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Abstract: Traditionally, the energy shaping for mechanical systems requires the elimination of
holonomic and nonholonomic constraints. In recent years, it was argued that such elimination
might be unnecessary, leading to a possible simplification of the matching conditions in energy
shaping. On the other hand, the partial feedback linearization (PFL) approach has been widely
applied to unconstrained mechanical systems, but there is no general result for the constrained
case. In this regard, this paper formalizes the PFL for mechanical systems with kinematic
constraints and extends the energy shaping of such systems by including systems with singular
inertia matrix and non-workless constraint forces, which can arise from the coordinate selection
and PFL. We validated the proposed methodology on a 5-DoF portal crane via simulation.
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1. INTRODUCTION

Shaping the energy of mechanical systems to design con-
trol algorithms has been the subject of long-term re-
search. In particular, there are three leading methods
that achieve stabilization of an admissible equilibrium by
restricting the desired energy function to the sum of poten-
tial energy (independent of velocities) and kinetic energy
(quadratic in velocities). These methods are the IDA-
PBC (Ortega and Garćıa-Canseco, 2004), the controlled
Lagrangians (Blankenstein et al., 2002), and the Lyapunov
direct method for mechanical systems (White et al., 2008).
However, Chang et al. (2002) and Donaire et al. (2016b)
demonstrate that those approaches are actually equiva-
lent for unconstrained mechanical systems as long as the
desired energy remains within the same class.

When modeling mechanical systems for control, we usually
aim at having an explicit representation, i.e., we search
for generalized (or constraint-free) coordinates such that
the obtained model is described by ordinary differential
equations (ODEs). If, in addition, the system possesses
nonholonomic constraints, then also a change of variables
in the velocities is used so as to eliminate these constraints
and obtain a system of ODEs (Delgado, 2016). On the
other hand, as argued by Blankenstein (2002) for the
case with nonholonomic constraints and by Castaños and
Gromov (2016) for the holonomic situation, the controller
design with energy shaping does not necessarily require
the elimination of kinematic constraints, i.e., we may work
with the implicit representation given by differential alge-
braic equations (DAEs). In fact, Cieza and Reger (2019)
show that we can take advantage of the implicit repre-
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sentation to simplify, for a class of systems, the matching
conditions of IDA-PBC arising in underactuated mechani-
cal systems that otherwise in explicit representation might
be too demanding. These matching conditions are essen-
tial for energy shaping, and they constitute a system of
quasilinear partial differential equations (PDEs).

The celebrated partial feedback linearization (PFL) for
underactuated mechanical systems without kinematic con-
straints was introduced by Spong (1994) and employed
by several authors as an essential step or a simplifying
tool in the controller design. Although this technique has
been applied to the cart-pole and 4-DoF portal crane in
implicit representations (Vidal et al., 2020; Huamán et al.,
2021), the methodology is still vague and the results are
not general. Therefore, in this work, we formalize the PFL
for constrained mechanical systems.

Furthermore, we extend the energy shaping of Cieza and
Reger (2019) by including systems that may possess a
singular inertia matrix (non-regular Lagrangian) and sys-
tems whose constraint forces are not necessarily workless.
The latter case may result from a preliminary feedback
as PFL, while the former is a consequence of the selected
coordinates. We refrain from the port-Hamiltonian repre-
sentation used in IDA-PBC as it does not admit a singular
inertia matrix and can be inconvenient for PFL. Finally,
we test our results on the portal crane with 5-DoF via
simulation.

The paper is organized as follows. In Section 2 we identify
the class of mechanical systems. Sections 3 and 4 formalize
the PFL and present our energy shaping for constrained
systems. To compare the implicit and explicit frameworks,
we provide a reduction in Section 5. In Section 6 we check
our findings on the 5-DoF portal crane and draw the
conclusions in Section 7.
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Notation: We denote by Rn×m the set of n × m real
matrices, and Rn×m

d the set of n × m real matrices with

rank d. For compactness of notation, we shall write ∂h
∂q =

∂qh and
(
∂h
∂q

)�
= ∂�

q h for any vector-valued function h,

and ∂2f
∂q2 = ∂qqf for any scalar-valued function f . The

identity matrix of size n is defined as In. Given a matrix
A, we denote by Ag, A⊥, A⊥�, ColspA and RowspA,
to the generalized inverse, the left annihilator, the right
annihilator, the column space and the row space of A,
respectively. We consider the annihilators to be full rank
unless they are a zero matrix. We write V

∣∣
R to represent

the restriction of V to the set R, and vec(x1, x2, . . . ) for
the vertical concatenation of any scalars or column vectors
{x1, x2, . . .}. In particular, we use bold letters to denote
functions from implicit models and non-bold letters for
everything else. To avoid cumbersome notation, we also
omit the arguments of previously defined functions.

