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Strahlformung von Bessel-Strahlen mit

Hochleistungslasersystemen

Die stetige Entwicklung moderner optischer Technologien ermöglicht den Fortschritt

in vielen Anwendungsbereichen. Hochleistungslasersysteme spielen dabei eine wichtige

Rolle, wobei fortschreitend bessere Strahlqualitäten und höhere Lichtleistungen erzielt

und neue Anwendungsfelder erschlossen werden. Hierbei nehmen Bessel-Strahlen

durch ihre speziellen Eigenschaften eine besondere Rolle ein, da mit ihnen insbeson-

dere eine Entkopplung von axialer und lateraler Auflösung möglich ist. Durch die

erhöhten Anforderungen und die steigende Lichtleistungen ergeben sich neue Her-

ausforderungen in der Konzeption, Simulation und Bewertung der geformten Laser-

strahlung, sowie auch der Lasersysteme selbst. Ziel dieser Arbeit ist die Bearbeitung

verschiedener Teilbereiche dieser komplexen Themengebiete. Natürlich kann im

Rahmen dieser Disseration nur eine Auswahl der vielfältigen Aspekte bearbeitet wer-

den. Diese umfassen die Rekonstruktion und Bewertung von realen Laserstrahlen,

die effiziente Berechnung von Bessel-Gauss Strahlen, die durch Wellenfrontfehler

gestört werden und die konzeptionelle passive Athermalisierung von refraktiven

Hochleistungslasersystemen.

In der Bewertung und Simulation von Laserstrahlen werden häufig Näherungen

hinsichtlich Amplitude, Phase, Kohärenz und Polarisation gemacht. Die Qual-

ität wird typischerweise mit dem M2-Wert spezifiziert, wobei dieser vergleichend

zu einem idealen Gauss-Strahl definiert ist. Leider nimmt die Aussagekraft dieses

Kriteriums aber bei Strahlen ab, die sich von der Gauss-Lösung stark unterschei-

den. Die Ursache hierfür ist nicht mit dem M2-Wert identifizierbar. Besonders

bei Strahlformung ist die Betrachtung des Eingangsfeldes wichtig, da hier fehlerbe-

haftete Eingangsfelder starken Einfluss auf die berechneten Zielfelder haben. Durch

eine laserspezifische Lösung der "transport of intensity equation" konnten beide Prob-

lemstellungen gelöst und das Feld realer Laserstrahlen rekonstruiert werden. Dies

ermöglicht die Separierung von Amplituden- und Phasenfehlern. Gleichzeitig kann

das rekonstruierte Feld für Simulationen als reale Laserlichtquelle genutzt werden,

um die Prognosesicherheit zu erhöhen.

Die effiziente Berechnung und Bewertung von Bessel-Gauss Strahlen ist ein aktuelles

Thema in Wissenschaft und Industrie. Die Berechnung solcher Strahlen wird durch

die konische Wellenfront und der daraus enorm vergrößerten Abtastraten aufwändig.



Müssen nicht-rotationssymmetrische Wellenfrontfehler berücksichtig werden, so wird

der numerische Aufwand weiter gesteigert. Im Rahmen dieser Arbeit wird eine ana-

lytische Lösung für das axiale Feld eines Bessel-Gauss Strahls berechnet, der mittels

sphärischen Aberrationen, Astigmatismus und Koma gestört werden kann. Dadurch

kann die axiale Intensität effizient berechnet werden, sodass Störungen dieser bereits

in der Design- und Toleranzierungsphase berücksichtigt werden können. Außerdem

wurde das klassische Strehl-Verhältnis von einem Fokuspunkt auf eine Fokuslinie

erweitert, um die besonderen Eigenschaften von Bessel-Strahlen wirksam abbilden

zu können.

Im Zuge stetig steigender Laserleistungen muss die Leistungsabhängigkeit der op-

tischen Güte von Strahlführungs- und Strahlformungssystemen immer stärker in

den Fokus bei der Konzeption gelegt werden. Das heißt, dass die Systeme so

ausgelegt werden müssen, dass sie über einen großen Leistungs- bzw. Temper-

aturbereich stabil arbeiten, also athermalisiert sind. Für Hochleistungslasersys-

teme ist dies besonders kritisch, da die Laserstrahlung selbst Wärme in die optis-

chen Bauteile einbringt und diese folglich inhomogen erhitzt. Dies führt wiederum

paraxial zu einer sich mit der Leistung bzw. Temperatur ändernden Brechkraft

der Elemente. Das Hauptaugenmerk in diesem Teilbereich liegt darin, diese Effekte

zu beschreiben, sodass ein Konzept zur passiven Athermalisierung von Hochleis-

tungslasersystemen durch geeignete Parameterwahl erstellt werden kann. Weiterhin

wird dieses Konzept beispielhaft an typischen optischen Systemen evaluiert und

durch Simulation gestützt.

Insgesamt ist es im Rahmen dieser Dissertation gelungen, wesentliche Fortschritte

in Teilbereichen bei der Simulation von Strahlformungen von Bessel-Strahlen mit

Hochleistungslasersystemen zu erreichen. Hierbei konnten reale Laserstrahlen rekon-

struiert und bewertet werden. Außerdem konnten die erarbeitete Methoden zur ef-

fizienten Berechnung und Bewertung von Bessel-Gauss Strahlen an einem Beispiel-

system demonstriert werden. Die passive Athermalisierung von refraktiven Syste-

men mit hoher Laserleistung wurde konzeptionell vorgestellt und evaluiert. Die

Wirksamkeit dises Konzeptes wurde durch Simulationen bestätigt. Somit konnten

im Rahmen dieser Arbeit sowohl die Bewertungs- und Simulationsmöglichkeiten von

Lasersystemen deutlich verbessert werden, als auch die Nutzbarkeit von höheren

Laserleistungen durch neue Konzeptionierungen ausgeweitet werden.
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1. Introduction

The steady development of optical technologies enables the progress of modern tech-

nology in many ways. An example for this is lithography with its highest demands

for accuracy to supply the world with computer chips. Another example is telecom-

munication with the corresponding fiber-optic networks to connect the world with

the driving force of more miniaturization in order to transfer information at in-

creased data rates. A further example is laser material processing, where laser light

and short pulses are used as a tool. Here, the laser light is shaped specifically to the

applicational demands while simultaneously the laser power can be increased with

state-of-the-art laser systems.

High power laser systems are applied in a broad spectrum of fields such as the re-

moval of space debris or for military intentions to defence missiles and drones [1,2].

For space telecommunication, high power laser systems are developed to substi-

tute conventional radio communication with the ever-present aim of increased data

rates [3]. Furthermore, high power laser sources are necessary for the investigation of

highly non-linear light-matter interactions and can even be used as a potential sub-

stitute of classical large-scale particle accelerators for medical cancer therapy [4–6].

For additive manufacturing technologies such as selective laser melting or selective

laser sintering, high power laser sources are essential [7,8]. Another application field

is material processing, where holes can be drilled extremely accurate with proper

shaped laser radiation, materials can be attached together by laser welding and

surface properties can be modified by laser hardening [9–13].

While the application of such high power laser systems enables new possibilities and

new markets, the capability to take this as an advantage is directly linked to the

effective simulation, fabrication and assessment of those systems. Effective simu-

lation involves appropriate physical modelling depth from the light source through

the optical system to the target with the intended field distribution.
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phase must be identified, since the shaping optics are highly intolerant to field dis-

tributions that deviate from the considered input field [15]. Therefore, the current

methods can be highly improved by extending the laser beam characterization by

differentiating between amplitude, phase and coherence. In addition, the simulation

depth and accuracy of laser systems can be greatly enhanced by incorporating the

real field distribution in the simulation towards a more holistic simulation, paving

the way to a virtual rapid-prototyping of such systems.

One aim of this thesis is to introduce a new method for the characterization of

coherent laser beams. This is done by reconstructing the amplitude and phase of

the laser beams in order to gather a more comprehensive insight into the properties

than the established M2-value. In this way, the influence of phase and amplitude

perturbations can be distinguished and analyzed. Such perturbations are typically

generated by the beam guiding optics due to non-perfect elements, tilted mirrors or

misalignment. Simultaneously, it is intended to include the gathered information of

the reconstructed amplitude and phase as the real field of the laser beam into the

simulation of such systems. Thus, the physical modelling depth can be significantly

improved and effects that are purely evoked by non-idealized laser beams can be

simply included based on the measured data.

A relatively new field in the realm of laser beam shaping and characterization are

Bessel beams or their realizable pendants with finite energy, called quasi Bessel

beams [16–18]. They possess fundamentally different properties in comparison to

classical beams with a spherical or parabolic wavefront. In particular the decou-

pling of their lateral from the axial extend make them a promising candidate for

applications, where a strong lateral confinement of the light is required over a long

axial distance [4, 19, 20]. The efficient handling of quasi Bessel beams in wave opti-

cal simulations is a challenging task due to their conical reference wavefront, which

must be sampled sufficiently dense in the numerical evaluation of the correspond-

ing diffraction calculations. Especially, if the quasi Bessel beams are perturbed by

non-rotational wavefront aberrations, this becomes an even more complicated topic.

The fast evaluation of such quasi Bessel beams is currently an open issue, which

makes it an elaborated task to consider perturbed beams already in the design

phase considering optimization and tolerancing.

The second aim of this thesis is to deliver an efficient tool for computing the on-axis

field of most often used Bessel-Gauss beams that suffer from rotational and non-

7



rotational symmetric wavefront aberrations. Ideal Bessel-Gauss beams are charac-

terized by a Gaussian amplitude and a conical reference wavefront. Typically, wave-

front aberrations, such as spherical aberration, astigmatism and coma are caused by

previous beam shaping optics, e.g., collimators and telescopes. The derived calculus

enables the efficient analytic treatment of such perturbed Bessel-Gauss beams by

evaluating the corresponding diffraction integrals by certain approximations like the

method of stationary phase. With this fast calculation scheme, a diffraction based

performance prediction of such systems can be already done in the design and tol-

erancing stage. For this purpose, the definition of the Strehl-ratio is extended along

z-axis to account for the line focus of the generated perturbed Bessel-Gauss beams

and to introduce a suitable and accessible performance criterion.

For increasing laser powers and demands on the optical performance, the importance

of the optical system is growing [14, 21, 22]. An increasing laser power leads to an

enhanced heat deposition in the material of the optical system, which changes the

properties of the system itself. This is of particular interest for applications like

laser cutting and drilling, where the axial position of the focus must be maintained

independent of the applied laser powers. Thus, the optical systems must be designed

to be insensitive to thermal changes, which is referred to as athermalization [23–25].

The challenge of laser systems is the inhomogeneous heat deposition which leads

to gradient-index (GRIN) effects and the often uncertain boundary conditions of

the mounted optical elements, that complicates the design and simulation of these

systems. Thus, the complete modelling of such heat induced effects is complicated

and typically involves finite-element methods and interdisciplinary considerations

between mechanical, thermal as well as optical aspects [26, 27]. The finding of

initial systems with appropriate material combinations, though is a challenge on its

own, since it forms the basis of the performance in later design steps.

The third aim of this thesis therefore is to develop a concept for the passive ather-

malization of refractive optical beam shaping optics which can be used in high power

laser applications. To this end, the steady-state temperature distribution of a thin

lens, that is illumination by a high power fundamental Gaussian beam, is derived.

Based on the thermal response of the material and the resulting GRIN effects, the

additional heat induced focal power is deduced analytically and further analyzed.

This is used to athermalize basic optical setups like a doublet, which consists of two

lenses in close contact and two- and three-lens telescopes, based on the combina-
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tion of different materials. With these considerations, a strategy for the paraxial

athermalization of high power laser systems should be delivered, which enables to

increase the laser power while maintaining the systems performance.

This thesis is structured in the following way. After the introduction, necessary fun-

damentals are introduced in chapter 2. Starting from Maxwell’s equations, the wave

equation and fundamental solutions like plane, spherical and Bessel beams are dis-

cussed. Furthermore, the paraxial wave equation is derived and Gaussian beams as

a prominent solution are introduced. In addition, the transport of intensity equation

is deduced, which forms the basis for the beam characterization approach in chapter

4. In the last section of this chapter, the geometrical optics region is presented by

further approximating the wave equation, which results in the ray representation

of light based on the eikonal equation. In chapter 3, necessary concepts to model

optical systems are explained. To this end, the hybrid-approach is introduced to link

various physical models with different modelling depths to each other. Additionally,

several methods to evaluate the performance of optical systems and laser beams are

described. This includes the definition of Zernike-polynomials for the specification

and classification of wavefront aberrations, the Strehl-ratio as a metric of the system

performance and the M2-value as a metric, that specifies the similarity of a laser

beam to a fundamental Gaussian beam. Furthermore, techniques to profile quasi

Bessel beams are presented, including the fundamental class of Bessel-Gauss beams,

the introduction of the stationary phase approach for approximate solutions of typ-

ical diffraction integrals and a technique to effectively shape the on-axis intensity

of quasi Bessel beams. In the last section of this chapter, basic ideas for the ather-

malization of singlets and doublets in case of a homogeneous temperature load are

presented. A new method to reconstruct and characterize coherent laser beams is

described in chapter 4. This is done by solving the transport of intensity equation

under the specific consideration of the paraxial properties of ideal Gaussian beams

and furthermore describing the wavefront aberrations by a set of laterally shifted

Gaussian functions. This allows to solve the inverse phase retrieval problem by a

least-square fit. The method is experimentally verified with the reconstruction and

assessment of two real laser beams and the achieved accuracy is estimated based

on the comparison with synthetic data. The amplitude and phase distributions are

analyzed and used for comparative calculations of the M2-value. The reconstructed

field is propagated and can be used as a real light source in further simulations.

Chapter 5 provides a novel approach to calculate the on-axis field of a Bessel-Gauss
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beam which is influenced by spherical aberration, astigmatism and coma. Addition-

ally, the introduced Gaussian apodization function offers the possibility to describe

a ring-shaped illumination. Based on the decomposition of the wavefront errors and

the stationary phase approximation, an analytic formula for the field of the axial

focus is derived. The introduced approximations are assessed and the results are

evaluated against rigorous computations. Furthermore, the derived equation is used

to analyze the tilt sensitivity of an exemplary optical system that collimates light

emitted by a fiber and transforms the laser beam to a Bessel-Gauss beam by an

axicon. For this purpose, an extended definition of the Strehl-ratio along the opti-

cal axis is implemented to account for the line focus of a Bessel-Gauss beam and

to evaluate the performance effectively. In chapter 6, the conceptual possibilities

for the passive athermalization of refractive high power laser systems are investi-

gated. This is done by solving a modified heat equation inside a thin lens for a

fundamental Gaussian laser beam illumination that heats up the lens due to bulk

absorption. The resulting analytic temperature distribution is further used to com-

pute the corresponding inhomogeneous change of the refractive index, which results

in an additional focal power of the heated lens dependent on the used material, the

applied laser parameters and the geometry of the lens. This additional heat induced

focal power is analyzed and the specific material dependence is emphasized. The

dominant terms of the focal power are used to athermalize basic optical systems like

a doublet and telescopes consisting of two and three lenses in first order for non-

homogeneous heating. With the help of these results, such systems are simulated

and the real performance is compared to non-athermalized solutions. This thesis

concludes with a summary and an outlook of potential future research based on this

work.
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2. Fundamentals

In this chapter the necessary fundamentals for this thesis are introduced. Starting

from Maxwell’s equations, basic concepts for the description of light as an electro-

magnetic wave are discussed. To this end, the wave equation is derived and basic

solutions, such as plane, spherical and Bessel waves, are given. Furthermore, often

required approximations of the wave equation are discussed to introduce Gaussian

beams and the transport of intensity equations. In addition, the geometrical optic

region is described to model light with rays by further approximating the wave

equation.

2.1. Wave equation

Light, described as a vectorial electro-magnetic field, is governed by Maxwell’s equa-

tions. Following the literature in [28–30], they are given in the spectral domain for

a linear, nondispersive, isotropic and homogeneous medium as

∇ × ~E(~r, ω) = −iωµ ~H(~r, ω), (2.1)

∇ × ~H(~r, ω) = iωǫ ~E(~r, ω), (2.2)

∇ · ~E(~r, ω) = 0, (2.3)

∇ · ~H(~r, ω) = 0. (2.4)

Here, ∇ is the nabla-operator, ~E(~r, ω) is the electric field, ~H(~r, ω) is the magnetic

field, dependent on the position ~r = (x, y, z)⊤ and spectral frequency ω. The electric

permittivity and magnetic permeability are denoted as µ and ǫ, respectively. By

relating both to their respective constants in vacuum µ0 and ǫ0, an expression for

the refractive index of the medium as an ratio of the speed of light inside the medium
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c to the speed of light in vacuum c0 is found

n =
c

c0

=
√

µǫ

µ0ǫ0

. (2.5)

The wave equation can be derived by applying the curl operation on both sides of

Eq. 2.1 and 2.2 and making use of the relation ∇ × (∇ × ~U) = ∇(∇ · ~U) − ∇2 ~U

∇2 ~E(~r, ω) + k2 ~E(~r, ω) = 0, (2.6)

∇2 ~H(~r, ω) + k2 ~H(~r, ω) = 0, (2.7)

with the wavenumber k, expressed as k = ω
c

= 2π
λ

and the wavelength λ. Since

both equations have the same structure, it is sufficient to solve only for ~E(~r, ω)

or ~H(~r, ω) and use Eq. 2.1 or 2.2 to calculate the other quantity. Therefore, in the

further considerations of this thesis, only the electric field is used. Eq. 2.6 is separable

into scalar equations for each vector component independent of the polarization and

angle of propagation. In a homogeneous medium this is formulated as

∇2E(~r, ω) + n2k2
0E(~r, ω) = 0. (2.8)

This is the scalar wave equation in a homogeneous medium, where k0 = k/n is the

wavenumber in vacuum.

