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Summary

Background: Transpiration is an integral part of the earth system, not only because
plant water use is the dominant path by which water flows from the soil to the atmo-
sphere, but also because water loss from leaves is intrinsically connected to CO, uptake
and provides a key link between global carbon and water cycles. Transpiration, while
well studied at the scale of plants and leaves, remains difficult to quantify at the ecosys-
tem, regional, and global scales. Differentiating between water vapor which has passed
through plants, and is thus biologically controlled, and water vapor which is evapo-
rated from surfaces without active control from plants through stomatal regulation is
extremely challenging at the ecosystem scale with heterogeneous landscapes contain-
ing diverse plant species accessing soil water reserves at varying depths. Furthermore,
plant species and communities have very different strategies for regulating water use
to respond to environmental conditions. Understanding the mechanism that determine
water use across species and in time is still a crucial challenge to predict ecosystem

responses to future drought and climate variability.

Current methodologies to quantify transpiration at scales greater than a single plant
have key drawbacks. For example, scaling measurements from individual plants within
the ecosystem to the ecosystem as a whole can be problematic because of a lack of high
spatial and temporally dense sampling due in part to the high cost and effort of such
field campaigns. Predictions of transpiration from modeling approaches which can be
applied at large scales, such as from the large earth system models used for future cli-
mate predictions or empirical functions tied to remote sensing datasets used for forest
and crop monitoring, produce very different results. The disagreement across model-
ing approaches illustrates a fundamental lack of understanding of how communities of

plants use water.

One potential solution to characterizing transpiration on broader scales is to use eddy
covariance to estimate ecosystem transpiration. Eddy covariance has been widely uti-
lized to measure water, carbon, and energy fluxes, with synthesis initiative such as
FLUXNET collating hundreds of sites around the world. However, methods for par-
titioning the total ecosystem water flux (evapotranspiration, ET) measured by eddy
covariance systems into the individual components, i.e. transpiration (T) and abiotic

evaporation (E), are needed.



Research objectives: The overarching goal of this doctoral research is to develop, eval-
uate, and apply an ET partitioning method which is data driven and applicable to the
highest number of eddy covariance datasets as possible. To achieve this goal, three re-

search questions (RQ) are posed:

RQ 1: How can information in the core eddy covariance datasets be further ex-
ploited to describe the complex plant water relationships from heteroge-
neous ecosystems?

RQ 2: Given the limited amount of independent ecosystem transpiration data
concurrent with eddy covariance measurements, how can the transpira-
tion estimates be validated?

RQ 3: What new insights on ecohydrological and water use strategies across ma-
jor terrestrial biomes can be gained from the transpiration estimates de-
rived from FLUXNET?

While these questions relate to the results shown in Chapters 2, 3, and 4, respectively,
they gradually lead toward the main goal of the dissertation: First, understanding water
and carbon flux dynamics at the ecosystem level, understanding which feeds into the
transpiration estimation method. Finally, the transpiration estimation method was be

applied to the FLUXNET monitoring network to provide new insights on ecosystem

physiology.

Data, Methods, and Models: The core datasets set used in all chapters of this thesis
were the published FLUXNET synthesis datasets of eddy covariance data, which consist
of sensible, latent, and ground heat energy fluxes as well as measurements of radia-
tion and meteorology. These datasets also contain measured net ecosystem exchange of
CO,, as well as estimates of ecosystem gross primary productivity (GPP) and respiration.
The FLUXNET synthesis processing chain provides a gap-filled dataset harmonized to a
half-hourly or hourly temporal resolution, providing continuous data spanning years to
decades across major terrestrial biomes and covering all the climate zones. To address
RQ 1, the sub-daily resolution datasets were use to develop two diurnal indicators,
the diurnal water carbon index (DWCI) and the relative diurnal centroid of ET (Cy;),
to characterize ecosystem responses to drought. The partitioning method described in
Chapter 3 (the Transpiration Estimation Algorithm, TEA) used these diurnal indicators,

along with other variables derived from the eddy covariance data, as features in a Ran-



dom Forest model able to predict water use efficiency, or the ratio of GPP to transpira-
tion, from which an estimate of ecosystem transpiration is derived. To address RQ 2, the
TEA method was tested on model output from three terrestrial biosphere models used
as synthetic eddy covariance dataset to verify that the data driven approach (TEA) could
replicate the known water carbon dynamics in the models. TEA was further evaluated
in Chapter 4, both against two other ET partitioning methods (WWUE and Pérez-Priego)
as well as against canopy transpiration estimated from sap flow measurements. To ad-
dress RQ 3, TEA and the other two ET partitioning methods were applied to 251 sites
globally, and analysed for expected patterns with site meteorology and remote sensing
data.

