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Zusammenfassung

Beugung ist ein allgegenwärtiges Phänomen in der Optik. In den späten 80er Jahren

wurden zur Auslösung der Beugung Bessel-Strahlen vorgeschlagen und beobachtet.

Bessel-Strahlen breiten sich im freien Raum ohne Beugung aus, sie können jedoch

nur in drei Dimensionen existieren. Im letzten Jahrzehnt hat sich nach der bahnbre-

chenden Arbeit von Siviloglou und Christodoulides über Airy-Strahlen erhebliches In-

teresse an nicht-beugenden Strahlen entwickelt. Da die Airy-Strahlen auch in zwei

Dimensionen existieren können, eignen sie sich besonders für die planarephotonik, z.

B. an Metall-Dielektrikum-Grenzflächen. In dieser Doktorarbeit wird die Erzeugung

von Airy-Strahlen und deren Eigenschaften an der Metall-Dielektrikum-Grenzfläche

eingehend untersucht. Der Kern dieser Arbeit untersucht die räumliche und raum-

zeitliche Entwicklung von Airy-Plasmonen. Ausreichendes Hintergrundwissen über

elektromagnetische Theorie und numerische Methoden wurde dafür benötigt. Wir ha-

ben die räumlichen Eigenschaften von Airy-Plasmonen mit Hilfe der Photoemissions-

Elektronenmikroskopie untersucht und eine rigorose Finite-Dierenzen-Zeitbereichsm-

ethode angewendet. Die Ergebnisse wurden auch durch die Verwendung einer Strahl-

propagationsmethode (BPM) bestätigt. Die BPM bietet eine Simulationsmethode zur

schnelleren Optimierung der Struktur des anregungsgitters der Airy-Plasmonen. Diese

Arbeit quantifiziert weiter die Erzeugungse zienz der nichtparaxialen Airy-Plasmonen

eines Beugungsgitters. Es wurde eine breitbandige Erzeugungsbandbreite von Airy-

Plasmonen gefunden, was einen gangbaren Weg zur Untersuchung von ultrakurz ge-

pulsten Airy-Plasmonen darstellt. Das Beugungsgitter wurde optimiert, um die ultra-

kurzen Airy-Plasmonenpulse zu erzeugen. Die raumzeitliche Entwicklung von Airy-



Plasmonenpulsen wurde numerisch untersucht. Ein analytisches, semi-analytisches

und numerisches Modell wurden eingesetzt, um die Trajektorie der zeitgemittelten

Airy-Plasmonenpulse zu untersuchen. Zeitlich gemittelte Airy-Plasmonenpulse behal-

ten die nicht-beugenden Eigenschaften wie ihre CW-Gegenstücke. Die Ergebnisse dei-

ser Arbeit können bei der Entwicklung von gepulsten Airy-Airy plasmonischen Strah-

len genutzt werden, die sich im Raum ohne Beugung und in der Zeit ohne Dispersion

ausbreiten können. Diese sogenannten zweidimensionalen linearen ‘light-bullets’ kön-

nen das verborgene Potenzial der Plasmonik freisetzen.
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Abstract

Di raction is a ubiquitous phenomenon in optics. In the late'80s to capture the

diraction, Bessel beams were proposed and observed. Bessel beams propagate in

free space without diraction, however, they can exist only in three dimensions. In

the last decade, considerable interest has spurred in nondiracting beams after the

seminal work of Siviloglou and Christodoulides on Airy beams. Since the Airy beams

can also exist in two dimensions, they are particularly suited for flat-land photon-

icse. g.the metal-dielectric interface. This thesis presents the in-depth study of Airy

beams'generation and their properties on the metal-dielectric interface. The core of

this thesis studies the spatial and spatiotemporal evolution of Airy plasmons. Sucient

background on electromagnetic theory and numerical methods has been provided to

develop Airy plasmons theory. We have investigated the spatial properties of Airy

plasmons using photoemission electron-microscopy and have performed a rigorous fi-

nite dierence time domain method. The results were also confirmed by using a beam

propagation method (BPM). The BPM provides an e cient simulation method to opti-

mize the grating structure for exciting the Airy plasmons. This work further quantifies

the nonparaxial Airy plasmons'generation e ciency of a diraction grating. A broad-

band generation bandwidth of Airy plasmons was found, which provided a viable route

to investigate ultrashort pulsed Airy plasmons. The diraction grating has been opti-

mized to generate the ultrashort Airy plasmon pulses. The spatiotemporal evolution

of Airy plasmon pulses is investigated numerically. An analytical, semi-analytical, and

physical model was developed and deployed to study the trajectory of time-averaged

Airy plasmon pulses. Time-averaged Airy plasmon pulses retain the nondiractive



properties akin to their CW counterparts. The results of this work can be utilized

in engineering the pulsed Airy-Airy plasmonic beams, which can propagate in space

without di raction and in time without dispersion. These so-called two-dimensional

linear ‘light-bullets’ can unleash the hidden potential of plasmonics.
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I. Introduction

This introductory chapter provides an overview of the past and recent development in

the Airy wave's research field. A vast plethora of information has been generated in

this field. The chapter focuses on the Airy beams'generation, characteristics, and ap-

plication, followed by the transformation of Airy beams'research knowledge into Airy

plasmons. Eventually, an introduction and motivation to spatiotemporal Airy plasmon

pulses are presented.

Optics has been playing a key role in the development of science. It has provided use-

ful tools in the history of science for gathering information and building a knowledge

base. The tools such as eyeglasses, microscope, telescope, camera, lasers have solved

practical human problems and also have been instrumental in developing other areas

of science. One of the recent breakthroughs in extreme ultraviolet optics has opened

up doors for manufacturing5 nmsemiconductor chips and has brought a boom in the

semiconductor industry. These tools can be put into three categories based on their

evolution over time: geometrical optics, physical optics, and modern photonics. In this

work, we are mainly concerned with a prominent subfield of modern photonics with

emphasis on the light-matter interaction at the nanometer scale.

In this thesis, the classical electromagnetic description of modern photonics is con-

sidered. The electromagnetic description involves light's properties such as intensity,

direction, coherence, phase, and polarization. The mathematical framework of elec-

tromagnetic optics is provided by Maxwell's equation. The solution of the wave equa-

tion spreads in space upon propagation. Optics researchers have always been inter-

ested in finding a propagation invariant solution to Maxwell's equation. The quest



I Introduction

for finding nonspreading localized wave packets has attracted attention since the late

80s after the seminal work of Berry and Balazs [1] in the context of quantum me-

chanics. They proposed theoretically that the Schrödinger equation [2] describing a

free particle can exhibit a nonspreading Airy wave packet solution. As pointed out in

Berry's paper, this Airy wave packet happens to be the only nontrivial solution in one

dimension (1D). The Airy wave packet corresponds to a family of orbit and the enve-

lope of the family of the orbit (also known as caustic) accelerates even in free space.

The work remained hibernated due to di culty in preparing such quantum states

and realizing it experimentally. However, in the same decade, an interesting class of

nonspreading or nondiracting wave configurations was introduced in two and three

dimensions (2D and 3D) in the area of optics and atom physics [3–8]. The mathemat-

ical analogy between the Schrödinger equation and the paraxial wave equation has

helped the ideas to sail from the quantum mechanics world to the optics world. In

addition, optics has provided a fertile ground for the experimental realization of such

nonspreading waves. Perhaps, the most famous example of such 2D nondiracting

beams is the so-called ‘Bessel beams’. First introduced [3] and experimentally real-

ized [4] by Durnin et al., Bessel beams have sparked considerable interest in finding

other classes of nondiracting beams. The interest has not only spurred into find-

ing the solution of the paraxial wave equation (PWE) but also to find a generic class

of solutions of 3D Helmholtz equations (HE). These generic classes are also known

as propagation invariant optical fields (PIOF) [5,9–11]. A comprehensive review by

Turunen and Friberg [11] on PIOF has included the discussion of custom designs,

vectorial extension, and partial coherence. Over the years, many reviews have been

presented on nondiracting waves [11–15], each having its focus. Particularly, a re-

view on ‘Light modes of free space’ by Levy et al. [15] classifies the solution sets

of free space of Maxwell's equations. The classification divides Waves (solution of

the Helmholtz equations) and Beams (solution of the paraxial wave equation) into

four coordinate systems. The four waves, plane waves, Bessel waves, Weber waves,

and Mathieu waves are solutions of the exact Helmholtz equation corresponding to

2



I Introduction

Table I.1.Classification of Airy waves based on natural dimensions of electromagnetics: space,

time, and spacetime. Texts shown in red color are areas of our research work.

cartesian, circular-cylindrical, parabolic-cylindrical, and elliptical-cylindrical coordi-

nate systems respectively. Similarly, there are 14 beam solutions of the partial wave

equation in four coordinate systems. A summary of this classification can be found in

Table 1 of reference [15]. The PWE solution in the cartesian coordinate system has

a special type of nonspreading beams known as Airy beams. The Airy beam is our

main focus of interest in this thesis; however, our exploration is not limited to free

space. This work investigates Airy beams and their properties on the metallic surface

in different dimensions of space, time, and spacetime.

We provide a classification based on this research work in Table I.1. This work is

devoted to Airy plasmons and their evolution in space and time. Therefore, only a

cartesian coordinate system is considered. In electromagnetics, space and time are

the natural dimensions so we begin first by classifying in terms of dimensions: space,

time, and spacetime. In space, Airy plasmons are investigated in Chapter III. In the

time domain, only Gaussian pulse is considered. Combining space (Airy plasmons)

and time (Gaussian pulse) provides an interesting insights into nonspreading wave

packets and is presented in Chapter IV.

The first column of Table I.1 briefly presents the research development in the area of

Airy beams over the last decade. Airy beams have been extensively studied by different

research groups. Tremendous research work has been devoted to theoretical and ex-

3



I Introduction

perimental investigations and a large number of applications has been demonstrated.

Airy infinite beams are solutions of the 1D paraxial wave equation and have been de-

rived in direct analogy with the Airy nondispersive solution of the quantum mechan-

ical Schrödinger equation [1]. Airy beams like other types of propagation-invariant

beams, carry infinite energy, which is a direct outcome of their nondiracting nature.

However, unlike other propagation invariant beams, Airy beams cannot be generated

by using the conical superposition of plane waves. The characteristic property of Airy

infinite beams is their ability to freely accelerate even in the absence of any index

gradients. Perhaps, the self-accelerating property makes Airy beams unique among

other types of nondiracting beams. The self acceleration does not violate Ehrenfest's

theorem, which describes the motion of the center of gravity of a wave packet [16,

17]. In the case of Airy infinite beams, the center of gravity is not defined due to the

infinite extent of the beams in the transverse direction. An alternative explanation

to the freely accelerating beams was given by Greenberger through the principle of

equivalence [18]. A ray optics description of Airy beams can be carried out by solving

the Rayleigh-Sommerfeld diraction formula as shown in reference [19]. The funda-

mental principles of ray optics and catastrophe theory can be utilized to gain a deeper

theoretical understanding of Airy beams, particularly the trajectory of parabolic caus-

tics and their formation from straight rays [1,20,21].

Airy infinite beams are not possible to realize experimentally. Finite energy Airy

beams can be realized using a truncated initial Airy function. The truncated finite en-

ergy Airy beams are achieved using dierent types of aperture functions [10,22,23].

The First solution of Airy finite beams was provided by Siviloglou and Christodoulides

[10], almost three decades after Berry and Balazs’ pioneering work. This work has

been a big leap in terms of understanding Airy waves. It has been well understood

that what matters is not the trajectory of the ‘center of mass,’ but the curved evolu-

tion of the field itself. The interaction of particles or other waves with Airy beams

happens due to accelerating local field structures. As mentioned in Siviloglou and

Christodoulides'seminal work, an exponential aperture function was taken to ensure

4
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the containment of the infinite Airy tail to produce Airy beam with finite energy. The

exponentially apodized Airy function is used as the initial condition to solve the parax-

ial wave equation. The finite energy solution was found to possess the most important

characteristics of Airy waves i.e. its ability to freely accelerate. The truncated finite

energy Airy beam is not strictly nondiracting. The diraction of the Airy finite beam

depends on the attenuation parameter of the aperture function, which can be con-

trolled to make the beam almost nondiracting over the desired propagation distance.

The finite energy and finite transverse extent of the Airy beam can be experimentally

realized using several dierent methods [24–29]. A common method for generating

an Airy beam is the use of a spatial light modulator (SLM) for imposing an appropriate

phase map on an input beam. The Fourier spectrum (or angular spectrum) of a trun-

cated Airy beam consists of a Gaussian with a cubic phase resulting from the Fourier

transform of the Airy function itself. This angular spectrum is obtained by imposing

a cubic phase with an SLM on a broad Gaussian. A typical experimental setup [24]

involves a continuous-wave (CW) laser, an SLM, a detector (CCD), and a cylindrical

lens. A linearly polarized collimated fundamental Gaussian beam is reflected from

the front facet of the computer-controlled SLM. The SLM imposes the cubic phase on

the Gaussian beam which is then converted to a 1D Airy beam using a cylindrical lens

placed at its focal distance from the SLM. The 1D Airy beam is then carefully imaged

on the CCD through a microscopic objective.

Airy beams in two dimensions were first suggested by Besieris et al. [30]. In the

context of optics, Bandres [31] has presented a complete theory of accelerating beams.

There exist a one-to-one correspondence between accelerating solutions of the parax-

ial wave equation and solutions of the two-dimensional linear potential Schrödinger

equation. Therefore, the solution of the linear potential Schrödinger equation can

be used to find all possible solutions of accelerating beams. A general approach was

developed by providing a canonical form (Equation 11 in reference [31]) in Fourier

space. In this paper, it was concluded that there are unique line spectra for each accel-

erating beam. The line spectrum of the accelerating beam is analogous to the angular

5
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spectrum of nondiracting beams. A novel accelerating beam can be created using

dierent line spectra. However, Airy and parabolic accelerating beams are the only

two explicit closed-forms of complete and orthogonal accelerating beams. The line

spectra of the orthogonal families of accelerating beams can be found in Table 1 of

reference [31]. The Fourier spectrum of Airy-Airy beams is simply a two-dimensional

extension of 1D Airy beams. It is generated experimentally in a similar fashion as the

1D Airy beams. Instead of imposing a 1D cubic phase, we now imprint a 2D cubic

phase using an SLM and the cylindrical lens is replaced with a spherical lens for per-

forming a 2D Fourier transformation. Besides using an SLM, Airy beams can also be

formed utilizing an assembly of lenses [28], through nonlinear processing [27], as a

direct output of microchip lasers [29], or utilizing metasurfaces [32–38].

As previously mentioned, the accelerating parabolic beam is also the exact solution

of the two-dimensional paraxial wave equation. They are parabolic beams because of

their inherent parabolic trajectory. Similar to Airy beams, the accelerating parabolic

beam is also nondiracting and shifts in the transverse direction upon propagation.

Like other nondiracting beams, they also carry infinite energy and are realized exper-

imentally by using an appropriate apodization function. The finite energy parabolic

beam retains its unusual properties over a finite propagation distance and was first

generated experimentally by encoding both amplitude and phase of the Fourier spec-

trum using a single liquid crystal display [39].

The ballistic dynamics of Airy beams has been explored to engineer the trajectory,

launch angle, nondiracting propagation distance, controllable focal distance (i.e.,

working distance), and main lobe width. Airy beams'parabolic trajectory can be

changed by applying an additional linear phase gradient at the input plane [40]. The

pre-engineered trajectory can circumvent an obstacle and hence can be utilized in

particle manipulation [41]. As discussed earlier, the experimental setup to generate

an Airy beam involves cylindrical (1D Airy beam) or spherical (2D Airy beam) lenses.

The launch angle of the Airy beam can be controlled by the transverse displacement

of the imaging lens. The transverse displacement operation is equivalent to the shift-

6



I Introduction

ing property of the Fourier transform [42] and therefore, provides control over the

initial launch angle of the Airy beam [40]. However, the setup gives some degree of

control over the ballistic dynamics (trajectory and launch angle), the overall setup is

bulky and an SLM is also limited in phase discretization due to its large pixel and pitch

sizes (typically 10 times the wavelength of light). In recent years, metasurfaces have

been utilized for amplitude and phase control in Airy beam generation. The ultrathin

metasurfaces have improved the phase discretization and resulted in a compact all-in-

one device integration. The conversion e ciency and generation bandwidth of Airy

beams has also increased. Further control over their ballistics was achieved by using

synthetic-phase metasurfaces [43]. Combining cubic phase of the Airy beam with the

Fresnel lens phase on the metasurface has enabled focal length control, which can be

utilized in adjusting the working distance between a sample and the metasurface. Fur-

thermore, combining the cubic Airy beams'phase, Fresnel lens phase, and Dammann

grating phase generated an array of Airy beams with the same characteristics.

