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Abstract: The solid-phase pattern in the form of a dendrite is one of the frequently met 

structures produced from undercooled liquids. In the last decades, an analytical 

approach describing the steady-state crystal growth in the presence of conductive heat 

and mass transport has been constructed. However, experimental works show that 

crystal patterns frequently grow in the presence of convection. In this paper, a 

theoretical description based on convective heat and solute concentration transport near 

the solid/liquid phase interface is developed. The stable regime of crystallization in the 

presence of vigorous convection near the steady-state crystal vertex is studied. The 

stability analysis, determining the stable growth mode, and the undercooling balance 

law have been applied to deduce the stable values for the growth rate and tip diameter. 

Our analytical predictions (with convective transport) well describe experimental data 
for a small melt undercooling. Moreover, we compare both convective and conductive 

mechanisms in the vicinity of the crystal vertex. Our theory shows that convective 

fluxes substantially change the steady-state growth of crystals. 
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1. Introduction 

Dendritic melts and supersaturated solutions [1-8] (figure 1). Their surface anisotropy and mechanisms 

of heat and impurity transport near the phase transition boundaries are the main features influencing the 

crystallization process [9-11]. An important point is that the solid phase microstructure highly depends 

on the melt undercooling, crystallization rate, and the size of crystal vertices [12-14]. Also, note that 

vigorous convection can completely change the growth conditions through convective-type heat and 

mass transfer mechanisms. This in turn leads to mechanical deformations of solid-phase structures [15-

17]. 

So, for instance, convection intensifies liquid motions increasing the rate of solidification, compressing 

the boundary layers for heat and mass transport, and increasing the temperature and solute concentration 

gradients in front of the solid/liquid interfaces [18-20]. These mechanisms are usually omitted in 

mathematical models of heat and mass transport phenomena. As an example of this, we can pay attention 

to the classical model of steady-state crystal growth. This model is written with conductive-type 
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boundary conditions, which completely ignore any type of convective motions in the melt (see, among 

others, [13, 21-28]). Such a classical model (within the framework of laminar flow in the liquid phase 

or in the absence of flow) can explain different experiments in a wide diapason of Péclet and Reynolds 

numbers. However, these models cannot explain a lot of experiments with vigorous convection or 

turbulent flows near growing solid/liquid crystal surfaces [29, 30]. It is significant that the classical 

Fourier heat and mass fluxes at the phase interfaces should be changed by the corresponding convective 

fluxes following Newtonian heat exchange law [29, 30]. 

Below we study the influence of these changed fluxes on the main characteristics of crystal growth. 

Namely, we compare the stability theory of steady-state crystal growth in the presence of both 

convective and conductive fluxes with experiments on the undercooled Ti45Al55 melt [19]. 

patterns represent frequently met types of solid microstructure originating from undercooled  

 

 

 

Figure 1. Dendrites growing in a metastable melt. 

 

       

2.  Stability Law with Allowance for Convective Fluxes  

 

The present study is concerned with slow crystallization phenomena in the presence of vigorous 

hydrodynamic flow in the vicinity of the dendritic surface (figure 2). If this is really the case, transport 

processes for heat and dissolved impurity near the solid-liquid boundary are of convective type. This 

means that the boundary conditions at the solid-liquid interface should be written with allowance for 

this convective heat and mass transport [29-31]. The aim of this study is to derive a stability (selection) 

law for the steady motion of crystal tips. To do this, we assume that convective-type boundary conditions 

take place at the solid-liquid interface of a growing crystal [31]. Note that such nonlinear heat and mass 

transport happens as a result of fluid turbulization near the crystal interface [29, 30] or thermo-electrical 

mechanism [12, 18]. 
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Figure 2. Isolated crystal evolving in a metastable melt with high-level convection, illustrated by the 

arrows. 

