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Abstract
Displacement measuring interferometers, commonly employed for traceable measurements at
the nanoscale, suffer from non-linearities in the measured displacement that limit the achievable
measurement uncertainty for microscopic displacements. Two closely related novel
non-linearity correction methodologies are presented here that allow for the correction of
non-linearities in cases where the displacement covers much less than a full optical fringe. Both
corrections have been shown, under ideal conditions, to be capable of reducing all residual
non-linearity harmonics to below the 10 pm level.

Keywords: interferometry, non-linearity, dimensional metrology

(Some figures may appear in colour only in the online journal)

1. Introduction

Optical interferometry provides a direct route for traceabil-
ity to the SI metre on length scales for which direct time of
flight measurement is impractical [1]. For measurements made
at the nanoscale, optical interferometry therefore provides
the primary route to traceability. Whilst a number of other
technologies, including capacitive sensors [2], grating based
encoders [3] and x-ray interferometry [4] are able to make
high accuracy displacement measurements at the nanoscale,
all ultimately rely upon optical interferometry for traceab-
ility [1]. Improving the performance of optical interfero-
metry therefore serves two purposes. Firstly, optical inter-
ferometry is used directly in a wide range of research and
industrial applications, for example metrological atomic force
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microscopy [5]. Secondly, due to the straightforward path
to traceability offered by optical interferometry, improved
optical interferometers are desirable for the calibration or char-
acterisation of other nanoscale measurement devices.

Non-linearities may dominate themeasurement uncertainty
of homodyne displacement measuring interferometers under
conditions for which refractive index uncertainties do not
dominate, for example, when measuring displacements cover-
ing ranges of the order of hundreds of micrometres or less, in
some cases limiting instrument performance [6]. In particular,
in cases where the displacement covers less than a full optical
fringe, as may be the case, for example, for the out of plane
measurement axis of a scanning probe microscope, or when
evaluating the out of plane motion of a nanopositioning stage
[7], ellipse fitting Heydemann style corrections [8] may result
in large residual non-linearities, as ellipse fitting of noisy data
is unreliable when only partial ellipses are available [9]. Such
non-linearities, errors in the measured displacement that are
periodic with some harmonic of the illuminating wavelength,
are introduced by errors in the DC offsets, gain ratio and quad-
rature phase of the interferometer output signals [8], or by
unwanted multiple reflections within the interferometer optics
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[10, 11]. A wide variety of methods have been described in the
literature to correct for non-linearities [8, 9, 12–15], including
methods suitable for real time implementation [16–18], and
methods designed for sub-fringe displacements [9, 15]. Exist-
ing sub-fringe correction methods proposed in the literature
are however limited to residual non-linearities of approxim-
ately 1 nm where displacements of less than one half of an
optical fringe are to be corrected [9, 15], far in excess of
the tens of picometre non-linearities that can be achieved by
optical interferometry in the multi-fringe case [19], although
the performance limits may be expected to be dependent on
the exact interferometer system to which the correction is
applied.

A non-linearity correction methodology is presented in this
work that is capable of correction of non-linearities in homo-
dyne optical interferometers for sub-fringe displacements, out-
performing the Heydemann correction for displacements of
less than approximately 120 nm. Two closely related tech-
niques are proposed, both based upon measurement of the
optical power returned from each arm of the interferometer,
following a related methodology to that of [15] with the goal
of reducing residual non-linearities to tens of picometres. First,
the theory behind the methodology will be presented, along
with the theory behind the calibration procedure developed
in this work. The methodologies used to investigate the per-
formance of the correction will then be described, followed
by experimental results validating the correction. The limita-
tions and benefits of the correction will then be considered and
compared with the Heydemann [8] and beam shuttering [15]
techniques.

2. Theory

Quadrature fringe counting in homodyne displacement meas-
uring interferometry relies upon the interferometer producing
two signals, separated by a 90◦ phase difference in the ideal
case [12]. A phase-quadrature coating [20] based interfero-
meter is depicted in figure 1 with quadrature outputs Isin and
Icos, and intensity reference outputs Imes and Iref. The phase-
quadrature coating consists of absorbing thin films of the order
of ten nanometres in thickness, and due to the absorbing nature
of the films a phase shift is produced between the reflected
and transmitted beams. In the configuration employed in this
work, the coating produces a phase difference of approxim-
ately 90◦ between the Isin and Icos outputs of the interfero-
meter. Two closely related non-linearity correction method-
ologies are presented in this section, an overview of which is
given in figure 2.

Assuming an optical intensity after the polariser of I0, the
optical intensity signals at the four outputs will be given by

Icos = RQTQTP
(
Tmes + Tref + 2

√
TmesTref cos(φ)

)
I0, (1)

Isin = TP
(
TrefR

2
Q + TmesT

2
Q

+2RQTQ
√
TmesTref sin(φ+ δ)

)
I0, (2)

Figure 1. Schematic of the phase-quadrature coating based
homodyne interferometer. FC, fibre collimator; PQBS,
phase-quadrature beam splitter; Pol, polariser; BS, 50:50 beam
splitter; RRmes and RRref, measurement and reference
retroreflectors; Imes, measurement beam reference intensity; Iref,
reference beam reference intensity; Isin, sine quadrature output; Icos,
cosine quadrature output.