Key results:

RQ 1: Diverse ecosystem responses to drought were characterized using two diurnal
indicators that did not require additional measurements or data sources other than the
core eddy covariance dataset. DWCI was linked to non-stomatal limitations causing a
decoupling of diurnal GPP and ET, where low DWCI (indicating decoupling) was gener-
ally associated with grasses. Cy, was linked to hydraulic limitations and stomatal control
where lower values represent days where the flux of ET relative to incoming radiation
is shifted towards the morning, with morning shifts associated more with trees. While
both morning shifts and carbon:water decoupling were linked to dry conditions, only
morning shifts were associated with higher water use efficiency, indicating tree ecosys-
tems with higher stomatal control use water more efficiently in dry conditions while
grass ecosystems with less stringent stomatal control tend to run into non-stomatal lim-

itations.

RQ 2: The uncertainties and methodological assumptions from the TEA method were
well characterized by first validating transpiration estimates in the controlled terrestrial
biosphere model experiments, followed by further evaluated against other eddy co-
variance based and validated against independent transpiration estimates. Spatial and
temporal patterns of transpiration were robust and consistent, both in the ability of the
TEA method to replicate model output (NashSutcliffe efficiencies generally > 0.9), as
well as in the high correlation between the three eddy covariance based methods (R?
between 0.89 and 0.94) and sap flow based estimates (R? between 0.76 and 0.81).
However, the magnitude of transpiration remains uncertain, with a spread in the ratio

of transpiration to ET (T/ET) ranging from 45% to 77%. Method assumptions on the



optimality of carbon gain to water loss were identified as the key factor controlling the
magnitude of transpiration for all the eddy covariance based ET partitioning methods,
where methods that assume plants optimize carbon gain to water loss tended to have
T/ET ratios across FLUXNET at or below 50%, in contrast to the TEA method which

does not rely on that assumption and has a T/ET ratio of 77%.

RQ 3: Broadly applicable ET partitioning methods from eddy covariance data were
able to provide enough sites with continuous T and E estimates to explore not only
temporal, but also spatial patterns and drivers of ecosystem transpiration. Analyzing
sites with more than two complete years of transpiration and ET data showed that T/ET
is 1.6 times more variable in space than in time. Furthermore, spatial variation of T/ET
was shown to primarily depend on vegetation (e.g. crop/grass designation) and soil
characteristics (e.g. soil silt content and coarse fragment volume), with little influence
from climatic variables such as the annual mean/standard deviation of temperature
and precipitation. Furthermore, the relationship between T/ET and vegetation cover, as
measured from remote sensing based leaf area index, was less important than assumed
in previous works, with a much greater importance of soil characteristics, grass/crop
designation, and aridity, indicating that how plants access limited soil water supplies is
more important than the presence or absence of vegetation in determining plant water

use.

General conclusions: Overall, the work presented here demonstrates the viability and
utility of ecosystem scale estimates of transpiration from eddy covariance datasets via
data driven methodologies. Identifying key strengths and uncertainties in the method,
such as the uncertainty in the magnitude of transpiration but strength in spatial and
temporal patterns, better outlines future directions. By being broadly applicable, the
TEA method can both act as a baseline for future independent transpiration estimates
to compare to, as well as bridge the scale gap between plant scale studies and global
process/remote sensing based models. This transfer of scale will help to both inform
understanding of core plant physiology and ecology, as well as improve predictions of

global water and carbon cycles in a present and future climate.



