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Abstract: An adaptive backstepping algorithm is developed for a class of uncertain systems in
pure-feedback form. The control is based on a dynamic state feedback that allows to compensate
for parametric uncertainties which enter linearly into the system. As possible in the nominal case,
a dynamic extension of just order one is required, in addition to the dynamics of the identifiers
for the adaptation. The regularity of the control law only requires standard assumptions.
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1. INTRODUCTION

Backstepping is a powerful framework to design feedback
controllers for triangular systems (Krstié¢ et al., 1995). In
the case of systems in strict feedback form the framework
has achieved great progress. However, backstepping has
only provided limited results for systems in pure feedback
form, which is due to the encountered implicit equations.
In this light, Zhang and Qian (2017) introduced a dynamic
extension to avoid implicit equations. Also Mazenc et al.
(2018) have investigated on a dynamic extension with
delay in the backstepping framework in order to define an
algorithm with bounded outputs. Reger and Triska (2019)
extended the procedure by Zhang and Qian (2017) to
arbitrary dimension, using a specific dynamic extension of
just order one while requiring standard assumptions only.
To the best of the authors knowledge, such dynamic ex-
tensions have not further been addressed in backstepping.

In a next step towards solving real-world application prob-
lems, uncertainties are addressed. To this end, we enhance
the dynamic extension approach by adaptive control to
tackle linear-parametric uncertainties. Our procedure en-
compasses a dynamic extension of order one like in (Reger
and Triska, 2019) and shapes an adaptive identifier for the
parametric uncertainty based on the certainty equivalence
principle. The latter involves further dynamics in view of
the adaptation law with respect to the parametric uncer-
tainty. We establish asymptotic convergence resorting to
standard Lyapunov arguments.

* The second author acknowledges funding from Fondecyt-Peru
2019-4 internship program. The third author has received financial
support from the European Union Horizon 2020 research and innova-
tion program, Marie Sktodowska-Curie grant agreement No. 824046.

2. PROBLEM STATEMENT
2.1 System Class

We consider the class of pure-feedback nonlinear systems
with linear uncertainties characterized by

1= fi(Z2) + ¢ (72)0 5
. _ _ 1
2 = fo(Z3) + Py (23)0 2o
i3 = f3(Z4) + Vg (T4)O X1 (1)
jjk = fk(i.]mu) + Q/J];r({i'k,u)@

where 7 € R"™ and zo,...,2r € R together are the
states, 7, = (z{,22,...,7;), u € R is the input, and
© € R" a vector of unknown parameters. Let the functions
fi1:R* xR =R", fi :R"xR" - R, ¥ : R" xR — R™*",
Y; : R x R* — R", with ¢« = 2,...,k be continuously
differentiable of sufficient order. For the sake of notation
let ;41 = u where appropriate. Further assume

such that the origin is an equilibrium point.

2.2 Assumptions

Assumption 1. There is a known function ay(zq,9!), a
radially unbounded Lyapunov function V(z1,9') and an
adaptation law for 9* where 9! is some first parameter
identifier of © such that for any 9! the state 2; = 0is a sta-
ble equilibrium with respect to @1 = fi(z1, a1 (21, 9)) +
©f (1, a1 (z1,91))0. Furthermore, the following condi-
tions shall be satisfied:
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1) a1(0,9%) =0, %ﬁ”ﬂ =0, for any ¥,

z1=0

2) V=0 < z,=0.

3) 21 =0= 91 =0.
Remark 1. Assumption 1 assures that for 1 = 0 we have
V= %ﬁ“(ﬁ(zl,al(zl,ﬁl» +o] (21, 01(21,01))0) +
W91 — ( and ! = 0.
Assumption 2. For controllability assume that

9 8 (fil@ip1) + o (£41)0) # 0 (3)
Li+1

for any Z;41 € R""" and © € R", i = 1,...,k or at least
locally in a domain F including the origin. This extends
the assumption in (Reger and Triska, 2019). We also use:

Definition 1. Let the auxiliary functions G; be given as

1
0 _
Gi—/o %fi(l”mv)

for e =1,...,k and for any scalar «;, such that it holds
fi(@i1) = fi(Zi, 06) + Gi@ign — o). (5)

In the case of adaptation laws for 9, later we will employ
the notation H;, instead of Gj.