Iref = TrefRQRPI0, (3)

Imes = TmesTQRPI0, (4)

where RQ and TQ are the power reflectivity and transmissiv-
ity coefficients of the phase-quadrature beam splitter (PQBS)
coating, RP and TP are the power reflectivity and trans-
missivity coefficients of the non-polarising beam splitter (BS)
coatings, T ref and Tmes are the power transmissivity coeffi-
cients of the reference and measurement arm beam paths,
φ is the interferometric phase, determined by the illumin-
ating wavelength, refractive index, and relative path lengths
of the reference and measurement arms of the interfero-
meter, and δ is the quadrature phase error. The parameters
T ref and Tmes are required to account for losses in the arms
of the interferometer, which may arise for example due to
the non-ideal reflectivity of metallic mirror or retroreflector
coatings.

Equations (1) and (2) assume perfect interference between
the beams returned from the reference and measurement
arms, however in reality wavefront or polarisation aberra-
tions may result in a reduction in fringe contrast at the sine
and cosine outputs, without affecting the intensity measured
at the reference and measurement intensity outputs. Such
effects will alter the amplitude of the measured quadrat-
ure signals, but will not affect the offsets of the quadrature
signals, a fact that will be exploited later in the correction
process.

The optical intensity signals are not measured directly, and
are instead commonly detected and amplified to give a voltage

2
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Figure 2. Flowchart demonstrating the multiple intensity reference (MIR) and constrained Heydemann (CH) non-linearity correction
methodologies. First, the input beams are blocked and dark voltages measured (A). The reference (B) and measurement (C) arms are then
blocked in turn, and calibration measurements taken. Following calibration, a displacement measurement is taken (D), and equations (15)
and (16) are applied to centre the quadrature signals, and to attempt to correct the signal amplitudes. For the MIR approach, the sum and
difference of the centred signals are taken, and an ellipse fit is made, centred on the origin, and with the ellipse axes aligned to the data axes
(MIR). For the CH approach, the centred signals are fitted with an ellipse again constrained to be centred on the origin, but free to rotate
about the origin (CH). Finally for both approaches the fit coefficients are used to correct the quadrature signals, and the phase is recovered
from the now circular Lissajous figure.
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signal with a generally unknown gain and offset for each
signal, resulting in

Vcos = GcosIcos +Dcos, (5)

Vsin = GsinIsin +Dsin, (6)

Vref = GrefIref +Dref, (7)

Vmes = GmesImes +Dmes, (8)

where the coefficients G represent (positive) gain, and the
coefficientsD represent the voltage offset that is present in the
absence of laser illumination, introduced by both background
illumination and electronic effects. For simplicity of notation
in the following equations, offset free voltage signals will be
introduced as

V ′
cos = Vcos −Dcos, (9)

V ′
sin = Vcos −Dsin, (10)

V ′
ref = Vref −Dref, (11)

V ′
mes = Vmes −Dmes. (12)

This system of equations may be solved for the zero centred
and equal amplitude quadrature signals Scos and Ssin, independ-
ently of illumination intensity and losses in the interferometer
arms, as

Scos = cos(φ) ,

=−

GrefGcosTPRQV ′
mes +GmesGcosTPTQV ′

ref
−GmesGrefRPV ′

cos

2GcosTp
√
GmesGrefRQTQV ′

mesV
′
ref

, (13)

Ssin = sin(φ+ δ) ,

=

GrefGsinTPTQV ′
mes +GmesGsinTPRQV ′

ref
−GmesGrefRPV ′

sin

2GsinTp
√
GmesGrefRQTQV ′

mesV
′
ref

, (14)

however this form requires the optical and electronic proper-
ties of the interferometer system to be measured directly.

Considering equations (13) and (14), some simplifications
can be made. Homodyne interferometers recover the inter-
ferometric phase using the four quadrant arctangent function
[12], which is insensitive to scaling factors common to both
quadrature signals. As a consequence, the signals can be arbit-
rary scaled by a common factor, allowing equations (13) and
(14) to be written in terms of gain ratios, rather than abso-
lute gains, and reflectivity to transmission ratios, rather than

absolute reflectivity and transmission coefficients. The cosine
signal may also be inverted without affecting the relative phase
measurement, allowing both signals to be rewritten with com-
mon signs for each component. Combining these changes res-
ults in

S ′
cos = ΓQV

′
mes +Gm,rV

′
ref −Gm,cΓ

′
PV

′
cos, (15)

S ′
sin = V ′

mes +Gm,rΓQV
′
ref −Gm,sΓ

′
PV

′
sin, (16)

where

Gm,r =
Gmes

Gref
, (17)