Zuzammenfassung

Hintergrund: Transpiration ist ein integraler Bestandteil des Erdsystems, nicht nur,
weil die Wassernutzung der Pflanzen der dominante Pfad ist, iiber den Wasser vom
Boden in die Atmosphare flieSSt, sondern auch, weil der Wasserverlust aus den Blat-
tern untrennbar mit der CO5-Aufnahme verbunden ist und eine wichtige Verbindung
zwischen dem globalen Kohlenstoff- und Wasserkreislauf darstellt. Die Transpiration ist
zwar auf der auf der Pflanzen- und Blattebene gut untersucht, aber auf der Skala von
Okosystemen, Regionen und der globalen Skala ist sie nach wie vor schwer zu quan-
tifizieren. Die Unterscheidung zwischen Wasserdampf, der durch Pflanzen passierte und
somit biologisch kontrolliert wird, und Wasserdampf, der von Oberfldchen ohne aktive
Kontrolle der Pflanzen durch stomatiire Regulierung verdunstet, ist auf der Okosystem-
Skala mit heterogenen Landschaften, die verschiedene Pflanzenarten enthalten, die auf
Bodenwasserreserven in unterschiedlichen Tiefen zugreifen, extrem schwierig. Dariiber
hinaus haben Pflanzenarten und -gemeinschaften sehr unterschiedliche Strategien zur
Regulierung des Wasserverbrauchs, um auf Umweltbedingungen zu reagieren. Das Ver-
stindnis der Mechanismen, die die Wassernutzung iiber die Arten und die Zeit hinweg
bestimmen, ist immer noch eine entscheidende Herausforderung, um die Reaktionen

der Okosysteme auf zukiinftige Trockenheit und Klimavariabilitit vorherzusagen.

Aktuelle Methoden zur Quantifizierung der Transpiration auf Skalen, die groSSer als
eine einzelne Pflanze sind, haben entscheidende Nachteile. Zum Beispiel kann die Uber-
tragung von Messungen einzelner Pflanzen innerhalb des Okosystems auf das Okosys-
tem im Ganzen problematisch sein, da es an raumlich und zeitlich hochaufgelosten
Stichproben mangelt, was zum Teil auf die hohen Kosten und den Aufwand solcher Feld-
kampagnen zuriickzufiihren ist. Vorhersagen der Transpiration aus Modellierungsan-
sitzen, die auf groSSen Skalen angewandt werden konnen, wie z.B. aus Erdsystemmod-
ellen, die fiir zukiinftige Klimavorhersagen verwendet werden, oder empirische Funk-
tionen, die an Fernerkundungsdatensitze gebunden sind, die fiir die Uberwachung von
Wildern und Pflanzen verwendet werden, liefern sehr unterschiedliche Ergebnisse. Die
Unstimmigkeit zwischen den Modellierungsansitzen zeigt einen grundlegenden Mangel

an Verstdndnis dartiiber, wie Pflanzengemeinschaften Wasser nutzen.

Eine mogliche Losung zur Charakterisierung der Transpiration auf breiterer Ebene ist

die Verwendung der Eddy-Kovarianz zur Schitzung der Transpiration von Okosyste-



men. Die Eddy-Kovarianz wurde bereits in groSSem Umfang zur Messung von Wasser-,
Kohlenstoff- und Energiefliissen eingesetzt, wobei eine Syntheseinitiative wie FLUXNET
hunderte Standorte auf der ganzen Welt erfasst. Allerdings werden Methoden zur Tren-
nung des gesamten Okosystem-Wasserflusses (Evapotranspiration, ET), der von Eddy-
Kovarianz-Systemen gemessen wird, in die einzelnen Komponenten, d.h. Transpiration

(T) und abiotische Evaporation (E), benotigt.

Forschungsziele: Das iibergeordnete Ziel dieser Doktorarbeit ist es, eine Methode zur
Aufteilung von ET zu entwickeln, zu validieren und anzuwenden, die datengetrieben
und auf eine moglichst groSSe Anzahl von Eddy-Kovarianz-Datensadtzen anwendbar ist.

Um dieses Ziel zu erreichen, werden drei Forschungsfragen (FF) gestellt:

FF 1: Wie konnen die Informationen in den Eddy-Kovarianz-Kerndatensitzen
besser genutzt werden, um die komplexen Pflanzen-Wasser -Beziehungen
von heterogenen Artengemeinschaften zu beschreiben?

FF 2: Wie konnen die Transpirationsschiatzungen angesichts der begrenzten Menge
an unabhingigen Okosystem-Transpirationsdaten, die gleichzeitig mit Eddy-
Kovarianz-Messungen vorliegen, validiert werden?