2.1.1. Plane waves

An elementary solution of Eq. 2.6 in homogeneous, non-conducting, isotropic media

are monochromatic harmonic plane waves that are governed by their propagation

direction described by the wave vector ~k = (kx, ky, kz)⊤. They can be formulated

by [28–30]

~E(~r) = ~Eei~k·~r. (2.9)

The surfaces of constant phase, also called wavefronts, are perpendicular to the

propagation direction. Thus, they are given by

~k · ~r = const. (2.10)
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Consecutive wavefronts are separated by their wavelength λ = 2π
k

. Since a plane

wave has a constant amplitude everywhere, it contains an infinite amount of energy,

clearly showing the idealization character of this theoretical model [28]. Monochro-

matic plane waves are used in particular for propagating fields between parallel

planes in a homogeneous medium. Here, the field in the initial plane is first Fourier

transformed to the domain of the angular spectrum

E(kx, ky, 0) = F{E(x, y, 0)} =
1√
2π

∫∫ +∞

−∞
E(x, y, 0)e−i(kxx+kyy) dxdy. (2.11)

Then, the angular spectrum of the field is multiplied by a phase term, describing

the propagation of plane waves to the position z

E(kx, ky, z) = E(kx, ky, 0)eikzz, (2.12)

kz =
√

k2 − k2
x − k2

y. (2.13)

By taking the inverse Fourier transform of Eq. 2.12, the propagated field is obtained

in spatial coordinates

E(x, y, z) = F−1{E(kx, ky, 0)eikzz}. (2.14)

Therefore, this concept decomposes an arbitrary field into set of plane waves in terms

of simple complex-exponential functions by a Fourier transform in order to propagate

them by Eq. 2.12 and superpose them in the destination plane. Here, they are

transformed back into spatial coordinates by an inverse Fourier transform [28–32].

The field is usually not accessible in experiments, since it is rapidly oscillating.

But the intensity of a field can be measured with a camera, for example. Thus,

the intensity of a field is an important quantity, which can be calculated for a

monochromatic field as

I(x, y, z) =
1
2

cǫ0|E(x, y, z)|2. (2.15)

For the paraxial region (see section 2.2), the spherical shaped integral kernel of

Eq. 2.13 can be approximated by the first terms of a power series expansion. Taking

only the first order term corresponds to an approximation of the spherical shaped

kernel function by a plane, which is called the Fraunhofer approximation. By in-
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cluding the quadratic terms additionally, the spherical kernel is approximated by a

parabola that is valid for the paraxial region (see section 2.2), the so-called Fresnel

approximation. Both approximations are fundamental for understanding basic prin-

ciples in the context of physical optics where diffraction must be considered. Thus,

they enable extensive theoretical insights in terms of analytical results for many

problems [28–33].

2.1.2. Spherical waves

Another solution of the Helmholtz equation are spherical waves. They can be for-

mulated as

E(~r) = E0
ei~k·~r

r
. (2.16)

The concept of spherical waves is of great significance, because they form the basis

of the well-known Huygen’s principle. It states that every point on a wavefront is

regarded as the source of a spherical wave, the so-called secondary wave. The sum

of all secondary spherical waves can be regarded as the wavefront and the field at

a distinct position is described as the interference of all secondary waves at this

position. This is mathematically formulated for example in the sense of the first

Rayleigh-Sommerfeld integral [28,31,32]

E(~r) =
∫∫

A

E(~r0)
1

2π

(

ik − 1
|~r − ~r0|

)

eik|~r− ~r0|

|~r − ~r0|
z

|~r − ~r0|
dA′. (2.17)

2.1.3. Bessel beams

In contrast to the previous fundamental solutions of the wave equation, Bessel beams

are relatively new. They were theoretically described and experimentally investi-

gated in 1987 [16, 17]. The Bessel beam solution can be found by the following

rotational-symmetric ansatz-function for a monochromatic field with the unknown

amplitude A(ρ) in polar coordinates ρ2 = x2 + y2

E(~r) = A(ρ)eikzz. (2.18)
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Inserting this into the Helmholtz equation in polar coordinates leads to

ρ2 ∂2

∂ρ2
A(ρ) + ρ

∂

∂ρ
A(ρ) + k2

ρρ2A(ρ) = 0, (2.19)

k2 = k2
x + k2

y + k2
z = k2

ρ + k2
z . (2.20)

Eq. 2.19 is knowns as Bessel’s differential equation [18,33]. The most simple solution

for this differential equation excluding singular values at ρ = 0 can be formulated

as

A(ρ) = A0 J0(kρρ), (2.21)

with the constant A0 and the zero-order Bessel function of the first kind J0. Thus,

the Bessel beam provides a solution of the wave equation where the field amplitude is

invariant during propagation along z. The more general solution of Eq. 2.19 can be

formulated by Bessel functions of the first kind of order n and an additional helical

phase term, forming ring shaped intensity distribution with a zero on-axis [18,29,33].

In this thesis, those higher order Bessel beams play no particular role. Therefore,

only zero order Bessel beams are regarded in the following. They are characterized by

a cone-shaped wavefront. To better understand this property consider the following

representation of J0 as an integral [18]:

J0(kρρ) =
1

2π

∫ 2π

0

eikρ(x cos(φ)+y sin(φ)) dφ. (2.22)

The full x, y, z dependence is obtained by

E(~r) =
A0

2π

∫ 2π

0

eikρ(x cos(φ)+y sin(φ))+ikzz dφ (2.23)

=
A0

2π

∫ 2π

0

ei~q·~r dφ. (2.24)

This integral with the wave vector ~q = (kρ cos(φ), kρ sin(φ), kz)⊤ can be interpreted

physically. It states that a fundamental Bessel mode consists of all possible plane

waves with a length defined by Eq. 2.20 and a polar inclination of tan(α) = kρ

kz
. In

addition, the azimuthal angle φ is completely unrestricted. Thus, those waves are

located on the surface of a cone which is defined by the opening angle α. Similar to

a plane wave, a Bessel beam contains an infinite amount of energy due to the slow

convergence of the Bessel function. The major difference between both solutions is
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the energy density. It is constant for a plane wave, but it is maximum at ρ = 0 in case

of a fundamental Bessel beam described by Eq. 2.21. Furthermore, the size of the

central spot radius in terms of the first root of the Bessel function can be extremely

narrow, on the order of one wavelength, making it attractive for applications where

a narrow and long focus is required. Further discussion regarding the properties and

realizable versions of Bessel-kind beams are given in section 3.3 and chapter 5.

2.2. Paraxial wave equation

A wave is denoted to be paraxial for small propagation angles α with respect to the

propagation direction along z. Thus, the paraxial wave propagates nearly parallel

to the z-axis, which can be formulated as kz = k cos(α) ≈ k. The fast variation of

the field along z can than be separated by the factorization [9, 28,29]

E(~r) = A(~r)ei~k·~r = V (~r)eikzz. (2.25)

Inserting this into the Helmholtz equation (Eq. 2.8) results in

0 = ∇2E + k2E = eikzz

(

∇2V − k2
zV + 2ikz

∂V

∂z
+ k2V

)

. (2.26)

Within the paraxial approximation and by assuming only a weak change of the

amplitude V along z

∣

∣

∣

∣

∣

∂2V

∂z2

∣

∣

∣

∣

∣

≪ k

∣

∣

∣

∣

∣

∂V

∂z

∣

∣

∣

∣

∣

, (2.27)

the paraxial wave equation with the transverse Laplace operator ∇2
⊥ = ∂2

∂x2 + ∂2

∂y2

can be deduced

0 = ∇2
⊥V + 2ik

∂V

∂z
. (2.28)

This is also known as slowly varying envelope approximation of the Helmholtz equa-

tion or paraxial Helmholtz equation [9, 28,29,31,33].
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2.2.1. Gaussian beams

A simple solution of the paraxial wave equation are paraboloidal waves which can

be written in rotational symmetry as [28,29]

A(~r) =
A1

z
eik ρ2

2z , (2.29)

with the constant A1. They can be interpreted as the paraxial approximation of a

spherical wave, where the spherical wavefront is approximated by a parabola making

them closely related to the Fresnel approximation [9, 28, 29, 31, 33]. By introducing

a shift q(z) = z − zs, their origin is transformed from z = 0 to z = zs. This is also

valid for a complex-valued zs and q can be expressed as q(z) = z + izR. The complex

envelope of the Gaussian beam can be formulated as

A(~r) =
A1

q(z)
eik ρ2

2q(z) . (2.30)

Separating the inverse of q(z) into real and imaginary parts and introducing R(z)

and w(z), such that

1
q(z)

=
1

R(z)
− i

λ

πw2(z)
, (2.31)

allows to separate between amplitude and phase of the complex envelope by inserting

Eq. 2.31 into Eq. 2.30 leading to the famous expression for a Gaussian beam

A(~r) =
A1

izR

w0

w(z)
e

− ρ2

w2(z) e
i

(

kz+ kρ2

2R(z)
+g(z)

)

. (2.32)

The beam parameters in Eq. 2.32 are the beam width at 1/e of the amplitude w(z),

the corresponding minimum beam width w0 at the focus and the radius of curvature

of the parabolic wavefront R(z). zR is the so-called Rayleigh length, defined as the

length along z, where the beam widens from the focus position to w(z) =
√

2w0

and the intensity is reduced to half of that peak intensity I0. The peak intensity

is closely related to the total power of the beam P . g(z) refers to the Gouy-phase,

that is a retardation of the phase in relation to a plane wave or spherical wave. The

relations of the beam parameters are:

w0 =

√

λzR

π
, (2.33)
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w(z) = w0

√

1 +

(

z

zR

)2

, (2.34)

θ =
w0

zR

, (2.35)

R(z) = z

(

1 +
(zR

z

)2
)

, (2.36)

g(z) = tan−1

(

z

zR

)

, (2.37)

I0 =

∣

∣

∣

∣

A1

zR

∣

∣

∣

∣

2

, (2.38)

P =
π

2
I0w

2
0. (2.39)

For z ≫ zR the beam waist can be approximated by w(z) ≈ w0

zR
z = θz, where θ is

called the far field divergence angle [9, 28,29,31,33].

2.2.2. Transport of intensity equation

The transport of intensity equation (TIE) can be derived based on the paraxial wave

equation (Eq. 2.28) and the following ansatz-function [28,32,34–37]

V (~r) = A(~r)eikΦ(~r) =
√

I(~r)eikΦ(~r). (2.40)

Here, I is proportional to the intensity defined in Eq. 2.15. The complex field

is separated into amplitude A and phase Φ, respectively. Inserting Eq. 2.40 into

Eq. 2.28, yields to

0 = ∇2
⊥A + 2i∇⊥A · ∇⊥Φ − A (∇⊥Φ)2 + iA∇2

⊥Φ + 2ik
∂A

∂z
− 2kA

∂Φ
∂z

. (2.41)

Thus, the real and the imaginary parts of Eq. 2.41 must equal zero, forming two

separate equations. The equation of the real parts can be called transport of phase

equation. The TIE is found from the imaginary part of Eq. 2.41 and replacing the

amplitude terms by their respective intensity terms with ∂A
∂x

= ∂
dx

√
I =

∂I
∂x

2
√

I

−k
∂I

∂z
= ∇⊥I · ∇⊥Φ + I∇2

⊥Φ = ∇⊥ · (I∇⊥Φ) . (2.42)
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Consequently, the TIE connects the intensity variation along z with the lateral

gradient of the intensity and phase as well as with the curvature of the phase. It

offers the possibility to retrieve the phase of a field by measuring pure intensities

at different positions along z with, e.g., a movable camera. This idea is used in

chapter 4 to reconstruct and characterize the field of real coherent laser sources.

2.3. Light as rays

In literature, the geometrical optical regime is referred to where the vacuum wave-

length is vanishing small in comparison to surrounding structures. For a monochro-

matic wave inside a medium with slowly varying refractive index n, the complex

amplitude can be written as [29,32,38]

E(~r) = A(~r)eik0S(~r), (2.43)

with the amplitude A and the phase k0S(~r). Inserting this into the scalar wave

equation yields

0 = k2
0[n2(~r) − |∇S|2]A + ∇2A + ik0[2∇S · ∇A + A∇2S]. (2.44)

Similar to the paraxial wave equation, the real and the imaginary parts must equal

zero. For the real part, we find

0 = k2
0[n2(~r) − |∇S|2]A + ∇2A. (2.45)

Assuming a slowly varying amplitude and k0 → ∞ leads to the Eikonal equation

that is forming the fundamental basis of geometrical optics

|∇S|2 = n2. (2.46)

The scalar function S is proportional to the phase in wave optics and is called

the eikonal. It can be interpreted as the wavefront with S(~r) = constant. The

wavevector is oriented perpendicular to the wavefront pointing in the direction of

∇S. Thus, the field can be locally regarded as a plane wave with a given amplitude

traveling into the direction of ~k ‖ ∇S. This analogy allows to describe the evolution

of a field by a set of local plane waves in terms of simple rays.
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3. Modelling of beam profiling

systems

In this chapter, different state-of-the-art methods to model beam profiling systems

are discussed. For this purpose, the hybrid approach which connects different appro-

priate models of light within an optical system is introduced. In addition, fundamen-

tal opportunities to quantify and characterize the performance of profiled beams are

given in terms of the wavefront decomposition into Zernike-polynomials [28, 39, 40]

and the influence of wavefront aberrations onto the diffraction pattern in the focus

by calculating the Strehl-ratio [28, 41–45]. Furthermore, the beam propagation fac-

tor M2 is introduced allowing to compare arbitrary beams with the fundamental

Gaussian mode [10,14,28,46,47]. Then, quasi Bessel beams are presented and used

to shape the on-axis intensity within the created Bessel-zone [16–18, 47, 48]. In the

last section, the impact of a homogeneous temperature change on the system per-

formance is discussed by deriving the resulting defocus effect of a heated thin lens

singlet and doublet. This is used to exploit the potential for the athermalization of

optical systems [21–23,38,49].

3.1. Hybrid approach for optical systems

In the geometrical realm, a classical optical system can be described by several

distinguished surfaces. In principle, those are the object surface, the functional

surfaces, e.g., lens surfaces, and the image surface. Another possibility for the

description of a classical optical system is to define the pupil planes, which are

based on the physical aperture stop of the system. The entrance and exit pupils are

the conjugate planes of the aperture stop in the object and image space, respectively.

The rays transmitted by the optical system can be sampled in the entrance pupil
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[38, 49]. When they reach the exit pupil, the rays have been influenced by all the

components of the system. Hence, the rays in the exit pupil carry several information

of the optical system, allowing to describe certain properties of the optical system

by the rays in the exit pupil. To analyze an optical system, the optical path length

L can be computed and evaluated in the exit pupil by the following definition

L =
∫ ~r1

~r0

n(~r) ds. (3.1)

The optical path length can be understood as an effective path length of the individ-

ual rays traveling from ~r0 to ~r1 along the path element ds satisfying Eq. 2.46 [38,49].

A single object point creates a spherical wave. Therefore, the optical path lengths

of the rays emerging from a single object point correspond to a spherical wave in the

entrance pupil. Since, the entrance and exit pupil are conjugated, L is also spherical

in the exit pupil for an ideal imaging system. Thus, all rays intersect at a single

point in the image plane. This ideal spherical surface in the exit pupil is denoted

as reference sphere. For an infinite imaging condition, the spherical shape obviously

degenerates to a plane surface where all rays are parallel.

General imaging can be considered as non-ideal and aberrations must be included,

therefore. They can be interpreted as an undesired change of direction in the ray

picture. The description of such aberrations can be done in two different refer-

ence systems. The transverse ray aberrations are identified in the image plane and

measured as the transverse difference between the real and the ideal intersection

point. The longitudinal ray aberrations are identified as the difference in intersec-

tion lengths between the real and ideal ray along the optical axis of the system. Both

concepts are extensively discussed in literature [30, 33, 49]. Another concept for de-

scribing the aberrations occurring in optical systems are based on wave aberrations.

With the Eikonal equation, the direction of a ray is connected to the phase in the

wave optical description by the interpretation of a single ray as a local plane wave.

In contrast to the transverse and longitudinal ray aberrations, the wave aberrations

are typically described in the exit pupil of the system. Both concepts are equivalent

and can be transferred into each other [28]. To calculate the wave aberrations, the

optical path length as a function of the exit pupil coordinates L(xp, yp) is identified.

This can be done by evaluating Eq. 3.1 on a grid that is transferred from the en-

trance to the exit pupil. Typically the optical path length is referenced to the chief
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ray resulting in the optical path difference

∆L(xp, yp) = L(xp, yp) − L(0, 0). (3.2)

Thus, the emerging ray aberrations can be included in the complex field of the exit

pupil as a phase term

E(xp, yp) = A(xp, yp)eik∆L(xp,yp). (3.3)

It is often beneficial to scale the phase aberrations with the wavelength, which might

be expressed as

E(xp, yp) = A(xp, yp)ei2πW (xp,yp), (3.4)

where W (xp, yp) is then designated as wavefront aberration [28]. The hybrid ap-

proach for the simulation of optical systems typically utilizes a ray based description

of light from the object plane or entrance pupil to the exit pupil of the system. In

the exit pupil the rays are converted to a phase function by Eq. 3.2 and the field

is modeled by Eq. 3.3 or 3.4. This allows to calculate wave optical phenomena like

diffraction by propagating the field from the exit pupil to the image plane, utilizing

an appropriate propagator(e.g., Eq. 2.14). Thus, within the hybrid approach differ-

ent levels of the model complexity for the description and interaction of light are

used. Inside the system the wavelength is usually vanishing small in comparison to

the dimensions of the components justifying the geometrical model. Additionally,

∆L can become quite large inside the system, which would require a high sampling

of the phase term. Even more computational expensive is the evaluation of the field

on curved surfaces [50,51], indicating the challenges of a full wave optical description

of optical systems. In contrast to the situation inside the system, the dimension in

the focal region can be on the order of λ. Thus, the wave optical nature of light

in terms of diffraction becomes a significant portion and cannot be neglected. Con-

sequently, the model is adapted in the transition from the exit pupil to the focal

region by switching from rays to waves. A sketch of an exemplary system is shown

in Fig. 3.1. The purpose of this system is the adaptation of the numerical aperture

and refocusing. It consists of a fiber coupled laser source emitting a fundamental

Gaussian laser beam with a NA given by the fiber. The diverging beam is colli-

mated using a doublet and refocused by a single lens. In the sketch, four different

regions are indicated by (1)-(4) to distinguish between different simulation mod-
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of laser beams, the beam propagation factor M2 is calculated which offers the pos-

sibility to estimate the similarity of a laser beam to the fundamental Gaussian laser

mode in terms of the intensity distribution and wavefront aberrations [10,14,28,46].

The comparison to the fundamental Gaussian mode is especially useful, because

this beam has the smallest space-bandwidth-product and thus enables a stronger

focusing of the beam.

