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Abstract: An online model-based fault detection and isolation method for salient-pole
permanent magnet synchronous motors over a finite horizon is proposed. The proposed approach
combines parity-space-based residual generation and modulation-function-based filtering. Given
the polynomial model equations, the unknown variables (i.e. the states, unmeasured inputs) are
eliminated resulting in analytic redundancy relations used for residual generation. Furthermore,
in order to avoid needing the derivatives of measured signals required by such analytic
redundancy relations, a modulation-function-based evaluation is proposed. This results in a
finite-horizon filtered version of the original residual. The fault detection and isolation method
is demonstrated using simulation of various fault scenarios for a speed controlled salient motor
showing the effectiveness of the presented approach.
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1. INTRODUCTION

Since permanent magnet synchronous motors (PMSM)
are very efficient and have high power density, they are
frequently used in various industrial fields. In many cases,
the detection of sensor errors affecting current or speed /
position measurements can improve the safety and min-
imize environmental impact and economic losses. Online
fault detection and isolation (FDI) allows a process to be
monitored, unusual behavior to be identified, and appro-
priate countermeasures to be taken.

In the last few decades, much research has been performed
in FDI for both linear and nonlinear systems, resulting in
many different types of methods that can be classified into
two main categories: data-driven FDI and model-based
FDI (Chen et al., 2001; Ding, 2008). Unlike model-based
FDI, data-driven FDI does not require accurate a priori
models but uses the available historical data, which makes
them more suitable for large-scale systems. Data-driven
approaches include many different methods including mul-
tivariate statistics and machine learning (Qin, 2012; Chen
et al., 2016, 2017; Hua et al., 2018).

Of the model-based FDI methods, the explicit parity-
space-based approach is the most common and uses a set
of analytic redundancy relations (ARR) derived from the
model equations that involve only known quantities and
can be used for residual generation (Isidori et al., 2001;
Blanke et al., 2015). The parity-space approach was first
considered for linear systems by Chow and Willsky (1984)
and was then generalized to cover polynomial systems
(Frank, 1990; Kinnaert, 2003). Various different methods
have been developed to eliminate the unknown quantities,
including e.g. Buchberger’s algorithm (Buchberger, 1985),

p-adic/modular methods (Arnold, 2003), or Ritt’s algo-
rithm (Ritt, 1950).

Despite originating from a model-based perspective, in
(Ding, 2014) a data-driven method is proposed to identify
parity vectors directly from historical data independent of
explicit a priori model information. Recent research shows
how to find the optimal data-driven parity vector by means
of an iterative approach (Jiang et al., 2021).

In general, the evaluation of model-based residuals requires
the derivatives of measured input and output quantities.
In Jahn et al. (2020), three analytic redundancy rela-
tions (ARR) for sensor fault detection of a salient-pole
permanent magnet synchronous motor are presented. In
order to obtain estimates of the required derivatives of the
measured input and output quantities as needed by the
proposed ARR, robust exact differentiators were used. To
guarantee finite-time exact convergence in the absence of
noise, the gains of the robust exact differentiators need
to be chosen with respect to the Lipschitz constant of
the highest order derivative needed, as shown by Levant
(2003). In applications requiring a wide range of operation,
it may be necessary for this constant to be very large
resulting in high observer gains. In the presence of con-
siderable measurement noise, such high gains amplify the
noise’s influence on the residuals rendering the decision
making challenging or even unfeasible. Thus, this paper
proposes a modulation-function-based approach to resid-
ual generation resulting in a residual signal evaluated over
a finite horizon for sensor fault detection. The proposed
method is tested on a simulated speed-controlled motor.

After this introduction, Section 2 examines model-based
FDI and parity-space-based residual generation for poly-
nomial systems, as well as examining modulation functions
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and how they can be used to avoid needing derivatives
of measured signals. Section 3 proposes the finite-horizon
residual generation using modulating functions. In Section
4, the background regarding the model of the permanent-
magnet synchronous motor is presented. Finally, Section 5
validates the proposed finite-horizon sensor fault detection
using a simulated PMSM system.