Perhaps one of the most remarkable properties of a nondiracting beam is its ability

to reform its shape despite the severity of the perturbation. The shape-preservation af-

ter perturbation or this so-called self-healing property has been experimentally demon-

strated by Broky et al. [44]. In this experiment, the main corner lobe of the 2D Airy

beam was obstructed by an opaque object. The main lobe of the Airy beam was later

reborn and persisted upon propagation up to a long distance. It was also found in

this paper that the Airy beam can be regenerated, even if any part of the beam is

severely perturbed. The self-healing process can be better understood by monitoring

the transverse power flow of the beams, which provides an insight into the process

of self-reconstruction of lobes. The robustness of the Airy beam has been further

examined in scattering and turbulent media. The Airy beam has retained its shape

under turbulent conditions, whereas other diracting beams (e.g. Gaussian beam)

suer massive deformations. The evolution of the Airy beam has also been studied

in dierent kinds of turbulent settings and be shape-preserving in all circumstances.

Theoretically, the self-healing process can be understood in the framework of Babinet's

7
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principle [45]. At the input plane, the total field can be considered as a superposition

of a propagation invariant solution (e.g. the Airy beam) and the field generated from

an obstruction. As the propagation distance increases, the field generated from the

obstruction diracts, and the diraction-free beam is reconstructed.

Demonstrated applications of Airy beams include filamentation [46–50], imaging

[51–55], particle manipulation [56–61], material processing [62–64]. Airy beam-

based Superresolution fluorescence microscopy [53] and light-sheet microscopy [54,

55] have found commercial applications in optical imaging. In reference [53], isotropic

three-dimensional localization was achieved using the self-bending point spread func-

tion (SB-PSF) derived from the Airy beam. The Airy-based SB-PSF has shown a sub-

stantial improvement in spatial resolution over Gaussian-based PSF. The axial mea-

surement was performed by calibrating the experimental setup for the known bending

trajectory of the Airy beam. The transverse resolution was achieved by suppressing

the side lobe's of the Airy beam and hence improving the contrast of the main lobe.

The side lobes suppression was achieved using a special type of phase profile shown

in Figure 2 of the supplementary information of reference [53]. In another applica-

tion of Airy beam in Light-Sheet microscopy [54] it has been found to provide high

contrast, and resolution over an extended field-of-view compared to a Gaussian and

Bessel beam. The Bessel and Airy beam have lower contrast at the focus, but they

maintain their contrast upon large propagation due to their propagation invariant

property. Among Bessel and Airy beams, it was observed [54] that those side lobes of

Airy beams contribute positively to the image contrast. The self-accelerating and non-

diracting properties of the Airy beam have enabled microfluidic applications within

the colloidal and biological sciences [57,60]. The Airy beam is shown to invoke the

precise transfer of colloidal particles from one chamber to an other without any com-

plex beam steering [57]. In addition, the self-healing property of the Airy beam makes

such ‘optically mediated particle clearing’ robust and ecient. Furthermore, circular

Airy beam [65,66] was used to create hot spots, which provides more control in par-

ticle manipulation. The intensity of the hot spot or the focal spot can be enhanced by

8
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applying topological charges (vortex) to the circular Airy beam [67]. The bending of

the Airy beam is an important parameter in steering the particle trajectories, there-

fore it is desired to have a configuration in which a large curvature to Airy lobes can

be achieved. The non-paraxial case of Airy beams [19,68] provides a strongly bend

trajectory as compared to paraxial Airy beam. The Airy beam trajectory is further en-

gineered by applying a linear phase in the input plane. The linear phase can induce

zero acceleration (straight line) or even reverse the acceleration, hence providing pre-

determined ballistic motions [40,41]. A comprehensive overview of Airy beams and

their generation in dierent types of media can be found in reference [69].

One of the most remarkable applications of Airy beams has been found in the field

of plasmonics. Surface plasmon polaritons (SPP) are strongly localized collective os-

cillations of free electrons when coupled to photons at a metal-dielectric interface.

Plasmonics has substantially transformed the optics and photonics research on the

fundamental [70–73] and application level. The applications have resulted in many

multifunctional ultrathin optical devices such as biosensors [74–76], optical switch-

ing [77], photolithography [78–81], light beam shaping [82–86], optical imaging,

and spectroscopy [87–92]. Since Airy beams are 1D propagation invariant solution,

they are particularly suited for plasmonics. The so-called Airy plasmons were first

proposed in the seminal work of Salandrino and Christodoulides [93]. The problem

to describe Airy plasmons analytically is that is polarization-dependent and therefore,

is strictly vectorial [94]. The problem was solved using the scalar Helmholtz equa-

tion for the component of the electric field normal to the metal-dielectric boundary

[10]. The in-plane field components were calculated using the paraxial approxima-

tion. The Airy plasmons along with their localization on the metal-dielectric interface,

have been found to possess the free space Airy beams'properties i.e. Airy plasmons are

non-spreading, self-accelerating, and self-healing. The self-healing property keeps the

field profile relatively unaected in case of metallic rough surfaces and fabrications

defects. This property makes the Airy plasmons relatively easy to realize experimen-

tally, however, matching the surface plasmon wave vector with the free space wave

9
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vector is challenging. The challenge was overcome by three dierent groups [95–97]

contemporarily by utilizing dierent excitation schemes. Airy plasmon generation can

be viewed in two parts. The first is the generation of the amplitude and phase profile

of the Airy beam and the second, is the coupling of free-space radiation to a metal-

dielectric interface. The mismatch between the free-space wave vector and surface

plasmon wave vector is overcome by employing a grating element. There are dier-

ent ways in which the grating element can be utilized to generate the Airy plasmons.

Zhang et al. [95] generated the Airy beams in free space using an SLM applied to a

free space Gaussian beam and then converted the Airy beam on the back focal plane

of the microscope objective to the Airy plasmons utilizing a linear grating inscribed

at the metal-dielectric interface. Even though, the experimental setup is bulky, it pro-

vides real-time control over the trajectory of Airy plasmons by manipulating the free

space Airy beams. Minovich et al. [96] have utilized a dierent coupling scheme, in

which a specially designed grating is used to imprint the phase of the Airy profile while

simultaneously coupling the free-space radiation to the metal-dielectric interface. In

this scheme, the grating was excited with an extended light source at a wavelength

of 784 nm and the generated Airy plasmons were imaged with a near-field scanning

microscope. The generated Airy plasmons were in the non-paraxial regime as desired

for high bending applications.

We have investigated a similar design by using a photoemission electron micro-

scope (PEEM) in chapterIIIof this thesis and have also provided a formulation to

quantify the Airy plasmon generation e ciency from such grating designs. The non-

paraxial solution is not limited only to Airy plasmons but has also been shown for

other types of accelerating surface plasmon beams (Mathieu beam and Weber beam)

[98,99]. Following the analogy of Airy beams, the interference of two Airy plasmons

was demonstrated [100], which led to the generation and control of hot spots on the

surface of the metal film. Similar to the free space Airy beam case, ballistic dynam-

ics control of Airy plasmons was achieved by utilizing wedged metal-dielectric-metal

structure [101] to mimic a linear index potential. A dierent method for generating

10
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second harmonics of Airy plasmons has been suggested and implemented [102,103].

In this classification (TableI.1), the temporal analog of the spatial finite Airy beam,

the Airy pulse has been shown to possess the self-acceleration in time [104]. The Airy

pulse can be considered as a superposition of monochromatic Airy beams with many

wavenumbers over a certain spectral distribution. The spectral distribution depends

on the Airy beam's scaling parameters, giving rise to dierent types of Airy pulses.

In addition to spectral distribution, the spectral width also determines the Airy pulses

propagation characteristics. The narrowband Airy pulses are found to preserve their

transversal profile during propagation, while the broadband pulses change substan-

tially [104]. Airy pulses have been widely studied in nonlinear media [105] and ex-

hibit stable propagation even in media with strong nonlinearity [106]. An application

of femtosecond Airy pulses in supercontinuum generation was experimentally demon-

strated in reference [107].

In our previous discussion, we have seen that Airy waves are diraction-free in space

and dispersion-free in time. By employing both space and time characteristics, it is

possible to generate a spatiotemporal wave packet, which is impervious to diraction

and dispersion. Indeed such localized field configuration is formed in three dimensions

by combining a 2D Airy-Airy beam in space and an Airy pulse in time. Such Airy-Airy-

Airy wavepacket [10,108] propagates without diraction and dispersion and gives

rise to so-called stable light bullets. An other configuration of free space light bullets

combines a Bessel beam in space and an Airy pulse in time [109]. These studies are

based on separable spatiotemporal degrees of freedom. Recently, the spatiotempo-

ral coupling eects have been exploited to e ciently synthesize diraction-free and

dispersion-free wave packets independent of the characteristics of the medium [110–

113]. The spatiotemporal evolution has been understood well in free-space, but the

plasmonics system still lacks a detailed investigation of the combined eects of space

and time.

Therefore, the motivation of this work is in the direction of such spatiotemporal plas-

monic systems. In chapterIVof the thesis, we discuss Airy plasmons evolution under
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Figure 1.1.structure of thesis.

an ultrashort Gaussian pulse excitation. The Airy plasmon pulses manifest remarkable

properties and set the course for future development for diffraction and dispersion-

free pulsed beams. It should be noted that our research concerns only linear media.

For shape-preserving pulsed beams in a nonlinear medium, one can explore the vast

pool of knowledge base in the following references [114–118] .

The thesis is divided into five chapters. After this first introductory chapter, we lay

the theoretical and mathematical foundations in chapter II. This chapter also provides

an overview of the computational methods used in our research work. The chapters III

and IV are the core chapters of the thesis, which discuss the original research work.

In chapter III, we investigate the Airy plasmons with a multiphoton Photoemission

electron microscope (n-PEEM) and also quantify the broadband Airy plasmon gen-

eration using modal overlap calculations. The work done in this chapter led to the

possibility of generating ultrashort nondiffracting pulsed beams. Chapter IV numer-

ically investigates the ultrashort Airy plasmon pulses in detail supplemented with a

physical model to understand the spatiotemporal dynamics of nondiffracting pulsed

beams. With these two substantial steps forward, we summarize our findings and

discuss the viable future research paths.

The successful research work described in this thesis is a result of meticulous team-

work, which was not possible without the contributions from my colleagues and collab-

orators. The n-PEEM experiment was performed by M. Falkner, who currently works

at the Institute of Applied Physics Jena. The fabrication of the sample in chapter 3

was performed by M. Steinert using a focussed ion beam etching method at the same

institute. Goran Isić from the Institute of Physics, Belgrade, Serbia has provided many

useful insights into design and simulations. Numerous discussions with Matthias Zilk

and Thomas Kaiser, both had been at the Institute of Applied Physics Jena as well,

12



I Introduction

have helped in shaping chapterIIIof this thesis.

13



II. Theory and computational methods

The physics of electromagnetic waves and light-matter interaction can be well un-

derstood in the classical framework of electromagnetism using Maxwell's equations.

Between 1961 and 1962, James clerk Maxwell established that light is a form of the

electromagnetic wave and provided a set of mathematical equations [119,120]. This

mathematical model has opened new doors in our scientific understanding of nature.

Maxwell's equations have wide applicability across the entire electromagnetic spec-

trum ranging from radio waves, visible light to gamma rays. This forms the founda-

tion of classical optics and electrical engineering. Since the underlying concepts are

the same, this has led to fruitful interdisciplinary research among physicist and elec-

trical engineers [121–125]. Electrical circuits usually deal with low-frequency signals

where only ohmic losses are present. In optics, radiative losses become significant due

to the high frequency of electromagnetic radiation [126,127]. This makes the system-

level engineering highly dependent on the material's dispersive properties even though

Maxwell's equations are scale-invariant.

In this chapter, the fundamentals of electromagnetic theory will be briefly discussed

with an emphasis on material modeling, which will be important for our research. The

optical radiation is described using Maxwell's equations under classical field theory.

Therefore in most cases, we will use a classical approach to describe the radiation

in a nano-optical system. An exception to this will be the study of photoemission of

electrons from the metal surface in Photoemission Electron Microscopy (PEEM). The

photoemission phenomenon can be understood only under a quantum mechanical

picture and is briefly presented in chapterIII. In addition, this chapter discusses the

14
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various numerical methods that have been used in our research work to compute the

electromagnetic response of such materials.

2.1. Maxwell's equations and wave propagation on a surface

2.1.1. Maxwell's equations and material modeling

Maxwell's equations in the time domain are given by

r·D(r,t)= ⇢ext(r,t), (2.1a)

r·B(r,t)=0, (2.1b)

r⇥E(r,t)=
@B(r,t)

@t
, (2.1c)

r⇥H(r,t)=Jext(r,t)+
@D(r,t)

@t
. (2.1d)

These equations link the four macroscopic fields, the dielectric displacementD, the

electric fieldE, the magnetic fieldH, and the magnetic fluxB. TheDandHincorpo-

rate the material eect such as polarizationPand magnetizationM. The introduction

ofDandHare motivated by its usefulness in expressing Maxwell's equation in terms

of external charge and current density. The auxiliary equations that define the dis-

placement fieldDand magnetic fieldHare given by

D(r,t)="0E(r,t)+P(r,t), (2.2)

H(r,t)=
1

µ0

⇥
B(r,t) M(r,t)

⇤
, (2.3)

wherePandMare polarization and magnetization at the macroscopic scale. They

can be defined in terms of internal charge and current as follows

⇢(r,t)=r·P(r,t), (2.4)

J(r,t)=r⇥M(r,t)+
@P(r,t)

@t
. (2.5)
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The division of total charge and the total current is arbitrary. They can be divided

into a set of external and internal or into a set of a free and bound charges. In the

case of noble metals, it is more suitable to use the external and internal sets and they

can be explicitly written as follows

⇢tot(r,t)=⇢ext(r,t)+⇢(r,t), (2.6)

Jtot(r,t)=J(r,t)+J(r,t). (2.7)

The polarization and magnetization are a material response to the electric and mag-

netic fields. The electric field induces electric dipole moment. These macroscopic elec-

tric dipole moment result in polarization which is defined as dipole moment per unit

volume. The dependence of polarization can be linear in the external electric field re-

sulting in a domain called linear optics. For high power laser pulses, the polarization

depends on higher orders of the electric field and the resulting phenomena are studied

under the subject area called nonlinear optics. The magnetization of the material is

also a similar process. The application of the fieldHinduces currents. The bound cur-

rents are the consequence of tiny current loops that are formed by moving electrons

around the atomic orbit. The tiny current loops produce a magnetic moment. In the

case of diamagnetic materials, the magnetic moment is along the magnetic field while

in the case of paramagnetic material, opposite to theH. The magnetization which

is defined as magnetic moment per unit volume is the resultant of the induced mag-

netic moments of the material. The response to the applied field is linear in the case

of paramagnetic and diamagnetic materials. However, in the case of a ferromagnetic

material such as Iron, Nickel, and Cobalt, the magnetization depends on the history

of the material and is nonlinear to the applied fieldH. In optics, the materials usually

have magnetic permeabilityµ=1and the magnetization can be neglected, however,

theµcan be changed even with artificial optical materials. Such artificial materials

are called metamaterials. Metamaterials derive their properties by engineering the

shape, geometry, size, orientation, and arrangement of nanostructures that provide

the capabilities to manipulate electromagnetic waves [128–139].
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The polarization and magnetization deal with only macroscopic bound charges and

currents so hide the complexity behind the atomic scales microscopic charge currents

and field distributions. However, the macroscopic description is still discrete enough

to capture the spatial and time-dependent variation in the materials. The origin of

the polarization and magnetization can be well understood by the deriving of macro-

scopic Maxwell's equation from microscopic Maxwell's equation [126]. ThePandM

can be expressed in terms of microscopic quantities, which results in higher order

quadrupoles and octuples terms. The relevance of these terms becomes significant

while studying high dielectric constants nanostructured media [140,141].

The electric fieldEand magnetic flux densityBare physical quantities in their own

right, whereas the displacement fieldDand magnetic fieldHare the consequence

of Maxwell's macroscopic description. So far, we have been usingD,E,H, andB

interchangeably in a dierent context. This sometimes confuses the readers. The fields

that are more used in daily practices are those which can be measured via external

means. For example in the pair ofDandE, electric fieldEis used more often, simply

because we can measure the potential dierence using a device rather than measuring

free charges that result in displacement fieldD. In the case ofHandB, the quantityH

is more common to use as it can be measured and controlled using external current,

whereasBdepends on the specific material used. The more popularity of one term

over others is a purely practical consideration, from the theoretical point of view they

are on equal footings.