3.2.1. Zernike-polynomials

A common approach to describe the wavefront aberrations of classical rotational

symmetric systems is to decompose them into Zernike-polynomials [28,39,40]. They

are orthogonal functions defined on the unit circle. With the Zernike-polynomials,

typically, only a few orders are necessary to approximate the wavefront aberrations

satisfactory due to their similarity to classical aberrations reducing the computa-

tional effort. Additionally, the decomposition offers the possibility to classify certain

types of aberrations allowing for a deeper insight into the properties of the wavefront

aberrations and consequently leading to a better understanding of the properties of

the optical system. The definition of the decomposition is

W (ρ̄, φ) =
∑

n

n
∑

m=−n

cnmZm
n (ρ̄, φ). (3.5)

Here, ρ̄ is the normalized radial coordinate, φ is the azimuthal angle. The radial

and azimuthal order of the expansion are n and m, respectively. The corresponding

radial and azimuthal terms are calculated as [30]

Zm
n (ρ̄, φ) = Rm

n (ρ̄)







sin(mφ) for m > 0

cos(mφ) for m ≤ 0
, (3.6)

Rm
n (ρ̄) =







∑

n−m
2

k=0
(−1)k(n−k)!

k!( n+m
2

−k)!( n−m
2

−k)!
ρ̄n−2k for even n − m

0 for odd n − m
. (3.7)

In literature, there are different ordering schemes and scalings suggested [40,54]. In

the context of this thesis, the Fringe-convention and the ordering with a single index
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j is used. The index conversion from j to n and m is

m =



















0 for d2 = 0
d2

1−j

2
for even d2

j−1−d2
1

2
else

, (3.8)

n = 2(d1 − 1) − |m|, (3.9)

d1 = ⌊
√

j − 1⌋ + 1, (3.10)

d2 = d2
1 − j. (3.11)

The labeling of distinct orders to classical Seidel aberrations and the corresponding

formulas in Cartesian coordinates can be found in Tab. A.1.

3.2.2. Strehl-ratio

The classical Strehl-ratio (SR) describes the degradation of the on-axis intensity

I(ρi = 0) of the focal spot including wavefront aberrations compared to the ideal

aberration free case [28,41–45]

SR =
Iperturbed(ρi = 0)

Iideal(ρi = 0)
. (3.12)

It connects wavefront aberrations in the exit pupil with diffraction effects in the im-

age location. This is particularly useful for systems performing close to the diffrac-

tion limit. An analytic expression for the degradation of the SR can be derived by

formulating Eq. 3.12 in terms of the Fresnel diffraction integral [28], which reads in

polar coordinates as

E(ρi, φi, z) =
k

i2πz
eikz+

ikρ2
i

2z ·
∫ R

0

∫ 2π

0

E0(ρp, φp)e
ikρ2

p
2z

− ikρpρi
z

(cos(φp) cos(φi)+sin(φp) sin(φi))ρp dφpdρp.

(3.13)

Classically, the field is assumed to have a uniform amplitude and a parabolic phase

e
−ikρ2

p
2r , where r = z is the distance from the pupil to the focus [41]. Inserting this
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into Eq. 3.12 yields

SR =

∣

∣

∣

∫ R

0

∫ 2π

0
ei2πW (ρp,φp)ρp dρpdφp

∣

∣

∣

2

∣

∣

∣

∫ R

0

∫ 2π

0
ρp dρpdφp

∣

∣

∣

2 , (3.14)

where the integral over the phase term including wavefront aberrations W has to

be computed. This can be done by expanding W into a Taylor series up to second

order, resulting in

SR ≈

∣

∣

∣

∫ R

0

∫ 2π

0
(1 + i2πW (ρp, φp) − 2π2W 2(ρp, φp))ρp dρpdφp

∣

∣

∣

2

π2R4
. (3.15)

Additionally, the nth order moment of W is defined as

〈W n〉 =
1

πR2

∫ R

0

∫ 2π

0

W n(ρp, φp)ρp dρodφp. (3.16)

With this definition, Eq. 3.15 can be reformulated as

SR ≈
∣

∣1 + i2π〈W 1〉 − 2π2〈W 2〉
∣

∣

2
. (3.17)

Keeping only terms up to second order yields

SR ≈ 1 − (2π)2
(

〈W 2〉 − 〈W 1〉2
)

= 1 − (2π)2W 2
RMS. (3.18)

Here, WRMS is the root-mean square value of the wavefront aberrations. This equa-

tion is often used in literature to estimate the performance of optical systems in

terms of the Strehl degradation for a constant illumination of the pupil and small

wavefront aberrations. The classical Maréchal criterion, which is based on defin-

ing the diffraction limit as SR = 0.8 can be deduced by Eq. 3.18, resulting in

WRMS ≈ λ
14

. There are many extensions of this concept in literature, dealing with

non-homogeneous illuminations of the pupil, the evaluation for certain types of aber-

rations or for different colors [41–44,55]. A brief overview of the connection between

distinct Zernike coefficients and the diffraction limit is given in Table 3.1. The

concept of evaluating the systems performance in terms of the SR is revisited in

section 5.3, where it is applied for the characterization of the line focus along z,

generated by perturbed Bessel-Gauss beams.
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classification Zernike coefficient diffraction limit

defocus c4 0.12λ
astigmatism c5,6 0.17λ
coma c7,8 0.20λ
spherical aberration c9 0.16λ

Table 3.1.: Diffraction limit of selected low order Zernike coefficients in the Maréchal
approximation.

3.2.3. The beam propagation factor M 2

According to the ISO 11146 titled with "Lasers and laser-related equipment – Test

methods for laser beam widths, divergence angles and beam propagation ratios", every

laser beam can be characterized by ten independent parameters within the method

of second order moments. However, most laser beams of practical use need fewer

parameters due to symmetry. Therefore, to keep the formulations compact, the

properties of simple astigmatic beams are discussed in the following based on the

explanations given in [10].

First order moments

The first order spatial and angular moments, 〈x〉 and 〈θx〉, of a laser beam in x-

direction are defined as

〈x〉 =
1

PN

∫∫ +∞

−∞
|E(x, y)|2 x dxdy, (3.19)

〈θx〉 =
1

PN

∫∫ +∞

−∞
|E(kx, ky)|2 kx dkxdky. (3.20)

Here, PN is a normalization factor, which is related to the power of the beam. The

same formulations can be done likewise in y-direction. To stay consistent with the

literature the angular moment is abbreviated with 〈θx〉 instead of 〈kx〉. 〈x〉 and 〈θx〉
are the center of gravity of the intensity in the near and far field, respectively. In

the realm of the Fraunhofer approximation the far field corresponds to a Fourier

transform of the field (similar to Eq. 2.11). Thus, the first order moments provide

the center of gravity of the intensity and its direction of propagation. In spatial
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domain, Eq. 3.20 can also be formulated as

〈θx〉 =
−k

PN

∫∫

E(x, y)
∂E∗(x, y)

∂x
dxdy. (3.21)

Second order moments

For a centered (〈x〉 = 〈y〉 = 0) simple astigmatic beam the second order moments

are defined by

〈w2
x〉 =

4
PN

∫∫ +∞

−∞
|E(x, y)|2 x2 dxdy, (3.22)

〈θ2
x〉 =

4λ2

PN

∫∫ +∞

−∞
|E(kx, ky)|2 k2

x dkxdky. (3.23)

Similarly to the first order moments, Eq. 3.23 can also be written as

〈θ2
x〉 =

λ2

π2PN

∫∫ +∞

−∞

∣

∣

∣

∣

∂E(x, y)
∂x

∣

∣

∣

∣

2

dxdy. (3.24)

Additionally, a mixed second order moment exist, which is

〈wxθx〉 =
−iλ

πPN

∫∫ +∞

−∞

(

E(x, y)
∂E∗(x, y)

∂x
− E∗(x, y)

∂E(x, y)
∂x

)

x dxdy. (3.25)

In the scenario of an aligned astigmatic Gaussian fundamental mode, the second

order moments correspond to the waist, the far field divergence angle and the ra-

dius of curvature of the beam along the main axes, which are already described in

Eq. 2.34-2.36.

〈w2
x〉 = w2

x, (3.26)

〈θ2
x〉 = θ2

x, (3.27)

〈wxθx〉 =
w2

x

Rx

. (3.28)

At the beams waist, the wavefront is a plane surface, corresponding to an infinite

radius of curvature. Thus, a possibility to define the waist of an arbitrary field is

obtained by 〈wxθx〉 = 0.

A general beam can be characterized in a similar way. Instead of six independent
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parameters, there are four additional parameters. The properties of a general beam

can be arranged in a 4 × 4 matrix [56]

P =













〈w2
x〉 〈wxwy〉 〈wxθx〉 〈wxθy〉

〈wxwy〉 〈w2
y〉 〈wyθx〉 〈wyθy〉

〈wxθx〉 〈wyθx〉 〈θ2
x〉 〈θxθy〉

〈wxθy〉 〈wyθy〉 〈θxθy〉 〈θ2
y〉













. (3.29)

Within P , the rotations of the near and far field intensity with respect to the ref-

erence frame are characterized by 〈wxwy〉 and 〈θxθy〉, respectively. The mixed mo-

ments 〈wxθy〉 and 〈wyθx〉 describe the orbital angular momentum. For a simple

astigmatic beam with six independent parameters P reduces to

PSA =













〈w2
x〉 0 〈wxθx〉 0

0 〈w2
y〉 0 〈wyθy〉

〈wxθx〉 0 〈θ2
x〉 0

0 〈wyθy〉 0 〈θ2
y〉













. (3.30)

The generalized propagation factor of a beam is invariant with propagation through

a paraxial optical system. It is computed by

M2 =
π

λ
det(P )

1
4 . (3.31)

Only for a fundamental Gaussian mode M2 = 1, for any other type of beam it is

larger. In case of a simple astigmatic beam Eq. 3.31 simplifies to

M2
SA =

√

M2
xM2

y , (3.32)

M2
x =

k

2

√

〈w2
x〉〈θ2

x〉 − 〈wxθx〉2 ≥ 1, (3.33)

M2
y =

k

2

√

〈w2
y〉〈θ2

y〉 − 〈wyθy〉2 ≥ 1. (3.34)

(3.35)

Thus, a simple aligned astigmatic Gaussian beam can still have an M2 = 1, meaning

that astigmatism is not degrading the performance of the laser beam in terms of

M2. This is in contrast to the previously introduced performance metric of the

Strehl-ratio, which is degraded by astigmatic wavefront aberrations. The reason is

that the classical Strehl definition is referenced to a rotational-symmetric field. The

30



influence of spherical aberration and certain intensity profiles on the M2-value is

investigated in [57]. Here, a strong coupling between phase aberrations and their

weighting in terms of the intensity distribution is observed. Hence, the separation

between phase or amplitude errors is complicated in real applications.

In chapter 4 the M2-value is used for the characterization of real laser beams after

the field is reconstructed based on the phase retrieval approach solving the TIE.

Within this approach, the phase and amplitude of the inspected field are described

simultaneously and can be easily separated. Consequently, this enables a deeper

insight into the properties of the beam under test.

3.3. Profiling of quasi Bessel beams

In section 2.1.3, an ideal Bessel beam with its infinite spatial extension was in-

troduced and discussed as an solution of the wave equation according to Eq. 2.21.

However, in practical situations the spatial extend of light is always limited and

only approximations of Bessel beams can be obtained. Those approximated Bessel

beams can be called quasi Bessel beams creating a so-called Bessel zone, where sim-

ilar properties in terms of lateral and axial amplitude distribution compared to the

ideal pendant are observable [16–18, 47, 48]. Such quasi Bessel beams can be de-

scribed in polar coordinates within the Fresnel regime analytically by using Eq. 3.13

and separating the amplitude and phase of the field in the exit pupil (z = 0) by

E0(ρp, φp) = E0(ρp) = A(ρp)eikǫρp , (3.36)

where the conic wavefront can be defined in terms of the numerical aperture NA

of the system with ǫ = − tan (sin−1(NA)). This particular wavefront shape can be

generated for example by an axicon, which can transform a plane wavefront of an

incoming collimated beam into a conical shape [16,17,47,58]. The resulting Fresnel

diffraction equation can be solved analytically in special situations. Characteris-

tic for the generated beam are the lateral and axial extend. For an ideal conic

shaped wavefront, the relative lateral intensity distribution is invariant along z in-

side the Bessel-zone. The first ring with no intensity occurs at ρi = 0.38 λ
NA

, which

is smaller compared to the classical Airy disc radius where the first dark ring occurs

at ρi = 0.61 λ
NA

[28, 32]. In contrast to the ideal Bessel beams, the axial intensity
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distribution is dependent on the apodization function A(ρp), which is demonstrated

in the following.

3.3.1. Bessel-Gauss beam

One possible realization of a quasi Bessel beam can be a Bessel-Gauss beam, where

the amplitude is described by a Gaussian envelope function. It plays an important

role due to its close relation to real applications where typical laser sources are

used for illumination [4,19,20,48]. For a Gaussian apodization function, defined by

A(ρp) = A0e
−ρ2

p/w2
, which is truncated at ρp = R, the on-axis field can be calculated

in terms of inverse error functions erfi(x) [59]

E(0, z) =
A0kw2

2(kw2 + 2iz)3/2
exp

(

ikz

(

1 − ǫ2kw2

2kw2 + 4iz

))

·
[

2
√

kw2 + 2iz

(

exp

(

iǫ2k2w2z

2kw2 + 4iz

)

− exp

(

i(kw2(ǫz + R) + 2iRz)2

2w2z(kw2 + 2iz)

))

+

(1 + i)
√

πzǫkw erfi

(

4
√

−1(kw2(ǫz + R) + 2iRz)

w
√

z(2kw2 + 4ikz)

)

−

(1 + i)
√

πzǫkw erfi

(

(1 + i)ǫkw
√

z

2
√

kw2 + 2iz

)

]

.

(3.37)

To illustrate the complex behavior of this Eq. 3.37 and the resulting intensity varia-

tion along z dependent on the apodization, the corresponding normalized intensity

is plotted in Fig. 3.2 for different truncation ratios w/R. Here, a shift of the peak

intensity dependent on this ratio is observed. The larger this ratio, the further the

intensity is shifted towards larger z. In addition, the observed intensity is modu-

lated, which is also in contrast to Eq. 2.21. The reason for the fluctuation is that the

shown Bessel beams are non-ideal due to their finite truncation at ρp = R, leading

to observable edge diffraction-phenomena, which in case of Bessel beams are pro-

jected onto the z-axis. In case of w/R = 2/3, there is less intensity compared to

the other cases at the boundary, resulting in the least amount modulation height.

For w/R = 100, the amplitude distribution can be regarded as an approximation

of a tophat beam which is characterized by a homogeneous illumination. At the

boundary, the intensity is maximal in this set of examples, leading to the strongest
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The mixed terms of the derivatives can be set to zero by rotating the coordinate sys-

tem and the argument of the exponential function can be written as 1
2
ik (αs′2 + βt′2),

where α and β are the eigenvalues of the matrix

H =

(

guu guv

guv gvv

)

. (3.43)

Then, U can be expressed by two separated standard integrals

U = f(u0, v0)e
ikg(u0,v0)

∫ +∞

−∞
e

1
2

ikαs′2

ds′
∫ +∞

−∞
e

1
2

ikαt′2

dt′, (3.44)

that can be solved with the identity
∫ +∞

−∞ e±ix2
dx = e± π

4
i, yielding

U =
2π

k
√

|H|
e

π
4

i(σu+σv)f(u0, v0)e
ikg(u0,v0). (3.45)

Here, the determinant of the Hessian matrix is |H| and the sign of the second

derivatives is taken into account by σu = sign(guu), σv = sign(gvv). Consequently,

the integral for the value U is solved approximately, becoming more and more ac-

curate for increasing k and stronger curvatures of g(u0, v0). In case of a rotational

symmetric quasi Bessel beam a stationary point is transformed to a stationary ring.

Thus, a small ring element with amplitude f(ρ0) accounts for a small on-axis line

element. The higher the NA, the narrower is the contributing ring width and the

better the stationary phase approximation. According to Eq. 3.45, the amplitude

of a ring element is directly proportional to the corresponding on-axis amplitude

of the field, which shows the strong dependence of the focussed line profile on the

apodization function. In chapter. 5 the idea of the stationary phase approximation

is used to calculate the impact of spherical aberration up to arbitrary order beside

astigmatism and coma on the line focus of Bessel-Gauss beams to evaluate their

performance analytically. This is further used to compute an extended z-dependent

Strehl-ratio definition in case of the generated line focus.

3.3.3. Profiling of the on-axis intensity

Another explanation for the apodization dependent on-axis intensity is given in [48]

for rotational symmetric fields in terms of Hankel and Fourier transforms. This
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description is very useful to obtain arbitrary shaped on-axis fields, in particular.

The basic ideas are briefly introduced.

The spatial spectrum of a field can be calculated by Eq. 2.11. In case of a rotational

symmetric field with kρ =
√

k2
x + k2

y, this can be written as a zero-order Hankel-

transform

S(kρ, z = 0) =
∫ ∞

0

E(ρ, z = 0) J0(kρρ)ρ dρ (3.46)

and the corresponding inverse Hankel transform

E(ρ, z = 0) =
∫ ∞

0

S(kρ, z = 0) J0(kρρ)kρ dkρ. (3.47)

The physical interpretation of this relation is that an rotational symmetric field can

be decomposed into a set of ideal zero order Bessel beams. According to Eq. 2.18

and 2.21 each of these individual Bessel beams propagates in free space according

to J0(kρρ)eikzz. Each Bessel mode has a specific spatial frequency along the optical

axis which contributes to the on-axis field. By combining the propagation properties

of the individual Bessel modes and Eq. 3.47, the on-axis field can be computed by

E(r = 0, z) =
∫ k

0

S
(

√

k2 − k2
z , z = 0

)

eikzzkz dkz. (3.48)

This formula connects the on-axis field with the spatial spectrum of the initial field

by a one-dimensional Fourier transform. Thus, arbitrary field distributions along

z can be generated with the available frequency range. The simulation and mea-

surement of three different beams are shown in Fig. 3.4 to illustrate the application

of Eq. 3.48. These depictions are published in [48]. In the top row the intensity

is invariant over the main length of the generated beam. The center and bottom

row display the results for a linearly changing intensity along z. Only the boundary

regions are influenced by an unwanted variation along z with a smooth transition.

This transition is controlled via a Gaussian envelope function that also suppresses

the on-axis fluctuations as shown in Fig. 3.2. A narrow envelope damps the oscilla-

tion, but at the same time it smooths the transition. Thus, an application dependent

trade-off solution between desired on-axis uniformity and uniformity length must be

found.
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Figure 3.4.: Variety of quasi Bessel beams calculated by Eq. 3.48 and experimentally
measured [48]. The top row shows the results of an uniform intensity
along z, while the center and bottom row show the results of a linear
increasing and decreasing on-axis intensity, respectively.

