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Summary

Background: Transpiration is an integral part of the earth system, not only because

plant water use is the dominant path by which water flows from the soil to the atmo-

sphere, but also because water loss from leaves is intrinsically connected to 𝐶𝑂2 uptake

and provides a key link between global carbon and water cycles. Transpiration, while

well studied at the scale of plants and leaves, remains difficult to quantify at the ecosys-

tem, regional, and global scales. Differentiating between water vapor which has passed

through plants, and is thus biologically controlled, and water vapor which is evapo-

rated from surfaces without active control from plants through stomatal regulation is

extremely challenging at the ecosystem scale with heterogeneous landscapes contain-

ing diverse plant species accessing soil water reserves at varying depths. Furthermore,

plant species and communities have very different strategies for regulating water use

to respond to environmental conditions. Understanding the mechanism that determine

water use across species and in time is still a crucial challenge to predict ecosystem

responses to future drought and climate variability.

Current methodologies to quantify transpiration at scales greater than a single plant

have key drawbacks. For example, scaling measurements from individual plants within

the ecosystem to the ecosystem as a whole can be problematic because of a lack of high

spatial and temporally dense sampling due in part to the high cost and effort of such

field campaigns. Predictions of transpiration from modeling approaches which can be

applied at large scales, such as from the large earth system models used for future cli-

mate predictions or empirical functions tied to remote sensing datasets used for forest

and crop monitoring, produce very different results. The disagreement across model-

ing approaches illustrates a fundamental lack of understanding of how communities of

plants use water.

One potential solution to characterizing transpiration on broader scales is to use eddy

covariance to estimate ecosystem transpiration. Eddy covariance has been widely uti-

lized to measure water, carbon, and energy fluxes, with synthesis initiative such as

FLUXNET collating hundreds of sites around the world. However, methods for par-

titioning the total ecosystem water flux (evapotranspiration, ET) measured by eddy

covariance systems into the individual components, i.e. transpiration (T) and abiotic

evaporation (E), are needed.



Research objectives: The overarching goal of this doctoral research is to develop, eval-

uate, and apply an ET partitioning method which is data driven and applicable to the

highest number of eddy covariance datasets as possible. To achieve this goal, three re-

search questions (RQ) are posed:

RQ 1: How can information in the core eddy covariance datasets be further ex-

ploited to describe the complex plant water relationships from heteroge-

neous ecosystems?

RQ 2: Given the limited amount of independent ecosystem transpiration data

concurrent with eddy covariance measurements, how can the transpira-

tion estimates be validated?

RQ 3: What new insights on ecohydrological and water use strategies across ma-

jor terrestrial biomes can be gained from the transpiration estimates de-

rived from FLUXNET?

While these questions relate to the results shown in Chapters 2, 3, and 4, respectively,

they gradually lead toward the main goal of the dissertation: First, understanding water

and carbon flux dynamics at the ecosystem level, understanding which feeds into the

transpiration estimation method. Finally, the transpiration estimation method was be

applied to the FLUXNET monitoring network to provide new insights on ecosystem

physiology.

Data, Methods, and Models: The core datasets set used in all chapters of this thesis

were the published FLUXNET synthesis datasets of eddy covariance data, which consist

of sensible, latent, and ground heat energy fluxes as well as measurements of radia-

tion and meteorology. These datasets also contain measured net ecosystem exchange of

𝐶𝑂2, as well as estimates of ecosystem gross primary productivity (GPP) and respiration.

The FLUXNET synthesis processing chain provides a gap-filled dataset harmonized to a

half-hourly or hourly temporal resolution, providing continuous data spanning years to

decades across major terrestrial biomes and covering all the climate zones. To address

RQ 1, the sub-daily resolution datasets were use to develop two diurnal indicators,

the diurnal water carbon index (DWCI) and the relative diurnal centroid of ET (𝐶∗
𝐸𝑇),

to characterize ecosystem responses to drought. The partitioning method described in

Chapter 3 (the Transpiration Estimation Algorithm, TEA) used these diurnal indicators,

along with other variables derived from the eddy covariance data, as features in a Ran-



dom Forest model able to predict water use efficiency, or the ratio of GPP to transpira-

tion, from which an estimate of ecosystem transpiration is derived. To address RQ 2, the

TEA method was tested on model output from three terrestrial biosphere models used

as synthetic eddy covariance dataset to verify that the data driven approach (TEA) could

replicate the known water carbon dynamics in the models. TEA was further evaluated

in Chapter 4, both against two other ET partitioning methods (uWUE and Pérez-Priego)

as well as against canopy transpiration estimated from sap flow measurements. To ad-

dress RQ 3, TEA and the other two ET partitioning methods were applied to 251 sites

globally, and analysed for expected patterns with site meteorology and remote sensing

data.

Key results:

RQ 1: Diverse ecosystem responses to drought were characterized using two diurnal

indicators that did not require additional measurements or data sources other than the

core eddy covariance dataset. DWCI was linked to non-stomatal limitations causing a

decoupling of diurnal GPP and ET, where low DWCI (indicating decoupling) was gener-

ally associated with grasses. 𝐶∗
𝐸𝑇 was linked to hydraulic limitations and stomatal control

where lower values represent days where the flux of ET relative to incoming radiation

is shifted towards the morning, with morning shifts associated more with trees. While

both morning shifts and carbon:water decoupling were linked to dry conditions, only

morning shifts were associated with higher water use efficiency, indicating tree ecosys-

tems with higher stomatal control use water more efficiently in dry conditions while

grass ecosystems with less stringent stomatal control tend to run into non-stomatal lim-

itations.

RQ 2: The uncertainties and methodological assumptions from the TEA method were

well characterized by first validating transpiration estimates in the controlled terrestrial

biosphere model experiments, followed by further evaluated against other eddy co-

variance based and validated against independent transpiration estimates. Spatial and

temporal patterns of transpiration were robust and consistent, both in the ability of the

TEA method to replicate model output (NashSutcliffe efficiencies generally > 0.9), as

well as in the high correlation between the three eddy covariance based methods (𝑅2

between 0.89 and 0.94) and sap flow based estimates (𝑅2 between 0.76 and 0.81).

However, the magnitude of transpiration remains uncertain, with a spread in the ratio

of transpiration to ET (T/ET) ranging from 45% to 77%. Method assumptions on the



optimality of carbon gain to water loss were identified as the key factor controlling the

magnitude of transpiration for all the eddy covariance based ET partitioning methods,

where methods that assume plants optimize carbon gain to water loss tended to have

T/ET ratios across FLUXNET at or below 50%, in contrast to the TEA method which

does not rely on that assumption and has a T/ET ratio of 77%.

RQ 3: Broadly applicable ET partitioning methods from eddy covariance data were

able to provide enough sites with continuous T and E estimates to explore not only

temporal, but also spatial patterns and drivers of ecosystem transpiration. Analyzing

sites with more than two complete years of transpiration and ET data showed that T/ET

is 1.6 times more variable in space than in time. Furthermore, spatial variation of T/ET

was shown to primarily depend on vegetation (e.g. crop/grass designation) and soil

characteristics (e.g. soil silt content and coarse fragment volume), with little influence

from climatic variables such as the annual mean/standard deviation of temperature

and precipitation. Furthermore, the relationship between T/ET and vegetation cover, as

measured from remote sensing based leaf area index, was less important than assumed

in previous works, with a much greater importance of soil characteristics, grass/crop

designation, and aridity, indicating that how plants access limited soil water supplies is

more important than the presence or absence of vegetation in determining plant water

use.

General conclusions: Overall, the work presented here demonstrates the viability and

utility of ecosystem scale estimates of transpiration from eddy covariance datasets via

data driven methodologies. Identifying key strengths and uncertainties in the method,

such as the uncertainty in the magnitude of transpiration but strength in spatial and

temporal patterns, better outlines future directions. By being broadly applicable, the

TEA method can both act as a baseline for future independent transpiration estimates

to compare to, as well as bridge the scale gap between plant scale studies and global

process/remote sensing based models. This transfer of scale will help to both inform

understanding of core plant physiology and ecology, as well as improve predictions of

global water and carbon cycles in a present and future climate.



Zuzammenfassung

Hintergrund: Transpiration ist ein integraler Bestandteil des Erdsystems, nicht nur,

weil die Wassernutzung der Pflanzen der dominante Pfad ist, über den Wasser vom

Boden in die Atmosphäre flieSSt, sondern auch, weil der Wasserverlust aus den Blät-

tern untrennbar mit der 𝐶𝑂2-Aufnahme verbunden ist und eine wichtige Verbindung

zwischen dem globalen Kohlenstoff- und Wasserkreislauf darstellt. Die Transpiration ist

zwar auf der auf der Pflanzen- und Blattebene gut untersucht, aber auf der Skala von

Ökosystemen, Regionen und der globalen Skala ist sie nach wie vor schwer zu quan-

tifizieren. Die Unterscheidung zwischen Wasserdampf, der durch Pflanzen passierte und

somit biologisch kontrolliert wird, und Wasserdampf, der von Oberflächen ohne aktive

Kontrolle der Pflanzen durch stomatäre Regulierung verdunstet, ist auf der Ökosystem-

Skala mit heterogenen Landschaften, die verschiedene Pflanzenarten enthalten, die auf

Bodenwasserreserven in unterschiedlichen Tiefen zugreifen, extrem schwierig. Darüber

hinaus haben Pflanzenarten und -gemeinschaften sehr unterschiedliche Strategien zur

Regulierung des Wasserverbrauchs, um auf Umweltbedingungen zu reagieren. Das Ver-

ständnis der Mechanismen, die die Wassernutzung über die Arten und die Zeit hinweg

bestimmen, ist immer noch eine entscheidende Herausforderung, um die Reaktionen

der Ökosysteme auf zukünftige Trockenheit und Klimavariabilität vorherzusagen.

Aktuelle Methoden zur Quantifizierung der Transpiration auf Skalen, die gröSSer als

eine einzelne Pflanze sind, haben entscheidende Nachteile. Zum Beispiel kann die Über-

tragung von Messungen einzelner Pflanzen innerhalb des Ökosystems auf das Ökosys-

tem im Ganzen problematisch sein, da es an räumlich und zeitlich hochaufgelösten

Stichproben mangelt, was zum Teil auf die hohen Kosten und den Aufwand solcher Feld-

kampagnen zurückzuführen ist. Vorhersagen der Transpiration aus Modellierungsan-

sätzen, die auf groSSen Skalen angewandt werden können, wie z.B. aus Erdsystemmod-

ellen, die für zukünftige Klimavorhersagen verwendet werden, oder empirische Funk-

tionen, die an Fernerkundungsdatensätze gebunden sind, die für die Überwachung von

Wäldern und Pflanzen verwendet werden, liefern sehr unterschiedliche Ergebnisse. Die

Unstimmigkeit zwischen den Modellierungsansätzen zeigt einen grundlegenden Mangel

an Verständnis darüber, wie Pflanzengemeinschaften Wasser nutzen.

Eine mögliche Lösung zur Charakterisierung der Transpiration auf breiterer Ebene ist

die Verwendung der Eddy-Kovarianz zur Schätzung der Transpiration von Ökosyste-



men. Die Eddy-Kovarianz wurde bereits in groSSem Umfang zur Messung von Wasser-,

Kohlenstoff- und Energieflüssen eingesetzt, wobei eine Syntheseinitiative wie FLUXNET

hunderte Standorte auf der ganzen Welt erfasst. Allerdings werden Methoden zur Tren-

nung des gesamten Ökosystem-Wasserflusses (Evapotranspiration, ET), der von Eddy-

Kovarianz-Systemen gemessen wird, in die einzelnen Komponenten, d.h. Transpiration

(T) und abiotische Evaporation (E), benötigt.

Forschungsziele: Das übergeordnete Ziel dieser Doktorarbeit ist es, eine Methode zur

Aufteilung von ET zu entwickeln, zu validieren und anzuwenden, die datengetrieben

und auf eine möglichst groSSe Anzahl von Eddy-Kovarianz-Datensätzen anwendbar ist.

Um dieses Ziel zu erreichen, werden drei Forschungsfragen (FF) gestellt:

FF 1: Wie können die Informationen in den Eddy-Kovarianz-Kerndatensätzen

besser genutzt werden, um die komplexen Pflanzen-Wasser -Beziehungen

von heterogenen Artengemeinschaften zu beschreiben?

FF 2: Wie können die Transpirationsschätzungen angesichts der begrenzten Menge

an unabhängigen Ökosystem-Transpirationsdaten, die gleichzeitig mit Eddy-

Kovarianz-Messungen vorliegen, validiert werden?

FF 3: Welche neuen Erkenntnisse über ökohydrologische und Wassernutzungsstrate-

gien in den wichtigsten terrestrischen Biomen können aus den von FLUXNET

abgeleiteten Transpirationsschätzungen gewonnen werden?

Während sich diese Fragen auf die jeweils in Kapitel 2, 3, bzw. 4 gezeigten Ergeb-

nisse beziehen, führen sie schrittweise zum Hauptziel der Doktorarbeit hin: Zunächst

wird zum Verständnis der Wasser- und Kohlenstoffflussdynamik auf Ökosystemebene

beigetragen, welches in die Methode zur Transpirationsschätzung einflieSSt. Diese wird

schlieSSlich für das FLUXNET Messnetz angewendet und validiert, um neue über die

Physiologie des Ökosystems Erkenntnisse zu gewinnen.

Daten, Methoden und Modelle: Die Kerndatensätze, die in allen Kapiteln dieser Arbeit

verwendet wurden, sind die veröffentlichten FLUXNET-Synthesedatensätze von Eddy-

Kovarianz-Daten, die aus sensiblen, latenten und Bodenwärmeflüssen sowie Strahlungs-

und meteorologischen Messungen bestehen. Diese Datensätze enthalten auch den gemesse-

nen Netto-Ökosystemaustausch von 𝐶𝑂2 sowie Schätzungen der Bruttoprimärproduk-

tivität (GPP) und der Respiration von Ökosystemen. Die FLUXNET-Syntheseverarbeitungskette

liefert einen lückenhaften Datensatz, der auf eine halbstündliche oder stündliche zeitliche



Auflösung harmonisiert ist und kontinuierliche Daten über Jahre bis Jahrzehnte für die

wichtigsten terrestrischen Biome und alle Klimazonen liefert. Um FF 1 zu adressieren,

wurden die täglich aufgelösten Datensätze verwendet, um zwei tageszeitliche Indika-

toren zu entwickeln: den Wasser-Kohlenstoff-Index (DWCI) und den relativen tageszeitlichen

Schwerpunkt der ET (𝐶∗
𝐸𝑇), um die Reaktionen von Ökosystemen auf Trockenheit zu

charakterisieren. Die in Kapitel 3 beschriebene Methode zur Aufteilung von ET (der

Transpirationsschätzungsalgorithmus, TEA) verwendete diese täglichen Indikatoren zusam-

men mit anderen Variablen, die aus den Eddy-Kovarianz-Daten abgeleitet wurden, als

Merkmale in einem Random-Forest-Modell., Dieses Modell ist in der Lage, die Wasser-

nutzungseffizienz oder das Verhältnis von GPP zu Transpiration vorherzusagen, woraus

eine Schätzung der Ökosystemtranspiration abgeleitet wird. Um FF 2 zu beantworten,

wurde die TEA-Methode am Modell-Output von drei terrestrischen Biosphärenmodellen

getestet, die als synthetischer Eddy-Kovarianz-Datensatz verwendet wurden, um zu

verifizieren, dass der datengetriebene Ansatz (TEA) die bekannte Wasser-Kohlenstoff-

Dynamik in den Modellen replizieren konnte. TEA wurde in Kapitel 4 weiter evaluiert,

sowohl gegenüber zwei anderen ET-Verteilungsmethoden (uWUE und Pérez-Priego) als

auch gegenüber der aus Saftstrommessungen geschätzten Transpiration von Baumkro-

nen. Zur Beantwortung von Frage 3 wurden TEA und die beiden anderen ET-Verteilungsmethoden

auf 251 Standorte weltweit angewendet und hinsichtlich zu erwartender Muster mit

Standortmeteorologie und Fernerkundungsdaten analysiert.

Hauptergebnisse:

FF 1: Diverse Ökosystem-Reaktionen auf Trockenheit wurden mit zwei tageszeitlichen

Indikatoren charakterisiert, die keine zusätzlichen Messungen oder Datenquellen auSSer

dem Eddy-Kovarianz-Kerndatensatz erforderten. Dabei wurd DWCI mit nicht-stomatären

Einschränkungen in Verbindung gebracht, die eine Entkopplung von diurnaler GPP

und ET verursachen, wobei ein niedriger DWCI (der auf eine Entkopplung hinweist)

im Allgemeinen mit Gräsern assoziiert wurde. 𝐶∗
𝐸𝑇 wurde mit hydraulischen Begren-

zungen und stomatärer Kontrolle in Verbindung gebracht, wobei niedrigere Werte für

Tage stehen, an denen der ET-Fluss relativ zur einfallenden Strahlung zum Morgen hin

verschoben ist, was eher mit Bäumen in Verbindung gebracht werden kann. Während

sowohl die morgendlichen Verschiebungen als auch die Kohlenstoff-Wasser-Entkopplung

mit trockenen Bedingungen zusammenhängen, waren nur die morgendlichen Verschiebun-

gen mit einer höheren Wassernutzungseffizienz verbunden. Das deutet darauf hin, dass

Baum-Ökosysteme mit einer höheren stomatären Kontrolle das Wasser unter trockenen



Bedingungen effizienter nutzen, während Gras-Ökosysteme mit einer weniger strengen

Kontrolle der Stomata dazu neigen, an nicht-stomatäre Grenzen zu stoSSen.

FF 2: Die Unsicherheiten und methodischen Annahmen der TEA-Methode wurden charak-

terisiert, indem zunächst die Transpirationsschätzungen in den kontrollierten terrestrischen

Biosphären-Modellexperimenten validiert wurden, und anschlieSSend einer weitere Evaluierung

gegen andere Eddy-Kovarianz-basierte und gegen unabhängige Transpirationsschätzun-

gen erfolgte. Die räumlichen und zeitlichen Muster der Transpiration waren robust und

konsistent, sowohl in der Fähigkeit der TEA-Methode, den Modell-Output zu replizieren

(Nash-Sutcliffe-Effizienzen im Allgemeinen > 0, 9), als auch in der hohen Korrelation

zwischen den drei Eddy-Kovarianz-basierten Methoden (𝑅2 zwischen 0,89 und 0,94)

und den saftflussbasierten Schätzungen (𝑅2 zwischen 0,76 und 0,81). Die GröSSenord-

nung der Transpiration bleibt jedoch unsicher, mit einer Streuung des Verhältnisses von

Transpiration zu ET (T/ET) zwischen 45% und 77%. Methodische Annahmen zur Opti-

malität des Kohlenstoffgewinns gegenüber dem Wasserverlust wurden als Schlüsselfak-

tor identifiziert, der die GröSSe der Transpiration für alle Eddy-Kovarianz-basierten

ET-Verteilungsmethoden steuert. Methoden, die davon ausgehen, dass Pflanzen den

Kohlenstoffgewinn gegenüber dem Wasserverlust optimieren, , tendieren zu T/ET-Verhältnissen

bei oder unter 50% für FLUXNET Standorte, während die TEA-Methode, die sich nicht

auf diese Annahme stützt, ein T/ET-Verhältnis von 77% prognostiziert.

FF 3: Breit anwendbare ET-Verteilungsmethoden aus Eddy-Kovarianz-Daten waren in

der Lage, genügend Standorte mit kontinuierlichen T- und E-Schätzungen zu erzeugen ,

um nicht nur zeitliche, sondern auch räumliche Muster und Treiber der Ökosystemtran-

spiration zu untersuchen. Die Analyse von Standorten mit mehr als zwei vollständigen

Jahren an Transpirations- und ET-Daten zeigte, dass T/ET räumlich 1,6-mal variabler

ist als zeitlich. Darüber hinaus zeigte sich, dass die räumliche Variation von T/ET in er-

ster Linie von der Vegetation (z. B. Pflanzen-/Grasbezeichnung) und den Bodeneigen-

schaften (z. B. Schluffgehalt und Grobfragmentvolumen) abhängt, mit geringem Ein-

fluss von klimatischen Variablen wie dem Jahresmittelwert/Standardabweichung von

Temperatur und Niederschlag. Darüber hinaus war die Beziehung zwischen T/ET und

der Vegetationsbedeckung, gemessen anhand des fernerkundungsbasierten Blattflächenin-

dex, weniger wichtig als in früheren Arbeiten angenommen, mit einer im Vergleich viel

gröSSeren Bedeutung der Bodeneigenschaften, der Gras-/Kulturpflanzenbezeichnung

und der Trockenheit. Hieraus lässt sich schlieSSen, dass die Art und Weise, wie Pflanzen

auf begrenzte Bodenwasservorräte zugreifen, bei der Bestimmung der pflanzlichen Wasser-



nutzung wichtiger ist als das Vorhandensein oder Fehlen von Vegetation.

Allgemeine Schlussfolgerungen: Insgesamt zeigt die hier vorgestellte Arbeit die Re-

alisierbarkeit und den Nutzen von Schätzungen der Transpiration auf Ökosystemebene

aus Eddy-Kovarianz-Datensätzen mittels datengesteuerter Methoden. Die Identifizierung

von Schlüsselstärken und -unsicherheiten der Methode, wie z.B. die Unsicherheit in

der Magnitude der Transpiration, aber die Stärke in der Herleitung räumlicher und

zeitlicher Mustern, skizziert zukünftige Forschungsrichtungen. Da die TEA-Methode

breit anwendbar ist, kann sie sowohl als Basis für zukünftige unabhängige Transpi-

rationsschätzungen dienen, mit denen sie verglichen werden kann, als auch die Skalen-

lücke zwischen Studien auf der Pflanzenebene und globalen prozess- und fernerkun-

dungsbasierten Modellen überbrücken. Dieser Skalentransfer wird dazu beitragen, sowohl

das Verständnis der grundlegenden Pflanzenphysiologie und -ökologie, als auch die

Vorhersagen des globalen Wasser- und Kohlenstoffkreislaufs in einem gegenwärtigen

und zukünftigen Klima zu verbessern.
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4 Introduction

“Had they fortuned to have fallen into this statical way of inquiry, persons

of their great application and sagacity had doubtless made considerable ad-

vances in the knowledge of the nature of Plants. This is the only sure way

to measure the several quantities of nourishment, which Plants imbibe and

perspire, and thereby to see what influence the different states of Air have on

them. This is the likeliest method to find out the Sap’s velocity, and the force

with which it is imbibed: As also to estimate the great power that nature

exerts in extending and pushing forth her productions, by the expansion of

the Sap.”

Stephen Hales, Vegetable Staticks, 1727

1.1 The importance of how plants use water

The flow of water from the soil through plants is the primary hydraulic conduit along the

soil-plant-atmosphere continuum, providing both the turgor pressure terrestrial plants

need to grow as well as a nutrient highway to the photosynthetic powerhouses in the

leaves. Though photosynthesis from marine organisms had already produced an oxygen

rich atmosphere 2.3 billion years ago (Lyons et al., 2014), plants only colonized land

about 400 million years ago (Kenrick and Crane, 1997). The major adaptation that

allowed plants to thrive outside an aquatic environment is a vascular system to transport

water to leaves which control water flow via small, closable pores (stomates) in the

otherwise impermeable outer surface of the leaf, an adaptation that lead to a 90%

decrease in atmospheric 𝐶𝑂2 levels (Beerling et al., 2001; Mora et al., 1996). Apart

from shaping atmospheric compositions, terrestrial vascular plants are the main primary

producers of food and organic material which humans depend on. As such, methods to

monitor and study plants and how they use water, measured as transpiration, are key to

understanding the earth system as a whole, as transpiration directly influences global

carbon, nutrient, energy, and hydrological cycles.

Transpiration (T) is the evaporation of water from the above ground organs of vascu-

lar plants after passing through plant tissues and intercellular spaces. Transpiration is

distinct from abiotic evaporation (E), which is the flux of water from surfaces such as
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leaf exteriors, stems, litter, or soil. The combined biotic and abiotic water fluxes are

termed evapotranspiration (ET), a term which is a portmanteau of the words evapora-

tion and transpiration. From the perspective of physics, both abiotic evaporation and

transpiration would be simply the total ecosystem evaporation with the key difference

that transpiration is actively regulated by plants, and therefore there are recent calls to

move away from using the word evapotranspiration (Miralles et al., 2020). However,

the term is useful in physiology and as such will be used here for consistency with the

previously published chapters.

Transpiration is the intersection of water and carbon, as no known terrestrial plants

manage the needed gas exchange of 𝐶𝑂2 and 𝑂2 without water loss. Furthermore, the

same plant traits that promote photosynthesis; such as leaves with a high surface area

to volume ratio positioned in high sunlight; are also traits that promote transpiration,

meaning water loss is inherently coupled to carbon fixation. On average globally, every

100 g of 𝐶𝑂2 fixed corresponds to 36 kg of water transpired (based on current estimates

of global annual fluxes: 120 𝑃𝑔𝐶 gross primary productivity (GPP) (Jung et al., 2019),

6.7𝑥104𝑘𝑚3 water ET (Pan et al., 2020), and 64% T/ET (Good et al., 2015)). This

high loss of water per unit carbon fixed creates a situation water limitations to carbon

uptake due a lack of water is relatively common, indeed water availability is likely the

dominant control of global terrestrial GPP (Jung et al., 2017).

Transpiration is not a purely negative phenomenon, as the flow of water also provides a

highway for nutrients to be extracted from the soil and transported to leaves. Further-

more, plants have developed a number of traits and strategies for maximizing water

resources (De Kauwe et al., 2015). For example, the ability of plants to access water

reserves from deep soil layers is a vital ecosystem process and allows for sustained

evaporative cooling, which in turn modulates air temperature (Fischer et al., 2007).

Root systems used to extract water reserves also hold soil together and increase wa-

ter use between precipitation events promoting water retention time and precipitation

use (Carminati et al., 2010). On broad scales, ecosystem water fluxes may push pre-

cipitation into continents, acting as rain conveyor belts (Sheil and Murdiyarso, 2009;

Spracklen et al., 2012). As transpiration from vascular plants is a key control valve on

the global terrestrial water cycle, a better understanding of plant water fluxes will lead

to an improved understanding of the earth system in general.

Quantification of transpiration is not only just an academic endeavor, but rather has real
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world implications. For example, a meta-analysis from Liu et al. (2017) estimates 3.0 to

4.3 billion people will be living in areas exposed to water scarcity in the year 2050, and

further highlights plant water use as a key uncertainty that is often overlooked when

estimating water scarcity. Droughts characterized by limited soil moisture compounded

by high atmospheric demand are projected to increase in both intensity and frequency

(Zhou et al., 2019), and have been shown to significantly impact global GPP (Stocker

et al., 2019) as well as pose a significant threat to global food security (He et al., 2019).

In addition to the higher strain on existing water systems caused by climate change,

many negative emission technologies for removing carbon from the atmosphere are

projected to have significant water requirements (Smith et al., 2016; Rosa et al., 2020)

and wide spread utilization could cause further stress to already fatigued freshwater

systems.

Historical interest in transpiration has come out of the forestry and agricultural sec-

tors (Wilm et al., 1944), as water has always driven economies and indeed been a

key factor shaping the spread of humanity. Indeed, the preface of Vegetable Staticks by

Stephen Hales (Hales et al., 1727), which reported the first measurements of transpi-

ration, states “. . . so doubtless a farther insight into the vegetable æconomy must needs

proportionally improve our skill in Agriculture and Gardening. . . ” Being agriculturally

focused, previous work on transpiration has been predominantly based on controlled

environment and agricultural field studies (Kool et al., 2014). These studies have laid

the groundwork for modern physiological understanding of plant water use. However,

with climate change and the increasing interest in global cycles of the past decades,

broader scale studies of how ecosystems, regions, and continents use water have be-

come more prevalent (Fisher et al., 2017; Allen et al., 2015; Bernacchi and VanLoocke,

2015). The chapters of this thesis work toward bridging the existing gap between plant

scale knowledge and measurements and the global processes through ecosystem scale

estimates of transpiration.

1.2 Transpiration at different scales

Transpiration is a key phenomenon which is studied by many different fields and in

many different contexts. These different approaches are generally tied to different scales.

For example, a physiologist measuring a leaf sees transpiration as the dominant water
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flux and might use units such as 𝑚𝑚𝑜𝑙 𝐻2𝑂 ·𝑚−2 · 𝑠−1. In contrast, a hydrologist looking

across catchment basins will see transpiration as just one component in an orchestra

of water fluxes which are measured in the thousands of 𝑘𝑚3 · 𝑦𝑟−1 of water. These dif-

ferent perspectives of the same fundamental process yield important insights, though

transferring the principles of hydrology to the scale of a single leaf and vice versa can be

challenging. As noted, this dissertation focuses on ecosystem scale, which can more eas-

ily integrate both micro- and macro-scale processes. Therefore, the following sections

will briefly outline the core principles from scales which are important to understanding

ecosystem transpiration.

1.2.1 Leaf and stomate

Transpiration in a simplified context, such as what would describe a leaf in a cuvette,

can be characterized using simple Fickian diffusion,

𝑇 = 1.6 · 𝑔𝑠 · (𝑒𝑖 − 𝑒𝑎)

where T is transpiration, 𝑔𝑠 is the stomatal conductance of 𝐶𝑂2, 1.6 is the ratio of the

conductance of water to the conductance of 𝐶𝑂2, and 𝑒𝑖 and 𝑒𝑎 are the intercellular

and ambient water vapor concentrations, respectively. In the simplistic view, as well as

in many more complex models, 𝑔𝑠 is the key parameter to be estimated (Berry et al.,

2010). Furthermore, 𝑔𝑠 is what is actively modulated by plants and can be seen as the

primary biological control valve. This modulation is key, as it both differentiates T and E

fluxes and links the carbon and water cycles. The combination of the impermeable plant

outer layers with well regulated openings for gas exchange (i.e. stomates) are a major

advantage for terrestrial plants, allowing plants to mitigate 𝐶𝑂2 uptake to water loss,

or water use efficiency (WUE). Versions of WUE and stomatal conductance are used in

applications across scales, from basic physiology (Damour et al., 2010) to land surface

models (Knauer et al., 2015), and therefore much work has been done to characterize

the key factors influencing stomatal conductance. Stomates have been shown to respond

to conditions that effect both photosynthesis and water loss such as light, temperature,

ambient 𝐶𝑂2 concentrations, and atmospheric demand for water:

Stomatal response to light: Stomates open in response to light. The light response is
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a clear example of the optimization of stomates to increase carbon gain to water loss,

as opening stomates in the absence of light would result in no photosynthetic uptake

while still allowing for water loss (Deans et al., 2019). The exception is in plants who

utilize Crassulacean acid metabolism (CAM) photosynthesis, where stomates show a

reversed response to light because 𝐶𝑂2 is stored in plant tissues during the night to be

used for photosynthesis during the day as a water conservation adaptation (Osmond,

1978).

Stomatal response to to VPD: Increasing atmospheric demand for water is typically

measured as vapor pressure deficit (VPD), i.e. the difference between inter-cellular and

ambient water vapor concentration. In general, exposing leaves to high VPD causes

stomates to close (Buckley, 2005), which limits water losses when evaporative demand

is high. This stomatal closure is seen as an evolutionary advantage because of the high

cost of water per unit carbon gained under high VPD conditions which can result in very

low WUE.

Stomatal response to temperature: The stomatal response to temperature can be

difficult to differentiate from the effect of VPD, as stomates respond strongly to VPD,

and VPD is directly related to temperature. However, there is evidence that high tem-

peratures cause stomates to open to promote leaf cooling, even when photosynthesis

is reduced due to very high temperatures (Urban et al., 2017b), potentially reducing

WUE.

Stomatal response to ambient CO2: The stomatal response to 𝐶𝑂2 has been of high

interest in recent years due to rising atmospheric 𝐶𝑂2 levels (Ainsworth and Rogers,

2007). The 𝐶𝑂2 effect has been well documented, showing that plants exposed to higher

ambient 𝐶𝑂2 decrease stomatal aperture and therefore conductance (Morison, 1985).

The decease in conductance causes a reduction to transpiration, while at the same time

the increase in 𝐶𝑂2 gradient between air inside and outside leaf increases the carbon

uptake relative to stomatal conductance, ultimately causing an increase in WUE.

The fundamental understanding of stomates from individual leaves is currently the ba-

sis for modeling carbon assimilation and transpiration at all scales. The semi-emprical

Ball-Berry model (Ball et al., 1987), or a derivative thereof, is the most common model

of stomatal conductance used today (Berry et al., 2010). The Ball-Berry family of mod-

els calculates stomatal conductance as a function of net photosynthetic assimilation

rate (which encapsulates the light and temperature responses), relative humidity (or
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VPD depending on the model variant), and atmospheric 𝐶𝑂2 concentration, with two

parameters: 𝑔0 the minimum stomatal conductance in the absence of light and 𝑔1 the

sensitivity of photosynthetic assimilation to 𝑔𝑠 which relates to WUE. While the orig-

inal Ball-Berry model was developed based on leaf experiments in a controlled envi-

ronment, Cowan and Farquhar (1977) postulated that stomates should act in a way

that maximizes carbon gain to water loss (stomatal optimality theory), generally char-

acterized as stomates closing in response to high VPD to reduce water losses. Medlyn

et al. (2011) has since shown that the empirical formulations of 𝑔𝑠 match well with

those derived from stomatal optimality principles, thus providing a unified framework

for understanding and estimating stomatal function. However, studies have suggested

that the stomatal response to VPD is not optimal (Lin et al., 2018), possibly due to

non-stomatal limitations which disproportionally effect carbon uptake relative to water

loss such (e.g. decreases in mesophyll conductance of 𝐶𝑂2 or limitation in carbon fix-

ation pathways) (Reichstein et al., 2002; Novick et al., 2016b). Uncertainty and biases

in stomatal conductance models have broad implications for estimates of carbon and

water fluxes at other scales because entire ecosystems are often modeled as a “big leaf”,

with leaf level processes upscaled to canopy and ecosystem level via an integration over

the leaf area index (LAI). The implications of the uncertainty of this transfer of scale are

explored further in Section 1.2.4.

1.2.2 Regional and global hydrology

Transpiration fits directly into the water balance equation, which is a fundamental equa-

tion in hydrology,

𝑃 = 𝑅 + (𝐸 + 𝑇) + 𝛿𝑆

where 𝑃 is precipitation, 𝑅 is runoff, (𝐸 + 𝑇) is abiotic evaporation and transpiration,

and 𝛿𝑆 is the change in water storage. While transpiration is known to be one of the

largest terrestrial water fluxes (Oki and Kanae, 2006), plants are sometimes overlooked

in the field of regional and global scale hydrology where ET can be considered the

“background water footprint” (Bogardi et al., 2013). For example, in examining trends

in terrestrial water storage and attributing those trends to underlying causes, Felfelani

et al. (2017) did not explicitly reference plants. While Felfelani et al. (2017) did men-
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tion crop irrigation and deforestation as drivers of terrestrial water storage, direct plant

responses to climate change, such as changes in stomatal sensitivity with rising 𝐶𝑂2

(Gedney et al., 2006), were overlooked. On the one hand, removing plants from the

large scale hydrological equation is understandable, as plants can be difficult to model

across large and heterogeneous areas. However, there have been recent calls to inte-

grate the fractured sub-disciplines of hydrology, including ecohydrology (Brooks et al.,

2015; Clark et al., 2017). Of course, much research is being done with regards to re-

gional plant-hydrology interactions, such as recent papers showing that groundwater

can influence ET partitioning (Maxwell and Condon, 2016), and that plant activity can

be affecting groundwater reserves (Koirala et al., 2017). Direct observations of tran-

spiration at regional scales would likely improve understanding of regional and global

hydrology.

1.2.3 Global

In general, global estimates of ET agree (Pan et al., 2020), but the individual compo-

nents; transpiration, soil evaporation, and canopy interception evaporation; often have

large disagreements (Wei et al., 2017; Talsma et al., 2018). One method to constrain

the individual components of the global water budget is by using the ratio of heavy

to light isotopes of water as a tracer, because while water vapor from soil evapora-

tion is depleted of heavy isotopes, water vapor from transpiration is often assumed to

be the same as the source root zone water, thus giving a unique isotopic signature to

each process. Using models constrained by the isotopic signatures from oceans, run-off,

evapotranspiration, and precipitation, Good et al. (2015) estimated a global T/ET of

64 ± 13% (mean ±1 standard deviation) where ET includes transpiration, soil evapora-

tion, interception, and evaporation from surface waters. An estimate of 64% is similar

to other estimates based on up-scaling site level estimates of T/ET, both by ecozone

(61 ± 15%, Schlesinger and Jasechko (2014) ) and via an empirical function of T/ET

with LAI (57.2 ± 6.8%, Wei et al. (2017)).