 

The stability law characterizing a steady solidification scenario and (a relationship between the crystal 

growth rate 𝑣 and its tip diameter 𝑅) can be written down as follows [32]: 

 

𝑠∗ =
2𝑑0𝐷

𝑅2𝑣
=
2𝑠0√𝛼𝐷𝑏1

𝑅
+

𝑠0𝛼
5/4(1 + 𝐵𝐷𝑏1)(1 + 𝑙𝑧

3/2)
2

[1 + 𝑛1 (𝑅𝐵𝛼
3/4 +

3𝛼1/4𝑝𝑏1𝐷
21/4𝑑0

)]
2 . (1) 

 
Here 

 

𝑧 =
𝛼1/4𝑅𝐵2𝑑0

21/4𝑝(1 + 𝐵𝐷𝑏1)
,   𝑏1 = 𝑏0 +

𝑚𝜎𝑖(1 − 𝑘)

𝜃𝑄𝑎𝑠𝑢∗
 , 

 

𝐵 =
𝑎ℎ𝜌𝑙𝐶𝑙𝑢∗
2𝜆𝑠

 ,   𝑛1
2 =

29/225𝑠0
27

 ,   𝜎𝑖 =
𝑎𝑠𝑢∗𝜎𝑙∞

𝑎𝑠𝑢∗ − (1 − 𝑘)𝑣
 ,   𝑝 =

𝑅𝑣

2𝐷
 , 

 

where 𝑠0 is the fitting constant, 𝑑0 is the capillary length parameter, 𝜌𝑙 is the density of melt, 𝑘 is the 

impurity segregation parameter, 𝛼 is the surface energy stiffness, 𝑏0 is the kinetic parameter, 𝑙 is the 

stability constant, 𝑚 is the equilibrium slope of liquidus equation, 𝐶𝑙 is the heat capacity, 𝑢∗ is the 

friction rate, 𝜃𝑄 is the adiabatic temperature, and 𝜆𝑠 is the heat conductivity of solid material. Here 𝑎ℎ 

and 𝑎𝑠 are the parameters defining intensity of convective fluxes, 𝑎ℎ 𝑎𝑠⁄ = (𝐷 𝐷𝐶⁄ )𝑟  with 2 3⁄ < 𝑟 <

4 5⁄  (𝐷 and 𝐷𝐶  represent the thermal diffusivity and diffusion coefficients). 

       

3. Contributions to the Total Undercooling  

 

An additional law to find 𝑣 and 𝑅 is defined by different contributions to the total melt undercooling 

Δ𝜃, which reads as [13]: 

 

Δ𝜃 = Δ𝜃𝑇 + Δ𝜃𝐶 + Δ𝜃𝑅 + Δ𝜃𝐾  . (2) 

 
The first summand in the r.h.s. of Eq. (2), thermal term Δ𝜃𝑇 , can be presented as 
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Δ𝜃𝑇 = 𝜃𝑖 − 𝜃𝑙∞ =
𝜃𝑄𝑣𝜆𝑠

𝑎ℎ𝜌𝑙𝐶𝑙𝑢∗𝐷
 , (3) 

 

where 𝜃𝑖 and 𝜃𝑙∞ stand for the temperatures on the solid-liquid boundary and far from this boundary in 

the melt. 

 

The next summand Δ𝜃𝐶 describing the impurity concentration effect is given by: 

 

Δ𝜃𝐶 = 𝑚(𝜎𝑖 − 𝜎𝑙∞) =
(1 − 𝑘)𝑣𝑚𝜎𝑙∞
𝑎𝑠𝑢∗ − (1 − 𝑘)𝑣

 , (4) 

 

where 𝜎𝑖 and 𝜎𝑙∞ represent the impurity concentrations on the dendrite surface and far from this surface 

in liquid. 

 

The contributions Δ𝜃𝑅 and Δ𝜃𝐾 defining the Gibbs-Thomson shift and atomic kinetics on the crystal 

surface are given by 

 

Δ𝜃𝑅 =
4𝑑0𝜃𝑄

𝑅
 ,   Δ𝜃𝐾 =

𝑣

𝑙𝑘
 , (5) 

 

where 𝑙𝑘 is the kinetic parameter. 