2. CLASS OF SYSTEMS

We consider mechanical systems described by

ṙ = J(r)v, (1a)

M(r)v̇ + Γ(r, v)v + d(r) = B̄(r)λ+G(r)τ (1b)

with smooth holonomic constraints

0 = Φ(r) (1c)

and smooth velocity level constraints 2

0 = B�(r)v, (1d)

where r ∈ R ⊂ Rnr are coordinates, v ∈ Rnr is a linear
transformation of the velocities ṙ with J : R → Rnr×nr

nr
,

τ ∈ U ⊂ Rnu is the input, G : R → Rnr×nu is the
input matrix, M : R → Rnr×nr is the inertia matrix,
Γ : R× Rnr → Rnr×nr , d : R → Rnr , Φ : R → RnΦ , B :
R → Rnr×nλ , and B̄(r)λ are the constraint forces 3 with
B̄ : R → Rnr×nλ and implicit variables λ ∈ Rnλ verifying
nr > nλ ≥ 1 to discard the situations with no constraints
and v(·) = 0. Here, Γ, d and B̄ do not necessarily satisfy

Ṁ = Γ+Γ�, B = B̄ or d = J�∂�
r V with potential energy

V : R → R. Besides, M does not need to be positive
definite or even symmetric. This distinction is fundamental
since (1) can include Lagrangian dynamical systems with
preliminary feedback and change of variables. We identify
the class by imposing the assumptions below.

Assumption 1. The matrix

P(r) :=

[
M −B̄
B� 0

]

is nonsingular for all r ∈ RΦ := {r ∈ R | 0 = Φ(r)} .
Assumption 2. The initial conditions (r(t0), v(t0)) are
consistent, i.e.,

(r(t0), v(t0)) ∈ Xc :=
{
(r, ρ) ∈ RΦ × Rnr

∣∣ 0 = B�v
}
.

Lemma 3. (Rank identity). Given [B C] ∈ Rn×m, then

rank [B C] = rank(C⊥B) + rankC.

Proposition 4. The matrix P(r) is nonsingular iff

rank B̄⊥MB�
⊥ = nr − nλ, rankB = rank B̄ = nλ.

2 The velocity level constraints include the nonholonomic con-
straints and the time derivative of the holonomic constraints (1c).
3 The constraint forces B̄(r)λ are said to be workless if 0 = v�B̄(r)λ
for all trajectories. Clearly, B̄(r)λ is workless if Colsp B̄ = ColspB.

Proof. Applying Lemma 3 twice on P results in

rank(P) = rank(
[
M�B̄�

⊥ B
]
) + rank(B̄)

= rank(B⊥M
�B̄�

⊥) + rank(B) + rank(B̄), (2)

and the necessity is evident. Now, suppose P(r) has nr +
nλ linearly independent rows and columns, i.e., P(r) is
nonsingular, then rankB = rank B̄ = nλ, and from (2),
rank B̄⊥MB�

⊥ = nr − nλ.

Proposition 5. (Well-posedness). Consider system (1) ver-
ifying Assumptions 1 and 2. Then, i) RΦ and Xc are
regular (or embedded) submanifold of R and R×Rnr with
dimensions nr − nΦ and 2nr − nλ − nΦ, respectively, ii) λ
has a unique solution for every triplet {r, v, τ}, and iii) the
DAE system (1) is equivalent to an ODE on Xc.

Proof. Since ∂rΦJ is contained in B� by definition
of (1d), and B is full rank from Assumption 1 and Propo-

sition 4, it follows that the Jacobian of
[

Φ(r)

B�(r)v

]
is full

rank. Now, the proof of statement i is a direct application
of Lee (2013, Corollary 5.14). To show statements ii and
iii , we write (1b) together with the hidden constraints as 4

P

[
v̇
λ

]
+

[
Γv + d
d
dt

(
B�)v

]
=

[
G
0

]
τ. (3)

From the nonsingularity of P, we deduce that (1a) and (3)
can be written as an ODE with a unique solution to λ.
The equivalence is obtained by using consistent initial
conditions (Assumption 2) and observing that such an
ODE possesses a vector field on Xc.

Mechanical systems with holonomic constraints do not
necessarily have an inertia matrix M that is positive
definite as it is for mechanical systems with generalized
(or constraint-free) coordinates, see Section 6.1. Proposi-
tion 5 relaxes the conditions of the Prop. 1 of Cieza and
Reger (2019) by requiring the nonsingularity of B̄⊥MB�

⊥
(see Proposition 4) instead of the one of M.

3. PARTIAL FEEDBACK LINEARIZATION

The proposition below formalizes the PFL for constrained
mechanical systems, extending the result of Spong (1994).

Proposition 6. (PFL). Given a well-posed system (1), de-
fine the output y := Y(r)v and function

Λ(r) := [Y 0]P−1

[
G
0

]

with Y : R → Rnu×nr in C1. If Λ is nonsingular for all
r ∈ RΦ, then

rank(
[
B̄ G

]
) = rank(

[
B Y�]) = nλ + nu, (4)

and the state feedback law

τ = Λ−1

(
u− Ẏv + [Y 0]P−1

[
Γv + d
d
dt

(
B�) ṙ

])
(5)

transforms (1b) into

M1(r)ż + b1(r, y, z) + d1(r) = B̄1(r)λ−G1(r)u, (6a)

ẏ = u, (6b)

such that the closed-loop (1a), (6) with constraints (1c)–

(1d) is well-posed. Here, [M1 G1] = G⊥M [ ZY ]
−1

,

b1(r, y, z) = G⊥

(
Γ−M

[
Z
Y

]−1 [
Ż

Ẏ

])
v, d1 = G⊥d,

4 The hidden constraints of (1) are obtained by differentiating (1d)
along the system’s trajectories.

B̄1 = G⊥B̄, z = Z(r)v, and Z : R → R(nr−nu)×nr is an
arbitrary C1 function for which [ ZY ] is nonsingular.