Now, we derives the radiation fields (EandH) from Maxwell's equations in time

domain using wave-equations. From Eq. (2.1)c and Eq. (2.1)d, it is straightforward

to get

r⇥r⇥E(r,t)= µ0r⇥
@H(r,t)

@t
, (2.8)

r⇥r⇥E(r,t)= µ0
@J(r,t)

@t
µ0
@2D(r,t)

@t2
. (2.9)

UsingJ(r,t)=0and the auxiliary equation (Eq. (2.2)), the above equation can be
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simplified as

r⇥r⇥E(r,t)+
1

c2
@2E(r,t)

@t2
= µ0

@P(r,t)

@t
. (2.10)

This is the wave equation inE. The right-hand side of this inhomogeneous equation

is material-dependent terms. For Maxwell's equations to be self-consistent the electric

field must also satisfyr["0E+P]=0. The electric field is obtained by solving the above

wave equation. The magnetic fieldsHcan be further calculated using Eq. (2.1)c.

Similarly, one can also solve the wave equation for the magnetic fieldHand obtain

the electric fieldEusing equation2.1d. Sometimes this approach is more suitable for

inhomogeneous media as will be discussed in detail in section 1.1.2. Furthermore,

the time domain equations can be solved numerically using the finite dierence time

domain method and are discussed in section 2.1 of this chapter.

In linear media, we have the advantage of using one of the most versatile mathe-

matical tools called Fourier transformation. The most generalized waveform of pulsed

beams can be solved in linear media using frequency-domain Maxwell's equations.

A pulsed beam is a continuous superposition of stationary plane waves with dier-

ent wave vectors (propagation directions) and dierent frequencies. The solution of

these stationary plane waves or so-called normal modes can be easily obtained with

the help of the Fourier transformation. The definition of the Fourier transform used in

this thesis is as follows

E(r,t)=

ˆ1

1

E(r,!)exp(i!t)d!, (2.11a)

E(r,!)=
1

2⇡

ˆ1

1

E(r,!)exp(i!t)dt. (2.11b)

The set of Maxwell's equations in the time domain Eq. (2.1) can now be solved

more easily using the above Fourier decomposition of fields. With a little calculus, the
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Maxwell's equations can now be written as

r·D(r,!)= ⇢ext(r,!), (2.12a)

r·H(r,!)=0, (2.12b)

r⇥E(r,!)=i!µ0H(r,!), (2.12c)

r⇥H(r,!)=J(r,!) i!D(r,!). (2.12d)

The relationships betweenDandEas well as betweenHandBare given by

D(r,!)="0"(r,!)E(r,!), (2.13)

B(r,!)=µ0µ(r,!)H(r,!), (2.14)

where, permittivity"(r,t)is related to susceptibility(r,t)as follows:"(r,!)=1+

(r,!). The material properties vary across the electromagnetic spectrum and are

important factors in device characterization. The explicit dependence of"andµon

space and frequency will be discussed in the material model section.

The wave equation can be derived simply by using equation Eq. (2.12)c and Eq. (2.12)d

as

r⇥r⇥E(r,!)
!2

c2
E(r,!)=i!µ0J(r,!)+µ0!

2P(r,!). (2.15)

Together with the above wave equation, the divergence condition should also be

satisfiedr["0E(r,!)+P(r,!)] =0to have self-consistent solutions of Maxwell's equa-

tions. The magnetic field can be calculated by using equation Eq. (2.12)c. After getting

theEandHin the frequency domain, one can obtain the time domain solution for the

nonstationary field simply by taking inverse Fourier transformation (2.11a).

In an inhomogeneous medium or piecewise homogeneous medium, the fieldsE,D,B,

andHare in general discontinuous at the boundary of the two mediums. The rela-

tionship is described using boundary conditions. The normal component ofEandH
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on either side of the boundary are related through

("2E2 "1E1)·n= ext, (2.16a)

(H2 H1)·n=0. (2.16b)

In words, the normal component of the magnetic fieldHis continuous across the

boundary while the electric field component is discontinuous by the dielectric permit-

tivity of the medium"1,2and external surface charge density ext.

Analogously, the tangential component ofEandHon either side of the boundary

are related through

n⇥(E2 E1)=0, (2.17a)

n⇥(H2 H1)=Kext, (2.17b)

where the amount of discontinuity in the magnetic field is given by the magnitude of

surface currentKextand the direction isKext⇥n. It can be noticed that the discontinuity

in the magnetic field is a vectorial quantity. From the above boundary conditions, it

can be inferred that the tangential component of the electric field is continuous across

the boundary while the tangential component ofHis discontinuous by the external

surface current density.

In this thesis, we are generally concerned with the propagation of electromagnetic

waves on the metal-dielectric interface. Some assumptions are made which are valid

throughout this thesis:

•There is no external charge density⇢extand external current densityJ.

•The materials used do not possess any magnetization eectM(r,t)=0. Strictly

speaking, the noble metals are diamagnetic at optical frequencies but its magne-

tization eects are so low that they can be ignored for any practical purposes.

•We will be considering the system with linear, inhomogeneous, isotropic, and

dispersive media implying that is a function of position and frequency ((r,!)).
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In Fourier domain such system is represented by the susceptibility(r,!)as fol-

lows:P(r,!)="0 (r,!)E(r,!). In time domain, the system is described using

a response functionR(r,t0)and the relation reads as:

P(r,t)="0

ˆ1

0

R(r,t0)E(r,t t0)dt0

, whereR(r,t0)is response function.

Solving Maxwell's equations under these assumptions provides the radiation fields

such as electric fieldEand magnetic fieldH. Once we know theEandH, other quan-

tities of interest such as the Poynting vector and energy density can be calculated very

easily. Maxwell's equations are not exact but a classical limit of more general quan-

tum electrodynamics. In the scope of our work, the light-matter interaction can be well

treated under the classical framework. It means electromagnetic radiation, as well as

matter, can both be treated under the classical regime. The justification of using a clas-

sical picture for the light source is the abundance of photons under continuous-wave

(CW) excitation or pulsed excitation. Any detector used in this context will be unable

to see individual photons and rather will encounter a cumulative macroscopically ob-

servable response. The quantum treatment of electromagnetic fields is considered for

example in the case of spontaneous emission of radiation by atoms, or by any other

system that initially lacks photons and has only a small number of photons finally

[142–145]. On the other hand, the matter is also considered under the classical pic-

ture. A macroscopic amount of matter at rest contains of the order of1023electrons

and nuclei percm3, all in incessant motion because of thermal agitation, zero-point vi-

bration, or orbital motion. The microscopic electromagnetic fields produced by these

charges vary extremely rapid in space and time. The spatial variations occur over

distances of the order of1010m or less, and the temporal fluctuations occur with

periods ranging from1013s for nuclear vibrations to1017s for electronic orbital mo-

tion. Macroscopic measuring devices generally average over intervals in space and

time much larger than these. All the microscopic fluctuations are therefore averaged
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out, giving relatively smooth macroscopic quantities, that appear in the macroscopic

Maxwell's equations. Even metallic nanostructures down to sizes on the order of a few

nanometers can be described without a need to resort to quantum mechanics since

the high density of free carriers results in minute spacings of the electron energy levels

compared to thermal excitations of energykBTat room temperature.

In the scope of this thesis, the interaction of the metal with electromagnetic radi-

ation is important. Metals occupy a special place in the study of solids due to their

peculiar properties such as high conductivity of heat and electricity as well as high

reflectivity at visible frequency. Physicists have been trying in the past century to con-

struct models to account for these properties qualitatively and quantitatively. The

behaviors of metals vary considerably over the spectral range of electromagnetic radi-

ation. This means the devices engineered at radio frequencies can not be simply re-

produced at an optical frequency just by simply applying the scale invariance property

of Maxwell equations. One needs to know the explicit dependence of material proper-

ties on frequencies. The actual task of modeling the material is quantum mechanical,

however, the phenomenological model given by Drude was able to describe most of the

properties of the material accurately with a classical treatment. In the Drude model

[146,147] the electrons move freely and the model is based on the kinetic theory of

an ideal gas. The electron density distribution follows the Maxwell-Boltzmann distri-

bution. The model was able to describe frequency-dependent behaviors (dispersive

properties), AC and DC conductivity of metals, and the Hall eect however it over-

estimated the heat capacity of metals. Later Sommerfeld made a quantum statistical

treatment of the problem by assuming that free electron gas follows Fermi-Dirac dis-

tribution [148,149]. With this Sommerfeld was able to remove many discrepancies

of the classical model of Drude. We will now consider the Drude-Sommerfeld's theory

in certain detail. The equation of motion for the free electron is given by

me
@2r

@t2
+me

@r

@t
=eE0e

i!t, (2.18)

whereeandmeare the charge and eective mass of free electrons.r(t)represents
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the displacement of the electron from the equilibrium position under the influence of

the applied electric field of amplitudeE0and frequency!. The quantity =vF/lis

the overall damping of the system calculated using the Fermi velocityvFand mean

free pathlbetween scattering events. At room temperature, the mean free path for a

typical metal is⇡10nm(much larger than the interatomic spacing) and it can increase

by orders of magnitude at low temperature. Notice that this equation is similar to a

harmonic oscillator with no restoring force. Using the time harmonic ansatzr(t)=

r0e
i!tand the relationsP="0 (!)E,"(!)=1+ (!)with the given definition of

polarizationP=ner,nbeing the number of electrons per unit volume, one can derive

easily

"(!)=1
!2
p

!2+i!
, (2.19)

here,!p=
p
ne2/me✏0is the eigenfrequency of the system known as the plasma fre-

quency. The above equation can be more conveniently separated into real and imagi-

nary parts as follows

"(!)=1
!2
p

!2+ 2
+i

!2
p

!(!2+ 2)
. (2.20)

Metals like sodium involve no d-band and the above model describes the real and

imaginary part of epsilon accurately. However, for a metal like silver and gold which

involves d-bands, the above model fails to describe accurately the discrepancies in the

imaginary part of epsilon at high frequencies. Partly this happens due to interband

transitions taking place at these frequencies. The interband eect can be mimicked

by adding a restoring force term in Eq. (2.18)

me
@2r

@t2
+me

@r

@t
+↵r(t)=eE0e

i!t, (2.21)

wheremeis an eective mass of the bound electrons, is the damping constant de-

scribing mainly radiative damping in the case of bound electrons, and↵is the spring

constant of the potential that keeps the electron in place. Applying similar steps as in
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solving equation Eq. (2.18), the dielectric function can be written as

"(!)=1+
f

(!20 !2) i!
, (2.22)

here,!̃2
p
=f=ñe2/m✏0is introduced in analogy with plasma frequency for but the

bound electron densityñand!0=
p
↵/m.

The eect of the interband transition and the free electron model can be integrated

in a single equation by combining equation2.19and2.22

"(!)="1 +
f

(!20 !2) i!

!2
p

!2+i!
. (2.23)

Any residual polarization due to vacuum or other resonance can be written as"1.

Figure 2.1.Dielectric function of gold: Experimental values and model. Upper panel: Real

part, Lower panel: Imaginary part. Blue line shows the experimental data taken from [150].

Red line: model of dielectric function taking into account the free electron model and the

contribution of a single interband transition.

This can be considered as a contribution to epsilon which does not change with respect

to frequency. Moreover, there can be many interband transitions due to the availability
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of d-bands in noble metals. This can be represented using oscillators with dierent

transition frequencies. By considering these factors above equation becomes

"(!)="1 +
X

j

®
fj

(!20j !
2) i!

´
!2
p

!2+i!
. (2.24)

Fig.2.1shows the material model fitted to the experimental values of the dielectric

function of gold. In the model, the eect of the interband transition is considered by

using a single oscillator along with the free electron contribution. The experimental

data is in good agreement with the fitted model. The real part of the dielectric function

shows a large negative value characteristic for reflection at visible and IR frequencies.

The positive imaginary part is responsible for the dissipation of energy in metals.

In the above material model, the electron and ion interactions have been modeled

using a classical harmonic oscillator. It has also been discussed that the mean free

path at room temperature is an order of magnitude higher than interatomic spacing.

This fact can not be explained based on classical models. The quantum mechanical

treatment of the lattice and electrons must be taken into account. F. Bloch addressed

this basic problem [151] and said, the mystery was ‘how the electrons could sneak by

all the ions in a metal’. He latter proved the important theorem that the solutions of

the Schrödinger equation for a periodic potential of the lattice must be of a special

form

 k(r)=uk(r)exp(ik·r), (2.25)

whereuk(r)has the period of the crystal lattice withuk(r)=uk(r+T). This mathe-

matical expression is known as the Bloch theorem and can be stated as follows “The

eigenfunctions of the wave equation for a periodic potential are the product of a plane

waveexp(ik·r)times a functionuk(r)with the periodicity of the crystal lattice." This

has described the origin of bands in metal and had eventually helped to classify metals,

semiconductors, and insulators. The formalism that was derived to treat the electron

motion in the presence of a periodic potential can be applied to any periodic system
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[152–155]. The analogy of the periodic ionic lattice has been applied to experimen-

tally investigate the periodic layers of dielectric stacks and it has been found that such

a system (known as 1D photonic crystals or Brag mirrors) possess photonic bandgap in

one dimension [156,157]. These bandgaps correspond to the ‘forbidden’ frequency

ranges for which no propagating solutions of Maxwell's equations exist. This is ex-

ploited into making high reflectivity mirrors that are employed in laser cavities and

the highly reflective coating in LED lights. A cavity can be formed using a sets of two

Bragg mirrors known as Fabry-Perot resonator which can provide very high enhance-

ment of the intensity inside the cavity. The Fabry-Perot resonator finds applications

in spectrometers, lasers with an active medium for gain, and non-linear optics. The

periodicity can be employed also in 2D and 3D with dierent geometric, and lattice

configurations resulting in 2D and 3D photonic crystals. Dierent configurations can

be used to engineer the band gaps resulting in various applications [158–162].

In optics, at large we are interested in guiding the wave in layer system [163–165].

For many applications, it is desired to have the propagation of light without diraction

and dispersion [118,166,167]. The waveguides are the backbone in modern-day

communications as they carry the information at the speed of light over long distances

[168]. They are used to trap the wave within a finite layer system. The light is confined

in a direction perpendicular to the direction of propagation. The confinement can be

achieved using so-called total internal reflection (TIR) in a slab waveguide [169–171],

or by bandgap engineering to allow only a few modes such as hollow-core photonic

crystal fibers [172], or utilizing the novel antiresonant waveguides [173]. Trapping of

light in a single layer system can also be achieved through the coupled electromagnetic

wave and collective electron oscillations in matter for example through surface phonon

polaritons or surface plasmon polaritons [94,174].
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2.1.2. Plane wave surface plasmon polaritons

In this section, we describe the guided wave along a single interface system. Surface

plasmon polaritons (SPP) are coupled electromagnetic oscillations of surface electron

density at such metal-dielectric interfaces. Let us consider a planar interface between

two media of dielectric function"1and"2and derive the conditions for the wave to

propagate along the interface. We assume a TM polarized plane surface wave bound

to a material interface in the xz plane at y = 0 and decaying exponentially at both

sides of the interface along the y-direction. The material above the interface has the

permittivity"1and the material below the interface has the permittivity"2. The in-

homogeneous and dispersive medium leads to all field components coupled. Solving

the wave equation for the magnetic fieldHthe surface plasmon is given by

H(x,y,z)=H0exp(ikxx+iqz)

8
<

:

exp(-↵1y) fory>0

exp(+↵2y) fory<0
(2.26)

As the SPP is a TM wave, the magnetic field is parallel to xz plane, i.e. Hy=0,

and continuous across the material interface. The magnetic field is divergence-free

(r·H=0), hence it has to be

kxHx+qHz=0. (2.27)

This is fulfilled for

H0=H0

Äq
ex

kxez
ä

(2.28)

with

2=k2
x
+q2. (2.29)

The electric field follows from Maxwell's curl equation

r⇥H= i!"0"E (2.30)
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which yields

E(x,y,z)=expikxx+iqz)

8
<

:

E1exp(↵1y) fory>0

E2exp(+↵2y) fory<0
(2.31)

with

E1=
H0
!"0"1

i↵1
kxex+ ey i↵1

q
ez (2.32)

and

E2=
H0
!"0"2

i↵2
kxex+ ey+i↵2

q
ez. (2.33)

The continuity of the tangential electric field components at the interface requires

↵1
"1
+
↵2
"2
=0 (2.34)

For a bound surface wave bothRe(↵1)andRe(↵2)have to be greater than 0. This

impliesRe("1)Re("2)<0and shows that a surface plasmon polariton can only exist at

the interface between a metal (Re("1)<0) and a dielectric (Re("2)>0). Above the

interface the decay constant is

↵2
1
= 2 k2

0
"1 (2.35)

and below is

↵2
2
= 2 k2

0
"2. (2.36)

Combining equations2.34and2.36yields the dispersion relation

2=k2
0

"1"2
"1+"2

. (2.37)

Since we are interested in a propagating wave along with the interface, so 2must be

positive. This is only possible if the denominator is negative. Therefore the conditions
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Figure 2.2.Dispersion relation for air-gold system. Upper panel: Real part, Lower panel:

Imaginary part. Blue line shows the data taken from [150]. Red line: model of dielectric

function taking into account for free electron model and contribution of a single interband

transition.

for a bound surface plasmon polariton on an interface are

"1(!)·"2(!)<0, (2.38a)

"1(!)+"2(!)<0. (2.38b)

The above conditions can be easily fulfilled by an interface having a positive dielectric

constant on one side and large negative dielectric constants on the other side. As

it can be seen in Fig.2.1that gold has a large negative real part of the dielectric

constant, therefore, posses to be the natural ally for the generation of surface plasmons

polaritons. Fig.2.2depicts that the real part of the propagation constant has a positive

value, therefore the air-gold interface is suitable for SPP propagation. Controlling the

diraction and dispersion of such propagating surface plasmons are the core of this

thesis work and will be discussed qualitatively and quantitatively in chaptersIIIand
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IV.