FF 3: Welche neuen Erkenntnisse iiber 6kohydrologische und Wassernutzungsstrate-
gien in den wichtigsten terrestrischen Biomen kénnen aus den von FLUXNET

abgeleiteten Transpirationsschatzungen gewonnen werden?

Waihrend sich diese Fragen auf die jeweils in Kapitel 2, 3, bzw. 4 gezeigten Ergeb-
nisse beziehen, fithren sie schrittweise zum Hauptziel der Doktorarbeit hin: Zunéchst
wird zum Verstindnis der Wasser- und Kohlenstoffflussdynamik auf Okosystemebene
beigetragen, welches in die Methode zur Transpirationsschatzung einflieSSt. Diese wird
schlieSSlich fiir das FLUXNET Messnetz angewendet und validiert, um neue iiber die

Physiologie des Okosystems Erkenntnisse zu gewinnen.

Daten, Methoden und Modelle: Die Kerndatensétze, die in allen Kapiteln dieser Arbeit
verwendet wurden, sind die veroffentlichten FLUXNET-Synthesedatensitze von Eddy-
Kovarianz-Daten, die aus sensiblen, latenten und Bodenwarmefliissen sowie Strahlungs-
und meteorologischen Messungen bestehen. Diese Datensétze enthalten auch den gemesse-

nen Netto-Okosystemaustausch von CO, sowie Schitzungen der Bruttopriméirproduk-

tivitit (GPP) und der Respiration von Okosystemen. Die FLUXNET-Syntheseverarbeitungskette

liefert einen liickenhaften Datensatz, der auf eine halbstiindliche oder stiindliche zeitliche



Auflosung harmonisiert ist und kontinuierliche Daten iiber Jahre bis Jahrzehnte fiir die
wichtigsten terrestrischen Biome und alle Klimazonen liefert. Um FF 1 zu adressieren,
wurden die taglich aufgelosten Datensitze verwendet, um zwei tageszeitliche Indika-
toren zu entwickeln: den Wasser-Kohlenstoff-Index (DWCI) und den relativen tageszeitlichen
Schwerpunkt der ET (CET), um die Reaktionen von Okosystemen auf Trockenheit zu
charakterisieren. Die in Kapitel 3 beschriebene Methode zur Aufteilung von ET (der
Transpirationsschatzungsalgorithmus, TEA) verwendete diese taglichen Indikatoren zusam-
men mit anderen Variablen, die aus den Eddy-Kovarianz-Daten abgeleitet wurden, als
Merkmale in einem Random-Forest-Modell., Dieses Modell ist in der Lage, die Wasser-
nutzungseffizienz oder das Verhéltnis von GPP zu Transpiration vorherzusagen, woraus

eine Schitzung der Okosystemtranspiration abgeleitet wird. Um FF 2 zu beantworten,
wurde die TEA-Methode am Modell-Output von drei terrestrischen Biosphdrenmodellen
getestet, die als synthetischer Eddy-Kovarianz-Datensatz verwendet wurden, um zu
verifizieren, dass der datengetriebene Ansatz (TEA) die bekannte Wasser-Kohlenstoff-
Dynamik in den Modellen replizieren konnte. TEA wurde in Kapitel 4 weiter evaluiert,
sowohl gegeniiber zwei anderen ET-Verteilungsmethoden (uWWUE und Pérez-Priego) als
auch gegeniiber der aus Saftstrommessungen geschétzten Transpiration von Baumkro-
nen. Zur Beantwortung von Frage 3 wurden TEA und die beiden anderen ET-Verteilungsmethoden
auf 251 Standorte weltweit angewendet und hinsichtlich zu erwartender Muster mit

Standortmeteorologie und Fernerkundungsdaten analysiert.
Hauptergebnisse:

FF 1: Diverse Okosystem-Reaktionen auf Trockenheit wurden mit zwei tageszeitlichen
Indikatoren charakterisiert, die keine zusatzlichen Messungen oder Datenquellen auSSer
dem Eddy-Kovarianz-Kerndatensatz erforderten. Dabei wurd DWCI mit nicht-stomatéiren
Einschrankungen in Verbindung gebracht, die eine Entkopplung von diurnaler GPP
und ET verursachen, wobei ein niedriger DWCI (der auf eine Entkopplung hinweist)
im Allgemeinen mit Grédsern assoziiert wurde. C, wurde mit hydraulischen Begren-
zungen und stomatérer Kontrolle in Verbindung gebracht, wobei niedrigere Werte fiir
Tage stehen, an denen der ET-Fluss relativ zur einfallenden Strahlung zum Morgen hin
verschoben ist, was eher mit Baumen in Verbindung gebracht werden kann. Wahrend
sowohl die morgendlichen Verschiebungen als auch die Kohlenstoff-Wasser-Entkopplung
mit trockenen Bedingungen zusammenhéngen, waren nur die morgendlichen Verschiebun-
gen mit einer hoheren Wassernutzungseffizienz verbunden. Das deutet darauf hin, dass

Baum-Okosysteme mit einer hoheren stomatiren Kontrolle das Wasser unter trockenen



Bedingungen effizienter nutzen, wihrend Gras-Okosysteme mit einer weniger strengen

Kontrolle der Stomata dazu neigen, an nicht-stomatire Grenzen zu stoSSen.

FF 2: Die Unsicherheiten und methodischen Annahmen der TEA-Methode wurden charak-
terisiert, indem zunéachst die Transpirationsschiatzungen in den kontrollierten terrestrischen
Biospharen-Modellexperimenten validiert wurden, und anschlieSSend einer weitere Evaluierung
gegen andere Eddy-Kovarianz-basierte und gegen unabhingige Transpirationsschitzun-

gen erfolgte. Die raumlichen und zeitlichen Muster der Transpiration waren robust und
konsistent, sowohl in der Fahigkeit der TEA-Methode, den Modell-Output zu replizieren
(Nash-Sutcliffe-Effizienzen im Allgemeinen > 0, 9), als auch in der hohen Korrelation
zwischen den drei Eddy-Kovarianz-basierten Methoden (R? zwischen 0,89 und 0,94)

und den saftflussbasierten Schitzungen (R? zwischen 0,76 und 0,81). Die GroSSenord-

nung der Transpiration bleibt jedoch unsicher, mit einer Streuung des Verhéltnisses von
Transpiration zu ET (T/ET) zwischen 45% und 77%. Methodische Annahmen zur Opti-
malitédt des Kohlenstoffgewinns gegeniiber dem Wasserverlust wurden als Schliisselfak-

tor identifiziert, der die GroSSe der Transpiration fiir alle Eddy-Kovarianz-basierten
ET-Verteilungsmethoden steuert. Methoden, die davon ausgehen, dass Pflanzen den
Kohlenstoffgewinn gegeniiber dem Wasserverlust optimieren, , tendieren zu T/ET-Verhéltnissen
bei oder unter 50% fiir FLUXNET Standorte, wiahrend die TEA-Methode, die sich nicht

auf diese Annahme stiitzt, ein T/ET-Verhéltnis von 77% prognostiziert.

FF 3: Breit anwendbare ET-Verteilungsmethoden aus Eddy-Kovarianz-Daten waren in
der Lage, geniigend Standorte mit kontinuierlichen T- und E-Schitzungen zu erzeugen ,
um nicht nur zeitliche, sondern auch raumliche Muster und Treiber der Okosystemtran-
spiration zu untersuchen. Die Analyse von Standorten mit mehr als zwei vollstindigen
Jahren an Transpirations- und ET-Daten zeigte, dass T/ET rdumlich 1,6-mal variabler
ist als zeitlich. Dariiber hinaus zeigte sich, dass die raumliche Variation von T/ET in er-
ster Linie von der Vegetation (z. B. Pflanzen-/Grasbezeichnung) und den Bodeneigen-
schaften (z. B. Schluffgehalt und Grobfragmentvolumen) abhingt, mit geringem Ein-
fluss von klimatischen Variablen wie dem Jahresmittelwert/Standardabweichung von
Temperatur und Niederschlag. Dariiber hinaus war die Beziehung zwischen T/ET und
der Vegetationsbedeckung, gemessen anhand des fernerkundungsbasierten Blattflichenin-
dex, weniger wichtig als in fritheren Arbeiten angenommen, mit einer im Vergleich viel
groSSeren Bedeutung der Bodeneigenschaften, der Gras-/Kulturpflanzenbezeichnung
und der Trockenheit. Hieraus lasst sich schlieSSen, dass die Art und Weise, wie Pflanzen

auf begrenzte Bodenwasservorrate zugreifen, bei der Bestimmung der pflanzlichen Wasser-



nutzung wichtiger ist als das Vorhandensein oder Fehlen von Vegetation.