Gm,c =
Gmes

Gcos
, (18)

Gm,s =
Gmes

Gsin
, (19)

ΓQ =
RQ

TQ
, (20)

Γ ′
P =

RP

TPTQ
. (21)

2.1. Calibration procedure

In order to recover S ′
cos and S

′
sin the gain and reflectivity to

transmission ratios must be measured. Whilst direct measure-
ment would be possible, it is desirable to perform this cal-
culation in-situ, as a calibration step. This may be achieved
through beam blocking techniques, in a method related to that
proposed in [15]. First, the dark voltage coefficients required
to calculate the offset free voltage signals V

′
from the meas-

ured voltage signals V may be measured directly by block-
ing the input beam to the interferometer. By blocking first the
reference, and then the measurement beam, separately, eight
voltages may be recorded, some of which can be used to cal-
ibrate the required ratios. Blocking the reference beam results
in voltages

V(R)
cos = GcosRQTQTPTmesI0, (22)

V(R)
sin = GsinT

2
QTPTmesI0, (23)

V(R)
ref = 0, (24)

V(R)
mes = GmesTQRPTmesI0. (25)

Similarly, blocking the measurement beam results in voltages

V(M)
cos = GcosRQTQTPTrefI0, (26)

4
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V(M)
sin = GsinR

2
QTPTrefI0, (27)

V(M)
ref = GrefRQRPTrefI0, (28)

V(M)
mes = 0. (29)

From equations (22) to (29) the required ratios and products
of ratios may then be determined as

Gm,r =
V(R)
mes

V(M)
ref

√√√√V(M)
sin V

(M)
cos

V(R)
sin V

(R)
cos

, (30)

ΓQ =

√√√√V(M)
sin V

(R)
cos

V(M)
cos V

(R)
sin

, (31)

Gm,cΓ
′
P =

V(R)
mes

V(R)
cos

ΓQ, (32)

Gm,sΓ
′
P =

V(R)
mes

V(R)
sin

. (33)

From equations (15), (16) and (30) to (33) equal amplitude
zero centred quadrature signals can be calculated, however the
quadrature phase error, δ is still present. Two approaches are
possible to correct for the quadrature error, which will be out-
lined in the following subsections.

2.2. Multiple intensity reference technique

The first approach, termed in this work the multiple intensity
reference (MIR) technique, assumes the signals have ideally
equal amplitudes, and takes the sum and difference of the
quadrature signals, yielding

Sc+s = S ′
cos + S ′

sin, (34)

= 2cos

(
1
2
δ

)
cos

(
φ+

1
2
δ

)
, (35)

Sc−s = S ′
cos − S ′

sin, (36)

= 2sin

(
1
2
δ

)
sin

(
φ+

1
2
δ

)
, (37)

where the quadrature error, introduced by the non-ideal per-
formance of the phase-quadrature coating, has been elimin-
ated at the cost of reintroducing a difference between the amp-
litudes of the signals. A constrained ellipse fit may then be
employed to fit an ellipse centred on the origin, with the major
and minor axes aligned with the data axes, in order to cor-
rect for the amplitude difference introduced by the sum and
difference process. This approach is however vulnerable to

differences in the signal amplitudes before taking the sum and
difference.

An ellipse fit constrained as described may be made by
applying least squares fit of the form

1= cos2
(
φ+

1
2
δ

)
+ sin2

(
φ+

1
2
δ

)
, (38)

=

(
Sc+s

2cos
(
1
2δ
))2

+

(
Sc-s

2sin
(
1
2δ
))2

, (39)

= AS2c+s +BS2c−s. (40)

Equation (40) may be written in matrix form as

M±

(
A
B

)
=

 1
...
1

 , (41)

whereM± is the 2 ×N data matrix

M± =

(
S2c+s,0 S2c+s,1 . . . S2c+s,N
S2c-s,0 S2c-s,1 . . . S2c-s,N

)
(42)

and the right hand side is a N× 1 vector of ones for a fit made
to N data points. Solving this matrix equation following the
ordinary least squares method results in closed form solutions
for the fit coefficients A and B given by

A=

(∑
S2s-c
)(∑

S2s-cS
2
s+c

)
−
(∑

S2s+c
)(∑

S4s-c
)

(
∑
S2s-cS2s+c)

2 − (
∑
S4s+c)(

∑
S4s-c)

, (43)

B=

(∑
S2s+c
)(∑

S2s-cS
2
s+c

)
−
(∑

S2s-c
)(∑

S4s+c
)

(
∑
S2s-cS2s+c)

2 − (
∑
S4s+c)(

∑
S4s-c)

, (44)

where the index of sums, which is not shown for clarity of
notation, runs over the full range of the data points to be
included in the fit. Equivalently, the sums may be replaced
with averages, for example to avoid fixed point overflows, or
with moving averages covering a fixed displacement length
where the technique is to be applied to displacements covering
multiple fringes. Both fit coefficients have a common divisor,
which may be neglected as the absolute radius of the ellipse
does not effect the phase measurement process, and as a result
the fit coefficients may be expressed as