Currently, the isotopic and site-level data to estimate global T/ET are too sparse to

accurately resolve T/ET in time. As discussed in Section 4.4.2, efforts to upscale site

level T/ET data to global estimates rely on fewer than 100 studies with some stud-

ies dating back to 1941. Similarly, global isotopic estimates rely on even fewer surface

measurements to constrain global estimates, e.g. six evapotranspiration isotope mea-
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surements in Good et al. (2015) and isotope measurements from only 56 lake catch-

ments in Jasechko et al. (2013). Therefore, transpiration estimates must rely on model

assumptions to constrain the problem. However, based on the spread in T/ET estimates,

the assumptions used in different modeling approaches do not agree (Figure 1.1). Typ-

ical strategies for modeling transpiration on a global level range from processed based

models, e.g. the components of earth system models such as those used in the Coupled

Model Intercomparison Project (CMIP), or can be based on relatively simple and/or

empirical relationships paired with external data sources, such as estimates based on

remote sensing data (Stoy et al., 2019). However, both process models and remote

sensing based methods can show high variability among T/ET estimates. For example

CMIP5 models ranged from 15 to 60% T/ET (Berg and Sheffield, 2019), while T/ET

from 3 different remote sensing products ranged from 24 to 75% T/ET (Miralles et al.,

2016). This large spread in the magnitude of T/ET, with many estimates not agreeing

that transpiration is the dominant component of ET as is generally agreed upon from

the data derived estimates of T/ET (e.g. site up-scaled and isotope based estimates),

demonstrates a fundamental deficiency in how transpiration is modeled and understood

on a global scale. More data driven estimates of transpiration, both in space and in time,

could help diagnose the issues with global models by providing a better understanding

on the key driver of T/ET.
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is less important the the total amount of light, diffuse light cause by clouds and aerosols

has the effect of spreading incoming light energy over more leaves which increases

overall plant photosynthetic efficiency. In essence, rather than leaves at the top of the

canopy receiving the majority of the light and overloading photochemical pathways

(Müller et al., 2001), diffuse light allows for more of the canopy to contribute to carbon

uptake resulting in a more efficient use of light overall (Li et al., 2014). Diffuse light

not only improves carbon uptake per unit light, but also increases water use efficiency

(Pedruzo-Bagazgoitia et al., 2017; Gao et al., 2018) and the fraction of energy used for

evaporating water relative to total available energy (evaporative fraction) (Wang et al.,

2008). Including the effect of diffuse light in land surface models has been shown to

have large impacts on the estimated global carbon sinks (Mercado et al., 2009), but the

implications on global water fluxes is less well characterized.

Ecosystem response to to VPD: While the stomatal response to VPD has been rela-

tively well characterized, high values of VPD typically correspond to periods of overall

water limitations where whole plant survival strategies may alter the carbon cost of

water calculus and thus stomatal responses. For example, the long hydraulic pathways

in trees are more susceptible to damage under water stress and therefore many plant

adaptations, such as increased stomatal closure or dropping leaves, have evolved to pre-

vent mortality (Choat et al., 2018). Furthermore, high VPD is often associated with soil

water depletion and water stress (Zhou et al., 2019). While the effect of VPD has been

shown to be stronger than that of soil moisture supply (Novick et al., 2016a), many

stomatal models still fail to capture the effects of drought (Damour et al., 2010), which

is further compounded by the diverse responses to water limitation found in different

ecosystems (De Kauwe et al., 2015).

Ecosystem response to temperature: While mean temperatures can be a key predictor

of vegetation activity, extreme temperatures can cause direct damage to plant tissues,

which can have long term effects on carbon and water fluxes. Cold weather events

have been shown to impact ecosystem water and carbon fluxes by causing vegetation

damage leading to decreases in vegetation and photosynthetic activity long after the

initial event (Gu et al., 2008). Furthermore, plants can also change stomatal function to

increase evaporative cooling from transpiration, at a cost to photosynthesis, in order to

prevent high temperature damage. Drake et al. (2018) showed a complete decoupling of

water and carbon fluxes in Eucalyptus trees by exposing them to extreme heat over four

consecutive days, with severe limitations to photosynthesis but continued transpiration,
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an effect which could not be explained by stomatal optimality. In a further study, De

Kauwe et al. (2019) did not find widespread evidence of decoupling due to extreme heat

across 14 sites, however the authors note that ET was used as a proxy of transpiration

which could obscured the physiological decoupling effect due to influences of abiotic

evaporation.

Ecosystem response to ambient CO2: While the effect of increased 𝐶𝑂2 causing sto-

mates to close, thus reducing transpiration while increasing WUE, is well established

at the leaf scale, the ecosystem scale response has been much more uncertain. Keenan

et al. (2013) reported that the increasing trend in WUE over time (associated with the

increase in 𝐶𝑂2 from anthropogenic sources) in 14 forested sites was much larger than

predicted by terrestrial biosphere models. However, Knauer et al. (2017) determined

that such a large trend was not plausible, finding that transpiration at the ecosystem

scale was less sensitive to increases in 𝐶𝑂2 than at the leaf scale due to a decoupling be-

tween the conditions experienced by individual leaves compared to the general ecosys-

tem atmosphere. For example, in a free-air 𝐶𝑂2 enrichment experiment, Wullschleger

et al. (2002) showed that while seasonal stomatal conductance was reduced by 22%

in the elevated 𝐶𝑂2 treatments, the reduction was primarily found in upper canopy

leaves, with mid and lower canopy leaves showing little reduction in stomatal conduc-

tance, and only a 14% reduction in integrated canopy conductance and a 10% reduction

in transpiration.

The above examples demonstrate that while models are able to generalize stomatal con-

ductance, and thus water and carbon fluxes, under typical experimental conditions, the

whole plant and community responses can be much harder to generalize. The normal

carbon cost of water calculous to optimize carbon uptake to water loss might change

due to longer term strategies of survival, and non-stomatal effects can also alter the car-

bon to water relationship independent of stomatal conductance (Novick et al., 2016b;

De Kauwe et al., 2019). All of these potential sources of error have major implications

for predicting not only carbon and water fluxes, but also how the earth system will re-

spond to a changing climate, and as such, recent reviews have highlighted the water to

carbon relationship is a major point of improvement in understanding both terrestrial

carbon (Rogers et al., 2017; Dietze et al., 2014), and water cycles (Fisher et al., 2017;

Allen et al., 2015; Bernacchi and VanLoocke, 2015).
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estimated.

The approaches of estimating ecosystem scale transpiration are reviewed briefly in Sec-

tion 3.1, and in depth in Stoy et al. (2019) (co-authored during the work of this thesis).

The advantages and disadvantages of common methods are briefly summarized in Ta-

ble 1.1. While these approaches are important and have their advantages, the limited

number of measurements are likely not enough to characterize global variability, so

a method that uses the existing eddy covariance datasets would be much more pow-

erful in constraining global uncertainty. Therefore, the core objective of this thesis is

to develop and evaluate a data driven method for estimating transpiration from eddy

covariance data.

Table 1.1 A brief overview of methods for estimating ecosystem scale transpiration.

Methods are reviewed in detain in Stoy et al. (2019) and Section 3.1.

Advantages Limitations Citation

Flux-variance similarity

Requires few additional

measurements and has a firm

theoretical foundation.

Sensitive to WUE

assumptions and data

processing limitations.

Scanlon et al.

(2019)

Sap flow

Widely available datasets

(SAPFLUXNET) directly connected

to physiology.

Methodological uncertainties

(see Section 4.4.2), only for

trees

Poyatos et al.

(2019)

Carbonyl sulfide

Provides an independent method

to estimate canopy conductance.

Unknown sinks/sources of

OCS and lack of

measurements.

Whelan et al.

(2018)

Isotopes

Gives an ecosystem integrated

estimate.

High uncertainties and lack

of measurements.

Beyer et al.

(2020)
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Advantages Limitations Citation

Above and below canopy EC

Same temporal resolution and

integrated ecosystem estimates as

normal EC.

Combines understory T and

soil E and lack of

measurements.

Paul-Limoges

et al. (2020)

1.4 Technical approach and use of machine learning

While an ET partitioning method should be built off of sound physical and physio-

logical principles, the limitations of current ecosystem stomatal models necessitates a

method which does not make too many physiological assumptions. Utilizing machine

learning gives a data driven perspective, allowing the resulting transpiration estimates

to be more independent from processed based models. Machine learning approaches,

guided by expert knowledge, provide the opportunity to exploit statistical relationships

in the data in a robust and powerful way (Jordan and Mitchell, 2015; Reichstein et al.,

2019).

Previous works have shown the potential benifits of using machine learning techniques

on eddy covariance data and have the advantage of being able to extract complex re-

lationships in the data. For example, machine learning based methods for partitioning

NEE have been developed and generally agree with widely accepted methods (Desai et

al., 2008; Tramontana et al., 2020). Furthermore, the data driven appoarchs may have

advantages over traditional methods which impose hard theoretical constraints, such as

NEE partitioning methods which dictate the shape of the photosynthetic light response

curve (Tramontana et al., 2020).

While other machine learning methods exist, Random Forests (Breiman, 2001) are used

in every chapter of this dissertation, due to the robust nature of the algorithm and

its proven ability to perform well in many situations. Random Forest have previously

been used as a bench mark when comparing methods due to the fact its robust ability

to produce results with minimal configuration (Besnard et al., 2019). The key use of

Random Forest in this work is embedded in the TEA algorithm (Chapter 3), where

the ability to predict quantiles (Meinshausen, 2006) is key to the functionality of the

algorithm.
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1.5 Aims, outline, and objectives

The practical objective of this thesis was to produce a method for estimating transpira-

tion from existing eddy covariance datasets that is generally applicable and data driven.

Given that the method is data driven, much of the work involved comes not only from

the technical building of the methodology, but first evaluating the data as well as pat-

terns within the data which the method can exploit (Chapter 2), then technical evalua-

tion of the method and uncertainties (Chapter 3), and finally application of the method

and evaluation of the resulting global patterns (Chapter 4). Chapter 2 looks a diurnal

patterns of water and carbon fluxes, introducing two indices which were shown to hold

information on drought response and are used in the subsequent chapters. Chapter 3 in-

troduces the Transpiration Estimation Algorithm (TEA) and evaluates the method using

model output in controlled experiments where all ecosystem fluxes are known. Chapter

4 then uses TEA, as well as other transpiration estimation methods, to estimate tran-

spiration across FLUXNET and evaluate global patterns. While much of the work of the

thesis is synthesized in Chapter 4, Chapter 5 summarizes the findings as well as gives

an overview of work which has since utilized TEA and an outlook of future work.

1.5.1 Research questions

RQ 1: How can information in the core eddy covariance datasets be further

exploited to describe the complex plant water relationships from heterogeneous

communities?

As outlined in this introduction, there are known limitations to current stomatal and

transpiration models. Furthermore, supplementary input data, such as leaf measure-

ments, sap flow, and plant available soil moisture are hard to quantify on broad scales.

A key question that emerges is whether one can capture the dynamic ecosystem re-

sponses in WUE and transpiration with the core EC measurements, therefore giving the

biggest impact of broad-scale transpiration estimates across a large variety of ecosys-

tems from the existing eddy covariance datasets. Can complex ecosystem processes such

as drought be identified thought the ecosystem responses alone, such as via indicators

from diurnal cycles?
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RQ 2: Given the limited amount of independent ecosystem transpiration data

concurrent with eddy covariance measurements, how can the transpiration

estimates be validated?

The lack of ecosystem scale transpiration estimates both necessitates an ET partitioning

method, but also makes validation of the transpiration estimates from the partitioning

methods difficult. Furthermore, many partitioning methods, including the TEA method

described in Chapter 3, assume that transpiration dominates ET in a way that allows

for a model to be built using the ET measurement directly. As reviewed in Stoy et al.

(2019), this assumption is often debated and is a major critique of these methods.

Can the assumption transpiration dominates ET during some periods be made and how

will the violation of this assumption impact the resulting WUE and transpiration esti-

mates?

RQ 3: What new insights on ecohydrological and water use strategies across

major terrestrial biomes can be gained from the transpiration estimates derived

from FLUXNET?

Current global predictions of T/ET are highly uncertain, uncertainties which will likely

propogate into carbon and hydrological cycles for future climate preditions. The data

driven approach from TEA applied to the FLUXNET dataset may give insight as to how to

better model transpiration dynamics from diverse ecosystems. How can the potentially

broad spatio-temporal coverage of transpiration estimates from FLUXNET inform the

current understanding of transpiration?
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Abstract. Understanding of terrestrial carbon and water cy-

cles is currently hampered by an uncertainty in how to

capture the large variety of plant responses to drought. In

FLUXNET, the global network of CO2 and H2O flux ob-

servations, many sites do not uniformly report the ancil-

lary variables needed to study drought response physiology.

To this end, we outline two data-driven indicators based on

diurnal energy, water, and carbon flux patterns derived di-

rectly from the eddy covariance data and based on theo-

rized physiological responses to hydraulic and non-stomatal

limitations. Hydraulic limitations (i.e. intra-plant limitations

on water movement) are proxied using the relative diurnal

centroid (C∗

ET), which measures the degree to which the

flux of evapotranspiration (ET) is shifted toward the morn-

water use efficiency (WUE) models, we found the mean dif-

ferences between expected and observed WUE to be −0.09

to 0.44 µmol mmol−1 and −0.29 to −0.40 µmol mmol−1

for decoupled and morning-shifted days, respectively, com-

pared to mean differences −1.41 to −1.42 µmol mmol−1 in

dry conditions, suggesting that morning shifts/hydraulic re-

sponses are associated with an increase in WUE, whereas

decoupling/non-stomatal limitations are not.

1 Introduction

Processes such as photosynthesis and transpiration are so in-
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Understanding of terrestrial carbon and water cycles is currently hampered by an uncer-

tainty in how to capture the large variety of plant responses to drought. In FLUXNET,

the global network of CO2 and H2O flux observations, many sites do not uniformly

report the ancillary variables needed to study drought response physiology. To this

end, we outline two data-driven indicators based on diurnal energy, water, and car-

bon flux patterns derived directly from the eddy covariance data and based on theorized

physiological responses to hydraulic and non-stomatal limitations. Hydraulic limitations

(i.e. intra-plant limitations to water movement) are proxied using the relative diurnal

centroid (𝐶∗
𝐸𝑇), which measures the degree to which the flux of evapotranspiration (ET)

is shifted toward the morning. Non-stomatal limitations (e.g. inhibitions of biochem-

ical reactions, RuBisCO activity, and/or mesophyll conductance) are characterized by

the Diurnal Water:Carbon Index (DWCI), which measures the degree of coupling be-

tween ET and gross primary productivity (GPP) within each day. As a proof of concept

we show the response of the metrics at 6 European sites during the 2003 heatwave

event, showing varied response of morning shifts and decoupling. Globally, we found

indications of hydraulic limitations in the form of significantly high frequencies of morn-

ing shifted days in dry/Mediterranean climates and savanna/evergreen plant functional

types (PFT), whereas high frequencies of decoupling were dominated by dry climates

and grassland/savanna PFTs indicating a prevalence of non-stomatal limitations in these

ecosystems. Overall, both the diurnal centroid and DWCI were associated with high net

radiation and low latent energy typical of drought. Using three water use efficiency

(WUE) models, we found the mean differences between expected and observed WUE to

be -0.09 to 0.44 umol/mmol and -0.29 to -0.40 umol/mmol for decoupled and morning

shifted days respectively compared to mean differences -1.41 to -1.42 umol/mmol in

dry conditions, suggesting that morning shifts/hydraulic responses are associated with

an increase in WUE whereas decoupling/non-stomatal limitations are not.
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2.1 Introduction

Processes such as photosynthesis and transpiration are so intimately linked that knowl-

edge and assumptions about one process are needed to accurately understand the other.

Unfortunately, the relationship between carbon and water cycles is not fully understood

(Tang et al., 2014), passing the biases and uncertainties caused by an incomplete car-

bon:water framework back onto flux estimates specifically and global water and car-

bon cycle interactions and dynamics in general (Keenan et al., 2013; Schlesinger and

Jasechko, 2014; Ito and Inatomi, 2012). One source of uncertainty that is increasingly

being identified is the diverse responses of plants to water limitation (Zhou et al., 2013;

Dietze et al., 2014; Rogers et al., 2017), which hampers the understanding and pre-

dictability of water and carbon cycles during drought. Here we outline potential causes

of uncertainty in carbon:water dynamics in an effort to outline data-derived inductors

based on current theory.

Classically, vegetation water and carbon fluxes are linked by stomates, where an open

stomate allows CO2 to enter the leaf and, consequentially, water is lost. Most theoreti-

cal frameworks make some form of assumption that carbon assimilation (A) and water

losses (T) are both contingent primarily on leaf stomatal conductance (gs). This as-

sumed relationship allows us to pass between the realms of carbon and water, based on

the assumption that at any given time both A and T are proportional to the stomatal

conductance multiplied by the difference in internal and external CO2 and water vapor

concentrations. More specifically,

𝐴 = 𝑔𝑠 · Δ𝑐 𝑎𝑛𝑑 𝑇 = 1.6 · 𝑔𝑠 · Δ𝑣 (2.1)

where c and v are the differences in inner and outer stomatal cavity concentrations of

CO2 and water vapor, respectively. These diffusion equations lead to the relatively con-

sistent carbon:water ratio, generally expressed as a water use efficiency (𝑊𝑈𝐸 = 𝐴/𝑇).

At the ecosystem level where direct measurements of A and T are not available, WUE

is simply calculated as the ratio of gross primary productivity (GPP) to total evapotran-

spiration (ET) (Kuglitsch et al., 2008). These carbon:water links are fundamental to

understanding how stomata are regulated and underly key functioning in mechanistic

plant and ecosystem models. One such set of models are those based on optimality the-
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ory which posit that plants tend to optimize carbon gains to water losses, such as those

described by Katul et al. (2010) and Katul et al. (2009). These concepts from Katul,

which carry the assumptions of RuBisCO (light) limitation, were built upon by Zhou

et al. (2014) and Zhou et al. (2015) to give the equation,

𝑢𝑊𝑈𝐸 =
𝐺𝑃𝑃 ·

√
𝑉𝑃𝐷

𝐸𝑇
(2.2)

where the
√
𝑉𝑃𝐷 accounts for the stomatal response to vapor pressure deficit (VPD)

assuming stomatal response optimizes carbon gain to water losses. Accounting for the

VPD response allows for a more stable metric of WUE that is temporally more stable and

physiologically more meaningful, such as when comparing the diurnal cycles of carbon

and water. As ET is the sum of both T and non-biological evaporation (e.g. soil and in-

tercepted evaporation), often periods during and shortly after rain events are excluded

from WUE estimates to minimize the influence of non-plant evaporation. Ultimately,

calculations of WUE provide a simple summary of the cost in water per carbon gain and

becomes an indicator for how plants have and will adapt to the physical limitations of

their changing environments (Keenan et al., 2013; Tang et al., 2014).

Though assuming a rigid carbon:water relationship works well in conditions when

ecosystems are moderately wet, conditions associated with the majority of carbon and

water fluxes, an inflexible carbon:water assumption is unsatisfactory in that these as-

sumptions may breakdown as plants shift from light to water limitations. Indeed, in

a review of leaf level stomatal conductance models, Damour et al. (2010) concluded

that the majority of stomatal models fail to adequately capture the effects of drought.

This failure to capture the effects of drought is not only disconcerting as water lim-

ited conditions are when ecosystems are most at risk, but an incomplete framework

tends to propagates errors and uncertainties from models into estimates of the water

and carbon cycles. For instance, in outlining a road map for improved modeling of

photosynthesis, Rogers et al. (2017) noted as key recommendations both improving

information about water:carbon relations (in the form of the stomatal slope parame-

ter g1) as well as improving understanding of the response of carbon assimilation to

drought. Similarly, in an analysis of parameter uncertainties for a terrestrial biosphere

model, Dietze et al. (2014) found that two of the top five parameters contributing to

the predictive uncertainty of net primary productivity were associated with plant water

regulation. This uncertainty is reflected in the stomatal conductance parameterization
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exercise from Knauer et al. (2015), where the authors were able to improve model per-

formance in predicting EC measured GPP and ET by including atmospheric effects (in

the form of VPD) on stomatal conductance, but concluded that further improvement

required global understanding of water limitation response variation across plant func-

tional traits and growing conditions, which is currently unavailable.

Two ideas to account for the errors in carbon:water assumptions under dry conditions

have begun to emerge: that hydraulic limitations in transporting water from root to

leaf change stomatal responses and thus limit transpiration under high demand, or that

changes in the intra-leaf processes of carbon transport and fixation under drought con-

ditions result in non-stomatal limitations that impact carbon assimilation independently

of water fluxes (Novick et al., 2016b).

As soil water potentials in the root zone become increasingly negative, the long-term

plant strategy may turn from optimizing carbon fixation to preventing damage to hy-

draulic architecture (Tyree and Sperry, 1988). As such, stomata and transpiration are

likely to increasingly respond not just to atmospheric conditions, but also soil moisture.

Under this hydraulic limitation framework, a plant will be reacting to the inability to

transport water, even though the key control mechanism for a plant is via the stom-

ata, possibly expressed as an increase in sensitivity. Such assumptions are consistent

with the mechanisms encoded in some land surface and ecosystem models, which ac-

count for water limitations by scaling the water to carbon ratio in relation to available

soil moisture. Though this method should link the leaf physiology to the soil and thus

capture some hydraulic limitation, it has been criticized for not capturing the variety

of drought responses found in different plant species and ecosystems (De Kauwe et al.,

2015). This diversity in plant responses has been pointed to as a key point of uncertainty

in earth system models (Dietze et al., 2014).

Though ecosystem water and carbon fluxes are predominantly controlled by stomates,

non-stomatal or bio/photo-chemical inhibitions to carbon assimilation are worth consid-

ering as they have the capacity to decouple the water-carbon exchange. This decoupling

could include conditions where the stomates are transpiring water but intra-leaf factors

are slowing carbon fixation, changing the intrinsic water use efficiency directly. Intra-

leaf factors could include effects such as production of reactive oxygen species (Lawlor

and Tezara, 2008); environmental limitations to the photosynthetic pathways, such as

leaf temperature (Medlyn et al., 2002); or declines in mesophyll conductance (Flexas
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et al., 2012). Non-stomatal limitations have been observed at ecosystem scale (Reich-

stein et al., 2002; Migliavacca et al., 2009), though the exact mechanism is difficult to

elucidate (Reichstein, 2003). These effects likely vary between species, as well as with

the rate of onset of drought, access to water, and other environmental conditions.

2.1.1 Objectives

There seems to be a collective conclusion that the breakdown of carbon:water assump-

tions needs to be better characterized in general, and specifically for implementation in

modeling frameworks (De Kauwe et al., 2015; Manzoni, 2014; Zhou et al., 2013; Flexas

et al., 2012; Egea et al., 2011). Though the problem is becoming clear, the way forward

is hampered by an uncertainty in how to capture the large variety in the response to

drought across climates, strategies, and species. In this sense, the use of EC measured di-

urnal patterns of carbon, water, and energy fluxes to derive clues on ecosystem drought

responses at a daily resolution could prove valuable both as a means to identify poten-

tial periods of ecosystem stress, inform machine learning algorithms on ecophysiologi-

cal conditions not found in environmental variables, as well as benchmarking a models

ability to capture sub-daily dynamics. To this end, we propose two data-driven indica-

tors of water stress, the diurnal water:carbon index (DWCI) and the relative diurnal

centroid in LE (𝐶∗
𝐸𝑇). Both metrics are derived directly from the EC data and based on

expected physiological responses to hydraulic and non-stomatal limitations. Using these

data-driven indicators we then characterize the distribution of these limitations across

a global spread of climate and vegetation types. Finally, we explore the ability of these

indicators to detect the disagreements between modeled and observed water use effi-

ciency, and explore how these biases may be attributed to hydraulic and non-stomatal

limitations.

2.2 Methods and Materials

2.2.1 Data

Carbon, water, and every fluxes measured with EC, as well as meteorological data,

were obtained from the 2007 FLUXNET La Thuile Synthesis Dataset (FLUXNET Data
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Download 2007). Half-hourly latent heat and net ecosystem exchange (NEE) fluxes were

collected and processed using standard QA/QC procedures (Papale et al., 2006), gap-

filling and partitioning algorithms (Reichstein et al., 2005b). From the database, half-

hourly gross primary productivity (GPP) and ET data (derived from latent heat flux

measurements) were downloaded and used for the following analysis. An interactive

map of sites used can be found in File S1.

In order to provide a consistent measure of ecosystem dryness that can be utilized

across sites, the ratio of water evaporated to potential water evaporated was calcu-

lated as evaporative fraction (EF), or the fraction of actual ET to Potential ET (PET).

PET was calculated as the daily fraction between the measured ET and estimated ET via

a Priestly-Taylor model (Priestley and Taylor, 1972) using site measured net radiation

(Rn) and air temperature (𝑇𝑎𝑖𝑟). The slope (alpha parameter) was fit for each site-year

using 95th quantile regression (Koenker and Bassett Jr, 1978) instead of using the orig-

inal 1.26 value derived for a “well watered crop” (Priestley and Taylor, 1972).

In order to get high quality data and minimize the influence of abiotic evaporation

(hereafter just evaporation), all data was filtered with the aim to include only non-gap

filled data in the growing season with dry surface conditions. Growing season was de-

fined as all days where GPP > 1 𝑔𝐶 · 𝑚−2 · 𝑑−1 and daily mean air temperature > 5

řC. These threshold were shown to give good response in the proposed metrics while

minimizing variability due to low diurnal signals, a sensitivity analysis of which can be

found in supplementary Figure S2. In an effort to minimize contributions of evapora-

tion, the conservative soil wetness index (CSWI) was employed which was designed to

estimate whether the ecosystem is likely to have “dry” surfaces and therefore ET is likely

to be dominated by transpiration. This approach requires a certain amount of evapora-

tion to occur after a rain event before the surface is considered to be “dry” and can be

contrasted to the method of removing a set time period after rain employed in previous

studies (Medlyn et al., 2017; Beer et al., 2009; Keenan et al., 2013). CSWI is calculating

by first quantifying the storage at time t (𝑆𝑡) as,

𝑆𝑡 = 𝑚𝑖𝑛 (𝑆𝑡−1 + 𝑃𝑡 − 𝐸𝑇𝑡, 𝑆𝑜) (2.3)

where 𝐸𝑇𝑡 and 𝑃𝑡 are the ET and precipitation at time-step t respectively, 𝑆𝑡 is effectively

capped at a maximum storage value of 𝑆𝑜, which was set to 5 mm. Furthermore, to make
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the metric conservative in regards to assumed water inputs, any precipitation event will

refill the storage from 0 mm,

𝐶𝑆𝑊𝐼 = 𝑚𝑎𝑥 (𝑆𝑡,𝑚𝑖𝑛 (𝑃𝑡, 𝑆𝑜)) (2.4)

which has the effect of requiring all precipitation up to 5 mm to be evaporated from

the system before negative storage can occur. Any gaps in the precipitation data were

assumed to be a precipitation event of 5 mm in order to prevent any unmeasured precip-

itation from biasing the results by inadvertently including rainy days. Code and further

outline of the algorithm can be found in File S3 as well as at Nelson (2017). Evapo-

ration was assumed to be negligible when 𝐶𝑆𝑊𝐼<0. This method was used over the

more standard method of removing 1-5 days after a rain event, as it does not make

the assumption that the surface will dry in a fixed amount of time, instead relying on a

minimum amount of ET. As a comparison, the median time period for the CSWI to go

from fully wet (CSWI=5) to “dry” (CSWI<=0) was 3.5 days across all sites in summer,

where summer was defined as the period when daily potential radiation above median

daily potential radiation for each site.

The data filtering as outlined in this section was designed to isolate periods firmly in

the growing season when plants are active and the signal of ET is most likely to be

dominated by plant controls.

2.2.2 Relative diurnal centroid (𝐶∗
𝐸𝑇)

As soils dry, it becomes more difficult to transport stem and root zone moisture to the

leaf, potentially causing hydraulic limitations for the plant to transport water. This shift

was seen in eddy covariance data in a study by Wilson et al. (2003), who examined

the shift of latent compared to sensible heat, which suggested that a shift in water

fluxes towards dawn can be indicative of afternoon stomatal closure. Shifts were further

explored in a modeling study by Matheny et al. (2014) which found that the morning

shift was not well captured by models and attributed the errors to inadequate hydraulic

limitations in the models. The daily cycle of wetting and drying acts as a capacitor in

the hydraulic circuit, allowing water stores to be more easily transported in the morning

and depleting in the afternoon. As bulk soil moisture declines, this effect may be strong
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enough to shift the diurnal cycle of ET significantly toward the morning. Quantifying

diurnal shifts in EC data using the diurnal centroid was first explored by Wilson et al.

(2003): defined as the flux weighted mean hour, or

𝐶 𝑓 𝑙𝑢𝑥 =

∑
𝑓 𝑙𝑢𝑥𝑡 · 𝑡

∑
𝑓 𝑙𝑢𝑥𝑡

(2.5)

where t is a regular, sub-daily time interval (here t measures as decimal hour at half-

hourly time-step). The resulting 𝐶 𝑓 𝑙𝑢𝑥 is the weighted mean hour of the diurnal cycle of

that particular flux for that particular day. For example, if a calculated 𝐶𝐸𝑇 for a given

day (using measurements of decimal hour) equals 12.25, this would entail that the

weighted mean for that day is 15 minutes past noon. Figure 1 shows an example of the

shifts in the monthly average cycle from a wet month to a dry month. In order to isolate

a shift, we then had to control for variations in global radiation (Rg), both fluctuations

due to clouds and differences in the timing of solar noon. Therefore, the difference

between the diurnal centroids of ET (𝐶𝐸𝑇) and Rg (𝐶𝑅𝑔) was calculated as

𝐶∗
𝐸𝑇 = 𝐶𝑅𝑔 − 𝐶𝐸𝑇 (2.6)

giving 𝐶∗
𝐸𝑇 as the diurnal centroid of ET relative to Rg. The resulting values of 𝐶∗

𝐸𝑇 are not

tied to the carbon cycle, which can be affected by non-stomatal limitations and generally

shows a more prominent midday depression. Annotated code for the CSWI calculation

can be found in File S4 as well as at Nelson (2017). Though a diurnal centroid can

be calculated for any diurnal cycle, basing a metric on the morning shift of ET relative

to Rg has the advantage of targeting the non-atmospheric drivers of the water flux, of

which there are few ancillary variables.
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This relationship incorporates the assumption that, at least over short time scales, the

amount of carbon that enters the leaf is proportional to the amount of water that leaves,

and also incorporates the non-linear response of stomates to VPD (Katul et al., 2010;

Katul et al., 2009; Zhou et al., 2014). This model, though simple, has been shown to

work well across a variety of EC sites (Zhou et al., 2015). Figure 2 (upper panels a,b)

shows a comparison between the daily cycles in a wet and dry month. By calculating a

daily correlation between the normalized daily cycles of ET and 𝐺𝑃𝑃 ·
√
𝑉𝑃𝐷, we come to

a correlation coefficient for each day (see Figure 2, lower panels c,d). For well watered

days in the growing season the two signals tend to be well correlated (>0.9), but tends

to be less correlated in periods of stress, a comparison of which can be seen seen in

Figure 2 (lower).

As it is, this daily correlation coefficient is dependent on the signal strength, or mag-

nitude, of the flux. Low correlation values could just as easily be from carbon:water

decoupling as to a low signal to noise ratio. Therefore, to produce a more robust metric

and account for these statistical decreases in correlation, we turned the daily correla-

tion coefficient into an index based on its rank in a distribution of correlation coeffi-

cients from artificial datasets. These artificial datasets are constructed using the diurnal

signal from potential radiation, with Gaussian noise (N (0,𝜎)) added according to the

standard deviation random uncertainty of the ET and NEE fluxes, or

𝐿𝐸𝑎𝑟𝑡𝑖 𝑓 𝑖𝑐𝑖𝑎𝑙 =
𝑅𝑔𝑝𝑜𝑡

𝑅𝑔𝑝𝑜𝑡
· 𝐿𝐸 +N (0,𝜎2

𝐿𝐸 |𝑁𝐸𝐸
) (2.9)

and

𝑁𝐸𝐸𝑎𝑟𝑡𝑖 𝑓 𝑖𝑐𝑖𝑎𝑙 =
𝑅𝑔𝑝𝑜𝑡

𝑅𝑔𝑝𝑜𝑡
· 𝑁𝐸𝐸 +N (0,𝜎2

𝑁𝐸𝐸 |𝐿𝐸) (2.10)

Uncertainties of the NEE and ET fluxes were estimated from the gap filling procedure

of Reichstein et al. (2005b), with the uncertainty equal to the standard deviation of

flux measurements within a time window and similar meteorological conditions. As

GPP is calculated from gap-filled values of NEE, the uncertainty from NEE was used for

GPP. Furthermore, the correlation structure between the noises in LE and and NEE was

preserved in the artificial dataset.
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2.2.4 Models and parameter estimation

In order to benchmark whether these metrics are capturing information that is possibly

not being captured in modern model frameworks, three simple models were used to

estimate WUE (GPP/ET) for each day at each site and compared to actual flux data.

The purpose of the exercise was to evaluate if bias in the model predictions were as-

sociated with decoupled or morning shifted days, thus indicating that the metrics are

corresponding to information that the models are unable to capture. Here we utilize

three models to provide a spectrum of theoretical to empirical basis. The “Katul-Zhou”

model, as defined and used in calculation of the DWCI, is based in stomatal optimiza-

tion theory (Katul et al., 2010; Katul et al., 2009; Zhou et al., 2015), which makes the

assumption that the WUE is constant if corrected by the effect of VPD, using an inverse

square root as the assumed relationship. Though the constant nature of uWUE may not

be correct, with the optimal carbon cost of water changing over day or weeks (Manzoni

et al., 2013; Palmroth et al., 2013), a yearly parameter of uWUE was estimated which

is consistent with other modeling exercises (Zhou et al., 2016a). One step away from a

theoretical basis is a revision of this model by Boese et al. (2017), the “Boese” model,

where an additional radiation term was added such that,

𝐸𝑇 = 𝑖 · 𝐺𝑃𝑃 ·
√
𝑉𝑃𝐷 + 𝑟 · 𝑅𝑔 (2.11)

where i and r are parameters fit to each site-year. This relationship with Rg was shown

to have a better predictive performance for EC data from 115 sites (Boese et al., 2017).

The interpretation of this extra radiation term is not clear and is difficult to reconcile

with the current understanding of physiology. It is possible the term could be related

to biophysical effects, e.g. VPD at leaf surface vs the measured ambient VPD. Neverthe-

less, the Boese model is an empirical and ecosystem scale model that complements the

theoretical and originally leaf-level model from Katul-Zhou.