Allgemeine Schlussfolgerungen: Insgesamt zeigt die hier vorgestellte Arbeit die Re-
alisierbarkeit und den Nutzen von Schitzungen der Transpiration auf Okosystemebene
aus Eddy-Kovarianz-Datensitzen mittels datengesteuerter Methoden. Die Identifizierung
von Schliisselstarken und -unsicherheiten der Methode, wie z.B. die Unsicherheit in
der Magnitude der Transpiration, aber die Stirke in der Herleitung raumlicher und
zeitlicher Mustern, skizziert zukiinftige Forschungsrichtungen. Da die TEA-Methode
breit anwendbar ist, kann sie sowohl als Basis fiir zukiinftige unabhéngige Transpi-
rationsschéitzungen dienen, mit denen sie verglichen werden kann, als auch die Skalen-
liicke zwischen Studien auf der Pflanzenebene und globalen prozess- und fernerkun-
dungsbasierten Modellen tiberbriicken. Dieser Skalentransfer wird dazu beitragen, sowohl
das Verstindnis der grundlegenden Pflanzenphysiologie und -6kologie, als auch die
Vorhersagen des globalen Wasser- und Kohlenstoffkreislaufs in einem gegenwértigen

und zukiinftigen Klima zu verbessern.
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4 Introduction

“Had they fortuned to have fallen into this statical way of inquiry, persons
of their great application and sagacity had doubtless made considerable ad-
vances in the knowledge of the nature of Plants. This is the only sure way
to measure the several quantities of nourishment, which Plants imbibe and
perspire, and thereby to see what influence the different states of Air have on
them. This is the likeliest method to find out the Sap’s velocity, and the force
with which it is imbibed: As also to estimate the great power that nature
exerts in extending and pushing forth her productions, by the expansion of
the Sap.”

Stephen Hales, Vegetable Staticks, 1727

1.1 The importance of how plants use water

The flow of water from the soil through plants is the primary hydraulic conduit along the
soil-plant-atmosphere continuum, providing both the turgor pressure terrestrial plants
need to grow as well as a nutrient highway to the photosynthetic powerhouses in the
leaves. Though photosynthesis from marine organisms had already produced an oxygen
rich atmosphere 2.3 billion years ago (Lyons et al., 2014), plants only colonized land
about 400 million years ago (Kenrick and Crane, 1997). The major adaptation that
allowed plants to thrive outside an aquatic environment is a vascular system to transport
water to leaves which control water flow via small, closable pores (stomates) in the
otherwise impermeable outer surface of the leaf, an adaptation that lead to a 90%
decrease in atmospheric CO, levels (Beerling et al., 2001; Mora et al., 1996). Apart
from shaping atmospheric compositions, terrestrial vascular plants are the main primary
producers of food and organic material which humans depend on. As such, methods to
monitor and study plants and how they use water, measured as transpiration, are key to
understanding the earth system as a whole, as transpiration directly influences global

carbon, nutrient, energy, and hydrological cycles.

Transpiration (T) is the evaporation of water from the above ground organs of vascu-
lar plants after passing through plant tissues and intercellular spaces. Transpiration is

distinct from abiotic evaporation (E), which is the flux of water from surfaces such as
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leaf exteriors, stems, litter, or soil. The combined biotic and abiotic water fluxes are
termed evapotranspiration (ET), a term which is a portmanteau of the words evapora-
tion and transpiration. From the perspective of physics, both abiotic evaporation and
transpiration would be simply the total ecosystem evaporation with the key difference
that transpiration is actively regulated by plants, and therefore there are recent calls to
move away from using the word evapotranspiration (Miralles et al., 2020). However,
the term is useful in physiology and as such will be used here for consistency with the

previously published chapters.