A ′ =
(∑

S2s+c
)(∑

S4s−c
)

(45)

−
(∑

S2s−c
)(∑

S2s−cS
2
s+c

)
, (46)

B ′ =
(∑

S2s−c

)(∑
S4s+c
)

(47)

−
(∑

S2s+c
)(∑

S2s−cS
2
s+c

)
. (48)

5



Meas. Sci. Technol. 33 (2022) 025201 A Bridges et al

The sum and difference signals may then be corrected as

Cs+c =
√
A ′Ss+c, (49)

Cs−c =
√
B ′Ss−c. (50)

2.3. Constrained Heydemann technique

The second possible quadrature phase correction approach,
termed here the constrainedHeydemann (CH) technique, deals
with the unequal amplitude problem by again making a con-
strained ellipse fit, fitting an ellipse with variable signal amp-
litudes and quadrature phase errors, but constrained to be
centred on the origin.

The CH approach makes a least squares fit of the form

1= CS2cos +ES2sin +FScosSsin. (51)

The form of equation (51) may be derived following the same
approach as for equation (40), solving

Scos = αcos(φ) , (52)

Ssin = β sin(φ+ δ) , (53)

for the sine and cosine of φ, and taking the sum of the square
of sine and cosine to be equal to one. A quadrature error term,
δ, has again been included to allow for the correction of non-
ideal quadrature phase shifts. Coefficients α and β have been
introduced to account for the non-ideal signal amplitudes.

Closed form solutions may also be found for the fit coeffi-
cients in this case, however the form is more complex and will
not be described here. Instead, the fit coefficients C, E and F
will be calculated following the ordinary least squares method
as  C

E
F

=
(
MTM

)−1
MT

 1
...
1

 , (54)

where

M=

 S2cos,0 S2cos,1 . . . S2cos,N
S2sin,0 S2sin,1 . . . S2sin,N

Scos,0Ssin,0 Scos,1Ssin,1 . . . Scos,NSsin,N

. (55)

Following the methodology of Heydemann [8] whilst account-
ing for the fact that the signals are now constrained to be
centred on the origin, the amplitude ratio of the quadrature sig-
nals and the sine and tangent of the quadrature phase error may
be calculated from the fit coefficients as

Gxy =

√
E
C
, (56)

tan(δ) =
−F√

4CE− f 2
, (57)

sin(δ) =
−2

√
CE√

4CE− f 2
, (58)

and the corrected quadrature signals may be recovered as

Ccos = Scos, (59)

Csin = Gxy sin(δ)Ssin + tan(δ)Scos. (60)

3. Experimental methods

In order to test both the MIR and CH techniques, an interfero-
meter was constructed following the schematic representation
shown in figure 1. Laser illumination was provided by a fibre
coupled frequency stabilised helium neon (HeNe) laser (REO
Model 32734) operating at approximately 632.8 nm. The fibre
coupled laser was then collimated and polarised with a Glan-
Thompson polariser (extinction ratio 100 000:1), ensuring a
stable polarisation state at the input to the interferometer. A
custom PQBS [20] cube formed the core of the interferometer,
splitting the beam into the measurement and reference arms
of the interferometer, and introducing an approximately 90◦

quadrature phase shift between the interferometer outputs. The
quadrature phase shift introduced by the PQBS is polarisa-
tion dependent, and as sub-fringe fluctuations in the quadrature
phase shift are not corrected for with the techniques described
here, the high extinction ratio input polariser is required to
minimise non-linearities in the interferometer. Silver coated
solid glass cube corner retroreflectors were employed in both
arms of the interferometer, with the arm lengths approximately
balanced to within millimetres. The fixed phase change that
takes place upon reflection from the absorbing silver coatings
adds a fixed offset to the interferometric phase, and therefore
does not affect the proposed correction methods.

The measurement arm retroreflector, RRmes, was moun-
ted on a Queensgate Instruments NPS-X-15A nanoposition-
ing stage, with a manufacturer quoted position noise of 50 pm
RMS, allowing precise path length changes to be generated.
Plate BSs were used in both the reference and measurement
arms, with a 50:50 reflectivity to transmission ratio, and BSs
marked as being from the same coating batch were selected as
both the MIR and CH techniques assume identical BS proper-
ties in each arm of the interferometer. All optical components
with planar optical surfaces were tilted slightly to minimise
any multiple reflection effects, whilst maintaining parallelism
between the measurement arm beams and stage displacement
axis. In order to ensure consistent power collection at each of
the four detectors, the output beams of the interferometer were
focused onto the photodiode detectors (Hamamatsu S2386-
18K/L) with 40mm focal length lenses (not shown in figure 1).
Apertures were placed before each lens set to a diameter that
did not visible clip the beams in order to minimise the detec-
tion of stray light. The photodiodes were operated in photo-
voltaic mode to minimise dark currents, with the photocurrent
amplified by custom electronics. The amplified signals were
digitised with 16 bit analogue to digital converters (National
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Instruments NI7833R) operating at a sampling frequency of
200 kHz, and, for the purposes of this work, were logged for
post processing.