3.4. Homogeneous thermal load in optical systems

In this section, the state-of-the-art ideas to consider homogeneous temperature vari-

ations of refractive optical systems including the mountings are presented [22, 24,

38, 49]. This is especially important for applications in temperature unstable en-

vironments such as cameras or lidar (light detection and ranging) systems in the

automotive industry for the purpose of autonomous driving [61–63]. The shown

considerations are addressing the paraxial properties of the system by paraxial ray

trace data, since they typically show the strongest temperature dependence and

allow for an analytic treatment. This enables to derivation of a fundamental un-

derstanding and physical relations, which are of great benefit to find initial systems

and allowing the athermalization of basic properties of optical systems. In general,

the homogeneous temperature change of a paraxial optical system leads to defocus.

Non-paraxial systems with comparably larger ray angles consequently suffer from
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higher order aberrations [22, 39, 64]. Higher sophisticated systems or systems in a

later design and simulations phase typically require complex modeling approaches

like the connection of ray-tracing with finite-element-methods in order to represent

the boundary conditions accurately. This leads to a significant increase of the com-

putational effort [21, 22, 26, 27]. These higher order effects are not adressed within

the scope of this thesis.

3.4.1. Heated thin lens singlet

To demonstrate the defocus effect in case of a uniform temperature change inside a

paraxial thin lens, the following formula for the focal power F is investigated [29,38]

F = (n − 1)

(

1
R1

− 1
R2

)

, (3.49)

with the radii of curvature R1 and R2 on the front and rear surface of the lens,

respectively. For simplicity the refractive index of air is assumed to be constant one.

Taking the derivative with respect to the temperature T yields [24]

∂F

∂T
=

∂n

∂T

(

1
R1

− 1
R2

)

− (n − 1)

(

1
R2

1

∂R1

∂T
− 1

R2
2

∂R2

∂T

)

. (3.50)

In case of an isotropic expansion of the glass, the radii of curvature can be described

in a linear model as

R′
i = Ri(1 + xg∆T ) , i = 1, 2. (3.51)

Together with the expansion coefficient of the glass xg = 1
R

∂R
∂T

, this leads to

∂F

∂T
= F

(

1
n − 1

∂n

∂T
− xg

)

. (3.52)

In terms of the focal length f = 1/F , this is formulated as

xf =
1
f

∂f

∂T
= xg − 1

n − 1
∂n

∂T
, (3.53)

where xf is called the opto-thermal expansion coefficient. It purely depends on the

material parameters of the lens and is independent of the shape. The temperature
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dependence of the refractive index can be given in various ways. The glass vendor

Schott specifies it with the following definition [38]

dn

dT
=

n2(λ) − 1
2n(λ)

(

D0 + 2D1∆T + 3D2∆T 2 +
E0 + 2E1∆T

λ2 − λ2
T K

)

. (3.54)

Here, n is the nominal refractive index at room temperature at a specified wave-

length, D0, D1, D2, E0, E1 and λT K are constants, found in the corresponding

data sheets of the glasses. Thus, ∂n
∂T

is not only dependent on the wavelength but

also on the temperature itself. This has to be considered in situations where the

temperature increases substantially. An overview of glasses from Schott with the

corresponding properties can be found in Tab. A.2. Here, it can be seen that the

absolute value as well as the sign of ∂n
∂T

differs among the listed glasses but it is

positive for the majority of glasses. For xg only positive values can be found.

Similar to Eq. 3.51, the mounting of the lens is also expanding due to the change

of temperature, which can be described by the thermal expansion coefficient of the

mounting xm. An overview of selected mounting materials with the corresponding

properties is listed in Tab. A.3. Dependent on the sign of xf , the focus position is

shifted towards or away from the lens. With a combination of xf and xm, it is possi-

ble to compensate the thermally induced shift of the focus position by the expansion

of the mounting material. Therefore, the optical system can be athermalized by an

appropriate choice of the materials [24,38,49]. In practice, this is often critical due

to the limited choice of mounting materials. Especially the compensation for nega-

tive xf is an issue because there is no mounting material with a negative expansion

coefficient. This problem is solved by splitting the lens into two lenses, which is

discussed next.

3.4.2. Heated thin lens doublet

Optical systems often consist of two lenses in contact. The resulting focal length of

such a system with two thin lenses is obtained by

1
f

=
1
f1

+
1
f2

, (3.55)
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where f1 and f2 are the individual focal lengths of the lenses. The resulting opto-

thermal expansion coefficient is expressed as [21,24]

xf =
f

f1

xf1 +
f

f2

xf2 . (3.56)

The thermal and chromatic properties of the doublet can be maintained by

xf =
ν1xf1 − ν2xf2

ν1 − ν2

, (3.57)

where ν is the Abbe-number of the respective glasses. The Abbe-number is used to

characterize the chromatic dependence of the refractive index (dispersion) in terms

of the normalized inverse slope at specified wavelengths. Thus, small values of ν

correspond to large changes of the refractive index with the wavelength and large

values of ν indicate glasses with low dispersion [38, 49]. The thermal compensation

with a doublet is more flexible than the singlet approach, since xf can be tuned by

the combination of two materials. In practice, there are more available glasses than

mounting materials. Thus, choosing a mounting material first and then combining

two glasses to achieve xm = xf is a possible athermalization strategy [24]. Addition-

ally, two lenses offer more degrees of freedom for the correction of other aberrations

like axial color, spherical aberration, field curvature and coma [38, 49, 64], which is

discussed in literature in the scope of achromates.

In practice, often non-uniform temperature variations occur. Such scenarios might

be space applications where the sun is heating the optical system from one side

or high power laser systems where the laser light is absorbed inside the lenses due

to bulk absorption. Within this thesis, the second case is further investigated in

chapter 6 by calculating the temperature inside a thin lens that is illuminated and

heated by a high power fundamental Gaussian beam. The resulting temperature dis-

tribution is further used to derive an expression of the additional heat induced focal

power based on the paraxial raytrace inside a gradient index medium (GRIN). Fur-

thermore, this is applied in the athermalization of basic optical systems for shaping

laser beams like doublets and telescopes.
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4. Coherent laser beam

reconstruction and

characterization by non-iterative

phase retrieval solving the TIE

The characterization of real laser beams is an important task for a variety of appli-

cations where the difference between designed and real beams has to be investigated

or different beams are compared to each other. As a standard technique for the anal-

ysis of laser beams, the beam performance is quantified by the M2 parameter, which

is described in section 3.2. The M2-value exploits the similarity to a fundamental

Gaussian beam. The most important reasons for deviations from the ideal value

of M2 being one are phase aberrations, amplitude variations or a certain degree of

partial coherence. A separation of these three quantities cannot be performed by

calculating the scalar measure of M2 [14], which is a fundamental disadvantage of

this methodology. Within the scope of this chapter, only fully coherent beams are

considered. In applications where the laser beams are profiled by beam shaping

optics, the M2-value is not helpful, since it is only invariant in paraxial optical sys-

tems, where occurring aberrations are not included. Thus, the variation of phase

and amplitude are not considered sufficiently enough to predict the performance of

real laser beams. To extend the quality-metric beyond the M2 of a coherent beam,

the phase and amplitude distributions must be analyzed. While the intensity can be

simply measured by a camera, the phase cannot. Measuring the phase usually re-

quires interferometric techniques or wavefront sensors for example Hartmann-Shack

sensors.

The challenge of the simultaneous measurement of amplitude and phase can be

resolved by the method of phase retrieval. The great interest in the this topic
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is unbroken from the past up to recent time for a multitude of applications. In

literature, several methods to tackle this inverse problem are described. Many of

them are based on the inverse-Fourier-transform-algorithm (IFTA) principle [65,66].

They are often applied in the field of beam shaping with arbitrary phase-functions.

For the characterization of optical systems, there are specialized algorithms that are

based on the optimization of a parametrized physical model or the extended Nijboer-

Zernike theory [67,68]. Another field of algorithms, which tackle the phase-retrieval

problem, are based on solving the transport of intensity equation (TIE) [34], which

was introduced in the realm of the paraxial wave equation in section 2.2. The TIE

is solved for many different applications ranging from the field of surface testing to

phase-imaging in microscopy [46,69,70].

The TIE is a partial-differential equation, that connects the variation of the intensity

distribution with the phase distribution for a coherent field. Therefore, it allows for

a simple experimental setup for quantitative phase measurements consisting of a

shiftable camera to acquire the intensity distribution in space. In literature, there

are many distinct methods for the solution of the TIE proposed, which are typically

problem-specific. In the original work of Teague, the solution via a Green’s function

and direct numerical integration was proposed [34]. This idea corresponds to a

solution of the TIE for each individual pixel of the measured intensity points. The

most typical method to solve the TIE is found by transforming it into two subsequent

Poisson equations and solving these in the frequency domain [35,46]. Gureyev et al.

solved the TIE via certain sets of basis functions like Zernike-polynomials or Fourier-

harmonics [36, 37].

In this chapter a laser beam specific solution scheme of the TIE is proposed. There-

fore, the chapter is structured as follows. In section 4.1, the most common approach

to solve the TIE is shown and the issues arising in the special case of laser beams are

described. After that, a new laser beam specific methodology based on a phase de-

composition is introduced and critical parameters are analyzed. Here, the basic idea

is the decomposition of the phase into paraxial terms known from Gaussian beams

such as tilt and curvature, and a set of shifted radial-basis-functions (RBFs) which

are used to describe higher order phase terms. The RBFs are useful due to their lo-

cal support making them flexible in describing symmetry-free surfaces [71] and their

simple differentiation scheme. This decomposition is directly inserted into the TIE

yielding a system of linear equations which has to be solved for the corresponding
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coefficients of the RBFs. In section 4.2 the method is tested against synthetic data

to derive the accuracy of the retrieved wavefront based on the comparison of mea-

sured and reconstructed intensity stacks. After that, a simple experimental setup

is described and two laser beams with different divergence angles are evaluated to

validate the new TIE approach based on real experimental data.

Parts of this chapter are published in [72].

4.1. Solution of the TIE

4.1.1. Classical solution

In literature, the probably most common method to solve the TIE is based on

transforming the TIE into two subsequent Poisson equations [34,35]. Therefore, the

TIE (Eq. 2.42) is reformulated as

−k
∂I

∂z
= ∇⊥ · (I∇⊥Φ) (4.1)

= ∇2
⊥Ψ, (4.2)

with the auxiliary function ∇⊥Ψ = I∇⊥Φ. Thus, the first Poisson equation, Eq. 4.2,

can be solved for Ψ by formulating this in the spatial frequency domain with (fx, fy)

leading to a linear filter operation

Ψ(fx, fy) =
F{−k ∂I

∂z
}

−4π2(f 2
x + f 2

y )
. (4.3)

To obtain the phase from the auxiliary function, a second Poisson equation needs

to be solved

∇2
⊥Φ = ∇⊥

∇⊥Ψ
I

(4.4)

The solution can be obtained in the same way as for the first Poisson equation

by a linear filter operation. This procedure offers a simple and elegant scheme for

many applications, especially in the field of phase imaging [35,69,73]. Though, from

Eq. 4.4 it can be seen that a division by the intensity itself occurs. This is not an
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issue when a phase probe is illuminated nearly homogeneously, but in the scope of

the reconstruction of laser beams this certainly is numerically problematic. Here,

often patterns with zero intensity occur due to diffraction effects and aberrations,

which would require a special regularization scheme for the solution of Eq. 4.4.

To avoid these intricacies, a new scheme incorporating the paraxial properties of

coherent laser beams is developed and exploited next.

4.1.2. Specific solution for laser beams

To find a solution of the TIE in the context of coherent laser beams, it is proposed to

decompose the phase into basic terms describing the paraxial properties of the beam

and higher order terms describing the phase perturbations. The paraxial properties

of the beam are the tilt Φt and the curvature of the phase Φc. They are described by

lower order polynomials. For the description of the higher order phase terms ΦRBF

a set of RBFs is used

Φ = Φt + Φc + ΦRBF . (4.5)

Here, the tilt of the phase is defined as

Φt = k (txx + tyy) (4.6)

with the corresponding coefficients tx, ty. The curvature of the phase is specified by

the coefficient c and the corresponding definition

Φc =
kc

2

(

x2 + y2
)

, (4.7)

assuming the dominant contribution is circular symmetric. These two quantities

are similar to the basic properties of Gaussian beams whose propagation direction

is perpendicular to the linear phase and the shape of the phase is parabolic. The

higher order phase-terms are described the following linear combination of M RBFs

ΦRBF =
M
∑

m=1

cme−ǫ2((x−xm)2+(y−ym)2). (4.8)

In this work, the RBFs are chosen to be a set of Gaussian functions with the shape-

factor ǫ that represents the inverse width of the individual Gaussian functions. To

44



improve the readability for the next considerations, the following is defined

∇I =







Ix

Iy

Iz






, ∇⊥I =

(

Ix

Iy

)

, ∇⊥φ =

(

φx

φy

)

. (4.9)

When Eq. 4.5-4.8 are inserted into Eq. 2.42, one can separate the terms of tilt,

curvature and higher order for Iz according to the respective parts of Φ

−kIz = −k (Iz,t + Iz,c + Iz,RBF ) , (4.10)

−kIz,t = k (Ixtx + Iyty) , (4.11)

−kIz,c = kc (Ixx + Iyy + 2I) , (4.12)

−kIz,RBF =
M
∑

m=1

cme−ǫ2((x−xm)2+(y−ym)2)·

2ǫ2
[

Ix (xm − x) + Iy (ym − y) +

I
(

2ǫ2 (xm − x)2 − 1
)

+ I
(

2ǫ2 (ym − y)2 − 1
)

]

.

(4.13)

For fundamental Gaussian-like laser beams, the dominant terms of the phase are the

tilt and the curvature. The tilt-coefficients can be simply identified by computing

the centroid of the beam along z, which lies on a straight line. The curvature of the

phase in the plane of consideration can be determined by minimizing the expression

|Iz + c (Ixx + Iyy + 2I)|2 = min . (4.14)

Hence, the dominating phase terms for tilt and curvature are calculated separately

from the higher order terms and Eq. 4.10 can be rearranged with the known parts

on the left-hand-side and the unknown part on the right-hand-side

− k (Iz + Iz,t + Iz,c) = −kIz,RBF . (4.15)

To calculate the phase, the linear system of equations formed by Eq. 4.13 and 4.15

with the unknown Gaussian coefficients is solved by a least-squares-fit. The resulting

coefficients cm for the higher order phase-terms are then inserted into Eq. 4.8 to gain

the final phase function.

The RBFs can be located by a various number of sampling schemes, e.g., Cartesian,
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polar or Fibonacci. In this work, a Fibonacci sampling scheme is chosen. It typically

provides a significant better performance in comparison to other sampling schemes

[71]. The size of the individual RBFs is controlled by their shape-factor ǫ. For

sake of simplicity, all RBFs have the same shape. This shape factor is of particular

importance for the reconstruction of the phase, since it controls the local gradient

of the phase at a given sampling. To account for an optimal choice of ǫ for fixed

sampling conditions of the RBFs, an analog procedure as described in [71] is applied.

4.1.3. Critical parameters

The critical parameters for the phase retrieval procedure with the described set

of equations are the noise within the intensity measurements, the corresponding

calculation of the gradient of the intensity and the region of interest, where the

phase is reconstructed.

The noise in the intensity acquisition is presumed to be induced by white noise and

quantization-errors due to the limited bit-depth of the available cameras, mainly.

Both issues are resolved by recording the images at one position with varying ex-

posure times. The resulting intensity-stack is then merged to a high-dynamic-range

(HDR) image [74,75]. The HDR image provides an overall enhanced signal-to-noise

ratio and even provides signal in regions, where conventionally no or only saturated

signals can be measured due to under- or over-exposure, respectively.

The gradient of the intensity is computed based on the actual intensity data. Thus,

it is also influenced by noise and its accuracy can be improved by reducing the noise

with the HDR-technique. An additional point for the calculation of the correct

gradient is the sampling in axial and lateral direction. In principle, the distance ∆z

between subsequent measurement planes can be chosen arbitrarily small being only

limited by the step size of the used stage. Therefore, the accuracy can be arbitrary

large along z for an ideal noise-free signal. If noise is considered, ∆z must be chosen

carefully, since small distances lead to a small signal change I(z2) − I(z1), which

may be perturbed by noise. Thus, the signal-change is dominated by noise. If ∆z

is too large, the signal change is larger than the noise, but may exceed the range,

where a finite difference approximation of the corresponding axial derivative is valid.

Hence, the optimal distance is dependent on the signal change and the noise [76,77].

This was investigated theoretically by Teague in [34] where he gave expressions for
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an optical choice of ∆z for estimated noise and phase values. Waller et al. showed

similar findings by examining errors of noisy signal derivatives dependent on the

finite difference order, ∆z and varied noise-levels [35]. The lateral derivatives of the

intensity are affected in the same manner as the axial derivative computations, but

the difference is, that the separation between data points is fixed by the sensors

pixel pitch. The only possibility to modify sampling condition is to enlarge the

lateral extend of I by magnifying the beam with an appropriate telescope or by

moving to different axial position for the reconstruction z0. For the calculation of

∇I a Savitzky-Golay-filter is used in this work [78]. This technique was already

investigated in relation with the TIE in [77]. Basically, the filter fits a (typically

low order) polynomial to the data points for smoothing the data and calculating

the corresponding derivatives analytically. It can be controlled by the window-size

and the polynomial order. A large window in combination with a small polynomial

order correlates with a strong smoothing. Another practical important point is

the position z0, where the phase is retrieved, because this has a strong impact on

Iz. For an ideal fundamental Gaussian beam, the axial intensity is symmetrical

around the focus (see section 2.2.1) and Iz is consequently exactly zero at the focus.

Reconsidering the influence of the noise on the computation of Iz, it is clear, that

the signal-change is strongly affected by noise at the focus. To maximize the signal

value along z, an optimal position z0 is computed. This position is found by the

evaluation of the intensity-weighted root-mean-square (rmsw) value of Iz along z

and selecting the position where this is maximal.

rmsw (Iz (z)) =

√

∫

Iz (x, y, z)2 · I (x, y, z) dxdy
∫

I (x, y, z) dxdy
. (4.16)

The region of interest where the phase is retrieved depends on the demands of the

application. For example in the case of phase imaging, the phase values might not

be of interest in the full illumination area. In the scenario of the characterization

of Gaussian like laser beams with considerably large perturbations, the practical

limit of detectable intensity defines the size of the region of reconstruction. This

is reasonable due to the basic principle, that the phase is undefined if there is no

intensity [30]. For further purposes of propagation of the calculated field, the phase

must be retrieved for all points of measured intensity. Otherwise, the propagation

of the reconstructed field is inaccurate and edge-diffraction effects might occur in

the simulation, even if there is no physical edge in the measured data.
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4.2. Results and discussion

4.2.1. Estimated accuracy of the retrieved phase

The assessment of the accuracy of the retrieved phase is a fundamental aspect in the

quantitative characterization of coherent fields. To substitute wavefront measuring

equipment like interferometers or Hartmann-Shack sensors completely, a consistency

check of the reconstructed field with the measured stack of intensities is performed.