) (4)

v=0;+ATi 41

3. MAIN RESULT: ADAPTIVE BACKSTEPPING
WITH DYNAMIC EXTENSION

Equipped with these assumptions and definitions we are
in the position to state a dynamic state feedback with
adaptation law that stabilizes the origin asymptotically
against any parametric uncertainty.

Theorem 1. Let system (1) satisfy Assumptions 1-2 in a
domain F containing the origin. Let (z,u,®) be initialized
inside a compact, positively invariant set 2 C F. Then the
following dynamic state feedback stabilizes the extended
system such that lim;_,o(z,u) = 0 with any element of
the series of identifiers 9*T1 = (91, ..., 9*+1) bounded:

i — (afk(zk,u) L ol et _ aak,l(;fk,u,@c))‘l

ou ou ou

|:_ Kk(u - Oék(jk;,u ’lgk)) — (:Ck: — ak71(£k71§k—1)>
+ Zz 1 %(ﬁ(ji—&-l) + @] (Tip1)0% )
+ Zz 1 %ﬁ.l} . (6)

In this dynamic feedback, aj(x1,9!) is an initial function
that satisfies Assumption 1 and

%{01@1@2 — ay(z1,9"))

+ B (21,25 = ar (21, 0)02] = (fal@3) + 03 (22)?)

+ b (T2,9%) — K1 (2 — ay(z1,0")). (7)
Furthermore, we have the adaptation law

7= (2 — o (1, 91)) [ 20D

ay(Z3,9%) = x5 —

)Hl—r(iﬂl,fﬂg — 041(1'1,191))

Oxq
_ Aoy (w1,0" _
3 (25) — 22T ()| o (8)
and update of an estimate described by

30&1(11,191) '1

b (T, 0%) = %@(ﬁ(@)‘*‘@?(@)ﬁ?)*’ oz :
(9)

For the remaining ¢ = 3, ..., k, we have
@i (Tig1,90)= 21 — (Ti1 — ai—2(Tim1,Y5-2))
—(fi@ir1) + @] (Zi11)9") + &1 (Zi41,9Y),
and for the further adaptation laws firstly
gi " = gi—1
U :(JJZ‘—O(Z' 1(],‘,‘,’[9 ))

(10)

_ da; z1,5‘_1 _
[o] (Fir1) — Spoy 2=t DT (340)] Ty (11)
and finally
q T a o (T ,u, _
I = —(u — ap(Zg, u, 19’“))21 18 . a’;’l s )@zT(sz)l"k.

(12)

k we have

Fori=2,...,
J - 34 o (Tit1,9") 31
ai(mi+2ﬂ9l+ )= Zl 1 61;1 )19

7 1o} i+t1,0 = 3
+ S 22T (i(F14) + o] (F140)07+). (13)
The gains may be freely chosen as K; > 0 and adaptations
gain matrices as I'; = FjT >0eR™> forj=1,...,k. O

Remark 2. Dynamic feedback (6) works for any initializa-
tion. However, if z;(0) and some initial parameter esti-
mates 9¥¢(0) are available, convergence can be improved
by choosing up = u(0) as solution of the implicit equation

ug — ag(Z1(0), ug, 9%(0)) = 0. (14)

4. PROOF OF THE MAIN RESULT

Proof. Step 1: The first step will focus on X; of (1).
Note that the indices in the following V, ; ;j(Zi11,v”) shall
spot the dependency on Z;,; and ©7. The objective at this
stage is to obtain the stabilizing term s (%3, 9%, 92) and
the adaptation law for the right-hand side of 9¥2.

We take the starting Lyapunov function candidate

1(332 - al(xl,ﬂl))Q.