For both the MIR and CH corrections identical calibra-
tion steps are required. These were performed in three steps.
First, a beam block was placed between the input polariser
and PQBS, and the dark voltage signals (Dcos, Dsin, Dref and
Dmes) recorded. The beam block was then moved to between
the reference retroreflector (RRref) and the reference arm BS,
and the reference blocked voltage signals (V(R)

cos , V
(R)
sin , V

(R)
ref and

V(R)
mes) were recorded. Finally, the beam block was moved to

between the measurement arm retroreflector and the measure-
ment arm BS, and the measurement blocked voltage signals
(V(M)

cos , V
(M)
sin , V(M)

ref and V(M)
mes ) were recorded. For each calibra-

tion step 100 000 data points were recorded synchronously for
all four signals. Ratios and products of ratios were then calcu-
lated according to equations (30)–(33) using the full 100 000
data points. Averages were then taken for each ratio, and the
averaged ratios used to corrected the measured signals fol-
lowing equations (15) and (16). By taking averages only after
the ratios were calculated, the calibration process was made
insensitive to laser power fluctuations between each calibra-
tion step, and any bias introduced by taking ratios of averaged
random variables was eliminated.

At this point, the two proposed techniques diverge. Con-
sidering first the MIR technique, sum and difference signals
were calculated from equations (34) and (37). Fit coefficients
were then calculated according to equations (45) and (48), and
the sum and difference signals were corrected using equations
(49) and (50). In the case of the CH technique, fit coefficients
C, E and F were calculated from equation (54), and the cor-
rection was applied following equations (56)–(60).

Following signal correction, the interferometric phase was,
for both techniques, calculated using the four quadrant arctan-
gent function as

φCH = atan2(Csin,Ccos) (61)

and

φMIR = atan2(Cs+c,Cs−c) (62)

for the CH and MIR corrections respectively. The correspond-
ing displacement was then calculated for both techniques as

x=
λ

4π
φ. (63)

For the purposes of this work any dead path effects [21] intro-
duced by path length imbalances at the start of the measure-
ment were not considered, as path length imbalances were
minimal, and any dead path effects present do not affect the
non-linearity of the interferometer, which is the focus of this
work. Additionally, the effects of refractive index fluctuations
[22], were not considered, as such effects do not affect the abil-
ity of the interferometer system described here to resolve non-
linearities, instead having only a negligible scaling effect on
the observed non-linearity.

In order to test the correction techniques, the stage was
stepped through the full 15 µm closed loop range in uniform
steps. At each stage position Vcos, Vsin, V ref and Vmes were
recorded, with a 100 point moving average applied to reduce
the effects of noise and higher frequency mechanical vibra-
tions. Residual non-linearities were evaluated by comparison
to the stage set position, with the displacement calculated from
the stage set positions scaled to cover the same range as the
interferometric displacement measurements, minimising the
effects of angular misalignments between the stage and inter-
ferometer measurement axes on the non-linearity measure-
ment. The differences between the interferometer displace-
ments and the stage displacements were then calculated. In
order to separate residual non-linearities of tens of picometres
from the combined effects of air turbulence, mechanical noise,
and electrical noise, a Fourier transform of the calculated dis-
placement differences was employed. The calculated displace-
ment differences were windowed with a Hann window func-
tion [23] to reduce spectral leakage, and zero padded, with a
number of zeros equal to the number of data points adjoined to
each end of the data. To compensate for the amplitude scaling
effects of the window function, the amplitudes resulting from
the Fourier transform were multiplied by a scaling factor cal-
culated as the number of displacement difference data points
divided by the sum over all values in the window function.
For comparison, displacements corrected with the Heydemann
correction [8] as implemented by Birch [12] were also cal-
culated, along with displacements corrected with the optical
shuttering technique of [15] in some cases. In order to min-
imise the impact of laser intensity fluctuations the quadrature
signals were normalised to reference arm intensity reference
signal before applying the Heydemann correction.