Parameters of these models were estimated for each site-year. The Boese model param-

eters were fit using trimmed least squares regression (TLS) which minimizes the 90th

percentile of SSE to prevent influence of large outliers (Rousseeuw, 1983; Reth et al.,

2005). As the error in both ET and GPP are assumed to be of similar magnitude, the

i parameter in the Katul-Zhou model was calculated using geometric mean regression,

where the final slope was calculated as the geometric mean of the parameters from





36 Water stress induced breakdown of carbon-water relations

As a case study, 𝐶∗
𝐸𝑇 and DWCI time-courses for six sites from Europe are shown in Fig-

ure 3, with an emphasis on 2003 when the continent was struck by a heatwave that

was shown to effect both the carbon and water cycles (Ciais et al., 2005; Reichstein et

al., 2007; Granier et al., 2007). For DWCI, forest sties showed high water:carbon cou-

pling throughout the growing season, with the exception of Peuchebon (FR-Pue) which

showed a regular seasonal cycle of decoupling. The grassland site (HU-Bg) showed a

higher variability in DWCI compared to the forest sites (all others). All sites showed

either a decrease in median DWCI or an increase in variability during 2003, generally

in July or August, particularly at Hainich (DE-Hai), Bugacpuszta (HU-Bug), and El Saler

(ES-ES1). This increase in decoupling during 2003 is consistent with the hypothesis of

non-stomatal limitations being expressed in hot, dry conditions which can affect carbon

fixing mechanisms. Median diurnal centroid values across all years varied in absolute

magnitude, but were generally near or above zero, i.e. the water cycle showed no shift or

an afternoon shift. One exception would be the Mediterranean oak forest of Puechabon,

which shows a slight seasonal cycle of morning shifts going from a slight afternoon shift

to a slight morning shift during June, July, and August. During drought years, sites that

showed distinctive morning shifts were Puechabon (FR-Pue), Soroe (DK-Sor), and Loo-

bos (NL-Loo). The framework that morning shifts are associated with water stress from

soil moisture depletion would be supported by the increase in morning shifts during

2003, though factors such as species composition and access to soil water would play a

significant role and could account for the differences among sites. All sites had signifi-

cantly different (p<0.05, Wilcoxon rank-sum test) DWCI values between 2003 and all

other years except Puechabon, whereas with 𝐶∗
𝐸𝑇 only Puechabon, Soroe, and Loobos

showed significant differences.





38 Water stress induced breakdown of carbon-water relations

olds results in a similar median frequency of uncoupled and morning shifted days be-

tween all site-years being 8.7% and 9.4% of days respectively. The similarity in median

frequencies across site-years allowed for easier inter-comparison between the two met-

rics. The frequency of decoupling and morning shifts using these thresholds for each

site can be found in the map found in File S1. Though there is a fairly large vari-

ance across climate groups and plant functional types, low values of both DWCI and

𝐶∗
𝐸𝑇 occur at higher frequencies in savanna ecosystems and dry or Mediterranean cli-

mates. Conversely, lower frequencies of both metrics are seen in tropical, boreal, and

temperate-continental climates. Strikingly, the arid and semi-arid climate group seems

to be associated with the majority of low DWCI occurrences, with a median frequency of

about 20% of days being uncoupled between site-years. Overall, frequencies were highly

variable within plant functional types. Interestingly, 𝐶∗
𝐸𝑇 seems to be more variable in

moderately dry ecosystems with potentially deep roots, favoring woodier savannas and

evergreen needle-leaf forests over grasslands and open shrub lands. In contrast, DWCI

shows similarly high frequencies from savannas and grasslands. The differing responses

between tree and grass dominated ecosystems can be further seen in Figure 5, where

savanna and grassland ecosystems show a distinct decrease in DWCI under conditions

of low EF, in contrast to the forested sites which show a higher degree of carbon:water

coupling, though still a slight decrease. Forested ecosystems show a higher degree of

morning shift under low EF conditions when compared to grasslands, with savannas

being somewhere between the two.
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all sites which meet the filtering outlined in the Data subsection of the Methods, i.e. dry

periods in the growing season, these figures exhibit the universality of the metrics across

climates, ecosystems, and time periods. This pattern is much cleaner with the diurnal

centroid than with DWCI, though mean values are generally above 50 for most bins,

indicating that most days are well coupled. Low values of both indicators are also seen

under conditions with low Rn and high latent energy (as seen by the dark streak at the

top edged in Figures 6c,e), which is generally not associated with drought stress. Further

analysis showed that these points are also associated with energy balance over closure,

where the sum of latent and sensible heat is greater than net radiation (ET+H>Rn, see

Figure S2) and therefore likely represent a data problem rather than a physiological

response. Removing all days where the energy balance is over closed did not alter the

patterns associated with drought. Apart from the response to periods of high LE and

low Rn, the metrics showed diverging response when looking at EF (ET/PET which is

similar to LE/Rn) and VPD, with DWCI showing a much stronger response to VPD and

𝐶∗
𝐸𝑇 showing a much stronger response to EF (Figure 6a,d). This difference in response

would indicate that DWCI is more responsive to atmospheric demand (estimated via

VPD) and 𝐶∗
𝐸𝑇 is more responsive to water limitations. Both DWCI and 𝐶∗

𝐸𝑇 also show a

trend with low GPP, although in the case of the diurnal centroid the effect is limited to

both low GPP and ET (Figure 6c,g).







2.4 Discussion 43

ture information that the models are not (as further outlined in Methods and Materials

subsection “models and parameter estimation”). For all models, the dry days show the

largest average shift between expected and observed WUE, followed by morning shifted

days. Uncoupled days show the smallest shifts for all models, with an overestimation

of WUE for the Katul-Zhou and Boese models and no significant shift of WUE with the

random forest model. As all models were calibrated within a site-year, the over or un-

der estimation of WUE indicate an inability of the model to capture a change in the

system. Cases of mean mis-estimation tended to be influenced by long tails in the dis-

tribution with median differences being less exaggerated. However, these long tails are

indicative of major model error in periods where the ecosystem is likely under stress

conditions.

2.4 Discussion

2.4.1 Looking beyond sums and means

The proposed metrics, DWCI and 𝐶∗
𝐸𝑇 , depart from more traditional methods to sum-

marize from sub-daily to daily timescales such as sums and means. This departure is

advantageous in that it extracts added information that may have been otherwise ig-

nored by turning the focus from signal amplitude to the signal shape. However, these

new metrics also come with their own set of caveats, most notably issues with data

quality confounding interpretability. Both metrics are susceptible to noise, as one or

two errant points within a day can be reflected as a decrease in correlation or a shift

in diurnal centroid. This is evident from the existence of very afternoon shifted 𝐶∗
𝐸𝑇 ,

sometimes by more than an hour, which the authors have no proposed explanation for

other than noise in the data. However, attributing highly afternoon shifted points as

poor data requires further investigation. Note here that the “resting” 𝐶∗
𝐸𝑇 seems to be

slightly afternoon shifted, which could be caused by real physiological factors such as

differences in the incoming SW radiation (Rg) used in the calculation and net radia-

tion (Rn), higher atmospherics demand (VPD) in the afternoon driving higher ET, or

increased convection throughout the day resulting in higher transport of water away

from the canopy, and is likely a combination of all three. Differences in resting 𝐶∗
𝐸𝑇 be-

tween sites could also be from instrumental causes such as radiometric sensors which

are not adequately leveled or dirty, though the consistent, slight afternoon shifts would
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suggest this is a real response. Despite the possible shortcomings, both metrics show

a definite response to drought conditions across the broad array of sites, climates, and

ecosystems contained in FLUXNET (see Figure 6), and give valuable insight into the

underlying physiology. Given the broad nature of the analysis here, the metrics and hy-

pothesis presented would benefit from site specific validations such as looking to see if

the morning shits and decoupling are indeed associated with lower soil moisture lev-

els, leaf water potentials, and/or decreases in sap flux. Sap flux in particular could give

some interesting insights, as the diurnal patters in sap flux velocity will also have an

offset to incoming radiation related to tree capacitance, therefore relating sap flow di-

urnal centroids to the ET diurnal centroid could give some information on changes in

plant water recharge. Furthermore, the diurnal centroid base metrics complement the

hysteresis quantification methods such as those employed by Zhou et al. (2014) and

Matheny et al. (2014), with the advantage of 𝐶∗
𝐸𝑇 being compensated for cloudy con-

ditions and possibly comparatively less influence of noise, though an intercomparison

would be useful to explore the strengths and weaknesses of the different approaches.

By providing both the equations and related code of the metrics, we the authors hope

the metrics will be used by the community for both validation and to further ecophysi-

ological understanding.

2.4.2 Trees, grass, and drought stress

By comparing climate groups and PFTs with the frequent occurrence of low DWCI and

𝐶∗
𝐸𝑇 from Figure 4, we can note two striking differences: evergreen broad- and needle-

leaf forests show high variability of morning shifted days but not uncoupled days,

whereas grasslands show significantly high uncoupled but not morning shifted days.

The pattern is further seen in Figure 5, where the distinct divergent responses of de-

coupling and morning shifts between tree and grass dominated systems. This disparity

may indicate an interaction of 𝐶∗
𝐸𝑇 not only with drought, but hydraulic sensitivity. The

association of morning shifts to hydraulic sensitivity is further strengthened by Figure

6a,d where 𝐶∗
𝐸𝑇 shows a much stronger response to EF rather than VPD, indicating that

morning shifts of ET are not simply due to stomatal closure due to VPD but in fact a

response to drought conditions. The shorter hydraulic system of grasses may not ne-

cessitate stomatal closure under high demands (Holloway-Phillips and Brodribb, 2011),

thus causing less frequent phase shifts even under drought conditions. In contrast, tree



2.4 Discussion 45

ecosystems may only exhibit higher hydraulic stresses, associated with both dryness

and a more sensitive hydraulic strategy. Temperate-continental and tropical climates all

showed a low frequency of morning shifted days, even though they are occupied by

large trees with cavitation susceptible vascular systems (Konings and Gentine, 2016),

suggesting that these ecosystems show limited drought stress even with the hydraulic

susceptibility. Similarly, the high degree of variability of morning shifted frequency be-

tween site-years in sub-tropical/Mediterranean and evergreen broad- and needle-leaf

forests could either indicate variation in the response in hydraulic stress between sites,

or that hydraulic stress is only expressed some years, leading to high and low frequen-

cies within the same site.

In this way, it seems that though 𝐶∗
𝐸𝑇 is less noisy as a drought indicator (see Figure

6), it may only be of use in tree systems that are more prone to hydraulic stress. How-

ever, this does put the metric in a rather unique position in that it could be used as

a global scale hydraulic indicator, having potential application in exploring ecosystem

level isohydricity (Martínez-Vilalta and Garcia-Forner, 2016), or the degree to which

risks vascular system damage to continue to extract water. Isohydricity is intrinsically

a concept that relates to an individual plant, as dynamics of rooting depth, hydraulic

conductances, and sensitivities to VPD can vary within individuals of the same species at

the same location. However, these factors are all interrelated, as hydraulic and stomatal

conductances drive transpiration dynamics which control the rate of depletion of root

zone water which can then feed back to stomatal sensitivity, such as via ABA signaling

(Wilkinson and Davies, 2002). As such, current estimates of isohydricity require plant

level measurements, which are currently restrained to the individual scale, i.e. from ac-

tual leaf measurements (Martínez-Vilalta et al., 2014) or to global scale, but only 0.5

degree resolution estimates from radar (Konings and Gentine, 2016). This limitation

of large and small scales leaves a knowledge gap at the size of an eddy covariance

footprint, hindering the study of ecosystem response to drought. However, under the

assumption that the morning shifts seen under low evaporative fraction are related to

increased stomatal sensitivity in response to root zone moisture depletion, it may be

possible to compare the onset and speed with which the diurnal centroid shifts toward

the mornings as ecosystems dry. In this way, one could infer the ecosystem response

to soil moisture, without explicitly knowing the soil moisture. The resulting relation-

ship could prove useful as a data derived ecosystem functional property, giving direct

information on variations in water limitation response.
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2.4.3 C:W decoupling and energy balance closure

In addition to error from single data points, both metrics, but especially the DWCI, show

some relationship with energy balance over closure. Energy balance mismatch is a com-

mon phenomenon in EC measurements, with under closure (ET+H<Rn) being a more

common concern (Leuning et al., 2012; Wilson et al., 2002). Issues with energy balance

closure can be, among other causes, attributed to advection, where energy, water, and

carbon are transported in and out of the tower footprint, complicating an absolute ac-

counting of these quantities (Barr et al., 2006; Brötz et al., 2014; Wilson et al., 2003).

The apparent association of DWCI and over closure could be due to transfer of moist

air from the surrounding landscape, causing the DWCI to be more contingent on the

mixing of source air and less from plant controls. In this scheme, the over closure seen

in Figure 6 could be caused by the mixing of outside moist air into the drier air from

the EC site, causing an increase in latent energy. However, the infiltrating air sources

could also have similar or drier moisture levels which would not necessarily be seen as

over closure. In this scenario, this infiltrating air could contain varying carbon and wa-

ter concentrations, again causing a carbon:water decoupling, but one that would not be

associated with over closure. If this effect has no diurnal pattern, and thus does not gen-

erally influence the mean diurnal centroid in ET, it could explain why the patterns with

dryness are much clearer with 𝐶∗
𝐸𝑇 compared to DWCI. This would have the implication

that DWCI is then a mixture of advection and non-stomatal signals, complicating the

biological interpretability. However, the association with dryness in both metrics gives

credence that they do indeed reflect some physiology, if we assume EBC should not be

influenced by dryness level. Furthermore, if potential stress conditions are removed,

the DWCI could be useful as a metric of advection in the system, even when the energy

balance is relatively well closed.

2.4.4 WUE shifts associated with metrics and not captured by

models

Figure 7 demonstrates the strong tendency of the models to underestimation WUE in

dry conditions. This is true even for the fully non-linear and empirical random forest

model, indicating that the model under-performance is not necessarily due to an in-

complete model framework, but due to a lack of information to constrain the problem.
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Given the association of both metrics with drought (Figure 6), one could expect that the

models would underestimate WUE in uncoupled and morning shifted days. Though this

is the case with morning shifted days, decoupling shows no underestimations of WUE,

with even a mean overestimation in the case of the Katul-Zhou and Boese models. Given

the limitations outlined in the previous sections, one could blame noise for the lack of

WUE shift, but this does not reconcile with the higher frequency of decoupling during

dry days which should bias the WUE estimates. Furthermore, as the more empirical

random forest model reduces the prediction variability, leaving a slight WUE underes-

timation, indicating that some of the overestimation from the Katul-Zhou and Boese

models may be tied to limitations of the underlying assumptions, yet the distribution

from the RF model still lacks the long tails of underestimation characteristic of the dry

points. Extending these findings to the underlying hypotheses of the metrics, namely

hydraulic and non-stomatal limitations, we could conclude that the hydraulic controls

do impose a greater water use advantage than non-stomatal limitations. In other words,

the findings suggest that days with water:carbon decoupling, and possibly non-stomatal

limitations, do not improve WUE, whereas hydraulic responses can improve WUE. As

WUE is a ratio, this does not shed any light onto the change in productivity, as low values

of WUE may indicate that a plant is still productive, but at a higher water cost. However,

solid conclusions would require further analysis with some site specifics measurements

of actual plant function.

Though the models used here are relatively simple and lack the complexities and feed-

backs found in more vigorous ecosystem models, Matheny et al. (2014) also demon-

strated the fundamental inability of 9 different land-surface models with 4 different

stomatal conductance schemes to capture diurnal variability which the authors attributed

to inadequate representation of how water gets from the soil to the leaf. Given the

demonstrated phenomenon of morning shifts and decoupling across sites under dry

conditions, the metrics here provide a benchmarking tool for mechanistic models to test

their ability to replicate these patterns, suggesting that the models are capable of ex-

pressing hydraulic and non-stomatal limitations. Furthermore, in the case of machine

learning approaches, the metrics may provide a useful input parameter which summa-

rizes these diurnal effects, as is evidence by the difference in response the bias in RF

modeled WUE, i.e. while both metrics are associated with low EF, RF WUE was underes-

timated with morning shifted days but not decoupled days implying that two different

strategies are being captured by the metrics. As such, by demonstrating the utility of
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the metrics, and providing code and explanations for calculation, we hope they become

useful to the community at large.

2.5 Conclusions

Both the DWCI and the 𝐶∗
𝐸𝑇 demonstrate an ability to show consistent patterns with

drought across a broad array of sites, climates, and ecosystems, with the added advan-

tage of being tied to theoretical underpinnings. Particularly, the demonstrated patterns

give novel information about carbon water relations and hydrological dynamics that

are not currently present at ecosystem scale across a database as large as FLUXNET.

These metrics and their underlying theory provide a data derived example differentiat-

ing the hydrological response of tree and grass plant functional types, as well as give

evidence for the presence and absence of a WUE advantage from hydraulic and stomatal

limitations respectively. Going forward, these metrics can be used as a tool to further

understand the diversity of ecosystem drought responses.

2.6 codedataavailability

Code used to calculate the metrics described here can be found both in the supplemen-

tary materials as well as at Nelson (2017). Data used in this analysis can be found at

http://fluxnet.fluxdata.org/
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Plant transpiration (T), biologically controlled movement of water from soil to atmo-

sphere, currently lacks sufficient estimates in space and time to characterize global eco-

hydrology. Here we describe the Transpiration Estimation Algorithm (TEA), which uses

both the signals of gross primary productivity (GPP) and evapotranspiration (ET) to es-

timate temporal patterns of water use efficiency (WUE, i.e. the ratio between GPP and

T) from which T is calculated. The method first isolates periods when T is most likely

to dominate ET. Then, a Random Forest Regressor is trained on WUE within the fil-

tered periods, and can thus estimate WUE and T at every time-step. Performance of the

method is validated using terrestrial biosphere model output as synthetic flux datasets,

i.e. flux data where WUE dynamics are encoded in the model structure and T is known.

TEA reproduced temporal patterns of T with modeling efficiencies above 0.8 for all 3

models: JSBACH, MuSICA, and CASTANEA. Algorithm output is robust to dataset noise,

but shows some sensitivity to sites and model structures with relatively constant evapo-

ration levels, overestimating values of T while still capturing temporal patterns. Ability

to capture between site variability in the fraction of T to total ET varied by model, with

RMSE values between algorithm predicted and modeled T/ET ranging from 3 to 15

% depending on model. TEA provides a widely applicable method for estimating WUE

while requiring minimal data and/or knowledge on physiology which can complement

and inform the current understanding of underlying processes.

While it is widely known that plants need water to survive, exactly how much water

plants in an ecosystem use is harder to quantify. However, many places have been mea-

suring how much total water leaves an ecosystem, both the water plants use directly

and the water that simply evaporates from the soil or the surfaces of leaves, using eddy

covariance towers. These eddy covariance towers also measure the coming and going

of carbon, such as the total amount of carbon taken up by photosynthesis. Here, we

present the idea that by using the signals from both photosynthesis and total water

losses together, we can capture the water signal related to plants, namely transpiration,

using an algorithm called TEA. To verify that TEA is working how we expect, we test it

out using artificial ecosystem simulations where transpiration and photosynthesis come

from mathematical models. By throughly testing TEA, we have a better idea of how it

will work in a real world situation, hopefully opening the door for a better understand-

ing on how much water ecosystems are using and how it might affect our changing

planet.
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3.1 Introduction

At current state, transpiration (T) is a key ecosystem process that lacks the widespread

and consistent estimates necessary to study ecohydrological processes globally. For ex-

ample, a recent meta-analysis by Wei et al. (2017) analyzed an aggregation of ecosystem

level T estimates resulting in a dataset of only 64 studies conducted between 1941 and

2014, a relatively sparse dataset when attempting to capture global variability. As such,

demand for T datasets that can encompass the variety of ecosystem responses to water

availability has been highlighted as a key need, both from the perspectives of the wa-

ter (Fisher et al., 2017) and carbon (Rogers et al., 2017) cycle communities. Though

transpiration and evaporation (E) processes are built into most ecosystem and land sur-

face models, resulting estimates are poorly constrained, as can be seen in the spread of

global T/ET estimates from CMIP5 which ranged from 22-58% (Wei et al., 2017). Here

we present an approach for estimating T which is applicable to eddy covariance (EC)

networks, and is data driven providing an alternative perspective to current process

based approaches.

The difficulty in partitioning evapotranspiration (ET) into the biotic component (tran-

spiration, T) and the abiotic component (here evaporation, E) is partially due to equi-

finality, as E and T share the same primary environmental drivers making the problem

difficult to constrain. From the view point of physics, transpiration is an evaporation

which is then modulated by stomatal resistance, making the task of distinguishing the

two fluxes particularly challenging. However, a key distinction of T lies in that it is regu-

lated by an active process via stomatal control, which is linked to plant photosynthesis.

To this end, the method we propose aims to utilize this link between water and carbon

cycles as the key differentiating process between E and T in an effort to distinguish the

two.

As reviewed in Kool et al. (2014), many approaches to partition ET attempt to pair a

separate E and/or T distinguishing estimate, such as measurements of sap flux, isotope

fractionation, or carbonyl sulfide (OCS) flux, in tandem with an ET estimate. Sap flux

measurements, which estimate the flow of water through a stem (Granier, 1987), is

currently the most widespread method. Though sap flux measurements have proven to

be effective at measuring tree water fluxes, estimating ecosystem T relies on upscaling

point source sap flow estimates based on an approximation of sapwood area, which can
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be problematic in ecosystems with high plant diversity, hampering suitability for uni-

versal application (Oishi et al., 2008; Poyatos et al., 2016). Isotopic methods take ad-

vantage of the isotopic fractionation of water oxygen (18𝑂/16𝑂) and hydrogen (2𝐻/1𝐻)

which occurs from evaporation but not root uptake, producing isotopic signatures re-

lated to the T:E ratio. Isotopic methods have been used both at global scales (Jasechko

et al., 2013; Good et al., 2015) and at high temporal resolutions (Good et al., 2014), yet

are limited in the number of sites and length of time-series. In general, global isotopic

estimates of T/ET tend to be higher than site estimates (Wei et al., 2017), some even

controversially so (Coenders-Gerrits et al., 2014). The OCS method attempts to use the

flux of OCS uptake by leafs to estimate ecosystem canopy conductance directly, as the

pathways of 𝐶𝑂2 and OCS are similar (Sandoval-Soto et al., 2005; Whelan et al., 2017).

The calculation of conductance is simplified when using OCS, as it does not have the

complication of having a large source component such as is the case with respiration

and 𝐶𝑂2 (Wehr et al., 2017). While the OCS method is promising, the novelty and po-

tential complications due to alternate sources/sinks of OCS (Wohlfahrt, 2017; Gimeno

et al., 2017) have resulted in limited applications in practice.

Due to the limits of current T estimates, and shortfalls in understanding ecosystem wa-

ter dynamics, data driven approaches can provide an alternate perspective. Widespread

monitoring of both water and 𝐶𝑂2 fluxes provide rich datasets which can inform T esti-

mates by utilizing concepts of water use efficiency (WUE), here defined as the ratio of

gross primary productivity (GPP) to T. At present, data driven approaches to estimate

ecosystem WUE and T do exist, such as the method proposed by Zhou et al. (2016a)

(hereafter referred to as the SZhou method") which is based on estimates of annual un-

derlying water use efficiency from gross primary productivity (GPP) and vapor pressure

deficit (VPD), calculated as

𝑢𝑊𝑈𝐸𝑡 =
𝐺𝑃𝑃𝑡 ·

√
𝑉𝑃𝐷𝑡

𝐸𝑇𝑡
(3.1)

where the
√
𝑉𝑃𝐷 term represents an approximate stomatal response which is broadly

applied to many ecosystems. uWUE is related to the carbon cost of water which is

assumed to be constant in light limited leaves over timescales of days to weeks. By

incorporating the
√
𝑉𝑃𝐷 term, the carbon:water relationship becomes linear and uWUE

values can be estimated using linear regression where uWUE is the slope parameter. The

Zhou method makes a T/ET estimate by taking the ratio of a normal linear regression of
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uWUE estimated within one day (which would include the E component), and the 95𝑡ℎ

percentile regression of annual uWUE which is assumed to contain only transpiration.

The key assumptions are then that uWUE is constant within a year and that the 95𝑡ℎ

percentile of uWUE corresponds to conditions where 𝐸 ≈ 0. E is most likely to be zero

at high percentiles because these points correspond to periods with the highest ratio of

GPP/ET, whereas points with a high E component would increase ET with no added T

causing the uWUE to decrease. Points over the 95𝑡ℎ percentile are assumed not to be

representative of uWUE, possibly due to noise.

While Zhou et al. (2016a) and other data driven WUE estimates (Beer et al., 2009;

Scott and Biederman, 2017) have laid the foundation for globally useful WUE and T es-

timates, they have yet to be rigorously validated, likely in part due to the limited avail-

ability of verification datasets as described in the previous section. Notably, assumptions

on ecosystem WUE dynamics which are not fully understood must be taken into con-

sideration. In particular, non-linearities in the GPP to T relationship must be addressed

such as the known effects from stomatal response (VPD) (Beer et al., 2009; Katul et al.,

2009; Zhou et al., 2014). Though the Zhou method does attempt to account for VPD

effects, the resulting uWUE estimate is tied to annual time periods and does not allow

for seasonal or diurnal variations in plant and ecosystem responses, only accounting

for the VPD response. Boese et al. (2017) concluded that the uWUE framework could

be outperformed by empirical models that included incoming radiation, suggesting that

only incorporating VPD may not be sufficient to characterize the carbon:water relation-

ships at ecosystem level. As such, the method proposed here attempts to derive WUE

dynamics from a data-driven perspective, using a non-linear, machine learning method

to characterize the carbon:water relationship and thus make few assumptions on the

ecosystem WUE dynamics.

3.1.1 Method outline and objectives

We identify two key limitations of the current methods outlined: 1) Restricted applica-

bility or spatiotemporal scope, particularly with direct T measurements; 2) Strong as-

sumptions of carbon:water relationship, particularly with EC dependent methods, which

have the potential to bias WUE and T estimates.

We aim to overcome the first limitation by basing the method only on water, energy, and
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carbon EC fluxes with associated meteorological data to make predictions at half-hourly

to hourly scale with minimal data requirements.

To address the second limitation, we validated the presented ET partitioning method

against model output in an effort to assess sensitivities and limitations. The use of artifi-

cial datasets has proven useful both in the field of biogeochemistry (Jung et al., 2009),

as well as adjacent fields (Jasechko et al., 2014; Ishizaki et al., 2014). We used three

separate models in an effort to reduce the influence of any one set of model assump-

tions.

Here we introduce the Transpiration Estimation Algorithm (TEA), which uses ecosystem

WUE (𝑒𝑊𝑈𝐸 = 𝐺𝑃𝑃/𝐸𝑇) to predict transpiration in two steps (see Figure 1): (1) a

data-filtration step to isolate the signal of ET for periods where E is minimized and ET

is likely dominated by the signal of T, i.e. during periods of the growing season with

dry surfaces; and (2) a step which predicts the WUE using meteorological variables,

as well as information derived from the carbon and energy fluxes. This prediction of

WUE translates to a novel transpiration estimate which aims to be capable of capturing

seasonal and diurnal dynamics with wide application potential.

The key hypothesis to be tested here is: does the TEA algorithm capture the dynamics of

WUE and T encoded in the models? If the method cannot capture WUE dynamics from

the three different models, we can assume it will not capture real world WUE dynamics,

thus the exercise is a sanity check on whether TEA is capable of extracting physiological

patterns of ecosystem WUE. Furthermore, we explore scenarios when a key assumption

is broken, i.e. evaporation is persistent at every point in time, as well as how evaporation

can bias the results, and how to mitigate this bias using percentile regression.
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𝑆𝑡 = 𝑚𝑖𝑛 (𝑆𝑡−1 + 𝑃𝑡 − 𝐸𝑇𝑡, 𝑆𝑚𝑎𝑥) (3.2)

where 𝑃𝑡 is the precipitation at time 𝑡 and 𝑆𝑚𝑎𝑥 is the maximum allowable storage (size

of bucket). 𝑆𝑚𝑎𝑥 was set to 5 mm, and values from 3-9 mm showed no difference in filter

utility (data not shown, further discussed in section 4.2). The CSWI is then calculated

as

𝐶𝑆𝑊𝐼 = 𝑚𝑎𝑥 (𝑆𝑡,𝑚𝑖𝑛 (𝑃𝑡, 𝑆𝑚𝑎𝑥)) . (3.3)

Periods were considered sufficiently dry based on a CSWI limit, i.e. periods where

𝐶𝑆𝑊𝐼 < 𝑙𝑖𝑚𝑖𝑡 are assumed to have dry surfaces. As opposed to other methods of iden-

tifying wet and dry conditions, such as removing periods after rain events, the CSWI

accounts for the amount of rain evaporated and therefore compensates for small rain

events which may evaporate relatively quickly as well as for periods of low ET after

rain events such as persistent clouds reducing radiation inputs where surfaces may stay

wet longer. As the appropriate limit for CSWI was unknown, this limit then becomes an

input parameter to the algorithm which is not optimized, or hyperparameter, hence a

sensitivity analysis was conducted across a range of limits from 2 to -3 mm (see section

3.2 in Results). The CSWI limits were not extended past -3 mm, as lower limits resulted

in fewer than 500 half-hours remaining in the training dataset at some sites, which was

considered too few to properly characterize site variability. Note that the limit of 500

half-hours is arbitrary and possibly conservative, however results indicate stricter limits

(i.e. CSWI < -3 mm) may cause the training dataset to only include periods of water

stress and decrease prediction performance (see Figure 7). Similarly for CSWI, periods

when daily GPP was too low were also filtered in an effort to remove periods when the

plants are realtively inactive, such as transition periods from winter to spring. A min-

imum daily threshold of 0.5 𝑔𝐶𝑚−2𝑑−1 was found to give a good performance, and a

sensitivity analysis to daily GPP filter can be found in supplementary Figure S1.

Each individual filter was combined (logical AND), resulting in a filtered time-series that

was then used to calculate half-hourly values of eWUE to be used as a training dataset

in the next section, hereafter referred to as the training dataset.
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Table 3.1 Overview of filters used to isolate conditions where the signal of ET is dom-

inated by T. 𝐺𝑃𝑃 and 𝑇𝑎𝑖𝑟 filters were designed to ensure plants are active, while 𝑅𝑔

filters remove nighttime values. The 𝐶𝑆𝑊𝐼 filter attempts to remove periods where the

surface is likely to be wet, a sensitivity analysis of which can be found in section 3.2.

variable long name half-hourly limit daily limit

𝐺𝑃𝑃 gross primary productivity > 0.05

𝜇𝑚𝑜𝑙𝐶 · 𝑚−2 · 𝑠−1

> 0.5

𝑔𝐶 · 𝑚−2 · 𝑑−1

𝑇𝑎𝑖𝑟 air temperature > 5 ◦𝐶 -

𝑅𝑔 incoming radiation > 0 𝑊 · 𝑚−2 -

𝐶𝑆𝑊𝐼 conservative surface

wetness index

< -3 to 2 mm -

3.2.2 Modeling WUE and predicting T

Using a set of features X, we trained a random forest regressor (RF) (RandomFore-

stRegressor from Pedregosa et al. (2011) based on Breiman (2001)) on eWUE within

the training dataset (for each site) made with the filters outlined in Table 1. Features

consisted of four meteorological variables: incoming radiation (Rg), air temperature

(𝑇𝑎𝑖𝑟), relative humidity (RH), wind speed (u); four derived variables: the derivative

of a Gaussian filtered GPP (𝐺𝑃𝑃′), the Rg normalized diurnal centroid of ET (𝐶∗
𝐸𝑇),

the diurnal water:carbon index (DWCI), conservative surface wetness index (CSWI); as

well as daily potential radiation (𝑅𝑔𝑝𝑜𝑡,𝑑𝑎𝑖𝑙𝑦), the derivative of daily potential radiation

(𝑅𝑔′
𝑝𝑜𝑡,𝑑𝑎𝑖𝑙𝑦

), and year. The resulting feature vector X is,

X = [𝑅𝑔,𝑇𝑎𝑖𝑟, 𝑅𝐻, 𝑢, 𝑅𝑔𝑝𝑜𝑡,𝑑𝑎𝑖𝑙𝑦, 𝑅𝑔′𝑝𝑜𝑡,𝑑𝑎𝑖𝑙𝑦,𝐶𝑆𝑊𝐼,𝐺𝑃𝑃′,𝐶∗
𝐸𝑇 , 𝐷𝑊𝐶𝐼, 𝑦𝑒𝑎𝑟]. (3.4)

Note that 𝐶∗
𝐸𝑇 measures the morning shift of diurnal ET, and DWCI measures the degree

of correlation in one day between GPP and ET; a detailed explanation of 𝐶∗
𝐸𝑇 , DWCI,

and CSWI can be found in Nelson et al. (2018b), code for which can be found at Nelson

(2017). The set of features X was designed to give the RF regressor information on

processes that may impact WUE.

The full time-series of WUE was then predicted for all half-hours (unfiltered data) using
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the resulting model as,

𝑊𝑈𝐸𝑡,𝑝𝑟𝑒𝑑 = 𝑅𝐹𝑃(Xt, 𝑃) (3.5)

where 𝑃 is the percentile used from each resulting predictive leaf, or prediction per-

centile (Meinshausen, 2006). Quantile random forest regression is analogous to the

linear quantile regression use by the Zhou method, but makes no assumptions on lin-

earity.

The RF utilized 100 trees which were fully grown, and each splitting node consisted of a

maximum number of features equal to one third the total number of features, rounded

up. A sensitivity analysis of the number of trees and max number of feature parameters

can be found in supplementary Figure S2.

As ET in the training dataset is assumed to be only a proxy of T, there is likely E still

present even after filtering. For example, when making a prediction for a particular half

hour the process would work as follows: features of the half hour would be fed to the

RF (Rg, 𝑇𝑎𝑖𝑟, RH, etc...); in turn the RF will return a number of WUE values which it

has identified as associated with the particular features of that half hour; this set of

returned values can then be summarized, which is typically via the mean, but can also

be a median or any other quantile such as the percentiles used here. If one assumes that

all these WUE values from the RF for a half hour represents a single "true WUE"(GPP/T)

that is contaminated by some residual evaporation (GPP/(T+E)), the best summary

statistic to use would be the maximum, as that would be the point most likely to have

minimal residual evaporation. However, because the assumption that the WUE values

returned from the RF likely do not represent a single "true WUE", and instead variability

comes both from residual evaporation and variability in WUE, the most appropriate

percentile is not known. Therefore, the magnitude of predicted WUE can be adjusted

using the percentile of prediction from the random forest and the optimum percentile,

another hyperparameter which is not known a priori. A sensitivity analysis of prediction

percentiles can be found in results section 3.2. Note that extraction of percentiles from

50-100 are the result of a single prediction step with a single trained RF regressor,

i.e. the RF was not retrained for each percentile.

Given an estimate of WUE, the prediction of transpiration at time t was calculated

as,
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𝑇𝑡 =
𝐺𝑃𝑃𝑡

𝑊𝑈𝐸𝑡,𝑝𝑟𝑒𝑑
(3.6)

for each half hour, where nighttime values of T are considered zero. The evaporation

component at time t was then estimated as,

𝐸𝑡 = 𝐸𝑇𝑡 − 𝑇𝑡. (3.7)

All code for processing and partitioning, as well as interactive examples, can be found

in Nelson (2018).

3.2.3 Model output used for method evaluation

To test the predictive performance of the method, WUE and T estimates were compared

to output from three separate models with different underlying carbon:water coupling

mechanisms: CASTANEA (Delpierre et al., 2012; Dufrêne et al., 2005), JSBACH (Re-

ick et al., 2013; Knauer et al., 2015), and MuSICA (Ogée et al., 2003; Potier et al.,

2015; Wilkinson et al., 2015). Each model comes from a slightly different perspective,

characterized by different model structures and ways of dealing with carbon-water re-

lationships. JSBACH differs from the other two models in that it is a land surface model

designed to be integrated into a global climate model, which was run off-line for this

study. MuSICA separates the canopy into multiple layers, with each layer containing

various plant components each with their own water status, light regime, and age. CAS-

TANEA focuses on the growth, carbon allocation, and water budget of a monospecific

forest stand.

Models were run using meteorological forcing data from 73 different sites, with 85

model runs in total (see full list in File S6). Meteorological forcing data for the mod-

els came directly from the flux towers. This exercise was designed to test whether the

method is capable of extracting a known carbon:water relationship even when the un-

derlying assumptions are different. The ability of the algorithm to infer the complex

formulations from these process based models gives credence to the capability of the

method to estimate these processes in real data. Therefore, the method was applied to

the modeled GPP and ET fluxes paired with the respective forcing meteorological data,
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𝑀𝐸𝐹 = 1 −
∑ (𝑇𝑡,𝑚𝑜𝑑𝑒𝑙 − 𝑇𝑡,𝑇𝐸𝐴)2
∑ (𝑇𝑡,𝑚𝑜𝑑𝑒𝑙 − 𝑇𝑚𝑜𝑑𝑒𝑙)2

, (3.8)

As this metric is meant to identify only patterns so as to differentiate bias due to consis-

tent over/under estimations and inability to capture temporal patterns, the mean values

of 𝑇𝑇𝐸𝐴 and 𝑇𝑚𝑜𝑑𝑒𝑙 are removed prior to calculating the MEF. Quantification of bias was

calculated as a relative bias,

𝑏𝑖𝑎𝑠 =

∑
𝑇𝑡,𝑇𝐸𝐴 −

∑
𝑇𝑡,𝑚𝑜𝑑𝑒𝑙

∑
𝑇𝑡,𝑚𝑜𝑑𝑒𝑙

. (3.9)

Table 3.2 Overview of key processes in the 3 models used for validation.