Vo1 (Z2,9") = 5

V(zy,9') + (15)

Its time derivative reads
Va1 (@s,0") = 2000 (£ (35) + o] (72)0)
+ %&fﬂl)ﬁl + (22 — (w1, 9")) (f2(T3)
+ 03 (23)0 — 1 (T2, 0")). (16)
Assumption 1 may be employed using Definition 1 as per
f1(22) = fi(z1, a1 (z1,9")) + Gr(21, 22 — ay(z1,9"))
(2 — aq(z1,9Y)) (17)
o1 (B2) = @] (w1, 00 (21,9")) + H{ (21,79 — sy (w1,90"))
(zy — ag(zy,9)). (18)

The use of these expressions in (16) yields

Vo (@s,0") = %ﬂ’w [fi(z1, 0 (21,91))
+ o] (21, 01 (21,01))0] + L&D 1
+ (w9 — oz1(x1,191))<3‘/(+1£ (G (@1, 2 — an (a1, 91))
+ H (21,22 — a1 (x1,9"))0O]
+ f2(Z3) + g (T3)0 — 0'[1(527191)).

The terms between the big parentheseb in (19) shall be
stabilized by choice of a(Z3,9?). This may be done letting

(19)
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— 1
T3 — ap(T3,0°) = %jfﬁ) [G1(21, 22 — o1 (21,0))

+ H (z1, 22 — oy (z1,9"))9%] + fa(Ts)
+ 05 (23)0% — (1 (2, 0°) + K1 (w2 — ar (w1,9")) (20)
where &1 (Z2,9?) is an estimate of ¢ defined by
G (T2, 0%) = 22250 (£, (T2) + ] (72)0%) + 222091,
(21)
The following notation is introduced for simplicity:
Vi 2YCLD 1 () o (20, 91)) + ] (21, 01 (21, 91))©)
oV (x
+ V00 1 (22)
With the expressions (20) and (22) in (19), we obtain
Va1,1(23,9%) = Vi — K1 (22 — aq(z1,9))?
+ (22 — i (@1, 0")) (w3 — a2(73,9%))
1
+ (372 - Oé1<.’1?1,191)) [%HF(.IL.IQ — a1($1,191>>

+ 03 (75) — 2] (32)] (© - 9P).

To attenuate the influence of the estimation error © — 92,
we further augment the Lyapunov function candidate, i.e.

(23)

_ 1
Va,2(Z2,0?%) = Vo 1.1(Z2,9) + 5(@ - 937 (O —v?),
(24)
which first yields
Va1 2(F2, 02) = Vo 11 (72,9") = 0% T71(© = 9%)  (25)

and can be rewritten with (23) as
Var,2(Ta,02) = Vi — Ky (z9 — (1, 9"))?
+ (x2 — i (w1, 0")) (w3 — @2(73,9%))
+ ((:I:g — aq(z1,9)) [%Hf(mwg — ay(z1,91))
+ 0 () — 22T (75)] - 92T ) (€ - 92). (26)

The adaptation law for 92 is chosen to cancel the influence
of the estimation error © — 92, thus we use

9= (@2 — an(a,0) | 2B (21,25 — o (a1,91))
801T(532)F1-
With the notation f/g = 1;/177 Ki(zy — ap(x1,9Y))? the
time derivative of V, 1 2(Z2,9%) can be expressed as

Va,1,2(f27 9?) =‘>2+($2—041 (z1,9")) (z3—az(T3,97)). (28)

The term (22 —ay (21, 91)) (23— (Z3,9?)) will be handled
in the following step.