Transpiration is the intersection of water and carbon, as no known terrestrial plants
manage the needed gas exchange of CO, and O, without water loss. Furthermore, the
same plant traits that promote photosynthesis; such as leaves with a high surface area
to volume ratio positioned in high sunlight; are also traits that promote transpiration,
meaning water loss is inherently coupled to carbon fixation. On average globally, every
100 g of CO,, fixed corresponds to 36 kg of water transpired (based on current estimates
of global annual fluxes: 120 PgC gross primary productivity (GPP) (Jung et al., 2019),
6.7x10%km?> water ET (Pan et al., 2020), and 64% T/ET (Good et al., 2015)). This
high loss of water per unit carbon fixed creates a situation water limitations to carbon
uptake due a lack of water is relatively common, indeed water availability is likely the

dominant control of global terrestrial GPP (Jung et al., 2017).

Transpiration is not a purely negative phenomenon, as the flow of water also provides a
highway for nutrients to be extracted from the soil and transported to leaves. Further-
more, plants have developed a number of traits and strategies for maximizing water
resources (De Kauwe et al., 2015). For example, the ability of plants to access water
reserves from deep soil layers is a vital ecosystem process and allows for sustained
evaporative cooling, which in turn modulates air temperature (Fischer et al., 2007).
Root systems used to extract water reserves also hold soil together and increase wa-
ter use between precipitation events promoting water retention time and precipitation
use (Carminati et al., 2010). On broad scales, ecosystem water fluxes may push pre-
cipitation into continents, acting as rain conveyor belts (Sheil and Murdiyarso, 2009;
Spracklen et al., 2012). As transpiration from vascular plants is a key control valve on
the global terrestrial water cycle, a better understanding of plant water fluxes will lead

to an improved understanding of the earth system in general.

Quantification of transpiration is not only just an academic endeavor, but rather has real



6 Introduction

world implications. For example, a meta-analysis from Liu et al. (2017) estimates 3.0 to
4.3 billion people will be living in areas exposed to water scarcity in the year 2050, and
further highlights plant water use as a key uncertainty that is often overlooked when
estimating water scarcity. Droughts characterized by limited soil moisture compounded
by high atmospheric demand are projected to increase in both intensity and frequency
(Zhou et al., 2019), and have been shown to significantly impact global GPP (Stocker
et al., 2019) as well as pose a significant threat to global food security (He et al., 2019).
In addition to the higher strain on existing water systems caused by climate change,
many negative emission technologies for removing carbon from the atmosphere are
projected to have significant water requirements (Smith et al., 2016; Rosa et al., 2020)
and wide spread utilization could cause further stress to already fatigued freshwater

systems.

Historical interest in transpiration has come out of the forestry and agricultural sec-
tors (Wilm et al., 1944), as water has always driven economies and indeed been a
key factor shaping the spread of humanity. Indeed, the preface of Vegetable Staticks by
Stephen Hales (Hales et al., 1727), which reported the first measurements of transpi-
ration, states “..so doubtless a farther insight into the vegetable economy must needs
proportionally improve our skill in Agriculture and Gardening...” Being agriculturally
focused, previous work on transpiration has been predominantly based on controlled
environment and agricultural field studies (Kool et al., 2014). These studies have laid
the groundwork for modern physiological understanding of plant water use. However,
with climate change and the increasing interest in global cycles of the past decades,
broader scale studies of how ecosystems, regions, and continents use water have be-
come more prevalent (Fisher et al., 2017; Allen et al., 2015; Bernacchi and VanLoocke,
2015). The chapters of this thesis work toward bridging the existing gap between plant
scale knowledge and measurements and the global processes through ecosystem scale

estimates of transpiration.

1.2 Transpiration at different scales

Transpiration is a key phenomenon which is studied by many different fields and in
many different contexts. These different approaches are generally tied to different scales.

For example, a physiologist measuring a leaf sees transpiration as the dominant water
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flux and might use units such as mmol HoO - m™2 - s~ 1. In contrast, a hydrologist looking
across catchment basins will see transpiration as just one component in an orchestra
of water fluxes which are measured in the thousands of km? - yr~! of water. These dif-
ferent perspectives of the same fundamental process yield important insights, though
transferring the principles of hydrology to the scale of a single leaf and vice versa can be
challenging. As noted, this dissertation focuses on ecosystem scale, which can more eas-
ily integrate both micro- and macro-scale processes. Therefore, the following sections
will briefly outline the core principles from scales which are important to understanding

ecosystem transpiration.