Proof. From Assumption 1 and Proposition 4, B̄⊥MB�
⊥

is nonsingular and Λ can be written as

YB�
⊥
(
B̄⊥MB�

⊥
)−1

B̄⊥G.

Clearly, rank(B̄⊥G) = rank(B⊥Y
�) = nu is a necessary

condition for the nonsingularity of Λ that is equivalent
to (4) under Lemma 3. Since nr > nu, define

Λ̄(r) :=




G⊥ 0

[Y 0]P−1

0 Inλ


, Λ̂(r) := Λ̄P

[
[ ZY ]

−1
0

0 Inλ

]
,

and note from Lemma 3 that Λ̄ and Λ̂ are nonsingular iff so
is Λ. Left multiplying (3) by Λ̄, changing the coordinates

with v = [ ZY ]
−1

[ zy ], and using the feedback (5) leads to

Λ̂

[
ż
ẏ
λ

]
+




Γ1v + d1

0

d
dt

(
B� [ ZY ]

−1
)[

z
y

]

 =

[
0
Inu

0

]
u.

Consequently, the closed-loop is well-posed (see Proposi-
tion 5) and can be written as (1a), (6) with (1c)–(1d).

Proposition 6 states that system (1) can be partially
linearized by the state feedback (5) whenever the system
is well-posed and Λ(r) is nonsingular in the configuration
manifold RΦ. For this, we require an appropriate selection
of the output y and linear independence of the columns
of

[
B̄(r) G(r)

]
. The latter is a restriction on the class

that prevents the input forces from being dominated by
the constraints forces. The former involves picking a C1

function Y, whose rows are linearly independent of the
columns of B. This is not surprising, as we should be able
to steer ẏ arbitrarily without conflicting with the velocity
constraints (1d). Finally, to obtain the partially linearized
system, we select the variables z = Z(r)v such that [ ZY ] is
nonsingular and continuously differentiable. Furthermore,
even if the constraint forces of the nominal system obey
the Lagrange-d’Alembert principle, i.e., they are workless,
they may lose this feature after the PFL, see Section 6.2.

4. ENERGY SHAPING

Following the results of Cieza and Reger (2019) with
IDA-PBC, we present the modified energy shaping for
mechanical systems with kinematic constraints.

Proposition 7. Let system (1) verify Assumption 2. Sup-
pose M as symmetric, B of full rank, Colsp B̄ = ColspB
and d = J�∂�

r V with V : R → R in C1. Let

V(r)−V(rd) > 0 ∀r ∈ RΦ − {rd} , (7a)

B⊥(r)M(r)B�
⊥(r) � 0 ∀r ∈ RΦ, (7b)

v�
(
1
2Ṁ− Γ

)
v ≤ 0 ∀(r, v) ∈ Xc. (7c)

Then system (1) with zero input (τ = 0) is stable in the
equilibrium (rd, 0). Asymptotic stability is given whenever
the largest invariant set of (1) contained in

Ω =
{
(r, v) ∈ Xc | v�

(
1
2Ṁ− Γ

)
v = 0

}
possesses no other solution than (r(t), v(t)) ≡ (rd, 0).

Proof. By Proposition 4, the conditions (7b), Colsp B̄ =
ColspB and rankB = nλ are sufficient to guarantee

Assumption 1, meaning that the system at hand is well-
posed. Define

E := 1
2v

�Mv +V.

Its time derivative along the system’s trajectories reads

Ė = v�
(
1
2Ṁ− Γ

)
v,

which is obtained from d = J�∂�
r V, τ = 0 and the work-

less feature of the constraint forces imposed by Colsp B̄ =
ColspB. Since Xc is a regular manifold, let (N ,Ψ) be
a coordinate chart on Xc with local coordinates x̄ s.t.
(rd, 0) ∈ N . Then, (1) can be locally expressed as an
ODE with coordinates x̄ ∈ Ψ(N ) ⊂ R2nr−nφ−nλ . Define
Ē(x̄) := E(Ψ−1(x̄))−E(rd, 0). From Lyapunov’s Theorem,
the point x̄d := Ψ(rd, 0) is a stable equilibrium of the

local ODE if Ē is positive definite and ˙̄E is negative
semidefinite, both about x̄d. For this, rewrite

Xc =
{
(r, v | r ∈ RΦ, v̄ ∈ Rnr−nλ , v = B�

⊥(r)v̄
}
,

and note that E|Xc
can be expressed as

E|Xc
= 1

2v
�Mv

∣∣
Xc

+V
∣∣
RΦ

= 1
2 v̄

�B⊥MB�
⊥v̄

∣∣
RΦ

+V
∣∣
RΦ

.

Thus, conditions (7) are sufficient for E
∣∣
N being positive

definite about (rd, 0) and Ė
∣∣
N being negative semidefinite,

i.e., x̄d is a stable equilibrium of the local ODE and (rd, 0)
is a stable equilibrium of (1). Finally, asymptotic stability
follows from a standard application of LaSalle’s invariance
principle on the underlying ODE, obtained from (1a)
and (3), with a positively invariant set contained in N .

Proposition 7 offers sufficient conditions to guarantee
(asymptotic) stability in the equilibrium (rd, 0). The sub-
sequent proposition shapes the total energy of mechanical
systems ensuring (asymptotic) stabilization of an admissi-
ble equilibrium.