MuSICA

interception canopy rain interception and water storage on leaf surfaces

are computed in each vegetation layer using a water balance

equation and the concept of maximum storage capacity, scaled

by the leaf area of each layer (Rutter et al., 1971). Evaporation

from the interception storage is taken at the potential rate in

each layer. More details are provided in Potier et al. (2015)

water stress stomatal conductance, leaf photosynthetic capacity, and/or

root hydrauilc conductivity downregulated based on

instantaneous (Tuzet) or predawn (Ball, Leuning) leaf water

potential

stomatal conduct. Ball et al. (1987), Leuning (1995), or Tuzet et al. (2003)

depending on parameterisations available for individual sites

soil evap. litter acts as a separate, insulating layer

phenology dates of phenology events (bud burst, senescence) and

minimum/maximum leaf area are constant throughout the

simulation and supplied by the user

JSBACH

interception water storage for the whole canopy, scaled by LAI, with

evaporation from interception storage at the potential rate
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water stress non-linear reduction of g1 (stomatal slope parameter) and

photosynthetic capacity (𝑉𝑐𝑚𝑎𝑥 and 𝐽𝑚𝑎𝑥) based on available

soil moisture

stomatal conduct. Medlyn et al. (2011)

soil evap. soil evaporation coming from top soil layer (of 5)

phenology Logistic Growth Phenology model (LoGro-P); calculation

depends on the phenotype, dependent on temperature, soil

moisture, and NPP; for evergreen and deciduous forests

(described in Böttcher et al. (2016)): heat sum approach in

combination with a critical number of chill days

CASTANEA

interception water storage for the whole canopy, function of WAI (wood

area index) and LAI

water stress linear reduction of g1 based on extractable soil water content

stomatal conduct. Ball et al. (1987)

soil evap. evaporation coming from both litter and top soil layer, soil

moisture levels updated daily

phenology LAI dynamics based on degree-days (Delpierre et al., 2009);

for coniferous trees, winter regulation of

photosynthetic-transpiration activity further modulated by

thermal acclimation (Delpierre et al., 2012)

3.2.4 Noise and evaporation sensitivity experiments

To isolate the effects of noise and training set E, two artificial experiments were con-

ducted where the data from each model run were used to create a series of new experi-

mental datasets. The first case attempted to assess the sensitivity of the TEA algorithm

hyperparameters to the presence of noise, which is likely to be present in real EC data

and is not present in the model output. The second experiment aimed to isolate the

effect of E on prediction bias, with the aim of understanding how a persistent fraction

of E may potentially bias T estimates.

To test the effects of noise, Random Gaussian noise was added to the original modeled

GPP and ET values with a standard deviation corresponding to a scaling factor (s) ac-

cording to percentages of the original value: 5, 10, 15, 20, and 25%. The experimental
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the method is to 𝐸𝑡𝑟𝑎𝑖𝑛, experimental ET data were calculated from simulated model

T data to give a consistent 𝐸𝑡𝑟𝑎𝑖𝑛 for the entire time-series which could not be filtered

via CSWI. 𝐸𝑡𝑟𝑎𝑖𝑛 levels ranged from 0 to 50% of ET, with some added noise to give

some uncharacterizable variability. Calculations utilized a multiplier (𝑒 𝑓 𝑎𝑐𝑡𝑜𝑟) which was

centered on the desired 𝐸𝑡𝑟𝑎𝑖𝑛, with standard deviation equal to 25% of 𝐸𝑡𝑟𝑎𝑖𝑛:

𝑒𝑡, 𝑓 𝑎𝑐𝑡𝑜𝑟 = 𝑁(𝐸𝑡𝑟𝑎𝑖𝑛, (𝐸𝑡𝑟𝑎𝑖𝑛 · 0.25)2) (3.11)

from which ET was calculated as,

𝐸𝑇𝑡 =
𝑇𝑡

1 − 𝑒𝑡, 𝑓 𝑎𝑐𝑡𝑜𝑟
. (3.12)

The resulting ET dataset had a consistent fraction of 𝐸𝑡𝑟𝑎𝑖𝑛 in ET which was independent

to the magnitude of ET and which the random forest was unable to characterize. The

range of E in the experiments encompassed the E levels in the original model training

datasets, which reached values up to 37%.

These two experimental datasets were then partitioned using the exact same procedure

as the original dataset.

3.2.5 Application to real EC data

The TEA algorithm was used as described above to partition the real eddy covariance

data from three sites: Hesse beech forest in France (FR-Hes, Granier et al. (2008));

a Scots pine forest in Hyytiala, Finland (FI-Hyy, Mammarella et al. (2009)); and a

spruce forest at Anchor Station Tharandt, Germany (DE-Tha, Grünwald and Bernhofer

(2007)). Flux data were flagged as good or bad quality as per Papale et al. (2006), and

gap filling and net ecosystem exchange partitioning were performed as per Reichstein

et al. (2005b). TEA estimates from real flux data can be found as part of the discus-

sion.
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should be associated with periods where E contamination is minimized. In contrast,

looking at the relative bias between 𝑇𝑇𝐸𝐴 and 𝑇𝑚𝑜𝑑𝑒𝑙 (Figure 8b), we found that the

prediction percentile which minimizes bias varied depending on model, with optimal

prediction percentiles to minimize bias for CASTANEA being around 𝑃95, compared to

𝑃70 for MuSICA, and 𝑃60 for JSBACH. This difference in optimal prediction percentiles

may be due to the differences in the inherent residual E predicted by the models (see

Figure 2), with CASTANEA having the highest level of E throughout the growing season

(and highest bias minimized prediction percentile) and JSBACH having the lowest. The

supplementary Figure S4, which shows the relationship of E/ET in prediction points at

various prediction percentiles, further indicates that indeed the E component from TEA

predictions is minimized at different percentiles for the three models.

Sensitivity to training set evaporation and noise

As seen in Figure 8d, the TEA algorithm shows a response in bias to 𝐸𝑡𝑟𝑎𝑖𝑛 (see section

2.4 for experimental outline), with the slope between bias and 𝐸𝑡𝑟𝑎𝑖𝑛 being between 1 to

2 for the 50 − 90𝑡ℎ prediction percentiles. These slopes correspond to a worst-case sce-

nario, representing a situation where a site would have a constant E component, e.g. a

site where E never goes below 15% of ET at any time. So if a site is estimated to have

at least 15% 𝐸𝑡𝑟𝑎𝑖𝑛 at every half-hour, the transpiration rates may be 22% overestimated

using the 75th prediction percentile. An overestimation of 150% of 𝐸𝑡𝑟𝑎𝑖𝑛 is consistent

with the CASTANEA model runs, which across sites has a mean 𝐸𝑡𝑟𝑎𝑖𝑛 of 20% and a mean

total bias of 32%, which translates to a mean overestimation of total 𝑇/𝐸𝑇 of 14%. For

context the percentage of training dataset half hours with less than 15% E/ET was on

average 67%, 33%, and 95% for MuSICA, JSBACH, and CASTANEA respectively, with

the lowest percentage, 6%, for the Hyytiälä Forest simulation from CASTANEA.

Though the highest prediction percentiles show the lowest sensitivity to 𝐸𝑡𝑟𝑎𝑖𝑛 and could

thus mitigate this bias, high prediction percentiles also show large sensitivity to noise

(Figure 8c, see section 2.4 for experimental outline), indicating that directly using pre-

diction percentiles above 𝑃95 is not suitable. Prediction percentiles below 𝑃90 show less

sensitivity to noise, with slopes between MEF and the noise to signal ratio (inverse of

signal to noise ratio use to simplify sign convention) generally being between -0.1 and

0 for the majority of sites. To put a slope of -0.1 into context, if a site had an MEF of

0.9 and a noise to signal ratio of 1:10, the same site would have an MEF of 0.83 if
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scales and between sites, particularly when comparing only simulations from an indi-

vidual model. The relatively fine temporal resolution of TEA provides the possibility of

exploring the dynamics of carbon:water interactions such as seasonal and diurnal cy-

cles. In general, the method as outlined here can be directly applied to real EC data with

minimal alteration, allowing for potential global application, with the limitations and

cautionary remarks described in the following sections. As a demonstration of TEA using

real data, Figure 9 shows a comparison of modeled T/ET at three sites compared to the

TEA algorithm estimated T/ET using actual EC data. T estimates from TEA using real EC

data fall between the process model T estimates, all while requiring no parameteriza-

tions nor having any assumptions on the underlying biological processes. Importantly,

TEA does not rely on the model data in any way, as model runs were only used as a

validation experiment, thus TEA is purely data driven and represents the statistical pre-

diction of WUE and T based on input data of GPP, ET, and meteorological data. To see

the value that these widely applicable methods provide, one needs to look no further

than the partitioning of carbon EC fluxes, which have provided a wealth of information

despite having known limitations (Reichstein et al., 2012). Combining such widely ap-

plicable methods, such as TEA, with the unconstrained processed based models and the

sparse independent T measurements provides a multifaceted and complementary view

of ecosystem T.
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3.4.2 Sensitivities and limitations

As seen in Figure 7, the CSWI limit hyperparameter should always be less than zero.

However, prediction performance did not improve at increasingly negative values and

may actually deteriorate performance due to declines in sample size. This lack of im-

provement indicates that CSWI, though likely an improvement to time based methods,

does not do well at indicating degrees of moisture levels past simple wet and dry. There-

fore, a CSWI value of around -0.5 or -1.0 mm is warranted, as it creates the larges

sample size while still being below zero. It is possible that the TEA algorithm could be

improved with a filter that better minimizes the amount of evaporation left in the train-

ing dataset, 𝐸𝑡𝑟𝑎𝑖𝑛, such as using surface soil moisture data. As such, the TEA algorithm

would likely benefit from site specific information on water status, both as a means to

filter the training dataset and as a predictor variable. Additionally, it should be noted

that as the filtering step removes all periods during and immediately after rain, these

periods will not be represented in the training dataset and therefore any response of

WUE during these rainy periods will not be captured. However, as none of the filters

was based on humidity levels, periods of high relative humidity are included in the train-

ing dataset, so both stressed and unstressed conditions will be included in the training

dataset. As rain specifically should not have a dramatic influence on WUE. Indeed, we

did not observe any error increase in the validation dataset during wet periods.

Overall, the method tends to be more precise than accurate, i.e. it robustly produces

precise patterns but with a propensity for systematic over- or underestimation. In partic-

ular, the method is sensitive to 𝐸𝑡𝑟𝑎𝑖𝑛 such as is the case with the CASTANEA model runs,

producing an overestimation of transpiration while still capturing the temporal patterns

across timescales. The CASTANEA simulations here provide an important test as to how

E can impact the TEA estimates, as the simulations have not only relatively high E/ET

throughout the year, but, due to the fact that soil moisture levels are updated daily,

E/ET is also relatively consistent throughout the day. Therefore, the training dataset

from CASTANEA simulations is always contaminated by E, in contrast to MuSICA which

can have daily E but still have periods when T dominates within that day, and JSBACH

which has very low E throughout the growing season (see Figure S4). That being said,

it is possible to predict an accurate average T/ET using a higher prediction percentile

even when E is always present as long as there is variability in WUE (see Figure S5),

though the highest WUE values will be underestimated.
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Given that the optimal prediction percentile for minimizing bias differed among the

three models, all prediction percentiles above the 50𝑡ℎ can be considered equally likely

predictors, with 𝑃50 representing the case with no 𝐸𝑡𝑟𝑎𝑖𝑛 and a constant WUE, and 𝑃100

representing the maximum eWUE. The result is a distribution of estimates for WUE and

T, which can be translated into an average and uncertainty. As this distribution tends to

be rather skewed, the median of this distribution (or 𝑃75) is likely a more robust esti-

mator. While the lower bound of the distribution is well bounded, the maximum (𝑃100)

case could still systematically underestimate WUE if 𝐸𝑡𝑟𝑎𝑖𝑛 is significantly higher than

zero. In contrast, 𝑃100 could also grossly overestimate WUE as it can correspond to con-

ditions which are not at all representative, e.g. conditions of high humidity when WUE

tends to infinity, which can be further complicated with the added effects of noise.

Ecosystems with sparse vegetation coverage are likely most at risk of having high 𝐸𝑡𝑟𝑎𝑖𝑛

levels, and therefore overestimation, as the canopy is potentially not the key control

on ET. The risk of overestimation is especially high at wetland sites with exposed open

water. Therefore, site specific estimations are warranted to determine if TEA estima-

tions would benefit from hyperparameter adjustments such as using a higher prediction

percentile, improved training set filtering, or other improvements based on site knowl-

edge (e.g. filtering periods during irrigation). Another important consideration when

applying the method to actual data is the existence of noise which is not present in the

synthetic validation datasets. This is particularly pertinent due to very large or small

values of WUE (a ratio) during mornings and evenings when the fluxes are low. In this

case, a filter for small values of either ET, GPP, or Rg will likely be warranted, even

though the method was shown to be relatively insensitive to noise for most prediction

percentiles (Figure 7c). Given the considerations outlined above, a general framework

for implementing TEA for eddy covariance data would be to use a CSWI limit of -0.5 mm

and the 75th percentile for prediction, which corresponds to the median of predictions

from the 50th to 100th percentiles.

3.5 Conclusion

In its current state, ecosystem transpiration is far a more concrete physiological concept

than it is actually quantifiable, as one can isolate transpiration in relatively controlled

leaf or plant scale experiments in contrast to the difficulties of isolating soil and in-



terception evaporation components from the transpiration of each needle and leaf at

a field site. However, by utilizing the carbon cycle, transpiration dynamics can be ex-

tracted from the overall evapotranspiration signal. As such, the TEA algorithm is a novel

evapotranspiration partitioning method designed for eddy covariance datasets which is

able to capture dynamics in water use efficiency and transpiration across spatial and

temporal scales. The method is the first such evapotranspiration partitioning approach

to attempt such an extensive validation exercise, utilizing a synthetic experiment of

process model output, which demonstrates the ability of the method to replicate the

carbon:water relationship across three model frameworks. Furthermore, we outline the

biases and uncertainties of the approach with particular respect to effect of persistent

evaporation fluxes, with the prospect that by thoroughly scrutinizing and testing the

limits of TEA we can open the door to wide scale application.
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nization was carried out by the European Fluxes Database Cluster, AmeriFlux Management
Project, and Fluxdata project of FLUXNET, with the support of CDIAC and ICOS Ecosystem
Thematic Center, and the OzFlux, ChinaFlux and AsiaFlux offices. FLUXNET data can be
found at http://fluxnet.fluxdata.org/

Data and code used in this analysis can be found in the associated repository: Nelson
(2018)
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We apply and compare three widely applicable methods for estimating ecosystem tran-

spiration (T) from eddy covariance (EC) data across 251 FLUXNET sites globally. All

three methods are based on the coupled water and carbon relationship, but they differ

in assumptions and parameterizations. Intercomparison of the three daily T estimates

shows high correlation among methods (𝑅 between 0.80 and 0.87), but a spread in

magnitudes of T/ET (evapotranspiration) from 45% to 77%. When compared at six sites

with concurrent EC and sap flow measurements, all three EC based T estimates show

higher correlation to sap flow based T than EC based ET. The partitioning methods show

expected tendencies of T/ET increasing with dryness (vapor pressure deficit and days

since rain) and with leaf area index. Analysis of 140 sites with high quality estimates for

at least two continuous years shows that T/ET variability was 1.6 times higher across

sites than across years. Spatial variability of T/ET was primarily driven by vegetation

and soil characteristics (e.g. crop or grass designation, minimum annual leaf area in-

dex, soil coarse fragment volume) rather than climatic variables such as mean/standard

deviation of temperature or precipitation. Overall, T and T/ET patterns are plausible

and qualitatively consistent among the different water flux partitioning methods imply-

ing a significant advance made for estimating and understanding transpiration globally,

while the magnitudes remain uncertain. Our results represent the first extensive EC-

data based estimates of ecosystem T permitting a data driven perspective on the role of

plants’ water use for global water and carbon cycling in a changing climate.
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4.1 Introduction

Transpiration (T) is the flux of water vapor and latent energy returned to the atmo-

sphere by vascular plants, mainly through the stomatal pores on their foliage and con-

current with photosynthesis. T is thus the nexus of the terrestrial water, carbon, and

energy cycles, making T a key process in the Earth System. Better understanding of

T could have practical implications through better understanding of plant water use

and water limitations (Allen et al., 2015; Bernacchi and VanLoocke, 2015), understand-

ing which can then improve water resource management and prevent economic losses

(Fisher et al., 2017). However, estimating ecosystem scale T is challenging, so T is gen-

erally studied extensively in laboratories, plant growth chambers, and greenhouses. The

difficulty of estimating ecosystem T is due to heterogeneities in the physical and physio-

logical properties and processes underlying plant water uptake and ecosystem water use

(Kool et al., 2014). These challenges cause limited availability and large uncertainties

in ecosystem T estimates, and this propagates to uncertainties in biosphere-atmosphere

feedbacks relevant for projections of climate change by Earth System models (Fisher

et al., 2017).

The eddy covariance (EC) technique has been proven to be a useful tool for measur-

ing ecosystem water, carbon, and energy fluxes worldwide (Baldocchi, 2019). A key

advantage of the EC technique is the near continuous, sub-daily sampling and the in-

termediate spatial scale of measurements which integrates over the ecosystem and can

be linked to remote sensing products (Jung et al., 2011; Kumar et al., 2016; Chu et al.,

2017). EC measures aggregate fluxes, and therefore fluxes related to individual pro-

cesses must be estimated using modeling and post-processing. In the case of carbon

dioxide (𝐶𝑂2), net ecosystem exchange of 𝐶𝑂2 fluxes (NEE) can be partitioned into

gross primary productivity (GPP) and ecosystem respiration (𝑅𝑒𝑐𝑜) (Reichstein et al.,

2005a; Lasslop et al., 2010). Applying the 𝐶𝑂2 partitioning methods across many sites

from communities willing to collaborate (e.g. FLUXNET) has proven valuable in a wide

range of contexts (Baldocchi, 2008), from model evaluation (Friend et al., 2007) to em-

pirical upscaling of global products (Jung et al., 2011). The opportunity to replicate the

success of 𝐶𝑂2 flux partitioning with water flux partitioning has resulted in a number of

methods that attempt to distinguish the physiologically regulated T flux from the mea-

sured evapotranspiration (ET) flux, which also contains abiotic evaporation (E) from

soil and canopy intercepted water. Partitioning the existing ET from FLUXNET would
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improve cross site comparisons of GPP to T dynamics, which have previously relied on

filtering each site for periods after after rain events to minimize the effect of E.

Here we applied three recent methods for estimating T from EC datasets: the underly-

ing water use efficiency (uWUE) method (Zhou et al., 2016a), the Pérez-Priego method

(Perez-Priego et al., 2018), and the Transpiration Estimation Algorithm (TEA) method

(Nelson et al., 2018a). We focused on methods which utilize current EC datasets, such

as FLUXNET and the associated regional networks, which include continuous measure-

ments of 𝐶𝑂2, sensible, and latent heat fluxes, as well as meteorological variables at half-

hourly or hourly time-steps. All three methods utilize GPP estimates to partition E and

T from ET, as 𝐶𝑂2 uptake and water vapor losses from T are both regulated via stom-

ata in higher plants and are thus inherently linked (Cowan and Farquhar, 1977). Note

that other ET partitioning methods exist, including methods that only use EC datasets,

which are not highlighted here. Such methods include Scott and Biederman (2017),

which may not be applicable at non-water-limited sites, and Li et al. (2019) which re-

quires ancillary data such as canopy height and soil moisture. As reviewed in Anderson

et al. (2017), other methods for estimating transpiration are being developed, such as

flux variance partitioning of high frequency data using water use efficiency measured

at the leaf scale (Scanlon and Kustas, 2010; Scanlon et al., 2019), measurement of iso-

topes (Wang et al., 2012; Berkelhammer et al., 2016), carbonyl sulfide (Whelan et al.,

2018), or concurrent below and above canopy eddy covariance measurements (Paul-

Limoges et al., 2020). For a more detailed analysis of various water flux partitioning

approaches, see Stoy et al. (2019).

4.1.1 Drivers of T and knowledge gaps

A key difficultly in distinguishing T from E is the fact that both fluxes are inherently

the same physical process, evaporation, with the core difference being that T is actively

regulated by vegetation, e.g. through changes in stomatal conductance and/or root wa-

ter uptake. One example is the effect of vapor pressure deficit (VPD), which on the one

hand drives T and E but on the other causes stomatal closure in plants thus inhibiting

T. Stomatal closing due to high VPD prevents excess plant water loss relative to carbon

gain. As VPD increases, T losses would increase with no corresponding effect on GPP

(assuming no other change in the environment, stomatal conductance, or non-stomatal

limitations), resulting in a decrease in water use efficiency (𝑊𝑈𝐸 = 𝐺𝑃𝑃/𝑇). This de-
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crease in WUE has been shown to be a power function of VPD both from in situ chamber

experiments (Pérez-Priego et al., 2010; Villalobos et al., 2012) and derived from the-

ory (Medlyn et al., 2011). While this relationship has been demonstrated from GPP/ET

ratios derived from EC data in rain free periods (Zhou et al., 2014; Zhou et al., 2015),

it should be clearly evident in a GPP/T product, and thus can be used as a first order

check on the T estimates.

Another expected pattern is the relationship between LAI and T/ET. Studies using site

level estimates of T/ET show a strong coupling to LAI (Wang et al., 2014; Wei et al.,

2017). This link between T/ET and LAI is in some respects intuitive: an LAI of zero

would mean no vegetation and no T; and increasing vegetation coverage would mean

more transpiring surfaces and more shading of soil thus increasing T/ET. However, sea-

sonal covariation may not correspond to a causal relationship, as part of the co-variation

could be attributed to other seasonal patterns such as cycles in soil water availability or

phenology. By modeling T/ET as a function of LAI, Wei et al. (2017) were able able to

capture between 43 and 87% of the variance depending on vegetation type. However,

Wang et al. (2014) showed high variability of T/ET at low values of LAI, which was

in part explained by plant growing stage (particularly in crops). Based on a temperate

needle leaf forest site, Berkelhammer et al. (2016) reported that while LAI did match

seasonal T/ET dynamics, no significant relationship was found at diel, daily, or annual

timescales, indicating the LAI relationship is tied to seasonality. If LAI is a key driver of

T/ET, one would expect a relationship between the two at other scales, in particular LAI

should correlate with T/ET in space. Using a mechanistic ecohydrological model, Fatichi

and Pappas (2017) found no relationship between mean site T/ET and LAI, rather the

major driver of uncertainty was the parameterization of the hydraulic properties of the

topsoil in the model. Pairing T estimates from EC and remote sensing estimates of LAI

would allow for a consistent and broad scale examination of the relationship of LAI

and T/ET, and test whether the seasonal relationship observed translates to a spatial

relationship indicating that LAI is a key driver of T/ET.

Apart from LAI, T/ET could be related to water availability, as plants have access to

deeper soil moisture and can thus sustain a high transpiration rate for longer peri-

ods after rain pulses. However, many studies show no relationship between T/ET and

precipitation (Schlesinger and Jasechko, 2014; Fatichi and Pappas, 2017), and little re-

lationship with water stress indicators such as soil water potential (Wang et al., 2014)

or wetness index (ratio of mean precipitation to potential ET, Fatichi and Pappas (2017)
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). Vegetation type could also play a key role in how ET is partitioned, and indeed most

previous meta-analyses of site level T/ET data have used some form of segregation by

plant functional type (Wang et al., 2014; Schlesinger and Jasechko, 2014; Wei et al.,

2017). However, these groupings tend to be imposed for data interpretation, with lim-

ited exploration into what ecosystem properties actually drive differences in ecosystem

T/ET, and therefore a more in depth analysis is warranted.

4.1.2 Objectives

Here we present estimates of ET partitioning from three different methods across FLUXNET,

providing a dataset of transpiration estimates at ecosystem level from sub-daily to an-

nual values and covering many climate zones and biomes. These three methods are first

compared against each other to identify how well they agree. The partitioning methods

are then compared to an independent data source (scaled-up sap flow measurements),

both to demonstrate absolute performance and to ensure that T estimates are adding

information compared to the original ET estimates. After initial assessment, we exam-

ine the T estimates for expected patterns, such as the seasonal covariation of LAI and

T/ET as well as responses to dry conditions such as the expected decrease of WUE to

high VPD and the increase of T/ET during dry down events. We also demonstrate the

potential inadequacies of calculating WUE as GPP/ET due to E, even when filtering for

rain free days. Finally, we use full year estimates of T and ET to explore the drivers of

variability in T/ET across sites.

4.2 Methods

4.2.1 EC data

Flux data from the FLUXNET2015 dataset (Pastorello et al., 2017) were used. In some

cases, sites were included from the previous La Thuile dataset when not available in the

FLUXNET2015 release. An overview of the variables used in this study can be found in

Supplementary Table S1. In all cases, GPP was estimated from the EC-measured NEE

using the night-time flux partitioning method (Reichstein et al., 2005a).
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The sites used in this study are distributed widely across the globe and they represent

diverse ecosystems from a variety of climatological conditions. However, the global dis-

tribution of observations is largely biased toward Western countries in the Northern

Hemisphere, with most of the sites located in USA, Western Europe and East Asia. All

sites, as well as the plant function type (PFT) designation are listed in both table and

map form in Supplementary File S1.

4.2.2 ET partitioning methods

Descriptive overview of the T partitioning methods

The uWUE method relies on estimates of the underlying water use efficiency (uWUE),

defined as,

𝑢𝑊𝑈𝐸 =
𝐺𝑃𝑃 ·

√
𝑉𝑃𝐷

𝐸𝑇
, (4.1)

where VPD is the vapor pressure deficit. Two uWUE variants are calculated from half-

hourly data: 1) the potential uWUE (𝑢𝑊𝑈𝐸𝑝) is calculated at an annual scale using a

95𝑡ℎ percentile regression between 𝐺𝑃𝑃 ·
√
𝑉𝑃𝐷 and 𝐸𝑇 , representing conditions with

the highest carbon gain to water loss and thus where T≈ET; 2) the apparent uWUE

(𝑢𝑊𝑈𝐸𝑎) is estimated as the linear regression slope from a daily or 8 daily window, or

directly from eq. 4.1 when estimating at half-hourly resolution. uWUEp is assumed to

be constant throughout a year, corresponding to the maximum carbon gain to water

loss given that
√
𝑉𝑃𝐷 linearizes the ET to GPP relationship, as has been shown across

a large variety of sites and has been linked to stomatal optimality (Zhou et al., 2014).

T/ET is then estimated as,

𝑇

𝐸𝑇
=

𝑢𝑊𝑈𝐸𝑎

𝑢𝑊𝑈𝐸𝑝

(4.2)

As the method utilizes comparatively simple computations, 𝑢𝑊𝑈𝐸𝑝 and 𝑢𝑊𝑈𝐸𝑎 calcu-

lated as slopes or ratios, the uWUE method is the simplest of the three methods to

calculate.

The Pérez-Priego method on the other hand utilizes a more complete “big leaf” model,
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where four different parameters are fit in a five day moving window. The fit parameters

relate to the response of canopy conductance to VPD, photosynthetically active radia-

tion, and temperature, as well as to the response of the maximum photosynthetic rate

to VPD and ambient 𝐶𝑂2. The method also incorporates the leaf optimality concept,

i.e. carbon gain to water loss is maximized, by integrating a penalty in the cost function

for parameters that result in poor leaf carbon:water optimality. One distinctive feature

of the Pérez-Priego method is that it never makes the assumption that T≈ET.

Finally, the TEA method utilizes a non-parametric model, a version of Random Forest

(Breiman, 2001), to predict WUE (GPP/T). The model is trained on the ecosystem water

use efficiency (𝑊𝑈𝐸𝑒𝑐𝑜 = 𝐺𝑃𝑃/𝐸𝑇) during periods in the growing season and when

surfaces are likely to be dry, i.e where E/ET should be minimal. Periods likely to have

wet surfaces are filtered based on precipitation input and ET in a shallow bucket, water

balance scheme (see Nelson et al. (2018a) for a full description). The RF, trained on

𝑊𝑈𝐸𝑒𝑐𝑜 from the filtered periods, then predicts 𝑊𝑈𝐸 (now 𝐺𝑃𝑃/𝑇) for the full time

series. To further compensate for the existence of evaporation in the training dataset, a

higher prediction percentile of WUE is output from the RF (Meinshausen, 2006). Nelson

et al. (2018a) determined that the 75𝑡ℎ percentile was the most appropriate prediction

percentile based on the best performance when assessed against synthetic data from

three terrestrial biosphere models. In contrast to the uWUE or Pérez-Priego methods,

the TEA method utilizes a machine learning approach that allows for the predicted

WUE to be dynamic in time and not strictly driven by assumed physiological responses–

for example, the response of WUE to VPD comes from the data itself rather than an

assumption of leaf carbon:water optimality.

In summary, the three methods are characterized by key differences in their assump-

tions, structure, and conceptualization: number of parameters (one or two in uWUE

depending on temporal scale vs four in Pérez-Priego), parametric vs non-parametric

(uWUE and Pérez-Priego vs TEA), the assumption that T≈ET for some portion of the

data (uWUE and TEA vs Pérez-Priego), and the inclusion of physiological parameters

describing the leaf carbon:water optimality (Pérez-Priego and uWUE vs TEA).

Application of T methods to EC data

The uWUE method was implemented based on the published description (Zhou et al.,

2016a), with 𝑢𝑊𝑈𝐸𝑝 estimates made for each year and 𝑢𝑊𝑈𝐸𝑎 estimates derived using
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the 8-day moving window. The resulting Python code can be found in the associated

code repository (Nelson, 2020b). The uWUE method was also estimated at half-hourly

scale by directly calculating 𝑢𝑊𝑈𝐸𝑎 = 𝐺𝑃𝑃 ·
√
𝑉𝑃𝐷 · 𝐸𝑇−1 (Zhou et al., 2018).

The Pérez-Priego method was implemented using an open source R package (Perez-

Priego and Wutzler, 2019). Parameter optimization was performed on a daily basis

using a 5-day moving window containing high-quality data: (i) quality flags of the 𝐶𝑂2

fluxes = 0 (directly measured, non-gap-filled according to Reichstein et al. (2005a) );

and (ii) half hours with measured precipitation removed.

The TEA algorithm used code version v1.06 (Nelson, 2019), which was updated from

the original published version with minor modifications to improve data filtering and

include additional checks to ensure night-time T fluxes were set to zero.

Though each method has been previously described in the respective publications, an

in depth tutorial for each method can be found as both an interactive and static form in

the associated code repository (Nelson, 2020b). Furthermore, the data can be accessed

from Nelson (2020a).

Comparison and evaluation of the methods was complicated due to differences in how

the methods were applied. In particular, the estimation procedure from Pérez-Priego did

not always find adequate solutions for the parameters, resulting in some erratic values

of T and thus preventing continuous estimates of T, affecting on average 29% of the

data across sites. Missing Pérez-Priego values due to inadequate parameters were not

gap-filled, which limited the daily and monthly aggregate values of T to periods without

missing data, leaving very few complete months. Due to the differences in applicability,

comparisons of all three EC based partitioning methods was limited to intercompar-

isons between the methods and with the sap flow data, while broader comparisons

(e.g. across years or sites) were done only with the TEA and uWUE methods.

4.2.3 Sap flow estimates

Stand transpiration was obtained by upscaling sap flow measurements (𝑇𝑆𝐹) from six

forest sites in the SAPFLUXNET database (Poyatos et al., 2016) which overlapped in

time with the FLUXNET2015 dataset (Supplementary Table S2). SAPFLUXNET datasets

contain sub-daily sap flow rates, scaled to the tree level according to site-specific pro-
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cedures, which are documented within the dataset metadata (Poyatos et al., 2019).

In order to obtain stand-level T, we first temporally aggregated the data to daily sap

flow values per tree (𝑘𝑔 𝑑𝑎𝑦−1) and retained only those days with sufficient coverage

(80% of the sub-daily time-steps). We then normalized sap flow per unit basal area

of each tree and averaged the values for each species present in the datasets. In all

datasets, the species in which sap flow was measured represented >90% of the stand

basal area (Supplementary Table S2). The value of species-specific sap flow per basal

area was multiplied by the basal area of each species in the stand and then data from

all species were summed to obtain stand-level transpiration (𝑚𝑚 𝑑𝑎𝑦−1). All the tree

and stand-level variables needed for the upscaling were extracted from the metadata

corresponding to each dataset (Poyatos et al., 2019).

4.2.4 Gridded and remote sensing data

This study utilized three different sources of remote sensing data to explore the spatial

and temporal relationships between vegetation indices and T/ET. First, leaf area in-

dex (LAI) and fraction of photosynthetically active radiation (fPAR) estimates for each

FLUXNET site were derived from the Joint Research Centre Two-stream Inversion Pack-

age (TIP) product (Pinty et al., 2011) and summarized for each site using the mean,

minimum, maximum, standard deviation, and the 95𝑡ℎ and 99𝑡ℎ percentiles. Further-

more, the entire multi-temporal Collection 1 from the Landsat 4, 5, 7 and 8 archives

(https://www.usgs.gov/) was collected. The blue, red, near-infrared (NIR), and short-

wave infrared (SWIR) spectral bands (https://landsat.usgs.gov/what-are-band-designations-

landsat-satellites) were retrieved to compute normalized difference vegetation index

(NDVI) (Tucker, 1979), enhanced vegetation index (EVI) (Huete et al., 2002), and

normalized difference water index (NDWI) (Jin and Sader, 2005) vegetation indices.

Low-quality Landsat pixels due to clouds, cloud shadows, snow, and ice were masked

out (Zhu and Woodcock, 2012; Zhu et al., 2015). Finally, 4-day values (as the best

pixel from a four day window) of LAI from the MCD15A3H version 6 MODIS product

(Myneni and Knyazikhin, 2015) were used to analyze the relationship of LAI to T/ET

(i.e. Figure 4.3). The quality layer for LAI (i.e. FparLai_QC) of the MCD15A3H version

6 product was used for filtering out low-quality observations (i.e. cloudy pixels and pix-

els covered with snow/ice were discarded). For both Landsat and MODIS products, the

data extraction and the preprocessing chains (i.e. cloud, cloud shadow masking, and



4.3 Results 93

downloading) were implemented in the Google Earth Engine (GEE) platform (Gorelick

et al., 2017) (https://earthengine.google.com/). Landsat (i.e. NDVI, EVI, and NDWI)

and MODIS (i.e. MCD15A3H LAI) data were summarized for each site using the mean

and 95𝑡ℎ percentiles.

Additionally as spatial covariates of T/ET, five soil properties for each site were esti-

mated using the SOILGRIDS dataset (Hengl et al., 2017): coarse fragment volume, soil

pH, and percent of clay, sand, and silt. Soil properties were summarized for each site

using a weighted mean for the full depth available. In all cases, spatial data were aggre-

gated from an area within ≈ 1 km of the tower location by taking the mean for all good

quality pixels in the selected area.

4.2.5 Spatial modeling of T/ET and variable importance

To infer potential drivers of the spatial variability of T/ET, 44 different variables com-

posed of estimated soil properties, vegetation indices from remote sensing, plant func-

tional type classifications, and climate variables measured on site were used to predict

site average annual T/ET (one value per site) using a Random Forest model (Breiman,

2001). Variables were pre-selected using the approach of Jung and Zscheischler (2013),

which attempts to maximize the model performance while minimizing the required

number of variables. Variable selection was repeated ten times and all resulting models

were compared to select the top performing feature set. Furthermore, feature impor-

tance was estimated by examining the selection frequency of each variable, with the

assumption that important features will be selected often in top performing models,

while less important features will be selected infrequently. The selection frequencies of

the ten independent feature selection runs was then summarized as a mean and stan-

dard deviation.