2.2. Numerical methods for modelling computational

electromagnetics

Computational electromagnetics (CEM) are procedures to model and simulate the be-

havior of electromagnetic fields in devices or the structures in an optical system. Most

often, this implies using numerical techniques to solve Maxwell's equation instead of

obtaining the analytical solution. Numerical techniques oer the ability to solve virtu-

ally any electromagnetic problem of interest. These methods are useful because very

often, exact analytical solutions or even good approximate solutions are not available.

So basically CEM provides an opportunity to perform numerical experiments akin to

the laboratory environment. The numerical experiment can be performed by chang-

ing various design parameters with more flexibility and feasibility over fabricating

each design and carrying out laboratory experiments on them. These advantages of

numerical experiments further help to explore prospective applications for future gen-

erations of technologies. Computational photonics is also utilized in a reverse scientific

approach in which the experiment is performed first and then numerical simulations

are used to interpret and understand the experimental results.

The computational methods can be classified based on size scale or approximations.

Classification by size scale can be divided into high-frequency methods ( ⌧ a) and

low-frequency methods (⇠a). The high-frequency methods are suitable for struc-

tural dimensions (a) much larger than the wavelength. In this case, the computation

becomes rather easy as one can often consider the fields as scaler quantities. This re-

sults in a realm of geometric and physical optics [175–177]. In contrast, the device that

we are modeling is of the order of wavelength so we will consider the low-frequency

method. At this scale the polarization and vector nature of the electromagnetic fields

become important and one has to consider the full-wave nature of electromagnetism
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[178–180].

Computational problems can be further classified based on the approximations used

in the numerical treatment of the electrodynamics problem. Three basic categories can

be identified: rigorous methods, full wave methods, and scalar methods. A method

is rigorous if there exists a resolution parameter that when taken to infinity, finds an

exact solution to Maxwell equations. Some examples of this method are the finite-

dierence time domain (FDTD), finite-dierence frequency domain, finite element

method, rigorous coupled-wave analysis, and method of lines. A full-wave method al-

though it accounts for the vector nature of the electromagnetic field, needs not be nec-

essarily rigorous. Examples are the method of moments, boundary element method,

and beam propagation method (BPM). A scaler method is used when the vector na-

ture of the field is not required to understand the optical system and BPM or transfer

matrix methods can be used for such purposes.

Before we dive into an overview of dierent methods, it is important to consider

some general practices that are applied in CEM. Virtually all numerical methods have

a ‘resolution parameter’ (spatial or temporal) that when taken to infinity, it solves

Maxwell's equation in principle exactly. In practice this can not be done because of

limiting computing power and prohibitively long simulation time. So one goes with

a finite resolution value. To make sure the chosen value calculates a su ciently ac-

curate result, one needs to perform a so-called convergence test. Convergence is the

tendency of calculated parameters to asymptotically approaching a fixed value as their

resolution is increased. However one has to be careful in the convergence test for any

possibilities of unstable solutions [181–185].

Now let us consider an overview of some computational methods with their real-

world applications. The simplest method of all is the transfer matrix method (TMM)

[186–188]. The method assumes an infinite extent in the transverse directions. It is

suitable for layered structures in the longitudinal direction and of infinite extent in the

transverse direction. Examples are Bragg mirrors used in lasers or thin-film optical fil-

ters used in mobile camera lenses. In both examples, the transverse dimension is very
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large as compared to the wavelength, and the material property changes only along

the longitudinal direction. The transfer matrices method derives the relationship of

the fields present at the interface between the layers. Transmission through all the

layers is described by multiplying all the individual transfer matrices. This method pro-

vides the transmission and reflection coe cients which are experimentally accessible

quantities and hence can be verified easily. In addition to TMM, there exists a more

mature and proven approach known as the scattering matrix method. The transfer

matrix method using scattering matrices is rigorous, accurate, unconditionally stable,

robust, ecient, and simple to implement. The thickness of the layer can be anything

and the method is also able to exploit the longitudinal periodicity. It can calculate the

reflection and transmission parameters for oblique incidence as well as for arbitrary

polarization of incident fields. The method also incorporates material dispersion and

anisotropic materials very e ciently. With all the advantages stated, this method also

suers from some drawbacks. It can model only a limited number of geometries and

can handle only linear, homogeneous, and infinite slabs in the transverse direction.

2.2.1. Finite difference time domain method

One of the most popular numerical methods used in computational electrodynam-

ics is the finite dierence time domain (FDTD) method [189–194]. Each tool has its

strengths and weaknesses. No single computational method can be applied to all types

of photonic devices. As far as the FDTD method is concerned, it is a highly versatile,

accurate, robust, and mature method. The sources of error are well understood and

can be bounded to permit accurate models for a large variety of complex electromag-

netic problems. FDTD is a fully explicit solutions of Maxwell's equations and does not

rely on demanding linear algebra. This approach provides no intrinsic upper bound

to solve many electromagnetic fields unknown. Being a time-domain method, FDTD

treats impulsive behavior naturally. Therefore, a single FDTD simulation can provide

either ultrawideband temporal waveforms or the sinusoidal steady-state response at
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any frequency within the excitation spectrum. Furthermore, nonlinear behaviors are

inherently time-domain numerical problems, so FDTD can directly calculate the non-

linear response of the electromagnetic system. The FDTD method has a straight for-

ward implementation, although the requirements on the computational resources are

demanding in 3D problems due to discretization of space over volume. The discretiza-

tion of space is performed using the so-called YEE grid [189]. The Yee grid can ensure

inherently divergence-free solutions.

Space and time derivatives of the time-dependent Maxwell's equations are first dis-

cretized using the central dierence approximation and then the electromagnetic field

is evolved in a leapfrog manner. The computational procedure works as follows:

•The magnetic field vector components are calculated at(n+1/2)t, using the

spatial dierences of E field that are known for time stepn t.

•Then using the spatial dierences of the H field that are now known for the time

step(n+1/2)t, the E field at the time step(n+1)tis calculated.

The above procedure is repeated over and over again to compute magnetic and elec-

tric fields at subsequent time steps until the desired transient or steady-state electro-

magnetic field behavior is fully evolved. The proposed scheme for marching in time

mandates an upper bound on the time-step to ensure numerical stability [195]. To en-

sure stability, the Courant-Friedrichs-Lewy condition has to be fulfilled [183], which

states that temporal and spatial discretization can not be chosen independently. The

relation between the size of the time step to the spatial discretization in 1D is given

by:c t=S x. Usually S is chosen to be 0.5 and in general it should have the value

S<nmin/
p
#dimensions.

In practice, all devices are simulated in a finite sized computational domain. To treat

the finite computational domain size the simulation should be truncated in space.

There are three basic types of boundary conditions: perfectly conducting material

boundary conditions, Floquet-Bloch periodic boundaries, and perfectly matched layer

boundaries. In the perfectly conducting material boundary or so-called metallic walls,
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the fields are forced to be zero at the boundary as if the computational domain was

surrounded by a perfect metal (zero absorption, zero skin depth). The Floquet-Bloch

periodic condition is especially suitable for infinitely periodic structures such as modes

in waveguides, the band structure of photonic crystals, and transmission-reflection

problems in gratings. The implementation of such boundaries follows from Bloch's

theorem on periodic structures (equation2.25). The most ecient boundary condi-

tion known so far is a perfectly matched layer (PML). PML is, strictly speaking, not a

boundary condition, rather, it is a special absorbing material placed adjacent to the

boundaries. It helps to simulate open boundaries by absorbing all incident waves on

it with no reflection. This is performed by matching the impedance of the medium

by its surrounding [196]. In addition to these dierent types of numerical boundary

conditions, FDTD also supports all types of materials. There exists a variety of ap-

proaches to include dispersive, metallic, and nonlinear materials, but usually, all of

them require to simulate quantities such as current density (J), polarization (P) and

displacement (D) in addition to the electric field (E), and magnetic field (H). In our

research work, metals and their dispersion characteristics will be of main concern.

This can be implemented in the FDTD algorithm directly using the Lorentz model in

the time domain (Eq. (2.21)).

FDTD can be used in some basic ways to analyze electromagnetic problems. Perhaps

it is the most ecient method to compute the broadband response of a finite structure.

This is achieved by Fourier transforming the device response to a short pulse. This

brute force approach can be applied to many tasks such as transmittance/reflectance

spectra of resonant cavities, to compute the eigenmodes of waveguides or the near

fields at metallic structures. To extract the broadband or temporal response of a struc-

ture with FDTD, the basic idea is very simple. First, the boundary conditions with

Bloch-periodic and/or absorbing boundaries are set up depending on whether it is a

periodic or open system. Then the system is excited using a short pulse as an input

source. The broadband frequency response is calculated using the Fourier transform

of recorded fields over time. The recorded field can also be used to generate an an-
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imation of temporally evolving fields. This will be the main computational tool in

the thesis for the temporal and spatial analysis of the plasmonic structures. However,

this method suers from one technical di culty in e cient FDTD simulation of ultra-

short pulses having oblique incidence. The oblique incidence of short pulse imposes

numerical problems in the Fourier analysis as it requires periodicity of the fields over

the simulation area. A nice workaround to this problem is possible by calculating the

Green's function [197,198] of a system for a plane wave CW source over a range of

frequencies. This Green's function is then convolved with the oblique incidence pulse.

The resultant convolved pulse is the time-dependent response to the dispersive sys-

tem under the oblique incidence of a broadband pulse. In this work, an open source

electromagnetic solver ‘MEEP’ and commercial software ‘Lumerical FDTD’ solutions

are used to calculated the electromagnetic response of nano-structures. In this the-

sis, simulation results are presented only from Lumerical. Meep simulation results are

found similar to Lumerical results, therefore, validates the Lumerical simulations. The

simulations results will be discussed in detail in chapterIII.

2.2.2. Beam propagation method

Beam propagation method (BPM) has been one of the most popular approaches used

in the modeling and simulation of electromagnetic wave propagation in guided wave

optoelectronics and fiber-optic devices [199–202]. A simple numerical model can be

used to simulate scalar wave propagation along the waveguide axis in weakly guiding

structures [203–206]. The BPM method inherently calculates the forward propagat-

ing electromagnetic waves only. The basic assumption of the BPM methods is that

the index variation in the propagation direction is small. This assumption eectively

eliminates the reflected wave from the formulation. Despite this limitation, there are

several reasons for the popularity of BPM, perhaps the most significant being that con-

cepts have straight forward interpretation and allow rapid implementation of the basic

technique. In addition to its relative simplicity, BPM is a very ecient method and can
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simulate electromagnetic behavior in complex geometries. Another characteristic of

BPM is that the approach automatically includes the eects of both guided and radiat-

ing fields as well as mode coupling and conversion. Last, the BPM techniques are very

flexible and extensible, allowing the inclusion of most of the eects of interest (e.g.

polarization, nonlinearities) by extension of basic methods that fit within the overall

framework [186].

The basic BPM algorithm solves the scalar wave equation under paraxial approxi-

mation

@u

@z
=
i

2

@2u

@x2
+
@2u

@y2
+(k2 2)u. (2.39)

wherek=k0n(x,y), =k0n0andudenotes the scalar electric or magnetic field.

In free space,k0=2⇡/. is the propagation wavenumber,n(x,y)is the refractive

index distribution of the waveguide structure, andn0the reference refractive index

to be appropriately chosen. In this equation, we have assumed that the propagation

is restricted to a narrow range of angles so that the second-order derivative of the

fielduwithzis negligible. The above equation determines the evaluation of fields in

space forz>0for a given fieldu(x,y,z=0). The above approach has mainly two ad-

vantages. First, the elimination of second-order derivative inz, reducing the problem

from a second-order boundary value problem requiring iteration or eigenvalue anal-

ysis, to a first-order initial value problem that can be solved by a simple integration

of the above equation along the propagation direction. Second, the factoring of the

rapid phase variation allows the slowly varying field to be represented numerically

on a longitudinal grid (i.e., alongz) with much coarser grid points. In the following

section, the numerical solution of the basic BPM equation will be considered. In ev-

ery numerical approach, one needs to satisfy numerical boundary conditions. Since

BPM simulates a domain, which has a finite extension in the transverse direction there

should be no reflected wave from the boundaries. In practice, this can be implemented

using transparent boundary conditions [196,207–209].
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Numerical solution using fast Fourier transform (FFT-BPM)

Simplification of the basic BPM to 2D can be obtained by assuming no dependency on

y-direction. In this case Eq. (2.39) becomes

@u

@z
=
i

2

@2u

@x2
+(k2 2)u. (2.40)

In the BPM, one propagates the input fieldu(x,z0)over a small distance zto obtain

the field atu(x,z0+ z)[206,210]. Separating the amplitude and phase termu(x,z0+

z)can be written as

u(x,z0+ z)= (x,z0+ z)exp(i), (2.41)

where satisfies equation2.40. The phase correction also called propagator is given

by

=
k2 2

2
z. (2.42)

 (z0+ z)can be calculated using FFT method. If n(z)denotes the discrete Fourier

transform (DFT) of (x,z), we have

 (xi,z)=
1

N

N/2X

n= N/2

 n(z)exp(iknxi), (2.43)

wherekn=2n⇡/(N x)is the discrete k wavevector.

 n(z0+ z)= n(z0)exp i
k2
n

2
z, (2.44)

where the computational domain in x-direction has been discretised into N equal sub-

divisions.

The basic steps in applying FFT-BPM involves applying equation Eq. (2.41) and

Eq. (2.42) where (x,z0+ z)is obtained by

1.performing a FFT on (x,z0)=u(x,z0)to obtain n(z0),

2.computing the n(z0+ z)from Eq. (2.44),

37



II Theory and computational methods

3.performing an inverse FFT on n(z0+ z)to obtain (z0+ z).

This basic step is applied repeatedly to obtain the field at any finite propagation dis-

tancez. The accuracy of the method, of course, depends on the smallness of the step

size zand the grid size xas well as on the size of the computation domain and the

choice of . This method will be used in section Chapter 3 in our analysis of surface

plasmons propagation.

Numerical solution using finite difference beam propagation method

(FD-BPM)

In FD-BPM the field is represented at a discrete plane along the propagation direction

(z-direction) and is calculated using the YEE grid in the transverse direction [204].

Given the discretized field on a transverse plane, the goal is to derive numerical equa-

tions that determine the field at the next plane using a propagator

Ei+1=Pi!i+1Ei, (2.45)

and the propagator P is calculated using Maxwell's equations discritized on the YEE

grid

P=
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ä
, (2.46)

whereAis a matrix given by

A=µi
xx
DH
x
(µi
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)1DE

x
+µi

xx
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yy

n2
ef f
I, (2.47)

with the derivative operatorsDxin x direction.

In the BPM, we have assumed the scaler and paraxial approximation of Maxwell's

equations. The BPM can also be adapted for vectorial waves to incorporate the po-

larization eects [203,207,211–213] as well as for wide-angle propagation [209,

214,215] utilized in high index contrast waveguides. A discussion of these methods
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is outside the scope of this thesis.