2. BACKGROUND

The basic idea in model-based FDI is to compare, using a
model, the expected system behavior against the observed
system behavior. Residual signals are used to quantify
the amount of mismatch or discrepancy between the two
systems. Figure 1 shows the quantitative model-based FDI
approach that has two stages: a diagnostic / residual
signal generation stage and a decision making or diagnostic
classification stage (Chen et al., 2001). A residual signal
must satisfy the specific properties given by Definition
1. This means that the generation or construction of a
residual signal is a nontrivial task especially for nonlinear
systems. The different residual generation approaches can
be divided into three categories: observer-based, parity-
space-based and parameter-estimation-based / parameter-
identification-based approaches (Frank, 1990).

unmeasured
input d(t) fault f(t)
measured l l measured
input u(t) supervised output y(t)

plant g(-), (")

residual
generator

residual r(t)

— - diagnosis
| decision making l—»

Fig. 1. The two stages in quantitative model-based FDI
(Jahn et al., 2020)

Definition 1 (Jahn et al., 2020). A residual is a signal
that is zero when the system under diagnosis is free of
faults, and nonzero when particular faults are present in
the system. Additionally, a residual must be invariant to
any unmeasured and therefore unknown input signals (e.g.
disturbances) as their influence is not considered to be a
fault.

2.1 Parity-Space-Based Approach for Polynomial Nonlinear
Systems

Chow and Willsky (1984) were the first to consider the
parity-space approach for linear systems. Later, it was
generalized to cover polynomial systems (Kinnaert, 2003;
Isidori et al., 2001). The approach is based on analytic
redundancy relations (ARR) that can be used for residual
generation and subsequent FDI (Chen et al., 2001).
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Consider the class of polynomial multi-input, multi-output
(MIMO) systems

i:g(x,u,d, f) (13“)
Yy = h(l’,u,d, f) (lb)

where g : R” x RP x R™ x R™ — R™ and h : R" x
RP x R™ x R™ — R? are polynomial functions of their
arguments, i.e. x is the state vector, u the vector of known
inputs, d the vector of unknown inputs or disturbances,
and f the vector of faults.

The following description summarizes the steps presented
in Kinnaert (2003), where further details can be found.
Based on the successive time derivatives of the outputs
y, and the subsequent elimination of the states x and the
unmeasured input d, a set of polynomials (resulting ARR)
is derived

P(YaUaF):PT(YvU)'i_Pf(YvUvF):O (2)

which depends on the outputs and their derivatives Y,
the inputs and their derivatives U, and the faults and
their derivatives F.! These ARR can be further de-
composed into fault-dependent polynomials Py and fault-
independent polynomials P,.. As P, must equal to zero in
faultless operation, it can be used as a parity /residual
signal for fault detection

r(t) = (3)

However, the fact that these expressions consist of the
derivatives of the measured input and output constitutes
the main drawback of this method for residual generation.
As it is often the case in practice, these derivatives are
not accessible using numerical differentiation due to mea-
surement noise. This problem becomes worse as the order
of derivatives needed increases. Most often, it is proposed
to use linearly filtered input and output signals making
their filtered derivatives accessible. However, in case of
polynomial residuals, the evaluation based on these filtered
quantities does not result in a similarly filtered residual
signal as for linear system residuals. Here a finite-horizon
filtering method based on modulation functions is used in
order to deal with the noise.

P(Y (1), U(t))

2.2 Modulation-Function-Based Approach

Modulation functions have been classically applied in pa-
rameter estimation of dynamical systems to avoid the com-
putation of derivatives of a noisy output signal (Shinbrot,
1957; Pearson, 1992; Preisig and Rippin, 1993; Unbehauen
and Rao, 1998).

Definition 2. A function ¢ : [0,T] — R is called a
modulation function of order k if it is sufficiently smooth
and if, for some fized T, one has

P (0) = o (T) =0
forallie{0,1,...,k—1}.

(4)

Multiplication of an unknown derivative signal y® of ar-
bitrary order i of the base signal y with such a modulation
function gives by integration by parts in combination with
the boundary conditions (4)

1Y is a vector consisting of the outputs y and their derivatives up
to a certain order s. The same applies to U and F.
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T ) T ) )
/ o)y (r)dr = / (1D (e (5)
0 0

This fundamental result of modulation functions allows us
to avoid the need to compute derivatives of the measured
base signal and to eliminate unknown initial and final
conditions of the integration which otherwise have to be
considered. It has to be noted that this cannot be gener-
alized to arbitrary functions of the derivative signal, e.g.
()%. However in special cases, it is possible to convert such
expressions into the derivative of a function of the base
signal, e.g. d/dat(y?), whose computation can be avoided
by the considered approach based on the measured base
signal only.