Lemma 8. Given A ∈ Rn×s and G ∈ Rn×m, the equation

0 = A+GK

has a solution K ∈ Rm×s if and only if 0 = G⊥A. If a
solution exists, they are all of the form K = −GgA+G⊥�ν,
where ν is arbitrary and of adequate size.

Proof. See Piziak and Odell (2007).

Proposition 9. Let system (1) with B(r) of full rank ver-
ify Assumption 2. Suppose there exist C1 functions X :
R → Rnr×nr

nr
and Vd : R → R with XM�= MX� s.t.

N⊥
(
d−XJ�∂�

r Vd

)
= 0 ∀r ∈ RΦ, (8a)

N⊥XB = 0 ∀r ∈ RΦ, (8b)

with N =
[
G B̄

]
. The feedback

τ = [Inu
0]Ng

(
d−XJ�∂�

r Vd +XBλd +NKX−�v
)
(9)

with K : R× Rnr → Rnr×nr transforms (1b) into

X−1Mv̇ +X−1
(
Γ−NKX−�)v + J�∂�

r Vd = Bλd, (10)

where λd is the new implicit variable. Suppose

Vd(r)−Vd(rd) > 0 ∀r ∈ RΦ − {rd} , (11a)

B⊥(r)X
−1M(r)B�

⊥(r) � 0 ∀r ∈ RΦ, (11b)

v�X−1WX−�v ≤ 0 ∀(r, v) ∈ Xc (11c)

where W = 1
2ṀX� − 1

2ẊM� − ΓX� + NK. Then
the closed-loop (1a), (10) with constraints (1c) and (1d)
is stable in (rd, 0). Furthermore, asymptotic stability is
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B̄1 = G⊥B̄, z = Z(r)v, and Z : R → R(nr−nu)×nr is an
arbitrary C1 function for which [ ZY ] is nonsingular.

Proof. From Assumption 1 and Proposition 4, B̄⊥MB�
⊥

is nonsingular and Λ can be written as

YB�
⊥
(
B̄⊥MB�

⊥
)−1

B̄⊥G.

Clearly, rank(B̄⊥G) = rank(B⊥Y
�) = nu is a necessary

condition for the nonsingularity of Λ that is equivalent
to (4) under Lemma 3. Since nr > nu, define

Λ̄(r) :=




G⊥ 0

[Y 0]P−1

0 Inλ


, Λ̂(r) := Λ̄P

[
[ ZY ]

−1
0

0 Inλ

]
,

and note from Lemma 3 that Λ̄ and Λ̂ are nonsingular iff so
is Λ. Left multiplying (3) by Λ̄, changing the coordinates

with v = [ ZY ]
−1

[ zy ], and using the feedback (5) leads to

Λ̂

[
ż
ẏ
λ

]
+




Γ1v + d1

0

d
dt

(
B� [ ZY ]

−1
)[

z
y

]

 =

[
0
Inu

0

]
u.

Consequently, the closed-loop is well-posed (see Proposi-
tion 5) and can be written as (1a), (6) with (1c)–(1d).

Proposition 6 states that system (1) can be partially
linearized by the state feedback (5) whenever the system
is well-posed and Λ(r) is nonsingular in the configuration
manifold RΦ. For this, we require an appropriate selection
of the output y and linear independence of the columns
of

[
B̄(r) G(r)

]
. The latter is a restriction on the class

that prevents the input forces from being dominated by
the constraints forces. The former involves picking a C1

function Y, whose rows are linearly independent of the
columns of B. This is not surprising, as we should be able
to steer ẏ arbitrarily without conflicting with the velocity
constraints (1d). Finally, to obtain the partially linearized
system, we select the variables z = Z(r)v such that [ ZY ] is
nonsingular and continuously differentiable. Furthermore,
even if the constraint forces of the nominal system obey
the Lagrange-d’Alembert principle, i.e., they are workless,
they may lose this feature after the PFL, see Section 6.2.

4. ENERGY SHAPING

Following the results of Cieza and Reger (2019) with
IDA-PBC, we present the modified energy shaping for
mechanical systems with kinematic constraints.

Proposition 7. Let system (1) verify Assumption 2. Sup-
pose M as symmetric, B of full rank, Colsp B̄ = ColspB
and d = J�∂�

r V with V : R → R in C1. Let

V(r)−V(rd) > 0 ∀r ∈ RΦ − {rd} , (7a)

B⊥(r)M(r)B�
⊥(r) � 0 ∀r ∈ RΦ, (7b)

v�
(
1
2Ṁ− Γ

)
v ≤ 0 ∀(r, v) ∈ Xc. (7c)

Then system (1) with zero input (τ = 0) is stable in the
equilibrium (rd, 0). Asymptotic stability is given whenever
the largest invariant set of (1) contained in

Ω =
{
(r, v) ∈ Xc | v�

(
1
2Ṁ− Γ

)
v = 0

}
possesses no other solution than (r(t), v(t)) ≡ (rd, 0).

Proof. By Proposition 4, the conditions (7b), Colsp B̄ =
ColspB and rankB = nλ are sufficient to guarantee

Assumption 1, meaning that the system at hand is well-
posed. Define

E := 1
2v

�Mv +V.