4.3 Results

4.3.1 Inter-comparison of the ET partitioning methods

In general, all three methods agreed with respect to overall patterns, with the lowest

correlation (Spearman, 𝑅𝑠𝑝) of daily T found between uWUE and Pérez-Priego (𝑅𝑠𝑝 = })
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and the highest between uWUE and TEA (𝑅𝑠𝑝 = }). For context, the correlations between

T from the three methods and ET ranged from 𝑅𝑠𝑝 of 0.71 to 0.82. The magnitude

(daily sum) of 𝑇𝑇𝐸𝐴 was much higher than those of the other two methods, with 𝑇𝑢𝑊𝑈𝐸

and 𝑇𝑃𝑟𝑒𝑧−𝑃𝑟𝑖𝑒𝑔𝑜 being 68% and 58% of 𝑇𝑇𝐸𝐴, respectively, across all sites. Figure 4.1

shows an inter-comparison of the three methods at daily resolution. Note that the results

presented here used the night-time partitioning method to estimate GPP (Reichstein et

al., 2005a), which is highly consistent with T estimates from the day-time partitioned

GPP (Lasslop et al., 2010) (Supplementary Figure S1).
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4.4 Discussion

4.4.1 Assessment of EC based T estimates and their added value

over ET

T/ET estimates from the TEA, uWUE, and Pérez-Priego methods across FLUXNET showed

overall consistent patterns; for example, with respect to LAI, VPD, and seasonality. Fur-

thermore, T from the partitioning methods, when compared to ET, showed higher cor-

relation with the measured and upscaled sap flow data (Figure 4.2) and a more physi-

ologically plausible WUE response to VPD (Figure 4.5), indicating that T from the par-

titioning methods better represents the true plant physiology driven T than the bulk

flux (ET). Indeed, ET may not be an adequate approximation of T even five days after

rain (Figure 4.6). This may have implications in the larger than theoretically expected

increases in WUE as a result of increasing atmospheric 𝐶𝑂2 concentration (Keenan et

al., 2013) or the discrepancy between leaf and ecosystem WUE (Medlyn et al., 2017),

both of which were previously estimated using ET from periods two or more days after

rain.

Though the patterns of T seemed to agree well between the methods, it is obvious that

there still persists a large spread in the magnitude of the estimated T/ET (Figure 4.3).

T/ET estimates from the uWUE and Pérez-Priego methods were smaller and more simi-

lar in magnitude (𝑇/𝐸𝑇 = } and 45% respectively, calculated as a slope of daily T and ET

) compared to values from the TEA method (𝑇/𝐸𝑇 = }). Though the magnitude of T/ET

is difficult to estimate over broad scales, Schlesinger and Jasechko (2014) estimated

67%, 57%, and 55% mean T/ET for temperate deciduous forests, temperate grasslands,

and temperate coniferous forests, respectively, which was closer to the TEA method (

70%, 67%, and 62%.) compared to the uWUE method ( 45%, 43%, and 40%.).

One potential limitation of all three methods is that they use a GPP estimate, and are

thus tied to the biases and uncertainties of the NEE partitioning methods. However, sup-

plementary Figure S1 shows that, when comparing T estimated from both night-time

(Reichstein et al., 2005a) and day-time (Lasslop et al., 2010) based GPP, the resulting

two T estimates have a higher correlation than the two GPP products do to each other.

In other words, T estimates are consistent even when the underlying GPP estimate has

changed. This is likely due both to averaging aspects of the methods (e.g. parameters
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estimated in moving windows in the uWUE and Pérez-Priego methods) and that GPP is

not directly used (e.g. Pérez-Priego calculates T from stomatal conductance and VPD)

or canceled out in the final step of T estimation (e.g. TEA estimates T as GPP divided by

predicted WUE thus canceling out GPP, i.e. 𝑇 = 𝐺𝑃𝑃 · (𝐺𝑃𝑃/𝑇)−1, similar for uWUE).

However, systematic biases in GPP and ET can affect the ET partitioning methods in

different ways. For example, Supplementary Figure S3 shows the response of the esti-

mated T after applying each method to a dataset with manipulations to either GPP or

ET fluxes. In short, the Pérez-Priego method is directly affected by major changes or

errors in GPP, but is independent of ET. In contrast, both the uWUE and TEA methods

are robust to systematic errors in GPP, e.g. a unit conversion error which doubled GPP

would have no effect on the estimated T from either method. Short term errors, such

as if either GPP or ET were erroneously doubled for only one or two weeks, can signif-

icantly affect TEA and uWUE. In general, uWUE is more sensitive to short term errors

in GPP, and TEA is more sensitive to short term errors in ET. Errors in the peak growing

season have the highest impact on estimated T. Apart from GPP and ET, all three T

estimation methods integrate many measurements and therefore require not only high

eddy covariance measurements, but also high quality radiation, temperature, humidity,

wind, and precipitation data.

4.4.2 Differences between the methods

The TEA and uWUE methods are the more conceptually similar of the three methods,

yet they differ in two key ways. First, the TEA method estimates WUE using a non-

parametric model allowing WUE to change seasonally and diurnally, whereas the uWUE

method models WUE as only varying with
√
𝑉𝑃𝐷 within a single year. This distinction

in how the two methods model WUE likely explains the differences seen in mean sea-

sonal (Figure 4.4) and diurnal (Figure 4.6) patterns. Second, while both methods use

a form of quantile prediction, the uWUE method predicts the potential WUE (𝑢𝑊𝑈𝐸𝑝)

using the 95𝑡ℎ percentile where 𝐺𝑃𝑃 ·
√
𝑉𝑃𝐷 is maximum relative to ET. In contrast, the

TEA method uses the 75𝑡ℎ percentile based on previous modeling experiments (Nelson

et al., 2018a) and assumes that while higher values of the predicted distribution more

accurately reflect the true WUE, the highest prediction percentiles may overestimate

WUE and thus underestimate T. This second difference is the primary cause for large

difference in magnitudes, and when the 90𝑡ℎ or 95𝑡ℎ prediction percentiles from TEA are
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used, the resulting T estimates are of similar magnitude to the uWUE based T estimates

with minimal change in temporal correlation between the two (Supplementary Figure

S2). Therefore, the magnitude of T from both the TEA and uWUE methods is still uncer-

tain to some degree, with TEA being more consistent with the Wei method (Figure 4.3)

and uWUE more consistent with the sap flow based T (Figure 4.2). As demonstrated for

the TEA and uWUE methods, uncertainty of the magnitudes of T is determined by the

design and implementation of partitioning algorithms.

Until independent estimates of T become more abundant and the models can be better

constrained, the remaining uncertainty in magnitude should be acknowledged when us-

ing these methods. While many new methods for independently estimating T at ecosys-

tem scare are being developed, sap flow based methods will likely be one of the key

tools in the near future. However, validation studies have raised concerns about the po-

tential biases incurred by most sap flow methods (Flo et al., 2019; Steppe et al., 2010)

and additional uncertainty remains from upscaling from sap flow sensors to trees and

to stands (Oren et al., 1998; ermák et al., 2004). Sap flow upscaled to the ecosystem

also only includes canopy T rather than both canopy and understory T, which is cap-

tured with an EC system (Blanken et al., 1997). All of these issued could contribute to

the differences in magnitude between SF and EC, suggesting that neither measurement

technique should be considered the best reference in all cases when it comes to the mag-

nitude of ecosystem T. Nevertheless, sap flow measurements offers reasonable temporal

patterns of canopy transpiration and sap flow-derived transpiration has often compared

well with independent measurements (Flo et al., 2019; McCulloh et al., 2007) and with

evapotranspiration at larger scales (Wilson et al., 2001).

Another key difference between the three methods is in assumptions on the optimality

response of stomata to maximize carbon gain to water loss. The Pérez-Priego method

explicitly incorporates optimality via an additional term in the cost function which pe-

nalizes sub-optimal parameter sets. The uWUE method also incorporates the concept of

optimality, both in the
√
𝑉𝑃𝐷 relationship of GPP to T which mirrors theoretical frame-

works based on the optimality concept (Medlyn et al., 2011) and implicitly by the use of

the 95𝑡ℎ percentile when calculating 𝑢𝑊𝑈𝐸𝑝, which was intended to find periods where

𝑇 ≈ 𝐸𝑇 but also has the consequence of maximizing carbon gain to water loss. However,

the resulting low values of T/ET from both methods (mean site 𝑇𝑢𝑊𝑈𝐸/ET= 42%, with

the Pérez-Priego method presumably lower, compared to 65% for the TEA method) runs

counter to the current consensus from site level and isotope estimates that T is the dom-
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inant terrestrial water flux (Wei et al., 2017; Schlesinger and Jasechko, 2014). Though

global estimates still contain uncertainties, such as the limited number of ground studies

(64 in Wei et al. (2017) and 81 in Schlesinger and Jasechko (2014)) and uncertainties

in T/ET ratios estimated by global isotope studies (Coenders-Gerrits et al., 2014), the

low T/ET estimated by the uWUE and Pérez-Priego methods indicates that how opti-

mality is understood and implemented in these methods may need to be refined, such

as including hydraulic (Sperry et al., 2017; Eller et al., 2018) and/or non-stomatal lim-

itations (De Kauwe et al., 2019).

4.4.3 Emergent spatial patterns of ecosystem T/ET

A large portion of the variability in T and ET are both driven by climatic drivers, partic-

ularly the available energy and atmospheric capacity to drive the evaporative process.

Therefore, because much of these climatic effects cancel out when looking at T/ET, it

makes sense that climate shows little control over across site variation (Figure 4.9).

This lack of control of T/ET from climate, particularly the limited role of annual precip-

itation, is consistent with previous findings (Fatichi and Pappas, 2017; Schlesinger and

Jasechko, 2014; Paschalis et al., 2018). Apart from the limited control from climate,

the relative stability of T/ET across sites can be explained by two hypotheses: (1) the

effects of interception and soil evaporation largely cancel each other out with regards

to increasing vegetation cover (Good et al., 2017), and (2) ecosystems tend to adapt to

utilize the water resources available. In the case of the first hypothesis, energy limited

ecosystems with higher LAI would also have an increased interception pool, whereas

water limited ecosystems may have smaller interception pools but more evaporation

coming from the soil. So both dense and sparse canopies will lead to lower T/ET with

a maximum somewhere in between. The second hypothesis would suggest that plants

adapted to dry ecosystems would incorporate water saving strategies leading to im-

proved utilization of the limited precipitation, thus increasing T/ET. The combination

of these two hypotheses possibly accounts for the T/ET ratio being relatively conserved

across very different ecosystems. However, both the mean and 95𝑡ℎ percentile of NDMI

did show high importance in predicting site T/ET, indicating that water stress may influ-

ence T/ET, which is consistent with previous findings (Fatichi and Pappas, 2017).

The high values of T/ET at low LAI seen in Figure 4.3 and consistent with Wang et al.

(2014), along with the limited importance of mean or maximum LAI in predicting site
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T/ET (Figure 4.9), would indicate that T/ET may be less sensitive to LAI than previously

assumed, particularly in space. However, many land surface and remote sensing based

models formulate ET partitioning in part as a function of vegetation structure such

as fraction of vegetation or LAI (Talsma et al., 2018; Lian et al., 2018). Care should

be taken not to equate the presence of vegetation to high T/ET. However, as seen in

Figure 4.8, much of the variance in T/ET remains unexplained, meaning that the current

set of covariates was either not representative of the EC data (i.e. spatial mismatch

between satellite data and eddy covariance footprint climatology; Cescatti et al. (2012)

) and/or some important drivers of ecosystem T/ET may not have been included, such

as temporal dynamics, crop type, forest age, or disturbance history.

4.4.4 Outlook

We demonstrated the progress made in estimating transpiration from eddy covariance

measured bulk evapotranspiration by three complementary partitioning methods. Both

tests against independent sap flow based estimates and the overall consistency of T and

T/ET patterns among methods suggests an important step forward in estimating plant

water use at ecosystem scale. The added value of transpiration estimates compared to

bulk ET is clearly evident, particularly for assessing ecophysiologically more meaning-

ful water use efficiency patterns along atmospheric (VPD) and soil dryness gradients.

Previous studies assessing water use efficiency based on flux tower data assumed negli-

gible daily evaporation after a few consecutive rain-free days. Our results suggest that

this assumption may be inadequate, implying that those studies may be revisited with

ecosystem T estimates which may help in reconciling apparent contradictions with leaf-

level estimates and theory.

Of course, the key limitation of the methods is that the magnitude of T is still left

unconstrained, with the magnitude of T being tied to assumptions on how water loss to

carbon gain is optimized. While the uWUE and Pérez-Priego methods tend to increase

WUE giving a higher carbon gain to water loss, the resulting T/ET tends to be lower

than the global consensus. However, care should be taken not to assume a method

which results in a T/ET value close to the current estimates of ≈ 60% constitutes an

accurate method, as current global T data are still uncertain.

In addition to the unconstrained magnitudes, discrepancies of diurnal T/ET patterns



from the different flux partitioning methods further indicate a lack of theoretical and

data constraints for diurnal water-carbon coupling, emphasizing the need for further

studies and a better understanding of this aspect. Increased abundance and higher avail-

ability of concurrent sap flow and EC measurements allowing comparisons will help to

improve flux partitioning methods. This is contingent on continued efforts to evaluate

and reduce uncertainties connected with upscaling of tree sap flow measurements to

ecosystem transpiration e.g. due to the omission of the understory. To facilitate corrob-

orations with independent large scale transpiration constraints from isotopes, a next

step is to upscale the ecosystem transpiration estimates from flux towers to the globe as

was previously done with carbon and energy fluxes. This further opens doors of assess-

ing cross-consistencies with process-based land surface model simulations and remote

sensing based approaches, particularly with respect to the unexpectedly low sensitivity

of T/ET spatial variation with climate and leaf area index across FLUXNET sites found

here.

4.5 Data Sharing and Accessibility

Data that support the findings of this study are openly available from Zenodo http://doi.org/10.5281/ZENODO

Furthermore, a tutorial of how to produce the transpiration estimates can be found in

the associated repository at https://github.com/jnelson18/ecosystem-transpiration.
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This chapter first summarizes the key concepts from the preceding chapters which are

referenced in this synthesis via an overview of how the research developed over time.

Key results are then discussed in the context of the broader research and literature by

answering the three research questions. Finally, the concluding summary outlines key

conclusions as well as gives an outlook on future research directions.

5.1 Summary of key concepts and research

development

While the overarching objective of the thesis was to produce an ET partitioning method

for eddy covariance data, the lack of consistent measurements related to ecosystem wa-

ter status, such as soil moisture or leaf water potential, necessitated an initial study to

develop indicators which characterize diverse ecosystem responses to drought without

requiring supplemental data not in the core eddy covariance datasets. Two data driven

indicators were developed in Chapter 2 which were designed to capture information

directly from the diurnal patterns of ecosystem fluxes which could be used to directly

indicate ecosystem water limitations. The diurnal centroid of ET relative to incoming ra-

diation (𝐶∗
𝐿𝐸, see Section 2.2.2) measures the phase shift of ET, which shifts towards the

morning under dry conditions possibly due to higher stomatal control, intra-plant limi-

tations to water movement, and daily cycles of water redistribution. The diurnal water

carbon index (DWCI, see Section 2.2.3) measures the coupling of diurnal water and car-

bon fluxes, which can decouple under dry conditions due to non-stomatal limitations

of carbon assimilation which affect GPP but not ET (e.g. via inhibitions of biochemi-

cal reactions, RuBisCO activity, and/or mesophyll conductance). Another indicator of

ecosystem dryness was introduced in Chapter 3, the conservative surface wetness index

(CSWI, see Section 3.2.1), which indicates the amount of ET relative to the last rain

event, and was designed to isolate periods when surfaces are likely to be dry.

These three indicators laid the ground work for development of the Transpiration Esti-

mation Algorithm (TEA) described in Chapter 3, which trains a machine learning model

from data filtered for dry periods (defined by the CSWI) to predict WUE and transpi-

ration using DWCI, 𝐶∗
𝐿𝐸, and meteorological variables as predictors. Initial assessment

of the key assumptions in TEA, such as the assumption that 𝑇 ≈ 𝐸𝑇 during some peri-

ods, was done using model output from three terrestrial biosphere models (TBM) used
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as synthetic eddy covariance datasets in a controlled study where the underlying WUE

and transpiration were known. The synthetic data study demonstrated that TEA could

accurately reproduce spatial and temporal patterns of WUE and transpiration, but the

magnitude of transpiration was sensitive to a key hyperparameter, i.e. the prediction

percentile, and a prediction percentile of 75 was chosen based on the best overall per-

formance across the synthetic datasets.

The TEA method, along with two other eddy covariance based ET partitioning methods

(uWUE and Pérez-Priego), were then applied to the entire FLUXNET dataset. The three

partitioning methods were shown to be highly correlated at the daily scale, and all three

showed high correlation to independent sap flow based estimates of canopy transpira-

tion. Furthermore, the transpiration estimates from eddy covariance showed expected

responses of T/ET and seasonality, increases of transpiration during dry-down periods,

and a decrease in WUE with increasing VPD. Finally, site estimates of transpiration from

over 200 FLUXNET sites were paired with climate and remote sensing data to explore

the spatial variability of transpiration and T/ET.

How can information in the core eddy covariance datasets be further exploited

to describe the complex plant water relationships from heterogeneous communi-

ties?

Complex ecophsysiological responses to water stress which are difficult to describe

with generalized models can be captured using diurnal indicators of hydraulic and

non-stomatal limitations (e.g. 𝐶∗
𝐿𝐸 and DWCI). These indicators can inform data driven

methods to estimate WUE and transpiration (such as TEA), as well as help diagnose the

occurrence of water stress and diagnose shortcomings in stomatal conductance mod-

els.

Given the limited amount of independent ecosystem transpiration data concur-

rent with eddy covariance measurements, how can the transpiration estimates be

validated?

Evaluation strategies which characterize uncertainties related to theoretical assump-

tions, such as the model studies in Chapter 3, not only improve the accuracy of transpi-

ration estimates from TEA, but also identified that the key source of uncertainty in the

magnitude from eddy covariance based transpiration estimates were those on carbon

gain to water loss optimality, which is in contrast to previous suppositions.
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What new insights on ecohydrological and water use strategies across major ter-

restrial biomes can be gained from the transpiration estimates derived from FLUXNET?

The greater spatial context afforded by the transpiration estimates from TEA applied

over FLUXNET indicated that the key spatial drivers of T/ET are properties related to

water access and use, such as soil properties and drought responses, rather than the

simple presence or absences of vegetation (e.g. mean site leaf area index) as is currently

seen in land surface models.

5.2 Key results and discussion

5.2.1 How can information in the core eddy covariance datasets be

further exploited to describe the complex plant water

relationships from heterogeneous communities?

The complex ecosystem responses to stress are difficult to capture with generalized

models (Matheny et al., 2014; Renner et al., 2021; De Kauwe et al., 2015), which

highlights the need for alternative methods to capture plant water stress information.

The aim of developing and using the metrics introduced in Chapter 2 was to use them

in TEA to capture diverse drought responses in a data driven way, with the metrics

used as features to predict WUE within TEA (Section 3.2.2). However, the utility of

the metrics has been shown to extend beyond just being predictors in TEA, as they can

also help identify and understand integrated physiological responses to drought, such

as hydraulic and non-stomatal limitations. A core advantage of the diurnal indicators

is that they summarize high frequency patterns in the data, patterns which are lost in

a simple daily mean or sum. This section identifies some examples of how using these

metrics, as well as the information from transpiration estimates from TEA, can inform

and improve our understanding of ecosystem functioning.

The relationship between plant water use and the the need to avoid hydraulic failure of

vascular tissues is complex, however 𝐶∗
𝐿𝐸 may help identify the effects of hydraulic lim-

itation. As ecosystems dry out and demand for water starts to outpace supply, smaller

water pools such as in the root zone or plant stems show pronounced effects of daily fill-

ing and emptying (Goldstein et al., 1998; Couvreur et al., 2014). Differing plant strate-
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gies start to emerge under these drought conditions such as the isohydricity spectrum

(Martínez-Vilalta et al., 2014), i.e. the strategic trade-off during drought between higher

stomatal control to reduce the risk of xylem embolism or risking high water potential

gradients to maintain high GPP. Konings and Gentine (2016) used satellite data as an

estimate of isohydricity to show a clear response with plant height, with tall trees being

more isohydric, likely due to the long hydraulic pathways being prone to embolism and

cavitation. 𝐶∗
𝐿𝐸 was also associated with forested ecosystems, and showed clear patterns

of morning shifts in tree ecosystems which experience dry conditions, possibly due to a

more isohydric behavior. For example, Puéchabon forest showed intense morning shifts

during the 2003 drought compared to a normal year (Figure 2.3). Trees also utilize stem

water, measured as hydraulic capacitance, to maintain transpiration and possibly pre-

vent cavitation. Salomón et al. (2017) found stem hydraulic capacitance at Puéchabon

decreased 60% over the dry season, while the contribution of stored water to transpira-

tion was estimated to increased from 2 to 5%, demonstrating the dynamic adaptation

the ecosystem has develop to cope with drought. Puéchabon also has extensive sap flow

measurements making it an excellent test site to validate transpiration estimates, and

though all the partitioning methods analysed in Chapter 4 performed well at Puéch-

abon, TEA showed the highest correlation and lowest RMSE when compared to canopy

sap flow (𝑅2 ranged between 0.860-0.874 and RMSE between 0.32-0.42 for all the

methods). The high correlation demonstrates the advantages of a data driven estimate

which integrates a metric of hydraulic limitations, as process based models are often

unable to reproduce these morning shifts associated with physiological responses to

moisture limitations (Renner et al., 2019).

Detection of non-stomatal limitations via DWCI, as well as the differences seen in the

eddy covariance based partitioning methods which relates to assumptions on maximiz-

ing carbon gain to water loss, underline the limitations of stomatal optimality theory.

The experiments in Drake et al. (2018) showed non-optimal stomatal response in the

extreme, where tree photosynthesis nearly completely halted during extremely high

temperatures (> 43◦𝐶) while transpiration persisted. Other experimental studies have

reported similar behaviors, with sustained transpiration reducing leaf temperatures dur-

ing heat events at the expense of carbon uptake (Slot et al., 2016; Urban et al., 2017a;

Urban et al., 2017b). While De Kauwe et al. (2019) did not find significant evidence of

decoupling across 14 eddy covariance sites, the analysis looked at correlations of day-

time integrated GPP and LE, while the effect reported in Drake et al. (2018) showed no
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both 𝐶∗
𝐿𝐸 and DWCI are related to periods of high net radiation and low latent energy,

periods indicative of water limitation, however, the two indicators showed divergent

drought responses between tree and grass dominated systems (Figure 2.5). A similar

result was found in an analysis of forest and grassland sites during the 2018 drought

in Switzerland, where Gharun et al. (2020) showed a decoupling of water and carbon

in grass sites not seen in forested sites. Divergent responses can even be seen from

plants within the same genus, as Zhou et al. (2016b) showed differences in acclima-

tion to drought between Eucalyptus species, with species native to dry habitats showing

less stomatal and biochemical limitations than species from wet habitats. These effects

need to be accounted for in land surface models, as De Kauwe et al. (2015) showed

that ignoring the higher ability of ecosystems adapted to dry conditions leads to an

over estimation of drought effects on carbon and water fluxes. Because TEA uses a data

driven approach, and learns from each ecosystem individually, the resulting transpira-

tion estimates should be able to capture a wider variety of drought responses. While

TEA was able to capture the WUE responses (Figure 3.5) from the model output used

in the initial validation of Chapter 3, the models are not likely to have the same types

of phase lags or decoupling seen in real EC data, and therefore the exact importance

of these indicators in predicting WUE can be difficult to assess. However, in contrast

to the data driven approach of TEA, the two other transpiration estimating methods

used in Chapter 4 (uWUE and Perez-Priego) predominantly use time and VPD to con-

trol diurnal variability, and indeed the resulting diurnal behaviors of partitioned fluxes

are quite different (Figure 4.6). Alternatively, TEA feeds sub-daily information directly

into the algorithm via the indicators, and lets the data speak for itself, giving a distinct

view over process based approaches which have been shown to not capture sub-daily

patterns (Matheny et al., 2014; Renner et al., 2021). This strategy might be useful in

other fields, with the diurnal metrics being used to inform and evaluate other empirical

models, as demonstrated in the Research Perspective below, where the accuracy of tran-

spiration estimates from SIF data (Shan et al., 2019) was associated with carbon-water

decoupling as indicated by lower DWCI.
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Research Perspective: sub-daily indicators of water stress and

transpiration estimates from SIF

Sun-induced fluorescence is seen as a promising near-surface and remote sens-

ing tool to monitor ecosystem processes related to photosynthesis (Porcar-

Castell et al., 2014), and in recent years attempts have been made to also

use SIF as a link to estimate transpiration. A method to predict transpiration

from SIF would provide not only an independent data source for quantifying

ecosystem transpiration, but also lead to potential global transpiration moni-

toring via remote sensing estimates of SIF (Pagán et al., 2019). Here we sum-

marize two studies that tested a SIF based method for estimating transpiration

at three different eddy covariance sites which demonstrated good agreement

between 𝑇𝑆𝐼𝐹 and 𝑇𝑇𝐸𝐴, as well as explore how using DWCI could help diagnose

methodological issues in empirical SIF based models.

Experimental method: Shan et al. (2019) developed an empirical relation-

ship between SIF and canopy conductance calculated from eddy covariance

data, and the SIF estimated canopy conductance was then used with the Penmann-

Montieth equation to estimate transpiration (𝑇𝑆𝐼𝐹). 𝑇𝑆𝐼𝐹 was then compared to

eddy covariance data during the growing season at a mixed temperate forest

(Harvard Forest) and a seasonally dry savanna (Majadas de Tiétar). In a follow

up study, Shan et al. (2021) again compared the results of an improved version

of 𝑇𝑆𝐼𝐹 to eddy covariance based ET both at Harvard Forest and an irrigated

maize site (Shangqiu), and also compared 𝑇𝑆𝐼𝐹 to transpiration estimates from

both TEA and the Pérez-Priego methods.

High agreement with TEA: The improved version of 𝑇𝑆𝐼𝐹 from Shan et al.

(2021) showed a high correlation with ET from eddy covariance at Harvard

Forest (𝑅2
= 0.70) and an even higher correlation at Shangqiu (𝑅2

= 0.78).

Comparing 𝑇𝑆𝐼𝐹 to 𝑇𝑇𝐸𝐴 directly showed an improved correlation for Harvard

Forest (𝑅2
= 0.76) with no improvement at Shangqui (𝑅2

= 0.78) (Figure

S12 in Shan et al. (2021)), and found a similar magnitude between 𝑇𝑆𝐼𝐹 and

𝑇𝑇𝐸𝐴 (𝑇𝑇𝐸𝐴/𝑇𝑆𝐼𝐹 was 0.897 and 1.035 for Harvard Forest and Shangqui respec-

tively). A similar comparison between 𝑇𝑆𝐼𝐹 and 𝑇𝑃𝑒𝑟𝑒𝑧−𝑃𝑟𝑖𝑒𝑔𝑜 showed a slight

improvement (𝑅2
= 0.73) and reduced performance (𝑅2

= 0.39) compared to

ET for Harvard Forest and Shangqui respectively, with much lower transpira-
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5.2.2 Given the limited amount of independent ecosystem

transpiration data concurrent with eddy covariance

measurements, how can the transpiration estimates be

validated?

Assessment of the sensitivity of core methodological assumptions from the model stud-

ies in Chapter 3 was key in evaluating the strengths and weaknesses TEA, and further-

more identified that the degree to which GPP should be maximized relative to tran-

spiration causes most of the uncertainty in the magnitude of transpiration rather than

the assumption that 𝑇 ≈ 𝐸𝑇 as was commonly thought. Previous methods have primar-

ily used the high correlation between T/ET and vegetation indexes such as EVI (Zhou

et al., 2016a) or LAI (Li et al., 2019; Scott and Biederman, 2017) as a verification of

accurate transpiration estimates. Other validation exercises rely on comparisons with

independent estimates from one or two sites (Perez-Priego et al., 2018; Scanlon et al.,

2019; Zhou et al., 2018). While these exercises are necessary to provide independent

validation, they lack the spatial and temporal scope to properly characterize method-

ological assumptions and sensitivities across many different ecosystems. In contrast, the

controlled experiments from Chapter 3 using model output to evaluate TEA allowed for

implicit assumptions to be tested and is in contrast to how other methods approached

validation. While TEA was shown to over estimate models with more abiotic evapo-

ration, and thus are more likely to violate the 𝑇 ≈ 𝐸𝑇 assumption in TEA, the model

results show that within a single model “reality,” TEA was able to accurately differenti-

ate T/ET across sites, and biases caused by higher model “reality” abiotic evaporation

could be compensated by the prediction percentile which is a key hyperparameter in

TEA that controls the resulting magnitude of transpiration. The ability of the prediction

percentile to compensate for increased abiotic evaporation, which at first glance should

violate the 𝑇 ≈ 𝐸𝑇 assumption in TEA, without deteriorating the ability to capture tem-

poral patterns is due to the fact that evaporation is likely not constant in time, therefore

some periods where 𝑇 ≈ 𝐸𝑇 are likely to exist in the high frequency data which TEA

is able to exploit. In other words, the amount of abiotic evaporation is not so much

the issue, rather the frequency that abiotic evaporation occurs in the training dataset

(i.e. after filtering for wet periods), which seems to be much more consistent across

sites. While discussion of hyperparameters may seem rather technical for a synthesis,

the selection of a lower prediction percentile based on how TEA performed in the mod-
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eling study, rather than selecting a high prediction percentile which would correspond

to maximizing carbon gain to water loss, directly resulted in relatively higher T/ET ra-

tios from TEA, being around 77% across FLUXNET compared to 45 and 52% for the

Pérez-Priego and uWUE methods respectively, of which both methods tried to limit the

impacts of the 𝑇 ≈ 𝐸𝑇 assumption by instead assuming plants maximize carbon gain to

water loss. However, the low T/ET values seen across FLUXNET sites from the Pérez-

Priego and uWUE methods, which is a result of the optimality assumptions, would be in

contrast to the general consensus that transpiration is the dominant component of ET,

especially given that FLUXNET sites tend to be highly vegetated and undisturbed and

may have higher T/ET than the global average. Subsequent work has also corroborated

the higher transpiration estimates from TEA. Scott et al. (2020) did a comparison of

the uWUE, TEA, and Li (Li et al., 2019) methods at two dry sites and showed that the

seasonal pattern of T/ET from the TEA and Li methods were consistent with previous

measurements, both in magnitude and seasonal cycle, with estimates from the uWUE

method being too low. Ma et al. (2020) also found that adjusting the hyperparameters

from the uWUE method to relax the optimality assumption was more accurate in an

oak savanna, with the resulting hyperparater being similar to what was found to be

most constisten with TEA across all FLUXNET sites (Appendix C Figure S2). Shan et al.

(2021) also found a more similar magnitude between 𝑇𝑆𝐼𝐹 and 𝑇𝑇𝐸𝐴, while the Pérez-

Priego method was much lower. These results indicate that the optimality assumption

tends to overestimate WUE, resulting in an underestimation of transpiration, further

highlighting the importance of data driven and adaptive methodologies such as TEA

which make few assumptions on physiological functioning.

Going forward, the broad applicability of TEA will allow the eddy covariance based

transpiration estimates to act as a baseline for future methodological intercomparisons.

Because TEA, which has already been well characterized as far as strengths and lim-

itations, can be applied the same way at forest, wetland, or boreal sites, future inde-

pendent methods for estimating ecosystem transpiration at eddy covariance sites can

then be compared to the TEA estimates thus immediately giving a broader context to

single site studies. Furthermore, continued efforts to aggregate independent estimates

of transpiration such as SAPFLUXNET (Poyatos et al., 2019), as well as calls for sim-

ilar efforts to aggirgate methods such as above and below canopy EC (Paul-Limoges

et al., 2020), and isotopic (Penna et al., 2018) methods, along with further processing

of eddy covariance data (Papale, 2020), will allow for broad, multi-site, multi-method
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meta analyses of ecosystem transpiration within the next few years. Such an analysis

will hopefully greatly narrow the uncertainty of the magnitude of transpiration. In line

with this effort, the code for the TEA algorithm is not only published (Nelson, 2020c),

but also in depth installation instructions and tutorials on how to apply all the methods

used in Chapter 4 are freely available to facility utilization by the broader eddy covari-

ance community (Nelson, 2020b). In the meantime, transpiration estimates from TEA

are already shedding light on ecosystem responses to climate and environmental drivers

(including nutrient availability), as seen in the Research Highlight below.

Research Highlight: transpiration and WUE dependence on N:P

stoichiometry

El-Madany et al. (2021), via a nutrient manipulation experiment in a Mediter-

ranean savanna ecosystem (Majadas de Tiétar, FLUXNET codes ES-LMa, ES-

LM1, and ES-LM2), showed that both nitrogen and nitrogen+phosphorus ad-

dition treatments increased GPP compared to the untreated control plot. How-

ever, the nitrogen treatment showed a comparatively higher increase in tran-

spiration (estimated using TEA) resulting in an overall decrease in WUE (com-

pared to the control treatment). In contrast, the nitrogen+phosphorus treat-

ment showed a marginal increase in transpiration and a significant decrease in

abiotic E, resulting in both an increase of WUE and a slight decrease in overall

ET. El-Madany et al. (2021) concluded that while both treatments increased

biomass, the nitrogen treatment, which resulted in an increase in the N:P ratio

and potential phosphorus limitations, resulted in an increase in transpiration

to extract more phosphorus from the soil. Furthermore, phosphorus has been

shown to cause a decrease in stomatal conductance and increase WUE (Maire

et al., 2015), an effect that was seen both in surface conductance estimates

derived from 𝑇𝑇𝐸𝐴 and from 𝛿13𝐶. The increases in WUE were accompanied

by decreases in abiotic evaporation possibly due to increased LAI, thus shad-

ing more soil surfaces, leading to opposing responses in the biotic and abiotic

water fluxes and highlighting the importance of ET partitioning for ecohydro-

logical understanding. These results are summarized in Figure 5.3.
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studies, 𝑇/𝐸𝑇 = 57 ± 7%), and six-fold more than the those used to constrain land

surface model output in Lian et al. (2018) (global 33 studies, 𝑇/𝐸𝑇 = 62 ± 6%). Fur-

thermore, underlying the 204 sites are 818 complete site-years of data, whereas many

literature site estimates correspond to one year or less. More than 900 active and histor-

ical EC sites are estimated to exist, providing the potential for high representativeness

of global ecosystem transpiration (Chu et al., 2017).

Models of transpiration need to take into account the impacts of soil available water

and responses to drought, rather than relying on vegetation to describe T/ET. Because

of the sparsity of current field estimates, previous work on spatial variability of T/ET has

relied on modeled relationships. LAI is often assumed to be a primary driver of T/ET,

where the presence of vegetation results in more shading of soil surfaces and utiliza-

tion of deeper soil moisture via roots. For example, both Lian et al. (2018) and Berg

and Sheffield (2019) identified LAI as the primary driver of T/ET in land surface model

output. An exploration of the key spatial drivers of T/ET (i.e. driver of the variability of

the mean T/ET across sites) based on both the TEA and uWUE methods suggests that

mean vegetation indexes were not the sole drivers of T/ET, rather crop or grassland

designation, soil properties, and a remote sensing based dryness index (Figures 4.9 and

5.3), suggesting that a more holistic approach is needed to estimate T/ET which in-

corporates processes affecting plant access to soil water reserves (e.g. soil texture and

rooting depth) and adaptations to drought (see Section 5.2.1). An alternate paradigm

put forward by Good et al. (2017), suggests that ecosystems with a maximum T/ET

should be where evaporative demand is near or slightly exceeds precipitation input be-

cause dry ecosystems result in patchy vegetation and more soil evaporation whereas

wet ecosystems with large canopy surfaces will have high evaporation of intercepted

water. The “mesic maximum” theory from Good et al. (2017) goes on to suggest that

global transpiration and rooting depth are optimized to use available precipitation in-

puts. In this way, the idea that LAI causes high T/ET may need to be reversed, rather that

plants will utilize water resources where they are available. Scott et al. (2020) provides

a nice case study, where two dryland ecosystems (an upland grass site and a riparian

woodland) with nearly identical climate and with relatively low LAI (1 𝑚2 · 𝑚−2 and 2

𝑚2 · 𝑚−2, respectively) show not only very different T/ET ratios (46% and 74% for the

grassland and woodland respectively), but the woodland also has an annual ET more

than twice that of the annual precipitation. So in effect, much of the water transpired

at the woodland comes from the surrounding area via lateral flow, a process which has
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Research Outlook: constraining land surface models with site estimates

of T/ET

It is generally established that the model experiments from land surface mod-

els show an under estimation of T/ET, and the dominant driver controlling

T/ET for all models is LAI (Lian et al., 2018; Berg and Sheffield, 2019). Though

the bias in T/ET could be the result of biases in LAI, most models are also over

estimating LAI compared to remote sensing based estimates, which if corrected

would result in an even lower T/ET ratio. Here we explore how higher density

site estimates of T/ET from TEA can shed new light on constraining T/ET in

land surface models.