Therefore, the reconstructed field is propagated to the planes of measured intensities

and the corresponding intensities of the reconstructed field are compared with the

measured ones. If the retrieved phase is identical to the real phase, the difference

in intensities must be zero. Thus, in case of a mismatch between the reconstructed

phase and the phase of the measured laser beam, this can be observed due to propa-

gation, resulting in intensity differences between the measured and the reconstructed

beam.

The basic idea of the following approach is to quantify the intensity differences

and correlate this to the corresponding phase mismatch. This is done by simulat-

ing different Gaussian-like beams, whose ideal phase terms are disturbed by varied

amplitudes of spherical aberration and astigmatism. Furthermore, the far field di-

vergence angle θ (see Eq. 2.35) is varied to account for a broad spectrum of possible

beam variations. The synthetic beams are then propagated into the focal region and

the phase is retrieved by the proposed decomposition method to solve the TIE in

a next step. The accuracy of the retrieved phase can be controlled by the number,

shape and distribution of the used RBFs. A more detailed description of the depen-

dencies can be found in [71], where they are used to describe the difference between

ideal and manufactured freeform surfaces. The accuracy is quantified in terms of

the weighted rms difference between the ideal and the retrieved phase rmsw (∆Φ).

In order to normalize the results and make them independent on the focusing of the

beam, the axial length is scaled in Rayleigh-lengths in air

zR =
λ

πθ2
. (4.17)

Its physical interpretation was already given in the scope of fundamental Gaussian

beams in section 2.2.1. The intensities are compared within an interval of ±1zR by

the calculation of the intensity weighted rms difference rmsw (∆I).
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two different focus modules are used. The first focus module (5M-S325-33-S) has a

focal length of 325 mm, resulting in a far field divergence of θ = 3 mrad. With the

second focus module a focal length of 150 mm (5M-S150-33-S) and a corresponding

far field divergence of θ = 7 mrad is achieved. Thus, the focus is expected to be

approximately half of the size compared to the first focus module. To scan the

intensity distribution along z, a dynamic stage is used (M-ILS300LM-S, Newport

Corporation, Irvine, USA) and a beam profiling camera is mounted onto it (SP928,

Ophir Spiricon Europe GmbH, Darmstadt, Germany). The camera captures 12

bit images with a resolution of 1928 × 1448 pixels. The pixel pitch is 3.69 µm.

Therefore, in case of ideal Gaussian beams the waist diameter is sampled in case of

the first focus module by roughly 38 pixels and in case of the stronger focusing with

the second module it is sampled by 16 pixels.

Laser beam with θ = 3 mrad

For the retrieval of the phase, the intensities inside the region of interest with a

radius of 0.49 mm around the centroid of the beam are considered. The phase is

described by 3000 RBFs which are distributed within this region. To compute the

axial derivative term Iz a sixth-order polynomial which is based on 51 planes along

z and a separation of consecutive planes by 0.2 mm is used. The lateral derivative

terms Ix, Iy are also computed by a sixth-order polynomial, though based on eleven

intensity-values. Therefore, the smoothing effect is much stronger in axial direction,

than in lateral direction.

The results of the reconstructed laser beam in the y-z cross-section are shown in

Fig. 4.3 to provide an overview of the beams intensity. In the upper row, the mea-

sured intensity stack is shown and the corresponding intensities of the reconstructed

field are shown in the center row. In the bottom plot, the on-axis intensities of

the measurement and the reconstruction are presented. The intensity weighted rms

difference of the intensities within ±1zR is rmsw (∆I) = 1.23%. Comparing this

with the results of Fig. 4.1, the accuracy of the retrieved wavefront is estimated to

rmsw (∆φ) ≈ 0.045λ. In the plot of the on-axis intensity the asymmetric behavior

around the peak intensity can be observed. On the left hand side, the intensity

increases smoothly, whereas on the right hand side some small oscillations can be

seen. Such asymmetric oscillations around the focus are typically caused by spherical
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The rms values as an integrating criterion do not give any insights on particular

problems in the reconstruction as edge diffraction due to an imperfect radius of

the region of interest or issues with dead pixels of the sensor. Hence, the visual

comparison of the reconstructed beam with measurement is very useful. The sensi-

tivity of the visual agreement can also be understood in the comparison of results

of the two presented beams. The intensities of the retrieved field in the θ = 7 mrad

case match the measurement better. This can be seen especially in the agreement

of the oscillations of the on-axis intensities on the right hand side of the caustics.

The intensities of the larger θ matches in amplitude and frequency, while for the

small θ a mismatch can be seen. These evident performance differences based only

on visual inspection of the data are also supported by the particular quantitative

results based on the weighted rms differences of the intensities. Here, the retrieved

field of the second measurement shows a better performance. To understand this

situation, the intensities of both measurements were investigated. A clear difference

is the number of dead pixels on the camera. Only for the first measurement, a large

amount of dead pixels could be identified. Thus, the acquired intensity values of the

θ = 3 mrad beam were filtered by a median-filter to achieve the presented results.

This was unnecessary for the other measurement.

The calculation of the separated values for the M2-value with and without phase

aberrations shows the great benefit of this method. Since the full field is retrieved,

it can be propagated and converted arbitrarily. The location of computation of the

M2-value along z is of no matter, since the propagation of the beam corresponds

to a paraxial optical system with an invariant M2. To separate the impact of

wavefront aberrations from amplitude imperfections, the phase was flattened for the

retrieved fields at the rear surface of the focusing lens. By this operation the purely

amplitude dependent M2-value could be calculated, since the degradations due to

amplitude and phase are not mixed by the propagation. In case of the θ = 7 mrad

results, the amplitude is nearly ideal with M2 = 1.05. The incorporation of the

phase aberrations leads to a value of M2 = 1.71, showing the strong influence of

the phase aberrations. In contrast, the measurement of the θ = 3 mrad beam shows

different results. Here, the flattened field has M2 = 1.10 and the retrieved field has

M2 = 1.34. Thus, the distinction between phase and amplitude influence is not that

clear. The reasons are that the amplitude might be influenced by the presumable

tilted focusing lens or the retrieval results are not accurate enough. A combination

of both reasons is also imaginable.
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In general, the quality of the reconstruction and propagation of both measured laser

beams agrees well with the measured data, visually. The weighted rms differences of

the intensities within ±1zR are smaller than 1.3%. Comparing this to the results of

synthetic investigations shown in Fig. 4.1, the estimated residual weighted rms wave-

front error of the proposed method to retrieve the phase is less than 0.05λ for the

presented experimental data. Thus, the method allows for an accurate reconstruc-

tion of the full field, which enables enhanced insights into the full field properties and

further enables to increase simulation complexities by incorporating the retrieved

field as a real light source in the simulation of optical systems.
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5. Effective performance evaluation

of perturbed Bessel-Gauss beams

based on the analytical expression

of the line focus

The demand of applications with quasi Bessel beams is growing continuously. Such

beams possess special properties like the generation of a long but narrow line focus

and the ability of so-called self-healing. The generation of an axial line focus is in

particular attractive for applications which require a small lateral extend but at the

same time a large depth of focus. For classical beams with a spherical or parabolic

carrier wave both demands can typically not be achieved, because the lateral and

axial resolution are coupled by the numerical aperture, respectively the far field

convergence angle. A small lateral width of the beam can only be generated by a

large convergence angle, which simultaneously limits the axial length according to

Eq. 2.33. Quasi Bessel beams are used in applications that require a signal over

a long axial length while enabling a large lateral resolution, e.g., optical coherence

tomography, materials processing or optical tweezers [4,20,79,80]. They can be gen-

erated by several methods. Most important is the conical wavefront, which focuses

light along a line as introduced in section 2.1.3 and 3.3. This conical wavefront can

be generated by, e.g., a phase mask, a ring lens or an axicon. A more comprehensive

list of methods to create quasi Bessel beams is given in [19].

Simulations of optical systems involving quasi Bessel beams typically do not in-

corporate wavefront aberrations, which are introduced due to misalignment of the

optical elements or imperfections of the setup itself induced, for example by the light

source as it was investigated in the previous chapter. Often, the diffraction evalu-

ation of the quasi Bessel beam is numerically costly. If non-rotational symmetric
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aberrations, for example astigmatism and coma have to be considered, the com-

plete two-dimensional field must be sampled sufficiently dense, which is extremely

complex or not even possible with standard algorithms for an increasing numerical

aperture and system complexity. To understand the arising sampling issues better,

the strong oscillations of the integrand shown in Fig. 3.3 can be considered. Here,

the signal frequency to be sampled is more and more increasing. For systems with a

spherical carrier wave, certain approximations, such as the Maréchal-criteria, which

was introduced in section 3.2.2, can be used under special conditions to evaluate

the diffraction pattern of a nearly ideal system [30, 49]. Unfortunately, there are

currently no such criteria for the fast evaluation of the diffraction patterns for sys-

tems with a conical reference wave, which would allow to compute the performance

repeatedly and fast. Thus, the diffraction based direct optimization or tolerancing

of such systems remains an open challenge.

The considerations in this chapter aim the analytic and therefore fast evaluation of

the on-axis intensity of a perturbed Bessel-Gauss beam (BGB) in order to over-

come the introduced challenges. The BGB is generated by a Gaussian apodization

function, a conical reference wave and wavefront aberrations as perturbative terms.

Within this investigation, the Strehl-ratio of a BGB is computed not only at a single

point, as conventionally done in literature [42, 43, 55], but for the complete focused

line along z. To this end, the on-axis field is computed for spherical aberration,

astigmatism and coma by a diffraction calculation based on the Fresnel-diffraction

integral allowing for an efficient analytical treatment in the paraxial limit. The limits

of the Fresnel regime are extensively discussed in [81,82]. For the computation sev-

eral approximations are introduced and discussed. They enable the derivation of an

analytical formula in order to accelerate the computation and further, to integrate

this into the optimization and tolerancing of optical systems with a corresponding

conical reference wave.

This chapter is divided into the following sections. In section 5.1 the impact of

typical wavefront aberrations on the intensity distribution of a BGB is inspected by

full numerical diffraction calculations. An analytic calculus for the on-axis field of a

BGB perturbed by spherical aberration, astigmatism and coma is derived and dis-

cussed in section 5.2. The introduced approximations are assessed and validated. In

section 5.3 the analytic result is applied in the calculation of an extended Strehl-ratio

definition along the line focus. Furthermore, this definition is applied for investi-
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gating the sensitivity of an example system, which consists of catalog components

to collimate light emitted by a fiber and generate a BGB by using an axicon. The

extended Strehl-ratio is evaluated for a tilted collimator, which induces astigmatism.

Parts of this chapter are already published by the author et al. in [83].

5.1. Full diffraction calculation of perturbed

Bessel-Gauss beams

In this section, the effect of classical wavefront aberrations on a BGB is given

visually. This helps understanding the impact of classical wavefront aberrations

on the line focus of BGBs, since their properties differ significantly from classical

beams like Gaussian beams or beams with a spherical wavefront.

As in section 3.3, a BGB with a fixed truncation ratio of w/R = 2/3 and the

boundary radius R = 1 mm is considered. This produces a minor amount of oscilla-

tion along the optical axis due to edge diffraction at the boundary as already seen

in Fig. 3.2. The wavefront aberrations may be induced by previous beam shaping

optics, e.g., collimator and telescope. They are described by certain amounts of

spherical aberration, astigmatism and coma. Spherical aberration is described by

the Zernike-term Z9 shown in Tab. A.1, where the boundary of the beam is set as

normalization radius. Astigmatism is also defined in terms of a Zernike-term by Z6.

To stay consistent with the calculations made in the next section, coma is defined

without the balancing tilt. In Zernike-notation this can be written as a combina-

tion of Z7 and Z2 by Wcoma = C(Z7 + 2Z2), where C is the coma coefficient. The

magnitude of each aberrations coefficient is equally set to c6 = C = c9 = 0.1λ.

The corresponding wavelength of the beam is λ = 632.8 nm, which is typical for

a HeNe-laser. The cone angle is defined by the numerical aperture as introduced

in section 3.3 as NA = 0.01. To perform the diffraction calculation, the rigorous

angular-spectrum-of-plane-waves propagator based on Eq. 2.14 is used and the field

is sampled by 1001 × 1001 points.

The results of the propagated BGB are shown in Fig. 5.1. The axial cross-sections of

the generated line focus are depicted for different wavefront errors. At the bottom,

the corresponding on-axis intensities are compared against each other. The ideal
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d = 0.76 λ
NA

= 0.048 mm, while the length of the axial focus above 50% peak intensity

is about 50 mm. Thus, the resulting aspect ratio computed as the beam length

divided by beam diameter is roughly 1000. This situation changes when wavefront

aberrations are included. In case of spherical aberration the beam diameter varies

along z, the on-axis ripples are more pronounced and a distinct peak at z = 68 mm,

rather than a smooth focused line is observed. In comparison to the ideal beam,

the peak intensity is enhanced by spherical aberration. The ripples along z are

strongly damped for the beam suffering from astigmatism and the peak intensity is

slightly less than for the ideal BGB. At the same time the length of the line focus is

shorter. In the y-z and x-z cross-sections of the astigmatic beam it can be seen that

the beam diameter is decreasing along z and the width of the side lobes is increased.

In contrast to classical beams, only a minor difference between both cross-sections

can be observed. Furthermore, the intensity is not completely dropping to zero in

between the axial focus and the side lobes. These effects are more pronounced in the

y-z cross-section. Here, the beam is focused stronger while the pattern itself is more

blurry in comparison to the x-z cross-section. In case of the BGB perturbed by

coma, the on-axis intensity is not modulated by regular ripples. Its peak intensity

is very similar to the astigmatic beam, but the length of the line is the shortest in

comparison to all other examples. In the x-z cross-section an increasing tilt of the

beam along z can be observed yielding a curved line focus. In contrast to spherical

aberration and astigmatism, the beam diameter is approximately invariant along z.

The calculation of these results with the given lateral sampling conditions and 601

axial sampling points required more than 1 h. For repetitive computations this is

not acceptable. This problem is tackled in the next section with an approach based

on analytic mathematical formulations of the Fresnel-diffraction integral in polar

coordinates.

65



5.2. Analytical expression for the on-axis field of

perturbed Bessel-Gauss beams

5.2.1. Derivation

The field of a BGB suffering from wavefront aberrations in the pupil can be ex-

pressed as

Ep (ρp, φp) = e−µ(ρp−ρs)2

eikǫρpei2πWp(ρp,φp), (5.1)

where the first term defines the apodization with the shape-factor µ and a shift-

term ρs, enabling a ring-shaped illumination. The second term defines the reference

conical wavefront specified by the parameter ǫ = − tan (sin−1 NA) and the numerical

aperture NA of the system. The last term includes the wavefront errors. It is

further decomposed at the stationary point σ by using normalized pupil-coordinates

ρ = ρp/R and φ = φp as

Wp (ρ, φ) ≈ W0 +P |σ +P ′|σ (ρ − σ)+
1
2

P ′′|σ (ρ − σ)2 +Aρ2 cos 2φ+Cρ3 cos φ. (5.2)

W0 is a constant term of the wavefront, P corresponds to the rotational-symmetric

part and the last two terms are representing astigmatism and coma with the cor-

responding coefficients A and C. The stationary point of the conic reference wave-

front overlaid with the parabolic Huygens wavelets in normalized pupil coordinates

is given by

σ =
z tan (π/2 − arcsin NA)

R
(

1 + tan (π/2 − arcsin NA)2) . (5.3)

The rotational-symmetric term P and its derivatives can be expressed as a polyno-

mial series

P (ρ) =
N
∑

n=1

cnρn, (5.4)

P ′ (ρ) =
N
∑

n=1

cnnρn−1, (5.5)

P ′′ (ρ) =
N
∑

n=1

cnn (n − 1) ρn−2. (5.6)
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The expansion of the wavefront errors in Eq. 5.2 consists of two parts. The rotational-

symmetric aberrations are expanded up to an arbitrary order N . Their contributions

are considered in terms of the slope and curvature at the stationary point σ. This

corresponds to the general stationary-phase approach discussed in the context of

ideal quasi Bessel beams in section 3.3. In addition to the rotational-symmetric

wavefront errors, primary astigmatism and coma are included in the expansion to

model the basic azimuthal variation of the aberrations.

In the Fresnel regime, the following integral expression describes the axial field of a

perturbed BGB

E (z) =
k

i2πz
eikz

∫ R

0

∫ 2π

0

e−µ(ρp−ρs)2+ ik
2z

ρ2
p+ikǫρp+i2πWp(ρp,φp)dφpdρp. (5.7)

The pupil coordinates are normalized now and rearranged into radial and azimuthal

contributions. Considering the azimuthal dependence first, the following integral

needs to be solved
∫ 2π

0

ei2π[Aρ2 cos 2φ+Cρ3 cos φ] dφ. (5.8)

A solution can be obtained by expanding the exponential term into a Taylor series

and applying the binomial theorem.

∫ 2π

0

ei2π[Aρ2 cos 2φ+Cρ3 cos φ] dφ

=
M
∑

m=0

(i2π)m

m!

m
∑

j=0

(

m

j

)

Am−jCjρ2m+j

∫ 2π

0

cosm−j 2φ cosj φ dφ.

(5.9)

The remaining integral is then expressed in terms of the hypergeometric function

2F1 [59] as

∫ 2π

0

cosm−j 2φ cosj φ dφ =
(−1)m

2

(

1 + (−1)j
)√

π
Γ (1/2 + j/2)
Γ (1 + j/2)

·
[

(−1)m
2F1 (1/2, j − m, 1 + j/2, 2) + (−1)j

2F1 (1/2 + j/2, j − m, 1 + j/2, 2)
]

.

(5.10)

With this formulation, a solution for the azimuthal integral is found and the radial

integral is solved in the following steps. For this purpose, the derived expression so
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far is rearranged to separate the radial dependence

E (z) =
k

i2
√

πz
eikzeiW0R2

M
∑

m=0

(i2π)m

m!

m
∑

j=0

(

m

j

)

Am−jCj (−1)m

2

(

1 + (−1)j
)

Γ (1/2 + j/2)
Γ (1 + j/2)

·
[

(−1)m
2F1 (1/2, j − m, 1 + j/2, 2) + (−1)j

2F1 (1/2 + j/2, j − m, 1 + j/2, 2)
]

·
∫ 1

0

eaρ2+bρ+cρ2m+j+1 dρ.