Its time derivative along the system’s trajectories reads

Ė = v�
(
1
2Ṁ− Γ

)
v,

which is obtained from d = J�∂�
r V, τ = 0 and the work-

less feature of the constraint forces imposed by Colsp B̄ =
ColspB. Since Xc is a regular manifold, let (N ,Ψ) be
a coordinate chart on Xc with local coordinates x̄ s.t.
(rd, 0) ∈ N . Then, (1) can be locally expressed as an
ODE with coordinates x̄ ∈ Ψ(N ) ⊂ R2nr−nφ−nλ . Define
Ē(x̄) := E(Ψ−1(x̄))−E(rd, 0). From Lyapunov’s Theorem,
the point x̄d := Ψ(rd, 0) is a stable equilibrium of the

local ODE if Ē is positive definite and ˙̄E is negative
semidefinite, both about x̄d. For this, rewrite

Xc =
{
(r, v | r ∈ RΦ, v̄ ∈ Rnr−nλ , v = B�

⊥(r)v̄
}
,

and note that E|Xc
can be expressed as

E|Xc
= 1

2v
�Mv

∣∣
Xc

+V
∣∣
RΦ

= 1
2 v̄

�B⊥MB�
⊥v̄

∣∣
RΦ

+V
∣∣
RΦ

.

Thus, conditions (7) are sufficient for E
∣∣
N being positive

definite about (rd, 0) and Ė
∣∣
N being negative semidefinite,

i.e., x̄d is a stable equilibrium of the local ODE and (rd, 0)
is a stable equilibrium of (1). Finally, asymptotic stability
follows from a standard application of LaSalle’s invariance
principle on the underlying ODE, obtained from (1a)
and (3), with a positively invariant set contained in N .

Proposition 7 offers sufficient conditions to guarantee
(asymptotic) stability in the equilibrium (rd, 0). The sub-
sequent proposition shapes the total energy of mechanical
systems ensuring (asymptotic) stabilization of an admissi-
ble equilibrium.

Lemma 8. Given A ∈ Rn×s and G ∈ Rn×m, the equation

0 = A+GK

has a solution K ∈ Rm×s if and only if 0 = G⊥A. If a
solution exists, they are all of the form K = −GgA+G⊥�ν,
where ν is arbitrary and of adequate size.

Proof. See Piziak and Odell (2007).

Proposition 9. Let system (1) with B(r) of full rank ver-
ify Assumption 2. Suppose there exist C1 functions X :
R → Rnr×nr

nr
and Vd : R → R with XM�= MX� s.t.

N⊥
(
d−XJ�∂�

r Vd

)
= 0 ∀r ∈ RΦ, (8a)

N⊥XB = 0 ∀r ∈ RΦ, (8b)

with N =
[
G B̄

]
. The feedback

τ = [Inu
0]Ng

(
d−XJ�∂�

r Vd +XBλd +NKX−�v
)
(9)

with K : R× Rnr → Rnr×nr transforms (1b) into

X−1Mv̇ +X−1
(
Γ−NKX−�)v + J�∂�

r Vd = Bλd, (10)

where λd is the new implicit variable. Suppose

Vd(r)−Vd(rd) > 0 ∀r ∈ RΦ − {rd} , (11a)

B⊥(r)X
−1M(r)B�

⊥(r) � 0 ∀r ∈ RΦ, (11b)

v�X−1WX−�v ≤ 0 ∀(r, v) ∈ Xc (11c)

where W = 1
2ṀX� − 1

2ẊM� − ΓX� + NK. Then
the closed-loop (1a), (10) with constraints (1c) and (1d)
is stable in (rd, 0). Furthermore, asymptotic stability is
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achieved whenever the largest invariant set of the closed-
loop contained in

Ωd =
{
(r, v) ∈ Xc | v�X−1WX−�v = 0

}
possesses no other solution than (r(t), v(t)) ≡ (rd, 0).

Proof. Multiplying (10) on the left by X and equating
the result with (1b) yields

N

[
τ
λ

]
= d−XJ�∂�

r Vd +XBλd +NKX−�v. (12)

Thus, from Lemma 8 and (12), conditions (8) with feed-
back (9) are sufficient to transform (1b) into (10). Note
that λd is the new implicit variable of the system, which
means that the solution of λ is irrelevant. The stability
results are obtained from a straightforward application
of Proposition 7 on the closed-loop (1a), (10), where
X−1M is symmetric from XM� = MX�.

The actual synthesis with this proposition starts by
choosing N⊥ and rd. Then, from XM� = MX�, (8b)
and (11b)–(11c), we obtain a solution of X and K. Im-
posing MX� � 0 is sufficient for (11b) but it requires the
nonsingularity of M and may hinder the solution of X in
a similar way as in Cieza and Reger (2019) for IDA-PBC.
Next, we solve Vd from (8a) and (11a). Here, (11a)–(11b)
are locally equivalent to

∂r(Vd + µ�dΦ)
∣∣
r=rd

= 0, (13a)
(
∂�
r Φ

)
⊥ ∂rr(Vd + µ�dΦ)

(
∂�
r Φ

)�
⊥

∣∣∣
r=rd

� 0, (13b)

B⊥X
−1MB�

⊥
∣∣
r=rd

� 0 (13c)

for some constant µd ∈ Rnλ . 5 In case Vd cannot be
obtained, we search for a differentX in the previous step. If
rankN = nr, the matching conditions (8) are trivial, and
there always exist Vd, X and K verifying (11). Note that
the matching of the potential energy and constraints, given
by (8), are similar to the ones of Cieza and Reger (2019),
but the matching of kinetic energy, given by (11c), is not
and require the solution of DAEs instead of PDEs. Lastly,
we calculate λd from (10) and the hidden constraints,
select Ng, and build feedback (9). If nu+nλ > rankN, we
may add N⊥�ν to (9) with arbitrary ν, see Lemma 8.