3(11(11,191)

g (T3) — gt (27)

Step 2: The procedure in this step is similar to Step 1.
However, the objective will be to calculate a stabilizing
function as(Z4,93) and the adaptation law for ¥3. An
augmentation for the Lyapunov function candidate is

_ _ 1 _
V21 (T3, 0%) = Vi 1.2(22,9%) + 5(333 — aa(23,9%))% (29)

leading to the time derivative
Va2,1(Z3,9%) = Va1,2(22,9%) + (w3 — aa(3,9%))
(f3(24) + 93 (24)© — é2(74,0%)) .
Using the expression for V1 o from (28), (30) reads

(30)

Va72,1(.f3,1§2) = ‘72 + (.133 — Oég(i‘g,, 1?2))(l‘2 — Oél(.%‘l,ﬁl)
+f3(Z4) + @g (24)O — dia(24,9%)). (31)

The terms between the big parenthebeb in (31) shall be
stabilized by a choice of as(Z4,7?), given by

)+ f3(Za) + o3 (T)0°
—5[2(5]4,@3) + KQ(JJ?, — Oég(i‘3,1§2)) (32)

T4 — 0¢3(9?4,1§3) =29 — aq (21,9

where 542(@, 93) is an estimate of &y defined by
ba(24,0%) = Y00, 2R (fi(@i1) + @] (#i1)0%)
+ Y7, feale ) (33)
With expression (33) and (32), (31) can be expressed as
Va2,1(23,07%) = Va — Ky (a3 — aa(73,07))?
+ (x5 — 2(Z3,9%)) (x4 — a3(Z4,9%)) + (23 — a2(T3,77))
[od (@0) = oL, 22T @) | (0 - 9% (39)

To attenuate the influence of the estimation error © — 3,
we further augment the Lyapunov function candidate, i.e.

_ 1 _
Va2.2(Z3,0%) = Vo1 (23,9%) + 5(@ AR CERS)
(35)
which yields
Va22(%5,0%) = Vap1 (24,9%) — 9* T30 — %) (36)

and with (34) then can be rewritten as
Va2,2(Z3,0%) = Vo — Ky(23 — aa(3,9%))°
+ (23 — aa(#3,9%) (w4 — aa(z4, ) + ( (w3 — az(s,9?))

|03 (@0) = S22 0] (i) | - 97157 ) (0 — %),
(37)

The adaptation law for U3 is chosen to cancel the influence
of the estimation error © — 93, hence

937 q as (T

D= (w50 (@3, 0) [ 3 (20) -0 22255 0T (314.1) | T
‘ ' (38)

and introducing notation Vs := Vo — Ky(3 — aa(Z3,92))?,

the time derivative of V;, 2 2(Z4,9%) results in

(z3 — az(Z3,07)) (24 — 03(Z4,0)).

(39)
Step k-1: The procedures from Step 1 to Step k-1 are all
similar. The objective in this stage will be to calculate a
stabilizing function ay(Z,u, 9k ) and the adaptation law
for 9% . This leads to a new augmentation for the Lyapunov
function candidate, that is

Va,g,Q(h, 153) = ‘73 +

Vak—1,1(Zg, 9571 = Vo 2.0 (Zp—1,9772)
1 L
—|—§(l‘k — (Xk_l(i‘k,ﬁk 1))2 (40)
whose time derivative is

Va,k—l,l(i‘k; R = Va,k—Q,Q(fEk)ﬁk_Q)
+ (@ = a1 (@1, ) [ fu@n, ) + o] (21, 0)0

- dk_l(jk’u,ﬁk_l)} (41)
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The expression for Va’k,zg(i‘k, 9%72) from Step k-2 is
Va,k—z,z(fk,?gkd) = Vi
— Ko (Tp—1—ag_o(T—1), 9" 2))?
)@k —ak—1 (T, 7). (42)

Using Vk,1 = Vk,Q —kag(xkfl —Ozkfg(ffkfl)igk_z))z we
may rewrite (41) in the following way:

Va,kf1,1(fkﬂ§k_1) = Vi1 + (@ — akﬂ(%ﬁk_l))
[xk—l — ah—2(Tp—1,9"72) + fu(Th, u)

+ (Ik—l—ak—z(fk—lﬁk

+ of (T, 1)O — 1 (Th, s ﬁ’f—l)} : (43)

The terms between the brackets in (43) shall be stabilized
by choice of oy (Zk,u,9*). Note that here we choose