In this chapter, the theoretical framework has been developed that will be used in

the rest of the thesis. The analogy between the Schrödinger equation and paraxial

wave equation is found to be very fruitful in developing new ideas in the field of

photonics and plasmonics. In the next chapter, such manifestations will be shown for

a non-diracting beam propagating in a dispersive system.
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III. Broadband propagation

characteristics of Airy plasmons

Curved and accelerating beams have been the subject of intense investigation in the

last 10 years [1,10,17,69,93]. The concept of self-accelerating wave packets first ap-

peared in the context of quantum mechanics in the seminal work of Berry and Balazs

[1]. Such self accelerating, shape preserving wave packet is the solution to a poten-

tial free Schrödinger equation in the form of an Airy wave. The work has remained

dormant for decades probably due to limited practical applications. Until the isomor-

phism between Schrödinger equation and paraxial wave equation was exploited in the

work of Siviloglou and Christodoulides in 2007 [10] and was further experimentally

observed [24]. The research has opened new pathways to utilize the properties of

Airy waves in the field of optics with attractive applications such as trapping, guid-

ing, sorting of micro-objects, and signal processing [57,60,216,217]. In addition

to the non-diracting and self-accelerating properties, Airy beams also possess a self-

healing character which makes them robust against strong perturbation or turbulent

media. Airy beams are the only non-trivial non-di racting solution of the paraxial

wave equation in one dimension. These remarkable properties make Airy beams dif-

ferent compared to other non-diracting solutions such as Bessel, Mathieu, and Weber

beams [3–8,98]. The one-dimensional nature of Airy beams renders them particularly

interesting for plasmonics system.

A Metal-dielectric interface serves as the best companion of Airy beams in a planar

system. These interfaces are known to support surface plasmon polaritons (SPPs).
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Combining the properties of Airy beams and surface plasmon polaritons gives non-

spreading plasmonic beams in the planar system known as Airy SPPs. Airy plasmons

can be defined as propagating surface plasmons having the properties of Airy beams.

The chapter is organized as follows: In section3.1, the theory of paraxial and non-

paraxial Airy plasmons is presented. Section3.2provides the design for the generation

of Airy plasmons along with numerical and experimental results. We further obtain

the generation eciency and bandwidth of the Airy grating in section3.3. Section3.4

summarizes the results and related publication.

3.1. Theory of Airy surface plasmons

Di raction-free beams preserve their shape along the propagation direction. The ideal

Airy beams carry infinite energy and retain their nondiracting properties for infinite

propagation distance. In practice, only finite energy Airy beams are realizable and are

achieved by exponentially apodizing the Airy wave profile. The metal interface for

the generation of Airy plasmons imposes further restrictions. The losses in the metal

limit the propagation length over which the Airy plasmons remain diraction-free. In

this section, we provide first the solution of the paraxial wave equation and then we

derive the exact solution of Maxwell's equations to obtain a nonparaxial solution. The

analytics incorporate the finite energy Airy plasmons with losses.

3.1.1. Airy surface plasmons under paraxial approximation

The analytical solution for paraxial Airy plasmons was first derived and analyzed by

Salandrino et al. [93]. In a plasmonic system, the exponential decay of the transverse

field distribution is fixed. Therefore, the plasmon propagation properties are exclu-

sively dictated by its one-dimensional (1D) angular spectrum. The angular spectrum

is obtained by solving the paraxial wave equation. Let us assume a planer interface

at y = 0, the material above the interface has the permittivity"1and material below
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has the permittivity"2. In this case, the normal component of the electric field follows

scaler the Helmholtz equation

r2Ey+k
2
0
"dEy=0, (3.1)

wherek0is the free space wavenumber. The solution to the above equation should

have functional dependence to include the exponential decay of plasmon fields away

from the surface. This can be expressed as follows

Ey(x,y,z)=A(x,z)exp(iz)

8
<

:

exp(-↵1y) fory>0

exp(+↵2y) fory<0
, (3.2)

where =k0
p
"1"2/("1+"2)is the wavenumber for surface plasmon propagation.

The decay amplitudes↵1/2are related via the dispersion relation and are given by

↵2
1/2
= 2 k2

0
"1/2above/below the interface. Here, we have also assumed that SPP

propagation is along the z-direction. For a transverse profile that varies slowly along

the propagation direction z, the problem can be further simplified into a paraxial wave

equation

@2A

@x2
+2ikz

@A

@z
=0. (3.3)

This equation has a solution for the complex amplitude A(x, z) of the normal compo-

nent of the electric field in the form of finite energy Airy profile
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(3.4)

whereais the exponential apodization parameter,2x0is the width of the main lobe,

and ‘Ai’ denotes the Airy function. The free parametersaandx0are used to optimize

the spectrum, propagation length, and acceleration of Airy plasmons. From the above
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Eq. (3.4), it can be deduced that the Airy plasmon propagates on a parabolic trajectory

x=[1/(4k2
z
x3
0
)]z2. The angular spectrum of this solution is given by

Ã0(kx,z)=x0exp(
a3

3
)exp(iax0kx)exp(ax

2
0
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x
)exp(

ix3
0
k3
x
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2k2
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).

(3.5)

In the above equation, the Gaussian spectrum arises due to exponential apodization

and the cubic phase term is the signature of the Airy function itself. The gaussian

spectrum is further used to define the condition of paraxiality

q
ln2/(ax20)⌧ (3.6)

This relationship between free parameterx0and is optimized to provide exper-

imentally observable Airy plasmons. One can define the characteristic propagation

distanceZcfor which the beam is displaced approximately one full width2x0(taking

the quantity2x0as the measure of the width of the main lobe). Equation3.4can

be used to estimate the characteristic propagation lengthZc=2
p
2kzx

2
0
. This char-

acteristic parameter was used to estimate an upper limit of propagation losses that

can be tolerated in an experimental setup on an air-silver interface in reference [93].

However, in the case of paraxial limit, the bending of the beam is low which may be

unobservable for a small propagation length in a highly lossy metallic surface.

3.1.2. Nonparaxial solution

In chapterII, the foundation of SPP is laid by providing a new perspective on propaga-

tion dynamics. Along the same line, we take the first step towards deriving the analyt-

ical expression of the electric and magnetic fields. In this section we will perform the

theoretical analysis of nonparaxial Airy plasmons. The nonparaxial Airy plasmons are

exact solutions of Maxwell's equations and provide highly bending trajectories along

the propagation direction.

Let us assume a TM polarized plane surface wave bound to the material interface

43



III Broadband propagation characteristics of Airy plasmons

in the xz-plane at y= 0 and decaying exponentially along the the y-direction. The

material above the interface has the permittivity"1and the material below the inter-

face has the permittivity"2. The solution of Maxwell's equations for the TM-polarized

surface plasmons in real space is given by

H(x,y,z;x0,a)=̂H(x,z;x0,a)

8
<

:

exp(-↵1y) fory>0

exp(+↵2y) fory<0
(3.7)

with

Ĥ(x,z;x0,a)=
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whereÃ0(kx)is magnetic field amplitude and the in-plane wavenumber is given by

2=k2
x
+q2. The parameters and↵are related through the dispersion relation,

above the interface↵2
I
= 2 k2

0
"1and below the interface↵

2
2
= 2 k2

0
"2.

The magnetic field amplitude to generate the initial Airy beam profileAi(x/x0)

exp(ax/x0)is given by [68]
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The parameterais a measure of the strength of the exponential apodization of the

field profile andx0is a scaling parameter which characterizes the width of the main

lobe of the Airy beam.

The electric field components are calculated by applying Maxwell's curl equation

and are given by the following equations

Ex(x,y,z;x0,a)=
1

!"0
Hz(x,y,z;x0,a)
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(3.11)
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and

Ey(x,y,z;x0,a)=̂Ey(x,z;x0,a)
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The above solution is exact and the paraxial approximation can be obtained when

the spatial spectrum of the propagating wave is wide [10,96].

3.2. Generation of Airy surface plasmons

A variety of techniques have been proposed and demonstrated for the generation of

Airy surface plasmons (Airy SPPs). Airy SPPs are essentially surface plasmons with

the properties of an Airy beam. The generation of an Airy beam in free space is

fairly straightforward. One has to utilize the fact that in k-space the exponentially

apodized Airy function has a Gaussian shape spectrum with a cubic phase modulation

0=exp(ak0)exp(ik
3/3). Therefore, an Airy beam is generated at the back focal

plane when a phase mask with the cubic phase distribution is illuminated by a Gaus-

sian laser beam and Fourier transformed by an optical lens. However, in the case of

Airy SPPs, there are additional constraints due to the k-vector mismatch between free

space and surface plasmons. This challenge was overcome by three dierent groups

contemporarily using dierent approaches [95–97]. Zhanget al.[95] have proposed

using an SLM and a microscope objective to generate an Airy beam in free-space and

then coupling the free space radiation to surface plasmons using a linear diraction

grating. The SLM is used to imprint the desired cubic phase and the microscope objec-

tive performs the Fourier transform to provide the Airy beams at the back focal plane.

45



III Broadband propagation characteristics of Airy plasmons

The homogeneous diraction grating couples the Airy beams to surface plasmon mode

to form the Airy SPPs. The usage of SLM and microscope objective gives additional de-

grees of freedom in controlling the propagation length, trajectory, and peak intensity

location along the main lobe. In a dierent method, Li and co-workers [97] demon-

strated the in-plane generation of Airy SPPs using a carefully designed nano-array

structure. An array of nanocavities with chirped separation allowed for in-plane prop-

agation of Airy-like SPP waves along with the air-silver interface. Both of the above

methods were experimentally verified using leakage radiation microscopy [218]. Mi-

novichet al.[96] have utilized a dierent grating coupling scheme exploiting the

uniqueness and self-healing properties of Airy plasmons. A specially designed grat-

ing was used to imprint the phase profile of Airy function. The intensity distribution

was probed with a near-field scanning optical microscope (NSOM) with single-photon

counting capabilities at our research group [174,219–223]. The experimental charac-

terization using NSOM captures essentially all the details of scattered fields, however,

the method has some limitations. The near-field probe used to collect the intensity

can perturb the fields being measured and therefore may not be a true representa-

tion of the fields being generated at the surface. Another disadvantage performing

a scan over a large area with high resolution requires an extremely large time. We

have attempted to overcome limitations imposed by NSOM by using photoemission

electron microscopy (PEEM) as another versatile experimental method. The scientific

work of Minovich and co-workers acted as a bootstrap process to our research work.

In our work, we have investigated the diraction grating using an n-photon photoe-

mission electron microscope (n-PEEM) over a large set of CW excitations. There are

many advantages of using this experimental method over previously used experimen-

tal techniques e.g. SNOM and leakage radiation microscopy. PEEM can provide a

spatial resolution down to20 nmand can measure the fields over a large area in a

relatively short span of time. It can be utilized to directly map the SPPs at nanome-

ter resolution through photoemission, without the need for molecular reporters or a

scanning probe tip. The diraction grating for the Airy plasmon excitation is based
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Figure 3.1.Generation of Airy plasmons: (a) schematic of the experimental set-up. A grating

is excited from the top (airside). The airy plasmon is generated at the air-gold interface. The

grating is composed of 11 periods with200 nmthick slits (in the z-direction) and varying width

in the x-direction. The Grating period is chosen according to the surface plasmon wavelength

SPP(=745 nm)(b) Absolute value and phase of the airy function. The varying width of

the grating along the x-direction is in accordance with the zeros of the Airy profile. Each

consecutive column is displaced in the z-direction by SPP/2to match the phase change of⇡.

The half-width of the main lobe isx0=700 nm.

on the idea of Minovich et al. [96]. The specially designed grating generates the Airy

plasmons by fulfilling the two basic requirements. First, the period of the grating pro-

vides the extra momentum to bridge the gap between the free space k-vector and the

SPP k-vector. Second, it imprints the phase profile of the Airy wave by choosing the

appropriate groove width along the transverse direction in accordance with the zeros

of the Airy profile. The grating design is shown in Fig.3.1a. It consists of 11 arrays of

periodic holes, whose period in the z-direction is governed by the SPP wavelength SPP

(745 nm). Every alternate column was shifted by half of the SPP wavelength to apply

the required phase modulation of⇡. The hole size in the z-direction is fixed (200 nm)

and in the x-direction represents the roots of the Airy function (Fig.3.1b). The first

column width has been chosen to be2x0wherex0is0.7µm. The scaling parameter

is comparable to the SPP wavelength SPP, therefore the paraxial solution does not

describe precisely the propagation of the plasmon beam. The nonparaxial solution

is provided in the above theory section by solving Maxwell's equations analytically.
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Nonparaxial Airy plasmons provide a highly bending trajectory which is desirable to

provide the noticeable change in trajectory over the short propagation length of Airy

plasmons.

Figure 3.2.SEM image of self-assembled single-crystalline gold flake: (a)The flake has a

very large diameter (700μm) and (b) has locally very low surface roughness as compared to

evaporated gold. The low roughness can make the n-photon photoemission process more de-

terministic. Figure courtesy of Stefan Fasold and Matthias Falkner at Abbe Center of Photonics,

Germany.

The grating pattern was milled by a Focused Ion Beam (FIB) [224, 225] into a 200

nm thick polycrystalline gold film which was deposited on a fused silica substrate by

evaporation (see inset in Fig. 3.3 a for an SEM micrograph). The FIB has removed

the metal particles completely from the rectangular slits. The surface roughness of

polycrystalline gold does not affect the Airy plasmon profile owing to the self-healing

nature of the Airy wave. However, PEEM measurements are extremely sensitive to

the surface roughness and might affect the n-photon photoemission yield. For this

purpose, our group has also been involved in developing single-crystalline gold flakes

to improve the deterministic process in PEEM measurements. This method is based

on the self-assembly of gold nanoparticles [226, 227]. It produces single-crystalline

gold flakes of large diameter (700μm) (Fig. 3.2 a). Fig. 3.2 b shows a comparison of a

gold flake and an evaporated gold surface. The gold flake surface has very low surface

roughness as compared to the granular nature of evaporated gold.
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Figure 3.3.(a) Logarithmic plot of the experimentally measured PEEM electron yield of the

Airy surface plasmon polaritons at inclined (4) incidence illumination with a wavelength of

=700nm. The image is overlaid with an SEM micrograph of the fabricated gold grating

structure for the excitation of Airy plasmon(b) Logarithmic plot of the numerically calculated

distribution of total intensity of Airy surface plasmon polaritons 5 nm above the gold-air inter-

face at a wavelength of 700 nm. Here, the total intensity is obtained by interference of incident

plane wave and scattered plasmon polaritons from the grating. Note that, the simulated result

captures all the details found in the experimentally obtained image. Figure reproduced from

reference [228].

As discussed before we used a PEEM (Focus GmbH, Germany) [229] to experimen-

tally observe the generation of Airy SPPs. It studies the spatial dynamics of surface

plasmons propagation from the grating by imaging the emitted photoelectrons from

the metal surface. The emitted photoelectrons provide a map of the total fields as

a result of interference of the plasmon polariton with the exciting electromagnetic

fields. For the excitation light source, we used a home-built tunable optical paramet-

ric chirped pulse amplifier, which provides an average output power of 100 mW at the

sample position with a repetition rate of 1 MHz, corresponding to a pulse energy of

0.1µJ. A TM polarized wide Gaussian beam is used to excite the grating at an angle of

incidence of4from the normal in the yz-plane. The central wavelength of the excita-

tion was varied between670 nmand840 nm. We used a pulse length of 500 fs with a
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spectral bandwidth of15 nm. The total exposure time for one image was 20 minutes.

The rate of emitted electrons per laser pulse is small enough in order to suppress the

detrimental interaction between multiple photoemitted electrons and was optimized

to give the best signal-to-noise ratio in the experiments. Fig.3.3displays the quali-

tative comparison of experimental findings and numerically simulated results for an

excitation wavelength of =700 nm. An overlaid SEM micrograph of the fabricated

grating structure with the experimentally obtained image by the PEEM is shown in

Fig.3.3a. On the air-gold interface, Airy SPP is launched by the diractive grating

and simultaneously interferes with the incident inclined plane wave at4with respect

to the surface normal in the yz-plane. The photoemitted electrons provide the direct

visualization of the resultant field. The area of constructive and destructive interfer-

ence leads to higher and lower nonlinear photoemission yield. The measured electron

yield by the multiphoton PEEM identifies the regions of constructive and destructive

interference and provides a clear contrast between the higher and lower photoemis-

sion yield. This result clearly shows surface plasmon generation consisting of all the

properties of the Airy beam such as bending of main lobe, non-diracting nature of

plasmon propagation. The main lobe of the Airy SPP propagates along a parabolically

curved trajectory over a distance of⇡25µm. In Fig.3.3b we compare the experimen-

tally measured results with the one obtained theoretically by finite dierence time

domain method (FDTD) [189]. Large-scale 3D simulations have been performed us-

ing the commercially available software Lumerical FDTD solver [230]. The total field

scattered field (TFSF) source is used for the simulation. This type of source is useful

when an inclined plane wave illumination of nonperiodic devices is required. To per-

form the numerical calculation, we used multiple sources at a large set of wavelengths

with10 nmbandwidth under4incidence. The numerical results have been simulated

using a narrowband source. The single frequency (or CW or steady-state) response

is obtained with a Fourier transform of E(t) to giveE(!). The bandwidth chosen in

the numerical simulation is comparable (10 nm) to the experimental source (15 nm).