4. Results

4.1. Full-fringe case

First, the full-fringe case (the case for which a full ellipse
of data is available for correction) was considered, for a dis-
placement covering a range of 15 µm in 15 nm steps. A com-
parison of the Heydemann [8], beam shuttering [15], MIR
and CH algorithms is shown in figure 3. Residual twice per
fringe non-linearities (having a spatial period of 158 nm) can
be seen for the MIR algorithm, with an amplitude of approx-
imately 9 pm. For both the MIR and CH algorithms a small
improvement in performance can be seen over the Heydemann
algorithm at a spatial period of 316.4 nm. This effect appears
to be a result of the correction for variable in-arm losses made
for both corrections, whereas the Heydemann correction can
only compensate for laser intensity fluctuations affecting both
arms. Away from harmonics of 632.8 nm, the Heydemann,
MIR and CH algorithms overlap exactly. The beam shuttering
technique [15] yields residual twice per fringe non-linearities
with an amplitude of 65 pm for the interferometer used in
this work. These residual non-linearities are in this case a res-
ult of the shuttering technique not correcting for quadrature
phase shifts. A small non-linearity component with an amp-
litude of 8 pm can be seen at a spatial period of 105.5 nm for all
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Figure 3. Comparison of the full-fringe performance of the
Heydemann [8], beam shuttering [15], MIR and CH non-linearity
correction algorithms when applied to a displacement covering 15
µm with a sample spacing of 15 nm. Inset shows region of interest.
The Heydemann, MIR, and CH techniques overlap almost exactly
away from harmonics of 632.8 nm.

algorithms, corresponding to λ/6, which in this interferometer
system appears to be introduced by internal reflections within
the solid glass corner cube retroreflector. Smaller higher order
harmonics are also likely to be present due to this multiple
reflection effect, however they cannot be separated from the
noise floor in this system.

The effects of wavefront distortions on the MIR algorithm,
motivating the development of the CH algorithm, are demon-
strated in figures 4 and 5. In this case some clipping was intro-
duced into the reference arm of the interferometer, with the
reference beam falling on a joint between the reflecting sur-
faces in the reference arm corner cube retroreflector. The high
sensitivity of the beam shuttering technique to wavefront dis-
tortions can be seen. The large non-linearities seen in this case
may also be a result of the sensitivity of the beam shutter-
ing technique to changes in laser intensity between shutter-
ing steps, and between the shuttering steps and measurement
taking place. For this reason, the beam shuttering technique
is not included in further comparisons. A non-linearity term
can also be seen to arise with a spatial period of 158 nm and
an amplitude of approximately 50 pm for the MIR algorithm,
resulting from imperfect amplitude correction by equations
(15) and (16). Similar increases in non-linearity were regu-
larly observed whilst testing theMIR algorithm in cases where
wavefront distortions were introduced in either arm of the
interferometer before recombination of the beams.

The full-fringe case was also utilised to investigate the sta-
bility of the calibration process. A single set of calibration
measurements were made followed by a series of 15 µm dis-
placements, again made in 15 nm steps, with the displace-
ment measurement repeated every 2.5 min. The previously

Figure 4. Comparison of the full-fringe performance of the
Heydemann [8], beam shuttering [15], MIR and CH non-linearity
correction algorithms in the presence of wavefront distortion, when
applied to a displacement covering 15 µm with a sample spacing of
15 nm. All techniques plotted overlap almost exactly away from
harmonics of 632.8 nm.

Figure 5. Comparison of the full-fringe performance of the
Heydemann [8], MIR and CH non-linearity correction algorithms in
the presence of wavefront distortion, when applied to a
displacement covering 15 µm with a sample spacing of 15 nm. Inset
shows region of interest. All techniques plotted overlap almost
exactly away from harmonics of 632.8 nm.

described Fourier method was then applied, and the values of
the Fourier amplitudes at spatial periods of 316.4 and 158.2 nm
(corresponding to λ/2 and λ/4) added for the Heydemann,
MIR and CH techniques at each time point. The amplitude
sums were then doubled to give an estimate of the peak-
to-peak non-linearity, assuming perfect constructive interfer-
ence between the amplitude terms, with the results shown
in figure 6, along with a 1 h moving average of the result-
ing non-linearity estimates. Moving averages were calculated
based upon a 1 h window centred on the plot time point,
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Figure 6. Time stability of MIR and CH calibration process,
compared to the Heydemann correction in the full-fringe case. Both
individual measurements taken every 2.5 min and 1 h moving
averages are shown. Estimated peak to peak non-linearities are
plotted, considering only non-linearity components with spatial
periods of 316.4 and 158.2 nm.

with any portion of the window falling outside of the data set
neglected.

4.2. Sub-fringe case

The development of the MIR and CH algorithms was driven
by the desire for improved non-linearity corrections in the
case where displacements cover less than a full optical fringe.
As such, the sub-fringe performance of the MIR and CH
algorithmswas compared to that of theHeydemann correction.
To test the sub-fringe performance, a displacement through a
15 µm range was performed in steps of 1.5 nm. A number
of data points corresponding to the displacement range indic-
ated on the x axis of figure 7 were taken from the start of the
full 15 µm range, and the correction coefficients (A and B for
the MIR algorithm; C, E and F for the CH algorithm and the
full ellipse fit for the Heydemann algorithm) calculated based
on this restricted data set. The full 15 µm displacement was
then corrected based upon the calculated coefficients, and the
previously described Fourier technique used to estimate non-
linearities, as for figure 6. This process was then repeated 100
times, with randomly generated offsets applied to the restric-
ted data sets for each repeat such that the restricted data sets
were taken from different parts of the full displacement range.
Averages and standard errors were then calculated for each
fit range, with the results plotted in figure 7. This approach
was required as the Fourier technique used to measure non-
linearities in this work requires multiple fringes to give reli-
able results, and cannot be applied to sub-fringemeasurements
directly. An important consequence of this approach is that
the stability of the non-linearities is also implicitly measured,
along with the performance of the algorithms.