5. EQUIVALENCE BETWEEN REPRESENTATIONS

Since the DAE systems that we discuss are evolving on
a regular manifold, there always exists a local ODE that
represent its behavior. In other words, we can eliminate
the kinematic constraints and provide a reduced system.
This is fundamental to compare the results between the
implicit and explicit representations.

Proposition 10. (Reduction). Consider the well-posed sys-
tem (1). Let (N , ξ−1) be a coordinate chart on RΦ with lo-
cal coordinates q ∈ ξ−1(N ) ⊂ Rnr−nΦ , Let T : ξ−1(N ) →
R(nr−nλ)×nr and T̄ : ξ−1(N ) → R(nr−nλ)×nr be full-
rank left annihilators of B ◦ ξ and B̄ ◦ ξ, respectively,
where T ∈ C1. Then, for all r ∈ N , system (1) with
v = T�(q)s ∈ Rnr−nλ and r = ξ(q) can be reduced to

q̇ = J(q)s, (14a)

M(q)ṡ+ Γ(q, s)s+ d(q) = G(q)τ, (14b)

5 If there are no holonomic constraints, conditions (13a)–(13b)
reduce to ∂rVd|r=rd

= 0 and ∂rrVd|r=rd
� 0.
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Fig. 1. Diagram of the portal crane.

where M(q) = T̄MT� is nonsingular, G(q) = T̄G,

J(q) =
(
∂qξ

)g
JT�, Γ(q, s) = T̄MṪ�s + T̄Γv, v = Ls,

L(q) = MT�M−1, and d(q) = T̄d.

Proof. Consider the change of variables

r = ξ̂(q̂) := ξ(q) +
(
(∂qξ)

g
)
⊥�qx, (15a)

v = T̂�(q)ŝ :=
[
T�(q) B(ξ(q))

]
ŝ, (15b)

with ŝ = vec(s, sx), q̂ = vec(q, qx), sx ∈ Rnλ and qx ∈ RnΦ .

By definition of ξ and T , it follows that ∂q̂ ξ̂
∣∣
qx=0

and T̂

are nonsingular for all q ∈ ξ−1(N ) and a neighborhood

of qx = 0, i.e., the map (q̂, ŝ) �→ (ξ̂(q̂), T̂−1(q)ŝ) is a
C1 diffeomorphism where qx(·) = 0 for every solution
r(·) ∈ RΦ. Besides, substituting (15b) into (1d) shows
that every solution v(·) ∈ Xc implies sx(·) = 0. Now,
replacing (15) with qx = 0 and sx = 0 into (1a)–(1b),

and left multiplying the result by
[
T̄� B̄

]�
, which is full

rank in RΦ, yields (14b) with

˙̂q =
(
∂q̂ ξ̂

∣∣
qx=0

)−1
JT�s, B̄�MT�ṡ = �+ B̄�B̄λ,

where ‘�’ shall denote unspecified elements. Since

(
∂q̂ ξ̂

∣∣
qx=0

)−1
=

[
(∂qξ)

g

L−1
(
∂qξ

)
⊥

]
, L(q) =

(
∂qξ

)
⊥

(
(∂qξ)

g
)
⊥�,

Rowsp
(
∂qξ

)
⊥ = Rowsp ∂rΦ, Rowsp (∂rΦJ) ⊂ RowspB�,

we can write (
∂q̂ ξ̂

∣∣
qx=0

)−1
JT� =

[
J� 0

]�
,

which is consistent with qx(·) = 0 and (14a). Finally,
nonsingularity of T̄MT� is deduced from (2) with a well-
posed system (1), giving a unique solution to ṡ and λ.

Proposition 10 removes the kinematic constraints of sys-
tem (1), reducing it from an implicit model of 2nr states
and nλ+nΦ constraints to an explicit one of 2nr−nλ−nΦ

states. The new states q represent generalized coordinates
while the states s are projection of ṙ. Note that Propo-
sition 10 offers high flexibility in the representation of
the reduced system (14) since ξ, T , T̄ and

(
∂qξ

)g
are

non-unique. However, all reductions are locally equivalent
because they rely on the topology of the constrained state
space manifold Xc, meaning that the coordinates we choose
to represent the dynamics are immaterial.

6. EXAMPLE ON A 5-DOF PORTAL CRANE

For illustration, let us consider the portal (or overhead)
crane, shown in Figure 1. We shall design an energy
shaping controller that suppresses the payload swing and
stabilizes it in a desired position. Inspired by Vidal et al.
(2020) for the case with 4-DoF, we will derive a 5-DoF
model, and use the PFL of Proposition 6 followed by the
total energy shaping of Proposition 9.