_2) +fk(jk7u)
+ o (Tr, )0 — G (Th, u, OF)
+ Kp_1(zg — ag_1 (75, 0"71)) (44)

where dk_l(jk, u,9%) is an estimate of dy,_1 defined by

X _ 3 Aoy (T, 9% 1 _
b (T, u, 9%) = 305 %ﬁﬁ)(ﬁ(wﬂ)

u— o (T, u, 9) = 21 — p_2(Tpp—1, 9"

Tl (E)0") + TS PRt (45)
Hence, with (45) and (44), we may express (43) as
Vark11(Zg, u,0%) = Vi1 — K1 (g — a1 (Zg, 07 1))2
+ (Z‘k — Oék_l(.i'k, ﬁk—l)(u — ak(n’ck, U, ’lgk))
+ (k= axr (1,95 1) [ 9] (0, )
—yp, Rl Dol @) | (0 - vh). (46)

In order to attenuate the influence of the estimation error
© — 9%, a new augmentation is introduced as

Vark1.2(@k, 0%) = Vo g 1.1 (T, 987 1)
1

+5(0=9") T (0 -9 (47)
which leads to
. _ . — T
Va,k—1,2(fk,uﬂ9k) =Vak-11(Tk, u, ﬂk)—ﬂk F,;ll(@—ﬂk)-

(48)

With (46) may now rewrite (48), that is

Va,k—l,Q(fka u, ,lgk)

+ (21, — ap_1 (T, 9F

= Vi1 — K1 (a — o1 (T, 0%
) — (@ u, 7))
+ (o = a1 (@, 97) o] (@0, 0)

ap—1(Zp, k—1 _ ST
- b, 2ot o T )| - 9RO - 9F).
(49)

The adaptation law for 9% is chosen to cancel the estima-
tion error © — 9F, i.e

o = (zr — g1 (2, 9° 7)) [@Z(fcka u)

kE  Oap_1(zk,0F1 _
= ic1 %’i)sﬂj(%ﬂ)} |

1))2

(50)

Using notation ‘L/k = ‘L/k_l — Kjo—1(z) — ag—1 (T, 1§1c—1))27

the time derivative of V; p_1 2 (%1, u, ﬂk) reads
Vak1,2(Zh, u, 0%) = Vi + (r — a1 (24, 971))

(u — ag(Zg, u,9%)). (51)

Finally, product (z3 —ag_1(Zr, 9% ~1)) (u—ar(Zr, u, 9%)) is
compensated by the dynamic extension « in the last step.

Step k: The exphclt solution that ensures the equality
u — o, (T, u,9¥) = 0 in (51) cannot be assumed available.
Thus, the Lyapunov function candidate is augmented
again and introduces a single dynamic state feedback in
order to obtain V, k2 (Zk, u, 9¥) < 0, and to attenuate the
estimation error © — ¥9¥+1. With this in mind, we use

Va k, 1(mk,u 9 ) Va k—1 Q(SCk,ﬁk) + %(u — ak(sﬁk7u,1§k))2
(52)
and its time derivative is
Voot (Thy 4, 9%) = Vo o—1,2(Z, u, 9F)
+ (u — ag(Zg, u, %)) (0 — é(Zg, u, 0, 9%)).  (53)

Using the expression for V, 1 2(%g, u,9%) from (51), we
may rephrase (53) as

Va7k,1<i’k7 U,ﬁk) =Vi + (u— Oék(fk7u71§k))
[mk — g1 (T, 1) 4 11 — o (T, s 1 ﬁk)}. (54)

The terms between the brackets are completing a square
when choosing

i — b (Zg, u, 0, 0¥ = —zp + o1 (T, 97
— K (u — o (&g, u, 0")). (55)

where &y, (Z1, u, 4, 9%1) is an estimate of ¢y, defined by

. — - — ak

b (T w0, 0P = S0 ‘daik(ag;’;’iu’ﬂ L(fi(Zi41)