Since it is a narrowband source, the simulation must run for a su ciently long time
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Figure 3.4.Qualitative comparison of experimental and FDTD near field intensity of Airy plas-

mon polaritons excited by a grating at4incidence: (a-c, g-i) Experimentally observed PEEM

yield at wavelengths from 670 to 770 nm for wavelength steps of 20 nm. The log-scaled color

bars are individually adjusted for the dierent wavelengths due to the nonlinear n-photon pro-

cess in the photo emission. (d-f, j-l) Numerically calculated total light intensity 5 nm above the

gold-air interface at the same wavelengths as for the PEEM experiments. The experimental

electron yield distributions show a good agreement with the numerically calculated total in-

tensity distributions at the dierent wavelengths, both indicating a travelling of the Airy SPPs

along curved trajectories. At 670 nm, we observe generation of a weak lobe indicated by an

arrow (Fig.3.4a,d), due to the excitation of second order modes in the slits of the grating.

The eect diminishes at the longer wavelengths. Figure reproduced from the reference [228].
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in order to reach a steady-state. Therefore, The simulation time is set to be 3000 fs.

The spatial resolution used is x= y= z=5 nmand t=0.0095fs. The near

field intensity distribution is recorded5 nmabove the interface. The simulation region

is chosen to be30µm⇥0.85µm⇥30µm. In Fig.3.3the total field is recorded which

shows the interference of the incident source and the scattered field from the dirac-

tive grating. Qualitatively, there is a good agreement between the electron yield in

the experiment and the simulated total light intensity. Both plots capture similarly the

details of the generated Airy plasmons and interference pattern with inherent phase

information. Furthermore, the beam propagation method (BPM) was used to calcu-

late the forward and backward propagating wave on the planer metal surface. The

results have been found to match with the rigorous FDTD simulations.

The diraction pattern is also suitable for the generation of the Airy plasmons over

a broad range of wavelengths. For this purpose, we have studied the eect of a change

in the excitation wavelength on the propagation dynamics from670 nmto770 nmat

20 nm wavelengths interval. The eect is comprehended in Fig.3.4. The qualita-

tive comparison of the measured PEEM yield and numerical simulations shows a good

agreement. In this case, the numerical simulation records only the field scattered

from the grating. At670 nm, the first column of the grating shows the generation

of a weak main lobe (indicated by a red arrow Fig.3.4a,d), which is a signature of

excitation of second-order modes inside the grating grooves. The trajectory of the gen-

erated plasmon polaritons changes with the wavelength and the second-order mode

eect diminishes at a longer wavelengths. The characteristic Airy plasmons proper-

ties such as bending and non-diracting nature are preserved over the broad range of

wavelengths. However, at longer wavelengths, the e ect of non-paraxiality becomes

more pronounced. The main lobe starts to breaks along the propagation direction be-

yond the wavelength of750 nm( Fig.3.4k,l). Furthermore, a detailed insight of the

structure in the perforated grating region gives information about localized surface

plasmons as well (Fig.3.5). This supports the generation of higher-order modes at

lower wavelengths. The study becomes more fruitful in the context of n-photon PEEM
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Figure 3.5.Localized plasmons inside a grating: numerically simulated image of 1 period of

the grating under normal incidence at various wavelengths. The largest groove clearly shows

a second order mode at lower wavelengths.

measurements. The experimental images clearly show that the electron yield starts

decreasing significantly beyond750 nm(Fig. 3.4 h,i). This can be explained by the fact

that the photoemission in multiphoton PEEM is a nonlinear process and is very sensi-

tive to the surface properties of the material. The work function of the evaporated gold

used in our experiment is about 5 eV. The incident photon energy is 1.65 eV at750 nm.

This requires a three photon process for the electrons to reach the vacuum state. At

higher wavelengths, the number of photons needed is even larger, and therefore the

electron yield is very low. It should be noted that in our qualitative comparison, we

have displayed the image on a logarithmic scale. It must be emphasized here that the

photoemitted electron yield is not only a map of the actual electromagnetic field at

the interface. The physics behind the photoemission process is complex. It requires

a deeper understanding to provide a quantitative explanation of the correlation be-

tween electron yield and total electromagnetic field. As explained in chapter 2, the

n-photon photoemission phenomenon can be described under the semi-classical the-

ory of light-matter interaction. Under this framework, the matter is described under

a quantum mechanical picture with the standard N-step linear photoemission model

[143]. The model describes that for the photoelectron yield for n photon process, the

photoemission intensity is proportional to the 2n power of the total electric field in-

tegrated over time. Here, the total value of the instantaneous electric field involves
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polarization contributions perpendicular and parallel to the surface [231–234].
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HereE?(r,t)is the electric field normal to the metallic surface, andEk(r,t)is the

transverse field along the interface.

Effect of inclined incidence on asymmetric diffractive grating

The diractive grating can generate co-propagating and counter propagating plas-

mons. In the previous sections we have presented experimental and numerical re-

sults on the co-propagating Airy plasmons. In this section, we present the counter-

propagating plasmons and the eect of the asymmetric grating. In the case of counter-

propagating plasmons (-4) we observe an enhanced contrast of the total fields. The

propagation dynamics diers significantly from the co-propagating case (Fig.3.5).

The coupling of plasmons starts at the first column of the grating edge at lower wave-

lengths (670 nm). As one can observe in Fig.3.6d,e,f the first column has significant

extra radiation. This may be minimized by further optimizing the width of the first

column hole. Fig.3.6depicts the comparison of experimental and numerical simula-

tions. The photoemission yield decreases more rapidly than the co-propagating case

with the increases in the wavelength of excitation. It can been observed by comparing

Fig.3.5and Fig.3.6for wavelength750 nm.

3.3. Bandwidth of Airy plasmons generation

The discussion in this chapter shows clearly that the diractive grating can excite Airy

plasmon for a broad range of wavelengths. Now we will calculate the e ciency of such

plasmon generation over the wavelengths. We have seen in Fig.3.4the PEEM yield

decreases significantly for longer wavelengths and is due to lower photon energy being
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Figure 3.6.Qualitative comparison of experimental and simulated Airy plasmons at -4inci-

dence (counter-propagating): (a-c) static images of PEEM yield at wavelengths (a) 670 nm (b)

710 nm (c) 750 nm. (d-f) intensity map of simulated fields, recorded5 nmabove the interface

at (d) 670 nm (e) 710 nm (f) 750 nm.

unable to extract photoelectrons from the metal surface. However, good correspon-

dence between experimental and numerical results justifies extrapolating our studies

to broader excitation wavelengths based on numerical simulations. Such broad wave-

length studies are useful in a prospective application of ultrashort pulse excitation of

the diractive grating. In this section, we will calculate numerically if this diractive

structure has sucient bandwidth for ultrashort pulse excitations or in other words

to estimate numerically the bandwidth of the Airy plasmon'secient excitation. In

addition, we also study the eect of the angle of incidence on the generation e ciency,

which can be further utilized in pulsed Airy plasmons investigation in a later section.

The Airy plasmons generation e ciency is calculated by employing modal overlap cal-

culations. The idea here is Airy plasmons'contribution to the scattered fields by the

grating. This overlap integral analysis is performed over the wavelength range from

600 nmto1100 nmfor normal and oblique (4) incidence. It measures the overlap of

our numerical solution with an analytically derived Airy wave profile. This is done

using the following overlap integral formula
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Figure 3.7.Generation e ciency⌘of Airy plasmons under normal incidence (blue curve)

and4 oblique incidence (red curve), calculated by the developed semianalytical model in

Eq. (3.15) taking the overlap between numerical plasmons atz0=10µm and analytically

evolved Airy fields. For normal incidence the maximum generation e ciency is found to be

⌘⇡58%at 790 nm. At4incidence the eciency is⌘⇡62%and the maximum is shifted to

820 nm. Figure taken from the reference [228].
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here, subscript ‘a’ means analytical solution and ‘n’ stands for numerical solution. The

numerical electric and magnetic field are calculated using Lumerical FDTD solutions.

Analytical electric and magnetic fields are calculated using the simple formulation

from section3.1.2, which provides an exact solution to the paraxial Helmholtz equa-

tion. We used the forward propagating analytical field to overlap with the numerical

field at distancez0=10µm. Since the numerical fields have no backward propagat-

ing mode, it is justified to use the overlap integral formula to calculate the Airy-like

plasmon's generation eciency. Fig.3.7depicts the dependence of Airy plasmon's

generation e ciency on the wavelength of excitation under normal incidence (blue

curve) and4oblique incidence (red curve). The maximum generation e ciency at
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Figure 3.8.Simulated propagation dynamics of an Airy plasmon pulse: (a) Time-integrated

spatial intensity evolution of the Airy plasmon for a pulsed 20 fs (FWHM) excitation centered

at =745nm having a bandwidth of 40 nm (FWHM). Its noteworthy that despite of dierent

acceleration trajectory of the dierent spectral components, the Airy plasmon pulse shows a

common trajectory. (b) Time traces of the excitation source (dashed line) and Airy plasmon

pulses (solid lines) at dierent spatial locations along the main lobe. ‘S’ stands for source.

(c) Spectral intensity of source and pulsed Airy plasmons. The generation bandwidth of the

grating is clearly of the same order as the incident source bandwidth. Figure reproduced from

the reference [228].

normal incidence is58%at 790 nm. At oblique incidence (4) it becomes64%and

shifted to 820 nm. It is clear that the bandwidth of generation is large. It opens

new pathways to excite the grating with short pulses. Now we will study the spa-

tiotemporal propagation characteristics of Airy plasmon pulses generated at metal-

dielectric interfaces by ultrashort pulse excitation with 20 fs (FWHM) gaussian pulses

having a bandwidth, which easily fits into the excitation bandwidth demonstrated in
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No. x z 4 t 4 ⌫ t⌫

S - - 33.96 37.48 1.27

1 20.35 0 35.96 37.20 1.34

2 20.65 3.35 38.76 38.00 1.47

3 21.10 6.70 36.64 40.48 1.48

4 21.92 10.06 40.96 38.72 1.59

5 23.21 13.41 44.00 30.92 1.36

6 24.91 16.76 41.24 35.00 1.44

7 26.35 19.75 42.40 39.56 1.68

8 28.35 19.75 45.68 38.68 1.77

Table III.1.Time-bandwidth product of Airy plasmon pulse: Temporal width, spectral width

and time band- width product of Airy plasmon pulse. Here we have used the ISO international

standard definition of pulse width given by4 (4·standard deviation). ‘S’ stands for source,

numbers 1 to 8 refer to the respective locations in Fig.3.8a. The time bandwidth product for

a transform-limited Gaussian pulse is 1.27 (0.44 for FWHM definition). Note that the time

bandwidth product becomes minimum at the highest intensity spot (denoted by point 5 in

Fig.3.8a.) for the Airy plasmon pulse. Table reproduced from the reference [228].

Fig.3.7. The study focuses on the ultrafast nano-optical dynamics of SPP propagation

on the metal-dielectric interface. The numerical simulations have been performed us-

ing again Lumerical FDTD solutions. We expect that the influence due to inclined

incidence is small as evident by the plot of generation eciency. Therefore, we have

here considered only normal incidence case. The central wavelength is chosen to be

745 nm, which is the center of the plateau of high excitation e ciency for normal

incidence in Fig.3.7. Fig.3.8shows the spatio-temporal dynamics of pulsed Airy plas-

mons. The spatial characteristics are recorded by temporal averaging of Airy plasmon

pulse. Such a time-integrated image is depicted in Fig.3.8a. It clearly shows that the

Airy plasmon pulse has all the characteristic properties such as self-bending and non-

diracting nature of Airy plasmons. Furthermore, the temporal evolution is depicted

in Fig.3.8b. Several spatial points are chosen along the main lobe to visualize the tem-
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poral shape of intensity. These points are numbered as 1 to 8 in Fig.3.8a. The dotted

curve is the source signal with a 50.24 fs oset. As is evident in Fig.3.8b at point

1, the maximum temporal intensity is enhanced due to near field eects and then it

dropped significantly at point 2. After this spatial point, the main lobe starts rebuilding

itself with the side lobes, and the intensity increases monotonically. The intensity be-

comes maximum at point 5 and then the beam starts significantly diverging as clearly

can be seen at points 7 and 8. For spatiotemporal characterization, it is important to

have a quantitative picture of the time-bandwidth product. So we have also calculated

the bandwidth at each spatial point shown in Fig.3.8c. The time-bandwidth product

(t⌫) is presented in the tableIII.1. It shows that the product becomes minimum at

maximum intensity points. These finding motivated us to further investigate possibili-

ties of spatiotemporal coupling at the hot-spot of such non-diracting surface plasmon

pulses and will be subject of investigating in the next chapter.

3.4. Summary of results and related publication

The result of the above original research has been published in the peer-reviewed

journal ‘OSA Continuum’ [228]. Airy plasmons propagation dynamics was investi-

gated for a broad range of wavelengths using multiphoton PEEM and rigorous nu-

merical simulations. The experimental and numerical results show good agreement.

The constructive and destructive interference of the total electromagnetic field were

mapped with n-PEEM. We have also developed a semianalytical formulation to quan-

tify the Airy like plasmon generation eciency from the diraction grating and it is

estimated to be⇡58%under normal incidence and⇡62%for4inclined incidence.

This study provides a viable route to study ultra short Airy plasmon pulses and their

spatio-temporal evolution. Furthermore, an active control over the trajectory could be

obtained by employing 2D materials instead of metals. One such configuration could

be the excitation of pulsed Airy plasmons on graphene, in which acceleration of the

main lobe can be changed by tuning the Fermi energy of graphene [235].
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surface plasmon pulses

In the previous chapter, we have investigated Airy plasmons generated by a diraction

grating. The diraction grating was optimized for CW excitation. The generated plas-

mons have been studied numerically and experimentally. In this chapter, we explore

the Airy plasmons generation under ultrashort pulse excitation. This particular type

of plasmons has been termed as ‘Airy plasmon pulses'̇The generation of Airy plasmon

pulses requires the optimization of the grating geometry for broadband pulsed exci-

tations. The optimization process is discussed in detail in this chapter. The optimized

design is investigated using numerical methods. We have also assisted our numerical

results with an analytical and semi-analytical model. The spatiotemporal dynamics

of Airy plasmon pulses is discussed in detail. A physical model is developed to un-

derstand the spatiotemporal dynamics of Airy plasmon pulse evolution. The chapter

is organized as follows: in section 1, we design and optimize the Airy grating for

e cient broadband Airy plasmon pulse generations. Section 2 provides analytical,

semi-analytical, and numerical modeling schemes and their comparison. We further

investigate in section 3 the spatiotemporal dynamics of Airy plasmon pulses in detail

and develop a physical model to incorporate the space-dependent pulse evolution.

Section 4 summarizes the results and provide routes for further research in this direc-

tion.
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Figure 4.1.(a) Schematic of the sample layout: the grating is excited from the top (airside)

at normal incidence (y-axis) with a femtosecond laser pulse. Pulsed Airy plasmons are excited

by a diffraction pattern at the gold-air interface. The diffraction grating consists of 2.5 periods

of the slit pattern. An image of an analytically calculated time-averaged Airy plasmon pulse

is overlaid with the sample layout on the homogeneous gold surface after the grating (not to

scale). (b) Absolute value and phase of the airy function. The varying width of the grating

along the x-direction is in accordance with the zeros of the airy profile. Each consecutive

column is displaced in the z-direction byp/2to match the phase change ofπ, wherepis the

period of the grating. The half-width of the main lobe isx0=700nm. Each full period of

the grating is composed of two elements to imprint the initial phase profile of the Airy wave.

The slits are (150 nm) thick (in the z-direction) and the grating period in the z-direction is

p=745nm.