It should be noted that the data presented in figure 7 shows
a higher large displacement non-linearity limit for all three

Figure 7. Sub-fringe performance of the Heydemann, MIR and CH
algorithms. Estimated peak to peak non-linearities are shown,
considering only non-linearity components with spatial periods of
316.4 and 158.2 nm calculated as described in the text. Error bars
indicate standard uncertainties.

algorithms than may be expected from figure 3. This is a con-
sequence of two effects. Firstly, the decreased displacement
step size required, which, in combination with the poor mech-
anical stability of this proof of concept interferometer, and
the Fourier non-linearity measurement technique, resulted in a
higher ‘noise floor’, introduced primarily bymechanical drifts.
Secondly, the stability of the ellipse fit parameters across the
full displacement range also influences the measured residual
non-linearity.

5. Discussion

In this work, the MIR and CH algorithms have been com-
pared to the commonly employed ellipse fitting Heydemann
correction for both full-fringe and sub-fringe displacements.
Considering first the full fringe results, figure 3 demonstrates
that the CH algorithm is capable of reaching the same non-
linearity performance as the Heydemann correction, with
a small increase in performance for once per fringe non-
linearities possible. The MIR algorithm has been shown to
have residual non-linearities with a twice per fringe spatial
period, in this case having an amplitude of 9 pm. As demon-
strated in figure 5, the MIR algorithm is highly sensitive to
any effect that results in incomplete interference between the
beams returned from each arm, with twice per fringe non-
linearities rising to 50 pm in the presence of wavefront distor-
tions from a solid glass corner cube seam. This sensitivity to
incomplete interference is a result of the assumption made by
the MIR technique that the amplitudes of the quadrature sig-
nals may be determined from the intensity reference outputs,
an assumption that is only valid in the ideal case of identical
wavefronts being returned by each interferometer arm, with
identical polarisation states, and with both beams being fully
coherent. As a result, some residual non-linearities are likely to
be present after applying the MIR correction in most practical
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interferometer designs, where incomplete interference may be
introduced by wavefront distortions in the optics, misalign-
ment between the interfering beams, or polarisation aberra-
tions. In the interferometer described in this work the resid-
ual twice per fringe non-linearities after applying the MIR
algorithm seen in figure 3 are likely to be a result of the cumu-
lative effect of small angular alignment errors between the
interfering beams introduced by imperfect cube corner retrore-
flectors, and polarisation aberrations introduced by reflections
from the silver coated surfaces of the retroreflectors. Intens-
ity losses, in the absence of any wavefront distortion, would
not result in non-linearity, as variable losses in the arms of the
interferometer are accounted for in equations (13) and (14) by
Tmes and T ref. Whilst in this case residual non-linearities intro-
duced by imperfect interference were reduced to 9 pm in amp-
litude through careful alignment, this may not be possible in a
system where non-linearities cannot be evaluated in-situ, and
as a result, these highly sensitive residual non-linearity sources
motivated the development of the CH approach.

Figure 3 demonstrates the best case performance achieved
with this system, with the displacement measurement made
immediately after calibration. The stability of the calibration
process is also important if the MIR or CH techniques are to
be used in practical applications. From figure 6 it can be seen
that the calibration remained stable over time scales of a few
hours, with the residual non-linearities beginning to increase
for both the MIR and CH algorithms after 35 h. Some caution
should be employed when drawing general conclusions from
the data presented in figure 6, as the stability of the calibration
is dependent on a range of factors that may vary between inter-
ferometer systems, and between laboratories. The first effect
to be considered is the mechanical stability of the optical sys-
tem. Whilst variable losses in each arm of the interferometer
are accounted for by both the MIR and CH algorithms, vari-
able losses between the pick off BSs and intensity reference
detectors, or between the PQBS and the quadrature detect-
ors are not corrected. In part, this may be compensated by
ensuring the optical path lengths from the fibre collimator to
the four detectors are equalised, however changes in optical
alignment that affect only one detector will still result in an
increase in residual non-linearities. The interferometer used
in this work was assembled as a proof of concept, and as such
greater mechanical stability may be expected from an inter-
ferometer designed for practical measurement tasks. Mechan-
ical stability will also be influenced by the thermal stability of
the environment. In this case the temperature remained within
±0.25 ◦C over the course of the measurements presented in
figure 6. In addition to the mechanical stability of the sys-
tem, the stability of the amplification electronics may affect
the residual non-linearities. In particular, both the MIR and
CH algorithms assume the voltage offsets in the absence of
laser illumination are constant, and changes to these offsets, or
changes in the amplifier gains, will result in increased resid-
ual non-linearities. The intensity stability of the laser source
is not critical for either the MIR or CH algorithms, as both
algorithms correct for any change in source intensity.