Experimental method: Lian et al. (2018) used site estimates from 33 sites

as an emergent constraint on global estimated T/ET from CMIP5 model sim-

ulations to produce a global T/ET estimate of 62 ± 6%, which is more in line

with previously published estimates. The emergent constraint used the high

correlation between model global T/ET and the mean T/ET from the 1◦𝑥1◦

grid cell containing the site estimates.

TEA shows good consistency with site estimates: Using 204 FLUXNET sites

with transpiration estimates from TEA shows a relatively consistent distribu-

tion of site T/ET compared to the site measurements from Lian et al. (2018),

with nearly identical mean values (65 ± 11 and 64 ± 12 for TEA and Lian

respectively) and similar magnitudes at spatially coincident sites (Figure 5.4a

and 5.4b).

Representativeness of site samples: Figure 5.4c shows that the variability be-

tween FLUXNET sites less than 0.5◦ away from each other (i.e. those that could

be in the same 1◦𝑥1◦ grid cell) is just as high as the variability across all sites,

indicating that T/ET changes drastically over realtively short distances. One

critique of matching site estimates with global data is that research sites tend

to be more highly vegetated and productive, potentially resulting in an over

estimated global T/ET due to selection bias (Schimel et al., 2015). However,

as discussed in Section 5.2.3, vegetation is likely not the dominant factor con-

trolling T/ET, and key variables such as lateral flow and rooting depth should
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5.2.4 Outlook

Here we show that data driven estimates of transpiraion provide the much needed

spatio-temporally density needed to gain a better understanding of ecohydrological

function and to bridge the current gap between leaf level understanding of water and

carbon fluxes and global processes. Going forward, transpiration from eddy covariance

can be paired with gridded remote sensing and meteorological data and up-scaled, such

as the FLUXCOM methodology (Jung et al., 2020), providing globally available parti-

tioned water fluxes from eddy covariance. These new products will allow for a more

in depth analysis of both hydrology and global carbon cycles. Figure 5.6 shows an ini-

tial attempt at up-scaling transpiration, which while having a global T/ET consistent

with the current consensus, has not yet been rigourously verified. However, an anal-

ysis ready product should be available in the near future. TEA, as well as other ET

partitioning methods, should continue to be developed, improved, and validated. Im-

provements such as diagnosing better predictors of WUE to be used within TEA, as

well as corrections for know biases in eddy covariance data (Mammarella et al., 2009),

will provide high quality estimates of ecosystem scale transpiraiton, which can then be

validated against new and existing independent measurements (Poyatos et al., 2019).

These broad scale ecosystem transpiration methods can then inform both understanding

of ecohydrology and plant physiology as well as improve the next generation of remote

sensing and process based global estimates of transpiration.







References

Ainsworth E. A. and Rogers A. (Mar. 2007). The Response of Photosynthesis and

Stomatal Conductance to Rising [CO 2 ]: Mechanisms and Environmental

Interactions: Photosynthesis and Stomatal Conductance Responses to Rising [CO 2

]. en. Plant, Cell & Environment, 30, 258–270.

Allen C. D., Breshears D. D., and McDowell N. G. (Aug. 2015). On Underestimation of

Global Vulnerability to Tree Mortality and Forest Die-off from Hotter Drought in

the Anthropocene. en. Ecosphere, 6, art129.

Anderson R. G., Zhang X., and Skaggs T. H. (2017). Measurement and Partitioning of

Evapotranspiration for Application to Vadose Zone Studies. en. Vadose Zone

Journal, 16.

Baldocchi D. (2008). ’Breathing’ of the Terrestrial Biosphere: Lessons Learned from a

Global Network of Carbon Dioxide Flux Measurement Systems. en. Australian

Journal of Botany, 56, 1.

Baldocchi D. D. (Sept. 2019). How Eddy Covariance Flux Measurements Have

Contributed to Our Understanding of Global Change Biology. en. Global Change

Biology,

Baldocchi D. D. (Jan. 2020). How Eddy Covariance Flux Measurements Have

Contributed to Our Understanding of Global Change Biology. en. Global Change

Biology, 26, 242–260.

Baldocchi D. and Penuelas J. (Apr. 2019). The Physics and Ecology of Mining Carbon

Dioxide from the Atmosphere by Ecosystems. en. Global Change Biology, 25,

1191–1197.

Baldocchi D., Valentini R., Running S., Oechel W., and Dahlman R. (June 1996).

Strategies for Measuring and Modelling Carbon Dioxide and Water Vapour Fluxes

over Terrestrial Ecosystems. en. Global Change Biology, 2, 159–168.



132 References

Ball J. T., Woodrow I. E., and Berry J. A. (1987). A Model Predicting Stomatal

Conductance and Its Contribution to the Control of Photosynthesis under Different

Environmental Conditions. en. In: Progress in Photosynthesis Research. Biggins J.

(ed.). Dordrecht: Springer Netherlands, pp. 221–224.

Barr A., Morgenstern K., Black T., McCaughey J., and Nesic Z. (Nov. 2006). Surface

Energy Balance Closure by the Eddy-Covariance Method above Three Boreal Forest

Stands and Implications for the Measurement of the CO2 Flux. en. Agricultural and

Forest Meteorology, 140, 322–337.

Beer C., Ciais P., Reichstein M., Baldocchi D., Law B. E., Papale D., Soussana J.-F.,

Ammann C., Buchmann N., Frank D., Gianelle D., Janssens I. A., Knohl A.,

Köstner B., Moors E., Roupsard O., Verbeeck H., Vesala T., Williams C. A., and

Wohlfahrt G. (June 2009). Temporal and Among-Site Variability of Inherent Water

Use Efficiency at the Ecosystem Level: VARIABILITY OF INHERENT WUE. en.

Global Biogeochemical Cycles, 23, n/a–n/a.

Beerling D. J., Osborne C. P., and Chaloner W. G. (Mar. 2001). Evolution of Leaf-Form

in Land Plants Linked to Atmospheric CO2 Decline in the Late Palaeozoic Era. en.

Nature, 410, 352–354.

Berg A. and Sheffield J. (May 2019). Evapotranspiration Partitioning in CMIP5 Models:

Uncertainties and Future Projections. en. Journal of Climate, 32, 2653–2671.

Berkelhammer M., Noone D. C., Wong T. E., Burns S. P., Knowles J. F., Kaushik A.,

Blanken P. D., and Williams M. W. (June 2016). Convergent Approaches to

Determine an Ecosystem’s Transpiration Fraction: TRANSPIRATION FRACTION OF

TWO FORESTS. en. Global Biogeochemical Cycles, 30, 933–951.

Bernacchi C. J. and VanLoocke A. (Apr. 2015). Terrestrial Ecosystems in a Changing

Environment: A Dominant Role for Water. en. Annual Review of Plant Biology, 66,

599–622.

Berry J. A., Beerling D. J., and Franks P. J. (June 2010). Stomata: Key Players in the

Earth System, Past and Present. en. Current Opinion in Plant Biology, 13, 232–239.

Besnard S., Carvalhais N., Arain M. A., Black A., Brede B., Buchmann N., Chen J.,

Clevers J. G. P. W., Dutrieux L. P., Gans F., Herold M., Jung M., Kosugi Y., Knohl A.,

Law B. E., Paul-Limoges E., Lohila A., Merbold L., Roupsard O., Valentini R.,

Wolf S., Zhang X., and Reichstein M. (Feb. 2019). Memory Effects of Climate and

Vegetation Affecting Net Ecosystem CO2 Fluxes in Global Forests. en. PLoS ONE,

14. Hui D. (ed.), e0211510.



References 133

Beyer M., Kühnhammer K., and Dubbert M. (Sept. 2020). In Situ Measurements of Soil

and Plant Water Isotopes: A Review of Approaches, Practical Considerations and a

Vision for the Future. en. Hydrology and Earth System Sciences, 24, 4413–4440.

Blanken P. D., Black T. A., Yang P. C., Neumann H. H., Nesic Z., Staebler R., den

Hartog G., Novak M. D., and Lee X. (Dec. 1997). Energy Balance and Canopy

Conductance of a Boreal Aspen Forest: Partitioning Overstory and Understory

Components. en. Journal of Geophysical Research: Atmospheres, 102, 28915–28927.

Boese S., Jung M., Carvalhais N., and Reichstein M. (Jan. 2017). The Importance of

Radiation for Semi-Empirical Water-Use Efficiency Models. en. Biogeosciences

Discussions, 1–22.

Bogardi J. J., Fekete B. M., and Vörösmarty C. J. (Dec. 2013). Planetary Boundaries

Revisited: A View through the ‘Water Lens’. en. Current Opinion in Environmental

Sustainability, 5, 581–589.

Bonan G. B., Lawrence P. J., Oleson K. W., Levis S., Jung M., Reichstein M.,

Lawrence D. M., and Swenson S. C. (May 2011). Improving Canopy Processes in

the Community Land Model Version 4 (CLM4) Using Global Flux Fields Empirically

Inferred from FLUXNET Data. en. Journal of Geophysical Research, 116.

Böttcher K., Markkanen T., Thum T., Aalto T., Aurela M., Reick C., Kolari P., Arslan A.,

and Pulliainen J. (July 2016). Evaluating Biosphere Model Estimates of the Start of

the Vegetation Active Season in Boreal Forests by Satellite Observations. en.

Remote Sensing, 8, 580.

Breiman L. (Oct. 2001). Random Forests. Machine Learning, 45, 5–32.

Brooks P. D., Chorover J., Fan Y., Godsey S. E., Maxwell R. M., McNamara J. P., and

Tague C. (Sept. 2015). Hydrological Partitioning in the Critical Zone: Recent

Advances and Opportunities for Developing Transferable Understanding of Water

Cycle Dynamics: CRITICAL ZONE HYDROLOGY. en. Water Resources Research, 51,

6973–6987.

Brötz B., Eigenmann R., Dörnbrack A., Foken T., and Wirth V. (July 2014).

Early-Morning Flow Transition in a Valley in Low-Mountain Terrain Under

Clear-Sky Conditions. en. Boundary-Layer Meteorology, 152, 45–63.

Buckley T. N. (Aug. 2005). The Control of Stomata by Water Balance: Tansley Review.

en. New Phytologist, 168, 275–292.

Carminati A., Moradi A. B., Vetterlein D., Vontobel P., Lehmann E., Weller U.,

Vogel H.-J., and Oswald S. E. (July 2010). Dynamics of Soil Water Content in the

Rhizosphere. en. Plant and Soil, 332, 163–176.



134 References

ermák J., Kuera J., and Nadezhdina N. (Sept. 2004). Sap Flow Measurements with

Some Thermodynamic Methods, Flow Integration within Trees and Scaling up

from Sample Trees to Entire Forest Stands. en. Trees, 18, 529–546.

Cescatti A., Marcolla B., Santhana Vannan S. K., Pan J. Y., Román M. O., Yang X.,

Ciais P., Cook R. B., Law B. E., Matteucci G., Migliavacca M., Moors E.,

Richardson A. D., Seufert G., and Schaaf C. B. (June 2012). Intercomparison of

MODIS Albedo Retrievals and in Situ Measurements across the Global FLUXNET

Network. en. Remote Sensing of Environment, 121, 323–334.

Choat B., Brodribb T. J., Brodersen C. R., Duursma R. A., López R., and Medlyn B. E.

(June 2018). Triggers of Tree Mortality under Drought. en. Nature, 558, 531–539.

Chu H., Baldocchi D. D., John R., Wolf S., and Reichstein M. (Feb. 2017). Fluxes All of

the Time? A Primer on the Temporal Representativeness of FLUXNET: FLUXES ALL

OF THE TIME? en. Journal of Geophysical Research: Biogeosciences, 122, 289–307.

Ciais P., Reichstein M., Viovy N., Granier A., Ogée J., Allard V., Aubinet M.,

Buchmann N., Bernhofer C., Carrara A., Chevallier F., De Noblet N., Friend A. D.,

Friedlingstein P., Grünwald T., Heinesch B., Keronen P., Knohl A., Krinner G.,

Loustau D., Manca G., Matteucci G., Miglietta F., Ourcival J. M., Papale D.,

Pilegaard K., Rambal S., Seufert G., Soussana J. F., Sanz M. J., Schulze E. D.,

Vesala T., and Valentini R. (Sept. 2005). Europe-Wide Reduction in Primary

Productivity Caused by the Heat and Drought in 2003. en. Nature, 437, 529–533.

Clark M. P., Bierkens M. F. P., Samaniego L., Woods R. A., Uijlenhoet R., Bennett K. E.,

Pauwels V. R. N., Cai X., Wood A. W., and Peters-Lidard C. D. (July 2017). The

Evolution of Process-Based Hydrologic Models: Historical Challenges and the

Collective Quest for Physical Realism. en. Hydrology and Earth System Sciences, 21,

3427–3440.

Coenders-Gerrits A. M. J., van der Ent R. J., Bogaard T. A., Wang-Erlandsson L.,

Hrachowitz M., and Savenije H. H. G. (Feb. 2014). Uncertainties in Transpiration

Estimates. Nature, 506, E1–E2.

Couvreur V., Vanderborght J., Draye X., and Javaux M. (Nov. 2014). Dynamic Aspects

of Soil Water Availability for Isohydric Plants: Focus on Root Hydraulic Resistances.

en. Water Resour. Res., 50, 8891–8906.

Cowan I. R. and Farquhar G. D. (1977). Stomatal Function in Relation to Leaf

Metabolism and Environment. In: Symposia of the Society for Experimental Biology.

Vol. 31, pp. 471.



References 135

Damour G., Simonneau T., Cochard H., and Urban L. (July 2010). An Overview of

Models of Stomatal Conductance at the Leaf Level: Models of Stomatal

Conductance. en. Plant, Cell & Environment, no–no.

De Kauwe M. G., Zhou S.-X., Medlyn B. E., Pitman A. J., Wang Y.-P., Duursma R. A.,

and Prentice I. C. (Dec. 2015). Do Land Surface Models Need to Include

Differential Plant Species Responses to Drought? Examining Model Predictions

across a Mesic-Xeric Gradient in Europe. en. Biogeosciences, 12, 7503–7518.

De Kauwe M. G., Medlyn B. E., Pitman A. J., Drake J. E., Ukkola A., Griebel A.,

Pendall E., Prober S., and Roderick M. (Feb. 2019). Examining the Evidence for

Decoupling between Photosynthesis and Transpiration during Heat Extremes. en.

Biogeosciences, 16, 903–916.

Deans R. M., Brodribb T. J., Busch F. A., and Farquhar G. D. (Apr. 2019). Plant

Water-use Strategy Mediates Stomatal Effects on the Light Induction of

Photosynthesis. en. New Phytologist, 222, 382–395.

Delpierre N., Dufrêne E., Soudani K., Ulrich E., Cecchini S., Boé J., and François C.

(June 2009). Modelling Interannual and Spatial Variability of Leaf Senescence for

Three Deciduous Tree Species in France. en. Agricultural and Forest Meteorology,

149, 938–948.

Delpierre N., Soudani K., François C., Le Maire G., Bernhofer C., Kutsch W., Misson L.,

Rambal S., Vesala T., and Dufrêne E. (Mar. 2012). Quantifying the Influence of

Climate and Biological Drivers on the Interannual Variability of Carbon Exchanges

in European Forests through Process-Based Modelling. en. Agricultural and Forest

Meteorology, 154-155, 99–112.

Desai A. R., Richardson A. D., Moffat A. M., Kattge J., Hollinger D. Y., Barr A., Falge E.,

Noormets A., Papale D., Reichstein M., and Stauch V. J. (June 2008). Cross-Site

Evaluation of Eddy Covariance GPP and RE Decomposition Techniques. en.

Agricultural and Forest Meteorology, 148, 821–838.

Dietze M. C., Serbin S. P., Davidson C., Desai A. R., Feng X., Kelly R., Kooper R.,

LeBauer D., Mantooth J., McHenry K., and Wang D. (Mar. 2014). A Quantitative

Assessment of a Terrestrial Biosphere Model’s Data Needs across North American

Biomes: PEcAn/ED Model-Data Uncertainty Analysis. en. Journal of Geophysical

Research: Biogeosciences, 119, 286–300.

Drake J. E., Tjoelker M. G., Vårhammar A., Medlyn B. E., Reich P. B., Leigh A.,

Pfautsch S., Blackman C. J., López R., Aspinwall M. J., Crous K. Y., Duursma R. A.,

Kumarathunge D., De Kauwe M. G., Jiang M., Nicotra A. B., Tissue D. T., Choat B.,



136 References

Atkin O. K., and Barton C. V. M. (June 2018). Trees Tolerate an Extreme Heatwave

via Sustained Transpirational Cooling and Increased Leaf Thermal Tolerance. en.

Glob Change Biol, 24, 2390–2402.

Dufrêne E., Davi H., François C., Le Maire G., Le Dantec V., and Granier A. (2005).

Modelling Carbon and Water Cycles in a Beech Forest: Part I: Model Description

and Uncertainty Analysis on Modelled NEE. Ecological Modelling, 185, 407–436.

Egea G., Verhoef A., and Vidale P. L. (Oct. 2011). Towards an Improved and More

Flexible Representation of Water Stress in Coupled PhotosynthesisStomatal

Conductance Models. en. Agricultural and Forest Meteorology, 151, 1370–1384.

Eller C. B., Rowland L., Oliveira R. S., Bittencourt P. R. L., Barros F. V., da

Costa A. C. L., Meir P., Friend A. D., Mencuccini M., Sitch S., and Cox P. (Nov.

2018). Modelling Tropical Forest Responses to Drought and El Niño with a

Stomatal Optimization Model Based on Xylem Hydraulics. en. Philosophical

Transactions of the Royal Society B: Biological Sciences, 373, 20170315.

Fatichi S. and Pappas C. (July 2017). Constrained Variability of Modeled T : ET Ratio

across Biomes: Transpiration:Evapotranspiration Ratio. en. Geophysical Research

Letters, 44, 6795–6803.

Felfelani F., Wada Y., Longuevergne L., and Pokhrel Y. N. (Oct. 2017). Natural and

Human-Induced Terrestrial Water Storage Change: A Global Analysis Using

Hydrological Models and GRACE. en. Journal of Hydrology, 553, 105–118.

Fischer E. M., Seneviratne S. I., Vidale P. L., Lüthi D., and Schär C. (Oct. 2007). Soil

MoistureAtmosphere Interactions during the 2003 European Summer Heat Wave.

en. Journal of Climate, 20, 5081–5099.

Fisher J. B., Melton F., Middleton E., Hain C., Anderson M., Allen R., McCabe M. F.,

Hook S., Baldocchi D., Townsend P. A., Kilic A., Tu K., Miralles D. D., Perret J.,

Lagouarde J.-P., Waliser D., Purdy A. J., French A., Schimel D., Famiglietti J. S.,

Stephens G., and Wood E. F. (Apr. 2017). The Future of Evapotranspiration: Global

Requirements for Ecosystem Functioning, Carbon and Climate Feedbacks,

Agricultural Management, and Water Resources: THE FUTURE OF

EVAPOTRANSPIRATION. en. Water Resources Research, 53, 2618–2626.

Flexas J., Barbour M. M., Brendel O., Cabrera H. M., Carriquí M., Díaz-Espejo A.,

Douthe C., Dreyer E., Ferrio J. P., Gago J., Gallé A., Galmés J., Kodama N.,

Medrano H., Niinemets Ü., Peguero-Pina J. J., Pou A., Ribas-Carbó M., Tomás M.,

Tosens T., and Warren C. R. (Sept. 2012). Mesophyll Diffusion Conductance to



References 137

CO2: An Unappreciated Central Player in Photosynthesis. en. Plant Science,

193-194, 70–84.

Flo V., Martinez-Vilalta J., Steppe K., Schuldt B., and Poyatos R. (June 2019). A

Synthesis of Bias and Uncertainty in Sap Flow Methods. en. Agricultural and Forest

Meteorology, 271, 362–374.

FLUXNET Data Download (2007).

Friend A. D., Arneth A., Kiang N. Y., Lomas M., Ogée J., Rödenbeck C., Running S. W.,

Santaren J.-D., Sitch S., Viovy N., Ian Woodward F., and Zaehle S. (Mar. 2007).

FLUXNET and Modelling the Global Carbon Cycle. en. Global Change Biology, 13,

610–633.

Gao X., Gu F., Mei X., Hao W., Li H., Gong D., and Li X. (Mar. 2018). Light and Water

Use Efficiency as Influenced by Clouds and/or Aerosols in a Rainfed Spring Maize

Cropland on the Loess Plateau. en. Crop Sci., 58, 853–862.

Gedney N., Cox P. M., Betts R. A., Boucher O., Huntingford C., and Stott P. A. (Feb.

2006). Detection of a Direct Carbon Dioxide Effect in Continental River Runoff

Records. en. Nature, 439, 835–838.

Gharun M., Hörtnagl L., Paul-Limoges E., Ghiasi S., Feigenwinter I., Burri S.,

Marquardt K., Etzold S., Zweifel R., Eugster W., and Buchmann N. (Oct. 2020).

Physiological Response of Swiss Ecosystems to 2018 Drought across Plant Types

and Elevation. en. Phil. Trans. R. Soc. B, 375, 20190521.

Gimeno T. E., Ogée J., Royles J., Gibon Y., West J. B., Burlett R., Jones S. P., Sauze J.,

Wohl S., Benard C., Genty B., and Wingate L. (Aug. 2017). Bryophyte

Gas-Exchange Dynamics along Varying Hydration Status Reveal a Significant

Carbonyl Sulphide (COS) Sink in the Dark and COS Source in the Light. en. New

Phytologist, 215, 965–976.

Goldstein G., Andrade J. L., Meinzer F. C., Holbrook N. M., Cavelier J., Jackson P., and

Celis A. (Apr. 1998). Stem Water Storage and Diurnal Patterns of Water Use in

Tropical Forest Canopy Trees. en. Plant Cell Environ, 21, 397–406.

Good S. P., Moore G. W., and Miralles D. G. (Dec. 2017). A Mesic Maximum in

Biological Water Use Demarcates Biome Sensitivity to Aridity Shifts. en. Nature

Ecology & Evolution, 1, 1883–1888.

Good S. P., Noone D., and Bowen G. (2015). Hydrologic Connectivity Constrains

Partitioning of Global Terrestrial Water Fluxes. Science, 349, 175–177.

Good S. P., Soderberg K., Guan K., King E. G., Scanlon T. M., and Caylor K. K. (Feb.

2014). 𝛿 2 H Isotopic Flux Partitioning of Evapotranspiration over a Grass Field



138 References

Following a Water Pulse and Subsequent Dry Down. en. Water Resources Research,

50, 1410–1432.

Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., and Moore R. (2017).

Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote

Sensing of Environment, 202, 18–27.

Granier A. (Dec. 1987). Evaluation of Transpiration in a Douglas-Fir Stand by Means of

Sap Flow Measurements. en. Tree Physiology, 3, 309–320.

Granier A., Reichstein M., Bréda N., Janssens I., Falge E., Ciais P., Grünwald T.,

Aubinet M., Berbigier P., Bernhofer C., Buchmann N., Facini O., Grassi G.,

Heinesch B., Ilvesniemi H., Keronen P., Knohl A., Köstner B., Lagergren F.,

Lindroth A., Longdoz B., Loustau D., Mateus J., Montagnani L., Nys C., Moors E.,

Papale D., Peiffer M., Pilegaard K., Pita G., Pumpanen J., Rambal S., Rebmann C.,

Rodrigues A., Seufert G., Tenhunen J., Vesala T., and Wang Q. (Mar. 2007).

Evidence for Soil Water Control on Carbon and Water Dynamics in European

Forests during the Extremely Dry Year: 2003. en. Agricultural and Forest

Meteorology, 143, 123–145.

Granier A., Bréda N., Longdoz B., Gross P., and Ngao J. (Jan. 2008). Ten Years of

Fluxes and Stand Growth in a Young Beech Forest at Hesse, North-Eastern France.

en. Annals of Forest Science, 65, 704–704.

Grünwald T. and Bernhofer C. (May 2007). A Decade of Carbon, Water and Energy

Flux Measurements of an Old Spruce Forest at the Anchor Station Tharandt. en.

Tellus B, 59, 387–396.

Gu L., Hanson P. J., Post W. M., Kaiser D. P., Yang B., Nemani R., Pallardy S. G., and

Meyers T. (Mar. 2008). The 2007 Eastern US Spring Freeze: Increased Cold

Damage in a Warming World? en. BioScience, 58, 253–262.

Hales, Stephen, Gribelin S., Innys J., Innys W., Woodward T., W., Innys. J., and

Woodward T. (1727). Vegetable Staticks, or, An Account of Some Statical

Experiments on the Sap in Vegetables : Being an Essay towards a Natural History of

Vegetation : Also, a Specimen of an Attempt to Analyse the Air, by a Great Variety of

Chymio-Statical Experiments; Which Were Read at Several Meetings before the Royal

Society /. London :Printed for W. and J. Innys ... :||and T. Woodward,

He X., Estes L., Konar M., Tian D., Anghileri D., Baylis K., Evans T. P., and Sheffield J.

(Oct. 2019). Integrated Approaches to Understanding and Reducing Drought

Impact on Food Security across Scales. en. Current Opinion in Environmental

Sustainability, 40, 43–54.



References 139

Hengl T., Mendes de Jesus J., Heuvelink G. B. M., Ruiperez Gonzalez M., Kilibarda M.,

Blagoti A., Shangguan W., Wright M. N., Geng X., Bauer-Marschallinger B.,

Guevara M. A., Vargas R., MacMillan R. A., Batjes N. H., Leenaars J. G. B.,

Ribeiro E., Wheeler I., Mantel S., and Kempen B. (Feb. 2017). SoilGrids250m:

Global Gridded Soil Information Based on Machine Learning. en. PLOS ONE, 12.

Bond-Lamberty B. (ed.), e0169748.

Hollinger D. Y. and Richardson A. D. (2005). Uncertainty in Eddy Covariance

Measurements and Its Application to Physiological Models. Tree physiology, 25,

873–885.

Holloway-Phillips M.-M. and Brodribb T. J. (Feb. 2011). Minimum Hydraulic Safety

Leads to Maximum Water-Use Efficiency in a Forage Grass: Minimum Hydraulic

Safety, Maximum Water-Use Efficiency. en. Plant, Cell & Environment, 34, 302–313.

Huete A., Didan K., Miura T., Rodriguez E., Gao X., and Ferreira L. (Nov. 2002).

Overview of the Radiometric and Biophysical Performance of the MODIS

Vegetation Indices. en. Remote Sensing of Environment, 83, 195–213.

Ishizaki Y., Yokohata T., Emori S., Shiogama H., Takahashi K., Hanasaki N., Nozawa T.,

Ogura T., Nakaegawa T., Yoshimori M., Yoshida A., and Watanabe S. (Feb. 2014).

Validation of a Pattern Scaling Approach for Determining the Maximum Available

Renewable Freshwater Resource. en. Journal of Hydrometeorology, 15, 505–516.

Ito A. and Inatomi M. (Apr. 2012). Water-Use Efficiency of the Terrestrial Biosphere: A

Model Analysis Focusing on Interactions between the Global Carbon and Water

Cycles. en. Journal of Hydrometeorology, 13, 681–694.

Jasechko S., Birks S. J., Gleeson T., Wada Y., Fawcett P. J., Sharp Z. D., McDonnell J. J.,

and Welker J. M. (Nov. 2014). The Pronounced Seasonality of Global Groundwater

Recharge. en. Water Resources Research, 50, 8845–8867.

Jasechko S., Sharp Z. D., Gibson J. J., Birks S. J., Yi Y., and Fawcett P. J. (Apr. 2013).

Terrestrial Water Fluxes Dominated by Transpiration. en. Nature, 496, 347–350.

Jin S. and Sader S. A. (Feb. 2005). Comparison of Time Series Tasseled Cap Wetness

and the Normalized Difference Moisture Index in Detecting Forest Disturbances.

en. Remote Sensing of Environment, 94, 364–372.

Jordan M. I. and Mitchell T. M. (July 2015). Machine Learning: Trends, Perspectives,

and Prospects. en. Science, 349, 255–260.

Jung M., Reichstein M., and Bondeau A. (2009). Towards Global Empirical Upscaling

of FLUXNET Eddy Covariance Observations: Validation of a Model Tree Ensemble

Approach Using a Biosphere Model. Biogeosciences, 6, 2001–2013.



140 References

Jung M., Reichstein M., Margolis H. A., Cescatti A., Richardson A. D., Arain M. A.,

Arneth A., Bernhofer C., Bonal D., Chen J., Gianelle D., Gobron N., Kiely G.,

Kutsch W., Lasslop G., Law B. E., Lindroth A., Merbold L., Montagnani L.,

Moors E. J., Papale D., Sottocornola M., Vaccari F., and Williams C. (Sept. 2011).

Global Patterns of Land-Atmosphere Fluxes of Carbon Dioxide, Latent Heat, and

Sensible Heat Derived from Eddy Covariance, Satellite, and Meteorological

Observations. en. Journal of Geophysical Research, 116.

Jung M., Reichstein M., Schwalm C. R., Huntingford C., Sitch S., Ahlström A.,

Arneth A., Camps-Valls G., Ciais P., Friedlingstein P., Gans F., Ichii K., Jain A. K.,

Kato E., Papale D., Poulter B., Raduly B., Rödenbeck C., Tramontana G., Viovy N.,

Wang Y.-P., Weber U., Zaehle S., and Zeng N. (Jan. 2017). Compensatory Water

Effects Link Yearly Global Land CO2 Sink Changes to Temperature. en. Nature,

541, 516–520.

Jung M., Schwalm C., Migliavacca M., Walther S., Camps-Valls G., Koirala S.,

Anthoni P., Besnard S., Bodesheim P., and Carvalhais N. (2019). Scaling Carbon

Fluxes from Eddy Covariance Sites to Globe: Synthesis and Evaluation of the

FLUXCOM Approach. Biogeosciences Discussions,

Jung M., Schwalm C., Migliavacca M., Walther S., Camps-Valls G., Koirala S.,

Anthoni P., Besnard S., Bodesheim P., Carvalhais N., Chevallier F., Gans F.,

Goll D. S., Haverd V., Köhler P., Ichii K., Jain A. K., Liu J., Lombardozzi D.,

Nabel J. E. M. S., Nelson J. A., O’Sullivan M., Pallandt M., Papale D., Peters W.,

Pongratz J., Rödenbeck C., Sitch S., Tramontana G., Walker A., Weber U., and

Reichstein M. (Mar. 2020). Scaling Carbon Fluxes from Eddy Covariance Sites to

Globe: Synthesis and Evaluation of the FLUXCOM Approach. en. Biogeosciences, 17,

1343–1365.

Jung M. and Zscheischler J. (2013). A Guided Hybrid Genetic Algorithm for Feature

Selection with Expensive Cost Functions. en. Procedia Computer Science, 18,

2337–2346.

Katul G. G., Palmroth S., and Oren R. (Aug. 2009). Leaf Stomatal Responses to Vapour

Pressure Deficit under Current and CO 2 -Enriched Atmosphere Explained by the

Economics of Gas Exchange. en. Plant, Cell & Environment, 32, 968–979.

Katul G., Manzoni S., Palmroth S., and Oren R. (Mar. 2010). A Stomatal Optimization

Theory to Describe the Effects of Atmospheric CO2 on Leaf Photosynthesis and

Transpiration. en. Annals of Botany, 105, 431–442.



References 141

Keenan T. F., Hollinger D. Y., Bohrer G., Dragoni D., Munger J. W., Schmid H. P., and

Richardson A. D. (July 2013). Increase in Forest Water-Use Efficiency as

Atmospheric Carbon Dioxide Concentrations Rise. Nature, 499, 324–327.

Kenrick P. and Crane P. R. (Sept. 1997). The Origin and Early Evolution of Plants on

Land. en. Nature, 389, 33–39.

Knauer J., Werner C., and Zaehle S. (Oct. 2015). Evaluating Stomatal Models and

Their Atmospheric Drought Response in a Land Surface Scheme: A Multibiome

Analysis: MULTIBIOME STOMATAL MODEL EVALUATION. en. Journal of

Geophysical Research: Biogeosciences, 120, 1894–1911.

Knauer J., Zaehle S., Medlyn B. E., Reichstein M., Williams C. A., Migliavacca M.,

De Kauwe M. G., Werner C., Keitel C., Kolari P., Limousin J.-M., and

Linderson M.-L. (Feb. 2018). Towards Physiologically Meaningful Water-Use

Efficiency Estimates from Eddy Covariance Data. en. Global Change Biology, 24,

694–710.

Knauer J., Zaehle S., Reichstein M., Medlyn B. E., Forkel M., Hagemann S., and

Werner C. (Mar. 2017). The Response of Ecosystem Water-Use Efficiency to Rising

Atmospheric CO 2 Concentrations: Sensitivity and Large-Scale Biogeochemical

Implications. en. New Phytologist, 213, 1654–1666.

Koenker R. and Bassett Jr G. (1978). Regression Quantiles. Econometrica: journal of the

Econometric Society, 33–50.

Koirala S., Jung M., Reichstein M., de Graaf I. E. M., Camps-Valls G., Ichii K., Papale D.,

Ráduly B., Schwalm C. R., Tramontana G., and Carvalhais N. (May 2017). Global

Distribution of Groundwater-Vegetation Spatial Covariation: Global

Groundwater-Vegetation Relations. en. Geophysical Research Letters, 44,

4134–4142.

Konings A. G. and Gentine P. (July 2016). Global Variations in Ecosystem-Scale

Isohydricity. en. Global Change Biology,

Kool D., Agam N., Lazarovitch N., Heitman J., Sauer T., and Ben-Gal A. (Jan. 2014). A

Review of Approaches for Evapotranspiration Partitioning. en. Agricultural and

Forest Meteorology, 184, 56–70.

Kuglitsch F. G., Reichstein M., Beer C., Carrara A., Ceulemans R., Granier A.,

Janssens I. A., Koestner B., Lindroth A., and Loustau D. (2008). Characterisation of

Ecosystem Water-Use Efficiency of European Forests from Eddy Covariance

Measurements. Biogeosciences Discussions, 5, 4481–4519.



142 References

Kumar J., Hoffman F. M., Hargrove W. W., and Collier N. (Aug. 2016). Understanding

the Representativeness of FLUXNET for Upscaling Carbon Flux from Eddy

Covariance Measurements. en. Earth System Science Data Discussions, 1–25.

Lasslop G., Reichstein M., Papale D., Richardson A. D., Arneth A., Barr A., Stoy P., and

Wohlfahrt G. (Jan. 2010). Separation of Net Ecosystem Exchange into Assimilation

and Respiration Using a Light Response Curve Approach: Critical Issues and Global

Evaluation: SEPARATION OF NEE INTO GPP AND RECO. en. Global Change

Biology, 16, 187–208.

Lawlor D. W. and Tezara W. (May 2008). Causes of Decreased Photosynthetic Rate and

Metabolic Capacity in Water-Deficient Leaf Cells: A Critical Evaluation of

Mechanisms and Integration of Processes. en. Annals of Botany, 103, 561–579.

Leuning R. (Apr. 1995). A Critical Appraisal of a Combined Stomatal-Photosynthesis

Model for C3 Plants. en. Plant, Cell and Environment, 18, 339–355.

Leuning R., van Gorsel E., Massman W. J., and Isaac P. R. (Apr. 2012). Reflections on

the Surface Energy Imbalance Problem. en. Agricultural and Forest Meteorology,

156, 65–74.

Li T., Heuvelink E., Dueck T. A., Janse J., Gort G., and Marcelis L. F. M. (July 2014).

Enhancement of Crop Photosynthesis by Diffuse Light: Quantifying the

Contributing Factors. en. Annals of Botany, 114, 145–156.