4.1. Design and optimization of Airy grating

Airy plasmons are 1D non-diffracting, self-accelerating plasmonic beams propagating

on a metal-dielectric interface. Since its first theoretical proposal by Siviloglou and

Christodoulides [10], Airy plasmons have been experimentally observed contemporar-

ily by Minovich et al. [96], Zhang et al. [95], and Li et al. [97]. Every experimental

method has its advantages, but the method by Minovich et al. [96] is particularly

interesting for our research work. The grating design [96] imprinted on the metal

surface generates the Airy profile and simultaneously couples the free-space electro-

magnetic radiation to a metal-dielectric interface. This integrated design has been
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optimized for a single wavelength. A high plasmon coupling e ciency was achieved

for CW excitation by creating 11 grating periods. The new design adapts the Airy

grating for CW excitation [96] to broadband ultrashort pulse excitations. Fig.4.1(a)

depicts the schematics of the sample layout. An ultrashort Gaussian pulse excites the

grating from the top (air) side on the Gold surface. The permittivity of Gold is taken

from Johnson and Christy as shown in Fig.2.1. An image of a time-integrated Airy

plasmon pulse is laid at the grating edge. The image is analytically calculated and is

shown here just for an illustrative purpose. Fig.4.1(b) shows the absolute value, the

initial phase of the Airy function, and the Airy grating design. The Airy function is

truncated by the finite size of the grating in transverse x-direction. The width of the

grating slits in each column varies in the transverse x-direction defined by the roots of

the Airy function, except the first column. The slit widths of the first column are cho-

sen to be the full width of the Airy main lobe (x0=1.4µm). Each consecutive column

is displaced in the z-direction by half of the grating period, to imprint the initial phase

shift of⇡of the Airy function. In this design, the grating period in the z direction is

p=745 nmand the thickness of the slit in the z-direction is150 nm. In this section, the

focus is to optimize the Airy grating for broadband Airy plasmons generations. This is

achieved by calculating the Airy plasmons generation e ciency for dierent numbers

of periods and slit thicknesses. The tool was developed and utilized in the last chapter

to calculate the Airy plasmons generation eciency from a grating (see section3.3).

Here, we reiterate the basic idea. The idea is that scattered fields from the grating

are assumed to be made of Airy plasmons mode and non-Airy plasmons modes. The

quantification of Airy plasmons modes from the scattered fields can be obtained us-

ing overlap integral formalism. This formalism is used in many situations in optics

such as a beam from a laser has to be coupled into an optical fiber, or the mode of a

master laser has to be matched with a slave laser. If the complex amplitude profile of

the two beams is well matched in a certain plane, they will remain matched during

further propagation. Therefore the overlap integral formula provides a quantification

of a particular mode with respect to all possible modes in the optical system. We are
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Figure 4.2.Design optimization for broadband Airy plasmons generation. Airy plasmons

generation efficiency is calculated using Eq. (3.15) for a different number of periods. (a) for

periods 1, 3, 5, 7, 9, and 11 the optimum generation efficiency is for 3 periods. (b) Optimizing

the grating further for 3 periods. The generation efficiency is calculated for periods 1, 2,

2,5 3.5, and 4. The bandwidth is highest for 2.5 periods which is chosen for further spatio-

temporal analysis.

quantifying the Airy plasmons mode generation from the grating with analytical Airy

plasmons. Mathematically, the Airy plasmons generation efficiency is calculated by

using formula 3.15.

Fig. 4.2 depicts the optimization results for the number of periods of the grating.

Fig. 4.2(a) shows the Airy plasmons generation efficiency for the excitation wavelength

rangeλ=600to 1100 nm for the number of periods 1, 3, 5, 7, 9, and 11. It can be

noticed that the efficiency is maximum for 800 nm for 11 number of periods, which

is desired for CW excitation at 800 nm. However, the purpose of optimization in this

case is to obtain a grating with the largest generation bandwidth, while maintaining a

reasonable overall efficiency. Careful observation reveals that period 3 has the largest

bandwidth with significant efficiency, therefore we decide to optimize the grating fur-

ther around period 3. Figure 4.2(b) shows the Airy plasmons generation efficiency for

number of periods 1, 2, 2.5, 3, 3.5, and 4. The generation bandwidth is the largest

for 2.5 periods. It can also be noticed that periods 2.5 also has a higher generation
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efficiency for longer wavelengths ranging from900 nmto1000 nm. In this optimiza-

tion scheme, the slits thickness in z-direction was chosen to be150 nm. Hence, the

Airy grating with periods 2.5 and slit thickness150 nmis the optimized design for

generating Airy plasmon pulses. This design provides not only the largest generation

bandwidth with significant generation efficiency but also a 77% reduction of overall

grating size in the z-direction over previously reported design [96, 228].

4.2. Analytical, semi-analytical and numerical models

Figure 4.3.Numeric and semi-analytical model of Airy plasmon pulse excited by 6 fs Gaussian

pulse centered at 800 nm. (a) Logarithmic plot of time-integrated intensity calculated using

Finite Difference Time Domain method (FDTD). (b) Analytically calculated time-integrated

intensity under paraxial approximation on logarithmic scale. (c) The time-domain response

is calculated semi-analytically by using the impulse response of the grating.(d) The trajectory

of the main lobe is compared for analytical, semi-analytical, and numerical models. The three

models agree well with similar main lobe propagation trajectories.

Airy plasmon pulses are generated using the optimized grating obtained in the

previous section. We have used Lumerical FDTD solutions to simulate the numeri-
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cal spatiotemporal fields from the grating. For spatiotemporal simulation as depicted

in Fig.4.3a of the manuscript, the spatial resolution is x= y= z=5 nmand

temporal resolution is t=0.0095fs. The scattered field is recorded5 nmabove the

interface in both space and time. The successive time frame for the time monitor is

0.3 fs (sampling rate=3278.66THz and down sampling time=32). In this case, the

simulation time is 700 fs, which is enough for 20 fs pulse excitation. The large simu-

lation region38µm⇥0.6µm⇥44µmensures that there is no field reflected from the

boundaries. The numerical model is assisted with an analytical and a semi-analytical

model. Figure4.3shows the comparison of these models both qualitatively and quan-

titatively. In figure4.3(a), the logarithmic plot of the time-integrated Airy plasmon

pulse is shown. We observe the generation of Airy lobes which are propagating along

a bend trajectory and preserve their shape along the propagation direction. An analyt-

ically calculated time-integrated Airy plasmon pulse as shown in figure4.3(b) depicts

the similar behavior of lobes. The analytical calculation is based on the nonparax-

ial solution of Airy plasmons3.1.2by superimposing the spectral components of 6 fs

Gaussian pulse. The parameters were chosen for the half-width of the main lobe and

the exponential apodization parameters arex0=0.7µm anda=0.04. It is interesting

to note that the spectral components of the nonparaxial solution of the Airy plasmon

at longer wavelengths show breaking in main lobes intensity but superimposing the

spectral component for 6 fs ultrashort pulse shows a better shape-preserving quality

with a smoothly varying main lobe profile. Figure4.3(c) shows the time-integrated

intensity using our semi-analytical model. In the semi-analytical model, the time do-

main response is calculated from the impulse response of the grating. The method

can be divided into four steps:

•The impulse response function of the grating is calculated in Fourier domain

using the FDTD simulation under CW excitation for wavelengths ranging from

600 nmto1100 nm:impulse(⌫).

•The spectrum of the input signal is obtained by Fourier transforming the transform-
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limited Gaussian pulse:signal(⌫).

•The impulse response of the system is multiplied by the input spectrum:impulse(⌫)·

signal(⌫).

•Finally, the inverse Fourier transform ofimpulse(⌫)·signal(⌫)is computed to

obtain the time domain response of the grating.

This is a standard method to calculate the time-domain response of a grating to an

arbitrarily shaped pulse. Fig.4.3(c) is qualitatively similar to the numerical simula-

tion results in Fig.4.3(a). It captures details of the generated Airy plasmons, as well

as other plasmonic modes that are generated from the grating. The trajectory of the

main lobe is compared for the analytical, semi-analytical, and numerical models in

Fig.4.3(d). It can be observed that the bending trajectory agrees quite well. It is

also worth mentioning here that the analytical and the semi-analytical model have

their limitations. In the analytical model, it is assumed that the Airy function is ex-

ponentially truncated and the semi-analytical model inherently assumes that there is

no space-time coupling. The numerical model solves Maxwell's equations rigorously.

The dierences in the bending trajectory may be attributed to these dierences in the

models. Overall there is a good agreement between di erent models. The above anal-

ysis builds confidence in the accuracy of the numerical model and paves us a way to

further investigate the spatiotemporal dynamics of Airy plasmon pulses numerically.

4.3. Spatiotemporal dynamics of Airy plasmon pulses

Intriguingly, Airy plasmon pulses have properties similar to their CW counterparts.

Despite the ultrashort pulse excitation, Airy plasmon pulses propagate along a curved

trajectory with self-similar field profiles. The time-integrated picture of the Airy plas-

mon pulse sets the stage for investigating it's spatiotemporal properties. In this section,

our focus is to study the spatiotemporal evolution of Airy plasmon pulses. We divide it

into two subsections, the first subsection deals with the temporal and spectral profile
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and the second section is dedicated to developing a geometrical model to holistically

incorporate the diffraction effects.

4.3.1. Temporal and spectral evolution of Airy lobes

The fact that Airy plasmon pulses are self-accelerating and non-diffracting makes them

particularly interesting for studying their temporal and spectral evolution. Fig. 4.4

depicts such a spatiotemporal picture. In Fig. 4.4 (a), a time-averaged propagation of

an Airy plasmon pulse is shown. We have chosen at first 8 equidistant spatial points

on the main lobe's trajectory. These points are represented by numbers 1 to 8. The

corresponding 3D plot for the temporal and spectral intensity distribution is shown in

Fig. 4.4 (b) and (c) at the chosen spatial points. The intensities are normalized and

have been plotted in a co-moving frame of reference as shown in Fig. 4.4 (b).

Figure 4.4.Temporal and spectral intensity evolution of main lobe: (a) Logarithmic plot for

time-integrated Airy plasmon pulse intensity. (b) 3D plot for temporal intensity distribution

at 8 equidistant points on the main lobe of the Airy plasmon pulse. (c) 3D plot for spectral

intensity distribution at 8 equidistant points on main lobe of Airy plasmon pulse.
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The initial Gaussian-like pulse profile evolves to acquire in an asymmetric shape.

The 3D plot provides a cursory view of the pulse profile changes over propagation.

The details of pulse shape and its interdependence on the grating design will be dis-

cussed quantitatively later in this section. Fig. 4.4 (c) represents the normalized spec-

tral intensity plots. It can be noticed that the excitation grating results in a broadband

spectral bandwidth at the initial propagation distance, which validates our diffraction

grating design. However, the spectral width decreases significantly over the propa-

gation distance of15μm. This poses the challenge to preserve the initial coupled

bandwidth over the propagation distance. Another challenge is to have minimal tem-

poral width for the available spectral width at longer distances. This problem may

be solved by using a chirped pulse excitation to compensate for the dispersion effects,

however, this requires first to calculate the spectral phase. Fig. 4.5, depicts the spectral

Figure 4.5.Spectral phase evolution plotted with corresponding spectral intensity at 8 equidis-

tant spatial points on main lobe of Airy plasmon pulse as indicated in Fig. 4.4 (a). First subplot

shows the spectral intensity and phase of a transform-limited incident source.
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phase change over the 8 dierent spatial points on the main lobe. The first subplot

of Fig.4.5shows the initial spectrum and phase of the transform-limited Gaussian

pulse. The initial phase is linear, which is expected for a transform-limited pulse.

The other 8 subplots correspond to the 8 dierent spatial points on the main lobe

which had been shown in Fig.4.4(a). As can be seen, the spectral phase exhibits

changes from a flat phase to a curved phase, however, the change is still small for all

propagation distances. Therefore applying a second order negative chirp in the ini-

tial incident pulse would have a rather small impact on focusing the temporal pulse

on propagation. Even though the spectral phase analysis is not so fruitful in pulse

shaping, the temporal and spectral aspects are still worth exploring, which are the

next subject of our investigation. The optimization of the diraction grating (or Airy

grating) depicted in Fig.4.2provides the largest excitation bandwidth, however, the

maximum generation e ciency is only 52%. The moderate generation e ciency is

the signature of a significant contribution of non-Airy plasmons to the total scattered

field from the diraction grating. It is important to comprehend the eects of non-

Airy modes on the pulse shape and their evolution. The dierent excited modes are

generated from the complex diraction grating. Therefore, we compare the complex

grating to a simple design of a single-column of slits. Our purpose is twofold: first,

to carefully look at the Airy pulse profile evolution over the propagation distance and

second, to uncover, if any, grating design-dependent dynamics. Fig.4.6(a) shows the

time-integrated Airy plasmon pulse with 8 dierent locations at which temporal and

spectral intensities are calculated. The temporal and spectral intensities are averaged

over a transverse width of0.7µmon the main lobe. In Fig.4.4, we have not performed

any spatial averaging because our goal was to calculate the spectral phase. The av-

eraging in the present case is shown by white bars. The spatially averaged temporal

intensities are plotted in Fig.4.6(c). The temporal profile has mainly the primary lobe

with small secondary lobe contributions. An enlarged view of the secondary lobes is

shown in the inset figure. At the first positionz=0.5µm, we observe only the pri-

mary pulse. The pulse starts spreading at subsequent propagation distances due to
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Figure 4.6.Spatial and temporal dynamics of plasmons excited by Airy grating and single-

column slits: (a) Time integrated Airy plasmon pulse evolution. The white band follows the

main lobe propagation and has a width of0.7μm. (b) Time integrated intensity of single

column slits (having 2 periods with slit widthw=1.4μm, thickness150 nmand periodp=

745 nm). A White rectangular region with a width0.7μmis used for spatial averaging along

the x-direction. (c) Temporal intensity profile at 8 spatial locations starting fromz=0.5μm

at each2μmdistance in a co-moving frame over time. The temporal intensity is averaged

over spatial width of0.7μm(shown by white bars in (a)). In the inset, an enlarged view of

the pulse profile for the temporal window 40 fs to 70 fs is also shown. (d) Temporal profile

for Gaussian reference pulse spatial averaged over white bars at 8 subsequent propagation

distances as shown in Fig. 4.6 (b).

dispersion effects. The secondary pulse profiles appear for propagation distances be-

tween positionsz=4.5μmandz=10.5μm, as shown in the inset of Fig. 4.6 (c).

The secondary pulse contribution may be regarded as a diffracting non-Airy plasmons

contribution from the grating. A geometrical model describing this diffraction grating

effect on the pulse spreading will be discussed in detail in the next section. For po-

sitionsz=12.5μmandz=14.5μm, the primary pulse profile spreads largely due to
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dispersion, and the secondary pulse profile is clearly absent.

As pointed out before to understand the complex grating effects, a simple single

column slits design is considered as benchmark design. The time-integrated plasmons

intensity scattered from the benchmark design is shown in Fig. 4.6 (b). It can be no-

ticed that the pulsed plasmons generated from this simple structure, diffract quickly

and the intensity becomes significantly lower already afterz=5μm. For compari-

son purposes, the temporal intensities of the benchmark design are spatially averaged

over the same transverse width (0.7μm) at the same distances as in the Airy grating

case. Pulse spreading is negligible over the propagation distance ofz=15μmas can

be expected from this simple configuration of slits. A quantitative comparison of the

Figure 4.7.Comparison of the temporal and spectral width for the main lobe for excitation by

Airy grating and single-column slits: (a) Temporal width over the propagation distance. The

width changes abruptly in certain region, which may be attributed to non-Airy plasmon modes

contributions. The dotted red curve shows the transform-limited temporal width. (b) Spectral

width evolution over propagation direction. The spectral bandwidth decreases significantly

over the propagation distance. Corresponding temporal broadening for the transform-limited

case is larger than first column slits; however, the temporal width change for the Airy grating

has spatial dependence.

pulse spreading is provided in the next Fig. 4.7 for both designs over all propaga-

tion distances. Temporal (Δt) and spectral (Δν) widths are calculated by taking the

second-order moment of the spatially averaged temporal and spectral intensities. For
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Airy plasmon pulses spatial averaging is performed over the dashed white region on

the main lobe as shown in Fig.4.6(a). In the case of the benchmark design (figure

Fig.4.7(b)) the spatial average is calculated over the white box region. The transverse

width of the spatial averaging is0.7µmin both cases. Fig.4.7(a) shows the temporal

width change over the propagation distance. The main lobe of the Airy plasmon pulse

undergoes appreciable changes, whereas the temporal width remains almost constant

for the reference Gaussian pulse. At a distance approximatelyz=5µmthere is a sharp

increase in the temporal width of the Airy plasmon pulse, reaching a peak value, and

then it decreases again. This hump in temporal width may be attributed to the con-

tribution of the non-Airy plasmonic beams propagating from the diraction grating

and crossing the main lobe region. A justification of this hypothesis will be discussed

in the next subsection. After this hump, the temporal width increases monotonically,

which is due to planar metallic dispersion e ects. In Fig.4.7(b), the spectral width for

the main lobe of the Airy plasmon pulse decreases monotonically. A transform-limited

temporal width of the pulse is calculated corresponding to the Airy pulse's spectral

width. This is shown by a red dotted line in Fig.4.7(a). From Fig.4.7(a) and (b),

it can be inferred that the hump in the temporal width variation is mainly due to the

secondary pulses which arise from the diraction grating geometry.

