ps is defined as the span of the radius measurements of the sphere: 
 

minmax RRPs  ,    (3) 

 
where Rmax is the largest and Rmin is the smallest of the measured radii of the sphere. 

The measurements were performed using both six-image and ten-image sequences. The following 
characteristic parameters were obtained: ΔF = 0.6 mm, ΔL = 2.0 mm, and Ps = 0.25 mm for the six-
image and ΔF = 0.6 mm, ΔL = 1.3 mm, and Ps = 0.08 mm for the ten-image sequences. 

 

   
Figure 3. Specimens with known calibrated dimensions for evaluation measurements: flatness 

standard (left), ball bar (middle), and sphere (right) 
 

Additionally, the noise of the 3D measurement points was defined as the standard deviation σ of 
the Euclidean distances of the calculated 3D points from a fitted plane at the measurements of the 
flatness standard. The mean noise value was σ = 0.11 mm (n=6) and σ = 0.09 mm (n=10). These 
values showing the good measurement accuracy compared to 3D scanning systems in the visible light 
range and/or single shot systems.  

4. Measurement examples 
Figures 4 and 5 show some examples of the measurements performed by the developed system. The 
first example shows a female face showing some emotional expression. A subsequently applied 
software module can detect certain facial points. Figure 4 shows a false colour representation of the 
3D data and figure 5 shows the colour mapping of the data obtained by the colour camera onto the 3D 
data together with certain detected facial points. The colour mapping onto the 3D data allows a 
representation from an arbitrarily chosen viewing direction onto the face. 

The 3D models obtained of these measurements can be used for detection of emotions based on the 
3D face data. 

The scanner was also used for quantification of lip-movements in order to support lip-reading [2]. 
Figure 6 shows an example of the determined trajectories in the three different spatial directions. Note, 
that lip movement in z-direction cannot be captured using only 2D image sequences. 

It could be stated, that using 3D information about 25% more information can be obtained for 
recognition of the speech than using only 2D image sequences. More detailed information is given by 
the work of Brahm et al. [2]. 

5. Discussion and outlook 
The measurement results show that the developed scanning system can acquire robust 3D face images 
of moving persons, obtained with a very short latency time of little more than 100 ms by processing of 
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image data of 2 x 1 MPx recorded at 360 Hz. Consequently, a 3D rate of more than 30 Hz is obtained 
and displayed on the monitor. 
 

 

 

 

Figure 4. False colour representation of 
the calculated 3D data 

Figure 5. Colour mapping onto the 3D 
data and recognized facial points 

 
The projection system is suitable for fast irritation-free 3D detection of moving persons, the 

acquisition of faces, and body parts with very short latency time. As the accuracy measurements show 
the system is not designed for high precision measurements of rigid body parts in the lower µm-range. 
In order to set the focus to highest measurement accuracy a pattern sequence with n10 can be used 
(see e.g. [4]). 

 

          
Figure 6. Application of the scanner for lip-reading. Detected facial points (left), detected 

lip-movement in x-,y-, and z-direction (right) 

 
However, if maximum available 3D rate is not necessary and the actual movements are slow, noise 

can be reduced and robustness can be improved by using a higher number of images per sequence. 
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Here, a compromise should be found depending on the requirement of the measurement task and the 
power features of the scanning system. 

Future work will be addressed to the further development of 3D processing algorithms, e.g. in order 
to increase robustness, suppress noise, and decrease the number of outliers (namely false positive 
detected 3D points). This may for example include optimization of the used aperiodic sinusoidal fringe 
pattern. For more details concerning these patterns see the work of Heist at al. [4]. Additionally, an 
appropriate analysis of the origins of outlier production should be performed initially. 

Future work will also include the interpretation of facial expressions and body movements like 
gestures. 

6. Conclusion 
A new irritation-free pattern projection system for accurate 3D face and body scans was presented in 
this paper. The suitability of this 3D scanning system for acquisition of the expressions of facial 
emotions and the support of automated lip-reading could be shown. 

The high possible 3D frame rate of 36 Hz with high resolution (100µm) makes the systems 
convenient for high-speed and high resolution 3D-face- and body-scans, e.g. at the perpetual 3D 
acquisition of body parts of moving humans.  
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