Li X., Gentine P., Lin C., Zhou S., Sun Z., Zheng Y., Liu J., and Zheng C. (Feb. 2019). A

Simple and Objective Method to Partition Evapotranspiration into Transpiration

and Evaporation at Eddy-Covariance Sites. en. Agricultural and Forest Meteorology,

265, 171–182.

Lian X., Piao S., Huntingford C., Li Y., Zeng Z., Wang X., Ciais P., McVicar T. R.,

Peng S., Ottlé C., Yang H., Yang Y., Zhang Y., and Wang T. (July 2018). Partitioning

Global Land Evapotranspiration Using CMIP5 Models Constrained by Observations.

en. Nature Climate Change, 8, 640–646.

Lin C., Gentine P., Huang Y., Guan K., Kimm H., and Zhou S. (Mar. 2018). Diel

Ecosystem Conductance Response to Vapor Pressure Deficit Is Suboptimal and

Independent of Soil Moisture. en. Agricultural and Forest Meteorology, 250-251,

24–34.

Liu J., Yang H., Gosling S. N., Kummu M., Flörke M., Pfister S., Hanasaki N., Wada Y.,

Zhang X., Zheng C., Alcamo J., and Oki T. (June 2017). Water Scarcity

Assessments in the Past, Present, and Future: REVIEW ON WATER SCARCITY

ASSESSMENT. en. Earth’s Future, 5, 545–559.



References 143

Lyons T. W., Reinhard C. T., and Planavsky N. J. (Feb. 2014). The Rise of Oxygen in

Earth’s Early Ocean and Atmosphere. en. Nature, 506, 307–315.

Ma S., Eichelmann E., Wolf S., Rey-Sanchez C., and Baldocchi D. D. (Dec. 2020).

Transpiration and Evaporation in a Californian Oak-Grass Savanna: Field

Measurements and Partitioning Model Results. en. Agricultural and Forest

Meteorology, 295, 108204.

El-Madany T. S., Reichstein M., Carrara A., Martín M. P., Moreno G.,

Gonzalez-Cascon R., Peñuelas J., Ellsworth D. S., Burchard-Levine V.,

Hammer T. W., Knauer J., Kolle O., Luo Y., Pacheco-Labrador J., Nelson J. A.,

Perez-Priego O., Rolo V., Wutzler T., and Migliavacca M. (Apr. 2021). How

Nitrogen and Phosphorus Availability Change Water Use Efficiency in a

Mediterranean Savanna Ecosystem. en. J Geophys Res Biogeosci,

Maire V., Wright I. J., Prentice I. C., Batjes N. H., Bhaskar R., van Bodegom P. M.,

Cornwell W. K., Ellsworth D., Niinemets Ü., Ordonez A., Reich P. B., and

Santiago L. S. (June 2015). Global Effects of Soil and Climate on Leaf

Photosynthetic Traits and Rates: Effects of Soil and Climate on Photosynthetic

Traits. en. Global Ecology and Biogeography, 24, 706–717.

Mammarella I., Launiainen S., Gronholm T., Keronen P., Pumpanen J., Rannik Ü., and

Vesala T. (Sept. 2009). Relative Humidity Effect on the High-Frequency

Attenuation of Water Vapor Flux Measured by a Closed-Path Eddy Covariance

System. en. Journal of Atmospheric and Oceanic Technology, 26, 1856–1866.

Manzoni S. (Oct. 2014). Integrating Plant Hydraulics and Gas Exchange along the

Drought-Response Trait Spectrum. en. Tree Physiology, 34, 1031–1034.

Manzoni S., Vico G., Palmroth S., Porporato A., and Katul G. (Dec. 2013). Optimization

of Stomatal Conductance for Maximum Carbon Gain under Dynamic Soil Moisture.

en. Advances in Water Resources, 62, 90–105.

Martínez-Vilalta J. and Garcia-Forner N. (2016). Water Potential Regulation, Stomatal

Behaviour and Hydraulic Transport under Drought: Deconstructing the

Iso/Anisohydric Concept: Deconstructing the Iso/Anisohydric Concept. en. Plant,

Cell & Environment,

Martínez-Vilalta J., Poyatos R., Aguadé D., Retana J., and Mencuccini M. (Oct. 2014).

A New Look at Water Transport Regulation in Plants. en. New Phytologist, 204,

105–115.

Matheny A. M., Bohrer G., Stoy P. C., Baker I. T., Black A. T., Desai A. R., Dietze M. C.,

Gough C. M., Ivanov V. Y., Jassal R. S., Novick K. A., Schäfer K. V. R., and



144 References

Verbeeck H. (July 2014). Characterizing the Diurnal Patterns of Errors in the

Prediction of Evapotranspiration by Several Land-Surface Models: An NACP

Analysis: Error Patterns in Modeled Transpiration. en. Journal of Geophysical

Research: Biogeosciences, 119, 1458–1473.

Maxwell R. M. and Condon L. E. (July 2016). Connections between Groundwater Flow

and Transpiration Partitioning. en. Science, 353, 377–380.

McCulloh K. A., Winter K., Meinzer F. C., Garcia M., Aranda J., and Lachenbruch B.

(Sept. 2007). A Comparison of Daily Water Use Estimates Derived from

Constant-Heat Sap-Flow Probe Values and Gravimetric Measurements in

Pot-Grown Saplings. en. Tree Physiology, 27, 1355–1360.

Medlyn B. E., De Kauwe M. G., Lin Y.-S., Knauer J., Duursma R. A., Williams C. A.,

Arneth A., Clement R., Isaac P., Limousin J.-M., Linderson M.-L., Meir P.,

Martin-StPaul N., and Wingate L. (Nov. 2017). How Do Leaf and Ecosystem

Measures of Water-Use Efficiency Compare? en. New Phytologist, 216, 758–770.

Medlyn B. E., Dreyer E., Ellsworth D., Forstreuter M., Harley P. C., Kirschbaum M. U. F.,

Le Roux X., Montpied P., Strassemeyer J., and Walcroft A. (2002). Temperature

Response of Parameters of a Biochemically Based Model of Photosynthesis. II. A

Review of Experimental Data. Plant, Cell & Environment, 25, 1167–1179.

Medlyn B. E., Duursma R. A., Eamus D., Ellsworth D. S., Prentice I. C., Barton C. V. M.,

Crous K. Y., De Angelis P., Freeman M., and Wingate L. (June 2011). Reconciling

the Optimal and Empirical Approaches to Modelling Stomatal Conductance:

RECONCILING OPTIMAL AND EMPIRICAL STOMATAL MODELS. en. Global

Change Biology, 17, 2134–2144.

Medrano H., Tomás M., Martorell S., Flexas J., Hernández E., Rosselló J., Pou A.,

Escalona J.-M., and Bota J. (June 2015). From Leaf to Whole-Plant Water Use

Efficiency (WUE) in Complex Canopies: Limitations of Leaf WUE as a Selection

Target. en. The Crop Journal, 3, 220–228.

Meinshausen N. (2006). Quantile Regression Forests. Journal of Machine Learning

Research, 7, 983–999.

Mercado L. M., Bellouin N., Sitch S., Boucher O., Huntingford C., Wild M., and

Cox P. M. (Apr. 2009). Impact of Changes in Diffuse Radiation on the Global Land

Carbon Sink. en. Nature, 458, 1014–1017.

Migliavacca M., Meroni M., Manca G., Matteucci G., Montagnani L., Grassi G.,

Zenone T., Teobaldelli M., Goded I., Colombo R., and Seufert G. (Sept. 2009).

Seasonal and Interannual Patterns of Carbon and Water Fluxes of a Poplar



References 145

Plantation under Peculiar Eco-Climatic Conditions. en. Agricultural and Forest

Meteorology, 149, 1460–1476.

Miralles D. G., Jiménez C., Jung M., Michel D., Ershadi A., McCabe M. F., Hirschi M.,

Martens B., Dolman A. J., Fisher J. B., Mu Q., Seneviratne S. I., Wood E. F., and

Fernández-Prieto D. (Feb. 2016). The WACMOS-ET Project &amp;Ndash; Part 2:

Evaluation of Global Terrestrial Evaporation Data Sets. en. Hydrology and Earth

System Sciences, 20, 823–842.

Miralles D. G., Brutsaert W., Dolman A. J., and Gash J. H. (June 2020). On the Use of

the Term ’Evapotranspiration’. en. Preprint. Hydrology.

Mora C. I., Driese S. G., and Colarusso L. A. (Feb. 1996). Middle to Late Paleozoic

Atmospheric CO2 Levels from Soil Carbonate and Organic Matter. en. Science, 271,

1105–1107.

Morison J. I. L. (Aug. 1985). Sensitivity of Stomata and Water Use Efficiency to High

CO2. en. Plant Cell Environ, 8, 467–474.

Müller P., Li X.-P., and Niyogi K. K. (Apr. 2001). Non-Photochemical Quenching. A

Response to Excess Light Energy. en. Plant Physiol., 125, 1558–1566.

Munger J. (2016). AmeriFlux US-Ha1 Harvard Forest EMS Tower (HFR1). en.

Musavi T., Migliavacca M., Reichstein M., Kattge J., Wirth C., Black T. A., Janssens I.,

Knohl A., Loustau D., Roupsard O., Varlagin A., Rambal S., Cescatti A., Gianelle D.,

Kondo H., Tamrakar R., and Mahecha M. D. (Feb. 2017). Stand Age and Species

Richness Dampen Interannual Variation of Ecosystem-Level Photosynthetic

Capacity. en. Nature Ecology & Evolution, 1.

Myneni R. and Knyazikhin Y. (2015). MCD15A3H MODIS/Terra+Aqua Leaf Area

Index/FPAR 4-Day L4 Global 500m SIN Grid V006.

Nash J. and Sutcliffe J. (Apr. 1970). River Flow Forecasting through Conceptual

Models Part I A Discussion of Principles. Journal of Hydrology, 10, 282–290.

Nelson J. A. (Oct. 2017). Jnelson18/Fluxnettools: Initial Release.

Nelson J. A. (Feb. 2018). Jnelson18/TranspirationEstimationAlgorithm: Release for

Publication Review.

Nelson J. A. (Feb. 2019). Jnelson18/TranspirationEstimationAlgorithm: Force T to 0 at

Night. Zenodo.

Nelson J. A. (Aug. 2020a). Ecosystem Transpiration from FLUXNET. Zenodo.

Nelson J. A. (June 2020b). Jnelson18/Ecosystem-Transpiration: Additional Installation

Instructions. Zenodo.



146 References

Nelson J. A. (June 2020c). Jnelson18/TranspirationEstimationAlgorithm: Addition of

DOI Tag. Zenodo.

Nelson J. A., Carvalhais N., Cuntz M., Delpierre N., Knauer J., Ogée J., Migliavacca M.,

Reichstein M., and Jung M. (Dec. 2018a). Coupling Water and Carbon Fluxes to

Constrain Estimates of Transpiration: The TEA Algorithm. en. Journal of

Geophysical Research: Biogeosciences,

Nelson J. A., Carvalhais N., Migliavacca M., Reichstein M., and Jung M. (Apr. 2018b).

Water-Stress-Induced Breakdown of CarbonWater Relations: Indicators from

Diurnal FLUXNET Patterns. en. Biogeosciences, 15, 2433–2447.

Novick K. A., Ficklin D. L., Stoy P. C., Williams C. A., Bohrer G., Oishi A. C.,

Papuga S. A., Blanken P. D., Noormets A., Sulman B. N., Scott R. L., Wang L., and

Phillips R. P. (Nov. 2016a). The Increasing Importance of Atmospheric Demand for

Ecosystem Water and Carbon Fluxes. en. Nature Clim Change, 6, 1023–1027.

Novick K. A., Miniat C. F., and Vose J. M. (Mar. 2016b). Drought Limitations to

Leaf-Level Gas Exchange: Results from a Model Linking Stomatal Optimization and

Cohesion-Tension Theory: Drought Limitations to Gas Exchange. en. Plant, Cell &

Environment, 39, 583–596.

Ogée J., Brunet Y., Loustau D., Berbigier P., and Delzon S. (2003). MuSICA, a CO2,

Water and Energy Multilayer, Multileaf Pine Forest Model: Evaluation from Hourly

to Yearly Time Scales and Sensitivity Analysis. Global Change Biology, 9, 697–717.

Oishi A. C., Oren R., and Stoy P. C. (Oct. 2008). Estimating Components of Forest

Evapotranspiration: A Footprint Approach for Scaling Sap Flux Measurements. en.

Agricultural and Forest Meteorology, 148, 1719–1732.

Oki T. and Kanae S. (2006). Global Hydrological Cycles and World Water Resources.

en. 313, 6.

Oren R., Phillips N., Katul G., Ewers B. E., and Pataki D. E. (1998). Scaling Xylem Sap

Flux and Soil Water Balance and Calculating Variance: A Method for Partitioning

Water Flux in Forests. en. Annales des Sciences Forestières, 55, 191–216.

Osmond C. B. (June 1978). Crassulacean Acid Metabolism: A Curiosity in Context. en.

Annual Review of Plant Physiology, 29, 379–414.

Pagán B., Maes W., Gentine P., Martens B., and Miralles D. (Feb. 2019). Exploring the

Potential of Satellite Solar-Induced Fluorescence to Constrain Global Transpiration

Estimates. en. Remote Sensing, 11, 413.

Palmroth S., Katul G. G., Maier C. A., Ward E., Manzoni S., and Vico G. (Mar. 2013).

On the Complementary Relationship between Marginal Nitrogen and Water-Use



References 147

Efficiencies among Pinus Taeda Leaves Grown under Ambient and CO2-Enriched

Environments. en. Annals of Botany, 111, 467–477.

Pan S., Pan N., Tian H., Friedlingstein P., Sitch S., Shi H., Arora V. K., Haverd V.,

Jain A. K., Kato E., Lienert S., Lombardozzi D., Nabel J. E. M. S., Ottlé C.,

Poulter B., Zaehle S., and Running S. W. (Mar. 2020). Evaluation of Global

Terrestrial Evapotranspiration Using State-of-the-Art Approaches in Remote

Sensing, Machine Learning and Land Surface Modeling. en. Hydrology and Earth

System Sciences, 24, 1485–1509.

Papale D. (June 2020). Ideas and Perspectives: Enhancing the Impact of the FLUXNET

Network of Eddy Covariance Sites. en. Preprint. Biogeochemistry: Air - Land

Exchange.

Papale D., Reichstein M., Aubinet M., Canfora E., Bernhofer C., Kutsch W., Longdoz B.,

Rambal S., Valentini R., Vesala T., et al. (2006). Towards a Standardized

Processing of Net Ecosystem Exchange Measured with Eddy Covariance Technique:

Algorithms and Uncertainty Estimation. Biogeosciences, 3, 571–583.

Paschalis A., Fatichi S., Pappas C., and Or D. (Oct. 2018). Covariation of Vegetation

and Climate Constrains Present and Future T/ET Variability. en. Environmental

Research Letters, 13, 104012.

Pastorello G., Papale D., Chu H., Trotta C., Agarwal D., Canfora E., Baldocchi D., and

Torn M. (2017). The FLUXNET2015 Dataset: The Longest Record of Global

Carbon, Water, and Energy Fluxes Is Updated. Eos, 98.

Paul-Limoges E., Wolf S., Schneider F. D., Longo M., Moorcroft P., Gharun M., and

Damm A. (Jan. 2020). Partitioning Evapotranspiration with Concurrent Eddy

Covariance Measurements in a Mixed Forest. en. Agricultural and Forest

Meteorology, 280, 107786.

Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M.,

Prettenhofer P., Weiss R., Dubourg V., et al. (2011). Scikit-Learn: Machine

Learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

Pedruzo-Bagazgoitia X., Ouwersloot H. G., Sikma M., van Heerwaarden C. C.,

Jacobs C. M. J., and Vilà-Guerau de Arellano J. (June 2017). Direct and Diffuse

Radiation in the Shallow CumulusVegetation System: Enhanced and Decreased

Evapotranspiration Regimes. en. Journal of Hydrometeorology, 18, 1731–1748.

Penna D., Hopp L., Scandellari F., Allen S. T., Benettin P., Beyer M., Geris J., Klaus J.,

Marshall J. D., Schwendenmann L., Volkmann T. H. M., von Freyberg J., Amin A.,

Ceperley N., Engel M., Frentress J., Giambastiani Y., McDonnell J. J., Zuecco G.,



148 References

Llorens P., Siegwolf R. T. W., Dawson T. E., and Kirchner J. W. (Oct. 2018). Ideas

and Perspectives: Tracing Terrestrial Ecosystem Water Fluxes Using Hydrogen and

Oxygen Stable Isotopes Challenges and Opportunities from an Interdisciplinary

Perspective. en. Biogeosciences, 15, 6399–6415.

Perez-Priego O., Katul G., Reichstein M., El-Madany T. S., Ahrens B., Carrara A.,

Scanlon T. M., and Migliavacca M. (Oct. 2018). Partitioning Eddy Covariance

Water Flux Components Using Physiological and Micrometeorological Approaches.

en. Journal of Geophysical Research: Biogeosciences,

Pérez-Priego O., Testi L., Orgaz F., and Villalobos F. J. (Apr. 2010). A Large Closed

Canopy Chamber for Measuring CO2 and Water Vapour Exchange of Whole Trees.

en. Environmental and Experimental Botany, 68, 131–138.

Perez-Priego O. and Wutzler T. (May 2019). ETpartitioning: Partitioning of Eddy

Covariance ET into Flux Components.

Pinty B., Andredakis I., Clerici M., Kaminski T., Taberner M., Verstraete M. M.,

Gobron N., Plummer S., and Widlowski J.-L. (May 2011). Exploiting the MODIS

Albedos with the Two-Stream Inversion Package (JRC-TIP): 1. Effective Leaf Area

Index, Vegetation, and Soil Properties. en. Journal of Geophysical Research, 116.

Porcar-Castell A., Tyystjärvi E., Atherton J., van der Tol C., Flexas J., Pfündel E. E.,

Moreno J., Frankenberg C., and Berry J. A. (Aug. 2014). Linking Chlorophyll a

Fluorescence to Photosynthesis for Remote Sensing Applications: Mechanisms and

Challenges. en. Journal of Experimental Botany, 65, 4065–4095.

Potier E., Ogée J., Jouanguy J., Lamaud E., Stella P., Personne E., Durand B.,

Mascher N., and Loubet B. (Oct. 2015). Multilayer Modelling of Ozone Fluxes on

Winter Wheat Reveals Large Deposition on Wet Senescing Leaves. en. Agricultural

and Forest Meteorology, 211-212, 58–71.

Poyatos R., Granda V., Flo V., Molowny-Horas R., Steppe K., Mencuccini M., and

Martínez-Vilalta J. (Mar. 2019). SAPFLUXNET: A Global Database of Sap Flow

Measurements.

Poyatos R., Granda V., Molowny-Horas R., Mencuccini M., Steppe K., and

Martínez-Vilalta J. (Dec. 2016). SAPFLUXNET: Towards a Global Database of Sap

Flow Measurements. en. Tree Physiology, 36. Oren R. (ed.), 1449–1455.

Priestley C. H. B. and Taylor R. J. (1972). On the Assessment of Surface Heat Flux and

Evaporation Using Large-Scale Parameters. Monthly weather review, 100, 81–92.

Reichstein M., Ciais P., Papale D., Valentini R., Running S., Viovy N., Cramer W.,

Granier A., Ogée J., Allard V., Aubinet M., Bernhofer C., Buchmann N., Carrara A.,



References 149

Grünwald T., Heimann M., Heinesch B., Knohl A., Kutsch W., Loustau D.,

Manca G., Matteucci G., Miglietta F., Ourcival J., Pilegaard K., Pumpanen J.,

Rambal S., Schaphoff S., Seufert G., Soussana J.-F., Sanz M.-J., Vesala T., and

Zhao M. (Mar. 2007). Reduction of Ecosystem Productivity and Respiration during

the European Summer 2003 Climate Anomaly: A Joint Flux Tower, Remote Sensing

and Modelling Analysis. en. Global Change Biology, 13, 634–651.

Reichstein M. (2003). Inverse Modeling of Seasonal Drought Effects on Canopy CO 2

/H 2 O Exchange in Three Mediterranean Ecosystems. en. Journal of Geophysical

Research, 108.

Reichstein M., Camps-Valls G., Stevens B., Jung M., Denzler J., Carvalhais N., and

Prabhat (Feb. 2019). Deep Learning and Process Understanding for Data-Driven

Earth System Science. en. Nature, 566, 195–204.

Reichstein M., Falge E., Baldocchi D., Papale D., Aubinet M., Berbigier P., Bernhofer C.,

Buchmann N., Gilmanov T., Granier A., Grunwald T., Havrankova K.,

Ilvesniemi H., Janous D., Knohl A., Laurila T., Lohila A., Loustau D., Matteucci G.,

Meyers T., Miglietta F., Ourcival J.-M., Pumpanen J., Rambal S., Rotenberg E.,

Sanz M., Tenhunen J., Seufert G., Vaccari F., Vesala T., Yakir D., and Valentini R.

(Sept. 2005a). On the Separation of Net Ecosystem Exchange into Assimilation and

Ecosystem Respiration: Review and Improved Algorithm. en. Global Change

Biology, 11, 1424–1439.

Reichstein M., Falge E., Baldocchi D., Papale D., Aubinet M., Berbigier P., Bernhofer C.,

Buchmann N., Gilmanov T., Granier A., Grunwald T., Havrankova K.,

Ilvesniemi H., Janous D., Knohl A., Laurila T., Lohila A., Loustau D., Matteucci G.,

Meyers T., Miglietta F., Ourcival J.-M., Pumpanen J., Rambal S., Rotenberg E.,

Sanz M., Tenhunen J., Seufert G., Vaccari F., Vesala T., Yakir D., and Valentini R.

(Sept. 2005b). On the Separation of Net Ecosystem Exchange into Assimilation

and Ecosystem Respiration: Review and Improved Algorithm. en. Global Change

Biology, 11, 1424–1439.

Reichstein M., Stoy P. C., Desai A. R., Lasslop G., and Richardson A. D. (2012).

Partitioning of Net Fluxes. en. In: Eddy Covariance. Aubinet M., Vesala T., and

Papale D. (eds.). Dordrecht: Springer Netherlands, pp. 263–289.

Reichstein M., Tenhunen J. D., Roupsard O., Ourcival J.-m., Rambal S., Miglietta F.,

Peressotti A., Pecchiari M., Tirone G., and Valentini R. (Oct. 2002). Severe Drought

Effects on Ecosystem CO 2 and H 2 O Fluxes at Three Mediterranean Evergreen



150 References

Sites: Revision of Current Hypotheses?: DROUGHT EFFECTS ON ECOSYSTEM CO

2 /H 2 O EXCHANGE. en. Global Change Biology, 8, 999–1017.

Reick C. H., Raddatz T., Brovkin V., and Gayler V. (July 2013). Representation of

Natural and Anthropogenic Land Cover Change in MPI-ESM: Land Cover in

MPI-ESM. en. Journal of Advances in Modeling Earth Systems, 5, 459–482.

Renner M., Brenner C., Mallick K., Wizemann H.-D., Conte L., Trebs I., Wei J.,

Wulfmeyer V., Schulz K., and Kleidon A. (Jan. 2019). Using Phase Lags to Evaluate

Model Biases in Simulating the Diurnal Cycle of Evapotranspiration: A Case Study

in Luxembourg. en. Hydrol. Earth Syst. Sci., 23, 515–535.

Renner M., Kleidon A., Clark M., Nijssen B., Heidkamp M., Best M., and Abramowitz G.

(Jan. 2021). How Well Can Land-Surface Models Represent the Diurnal Cycle of

Turbulent Heat Fluxes? en. Journal of Hydrometeorology, 22, 77–94.

Reth S., Reichstein M., and Falge E. (Jan. 2005). The Effect of Soil Water Content, Soil

Temperature, Soil pH-Value and the Root Mass on Soil CO2 Efflux A Modified

Model. en. Plant and Soil, 268, 21–33.

Rogers A., Medlyn B. E., Dukes J. S., Bonan G., Caemmerer S., Dietze M. C., Kattge J.,

Leakey A. D., Mercado L. M., Niinemets Ü., et al. (2017). A Roadmap for

Improving the Representation of Photosynthesis in Earth System Models. New

Phytologist, 213, 22–42.

Rosa L., Sanchez D. L., Realmonte G., Baldocchi D., and D’Odorico P. (Oct. 2020). The

Water Footprint of Carbon Capture and Storage Technologies. en. Renewable and

Sustainable Energy Reviews, 110511.

Rousseeuw P. J. (1983). Regression Techniques with High Breakdown Point. The

Institute of Mathematical Statistics Bulletin, 12, 155.

Rutter A., Kershaw K., Robins P., and Morton A. (Jan. 1971). A Predictive Model of

Rainfall Interception in Forests, 1. Derivation of the Model from Observations in a

Plantation of Corsican Pine. en. Agricultural Meteorology, 9, 367–384.

Salomón R. L., Limousin J.-M., Ourcival J.-M., Rodríguez-Calcerrada J., and Steppe K.

(Aug. 2017). Stem Hydraulic Capacitance Decreases with Drought Stress:

Implications for Modelling Tree Hydraulics in the Mediterranean Oak Quercus Ilex:

Seasonality in Stem Hydraulic Capacitance. en. Plant, Cell & Environment, 40,

1379–1391.

Sandoval-Soto L., Stanimirov M., von Hobe M., Schmitt V., Valdes J., Wild A., and

Kesselmeier J. (June 2005). Global Uptake of Carbonyl Sulfide (COS) by Terrestrial



References 151

Vegetation: Estimates Corrected by Deposition Velocities Normalized to the Uptake

of Carbon Dioxide (CO2). Biogeosciences, 2, 125–132.

Scanlon T. M. and Kustas W. P. (Jan. 2010). Partitioning Carbon Dioxide and Water

Vapor Fluxes Using Correlation Analysis. en. Agricultural and Forest Meteorology,

150, 89–99.

Scanlon T. M., Schmidt D. F., and Skaggs T. H. (2019). Correlation-Based Flux

Partitioning of Water Vapor and Carbon Dioxide Fluxes: Method Simplification and

Estimation of Canopy Water Use Efficiency. Agricultural and Forest Meteorology,

279, 107732.

Schimel D., Pavlick R., Fisher J. B., Asner G. P., Saatchi S., Townsend P., Miller C.,

Frankenberg C., Hibbard K., and Cox P. (May 2015). Observing Terrestrial

Ecosystems and the Carbon Cycle from Space. en. Glob Change Biol, 21,

1762–1776.

Schlesinger W. H. and Jasechko S. (June 2014). Transpiration in the Global Water

Cycle. en. Agricultural and Forest Meteorology, 189-190, 115–117.

Scott R. L. and Biederman J. A. (July 2017). Partitioning Evapotranspiration Using

Long-Term Carbon Dioxide and Water Vapor Fluxes: New Approach to ET

Partitioning. en. Geophysical Research Letters,

Scott R. L., Knowles J. F., Nelson J. A., Gentine P., Li X., Barron-Gafford G., Bryant R.,

and Biederman J. A. (Nov. 2020). Water Availability Impacts on Evapotranspiration

Partitioning. en. Agricultural and Forest Meteorology, 108251.

Shan N., Ju W., Migliavacca M., Martini D., Guanter L., Chen J., Goulas Y., and

Zhang Y. (Apr. 2019). Modeling Canopy Conductance and Transpiration from

Solar-Induced Chlorophyll Fluorescence. en. Agricultural and Forest Meteorology,

268, 189–201.

Shan N., Zhang Y., Chen J. M., Ju W., Migliavacca M., Peñuelas J., Yang X., Zhang Z.,

Nelson J. A., and Goulas Y. (Jan. 2021). A Model for Estimating Transpiration from

Remotely Sensed Solar-Induced Chlorophyll Fluorescence. en. Remote Sensing of

Environment, 252, 112134.

Sheil D. and Murdiyarso D. (Apr. 2009). How Forests Attract Rain: An Examination of a

New Hypothesis. en. BioScience, 59, 341–347.

Slot M., Garcia M. N., and Winter K. (2016). Temperature Response of CO2 Exchange

in Three Tropical Tree Species. en. Functional Plant Biol., 43, 468.

Smith P., Davis S. J., Creutzig F., Fuss S., Minx J., Gabrielle B., Kato E., Jackson R. B.,

Cowie A., Kriegler E., van Vuuren D. P., Rogelj J., Ciais P., Milne J., Canadell J. G.,



152 References

McCollum D., Peters G., Andrew R., Krey V., Shrestha G., Friedlingstein P.,

Gasser T., Grübler A., Heidug W. K., Jonas M., Jones C. D., Kraxner F., Littleton E.,

Lowe J., Moreira J. R., Nakicenovic N., Obersteiner M., Patwardhan A., Rogner M.,

Rubin E., Sharifi A., Torvanger A., Yamagata Y., Edmonds J., and Yongsung C. (Jan.

2016). Biophysical and Economic Limits to Negative CO2 Emissions. en. Nature

Climate Change, 6, 42–50.

Sperry J. S., Venturas M. D., Anderegg W. R. L., Mencuccini M., Mackay D. S., Wang Y.,

and Love D. M. (June 2017). Predicting Stomatal Responses to the Environment

from the Optimization of Photosynthetic Gain and Hydraulic Cost: A Stomatal

Optimization Model. en. Plant, Cell & Environment, 40, 816–830.

Spracklen D. V., Arnold S. R., and Taylor C. M. (Sept. 2012). Observations of Increased

Tropical Rainfall Preceded by Air Passage over Forests. en. Nature, 489, 282–285.

Steppe K., De Pauw D. J., Doody T. M., and Teskey R. O. (July 2010). A Comparison of

Sap Flux Density Using Thermal Dissipation, Heat Pulse Velocity and Heat Field

Deformation Methods. en. Agricultural and Forest Meteorology, 150, 1046–1056.

Stocker B. D., Zscheischler J., Keenan T. F., Prentice I. C., Seneviratne S. I., and

Peñuelas J. (Apr. 2019). Drought Impacts on Terrestrial Primary Production

Underestimated by Satellite Monitoring. en. Nature Geoscience, 12, 264–270.

Stoy P. C., El-Madany T. S., Fisher J. B., Gentine P., Gerken T., Good S. P.,

Klosterhalfen A., Liu S., Miralles D. G., Perez-Priego O., Rigden A. J., Skaggs T. H.,

Wohlfahrt G., Anderson R. G., Coenders-Gerrits A. M. J., Jung M., Maes W. H.,

Mammarella I., Mauder M., Migliavacca M., Nelson J. A., Poyatos R.,

Reichstein M., Scott R. L., and Wolf S. (Oct. 2019). Reviews and Syntheses:

Turning the Challenges of Partitioning Ecosystem Evaporation and Transpiration

into Opportunities. en. Biogeosciences, 16, 3747–3775.

Talsma C. J., Good S. P., Jimenez C., Martens B., Fisher J. B., Miralles D. G.,

McCabe M. F., and Purdy A. J. (Oct. 2018). Partitioning of Evapotranspiration in

Remote Sensing-Based Models. en. Agricultural and Forest Meteorology, 260-261,

131–143.

Tang X., Li H., Desai A. R., Nagy Z., Luo J., Kolb T. E., Olioso A., Xu X., Yao L.,

Kutsch W., Pilegaard K., Köstner B., and Ammann C. (Dec. 2014). How Is

Water-Use Efficiency of Terrestrial Ecosystems Distributed and Changing on Earth?

Scientific Reports, 4, 7483.

Tramontana G., Migliavacca M., Jung M., Reichstein M., Keenan T. F., Camps-Valls G.,

Ogee J., Verrelst J., and Papale D. (July 2020). Partitioning Net Carbon Dioxide



References 153

Fluxes into Photosynthesis and Respiration Using Neural Networks. en. Global

Change Biology,

Tucker C. J. (May 1979). Red and Photographic Infrared Linear Combinations for

Monitoring Vegetation. en. Remote Sensing of Environment, 8, 127–150.

Tuzet A., Perrier A., and Leuning R. (July 2003). A Coupled Model of Stomatal

Conductance, Photosynthesis and Transpiration. en. Plant, Cell and Environment,

26, 1097–1116.

Tyree M. T. and Sperry J. S. (1988). Do Woody Plants Operate near the Point of

Catastrophic Xylem Dysfunction Caused by Dynamic Water Stress? Answers from a

Model. Plant physiology, 88, 574–580.

Urban J., Ingwers M. W., McGuire M. A., and Teskey R. O. (Mar. 2017a). Increase in

Leaf Temperature Opens Stomata and Decouples Net Photosynthesis from

Stomatal Conductance in Pinus Taeda and Populus Deltoides x Nigra. en. Journal

of Experimental Botany, 68, 1757–1767.

Urban J., Ingwers M., McGuire M. A., and Teskey R. O. (Aug. 2017b). Stomatal

Conductance Increases with Rising Temperature. en. Plant Signaling & Behavior,

12, e1356534.

Villalobos F., Perez-Priego O., Testi L., Morales A., and Orgaz F. (July 2012). Effects of

Water Supply on Carbon and Water Exchange of Olive Trees. en. European Journal

of Agronomy, 40, 1–7.

Wada Y., Bierkens M. F. P., de Roo A., Dirmeyer P. A., Famiglietti J. S., Hanasaki N.,

Konar M., Liu J., Müller Schmied H., Oki T., Pokhrel Y., Sivapalan M., Troy T. J.,

van Dijk A. I. J. M., van Emmerik T., Van Huijgevoort M. H. J., Van Lanen H. A. J.,

Vörösmarty C. J., Wanders N., and Wheater H. (Aug. 2017). HumanWater

Interface in Hydrological Modelling: Current Status and Future Directions. en.

Hydrol. Earth Syst. Sci., 21, 4169–4193.

Wang K., Dickinson R. E., and Liang S. (May 2008). Observational Evidence on the

Effects of Clouds and Aerosols on Net Ecosystem Exchange and

Evapotranspiration: EFFECTS OF CLOUDS AND AEROSOLS ON NEE AND ET. en.

Geophys. Res. Lett., 35.

Wang L., Good S. P., and Caylor K. K. (Oct. 2014). Global Synthesis of Vegetation

Control on Evapotranspiration Partitioning: VEGETATION AND ET PARTITIONING.

en. Geophysical Research Letters, 41, 6753–6757.



154 References

Wang L., Good S. P., Caylor K. K., and Cernusak L. A. (2012). Direct Quantification of

Leaf Transpiration Isotopic Composition. Agricultural and Forest Meteorology, 154,

127–135.

Wehr R., Commane R., Munger J. W., McManus J. B., Nelson D. D., Zahniser M. S.,

Saleska S. R., and Wofsy S. C. (Jan. 2017). Dynamics of Canopy Stomatal

Conductance, Transpiration, and Evaporation in a Temperate Deciduous Forest,

Validated by Carbonyl Sulfide Uptake. en. Biogeosciences, 14, 389–401.

Wei Z., Yoshimura K., Wang L., Miralles D. G., Jasechko S., and Lee X. (Mar. 2017).

Revisiting the Contribution of Transpiration to Global Terrestrial

Evapotranspiration: Revisiting Global ET Partitioning. en. Geophysical Research

Letters, 44, 2792–2801.

Whelan M. E., Lennartz S. T., Gimeno T. E., Wehr R., Wohlfahrt G., Wang Y.,

Kooijmans L. M. J., Hilton T. W., Belviso S., Peylin P., Commane R., Sun W.,

Chen H., Kuai L., Mammarella I., Maseyk K., Berkelhammer M., Li K.-F., Yakir D.,

Zumkehr A., Katayama Y., Ogée J., Spielmann F. M., Kitz F., Rastogi B.,

Kesselmeier J., Marshall J., Erkkilä K.-M., Wingate L., Meredith L. K., He W.,

Bunk R., Launois T., Vesala T., Schmidt J. A., Fichot C. G., Seibt U., Saleska S.,

Saltzman E. S., Montzka S. A., Berry J. A., and Campbell J. E. (Oct. 2017). Reviews

and Syntheses: Carbonyl Sulfide as a Multi-Scale Tracer for Carbon and Water

Cycles. en. Biogeosciences Discussions, 1–97.