6.1 Implicit Model

The crane system is composed of a bridge of mass mx −
my, a trolley of mass my mounted under the bridge, and
a hanging payload of mass mp. The bridge slides along
parallel runways in the x-axis and is actuated by the force
τx, whereas the trolley does so along the bridge in the y-
axis and is actuated by the force τy. A winch attached
to the trolley supports the payload by exerting a force
τl on the rope of length l. We denote by (xt, yt, 0) the
trolley position in the inertial frame and by (xp, yp, zp)
the payload position relative to (xt, yt, 0) that satisfies

0 = Φ(r) := 1
2

(
x2
p + y2p + z2p − l2

)
. (16a)

The following assumptions are made: i) The payload is
a point mass. ii) The rope mass is negligible and l > 0.
iii) The gravity of magnitude gc points downwards (di-
rection −z). iv) The initial conditions are consistent (As-
sumption 2 holds). v) The Rayleigh dissipation function is

of the form D̂(r, ṙ) := 1
2cxẋ

2
t +

1
2cy ẏ

2
t +

1
2cl l̇

2.

By choosing the coordinates

r = vec(xp, yp, zp, xt, yt, l) ∈ R = R6,

we have the Lagrange equations of motion

M̂r̈ + ∂�
ṙ D̂+ ∂�

r V̂ = ∂�
r Φλ̂+ Ĝτ, (16b)

where τ = vec(τx, τy, τl), Ĝ = [03×3 I3]
�
, V̂ = gcmpzp,

M̂ =




mp 0 0 mp 0 0
0 mp 0 0 mp 0
0 0 mp 0 0 0
mp 0 0 mp +mx 0 0
0 mp 0 0 mp +my 0
0 0 0 0 0 0



.

Clearly, the system has 5 DoF, the holonomic constraint
is given by (16a), and the velocity constraint reads

0 = ∂rΦ ṙ. (16c)

Since P =
[

M̂ −∂�
r Φ

∂rΦ 0

]
is nonsingular, Assumption 1 holds

and system (16) is well-posed even though M̂ is singular
(see Proposition 5). In previous works, the singularity
was conveniently avoided by fixing l to be constant, i.e.,
obtaining a model with 4-DoF (Vidal et al., 2020). Now, let
us pick the generalized coordinates q = vec(β, α, xt, yt, l)
verifying r = ξ(q) with

xp = l sinβ, yp = l cosβ sinα, zp = −l cosβ cosα.

It is easy to check that the Lagrange equations obtained
with coordinates q are equal to the ones of (16) after the
reduction of Proposition 10 and T = T̄ = ∂�

q ξ.

6.2 Partial Feedback Linearization

Choosing y = vec(ẋt, ẏt, l̇) = Yṙ, we see that

detΛ =
x2
p + y2p + z2p
l2mpmymx

=
1

mpmymx
> 0, ∀r ∈ RΦ.

Hence, feedback (5) with Ĝ⊥ = m−1
p [I3 03×3] and z =

vec(ẋp, ẏp, żp) = Zṙ transforms (16b) into

r̈ + ∂�
r V = B̄λ+Gu, (17)

where V = gczp, B̄(r) = vec(xp, yp, zp, 0, 0, 0) and

G =

[−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 0 0 0 1

]�
.

Given that Colsp B̄(r) �= Colsp ∂�
r Φ, the constraint forces

are not workless for every trajectory of the system,
which was also a limitation on previous approaches (Cieza
and Reger, 2019; Castaños and Gromov, 2016). Observe
that (17) is much simpler than (16b) because we only
require the constant gravity parameter gc. Now, follow-
ing Vidal et al. (2020), feedback (5) can be approximated
by a velocity tracking controller for y with an integrator in
its input. Such a velocity controller may be for example a
PID plus feedforward, meaning that we may avoid identi-
fication of masses, frictions and others parameters. Using
Proposition 10 on (16a), (16c), (17) with T (q) = ∂�

q ξ and

T̄ (q) =




l cos(β) −l sin(α) sin(β) l cos(α) sin(β) 0 0 0
0 l cos(α) cos(β) l cos(β) sin(α) 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


,

we obtain the same system as if the PFL was implemented
on the Lagrangian equations with generalized coordinates,
showing equivalence between the implicit and explicit per-
spectives. However, note that i) the reduced system does
not fit into the Lagrangian framework, ii) the underactu-
ation degree is greater than one, and iii) M depends on
the actuated coordinate l. These features prevent us from
using standard methods such as the well-known PID-PBC
of Donaire et al. (2016a) to shape the total energy which
could otherwise be very challenging.

6.3 Total Energy Shaping

To shape the energy of (17), we start by choosing

N⊥ =

[
−zp 0 xp −zp 0 0
0 −zp yp 0 −zp 0

]

and rd = vec(0, 0,−l�, x�
t , y

�
t , l

�) with l� > 0. For simplic-
ity, consider X = X� to be constant and write

Vd = V +
k1
2
(xt − x�

t )
2 +

k2
2
(yt − y�t )

2 +
k3
2
(l − l� + b)2

with constants b, ki ∈ R. Hence, conditions (8), (11b)
and (11c) are algebraic and can be satisfied with 6

X =




a1 + 1 0 0 −a1 0 0
0 a3 + 1 0 0 −a3 0
0 0 1 0 0 0

−a1 0 0 a1 0 0
0 −a3 0 0 a3 0
0 0 0 0 0 a2



, K = −KcN

�,

Kc = diag(c1, c2, c3, 0) for any positive constants ai and ci.
Then, from (13a)–(13b),Vd

∣∣
RΦ

has a strict local minimum

in rd whenever µd = gc
l� , b =

gc
k3
, and ki > 0, i = {1, 2, 3}.