(5.11)

Here, the argument of radial exponential is written in terms of the parameters a, b, c,

which are given as

a = −µR2 +
ikR2

2z
+ iπP ′′ (σ) , (5.12)

b = 2µRρs + ikǫR + i2π (P ′ (σ) − P ′′ (σ)) , (5.13)

c = −µρ2
s + i2π

(

P (σ) − P ′ (σ) σ +
1
2

P ′′ (σ) σ2

)

. (5.14)

This enables a further treatment of the integral by completing the square, leading

to
∫ 1

0

eaρ2+bρ+cρ2m+j+1dρ = ec− b2

4a

∫ 1

0

ea(ρ+ b
2a)2

ρ2m+j+1 dρ. (5.15)

By substituting ρ′ = ρ + b
2a

and applying the binomial theorem again, this integral

expression is reformulated as a standard integral by

ec− b2

4a

∫ 1

0

ea(ρ+ b
2a)2

ρ2m+j+1 dρ = ec− b2

4a

∫ 1+ b
2a

b
2a

eaρ′2

(

ρ′ − b

2a

)2m+j+1

dρ′

= ec− b2

4a

2m+j+1
∑

l=0

(

2m + j + 1
l

)(

− b

2a

)2m+j+1−l ∫ 1+ b
2a

b
2a

eaρ′2

ρ′l dρ′.

(5.16)

Here, the definition of the generalized Gamma-function Γ (z, x1, x2) [59] is incorpo-

rated:

Γ (z, x1, x2) =
∫ x2

x1

e−xxz−1dx. (5.17)
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This allows to write the integral of Eq. 5.16 as

∫ 1+ b
2a

b
2a

eaρ′2

ρ′ldρ′ =
1
2

(−a)−l/2−1/2 Γ

(

l/2 + 1/2, −a

(

b

2a

)2

, −a

(

1 +
b

2a

)2
)

.

(5.18)

With these formulations, the on-axis field of a perturbed BGB can be expressed

analytically by summations over Gamma-functions and hypergeometric functions.

The final equation, including all the previous derivation steps, is given by Eq. 5.19

E(z) =
−bkR2

16
√

πaaz
eikz+iW0+c−b2/4a

M
∑

m=0

(i2π)m

m!

m
∑

j=0

(

m

j

)

Am−jCj·

[

(−1)m + (−1)m+j
] Γ

(

1+j
2

)

Γ
(

1 + j
2

)

[

(−1)m
2F1

(

1
2

, j − m, 1 +
j

2
, 2
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(5.19)

5.2.2. Results and discussion

The derived analytic expression for the on-axis field of a BGB suffering from aber-

rations is based on two main approximations. To investigate the validity of these ap-

proximations, their impact on the axial intensity is tested against numerical rigorous

simulations based on Eq. 2.14. The first approximation is the rotational-symmetric

expansion of the wavefront error and the corresponding incorporation in the calcula-

tion by the stationary-phase idea, which was introduced in section 3.3. The Taylor

expansion of the exponential function that includes the azimuthal dependence in

Eq. 5.9 and limiting the resulting series representation to finite orders in practical

scenarios is the second approximation.

The rotational-symmetric aberrations considered in Eq. 5.4 can be in principle of

arbitrary order. Up to second order, the contributions are treated exactly. Higher

orders are considered by approximation using the local slope and curvature of P in
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The second approximation in the calculation of the on-axis field is the series expan-

sion of the azimuthal function in Eq. 5.9 and the corresponding limitation of this

series to finite valued orders of M for a practical applicability. The maximum in-

duced errors of this truncation are estimated in the following way: Since |cos(x)| ≤ 1

and ρ is the normalized radius, the maximum error occurs at the boundary of the

aperture (ρ = 1), i.e., MAX [|Aρ2 cos 2φ + Cρ3 cos φ|] ≤ |A| + |C|. Thus, dependent

on the coefficients of A and C, larger values for M must be taken into account to

assure a particular accuracy of the series expansion. In Fig. 5.3 the absolute dif-

ference of the real and imaginary parts between the exponential function and its

expansion are plotted for different coefficient amplitudes and expansion orders M .

To ensure an error smaller than, e.g., 1/100 for the real and the imaginary part at

the boundary and A = C = 0.1λ, at least five orders must be considered. If the

aberration-coefficients are doubled to A = C = 0.2λ, the same accuracy can only be

achieved with at least nine orders. If the Gaussian apodization function is dropping

fast enough towards the edge of the aperture (R > 1/
√

µ), the increasing error of

the expansion is less weighted at the boundary by the Gaussian apodization, which

can strongly relax the situation. Consequently, less azimuthal expansion orders are

necessary for a specified accuracy.

The azimuthal wavefront error contributions that can be considered according to

Eq. 5.19 are limited to primary astigmatism and coma. Though other terms can be

included in the derivation, for typical setups, like a fiber-collimator and a subsequent

axicon that generates a quasi Bessel beam, the dominant aberrations are primary

astigmatism and coma due to misalignment and spherical aberrations due to the

typically spherical surfaces of the collimation optics. Therefore, the most significant

contributions in the degradation of the line focus are described with the proposed

decomposition of the wavefront according to Eq. 5.2.

In case of coma, the lateral position of the peak intensity is variant along the evo-

lution in z-direction and follows a curved trajectory. This effect can be observed for

both classical and quasi Bessel beams. The cross-section of the coma plot in the

x-z plane in Fig. 5.1 illustrates this behavior. In the application of Eq. 5.19, only

the on-axis field is considered and the bent line is not included. For applications

where a straight line focus is absolutely necessary, coma must be kept minimal and

the proposed method can be fully applied to compute the beam intensity. If the

line focus is allowed or even intended to be strongly curved, the investigation of the
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on-axis field is of limited meaningfulness. Consequently, Eq. 5.19 is eventually not

applicable, depending on the characteristics of the line and the desired application.

A feasible method for profiling arbitrary on-axis intensity distributions according

to [48] was already given in section 3.3.3. It allows to identify an initial amplitude

which generates the intended axial profile in case of rotational symmetry. This idea

can be synthesized with the presented analytic approach which allows the description

of arbitrary shaped focus lines and additionally includes the azimuthal variations

of the wavefront. Consequently, the impact of astigmatism and coma on arbitrarily

shaped line focuses can be investigated. For this purpose, the initial amplitude

function can be described by a coherent superposition of Gaussian rings, which are

defined by their corresponding shape factor and radial position. The corresponding

wavefront aberrations are equal for all Gaussian rings and Eq. 5.19 must be evaluated

for every ring. This superposition is similar to the decomposition of higher order

wavefront errors in the previous chapter with RBFs. The difference is that in

the previous chapter the phase was described by a set of laterally shifted Gaussian

functions, but within this scheme, the amplitude would be laterally decomposed into

Gaussian ring functions.

5.3. Sensitivity analysis of an example system by an

extended Strehl-ratio definition

To evaluate the performance of a BGB, the concept of the classical Strehl-ratio,

as described in section 3.2.2, is extended by defining the SR not only at a single

focus point, but along z to account for the line focus behavior of a BGB. Thus, the

classical definition of Eq. 3.12 is modified to

SR (z) =
Ireal (ri = 0, z)
Iideal (ri = 0, z)

=

∣

∣

∣

∣

Ereal (ri = 0, z)
Eideal (ri = 0, z)

∣

∣

∣

∣

2

. (5.20)

The ideal on-axis field is obtained by Eq. 3.37 or by Eq. 5.19 with cn = A =

C = 0 and the perturbed field is obtained by Eq. 5.19 with inserted corresponding

coefficients.

Eq. 5.20 is applied to compute the extended Strehl-ratio of the line focus generated
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by a setup consisiting of a fiber collimator and subsequent axicon. The performance

of the line is investigated for several misaligned configurations of the collimator lens.

The example system is composed of two catalog elements. To collimate light emitted

by a fiber with NA = 0.1, an achromate with a focal length f = 100 mm is used

(LAO-100.0-26.5 from CVI Laser Optics). The conic wavefront is generated by an

axicon (AX2520 from Thorlabs) where the generated conic wavefront is defined by

NA = 0.17. In Fig. 5.4 the layout of the example system is shown. A Gaussian

apodization is assumed for the calculation. It is specified by 1/
√

µ = R = 10 mm

that corresponds to 1/e2 of the maximum intensity at the boundary of the aperture.

The simulation is performed at a wavelength of λ = 550 nm.

Figure 5.4.: Layout of the example system. It consists of two catalog components
to collimate light, emitted by a fiber and generate a line-focus with an
axicon.

The sensitivity is exemplary investigated regarding a tilt of the collimator lens which

mainly induces astigmatism. The results of the misaligned achromate are depicted

in Fig. 5.5 by plotting the dependence of the Zernike astigmatism coefficient on the

tilt and the corresponding Strehl-ratios along the line focus according to Eq. 5.20.

The amplitude of the astigmatism coefficient increases quadratically with the tilt.

With increasing tilt, the performance of the system drops significantly towards the

end of the generated line focus. The typical value for a diffraction limited perfor-

mance in terms of a Strehl-ratio better than 0.8 is only achieved for 88% of the

length of the line if the collimator is tilted by 1°. Generally, it is observed that the

performance drops for larger values of z. This fully agrees with the understanding of

the stationary phase: The radius of the mainly contributing stationary ring element

in the pupil σ is directly proportional to the propagation distance z according to

Eq. 5.3. Simultaneously, the wavefront error rises towards the boundary of the pupil.

Therefore, the localized performance drop of the line focus is a direct consequence

of the properties of the conic reference wavefront and the usual grow of wavefront

errors towards the edge of the pupil.
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6. Passive athermalization of

refractive optical systems for high

power laser applications

The design of optical systems for guiding and shaping high power laser beams is be-

coming more and more challenging as the laser power increases and the performance

requirements tighten. The thermal lensing effects induced by the bulk absorption

in the lens material are growing with higher laser powers. Consequently, the indi-

vidual components of the laser guiding systems change their focal power dependent

on the employed laser power. This effect is induced by the temperature change,

which leads to an overall change of the laser beam in phase and amplitude. This is

a critical issue for applications, where the focus position is not actively controlled

during operation, in particular. To keep the focal power of the optical system invari-

ant with laser power and temperature, the systems needs to be athermalized within

the design. This can be done by the combination of different materials in order to

achieve a compensation effect of the induced focal power shifts.

Passive athermalization is common practice for a wide range of applications, where

the environmental conditions are homogeneously varying, e.g., in automotive in-

dustry. Here, the temperature changes homogeneously for the optical elements as

well as for the mounting. To athermalize a paraxial system under such conditions,

the well known theory and its extensions described in a variety of textbooks and

publications as briefly introduced in section 3.4 can be applied [21, 22, 64, 85, 86].

If the temperature is not homogeneous, higher sophisticated techniques need to be

applied that usually require finite-element-methods [26, 27]. Unfortunately, their

combination with optical design tools is complex and typically requires a tremen-

dous interdisciplinary knowledge. In the design of laser resonators, the thermal

lensing effect plays an important role and must be taken into account as the laser
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power increases. In contrast to a temperature change induced by the environment,

in a laser resonator the laser beam itself heats up the system. Here, the beam

width is typically considerably smaller than the aperture of the optics to avoid edge

diffraction effects, leading to an inhomogeneous source term for the temperature

distribution. This problem is addressed in many publications, mostly dealing with

different geometries in the calculation of laser resonators [25,87–89].

To passively athermalize the first order properties like the focal power and the mag-

nification of a refractive laser guiding system such as a telescope, the paraxial system

properties must be combined with the temperature distribution inside the lenses and

its consequences, similarly to the homogeneous scenario. Due to the inhomogeneous

temperature, the refractive index is not longer constant and its gradient must be

considered in addition.

In this chapter, based on the solution of the modified heat-equation described by

Moritz in [90], the focal power shift of a thin lens which is illuminated by a funda-

mental Gaussian intensity profile is derived. The induced change of the focal power

of a single lens is applied in the derivation of a set of formulas to athermalize funda-

mental optical systems like two lenses in close contact, and two and three separated

lenses to minimize the effects of a focal power shift and an undesired beam width

change. These athermalization formulas support the optical designer in the process

of initial system search for high power laser applications by connecting paraxial

layout data with material and laser parameters. Therefore, only certain material

combinations and layout geometries are achievable and should be considered.

This chapter is structured into the following sections. In section 6.1, the tempera-

ture distribution inside a thin lens is derived. The heat source is modeled by the

illumination of the lens with a high power fundamental Gaussian mode and a fixed

temperature on the boundary. Afterwards, the additional focal power of a heated

lens is formulated by performing a paraxial raytrace through the gradient-index

medium in section 6.2. The results of the additional focal power are further an-

alyzed and a purely material dependent parameter is introduced and discussed in

section 6.3. In section 6.4, the derived expression for the heat induced additional

focal power is used to athermalize basic optical systems. In the course of this, a

doublet with two lenses in close contact and two telescopes with two and three sep-

arated lenses are athermalized. In addition, the presented methodology is tested

with two example systems in Zemax Opticstudio [91] in section 6.5 to investigate
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the effects beyond the paraxial properties.

6.1. Temperature inside a thin lens

The modified version of the heat equation alongside the approximations behind are

described in [90] and allows to directly include the curvature of the lens. It is

expressed as
d2T

dρ2
+

1
ρ

dT

dρ
+

1
H

dH

dρ

dT

dρ
+ A(ρ) = 0, (6.1)

assuming a circular symmetric system with the temperature T (ρ), the radial coordi-

nate ρ, the thickness of the lens H(ρ) and the heat source term A(ρ). The thickness

is described by H(ρ) = d + cρ2 = d − ρ2(c1 − c2), with the center thickness d and

the curvatures on both sides of the lens c1, c2. The heat source term includes the

laser and material parameters

A(ρ) = A0e
− ρ2

w2 =
αabsI

2κ
e− ρ2

w2 . (6.2)

The laser beam is described by its peak intensity I and its width w at 1/e of the

peak intensity. The material is characterized by the absorption coefficient αabs and

the thermal conductivity κ. Inserting this into Eq. 6.1 results in

d2T

dρ2
+

1
ρ

dT

dρ
+

2cρ

d + cρ2

dT

dρ
+ A0e

− ρ2

w2 = 0. (6.3)

This equation can be solved by assuming rotational symmetry corresponding to
dT
dρ

∣

∣

∣

ρ=0
= 0 and a fixed temperature at the boundary T (ρ = R) = TR:

T (ρ) = TR − A0w
4ce

d

cw2

4d

(

Ei

(

−d + cρ2

cw2

)

− Ei

(

−d + cR2

cw2

))

+
A0w

2 (d + cw2)
4d

·
(

Ei

(

− ρ2

w2

)

− Ei

(

−R2

w2

)

+ log

(

d + cρ2

ρ2

)

− log

(

d + cR2

R2

))

.

(6.4)

Here, Ei(x) is the exponential integral [59]. The temperature distribution inside a

lens is plotted for several glasses in Fig. 6.1 to illustrate the behavior of Eq. 6.4.
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can be described as

∆n(ρ) =
dn

dT
∆T (ρ) = β∆T (ρ), (6.5)

with temperature change relative to the boundary as ∆T = T (ρ) − TR and the

material specific constant β = dn
dT

. To incorporate the inhomogeneous refractive

index into the model for the additional focal power, a raytrace through a gradient

index medium is performed. This is done by starting with the Eikonal equation

under paraxial and rotational-symmetric conditions [29]

d2ρ

dz2
=

1
n(ρ)

dn(ρ)
dρ

. (6.6)

Assuming a weak parabolic refractive index n(ρ) ≈ n0 + 1
2
n2ρ

2, the following second-

order linear ordinary differential equation has to be solved

d2ρ

dz2
− n2

n0

ρ(z) = 0. (6.7)

The solution of Eq. 6.7 for the ray trajectory ρ(z) and the ray angle θ(z) = ∂ρ
∂z

are

ρ(z) =
1
2

(

e

√

n2
n0

z
+ e

−
√

n2
n0

z
)

ρ0 +
1
2

√

n0

n2

(

e

√

n2
n0

z − e
−
√

n2
n0

z
)

θ0, (6.8)

θ(z) =
1
2

√

n2

n0

(

e

√

n2
n0

z − e
−
√

n2
n0

z
)

ρ0 +
1
2

(

e

√

n2
n0

z
+ e

−
√

n2
n0

z
)

θ0. (6.9)

Here, ρ0 and θ0 are the initial ray height and the initial ray angle, respectively. For

a weak influence of the gradient index material, these expressions can be further

reduced to

ρ(z) ≈ ρ0 + zθ0, (6.10)

θ(z) ≈ n2

n0

zρ0 + θ0. (6.11)

In the paraxial ABCD-optics [29, 38] the ray trajectory is described by

[

ρ

θ

]

=

[

A B

C D

][

ρ0

θ0

]

. (6.12)
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Thus, the ABCD matrix that describes the GRIN material with a propagation

length of z = d reads as
[

1 d
n2

n0
d 1

]

. (6.13)

In the next step, the total system matrix of a GRIN material in between two curved

surfaces is evaluated and compared to its pendant with a constant refractive index

from the boundary nR. Within the ABCD calculus, the C-element is related to the

focal power of the system by C = −F [29, 38]. Hence, the additional focal power

induced by the heating of the material can be computed by the difference between

the heated and the cold lens as

∆F = −c1c2d

nR

− nR(c1 − c2 + c1c2d) +
c1c2d

n0

+ n0(c1 − c2 + c1c2d) − dn2. (6.14)

Here, nR is the initial refractive index at the boundary and n0 is the on-axis refractive

index due to the heat. They are related by

n0 = nR + ∆n(0) = nR + β (T (0) − TR) . (6.15)

Thus, the coefficients n0 and n2 are connected to the change of the refractive index

induced by the temperature change and the refractive index of the heated lens is

expressed as

n(ρ) ≈ nR + ∆n(0) +
1
2

n2ρ
2. (6.16)

Similarly, the quadratic coefficient n2 is found as

n2 = β
d2∆T

dρ2

∣

∣

∣

ρ=0
= −β

A0

2
. (6.17)

Furthermore, the peak intensity in A0 can be substituted by I = 2P
πw2 for R

w
> 1,

where P is the power of the fundamental Gaussian laser beam. The additional focal

power of a heated thin lens ∆F can now be expressed with the presented equations.