Over the last decades, various modulation functions have
been proposed and used such as trigonometric functions
@i(t) = sin(t7t/T)! as in Shinbrot (1957) and polynomial
functions ¢;(t) = (T — t)!#! as in Loeb and Cahen (1965),
where for both cases [ is of arbitrary order.

For discrete implementation with sample time T of such
a finite-horizon integral, consider the simplest approxima-
tion of the integral (5) by the endpoint rule

T T/Ts
/0 (—1)i® (r)y(r)dr = 3 (~1)ie® (kt )y (ki) T (6)
k=1

where T is a multiple of Ts and T/1, is the order of
approximation. It can be easily shown, that the following
linear discrete system (Ak,bk,c,;r) with input y realizes
such an approximation of the finite-horizon integral

01 0 ... 0]
-t . . O
Ap=|1 olibe= (3) ,
; " 1
0 0]
¢(i)(tk)
T _ (4) .
e, = (=1) , (7)
(T — t)
e(T)

3. PROPOSED RESIDUAL GENERATION

Instead of using the modulation function approach to avoid
computation of derivatives for parameter estimation, it
can also be used for residual evaluation assuming correct
parameters. Without loss of generality, let us consider
a single residual signal, i.e. P, is scalar. Instead of the
evaluation of the original residual (3), the following will
be used as the residual signal

F(t) = / o(r)r(r)dr = / SV P (Y (1), U(r)dr (8)

However, avoiding the computation of derivatives of y
and/or u using integration by parts is only possible if
the polynomials P, are of (or can be converted into) the
following form (Pearson, 1992)

where 51—; is the differential operator of order i and F;(u, y)
are functions of the known input u and the measured
output y. If such a form is present, then (8) can be
simplified to the following expression for the adapted
residual signal

7(t) :/ Z(—l)itpiEi(u,y)dT
=T i=0

which can be evaluated without computing derivatives of
the input or output signal.

(10)

The finite-horizon integral (10) can also be split into its
sum of integrals (changing the order of summation and
integration) which leads to the proposed residual genera-
tion as shown in Figure 2. As can be seen from Figure 2,
for each derivative a linear discrete system/filter (7) with
specific output vector c; is needed. Design parameters
of this approach are the finite horizon T over which the
modulation function acts as a smoothing operator on the
original residual and the order of approximation affecting
the computational load.

u(t),y(t)

—>|Eo()|—’|( w1thz—0|—>
SO N g I [ TRy M S A
00 L e

Fig. 2. Proposed residual generator using modulation
functions for ARR evaluation

4. FINITE-HORIZON SENSOR FAULT DETECTION
FOR PMSM

Since PMSM are very important in industry, this section
will provide some background information about them.
Then, the proposed residuals for sensor fault detection of
PMSM will be presented.

4.1 Permanent Magnet Synchronous Motors (PMSM)

For alternating current (AC) phase systems, the currents
and voltages of three-phase synchronous motors are usu-
ally expressed in a rotor-fixed (rotating) coordinate system
(the d/g-frame) using the Clarke and Park Transforma-
tion. Figure 3 shows a rotating motor with angular position
o and the resulting projection of a sample stator current
vector i, onto the axes of the rotor-fixed d/g-frame.

Using these transformations, the electrical dynamics of the
PMSM are commonly described as (Schroder, 1995)

d
Ly Eid = —Riqg+pwlyiq +uq (11&)
L, Eiq = —Riq — pwLlgiq — pw¥ + u, (11b)
3 N
Jw=—dw+ p(W + (La — Lg)ia)ig+7a  (11lc)
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where iq,i; and wug,uq are the direct (in-phase) and
quadrature components of the motor currents and volt-
ages expressed in the rotor-fixed coordinates and w is
the angular velocity of the rotor. The strictly positive
parameters Lq, Ly, R, ¥, p, J and d are respectively the di-
rect/quadrature inductance, phase resistance, flux linkage
of the permanent magnet, the number of pole pairs, the ro-
tor’s moment of inertia, and the viscous friction/damping
coefficient. The term 74 represents any additional torque
applied to the rotor shaft, e.g. the load torque, and is
considered to be an unmeasured input. The state vector
consists of the motor’s d/g-currents and the angular speed
T = [ig,iq,w]". The output equations are yq = iq + fa,
Yq = g+ fg, and y,, = w+ f,, where each output is affected
by additive sensor faults fq, fq, fu-