4.3.2. Geometrical model for spatio-temporal dynamics of Airy plasmon

pulses

In our discussion on the temporal dynamics of Airy plasmons, it was found that abrupt

changes in the temporal width have strong interdependence on the grating parame-

ters. In this section, we explore systematically the dynamics of the temporal pulse

width for the main lobe and the first 10 side lobes. Fig.4.8(a) shows once again, the

time-integrated intensity of the Airy plasmon pulse, but this time we investigate the

temporal width evolution for many lobes. The propagation distance of the side lobes

is taken to the distance where the time-averaged intensity has decayed to 25 times the
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Figure 4.8.Space-dependent temporal dynamics and its interdependence on side lobes: (a)

Time-integrated intensity on a linear scale. White bars illustrate the width over which spatial

averaging is performed for calculating the temporal width corresponding to each lobe. Label

1 to 6 denotes the first 6 Airy lobes. (b) Temporal widths over the propagation distance for

the main lobe (1) and the first five side lobes (2-6). A Gaussian fit has been performed for the

humps in the temporal width region of lobes. Hump distances (shown as dotted vertical lines)

are defined as the first order moment of the fitted curve.

background intensity. The temporal pulse length is evaluated by spatially averaging

the lobes over a width which is indicated by the white bars in Fig. 4.8 (a) and which is

equal to the respective grating column being responsible for the lobe’s excitation. In

Fig. 4.8 (a), the first six lobes are denoted by labels 1 to 6. The corresponding temporal

width for the lobes 1 to 6 is shown in Fig. 4.8 (b). The typical hump, where the pulse

length abruptly increases and then decays, is found for all lobes. As discussed before,

the humps are characteristics of a secondary pulse profile as shown in Fig. 4.8 (c). The

appearance and decay of secondary pulses, which are delayed with respect to the main
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pulse, are inherently involved in the humps profile. The center of mass of these humps

is calculated by applying Gaussian fits. The center of mass or the hump’s position is

denoted by vertical dashed lines for each respective lobes. This position will be called

hump distanceZn. It can be observed that as the lobe numbernincreases, the hump

distance for the lobe shifts towards smaller propagation distances.
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Figure 4.9. A grating parameter-dependent geometrical model for the description of the

spatio-temporal dynamics: (a) red: Hump distanceZnfor the lobesn=1. . . 11derived from

the rigorous simulation, which illustrates at which propagation distancezthe secondary pulse

appears on the lobe's trajectory leading to a sudden increase in the overall pulse length. blue:

Error value✏nof Eq.4.1, which indicates the discrepancy of where our simple geometrical

model predicts the appearance of the secondary pulse from where it really appears in the rigor-

ous numerical simulations. (b) Sketch of a simple geometrical model to explain the occurrence

of the secondary pulses in the Airy lobe's trajectory.

To understand and explain the observed temporal dynamics of Airy plasmon pulses,

we developed a simple geometrical model. This model particularly incorporates the

characteristic positions of the humps in the consecutive lobes shown in Fig.4.8(b).

The model is validated by comparing it to the already presented findings from the

rigorous numerical simulations. We start by having a look at the hump distanceZn,

which is plotted for the individual lobesn=1. . . 11in Fig.4.9(a). The plot captures

the trend that for larger lobe numbersnthe humps occur already for shorter propaga-
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tion distancesz. This observation is explained by our model, which assumes that the

used binary excitation grating gives rise to a significant non-Airy plasmon mode con-

tribution. These non-Airy parts of the excitation evolve on a dierent trajectory than

the Airy plasmon mode. Hence, both parts interfere, which is observed as a perturba-

tion of the Airy lobe's pulse dynamics. Our physical model describes this interference

according to the scheme depicted in Fig.4.9(b). The scheme is based on the assump-

tion that the trajectories of both parts of the excitation can be modeled approximately

by Gaussian beams. The sketch shows the binary grating elements, from which Airy

and non-Airy plasmon pulses are excited. To obtain the quantitative description of the

physical model, each grating element is characterized by two parameters: its trans-

verse sizesnand its distance to the next grating element dn, where ‘n’ stands for

nth Airy lobe originating from thenth grating element. Our model assumes that the

secondary pulses, which had been shown in Fig.4.6(c), appear when the non-Airy

part of the excitation crosses a lobe of the Airy-part of the excitation. Assuming that

the non-Airy part of the excitation can be modelled by a Gaussian beam, a secondary

pulse should appear at a propagation distance, when this non-Airy part of the exci-

tation of grating elementn+1overlaps spatially with loben, which originated from

grating elementn.

To verify this assumption by an analytical expression, we model both, the trajectory

of the Airy-lobe as well as non-Airy part by a simple Gaussian model. In the case of

the Gaussian model, the analytical solution for the temporal pulse width evolution

can be obtained in the first-order approximation [163]. The analytical solution for

the evolution of the half-widthwn(z)of a Gaussian beam, which is excited by slitn,

is calculated by assuming that the slit's sizesndetermines the initial half-width of the

Gaussian aswn(0)=sn/2. If the half-widthwn(z)characterizes the spreading of the

non-Airy part as well as the trajectory of the Airy loben, the interference of the two,

should occur at a propagation distancez⇤for which

wn(z
⇤)+ dn sn/2 wn+1(z

⇤)=✏n
.
=0. (4.1)
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This condition considers that the non-Airy part originating from slitn+1spreads

faster than the Airy-lobe from slitnmoves to the side. Since the sizesn+1is smaller

thansn, this gives rise to a more rapid Gaussian beam diraction from slitn+1. The

condition is therefore fulfilled if the spreading of a Gaussian beams caught up with its

neighbor at a distance dn sn/2. Fig.4.9(a) shows the error function✏nof Equation

4.1, which illustrates that our model is quantitatively suciently close to the rigorous

numerical simulations to support the stated general ideas of the model. However, it

is clear that our model is just a very simple geometric representation of a complex

scattering problem, which can't explain all details. One drawback of this model is that

it does not consider the Airy lobe's caustics. The additional limitation comes from the

paraxial approximation of Gaussian beam propagation, which is increasingly wrong for

smaller slit sizes as can be seen from the growing absolute value of the error function

✏nfor larger lobe numbersnin Fig.4.9(a). Despite these limitations, the model could

be utilized for tailoring the non-Airy plasmon part to shape the Airy plasmon's pulse

profile, e.g. by tuning the geometrical parameters of the grating.

The scattered fields from the grating have many modes, which makes the analysis

very complex. However, a general trend in temporal and spectral behaviors can be

observed by taking a spatial average over the planar metallic region. Three spatial

regions are chosen for our analysis. The first region has 10 lobes, the second has 20

lobes and the third contains the full simulation area. The spatial averaging of Airy

plasmon pulse intensity is performed between red curves (Fig.4.10(a) and (b)) for

the first and second regions in the transverse direction. For the third region, the spatial

averaging is over the entire simulation domain in the transverse direction. Fig.4.10(c)

shows the temporal width over the propagation distance after averaging the intensity

in the transverse direction. In the case of the second and third regions, the tempo-

ral width changes randomly in the shaded region and increases monotonically after

z=3µm(the vertical dashed line). For the first region with 10 lobes, the temporal

width changes monotonically over the entire propagation distances. This is an inter-

esting trend in temporal width evolution and results from the finite size of the grating.
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Figure 4.10.Average temporal and spectral width trend over dierent spatial regions: (a)

Time-integrated intensity of Airy plasmons with spatial region of 10 lobes. The area between

the red curves is used for spatial averaging. (b) same image as in figure (a) but with 20 lobes

spatial region. (c) temporal width comparison for spatially averaged regions of 10 lobes, 20

lobes and total simulation domain. (d) spectral width evolution for spatially averaged regions

of 10 lobes, 20 lobes, and total simulation domain. In Figures c and d, the main lobe's temporal

and spectral width are added for reference.

When the spatial averaging region is increased, the contribution of the non-Airy modes

increases. This results in randomly scattered fields distribution in the near fields.

In this chapter, we have formed a solid framework of understanding of Airy plasmon

pulse dynamics, on which future research ideas can be laid out. Here, we provide

an outlook for possible future research directions. One could use a curved grating

for changing the slope of hump distance curve in Fig.4.9(a) and potentially achieve

temporal focusing for minimal spot size in space and time. Furthermore, the input

pulse shape can be used as an additional degree of freedom to control and engineer the

pulsed plasmonic beams on the metal-dielectric interface. An example of this pulsed

plasmonic beam can be Airy-Airy plasmonic pulsed beams, which uses Airy pulse as
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an incident source and can exploit its non-dispersive properties for non-varying pulse

shape. These engineering methods provide only the passive control of the pulsed

beam on the metal-dielectric interface. Active control of the shape and spatiotemporal

properties may be achieved by utilizing the tunable properties of 2d materials such as

Graphene.

4.4. Summary and related publication

In summary, we studied analytically, semi-analytically, and numerically the spatiotem-

poral evolution of Airy plasmon pulses. A diraction grating has been optimized for

the generation of broadband Airy plasmons. The optimization is performed for a maxi-

mum bandwidth of the Airy plasmon generation, resulting in a broad generation band-

width from =600 nmto1100 nm. The grating size is also reduced to just 2.5 periods,

much shorter than previously reported di raction gratings. The optimized grating is

used to e ciently generate ultrashort Airy plasmon pulses. The numerical results are

quantitatively compared with analytical and semi-analytical models and are found in

good agreement. The numerically simulated results are further explored for the spa-

tiotemporal dynamics of Airy plasmon pulses. A study of spectral phase evolution on

the main lobe suggests that chirped pulse excitation may not be optimal for tempo-

ral width control with this grating design. Temporal and spectral intensity evolution

characteristics are investigated in detail by calculating the temporal and spectral width

variation over the propagation distance. After comparing with a benchmark design, it

is concluded that the scattered field from the grating has significant non-Airy modes

contributions. The shape of the temporal width for dierent lobes has been systemat-

ically explored and a grating-parameter-dependent geometrical model is developed.

The geometrical model is used to predict the distance at which the temporal distance

increases abruptly. This geometrical model may be used to tune the grating parameters

for temporal focusing to provide spatio-temporal pulsed beams with highly localized

spot-size. The results of this work have been submitted for review in a peer-reviewed
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optics journal [236].
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V. Summary and outlook

This thesis aimed to add a new layer of knowledge to our existing knowledge base

of propagation invariant beams. There have been substantial collaborative eorts in

carefully designing and executing this aim. This thesis can be encapsulated in two ma-

jor projects, one project belongs to Airy plasmons and their experimental investigation

using n-PEEM and another project is on spatiotemporal pulsed Airy plasmons. In this

last chapter of the thesis, we provide a summary of our main results and provide our

perspective for future directions.

We have started our work based on the established work in the field of Airy plasmons

and took a step forward by investigating the Airy plasmons using the state-of-the-art

experimental technique n-PEEM. PEEM is a tool to directly visualize and measure the

electromagnetic field from a metallic surface through photoemission. The photoemit-

ted electron yield provides a map of the electromagnetic field at the surface. The pho-

toemission is a nonlinear multiphoton process and therefore the photoemitted electron

yield is sensitive to the excitation wavelength. A diractive grating based on Minovich

et al. [96] was optimized for a lower resonant wavelength as compared to the orig-

inal design [96]. In the experimental configuration, we used a home-built tunable

optical parametric chirped pulse amplifier, which excites the diraction grating with

a Gaussian beam of diameter80µmover670 nmto840 nmwavelengths range. The

surface plasmons emitted from the grating interfere with the incident light source and

the resultant interference pattern is mapped with the n-PEEM. The measured electron

yield by the n-PEEM captures the region of constructive and destructive interference

and provides the a clear contrast between higher and lower photoemission yield. In
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addition to this phase information, there are also other advantages of using PEEM over

the previously used NSOM method [96]. In NSOM, the presence of a scanning probe

perturbs the field being measured, so the measurement may not be a true representa-

tion of the unperturbed field properties of interest. The scanning time in NSOM is also

large, which poses further challenges. PEEM has overcome these challenges and has

proven to be a versatile tool in measuring electromagnetic fields at metallic surfaces.

The optimization of our grating and theoretical verification of experimental results

were performed using large scale 3D simulations. We have used the open-source soft-

ware MEEP and the commercial software Lumerical for this purpose. These software

tools are based on the finite dierence time domain method. The numerical and ex-

perimental results show a good agreement. Both results exhibit the Airy plasmons

self-accelerating and propagation invariant features. In the experiment, it has been

observed that photoemission yield becomes very low for wavelengths above750 nm

due to the lower photon energy being insu cient to extract photoelectrons in the

PEEM by a two photon process and the much lower e ciency of the three photon pro-

cess. This sets a limitation on the experimental investigation for broader excitation

spectrum, but the good correspondence between experimental and numerical results

has motivated us to extrapolate the numerical study. A quantitative analysis was per-

formed to calculate the Airy plasmon generation eciency of the diraction grating

over600 nmto1100 nmwavelength range. We have used modal overlap calculations

to obtain the Airy plasmons'generation e ciency. The modal overlap integral for-

mula measures the overlap between a numerical solution and the analytically derived

Airy wave profile. The Airy plasmons'generation e ciency was found to be large,

which opens up the possibility to short-pulse excitation of the grating. We performed

preliminary numerical studies using 20 fs Gaussian pulse excitation on the grating to

generate pulsed Airy plasmons.

The broadband generation of pulsed Airy plasmons has motivated us to take one

step forward into investigating the spatiotemporal evolution of Airy plasmon pulses.

In this project, we have first optimized the grating response for ultrashort pulse exci-
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tations. In the first project, the grating was optimized for a resonant wavelength and

had lower generation e ciencies for higher wavelengths. The modal overlap integral

formula has been utilized once again for the optimization of the generation band-

width. The slit thickness and number of periods have been two important parameters

over which the grating has been optimized while keeping the fabrication feasibility

in mind for future experimental studies. The generation bandwidth is found to be

largest for a slit width of150 nmand periods 2.5. The optimized configuration is

then investigated for the spatiotemporal evolution of Airy plasmon pulses using ana-

lytical, semi-analytical, and numerical methods. The analytical model is based on the

nonparaxial Airy wave solution developed in the first project. The time-averaged in-

tensity of an Airy plasmon pulse is calculated by superimposing the nonparxaial Airy

plasmons for the spectral components of a 6 fs pulse. The time-averaged intensity ex-

hibits nondiracting and self-accelerating properties similar to their CW counterparts.

Further, a semi-analytical model was applied to calculate the time-domain response

of the grating. A semi-analytical model is a standard method to e ciently calculate

the time-domain response to an arbitrary signal in a linear system. The analytical

and semi-analytical models were then compared with the rigorous 3D finite-dierence

time-domain method, calculated using a commercial Lumerical-FDTD electromagnetic

solver. The time-averaged intensity calculated using the three dierent models was

in good agreement. The generated pulsed beam maintains quasi-nondiracting and

self bending properties. The main lobe trajectory was also compared for the three

models and agreed fairly well. Spatiotemporal analysis of the complex Airy grating is

challenging. The challenge has been overcome by first comparing the spatiotemporal

dynamics with a simple design. As discussed in chapter 4 of the thesis, the specific fea-

tures of temporal dynamics were better understood as a result of the comparison with

the benchmark design. These specific features of temporal dynamics were utilized

in developing a deeper understanding of Airy plasmon pulses'dynamics. A physical

model incorporates the temporal width features of pulsed Airy plasmons'lobes and

predicts the pulse broadening based on the superposition of scattered fields from the
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grating.

The investigations in the field of spatiotemporal dynamics of Airy plasmon pulses

suggest that the Airy grating can provide temporally focussed nondiracting spa-

tiotemporal pulsed beams with highly localized spot size. The experimental verifica-

tion of the pulsed Airy plasmons'spatiotemporal evolution can be carried out by com-

bining PEEM with ultrafast laser excitation in a configuration known as time-resolved

PEEM. There has been a long-standing fascination to produce propagation invariant

wave packets in plasmonics. Our research concludes that an ultrashort Airy plasmon

pulse retains its non-diracting characteristics. These interesting results pave the path

for generating ‘plasmonic bullets’ by combining the Airy pulse as an ultrafast excitation

on the Airy grating. However one has to be careful in the case of ultrashort excitation,

as space-time coupling is inherent in such cases. Recently, a numerical study [237]

has shown the generation of propagation invariant pulsed SPP wave packets by uti-

lizing spatiotemporal correlations. This approach is similar to free space space-time

light sheets [110–113], except for the fact that correlations stem from the SPP light

cone rather than the free-space light cone. The space-time coupled ultrashort sub-

wavelength SPP wave packets have shown orders of magnitude larger propagation in-

variant length compared to traditional Gaussian pulsed SPP wave packets. ’Plasmonic

bullets’ may unleash the hidden potential of plasmonics.
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