+ (p;r(jiﬂwkﬂ) + 8ak(azzu,1§k)u+ Zf . dak(ggzuﬁ )191

(56)
We have the difference ¢y, — dy, given by
&k(jky u, ’L.L, ﬁk) - &k(jk7 u, ’L.L, ﬁk-‘rl) =
o (T ,u,ik —
Sy Gl oT (7, 0) (O —9RHY) (57)

which with (56) yields
a1 - 2eltt)) - K (u — ap (@, u, %)
— (x5, — a1 (T, L)) + 8 MW(J%(@-&-I)
o] (@) + DI, PGl (58)

We may analytically express the derivative Mu’”’m
(44) and substitute the result in (58) to obtain

i = (L U(nw) + o] (7, wp0¥) - Lslinnd )
|~ K = an(@r,u,9%)) = (@0 = apor (@0, 9°71)
+30 %ﬂ(ﬂ(@ﬂ) + o) (Tigp1)V* )
X0, Pl (59)

Now with (57), equation (54) results in
Visor (Tn, 1, 05F1) = Vi — Ko(u — ag (T, u, 9°))>2

— — ak
— (u—o(Tg, u, 0F)) Yo 2ot T (7 1) (0

X

via

_ 19k+1)

(60)
whose influence of the estimation error is canceled with
the last augmentation of the Lyapunov function candidate
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Vi (T us 04 = Vi1 (21w, 9%)
* %@ — MO @ -9 (61)
with time derivative
Va’k’Q@k’uvﬁkH) = Va,k,l(i‘k,u, 5k+1>
_ 19k+1TF,;1(9 B 19!@-5—1) (62)

leading with (60) to
Vako (T, u, 981 = f/k — Kp(u — o (Zg, u, 0%))?
+ ((u — ap (T, u, %)) [ -k %1’:“9)@ (%H)]
_ kT )(@ 191@+1) (63)

The final adaptation law for 9*+1 is chosen to cancel the
influence of the estimation error © — ¥**1, i.e.

P = (s u, 99)) | - S 20T (340) | T
(64)
which substituted in (63) establishes
Vikoo (F t, 08 FY) = Vi — K (u — g (34, u, 9%))?,
or to highlight the negative definiteness, equivalently
mG,g(fk, U, 1§k+1) =
— Ky (u — o (Zg, u, %)) 2. (66)
Remark 3. In order to avoid singularities in (59), condition
O (FlTh,u) + @f (F, W) — 20 Eendt) o o gt o
fulfilled on F. For this purpose, consider

F— D& (Tiyo, 0 )
¢ 3$i+2

(65)

(67)
which for i = 2,...,k — 1 in explicit terms reads
T = 731?“ (- 731?“ (fi(@ig1) + o] (Zig1)0) + 14 7im1)

(fir1(Tiv2) + @fy1 (Tiga)9™)] (68)
and vanishes for ¢ = 1, i.e. 7 = 0. With (67) and (68), the
required condition can be rewritten as

2 (fu(@r,u) + o (T, w)9*) — 7y #£0. (69)
For clarity in the analysis we drop the arguments. We have
o (fr+ @gﬁk) — i1 = s (fu + of 9%)

— 2 (= 2= (fer + 0 ") + 1+ 7o 2) (fi + o 7))
%(fk + @Tﬁk)(aTk(fk—l T op ) = o)
%(fkwwk)(m(fk Lol )

_%[( Oxp— l(fk 2+<,0k Qﬂk 2)+1—|—7'k 3)
(fe—1+ wk,lﬁk_l)])

=2 (fr+ 0 ) g% (fao1 + o) 97h)
(m(fkﬂ + op_o9"72) — F1_3)

2 (fr+ @Tﬁk)aik (fe—1+ pp_ 0871 -
’ 3x4 (f3 + @Tﬁdxazs (f2 + ¢T192) - 711)
(fk + @Tﬁk)azk (fk 1+ SOk 179k 1) o
S (fe + 91 02) £ 0. (70)

Hence by Assumption 2 we conclude that controller (59)
has no singularity.