Whelan M. E., Lennartz S. T., Gimeno T. E., Wehr R., Wohlfahrt G., Wang Y.,

Kooijmans L. M. J., Hilton T. W., Belviso S., Peylin P., Commane R., Sun W.,

Chen H., Kuai L., Mammarella I., Maseyk K., Berkelhammer M., Li K.-F., Yakir D.,

Zumkehr A., Katayama Y., Ogée J., Spielmann F. M., Kitz F., Rastogi B.,

Kesselmeier J., Marshall J., Erkkilä K.-M., Wingate L., Meredith L. K., He W.,

Bunk R., Launois T., Vesala T., Schmidt J. A., Fichot C. G., Seibt U., Saleska S.,

Saltzman E. S., Montzka S. A., Berry J. A., and Campbell J. E. (June 2018).

Reviews and Syntheses: Carbonyl Sulfide as a Multi-Scale Tracer for Carbon and

Water Cycles. en. Biogeosciences, 15, 3625–3657.

Wilkinson S. and Davies W. J. (Feb. 2002). ABA-Based Chemical Signalling: The

Co-Ordination of Responses to Stress in Plants. en. Plant, Cell and Environment, 25,

195–210.

Wilkinson S., Ogee J., Domec J.-C., Rayment M., and Wingate L. (Mar. 2015).

Biophysical Modelling of Intra-Ring Variations in Tracheid Features and Wood



References 155

Density of Pinus Pinaster Trees Exposed to Seasonal Droughts. en. Tree Physiology,

35, 305–318.

Wilm H. G., Thornthwaite C. W., Colman E. A., Cummings N. W., Croft A. R.,

Gisborne H. T., Harding S. T., Hendrickson A. H., Hoover M. D., Houk I. E.,

Kittredge J., Lee C. H., Rossby C.-G., Saville T., and Taylor C. A. (1944). Report of

the Committee on Transpiration and Evaporation, 194344. en. Trans. AGU, 25,

683.

Wilson K. B., Baldocchi D., Falge E., Aubinet M., Berbigier P., Bernhofer C., Dolman H.,

Field C., Goldstein A., Granier A., Hollinger D., Katul G., Law B. E., Meyers T.,

Moncrieff J., Monson R., Tenhunen J., Valentini R., Verma S., and Wofsy S. (Nov.

2003). Diurnal Centroid of Ecosystem Energy and Carbon Fluxes at FLUXNET

Sites: DIURNAL ENERGY FLUXES AT FLUXNET SITES. en. Journal of Geophysical

Research: Atmospheres, 108.

Wilson K. B., Hanson P. J., Mulholland P. J., Baldocchi D. D., and Wullschleger S. D.

(Jan. 2001). A Comparison of Methods for Determining Forest Evapotranspiration

and Its Components: Sap-Flow, Soil Water Budget, Eddy Covariance and

Catchment Water Balance. en. Agricultural and Forest Meteorology, 106, 153–168.

Wilson K., Goldstein A., Falge E., Aubinet M., Baldocchi D., Berbigier P., Bernhofer C.,

Ceulemans R., Dolman H., Field C., Grelle A., Ibrom A., Law B., Kowalski A.,

Meyers T., Moncrieff J., Monson R., Oechel W., Tenhunen J., Valentini R., and

Verma S. (2002). Energy Balance Closure at FLUXNET Sites. Agricultural and Forest

Meteorology, 113, 223–243.

Wohlfahrt G. (2017). Bi-Directional COS Exchange in Bryophytes Challenges Its Use as

a Tracer for Gross Primary Productivity. New Phytologist, 215, 923–925.

Wullschleger S. D., Gunderson C. A., Hanson P. J., Wilson K. B., and Norby R. J. (Mar.

2002). Sensitivity of Stomatal and Canopy Conductance to Elevated CO2

Concentration - Interacting Variables and Perspectives of Scale. en. New Phytol,

153, 485–496.

Zhou S., Yu B., Huang Y., and Wang G. (July 2014). The Effect of Vapor Pressure

Deficit on Water Use Efficiency at the Subdaily Time Scale: Underlying Water Use

Efficiency. en. Geophysical Research Letters, 41, 5005–5013.

Zhou S., Yu B., Huang Y., and Wang G. (May 2015). Daily Underlying Water Use

Efficiency for AmeriFlux Sites: DAILY UNDERLYING WUE. en. Journal of

Geophysical Research: Biogeosciences, 120, 887–902.



Zhou S., Yu B., Zhang Y., Huang Y., and Wang G. (Feb. 2016a). Partitioning

Evapotranspiration Based on the Concept of Underlying Water Use Efficiency: ET

PARTITIONING. en. Water Resources Research, 52, 1160–1175.

Zhou S., Yu B., Zhang Y., Huang Y., and Wang G. (May 2018). Water Use Efficiency and

Evapotranspiration Partitioning for Three Typical Ecosystems in the Heihe River

Basin, Northwestern China. en. Agricultural and Forest Meteorology, 253-254,

261–273.

Zhou S., Zhang Y., Park Williams A., and Gentine P. (Jan. 2019). Projected Increases in

Intensity, Frequency, and Terrestrial Carbon Costs of Compound Drought and

Aridity Events. en. Science Advances, 5, eaau5740.

Zhou S.-X., Medlyn B. E., and Prentice I. C. (Jan. 2016b). Long-Term Water Stress

Leads to Acclimation of Drought Sensitivity of Photosynthetic Capacity in Xeric but

Not Riparian Eucalyptus Species. en. Annals of Botany, 117, 133–144.

Zhou S., Duursma R. A., Medlyn B. E., Kelly J. W., and Prentice I. C. (Dec. 2013). How

Should We Model Plant Responses to Drought? An Analysis of Stomatal and

Non-Stomatal Responses to Water Stress. en. Agricultural and Forest Meteorology,

182-183, 204–214.

Zhu Z., Wang S., and Woodcock C. E. (2015). Improvement and Expansion of the

Fmask Algorithm: Cloud, Cloud Shadow, and Snow Detection for Landsats 47, 8,

and Sentinel 2 Images. Remote Sensing of Environment, 159, 269–277.

Zhu Z. and Woodcock C. E. (Mar. 2012). Object-Based Cloud and Cloud Shadow

Detection in Landsat Imagery. en. Remote Sensing of Environment, 118, 83–94.



Acknowledgments

There once was a boy born to a wonderful family in Utah. He grew up happy, being

encouraged to learn and work hard by his loving parents Kaylynn and Kendall, to whom

he is tremendously grateful. His best friend in the world was his older sister Brittany, at

least until they were joined by Peter, Zach, and Josie. They grew, played, and learned

together and he misses them terribly when they are apart, but they are always there for

him and he is tremendously grateful. He continued on his journey through life, being

mentored along the way by teachers, friends, and his grandparents who taught him to

work hard and do his best, for which he is tremendously grateful. All of these people

were there to help through difficulties and celebrate success, and he wouldn’t have the

opportunities he did without them, and he is tremendously grateful. Eventually he left

his home to find his own way, ending up at Utah State University to study Biology.

Upon arrival he met a girl who would joins him on this journey to this day. She would

give him immeasurable support and encouragement through the years, for which he is

tremendously grateful. Lennie and Lola soon joined them on their journey, and the pack

of strays would face the world together.

He had many friends and mentors at USU, both academic and not who helped him

figure out who he was, and he is tremendously grateful. Eventually he was given a job

fixing fans in a greenhouse, where he met a professor who was willing to mentor him

and give him a chance, and to Bruce he is tremendously grateful. The success he found

riding atop the support from his family, the girl, his mentors, and his friends allowed

him to continue his journey all the way to another continent.

He joined Markus, Martin, Mirco and Nuno to complete this thesis. Nuno gave him the

hours of discussion, both about science and not, that he needed to get his thoughts

straight. Mirco gave him the support and encouragement to convince him that his work

was good enough, sometimes even just the needed line in an email. Markus gave him

the opportunities and vision to succeed, always finding the exact question that needed

to be asked. Martin gave him the constant road map, always being there to figure out

the right direction, while also reminding him that he needed to be advised and not

supervised. He and the four of them started talking one day and never really stopped.

Thought they met in the context of completing the thesis, he would consider all of them

fiends and that he is tremendously grateful.



When the pack of strays landed in Germany with two suitcases and no clue, they found

tons of support from new friends such as Uli, Steffi, Sujan, and Bernhard, with whom he

would be fiends with for years to come and he is tremendously grateful. He met more

fiends along the way who taught him many things. Sujan and Milie taught him how

to cook rice and how be a foreigner away from your homeland. Uli taught him how

to really live in Germany. He and Simon learned how to navigate academia together,

for better or for worse, and he never would have survived otherwise. Oscar, Jürgen,

and Sven taught him how to have a heated discussion and still stay friends. Jasper and

Tina taught him how to be young again, whether on the dance floor or on the slopes.

Sebastian and Julia taught him proper sauna etiquette, and along with Uli and Steffi

how to hike in the Alps. Bernhard taught him how to travel with pumpkins, how to

always be ready for someone to drop in and, more importantly, how to be himself. Çalar

taught him what cherries are for. Basil taught him how to be a mountain person. Shane

taught him how to stay up late. Yunpeng taught him how to order whiskey in Chinese.

Richard taught him how to be a nerd. Nora taught him how to always be nice and to

never forget to say you’re sorry. Silvia taught him how to stand up for what is right.

Amber taught him to draw without looking at the page. Sophia, Fabian, Uli, Martin,

and Basil taught him how to work as a team. The city of Jena taught him how to feel

both far away from home and right at home at the same time. The DEI team taught

him how many people there are willing to make themselves and the world a better

place. If there is such a thing as a Doktorvater or Doktormutter, these people and more

would be his Doktorfamilie, his home away from home, and to them he is tremendously

grateful.

Through the entire journey, the girl was there. Through late nights and broken bones.

Through highs and through lows. Through quarantines and travel delays. Through ev-

erything, she was always there and to her he will always be tremendously grateful.



Appendices





Appendix A

Supplement to Chapter 2





A.2 Figiure S2

Figure S2 is an interactive file which can be accessed at: https://doi.org/10.5194/

bg-15-2433-2018-supplement

A.3 File S3

" " "
Created on F r i Aug 26 17:32:13 2016

@author : Jacob A . Nel son and Martin Jung
" " "

# Uses the numpy package f o r matr ix o p e r a t i o n s
import numpy as np

def LEtoET (LE) :
# c o n v e r t LE in W_m−2 to mm per h a l f hour
# 2300000 J per L , l a t e n t heat o f v a p o r i z a t i o n
# 1800 se conds per h a l f hour
ET=np .ma. getdata (LE) ∗((1800) /2300000)
return (ET)

def CSWI( prec ip , LE , s0=5,ConvertET=True ) :
’ ’ ’ CSWI( p r e c i p , LE , s0=5,ConvertET=True )

C o n s e r v a t i v e s u r f a c e water index (CSWI)

CSWI f o r c e s a p o s i t i v e water water s t o r a g e f o r any time−
֒→ s t e p with p r e c i p i t a t i o n , y e t has a maximum s t o r a g e o f
֒→ s0 .

Parameters
−−−−−−−−−−
p r e c i p : l i s t or l i s t l i k e

p r e c i p i t a t i o n in mm
LE : l i s t or l i s t l i k e

La t en t energy in W_m−2 or ET in mm per h a l f hour ( must
֒→ s e t ConvertET=F a l s e ) .



s0 : value , f l o a t or i n t
The maximum s t o r a g e o f the water ba lance

ConvertET : boo l
F lag t e l l i n g wheter to c o n v e r t LE to ET .

Re turns
−−−−−−−
array

The mod i f i ed water ba lance
’ ’ ’

# i n s u r e tha t d a t a s e t s are one d imens iona l
prec ip=prec ip . reshape (−1)
LE=LE . reshape (−1)
# e x t r a c t the data in ca s e tha t p r e c i p has an a s s o c i a t e d
֒→ mask

p r e c i p c a l c=np .ma. getdata ( prec ip )

# in ca s e o f an a s s o c i a t e d mask , f i l l a l l gap v a l u e s with
֒→ the maximum water s t o r a g e

i f np .ma. is_masked ( prec ip ) :
p r e c i p c a l c [np .ma. getmask ( prec ip )]=s0

else :
# in ca s e o f any n e g a t i v e v a l u e s in p r e c i p i t a t i o n f i l l with
֒→ the maximum water s t o r a g e

p r e c i p c a l c [( prec ip <0)]=s0
# f i l l any o the r mi s s ing v a l u e s with the maximum water
֒→ s t o r a g e

p r e c i p c a l c [np . i snan ( prec ip )]=s0
p r e c i p c a l c [np . i s i n f ( prec ip )]=s0

# c r e a t e an array o f z e r o s the same shape as the
֒→ p r e c i p i t a t i o n data to hold the CSWI

CSWI=np . zeros ( prec ip . shape )
# s e t the i n i t i a l va lue o f CSWI to the max s t o r a g e c a p a c i t y
CSWI[0]=s0
# i f needed , c o n v e r t the l a t e n t energy to mm per h a l f hour
i f ConvertET :

LEmm=LEtoET (LE)
else :

LEmm=LE

# s e t any mi s s ing v a l u e s in LE data to a number
LEmm[np . i snan (LEmm)]=−9999
LEmm[np . i s i n f (LEmm)]=−9999



# loop through each t imes t ep , s k i p p i n g the i n i t a l c o n d i t i o n
for j in range ( prec ip . shape [0]−1) :

k=j+1
# s t e p V a l g i v e e i t h e r the c u r r e n t water ba lance or s0 ,
֒→ caus ing s0 to be a c e i l i n g

s tepVa l=min(CSWI[ j ]+p r e c i p c a l c [k]−LEmm[k ] , s0 )
# in ca s e o f a p o s i t i v e p r e c i p value , the c u r r e n t CSWI
֒→ i s the max between the p r e v i o u s

# CSWI and e i t h e r the va lue o f the p r e c i p or the s0
֒→ depending on which i s s m a l l e r

i f p r e c i p c a l c [k]>0:
CSWI[k]=max( s tepVal , min( p r e c i p c a l c [ j ] , s0 ) )

# i f t h e r e i s no pr e c i p , the CSWI i s a c co rd ing to the
֒→ s t epVa l ,

# caus ing s imp l e water ba lance behav iour
else :

CSWI[k]=stepVa l
return (CSWI)



A.4 File S4

" " "
@author : Jacob A . Nel son
" " "

# Uses the numpy package f o r matr ix o p e r a t i o n s
import numpy as np

def Diurna lCentro id ( f lux , UnitsPerDay=48) :
’ ’ ’ D iu rna lCen t ro id ( f l u x )

Diurnal c e n t r o i d o f sub−d a i l y f l u x e s

C a l c u l a t e s the d a i l y f l u x weighted t ime o f a sub−d a i l y f l u x
֒→ .

Parameters
−−−−−−−−−−
f l u x : l i s t or l i s t l i k e

sub−d a i l y f l u x tha t must be condinuous and r e g u l a r
Uni t sPerDay : i n t e g e r

f r e quen cy o f the sub−d a i l y measurements , 48 f o r h a l f
֒→ hour ly measurements

Re turns
−−−−−−−
array

The d iu rna l c en t r o i d , in the same u n i t s as UnitsPerDay ,
֒→ at a d a i l y f r e quen cy

’ ’ ’

# c a l c u l a t e the t o t a l number o f days
days ,UPD=f l u x . reshape (−1 , UnitsPerDay ) . shape
# c r e a t e a 2D matr ix p r o v i d i n g a UPD time s e r i e s f o r each
֒→ day , used in the matr ix o p e r a t i o n s .

hours=np . t i l e (np . arange (UPD) , days ) . reshape ( days ,UPD)
# c a l c u l a t e the d iu rna l c e n t r o i d
C=np .sum( hours∗ f l u x . reshape (−1 ,48) , a x i s =1)/np .sum( f l u x .
֒→ reshape (−1 ,48) , a x i s =1)

C=C∗(24/ UnitsPerDay )
return (C)



def NormDiurnalCentroid (LE , Rg , UnitsPerDay=48) :
’ ’ ’ NormDiurnalCentroid (LE , Rg)

Normalized d iu rna l c e n t r o i d o f l a t e n t energy ( LE )

C a l c u l a t e s the d iu rna l c e n t r o i d o f LE r e l a t i v e to the
֒→ d iu rna l c e n t r o i d o f incoming r a d i a t i o n (Rg) .

Parameters
−−−−−−−−−−
LE : l i s t or l i s t l i k e

Latend energy , can be any un i t
Rg : l i s t or l i s t l i k e

Incoming rad ia t i on , can be any un i t
Uni t sPerDay : i n t e g e r

f r e quen cy o f the sub−d a i l y measurements , 48 f o r h a l f
֒→ hour ly measurements

Re turns
−−−−−−−
array

The normal ized d iu rna l c e n t r o i d , in the same u n i t s as
֒→ UnitsPerDay , at a d a i l y f r e quen cy

’ ’ ’
C_LE=Diurna lCentro id (LE , UnitsPerDay=UnitsPerDay )
C_Rg=Diurna lCentro id (Rg , UnitsPerDay=UnitsPerDay )
return (C_LE−C_Rg)



A.5 File S5

# −∗− cod ing : u t f −8 −∗−
" " "
Created on Tue Mar 28 13:24:22 2017

@author : j n e l s o n
" " "

import numpy as np
from s c i py . s t a t s import s s

def d a i l y _ c o r r (x , y , Rg_pot ) :
’ ’ ’ d a i l y _ c o r r (x , y )

Da i l y c o r r e l a t i o n c o e f f i c i e n t

C a l c u l a t e s a d a i l y c o r r e l a t i o n c o e f f i c i e n t between two sub−
֒→ d a i l y t i m e s e r i e s

Parameters
−−−−−−−−−−
x : l i s t or l i s t l i k e

x v a r i a b l e
y : l i s t or l i s t l i k e

y v a r i a b l e
Rg_pot : l i s t or l i s t l i k e

p o t e n t i a l r a d i a t i o n
Returns

−−−−−−−
array

c o r r e l a t i o n c o e f f i c e n t s at d a i l y t i m e s c a l e
’ ’ ’

x=x . reshape (−1 ,48)
y=y . reshape (−1 ,48)
Rg_pot=Rg_pot . reshape (−1 ,48)
mask=Rg_pot<=0
x=np .ma. MaskedArray (x , mask=mask)
y=np .ma. MaskedArray (y , mask=mask)
x=x/x .max( a x i s =1) [ : , None]
y=y/y .max( a x i s =1) [ : , None]
mx = x . mean( a x i s =1)
my = y . mean( a x i s =1)



xm, ym = x − mx [ . . . , None ] , y − my [ . . . , None]
r_num = np .ma. add . reduce (xm ∗ ym, a x i s =1)
r_den = np .ma. s q r t (np .ma.sum(xm∗∗2 , a x i s =1) ∗ np .ma.sum(ym
֒→ ∗∗2 , a x i s =1))

r = r_num / r_den
return ( r ∗∗2)

def DWCIcalc ( Rg_pot , LE , GPP , VPD, NEE , LE_sd , GPP_sd , NEE_fal l ,
֒→ L E _ f a l l ) :

’ ’ ’ DWCIcalc ( Rg_pot , LE , GPP , LE_sd , GPP_sd , NEE_fa l l , L E _ f a l l )

Diurnal water : carbon index (DWCI)

DWCI measures the p r o b a b i l i t y tha t the carbon and water are
֒→ coup l ed wi th in a g i v en day . Method t a k e s the
֒→ c o r r e l a t i o n between e v a p o t r a n s p i r a t i o n ( LE ) and g r o s s
֒→ primary p r o d u c t i v i t y (GPP) and c a l c u l a t e d the
֒→ c o r r e l a t i o n wi th in each day . Th i s c o r r e l a t i o n i s then
֒→ compare to a d i s t r i b u t i o n o f c o r r e l a t i o n s between
֒→ a r t i f i c i a l d a t a s e t s b u i l t from the s i g n a l o f
֒→ p o t e n t i a l r a d i a t i o n and the u n c e r t a i n t y in the LE and
֒→ GPP .

Parameters
−−−−−−−−−−
Rg_pot : l i s t or l i s t l i k e

Sub−d a i l y t i m e s e r i e s o f p o t e n t i a l r a d i a t i o n
LE : l i s t or l i s t l i k e

Sub−d a i l y t i m e s e r i e s o f e v a p o t r a n s p i r a t i o n or l a t e n t
֒→ energy

GPP : l i s t or l i s t l i k e
Sub−d a i l y t i m e s e r i e s o f g r o s s primary p r o d u c t i v i t y

VPD : l i s t or l i s t l i k e
Sub−d a i l y t i m e s e r i e s o f vapor p r e s s u r e d e f i c i t

NEE : l i s t or l i s t l i k e
Sub−d a i l y t i m e s e r i e s o f ne t e co sy s t em exchange

LE_sd : l i s t or l i s t l i k e
Sub−d a i l y e s t i m a t i o n o f the u n c e r t a i n t y o f LE

GPP_sd : l i s t or l i s t l i k e
Sub−d a i l y e s t i m a t i o n o f the u n c e r t a i n t y o f GPP

NEE_ fa l l : l i s t or l i s t l i k e
Modeled sub−d a i l y t i m e s e r i e s o f ne t e co sy s t em exchange
֒→ i . e . no n o i s e

L E _ f a l l : l i s t or l i s t l i k e



Modeled sub−d a i l y t i m e s e r i e s o f e v a p o t r a n s p i r a t i o n or
֒→ l a t e n t energy i . e . no n o i s e

Re turns
−−−−−−−
array

The d iu rna l water : carbon index (DWCI)
’ ’ ’

# re shape a l l v a r i a b l e s as number o f days by number o f h a l f
֒→ hours

v a r L i s t =[Rg_pot , LE , GPP , VPD, NEE , LE_sd , GPP_sd , NEE_fal l ,
֒→ L E _ f a l l ]

for j in range ( len ( v a r L i s t ) ) :
v a r L i s t [ j ]= v a r L i s t [ j ] . reshape (−1 ,48)

Rg_pot , LE , GPP , VPD, NEE , LE_sd , GPP_sd , NEE_fal l , L E _ f a l l=v a r L i s t
# the number o f a r t i f i c i a l d a t a s e t s to c o n s t r u c t
repea t s=100
# the number o f days in the t i m e s e r i e s . Assumes data i s
֒→ h a l f hour ly

days=in t (LE . shape [0])
# c r e a t e s an empty 2D d a t a s e t to hold the a r t i f i c i a l
֒→ d i s t r i b u t i o n s

StN=np . zeros ([ repeats , days ]) ∗np . nan
corrDev=np . zeros ([ days ,2 ,2 ] )

# c r e a t e the d a i l y c y c l e by d i v i d i n g Rg_pot by the d a i l y
֒→ mean

d a i l y _ c y c l e=Rg_pot/Rg_pot . mean( a x i s =1) [ : , None]
mean_GPP=GPP . mean( a x i s =1)
mean_LE=LE . mean( a x i s =1)

# I s o l a t e the e r r o r o f the carbon and water f l u x e s .
NEE_err=NEE_fal l−NEE
LE_err=LE_ fa l l −LE

# l o op s through each day to g ene ra t e an a r t i f i c i a l d a t a s e t
֒→ and c a l c u l a t e the a s s o c i a t e c o r r e l a t i o n

for d in range ( days ) :#days
i f np . i snan (mean_GPP[d]) or np . i snan (mean_LE[d]) :

continue

i f np . i snan ( NEE_err [d ]) .sum()>0 or np . i snan ( LE_err [d ]) .
֒→ sum()>0 or np . i snan (GPP_sd[d]) .sum()>0 or np .
֒→ i snan ( LE_sd [d]) .sum() >0:

continue



# f i n d the c o r r e l a t i o n s t r u c t u r e o f the u n c e r t a n t i e s to
֒→ pas s onto the a r t i f i c i a l d a t a s e t s

i f np . a l l ( LE_err [d]==0) or np . a l l ( NEE_err [d]==0) :
corrDev [d]=np . i d e n t i t y (2)

else :
corrDev [d] = np . c o r r coe f (−(NEE_err [d ]) , LE_err [d ])

# c r e a t e our s y n t h e t i c GPP and LE v a l u e s f o r the
֒→ c u r r e n t day

synGPP = np . zeros (( repeats ,48) )∗np . nan
synLE = np . zeros (( repeats ,48) )∗np . nan

# t h i s loop b u i l d s the a r t i f i c i a l d a t a s e t us ing the
֒→ c o v a r i a n c e matr ix between NEE and LE

for i in range (48) :
# compute the c o v a r i a n c e matr ix ( s ) f o r t h i s h a l f
֒→ hour

m = [GPP_sd[d , i ] , LE_sd [d , i ]]
s = np . zeros ((2 ,2) )∗np . nan
for j in range (2) :

for k in range (2) :
s [ j , k ] = corrDev [d , j , k ]∗m[ j ]∗m[k]

Noise = np . random . mul t ivar ia te_normal ( [0 ,0] , s
֒→ ,100) # gene ra t e random 100 v a l u e s with the
֒→ s t d o f t h i s h a l f hour and the c o r r e l a t i o n
֒→ between LE and GPP

synGPP [ : , i ] = d a i l y _ c y c l e [d , i ]∗mean_GPP[d]+Noise
֒→ [ : , 0 ] # s y n t h e t i c gpp

synLE [ : , i ] = d a i l y _ c y c l e [d , i ]∗mean_LE[d]+Noise
֒→ [ : , 1 ] # s y n t h e t i c l e

# c a l c u l a t e the 100 a r t i f i c i a l c o r r e l a t i o n c o e f f i c i e n t s
֒→ f o r the day

StN [ : , d]=d a i l y _ c o r r ( synGPP , synLE , np . t i l e ( d a i l y _ c y c l e [
֒→ d] ,100) . reshape (−1 ,48) )

# c a l c u l a t e the r e a l c o r r e l a t i o n array
pwc=d a i l y _ c o r r (LE , GPP∗np . s q r t (VPD) , Rg_pot )

# c a l c u l a t e the rank o f the r e a l array wi th in the
֒→ a r t i f i c i a l d a t a s e t g i v i n g DWCI

DWCI=(StN<np . t i l e (pwc , repea t s ) . reshape ( repeats ,−1) ) .sum(
֒→ a x i s =0)



DWCI[np . i snan ( StN ) . prod ( a x i s =0) . as type ( bool )]=−9999

return (DWCI)
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B.6 File S6: List of 73 sites used from 3 models

B.6.1 MuSICA

Site ID Site Name Start Year End Year

DE-Tha Anchor Station Tharandt - old spruce 1998 2010

FI-Hyy Hyytiala 1998 2011

FR-Gri Grignon (after 6/5/2005) 2006 2012

FR-Hes Hesse Forest- Sarrebourg 1998 2011

FR-LBr Le Bray (after 6/28/1998) 1998 1999

IL-Yat Yatir 2001 2002

US-Ha1 MA - Harvard Forest EMS Tower (HFR1) 2013 2013

B.6.2 CASTANEA

Site ID Site Name Start Year End Year

DE-Hai Hainich 2000 2007

DE-Tha Anchor Station Tharandt - old spruce 1997 2007

FI-Hyy Hyytiala 1997 2007

FR-Fon Fontainebleau 2005 2013

FR-Hes Hesse Forest- Sarrebourg 1997 2007

FR-Pue Puechabon 2000 2007

B.6.3 JSBACH

Site ID Site Name Start Year End Year

AT-Neu Neustift/Stubai Valley 2002 2005

AU-How Howard Springs 2002 2005

AU-Tum Tumbarumba 2002 2005

AU-Wac Wallaby Creek 2006 2006

BE-Bra Brasschaat (De Inslag Forest) 2000 2002



Site ID Site Name Start Year End Year

BE-Vie Vielsalm 2000 2006

BR-Ma2 Manaus - ZF2 K34 2003 2005

BW-Ma1 Maun- Mopane Woodland 1999 2001

CA-Man BOREAS NSA - Old Black Spruce 1999 2003

CA-Qfo Quebec Mature Boreal Forest Site 2004 2006

CA-SF3 Sask.- Fire 1998 2003 2005

CH-Oe1 Oensingen1 grass 2002 2006

DE-Bay Bayreuth-Waldstein/WeidenBrunnen 1997 1998

DE-Geb Gebesee 2004 2006

DE-Hai Hainich 2000 2006

DE-Meh Mehrstedt 1 2004 2006

DE-Tha Anchor Station Tharandt - old spruce 1998 2003

DE-Wet Wetzstein 2002 2006

DK-Lva Lille Valby (Rimi) 2005 2006

DK-Sor Soroe- LilleBogeskov 1997 2006

ES-ES1 El Saler 1999 2004

ES-LMa Las Majadas del Tietar 2004 2006

FI-Hyy Hyytiala 2001 2006

FI-Sod Sodankyla 2003 2006

FR-Gri Grignon (after 6/5/2005) 2005 2006

FR-Hes Hesse Forest- Sarrebourg 2001 2006

FR-LBr Le Bray (after 6/28/1998) 2003 2006

FR-Lq2 Laqueuille extensive 2004 2006

FR-Pue Puechabon 2001 2006

HU-Bug Bugacpuszta 2003 2006

ID-Pag Palangkaraya 2002 2003

IE-Ca1 Carlow1 2004 2006

IL-Yat Yatir 2001 2002

IT-Amp Amplero 2003 2006

IT-Cpz Castelporziano 2001 2006

IT-Lav Lavarone (after 3/2002) 2006 2006

IT-MBo Monte Bondone 2003 2006

IT-PT1 Zerbolo-Parco Ticino- Canarazzo 2003 2004



Site ID Site Name Start Year End Year

IT-Ro2 Roccarespampani 2 2002 2006

IT-SRo San Rossore 2003 2006

NL-Ca1 Cabauw 2003 2006

NL-Hor Horstermeer 2006 2006

NL-Loo Loobos 1997 2006

PT-Esp Espirra 2002 2006

PT-Mi1 Mitra (Evora) 2003 2005

PT-Mi2 Mitra IV Tojal 2005 2005

RU-Fyo Fyodorovskoye wet spruce stand 2002 2006

SE-Fla Flakaliden 2000 2002

SE-Nor Norunda 1996 1997

UK-EBu Easter Bush- Scotland 2006 2006

US-Bar NH - Bartlett Experimental Forest 2004 2005

US-Blo CA - Blodgett Forest 2000 2006

US-FPe MT - Fort Peck 2000 2003

US-Goo MS - Goodwin Creek 2004 2004

US-Ha1 MA - Harvard Forest EMS Tower (HFR1) 1995 1999

US-Ha2 MA - Harvard Forest Hemlock Site 2004 2004

US-Ho1 ME - Howland Forest (main tower) 1996 2004

US-LPH MA - Little Prospect Hill 2003 2004

US-Los WI - Lost Creek 2003 2005

US-MMS IN - Morgan Monroe State Forest 2000 2005

US-MOz MO - Missouri Ozark Site 2005 2006

US-Me4 OR - Metolius-old aged ponderosa pine 1996 2000

US-PFa WI - Park Falls/WLEF 1998 2000

US-SP3 FL - Slashpine-Donaldson-mid-rot- 12yrs 2001 2004

US-SRM AZ - Santa Rita Mesquite 2004 2006

US-Syv MI - Sylvania Wilderness Area 2002 2004

US-Ton CA - Tonzi Ranch 2002 2006

US-UMB MI - Univ. of Mich. Biological Station 2000 2003

US-Var CA - Vaira Ranch- Ione 2001 2006

US-WCr WI - Willow Creek 2000 2005

VU-Coc CocoFlux 2002 2003



Site ID Site Name Start Year End Year

ZA-Kru Skukuza- Kruger National Park 2001 2003
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C.1 Supplementary Table S1

Eddy co-variance variables used in this analysis.

variable description units

G Soil heat flux, W m-2

GPP_NT Gross Primary Production - from

Nighttime partitioning method - based

on NEE_VUT_USTAR50,

umolCO2 m-2

s-1

G_QC Quality flag of G_F_MDS, 0 =

measured-,1 = good quality gapfill-,2 =

medium-,3 = poor

dimensionless

H Sensible heat flux - gapfilled using MDS

method,

W m-2

H_QC Quality flag for H_F_MDS - H_CORR -

H_CORR25 - and H_CORR75, 0 =

measured-,1 = good quality gapfill-,2 =

medium-,3 = poor

dimensionless

H_RANDUNC Random uncertainty of H - from

measured only data, uses only data

point where H_F_MDS_QC is 0 and two

hierarchical methods (see header and

H_RANDUNC_METHOD)

W m-2

H_RANDUNC_N Number of half-hour data points used to

estimate the random uncertainty of H,

dimensionless

LE Latent heat flux - gapfilled using MDS

method,

W m-2

LE_QC Quality flag for LE_F_MDS - LE_CORR -

LE_CORR25 - and LE_CORR75, 0 =

measured-,1 = good quality gapfill-,2 =

medium-,3 = poor

dimensionless
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variable description units

LE_RANDUNC Random uncertainty of LE - from

measured only data, uses only data

point where LE_F_MDS_QC is 0 and two

hierarchical methods (see header and

LE_RANDUNC_METHOD)

W m-2

LE_RANDUNC_N Number of half-hour data points used to

estimate the random uncertainty of LE,

dimensionless

NEE Net Ecosystem Exchange - using Variable

Ustar Threshold (VUT) for each year -

from 50 percentile of USTAR threshold,

umolCO2 m-2

s-1

NEE_QC Quality flag for NEE_VUT_USTAR50, 0

= measured-,1 = good quality gapfill-,2

= medium-,3 = poor

dimensionless

NEE_RANDUNC Random uncertainty for

NEE_VUT_USTAR50 - from measured

only data, uses only data points where

NEE_VUT_USTAR50_QC is 0 and two

hierarchical methods see header and

NEE_VUT_USTAR50_RANDUNC_METHOD

umolCO2 m-2

s-1

NEE_RANDUNC_N Number of half-hour data points used to

estimate the random uncertainty of

NEE_VUT_USTAR50,

dimensionless

NETRAD Net radiation, W m-2

P Precipitation, mm

PA Atmospheric pressure, kPa

SW_IN Shortwave radiation - incoming -

gapfilled using MDS (negative values set

to zero - e.g. - negative values from

instrumentation noise),

W m-2

SW_IN_POT Shortwave radiation - incoming -

potential (top of atmosphere),

W m-2
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variable description units

SW_IN_QC Quality flag for SW_IN_F_MDS, 0 =

measured-,1 = good quality gapfill-,2 =

medium-,3 = poor

dimensionless

TA Air temperature - gapfilled using MDS

method,

deg C

TA_QC Quality flag for TA_F_MDS, 0 =

measured-,1 = good quality gapfill-,2 =

medium-,3 = poor

dimensionless

VPD Vapor Pressure Deficit - gapfilled using

MDS,

hPa

VPD_QC Quality flag for VPD_F_MDS, 0 =

measured-,1 = good quality gapfill-,2 =

medium-,3 = poor

dimensionless

WS Wind speed, m s-1
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C.2 Supplementary Table S2

site

total

#

trees species method

species

calibration

radial

integration2

azimuthal

integrationLAI

AU-

Cum

10 Eucalyptus tereticornis (100%,10) HP-

Tmax1

no No radial

correction2

No az-

imuthal

correction3

2

FR-

Fon

8 Quercus petraea (79%, 5),

Carpinus betulus (15%, 3)

TD4 yes Corrected,

species

coefficients5

No az-

imuthal

correction3

6

FR-

Pue

12 Quercus ilex (95%, 12) TD4 no No radial

correction2

No az-

imuthal

correction3

2.4

NL-

Loo

6 Pinus sylvestris (100%, 6) TD4 yes Measured7 No az-

imuthal

correction3

2.2

RU-

Fyo

17 Picea abies (86%,13), Betula sp.

(13%, 2), Pinus sylvestris (1%, 2)

TD4 no Corrected,

measured

radial

variation6

No az-

imuthal

correction3

3.5

US-

UMB

57 Populus grandidentata (12, 52%),

Quercus rubra (14,12%), Acer

rubrum (12, 20%), Pinus strobus

(11, 8%), Betula papyrifera (10,

8%)

TD4 yes No radial

correction2

No az-

imuthal

correction3

3.5

Description of sites from SAPFLUXNET used in this study, including the total number

of measured trees per site. The number measured tree per species and the percent

basal area of each species is reported as (basal area%, # measured). 1Heat pulse T-

max method. 2Radial variation of sap flux not considered. 3Azimuthal variation of sap

flux not considered. 4Thermal dissipation method. 5Species-specific corrections of radial

variation of sap flux density. 6Site- and species-specific corrections of radial variation of
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sap flux density. 7Tree-specific measurements of radial variation of sap flux density.
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