Fig. 3. Stator current expressed in rotor-fixed (rotating)
d/g-frame using the Clarke and Park Transformation

4.2 Residual Generation

In order to derive the residual signals for sensor fault
detection of PMSM, the steps given by Kinnaert (2003)
for polynomial systems have been applied to the model
of PMSM in Jahn et al. (2020). The first step is to
take the first derivatives of each output. The resulting
unknown quantities such as the states iq,iq,w as well
as the unmeasured input 75 need to be eliminated. In
Jahn et al. (2020), this has been done using Buchberger’s
algorithm, however other methods might be considered.
After decomposition of the resulting ARR, the following
residual Signa'ls PT (yda yda Yqs yqa Yuw, Ud, uq) = [Tla r2, TB]T
have been derived

r1 =+ Ljaya + La¥ia + LaRy; — Lauaya
+ Lgy'qu + LqRyg — Louqyq + Y Ryq — Puq (12a)
ry = — pL2qYw — LaLqp*yayl + Lepuqye

— LaRija — Ly¥p*y? — R%ya + Rug (12b)
r3 =+ pL3Yayew — LaLep*yey? — Lapuaye
— LyRyj, — ¥ Rpy., — R*y, + Rug (12¢)

As explained in Section 3, the modulation function ap-
proach can be used to avoid the computation of the deriva-
tives of the system’s outputs yq and y, needed for the
residuals in Equation (12). However, none of the original
residuals as given by (12) are in the required form of (9).
If possible, they need to be converted before further use.

In case of the first residual 71, the terms 4yq and g4y, do
not satisfy the requirements. However, using the following
equality

1d,,
5 &(yd,q)

these terms can easily be converted. In case of the second
residual ro, the first term does not fit the required form
(9). However, the product rule of derivation gives

yd,qyd,q = (]-3)

. d .
YqYuw = a(yqyw) —YqlYw (14)

Therefore, if we assume stationary operation of the
PMSM, i.e. w = 0, and thus in the fault free case g, = 0,
this allows the second residual to be used in the modula-
tion function-based-approach. In case of the third residual,
the same argument applies.

In order to complete the residual generator design, the
final expressions which need to be evaluated during run
time for the sensor fault detection are given by

t
7= / — ¢(Lays + L2y + La¥ya)
t—T
+ ¢(LaRy; — Lquaya + LqRy;
— Louqyq + Y Ryq — Yug) dr
t
Ty = / — &(=pL3yqgyw — LaRya)
t—T
+ o(—=LaLep*yays + Lepuqye
— LquQyi — R2yd + Rug)dr
t
T3 = / — ¢(+pL3Yaye — LqRy,)
t—T

+ ¢(—LaLep*yqyZ — Lapuaye
— Y Rpy, — Rqu + Rug) dr (15¢)

where none of the derivatives of the outputs y4 or y, are
needed anymore.

(15a)

(15b)

4.3 Residual Evaluation and Decision Making

In practical situations, the residual signals will deviate
from zero due to measurement noise and modeling er-
rors. Therefore, when performing residual evaluation, it
is necessary to introduce a threshold below which the
residual is considered to be inactive. Such a threshold can
be determined using simulations with noisy measurements
and/or actual plant measurements.

Table 1. Effect of faults on each individual
residual signal (Jahn et al., 2020)

fd fq fw
r1 X X
(&) X X
r3 X X

Once specific residuals are assessed as being active, Table 1
decodes the combination of residuals to the corresponding
fault action. Each column specifies which residuals cor-
respond to which individual fault. For example, assume
that residuals 75 and 73 are active (i.e. above the relevant
threshold) while r; is inactive. The second column states
that fault f, must have occurred. For a more detailed
discussion on fault isolation and multiple occurring faults
refer to Jahn et al. (2020).
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5. SIMULATION STUDIES

The proposed FDI method is simulated for a speed-
controlled salient-pole PMSM with parameters given in
Table 2. The control strategy follows a classical field-
orientated vector control law with current set points cho-
sen according to the motor’s maximum-torque-per-current
(MTPC) curve.