To keep the expressions simple and appropriate for the purpose of initial system

search, it is expanded into a power-series up to second order in terms of the laser
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power

∆F (P ) ≈ P

[

αabsβd

2πw2κ
+ G

αabsβ

4πκ

(

c1c2 +
c1 − c2

d
− c1c2

n2
R

)

]

+

P 2

[

G2 α2
absβ

2c1c2

16π2κ2dn3
R

]

,

(6.18)

where the parameter G is an abbreviation for

G = − w2ce
d

w2c

[

Ei

(−d

w2c

)

− Ei

(−cR2 + d

w2c

)

]

+

(

w2c + d
)

[

− log

(

R2c + d

R2

)

+ log(d) − Ei

(−R2

w2

)

− 2 log(w) + γ

]

.

(6.19)

Here, γ is Euler’s constant (γ ≃ 0.577216). The final focal power of a heated

lens can be expressed as the sum of the initial focal power Finit and the additional

perturbations due to the heat as

F = Finit + ∆F = Finit + ∆Fcylinder + ∆Fcurvature, (6.20)

∆Fcylinder = P
αabsβd

2πw2κ
, (6.21)

∆Fcurvature = PG
αabsβ

4πκ

(

c1c2 +
c1 − c2

d
− c1c2

n2
R

)

+ P 2G2 α2
absβ

2c1c2

16π2κ2dn3
R

. (6.22)

The curvature independent part, Eq. 6.21, equals the results found in literature

for the focal power of an axial cylinder heated by a fundamental Gaussian laser

beam [93,94]. To investigate the additional influence of the curved surfaces, Eq. 6.20

is further analyzed. For this purpose, the curvature independent and dependent

parts are compared to the initial focal power for different lens geometries and glasses

at various laser powers.

The results of this investigation are presented in Fig. 6.2. As expected both ratios,
∆Fcylinder

Finit
and ∆Fcurvature

Finit
, increase with higher laser powers. The ratio of the curvature

dependence is more than one order of magnitude smaller compared to the ratio of

the pure cylinder dependence for the whole range of the applied laser power. Thus,

in the investigations in the section 6.4 only the additional focal power of the GRIN

cylinder ∆Fcylinder is further considered, such that ∆F ≈ ∆Fcylinder. The additional

focal power is strongly influenced by the glass choice. E.g., in comparison ’LASF35’

83





is by far the worst glass choice. Here, ∆Fcylinder

Finit
exceeds 1% at approximately 85 W

for the symmetrical lenses and 43 W for the asymmetrical lenses, whereas this is

the case for ’N-BK7’ at 3.3 kW and 1.6 kW, respectively. This is also in very good

agreement to the observed temperatures in Fig. 6.1, where ’LASF35’ showed the

highest temperature and ’N-BK7’ the lowest. The order of ’SF6’ and ’N-SF4’ is the

other way round from Fig. 6.2 to Fig. 6.1, which is explainable by the combination

of the material parameters of the glasses, in particular β.

6.3. Material parameter ξ

The properties of the materials at a certain wavelength can be concluded by the

material specific parameter ξ as

ξ =
αabsβ

κ
. (6.23)

This allows an easier categorization of the materials according to their properties

that are determining the thermally induced behavior. With this definition Eq. 6.21

is formulated more compact as

∆Fcylinder(P ) = Pξ
d

2πw2
, (6.24)

where ξ is directly proportional to the additional focal power of the heated lens. It

is thus possible to distinguish between the individual factors that have an impact

on the focal power. According to Eq. 6.24 those are the laser parameters such

as laser power and beam width, the lens material and the lens thickness itself.

All these parameters are independent to each other, which is beneficial for further

compensation purposes as it is discussed in the next section.

To get an overview of the thermal properties, ξ is plotted in Fig. 6.3 ordered from

negative to positive valued ξ for the Schott glasses listed in Tab. A.2 at a fixed

wavelength of λ = 500 nm and at room temperature. What is remarkable is the

significantly higher proportion of glasses that have a positive ξ. Additionally, the

value range of the positive valued glasses for ξ is clearly larger than for the negative

valued glasses. This already indicates the complexity of an appropriate glass choice

with the limited amount of glasses in order to achieve a certain balancing effect, as
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6.4.1. Athermalization of a doublet

For two thin lenses close together, the resulting focal power is [38]

F = F1 + F2. (6.25)

Additionally, the focal power of each lenses is split into the initial focal power Fi and

the heat induced perturbation ∆Fi. Setting two lenses close together and keeping

the focal power in the initial and in the heated state, results in

F = F1 + F2 = F1 + ∆F1 + F2 + ∆F2 (6.26)

∆F1 = −∆F2 (6.27)

For a small absorption and lenses close together, P and w are approximately equal in

both lenses. Inserting Eq. 6.24 for the additional heat induced focal powers, results

in the following relation

ξ1d1 = −ξ2d2. (6.28)

To achieve a compensation, the sign of the parameters must differ, which can only

be done with ξ. This is challenging, because there are only a few glasses with

negative ξ according to Fig. 6.3. For an exact compensation, the left hand side

of Eq. 6.28 must equal the right hand side, which might be an issue, since the

material parameters are not continuous functions due to the limited glass choice.

Fortunately, the thicknesses of both lenses are continuous functions. Therefore,

the exact compensation is possible by a suitable glass choice and a subsequent fine

tuning with the individual thicknesses of the lenses.

6.4.2. Athermalization with two separated lenses

With two separated lenses, it is not possible to control the beam width and the focal

power simultaneously. The beam width at the second lens is determined by the focal

power of the first lens and the distance between the lenses. Since the distance is

fixed, but the focal power is changing due to heat, the waist size is variant with the

laser power. However, the system can still be athermalized for the total focal power

change ∆F = 0. The consequences for a further focusing of the collimated beam

are a constant focal position, but a change of the focal spot size due to the altered
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numerical aperture.

The focal power of an afocal two lens system can be written as [38]

0 = F = F1 + F2 − tF1F2, (6.29)

where t is the distance between both lenses. Similarly to the previous situation,

there is an additional focal power for each lens generated by the introduced heat

0 = F = F1 + ∆F1 + F2 + ∆F2 − t(F1 + ∆F1)(F2 + ∆F2). (6.30)

For an athermalized system, the difference between the focal power in the initial

and the heated state must also equal zero, leading to the following condition

0 = ∆F1 + ∆F2 − t∆F1F2 − t∆F2F1 − t∆F1∆F2, (6.31)

which can also be expressed as

∆F1 = −∆F2
1 − tF1 − t∆F1

1 − tF2

. (6.32)

Inserting Eq. 6.24 for ∆F2 yields

∆F1 = − Pξ2d2

2π(w2 + ∆w2)2

1 − tF1 − t∆F1

1 − tF2

. (6.33)

With a paraxial raytrace, the beam width at the second lens is found

(w2 + ∆w2)
2 = w2

1(1 − t(F1 + ∆F1))
2, (6.34)

which leads to

∆F1 = − Pξ2d2

2πw2
1(1 − t(F1 + ∆F1))2

1 − tF1 − t∆F1

1 − tF2

. (6.35)

Inserting Eq. 6.24 for ∆F1 and approximating the right hand side as power series

dependent on P yields

P
ξ1d1

2πw2
1

≈ −P
ξ2d2

2πw2
1

− P 2 ξ1ξ2d1d2

4π2w4
1

t(2 − m)
m2

+ P 3 ξ2
1ξ2d

2
1d2

8π3w6
1

t2(m2 + 2m − 4)
m4

, (6.36)
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where t = 1
F1

+ 1
F2

is the distance between the lenses and m = −F1

F2
is the magnifi-

cation of the telescope. From inspecting Eq. 6.36 it is seen that the athermalization

in linear approximation equals the result for a doublet. Thus, Eq. 6.28 is a special

case of Eq. 6.36. Additionally, it can be seen that individual expansion orders are

vanishing for special values of m, e.g., the quadratic term is zero for m = 2. To

suppress the higher order terms that are generated due the propagation, a small

telescope length and a large magnification are beneficial. Unfortunately, this gener-

ates large ray angles at the lenses, leading to an increased system complexity and

correspondingly to more lenses. If more than one lens is necessary for a lens group,

each lens group can be athermalized indiviudally by Eq. 6.28. Therefore, this leads

to the conclusion that the the individual athermalization according to Eq. 6.28 is

preferred, since this prevents the higher order terms and allows more relaxed designs,

though at the costs of substituting each single lens by an appropriate doublet.

6.4.3. Athermalization with three separated lenses

In contrast to a two lens setup, a three lens system offers the possibility to simul-

taneously keep the system afocal and preserve the desired beam width at the final

lens independent of the laser power. Therefore, the focus position and focus size are

invariant with the applied laser power, if the collimated beam is further focused by

appropriate system, e.g., an athermalized doublet.

A power invariant beam width and no change of the afocal condition corresponds

to two conditions that must be fulfilled. The condition for the beam width can be

found by a paraxial raytrace.

w3 = w1(1 − t2(F1 + F2) + t1F1(t2F2 − 1)), (6.37)

w3 + ∆w3 = w1(1 − t2(F1 + ∆F1 + F2 + ∆F2) + t1(F1 + ∆F1)(t2(F2 + ∆F2) − 1)),

(6.38)

0 =
∆w3

w1

= −∆F1t2 + ∆F2(−1 + F1t1)t2 + ∆F1t1(−1 + ∆F2t2 + F2t2). (6.39)

The last expression is, similar to the two-lens telescope, reformulated as

∆F1 =
−∆F2(t2 − F1t1t2)

t1 + t2 + ∆F2t1t2 − F2t1t2

. (6.40)
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Inserting Eq. 6.24 for ∆F1 and ∆F2 with the perturbed beam width at the second

lens according to Eq. 6.34, the right hand side is again written as a power series

dependent on the laser power

P
ξ1d1

2πw2
1

≈ − P
ξ2d2

2πw2
1

t2

(−1 + F1t1)(−t2 + t1(−1 + F2t2))

− P 2 t1t2ξ1ξ2d1d2(2t1(−1 + F2t2) + t2(−2ξ1d1 + ξ2d2))
4π2w14(−1 + F1t1)3(t1 + t2 − F2t1t2)2

(6.41)

By satisfying Eq. 6.41, the beam width at the third lens is approximately invariant

with the laser power.

In the next step the focal power is independently corrected by the last lens. The

afocal power of a three lens system is [38]

0 = F = F1 + F2 + F3 − t1F1(F2 + F3) − t2F3(F1 + F2) − t1t2F1F2F3, (6.42)

where t1 and t2 are the respective distances between the lenses. Including the heat

induced perturbations into this, the same can be written for the heated system

0 = F = (F1 + ∆F1) + (F2 + ∆F2) + (F3 + ∆F3)−
t1(F1 + ∆F1)(F2 + ∆F2 + F3 + ∆F3)−
t2(F3 + ∆F3)(F1 + ∆F1 + F2 + ∆F2)−
t1t2(F1 + ∆F1)(F2 + ∆F2)(F3 + ∆F3).

(6.43)

The difference between those two expression must also equal zero for a compensated

focal power. As with the previous derivations, ∆F1 is separated on the left hand

side, such that

∆F1 = − ∆F2(−1 + F1t1 + (∆F3 + F3)(1 + F1t1)t2)
−1 + (∆F2 + ∆F3 + F2 + F3)t1 + (∆F3 + F3)(1 + (∆F2 + F2)t1)t2

− ∆F3(−1 + F2t2 + F1(t1 + t2 + F2t1t2))
−1 + (∆F2 + ∆F3 + F2 + F3)t1 + (∆F3 + F3)(1 + (∆F2 + F2)t1)t2

.

(6.44)

Now, Eq. 6.24 is inserted for ∆F1, ∆F2 and ∆F3 with the corresponding perturbed

beam width at the second lens (w2 + ∆w2). The beam width at the third lens is

already considered and compensated by satisfying Eq. 6.41. Therefore, the beam

width at the third lens is w3, purely. The expression on the right hand side is again
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expanded into a power series of the laser power P .

P
ξ1d1

2πw2
1

≈ −P

[

g2
ξ2d2

2πw2
1

+ g3
ξ3d3

2πw2
1

]

. (6.45)

The higher orders are omitted, since they are not considered further, similar to the

two-lens telescope. The geometrical factors g2 and g3 are:

g2 =
(−1 + F2t2 + F1(t − F2t1t2))2(1 − F3t2 − F1(t1 + F3t1t2))

(1 − F1t1)2(1 − F2t2 − F1(t − F2t1t2))2(1 − F3t − F2(t1 + F3t1t2))
, (6.46)

g3 =
(1 − F1t1)2(1 − F2t2 − F1(t + F2t1t2))

(1 − F1t1)2(1 − F2t2 − F1(t − F2t1t2))2(1 − F3t − F2(t1 + F3t1t2))
, (6.47)

with the total system length t = t1 + t2. Eq. 6.45 must be fulfilled to keep the three

lens system approximately afocal independent from the laser power. Therefore, by

simultaneously satisfying Eq. 6.41 and 6.45, the amplitude and phase of a funda-

mental Gaussian beam can be approximately maintained throughout the applied

laser power. The same conclusion as for the two-lens telescope can be drawn here.

To suppress the occuring higher order terms due to the propagation between the

lenses, the distances must be kept short, while strong focal powers must be used.

Again, this increases the system complexity and leads to large ray angles, which

consequently require more lenses to control. Hence, the general consequence of sec-

tion 6.4.1-6.4.3 is that the thermally induced effects should be compensated ideally

where they occur. Only in this way, the higher order contributions can be reduced

and an effective athermalization is achievable. This consequently means that each

lens group should be athermalized individually.

6.5. Simulation of athermalized systems

In this section, the presented results to athermalize high power laser systems are

tested via simulations in Zemax OpticStudio [91]. The modeling of the refractive

index change with the laser power is done by the definition of ’Gradient 3’, which

describes the refractive index as n(r) = nr0 + nr2r
2 + nr4r

4 + nr6r
6. Here, nr0 and

nr2 can be calculated directly from the derived equations, whereas nr4 and nr6 are

found by a least-square fit of the remaining distribution.

Two different setups are compared. The wavelength is in both cases λ = 500 nm
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and the temperature at the boundary of the lenses is fixed at room temperature.

At first, the behavior of a single lens is investigated for increasing laser power and

compared to an athermalized doublet solution. The second setup consists of a

two-lens telescope, which is also investigated for increasing laser power. Here, the

athermalization is realized by two different approaches. The first approach utilizes

Eq. 6.36 and thus changes the material of the second lens, whereas the second

method is to split each lens into a doublet according to Eq. 6.28.

6.5.1. Comparison of a singlet and an athermalized doublet

The single lens is designed to focus a Gaussian beam with w = 3 mm at f = 100 mm

with the glass ’N-BK7’ at the initial state of P = 0 W. The thickness of the lens is

fixed at d = 5 mm. The doublet is designed according to Eq. 6.28 and Fig. 6.3, while

preserving the total thickness of the doublet. The material of the first lens is kept

as ’N-BK7’. To keep the individual lens thicknesses approximately equal, ’N-LAK7’

is found in Fig. 6.3 as an appropriate choice, since both material parameters are

nearly of the same size, but with the necessary opposite sign for the compensation.

The results of this investigation are presented in Fig. 6.5. The initial spot radius

is 4.5 µm for the single lens and 3.3 µm for the doublet. The slightly better perfor-

mance is explained due to the additional surface and the larger refractive index of

’N-LAK7’. At 1 kW the spot radius of the single lens shows a minimum, while the

spot radius of the doublet remains constant. This could be explained by a higher

order effect of the GRIN material, such that spherical aberrations are corrected in

this particular situation. At 10 kW the spot radius strongly increases with the laser

power in case of the singlet. In contrast, the spot radius of the doublet remains

constant until 10 kW and starts to increase slowly, afterwards. Therefore, the evalu-

ation of the spot radius indicates the benefit of the athermal design. The amount of

necessary refocus ∆z for the smallest spot size shows an even more convincing be-

havior. Here, the doublet design performs better by a factor of 18. This corresponds

to a required refocusing of 100 µm at 57 W in case of the singlet and at 1.02 kW for

the doublet setup. The right column of Fig. 6.5 shows the layouts at 0 W, 0.1 MW

and 1 MW to illustrate the thermally induced behavior. The observations for the

spot radius and the defocus can be confirmed by the layouts, where the doublet

design shows a significantly better performance. It must be noted that the observed
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effects for extremely high laser power must be interpreted with caution, because

the temperature variant material properties and technological challenges are not

considered. However, if those points are proven to have a only minor impact, the

presented theory works well and can help optical designers for the search of initial

optical system for high power laser applications.

6.5.2. Comparison of athermalized two-lens telescopes

The telescope is designed to magnify an incoming Gaussian beam with w1 = 3 mm

by a factor of m = 4 with a Galilean setup, which enables a short total length

and prevents an intermediate focus. The paraxial design is further determined by

fixing the second focal length as f2 = 250 mm. The material of both lenses for

the initial design is again ’N-BK7’ and the thicknesses of the lenses are t1 = 5 mm

and t2 = 12 mm. The first athermal design based on Eq. 6.36 is made with same

material combination as before. The negative lens is made out of ’N-BK7’ and the

positive lens is made out of ’N-LAK7’ to achieve a compensation. Furthermore, t1

is increased to 7 mm to account for a reasonable thickness of the positive lens. The

second athermalized design is based on the individual compensation of each lens

group, similar to the previous simulation, according to Eq. 6.28. Thus, each lens is

substituted by an appropriate doublet, which again consist of the combination of ’N-

BK7’ and ’N-LAK7’. To better demonstrate the effects of a laser power dependent

spot size and defocus and beam width after the positive lens w2, the magnified beam

is focused by an ideal lens with f = 100 mm.