Vim Xk, Kioa (i aga (@i, u, 07))?

Stability considerations: Vo i 2(Zk, u, 9¥*1) in view of (66)
is only a weak Lyapunov function since its derivative is
only negative semi-definite in zi,--- ,xp, u, 9, ..., 081
We invoke Krasovskii-LaSalle’s invariance principle for
analyzing the asymptotic convergence of the states (Khalil,
1996). To formalize the analysis, let a compact positively
invariant set {2 C F with respect to the controlled system
be such that for some I > 0

Q:={Zp e R"* 1 4 eR, 9l e
Va,k,2(fk,u,1§k+l) <Il}. (71)

Furthermore, let E be the set of all points in 2 where
B = {(Zp,u, 0" ) e Q: Va,k72(fk,u,’t§k+1) =0} (72)
and M be the largest invariant set in F, inspecting (66).

R (k+1) .

From Assumption 1 we have that ;1 = 0 if and only if

¥ =2 [ (01, n (a1, 91))

+ o] (21,1 (21,01))0] + 221 — g,
From Vg defined before (28), that is
V2 Vl Ki(z2 — 041(1’17191))za
and a;(0,9') = 0 from Assumption 1 we conclude that

Vz = 0 implies T3 = 0.

Analyzing ‘;/3 = 0, we shall inspect the last expression of
Vs = Vo — Ko (23 — aa(3,9%))?, (73)
recalled from (20):
z3 — ag(s,0%) = EW(% (G (21, 25 — ar(z1,91))
+ Hl (1‘1, T — 051(56‘1,19 ))192] + f2(173)
+ @;(fg)ﬁ2 — dl(i'g, 752) + Kl(fEQ - Cvl(l'l,ﬁl)).
Using again Assumption 1 and that Zo = 0, we see that
Tr3 — 012(0, xs3, 192) = fg(o, 133) + 50; (0, $3)192. (74)
By Assumption 2, 3%3(]‘2(0,363) + 1) (0,23)0) # 0. Then,

with the implicit function theorem and (2) we have that
f2(0,23) + g (0, 23)9? = 0 implies 23 = 0, achieving that

f/g:O <— T3 =0.

In a similar way, but with somewhat different expressions,
we examine

Vi= Vs — Ks(2s — 03(24,0°)).
From (32) recall that

T4 — a3(24,0°) =29 — a1 (21,

(75)

O) + f3(Za) + 5 (72)0°
— 6&2(52’4, '53) —+ KQ(CEg — OéQ(i’g, '52))
The analysis so far and Assumption 1 results in

£3(0,24) + 3 (0,24)9% — G2(0, 24, 0°)
(76)

xy — az(Z4,9°) =
in which via (13) we draw

Soby 222E=00 (£ (34 ) + ) (3111)09)
Y02 Qea(2as00h) i (77)

Then from &; = ' =0, 23 =0 = J2 =0, and (74),
we may simplify (77) to get

b (0, 224, %) = (1 — e (fal@s = 0) + 9] (T3 = 0)192))
(f3(Z4) + @3 (24)9°) (78)

a2(0 T4, )
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6) leads to

2= (f2(T3 = 0) + @3 (T3 = 0)97)
(f3(Z4) + 5 (22)0%). (79)

From Assumption 2, %(fg(:fg =0)+q (T3 = 0)9?) #0.

Then Vi=0 requireb that f3(Z4) + @3 (4)9> = 0. With
89@4 (f3(0,24) + 3 (0, x4)193) = 0 and the implicit function

which inserted in (7

Ty — a3(T4,9%) =

theorem we conclude that V4 =0 <= 74=0.

A similar procedure can be performed for the other aug-
mented Lyapunov functions up to

Vi oo @k, w, 0F1) = Vi, — Kio(u — o (. G5))2. (80)

From the recursive analysls we have Vk = 0. Hence, we
focus on u — ag (T, u, 9*) which from (44) has the form

)+ fro(@k, )
+op (T, w) 9% — a1 (Tg, u, 9F)
+ Ki—1(wp, — Oékfl(f;gﬂ?k_l)).