Expressions (2)-(5) enable us to find the following explicit dependence 

 

𝑅(𝑣) =
4𝑑0𝜃𝑄

Δ𝜃 − Δ𝜃𝑇(𝑣) − Δ𝜃𝐶(𝑣) − 𝑣 𝑙𝑘⁄
 . (6) 

 

Now substituting Eq. (6) into Eq. (1), we find the following equation for 𝑣 

 

𝑅2(𝑣)𝑣

2𝑑0𝐷
𝑠∗(𝑅(𝑣), 𝑣) = 1 , (7) 

 

where 𝑠∗ is determined by Eq. (1). We see that Eq. (7) connects the crystal growth rate 𝑣 and the total 

melt undercooling Δ𝜃. As this takes place, 𝑅 as a function of Δ𝑇 is defined by Eq. (6).  

Let us now write out the stability growth law for conductive-type boundary conditions [7, 32, 33] 

 

𝑠∗ =
𝑠0𝛼

7/4

1 + �̃�(𝐴𝛼−3/4)11/14

{
 

 1

[1 + 𝐴1√𝛼𝑝(1 +
𝑤𝐷𝑏0
𝑑0

)]
2

+
2𝑚𝜎𝑖(1 − 𝑘)𝐷

[1 + 𝐴2√𝛼𝑝𝐶 (1 +
𝑤𝐷𝐶𝑏0
𝑑0𝐶𝐷

)]
2

𝜃𝑄𝐷𝐶}
 

 

 . 

(8) 

 
Here the following notations are introduced 

 

𝐴1 = (
8𝑠0
7
)
1/2

(
3

56
)
3/8

 ,   𝑝0 = 𝑝 + 𝑝𝑓  ,   𝑝𝐶 =
𝑅𝑣

2𝐷𝐶
 ,   𝐴2 = √2𝐴1 ,  
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𝐴 =
𝑞𝑑0𝑢

4𝑅𝑣𝑝
+
𝑞𝑑0𝑢𝐷

2𝑅𝑣𝑄𝐷𝐶
 ,   𝑄 = 1 +

2𝑚𝜎𝑖(1 − 𝑘)𝐷

𝐷𝐶𝜃𝑄
 ,  

 

𝜎𝑖 =
𝜎𝑙∞𝐷𝐶

𝐷𝐶 − (1 − 𝑘)exp(𝑝0𝐷 𝐷𝐶⁄ )𝑝𝐼𝐶(∞)𝐷
 ,  

 

𝑑0𝐶𝐷 =
𝜃𝑄𝑑0

2𝑚𝜎𝑖(1 − 𝑘)
 ,   𝑞(𝑅𝑒𝑦) = √

𝑅𝑒𝑦

2𝜋

exp(−𝑅𝑒𝑦 2⁄ )

erfc√𝑅𝑒𝑦 2⁄
 in 2D , 

 

 

𝑞(𝑅𝑒𝑦) =
exp(−𝑅𝑒𝑦 2⁄ )

E1(𝑅𝑒𝑦 2⁄ )
 in 3D ,  

𝑤 = 20√
7

24
(
56

3
)
3/8 

 ,   E1(𝑠) = ∫
exp(−𝑢)

𝑢
𝑑𝑢

∞

𝑠

.  

 

Here 𝑢 is the hydrodynamic flow far from the crystal, 𝑝𝑓 = 𝑅𝑢 (2𝐷)⁄ , �̃� is the fitting constant, 𝑅𝑒𝑦 =

𝑅𝑢 𝜈⁄  is the Reynolds number, 𝜈 is the kinematic viscosity, and the integral 𝐼𝐶(∞) is found in [32]. 

Note that formula (8) should be calculated together with the undercooling balance (Eq. (2)), which 

contains Δ𝜃𝑇, Δ𝜃𝐶 , Δ𝜃𝑅, and Δ𝜃𝐾 determined in ref. [32] for 2D and 3D crystals. 

 

 

Figure 3. Crystal growth rate as a function of system undercooling for Ti45Al55. The dashed and dash-

dotted curves show conductive transport without (𝑢 = 0 m/s) and with (𝑢 = 0.5 m/s) convection [34]. 