The results of the different designs are compared in Fig. 6.6. The initial spot radii

are 0.35 µm for the pure ’N-BK7’ design, 0.12 µm for mixed ’N-BK7’ and ’N-LAK7’

design and 0.14 µm for the doublet design. Thus, the two latter designs are compa-

rable and perform by factor about two better than the pure ’N-BK7’ design. Until

10 kW the spot sizes of the athermalized designs are nearly equal, showing the same

minimum at 1 kW, while the the first design performs constantly worse and addi-

tionally shows a spot size increase at a lower laser power. Only for P > 0.1 MW,

the doublet design outperforms the first athermal design. The plot of the necessary

defocus ∆z for a minimum spot size shows a similar behavior. Both athermalized

designs perform better than the initial design. The first athermal design reduces the

heat induced defocus by a factor of 5.7, while the doublet design performs slightly
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better with a factor 6.7 up until 0.1 MW. At 1 MW the spot size and the defocus

increase drastically for the first athermal design, such that it is now comparable

to the initial design, while the doublet design shows a continuous performance de-

crease with increasing laser power. To understand the higher order effects due to

the propagation distance between the lens group according to Eq. 6.36, the beam

width based on the waist ray at the second lens is also plotted. Here, the strongest

difference between both athermalized designs is observed. While the doublet design

shows a nearly uniform beam width over the entire laser power range, the singlet

design behaves similar to the initial design. This is understandable, since the higher

orders are not corrected in both cases. It is even noticeable, that the beam width of

the initial design behaves slightly better than the athermalized singlet design, which

can be understood by the corresponding lens thicknesses. The first lens thickness

of the initial design is shorter than the athermalized doublet design, which leads to

less absorption in the material and correspondingly to a reduced heat induced focal

power. The beam width at 1 MW shows a negative sign, which indicates an inter-

mediate focus. This effect can also be observed in Fig. 6.7, where the corresponding

layouts are shown at 0 W, 0.1 MW and 1 MW. Visually, it can be confirmed that

both athermal designs improve the performance regarding spot size and defocus, es-

pecially at moderate laser powers. At very high laser powers, the higher order effects

due to the distance between the lenses becomes dominant, such that the athermal

singlet design performs nearly as the initial design. Therefore, to maximally main-

tain the beam performance, the higher order terms must be suppressed, which is

only possible with the doublet approach as predicted by theory in section 6.4.

The simulation of a three-lens telescope is not shown in this work due to the page

limit. However, similar results as for two-lens considerations can be expected, since

the theory is based on the same assumptions. Moreover, induced effects of spherical

aberration are even more critical in this scenario, which leads to the same conclusion,

that each lens group should be individually athermalized to maintain the desired

performance.
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7. Conclusion and outlook

In this thesis, novel methods to simulate the beam shaping of high power laser beams

with the special consideration of Bessel beams were introduced and discussed. These

methods were successfully evaluated and allow a deeper insight into the performance

of such systems, while enabling new possibilities for the design, simulation and anal-

ysis. The major results of this work are briefly summarized below. In chapter 4, real

laser beams were reconstructed in amplitude and phase by a new laser beam specific

approach to solve the transport of intensity equation. This allows to identify the

properties of the laser beams in a more comprehensive way than it is possible with the

standard M2 measurement. Additionally, the reconstructed field can be integrated

as the real light source in complex simulations of laser systems. Based on artificial

data, an error metric was developed which allows to estimate the remaining phase

errors in order to make further wavefront measurement obsolete. A novel calculation

scheme for the fast evaluation of the on-axis field of perturbed Bessel-Gauss beams is

presented in chapter 5. For this purpose, the Fresnel diffraction integral was solved

analytically for a Gaussian apodization and a conical wavefront of the initial field.

Wavefront errors were considered based on the stationary phase approximations and

series expansions. Within this approach, the wavefront errors were described by an

arbitrary order of spherical aberration and primary astigmatism and coma, which

allows the description of typical wavefront aberrations of beam shaping optics due

to misalignment and manufacturing errors. The presented scheme was further used

for the sensitivity analysis of an example system. To evaluate the performance of

the the generated on-axis line focus effectively, an extended definition of the Strehl-

ratio along the optical axis was introduced, which is dependent on z. In chapter 6,

the athermalization of refractive high power laser systems was realized by an ap-

propriate combination of materials. This was done in several steps. In the first

step, the temperature distribution inside a thin lens was derived based on the heat

source that is modelled by the bulk absorption of a high power fundamental Gaus-

sian laser beam. The resulting non-uniform change of the refractive index and the
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corresponding GRIN-properties of the heated medium were considered in the second

step to formulate the additional heat induced focal power of a single lens. In the

third step, an important material property of additional focal power was elaborated

to categorize different glasses according to their thermal response. This is done to

further support the optical designer in the preselection of possible glasses. In the

final step, the found expression was utilized to athermalize basic optical systems like

a doublet and two- and three-lens telescopes. The major result of this investigation

is, that each lens group of a high power system must be athermalized individually

to prevent higher order terms, that enhance during propagation. Therefore, each

lens group should at least consist of an athermalized doublet. In summary, several

contributions for an improved modelling, simulation and design of high power laser

systems were made in this work.

Inspired by the results of this work, there are certain promising points which can be

addressed within future research and development. A possible extension of the laser

beam specific phase retrieval approach to partial coherent light sources and pulsed

light sources would be of great interest for many applications For the characteriza-

tion of the line focus of quasi-Bessel beams, the presented scheme could be utilized to

estimate the wavefront aberrations based on the measured intensity along the focus,

similar to standard inverse techniques. This would greatly enhance the possibilities

to characterize and evaluate real quasi-Bessel beams, since this is still challeng-

ing today. The derived theory for the athermalization of high power laser systems

would profit from a comprehensive market analysis of available glasses and possi-

ble glass combinations. This should be done at typical wavelengths of high power

laser systems to deliver a practical tool for the simple athermalization estimation

of such systems. Furthermore, the results should be tested against full simulations

based on finite-element-methods to explore the limitations of the initially paraxial

considerations with fixed boundary constraints.
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A. Appendix

A.1. Explicit formulation of Zernike-polynomials

j Zj in Cartesian formulation Name

1 1 Piston
2 x Tilt x
3 y Tilt y
4 2(x2 + y2) − 1 Defocus
5 2xy 1st Astigmatism 0°
6 y2 − x2 1st Astigmatism 45°
7 x(3x2 + 3y2 − 2) 1st Coma x
8 y(3y2 + 3x2 − 2) 1st Coma y
9 6(x2 + y2)2 − 6(x2 + y2) + 1 1st Spherical
10 x(3y2 − x2) Trefoil 0°
11 y(y2 − 3x2) Trefoil 30°
12 2xy(42 + 4y2 − 3) 2nd Astigmatism 0°
13 (y2 − x2)(4x2 + 4y2 − 3) 2nd Astigmatism 45°
14 x[10(x2 + y2)2 − 12(x2 + y2) + 3] 2nd Coma x
15 y[10(x2 + y2)2 − 12(x2 + y2) + 3] 2nd Coma y
16 20(x2 + y2)3 − 30(x2 + y2)2 + 12(x2 + y2) − 1 2nd Spherical
25 70(x2 + y2)4 − 140(x2 + y2)3 + 90(x2 + y2)2 3rd Spherical

−20(x2 + y2) + 1
36 256(x2 + y2)5 − 630(x2 + y2)4 + 560(x2 + y2)3 4th Spherical

−210(x2 + y2)2 + 30(x2 + y2) − 1

Table A.1.: First orders of the Cartesian representation and classification of Zernike-
polynomials in Fringe convention.
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A.2. Thermal properties of glasses

glass name n ∂n
∂T

κ αabs xg xf ξ

×106 ×106 ×106 ×109

F2 1.6299 3.2989 0.780 0.120 9.200 3.963 0.508

F2HT 1.6299 3.2989 0.780 0.120 9.200 3.963 0.508

F5 1.6126 3.5055 0.880 0.241 8.900 3.178 0.959

FK5HTi 1.4914 -2.4076 0.925 0.241 10.000 14.899 -0.627

K10 1.5065 2.9301 1.120 0.362 7.400 1.615 0.946

K7 1.5160 0.3378 nan 0.281 9.700 9.045 nan

LAFN7 1.7619 7.1550 0.770 0.241 6.400 -2.990 2.237

LASF35 2.0425 4.4908 0.920 5.387 8.500 4.192 26.296

LF5 1.5897 0.9375 0.866 0.160 10.600 9.010 0.174

LF5HTi 1.5897 0.9320 0.866 0.080 10.600 9.020 0.086

LLF1 1.5551 1.6697 0.990 0.160 9.200 6.192 0.270

LLF1HTi 1.5551 1.6648 0.990 0.082 9.200 6.201 0.138

N-BAF10 1.6782 3.6189 0.780 0.767 7.040 1.704 3.560

N-BAF4 1.6137 2.0685 1.020 0.605 8.290 4.919 1.226

N-BAF51 1.6606 1.6859 0.670 0.605 9.490 6.938 1.521

N-BAF52 1.6162 2.0282 0.960 0.808 7.830 4.538 1.707

N-BAK1 1.5782 1.2312 0.795 0.321 8.600 6.471 0.498

N-BAK2 1.5452 0.3874 0.920 0.241 9.000 8.289 0.101

N-BAK4 1.5747 2.6348 0.880 0.241 7.930 3.345 0.721

N-BAK4HT 1.5747 2.6348 0.880 0.201 7.930 3.345 0.600

N-BALF4 1.5858 3.8409 0.850 0.281 7.410 0.853 1.270

N-BALF5 1.5533 1.6482 1.050 0.321 8.430 5.451 0.504

N-BASF2 1.6752 3.2898 0.940 1.177 8.130 3.258 4.120

N-BASF64 1.7144 3.1577 nan 2.475 8.700 4.280 nan

N-BK10 1.5021 2.0625 1.320 0.362 6.600 2.492 0.565

N-BK7 1.5214 1.6517 1.114 0.241 8.300 5.132 0.357

N-BK7HT 1.5214 1.6517 1.114 0.120 8.300 5.132 0.178

N-BK7HTi 1.5214 1.6517 1.114 0.120 8.300 5.132 0.178

N-F2 1.6299 2.3341 1.050 0.645 9.060 5.355 1.434

N-FK5 1.4914 -2.3334 0.925 0.442 10.000 14.748 -1.116

N-FK51A 1.4899 -6.8179 0.760 0.160 14.810 28.728 -1.438
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glass name n ∂n
∂T

κ αabs xg xf ξ

×106 ×106 ×106 ×109

N-FK58 1.4589 -7.3206 0.760 0.241 15.720 31.673 -2.319

N-K5 1.5275 0.8286 0.950 0.281 9.600 8.029 0.245

N-KF9 1.5293 0.5893 1.040 0.241 10.950 9.837 0.136

N-KZFS11 1.6464 3.3171 0.810 0.442 7.560 2.429 1.812

N-KZFS2 1.5643 3.9706 0.810 0.321 5.400 -1.636 1.575

N-KZFS4 1.6213 2.4064 0.840 0.523 8.200 4.327 1.499

N-KZFS4HT 1.6213 2.4064 0.840 0.483 8.200 4.327 1.383

N-KZFS5 1.6637 4.2692 0.950 0.605 7.390 0.957 2.717

N-KZFS8 1.7325 2.8592 1.050 0.605 9.430 5.527 1.646

N-LAF2 1.7536 -0.2665 0.670 0.686 9.100 9.454 -0.273

N-LAF21 1.7976 3.6646 0.830 0.442 7.080 2.485 1.953

N-LAF33 1.7961 7.2028 0.800 0.483 6.700 -2.347 4.348

N-LAF34 1.7815 4.0244 0.800 0.281 7.000 1.850 1.414

N-LAF35 1.7520 7.0389 0.800 0.321 6.380 -2.981 2.827

N-LAF7 1.7620 3.0906 0.830 2.903 8.390 4.334 10.809

N-LAK10 1.7282 3.7606 0.860 0.483 6.830 1.666 2.112

N-LAK12 1.6850 -1.8139 0.680 0.564 9.300 11.948 -1.504

N-LAK14 1.7040 2.5416 0.890 0.321 6.900 3.290 0.918

N-LAK21 1.6466 -0.4013 0.880 0.483 8.100 8.721 -0.220

N-LAK22 1.6578 1.7087 0.750 0.483 7.400 4.803 1.100

N-LAK33B 1.7633 3.0929 0.890 0.281 7.060 3.008 0.976

N-LAK34 1.7369 2.4100 0.820 0.241 6.910 3.639 0.707

N-LAK7 1.6580 -0.6966 0.740 0.321 8.200 9.259 -0.302

N-LAK8 1.7206 3.5330 0.840 0.241 6.700 1.797 1.012

N-LAK9 1.6983 2.3202 0.908 0.321 7.500 4.177 0.821

N-LASF31A 1.8955 3.6088 0.790 0.890 7.720 3.690 4.065

N-LASF40 1.8470 8.0797 0.810 1.260 6.900 -2.639 12.565

N-LASF41 1.8462 4.0693 0.790 0.645 7.330 2.521 3.323

N-LASF43 1.8176 5.1714 0.810 1.013 6.660 0.335 6.466

N-LASF44 1.8142 3.8962 0.820 0.442 7.390 2.605 2.102

N-LASF45 1.8144 4.5695 1.020 1.716 8.560 2.949 7.689

N-LASF45HT 1.8144 4.5695 1.020 1.467 8.560 2.949 6.570

N-LASF46A 1.9204 5.8379 0.910 2.052 7.150 0.808 13.162
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glass name n ∂n
∂T

κ αabs xg xf ξ

×106 ×106 ×106 ×109

N-LASF46B 1.9204 7.7607 0.880 2.305 7.110 -1.321 20.329

N-LASF9 1.8656 4.0193 0.790 2.263 8.380 3.737 11.513

N-LASF9HT 1.8656 4.0193 0.790 2.263 8.380 3.737 11.513

N-PK51 1.5325 -7.9230 0.650 0.281 14.120 28.999 -3.425

N-PK52A 1.5005 -7.5343 0.730 0.160 15.000 30.054 -1.655

N-PSK3 1.5573 1.6666 0.990 0.402 7.300 4.310 0.677

N-PSK53A 1.6236 -3.7194 0.640 0.321 10.840 16.804 -1.867

N-SF1 1.7315 0.8344 1.000 1.301 10.540 9.399 1.085

N-SF10 1.7432 0.4867 0.960 2.263 10.800 10.145 1.147

N-SF11 1.8026 1.4598 0.950 1.926 9.850 8.031 2.959

N-SF14 1.7786 0.1922 1.000 1.467 10.870 10.623 0.282

N-SF15 1.7124 2.4203 1.040 1.218 9.280 5.883 2.835

N-SF2 1.6588 3.9252 1.140 1.013 7.810 1.852 3.487

N-SF4 1.7712 0.4780 0.950 2.136 10.870 10.250 1.075

N-SF5 1.6848 2.3431 1.000 0.972 9.210 5.789 2.277

N-SF57 1.8675 1.3689 0.990 2.903 9.880 8.302 4.014

N-SF57HT 1.8675 1.3689 0.990 2.817 9.880 8.302 3.895

N-SF57HTultra 1.8675 1.3689 0.990 2.178 9.880 8.302 3.012

N-SF6 1.8237 0.6385 0.960 2.348 10.340 9.565 1.561

N-SF66 1.9487 1.6329 0.800 7.453 6.830 5.109 15.212

N-SF6HT 1.8237 0.6385 0.960 2.052 10.340 9.565 1.365

N-SF6HTultra 1.8237 0.6385 0.960 1.633 10.340 9.565 1.086

N-SF8 1.7017 1.5856 1.030 1.508 9.920 7.660 2.322

N-SK11 1.5692 1.8429 nan 0.241 7.600 4.362 nan

N-SK14 1.6088 1.7477 0.851 0.281 7.300 4.429 0.577

N-SK16 1.6263 0.9235 0.818 0.362 7.300 5.825 0.408

N-SK2 1.6136 3.2309 0.776 0.402 7.100 1.834 1.674

N-SK2HT 1.6136 3.2309 0.776 0.201 7.100 1.834 0.835

N-SK4 1.6187 1.3995 0.830 0.321 7.380 5.118 0.542

N-SK5 1.5947 2.3823 0.990 0.241 6.500 2.494 0.579

N-SSK2 1.6290 3.9014 0.810 0.321 6.650 0.448 1.547

N-SSK5 1.6659 1.9003 nan 0.727 8.000 5.146 nan

N-SSK8 1.6249 1.6335 0.840 0.645 8.160 5.546 1.255

114



glass name n ∂n
∂T

κ αabs xg xf ξ

×106 ×106 ×106 ×109

N-ZK7 1.5132 5.7460 1.042 0.281 5.200 -5.996 1.549

N-ZK7A 1.5128 5.5236 1.042 0.281 5.230 -5.541 1.490

P-BK7 1.5210 3.4945 1.130 0.160 7.320 0.613 0.496

P-LAF37 1.7651 6.3058 0.900 0.362 7.800 -0.442 2.534

P-LAK35 1.7010 0.3973 0.720 0.321 9.680 9.113 0.177

P-LASF47 1.8175 7.3590 0.850 0.483 7.270 -1.732 4.181

P-LASF50 1.8202 7.6338 0.950 0.523 7.320 -1.988 4.206

P-LASF51 1.8215 7.4102 0.870 0.523 7.400 -1.621 4.458

P-SF68 2.0333 25.0938 0.650 9.938 9.670 -14.616 383.682

P-SF69 1.7369 1.6825 1.120 0.686 11.130 8.847 1.030

P-SF8 1.7018 0.4760 1.020 1.136 11.100 10.422 0.530

P-SK57 1.5927 2.3369 1.010 0.201 8.900 4.957 0.464

P-SK57Q1 1.5917 nan 1.010 0.201 8.900 nan nan

P-SK58A 1.5947 2.5028 1.020 0.281 8.410 4.201 0.689

P-SK60 1.6164 2.3091 1.130 0.120 8.850 5.104 0.246

SF1 1.7315 7.1457 0.660 0.281 8.800 -0.968 3.042

SF10 1.7432 7.3315 0.741 0.442 8.400 -1.465 4.378

SF11 1.8025 12.3302 0.737 0.972 6.800 -8.565 16.257

SF2 1.6588 3.6139 0.735 0.281 9.200 3.715 1.382

SF4 1.7712 8.5616 0.650 0.362 8.900 -2.202 4.763

SF5 1.6848 4.8647 0.690 0.281 9.000 1.897 1.981

SF56A 1.8023 9.4777 0.690 0.442 8.800 -3.014 6.077

SF57 1.8674 12.3442 0.620 0.564 9.200 -5.031 11.228

SF57HTultra 1.8674 12.3442 0.620 0.402 9.200 -5.031 8.004

SF6 1.8237 10.6196 0.673 0.362 9.000 -3.893 5.706

SF6HT 1.8237 10.6196 0.673 0.345 9.000 -3.893 5.452

Table A.2.: Thermal properties of Schott glasses at 20 °C and λ = 500 nm according

to the data sheets [92]. The units of the parameters are as follows:
[

∂n
∂T

]

= °C−1, [κ] = W m−1 °C−1, [αabs] = m−1, [xg] = °C−1, [xf ] = °C−1

and [ξ] = W−1.
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A.3. Thermal properties of mounting materials

metal xm × 106 in °C−1

aluminum 23.6-24
beryllium 12
invar 0.9-1.0
steel 14.7
magnesium 26.0

Table A.3.: Thermal properties of selected metals used as mounting material accord-
ing to [22,24,38].
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