Whilst the influence of longer-term drifts in the calibration
parameters is quantified, under the experimental conditions

observed in this work, in figure 6, the effects of initial errors
in the calibration voltages should also be considered. As the
calibration voltages are measured over long integration times
(100 000 data points over 0.5 s in this work for each calibra-
tion step), and with one arm of the interferometer blocked such
that no interference takes place, there is very little influence of
mechanical vibration or laser intensity fluctuations, leading to
negligible short-term uncertainties in the calibration voltages
as compared to the displacement measurement data. As dark
voltages are subtracted as part of the calibration process, off-
set errors due to background light, or electronic effects, do not
influence the measurement as long as the offset remains fixed.
Varying offsets, for example due to varying levels of back-
ground illumination, may contribute to the longer-term drifts
observed in figure 6.

In comparison to the beam shuttering technique previously
proposed in the literature [15] both the MIR and CH tech-
niques have been demonstrated in figure 4 to be less sensit-
ive to incomplete interference effects. Additionally, the beam
shuttering technique does not correct for quadrature phase
shift errors, limiting the ultimate performance for the interfer-
ometer system described in this work, as shown in figure 3. The
beam shuttering technique as described in [15] also does not
include an intensity reference, and if implemented in this man-
ner the correction is sensitive to changes in the laser intensity,
both with regards to high frequency fluctuations and low fre-
quency drift.

The main advantage of the MIR and CH algorithms over
the Heydemann correction is demonstrated in figure 7; for dis-
placements ranges of less than approximately 120 nm (for
a single pass interferometer operating at 632.8 nm) resid-
ual non-linearities are reduced. In this work, an ordinary
least squares fit following the methodology described in [12]
was employed by the Heydemann correction, which may
not be optimal for fitting small portions of an ellipse [9],
however, even where enhanced ellipse fitting algorithms are
employed, residual non-linearities in excess of 100 pm have
been shown to arise for displacements covering less than
one half of an optical fringe [9]. Similarly, ordinary least
squares fits were used by both the MIR and CH algorithms
when making constrained ellipse fits, and performance
improvements may be possible with more advanced fitting
algorithms.

Whilst in this work the CH algorithm has been demon-
strated to be more robust than the MIR algorithm, in applic-
ations where near complete interference can be guaranteed, it
can be seen from figure 7 that the MIR algorithm outperforms
the CH algorithm for displacements of less than approximately
25 nm. This cross over point is likely to be highly dependent
on noise levels in the interferometer system, however in gen-
eral, for applications where displacements cover only a few
nanometres, the MIR algorithm is likely to outperform both
the CH and Heydemann algorithms. The relative computation
simplicity of the fit coefficient calculations in the case of the
MIR algorithm is also a significant advantage, and future work
may investigate the possibility of implementing this algorithm
in real time on a field programmable gate array (FPGA)
device.
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6. Conclusion

Two novel non-linearity correction algorithms have been pro-
posed, both aiming to compensate for non-linearities where
homodyne interferometers are applied to displacements cov-
ering less than one full optical fringe. The first, the MIR
technique, is relatively mathematically simple, and may be
suitable for real time implementation, however the perform-
ance has been shown to be limited in cases where incom-
plete interference occurs. The second approach, the CH
technique, was developed for applications where incomplete
interference does occur, and has been demonstrated to be
capable of achieving residual non-linearities comparable to
that of the Heydemann correction, whilst remaining effect-
ive down to small fractions of an optical fringe, in this work
outperforming the Heydemann correction for displacements
of less than approximately 120 nm. For the interferometer
described here, non-linearity peaks at all harmonics of the
illuminating wavelength (632.8 nm) were reduced to below
10 pm in amplitude by both techniques under ideal condi-
tions. Whilst in this case the algorithms have been applied
to a phase-quadrature coating [20] based homodyne interfer-
ometer, the approach is equally applicable to interferomet-
ers employing polarisation based techniques to achieve the
required quadrature phase shift between the sine and cosine
outputs.

Both the MIR and CH techniques have been compared to
a beam shuttering technique previously described in the liter-
ature [15], and have been found to be less sensitive to incom-
plete interference and quadrature phase shift errors. The MIR
and CH techniques do however require additional optical com-
ponents and detection electronics as compared to the beam
shuttering approach, and this may be a disadvantage in cost
sensitive applications.

Future work may implement the MIR technique in real
time on an FPGA device, and explore the potential for the CH
algorithm to be applied to atomic force microscope cantilever
measurements. Further work may also compare the perform-
ance of the algorithms to the NPL x-ray interferometer [24],
permitting sub-fringe non-linearities to be evaluated directly,
without recourse to a Fourier technique.
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