Finally, we pick [I3 03×1]Ng = [03×3 I3], calculate λd,
and build the stabilizing controller (9) with N⊥�ν = 0.
Similarly, the energy shaping can also be applied to the
system without PFL, namely (16b) where M̂ is singular.

6.4 Simulation

Figure 2 shows the simulation results for the portal crane
in PFL with controller parameters k1 = k2 = 5, k3 = 4,
a1 = a2 = a3 = 1, c1 = c2 = c3 = 5 and initial
6 By using Prop. 10, it can be seen that the target inertial matrix of
the reduced closed-loop is state dependent even thoughX is constant.
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2
t +

1
2cy ẏ
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is given by (16a), and the velocity constraint reads

0 = ∂rΦ ṙ. (16c)

Since P =
[

M̂ −∂�
r Φ

∂rΦ 0

]
is nonsingular, Assumption 1 holds

and system (16) is well-posed even though M̂ is singular
(see Proposition 5). In previous works, the singularity
was conveniently avoided by fixing l to be constant, i.e.,
obtaining a model with 4-DoF (Vidal et al., 2020). Now, let
us pick the generalized coordinates q = vec(β, α, xt, yt, l)
verifying r = ξ(q) with

xp = l sinβ, yp = l cosβ sinα, zp = −l cosβ cosα.

It is easy to check that the Lagrange equations obtained
with coordinates q are equal to the ones of (16) after the
reduction of Proposition 10 and T = T̄ = ∂�
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6.2 Partial Feedback Linearization
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r Φ, the constraint forces

are not workless for every trajectory of the system,
which was also a limitation on previous approaches (Cieza
and Reger, 2019; Castaños and Gromov, 2016). Observe
that (17) is much simpler than (16b) because we only
require the constant gravity parameter gc. Now, follow-
ing Vidal et al. (2020), feedback (5) can be approximated
by a velocity tracking controller for y with an integrator in
its input. Such a velocity controller may be for example a
PID plus feedforward, meaning that we may avoid identi-
fication of masses, frictions and others parameters. Using
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on the Lagrangian equations with generalized coordinates,
showing equivalence between the implicit and explicit per-
spectives. However, note that i) the reduced system does
not fit into the Lagrangian framework, ii) the underactu-
ation degree is greater than one, and iii) M depends on
the actuated coordinate l. These features prevent us from
using standard methods such as the well-known PID-PBC
of Donaire et al. (2016a) to shape the total energy which
could otherwise be very challenging.
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and build the stabilizing controller (9) with N⊥�ν = 0.
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6 By using Prop. 10, it can be seen that the target inertial matrix of
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conditions xp(0) = yp(0) = xt(0) = 0m, yt(0) = 0.8m,
l(0) = 1m and ṙ(0) = 0. The desired position rd is set to
i) x�

t = 0m, y�t = 0.8m and l� = 1m for t ∈ [0, 1[ s, and
ii) x�

t = 1m, y�t = 0.2m and l� = 0.5m for t ∈ [1, 15[ s. Here
Ed := 1

2 ṙ
�X−1ṙ +Vd is the energy of (17) in closed-loop

with (9), where Vd is shifted s.t. Vd(rd) = 0. Clearly, the
controller achieves asymptotic stabilization of rd and Ed

is monotonically decreasing as expected.
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Fig. 2. Closed-loop simulation of the portal crane.

7. CONCLUSION

In this work, we formalize the PFL for constrained me-
chanical systems. The method requires input forces and
constraint forces in different subspaces, and its application
may break with the workless feature of the constrained
forces. For the energy shaping, we can successfully include
systems with PFL, extending previous results. Besides,
the obtained matching conditions are similar to the ones
of Cieza and Reger (2019) for IDA-PBC. The main differ-
ence lies in the kinetic matching, which in our case may
require the solution of DAEs instead of PDEs. Both the
PFL and energy shaping can be used with singular iner-
tia matrices, which is not feasible with port-Hamiltonian
systems without modification.

The approaches are verified on the 5-DoF crane, whose
implicit model has a singular inertia matrix. After PFL,
the resulting inertia matrix is nonsingular, but the con-
straint forces are not workless. However, the model is much
simpler because it only depends on the gravity constant as
a parameter. Finally, for illustration, the total energy shap-
ing is carried out with a constant target inertia matrix and
a candidate potential energy that was chosen beforehand.
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Appendix A. PROOF OF LEMMA 3

Given B ∈ Rn×s and C ∈ Rn×(m−s), we have

rank [B C] = rank

([
C⊥
C�

]
[B C]

[
Is 0
F Im−s

])

= rank

[
C⊥B 0

C�(B + CF ) C�C

]
(A.1)

for some F ∈ R(m−s)×s, where rank
[
C C�

⊥
]
= n. Since,

C�(B + CF ) = 0 ⇐⇒ ∃P s.t.
[
C C�

⊥
] [F

P

]
= B,

there always exists F verifying C�(B+CF ) = 0, and our
claim follows easily from (A.1) with such an F .