Table 2. Parameters of PMSM

parameter value
phase resistance - R 9.25 mS2
d-axis inductance - Ly 0.895 uH
g-axis inductance - Lg 1.044 uH
flux linkage - ¥ 4.8751 mWb

pole pairs - p 5
rotor inertia - J 0.0113 N ms?
friction coefficient - d 0.002Nmsrad—1!

The control and FDI algorithms are simulated to run at
a fixed sampling rate of Ty, = 0.1 ms while the plant is
modeled continuously and numerically solved using the
Dormand-Prince method (ode45) with variable step size.
A polynomial modulation function is chosen ¢(t) = (T —
t)2t2. The finite horizon integration is implemented using
a discrete linear system approximation as explained in
Subsection 2.2 running at 5 Ty = 0.5 ms. The finite horizon
is designed to be T' = 50 ms, resulting in an approximation
order of 100 for the chosen sample time.

In this simulation, it is assumed that the speed can be
measured and does not need to be estimated based on
position measurements. Gaussian white noise by means of
a random number generator with a normal distribution
N(0,0?) at a sampling rate of 0.1 ms has been added
as sensor noise. The selected variances are o7 = 0.5 A2
and 02 = 1.5rpm? (min~—?) for the d/g-currents and speed
sensor, respectively. Initially, the motor is accelerated to a
target speed of 1800 rpm (min~1!). At ¢ = 25, an external
load torque of 1.2Nm is applied to the motor such that
a 45 A phase current is present at steady state. In the
interval ¢t = [4,5)s, sensor fault fq = 4 A is active. In the
following time interval ¢t = [5,6)s, sensor fault f, = 30A
becomes active, while in the final time interval ¢t = [6,7)s,
sensor fault f, = 250rpm (min~!) is active.

Figure 4 shows the simulation results in combination with
the results of residual generation based on robust exact
differentiation (Jahn et al., 2020). As can be clearly seen,
the influence of the measurement noise on the residuals
is much lower in case of a modulation-function-based
approach compared to the residuals based on robust exact
differentiation. Since the width of the noise band has
been significantly reduced, the introduction of a suitable
threshold for each residual (above the noise band and
below the active fault level) is less challenging, which
makes the decision making process easier. On the other
hand, the modulation-function-based residuals can handle
more measurement noise before a threshold-based decision
making becomes unfeasible due to the noise band overlap.
However, this comes at the main drawback of having
delayed residual reaction to fault actions. To emphasize
this, Figure 5 shows a close-up of the residual signals
over the time period when the first fault is introduced.

T T
=T fw occurred )
74 applied fa occurred
~ b
S i
—
< °
< A A
=
< at
R7)
)
—
I 1
T2
ol T3 fq occurred ,,—-—-.T
! Il Il Il Il Il
0 1 2 3 4 5 6 7
time in s

Fig. 4. Residual signals during motor run and sensor faults

As can be seen the residuals need T' = 50ms to reach
the active fault level. Therefore, the finite horizon time T
needs to be chosen according to how fast relevant faults
can appear/disappear in order to be able to detect them.

T1
|- T2
S M«Ir‘u““‘w
; o ———
T
<
=]
=t
8 ar
—
?Iﬁ |-
4 5

time in s
Fig. 5. Close-up of the residual signals after the first fault
was introduced

6. CONCLUSION AND FUTURE WORK

This paper has presented the design of a residual generator
for sensor fault detection of PMSM. The main contribution
is to combine residual generation based on the parity-
space-based approach with a modulation-function-based
approach in order to derive a residual signal filtered over a
finite horizon. This property helps to reduce the influence
of noise on the residuals facilitating the decision making
while preserving the benefit of finite response time as for
the approach based on robust exact differentiation. The
result has been applied to a model of a PMSM. Simulation
results show that speed and current sensor faults can be
detected and that the influence of noise on the residuals
has been reduced.

In order to evaluate the performance of a PMSM under real
conditions, the next step is to apply the proposed method
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to a real PMSM. Furthermore, the impact of using phase
current sensors and position sensors, which are commonly
used in industrial applications of PMSM, on the proposed
FDI needs to be further investigated.
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