The solid line is illustrated accordingly to Eq. (7). Theoretical predictions are compared with 

experiments [19] for small Δ𝜃. The model parameters are 𝑠0 = 1.17, 𝑑0 = 9.28 ⋅ 10
−10 m, 𝐷 = 2.5 ⋅

10−6 m2 s-1, 𝜌𝑙 = 2.46 ⋅ 10
3 kg m-3, 𝑘 = 0.86, 𝜎𝑙∞ = 55 at%, 𝛼 = 0.3, 𝑏0 = 1.88 ⋅ 10

−2 s m-1, 𝑙 =
10−3, 𝑚 = 8.78 K at%-1, 𝐶𝑙 = 12370 J kg-1 K-1, 𝑎ℎ = 3.55, 𝑢∗ = 4 m s-1, 𝜃𝑄 = 272.64 K, 𝜆𝑠 =

29.22 W m-1 K-1. 

 

Figure 3 illustrates the difference between classical and conductive mechanisms of heat and impurity 

transport as well as experimental points [19] for low melt undercooling. Note that the theory well agrees 

with experiments only in the range of moderate and large melt undercooling (see, for details, [34]). If 
we pay our attention to small growth rates, the classical theory (conductive-type boundary conditions) 

does not describe experiments (dashed and dash-dotted lines in figure 3 lie outside of experimental error 

bars). This figure also shows that convective-type boundary conditions give 𝑉(Δ𝑇) (solid line in figure 
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3) that satisfies experimental data for small Δ𝑇. An important question is that we might expect a 

transition from the classical (laminar) growth scenario to the turbulent one in electromagnetic levitators 

[35] in the case of vigorous hydrodynamic fluxes near the crystals. Such a transition probably occurs 
due to the fact that vigorous hydrodynamic curls mean the appearance of convection near crystal 

vertices, where the flow is of turbulent-type [35]. 

 

Figure (4) shows how convection changes the crystal tip rate and diameter. Note that convection leads 

to greater values of 𝑣 and 𝑅 (compare the dotted and solid lines in Fig. 4(a)). Moreover, these values 

also grow with increasing the friction rate (Fig. 4(b)). In other words, the growing crystals are thinner 

in the absence of convection. 

 

 

 

 

a  b 

Figure 4. The diameter of crystal vertex as a function of the growth rate. Physical parameters are 𝑎ℎ =

0.0095, 𝜆𝑠 = 2.03 W m-1 C-1, 𝜌𝑙 = 10
3 kg m-3, 𝐶𝑙 = 4187 W s kg-1, 𝑑0 = 2.8 ⋅ 10

−10 m, 𝛼 = 0.35, 𝑠0 =

0.17, 𝐷 = 1.17 ⋅ 10−7 m2 s-1, 𝑙 = 0, 𝑏1 = 𝑏0 = 0. 

 

4. Conclusions 

 

In this paper, we extend the analytical approach to study the steady regime of crystal growth in 

undercooled liquids in the presence of vigorous convection near the surfaces of evolving dendrites. Also, 

we compare our new analytical approach with the classical case of conductive boundary conditions and 

experiments for small undercooling. Note that convection plays a significant role in a small surface 

layer, where melt particles are disordered and migrate randomly. Consequently, the heat and solute 

concentration fluxes should be changed by the corresponding Newtonian laws. Here the main 

mechanism is that these fluxes are dependent on the friction rate 𝑢∗. 

To compare convective theory with experiments and classical conductive fluxes, we use two nonlinear 

relationships for crystal growth rate and its diameter: stability criterion for the steady-state growth and 

balance law for the melt undercooling. This nonlinear system of algebraic equations is analytically 

solved to obtain an implicit dependence𝑣(Δ𝜃). Then this dependence is compared with experiments for 

small values of Δ𝜃. We show that the function 𝑣(Δ𝜃) in the presence of convection well agrees with 

experiments (Ti45Al55) for small Δ𝜃.  

An important question is that the real heat and mass fluxes near the surfaces of growing crystals can be 

of mixed type, i.e. they can contain convective and conductive parts. Such a theory of mixed boundary 
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conditions might be based of the present study and existing approaches [36-39]. Such a study represents 

a challenging problem for future works. 
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