With the results of the analysis before, we may rewrite

u— o (Tpe,u, 9°) =1 — p_o(Tp—1, 0"

u — o (0,1, 9F) = fr(0,u) + @ (0,u)9% — a1 (0, u.0%)
in which resorting to (13) we have ey
10,4, 9%) = ;:11 —6%_1(%;0’@“1)191

+ 08, 2 @0 (1 (1 40) + o] (Z141)9F). (82)

ThenZ; =0 = 9' =0,...,%, =0 = 91 =0,
and ag_1(ZTk,Vx—1) derived from (10) and (67), we have

oi,H(o u, 9%) = (fr(0,u) + ¢ (0,u)0")
(1 Bmk (fe—1(Zk = 0) + o1 (Tp = 0)9* 1 + 7A'k—2))~
(83)
Substitution in (81) yields
u — oy, (0,u,9%) = axk(fk 1(Z = 0)

+ o1 (@ = 000" — #_2) (£ (0, u) + @4 (0, u)").
(84)

In view of (70), term 7;_2 can be expanded, leading to

= ai(0,u, 7%) = (%(fk_l + ol 98

L (fa+ 0] 0%)

ﬁ(fk—z +p_g9"7?)
Zr=0

(f1(0,u) + ¢ (0,u)9"). (85)
From Assumption 2, the expression in the big parentheses
taken at Ty = 0 is non-zero. So fx(0,u) + ¢} (0,u)9* = 0.
Moreover, a (fk(xk, u) + ap;(a?k7u)19k)|ik=0 # 0. Then
inspecting u — ak(O,u,ﬁ ) = 0 with the implicit function
theorem we draw that V, j 2(Zx, u, 9*t1) = 0 if and only

if both Z, = 0 and u = 0, for which also ; = 0 and @ = 0.
In other words,

E={(Zp,u, "™ €eQ:2, =0, u=0}  (86)
itself is the largest positively invariant subset. Therefore,
according to Krasovskii-LaSalle’s invariance principle all
solutions starting in  eventually converge to E. Fur-
thermore from Assumption 1 we inherit that (61) is also
radially unbounded. Consequently Z; and u will converge
to E irrespective of their initial conditions.

However, we cannot conclude that the ¥ converge to ©.
We only know that ¥’ is bounded and takes a limit. This
can be seen as follows. From Va,k’g(fk,u,ﬁk“) < 0 and
the lower bound of Va,kﬁg(fk,u,ﬁk“) we have that the
Lyapunov function in (47) is bounded at any time. Further
we have that the Lyapunov function V, g o(Zg,u, 9% 1)
is radially unbounded, hence, its level sets are compact.
Consequently, all variables in the respective squares are
bounded. This also includes that ¥* for any i = 2,3,--- , k
is bounded. Since V, 1 2(Zk, u, ¥**+1) is bounded from be-
low, does not increase and is continuous, it takes a limit.
As shown above, also Zj and u take a limit. Therefore we
also conclude that 9 for any i = 2,3, -- , k takes a limit.

Finally we comment on the existence and uniqueness of the
solution of the system in closed loop. Let the states Zy, u,
9#*1 be initialized on the compact set €. As shown above,
the states will remain there, consequently prohibiting any
finite escape. Then Lipschitz continuity on 2 with respect
to the functions f;, ¥;, for alli = 1,..., k, the function a;
and the right-hand side of ! implies a unique solution.

5. CONCLUSIONS

This paper has broadened the applicability of the dynamic
state extension approach for backstepping to systems
in pure-feedback systems that show a linear-parametric
uncertainty. Resorting to Lyapunov arguments we have
shown the asymptotic stability of the states and control
action in the closed-loop system. The dynamic control law
devised does not show singularities. Future work will focus
on taking control saturation into account.
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