1.2.1 Leaf and stomate

Transpiration in a simplified context, such as what would describe a leaf in a cuvette,

can be characterized using simple Fickian diffusion,

T=16-g5 (e;—eq)

where T is transpiration, g is the stomatal conductance of CO,, 1.6 is the ratio of the
conductance of water to the conductance of CO,, and e; and e, are the intercellular
and ambient water vapor concentrations, respectively. In the simplistic view, as well as
in many more complex models, g is the key parameter to be estimated (Berry et al.,
2010). Furthermore, g; is what is actively modulated by plants and can be seen as the
primary biological control valve. This modulation is key, as it both differentiates T and E
fluxes and links the carbon and water cycles. The combination of the impermeable plant
outer layers with well regulated openings for gas exchange (i.e. stomates) are a major
advantage for terrestrial plants, allowing plants to mitigate CO, uptake to water loss,
or water use efficiency (WUE). Versions of WUE and stomatal conductance are used in
applications across scales, from basic physiology (Damour et al., 2010) to land surface
models (Knauer et al., 2015), and therefore much work has been done to characterize
the key factors influencing stomatal conductance. Stomates have been shown to respond
to conditions that effect both photosynthesis and water loss such as light, temperature,

ambient CO, concentrations, and atmospheric demand for water:

Stomatal response to light: Stomates open in response to light. The light response is
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a clear example of the optimization of stomates to increase carbon gain to water loss,
as opening stomates in the absence of light would result in no photosynthetic uptake
while still allowing for water loss (Deans et al., 2019). The exception is in plants who
utilize Crassulacean acid metabolism (CAM) photosynthesis, where stomates show a
reversed response to light because CO, is stored in plant tissues during the night to be
used for photosynthesis during the day as a water conservation adaptation (Osmond,
1978).

Stomatal response to to VPD: Increasing atmospheric demand for water is typically
measured as vapor pressure deficit (VPD), i.e. the difference between inter-cellular and
ambient water vapor concentration. In general, exposing leaves to high VPD causes
stomates to close (Buckley, 2005), which limits water losses when evaporative demand
is high. This stomatal closure is seen as an evolutionary advantage because of the high
cost of water per unit carbon gained under high VPD conditions which can result in very
low WUE.

Stomatal response to temperature: The stomatal response to temperature can be
difficult to differentiate from the effect of VPD, as stomates respond strongly to VPD,
and VPD is directly related to temperature. However, there is evidence that high tem-
peratures cause stomates to open to promote leaf cooling, even when photosynthesis
is reduced due to very high temperatures (Urban et al., 2017b), potentially reducing
WUE.

Stomatal response to ambient CO5: The stomatal response to CO5 has been of high
interest in recent years due to rising atmospheric CO, levels (Ainsworth and Rogers,
2007). The CO; effect has been well documented, showing that plants exposed to higher
ambient CO, decrease stomatal aperture and therefore conductance (Morison, 1985).
The decease in conductance causes a reduction to transpiration, while at the same time
the increase in CO, gradient between air inside and outside leaf increases the carbon

uptake relative to stomatal conductance, ultimately causing an increase in WUE.

The fundamental understanding of stomates from individual leaves is currently the ba-
sis for modeling carbon assimilation and transpiration at all scales. The semi-emprical
Ball-Berry model (Ball et al., 1987), or a derivative thereof, is the most common model
of stomatal conductance used today (Berry et al., 2010). The Ball-Berry family of mod-
els calculates stomatal conductance as a function of net photosynthetic assimilation

rate (which encapsulates the light and temperature responses), relative humidity (or
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VPD depending on the model variant), and atmospheric CO, concentration, with two
parameters: go the minimum stomatal conductance in the absence of light and g; the
sensitivity of photosynthetic assimilation to g; which relates to WUE. While the orig-
inal Ball-Berry model was developed based on leaf experiments in a controlled envi-
ronment, Cowan and Farquhar (1977) postulated that stomates should act in a way
that maximizes carbon gain to water loss (stomatal optimality theory), generally char-
acterized as stomates closing in response to high VPD to reduce water losses. Medlyn
et al. (2011) has since shown that the empirical formulations of g; match well with
those derived from stomatal optimality principles, thus providing a unified framework
for understanding and estimating stomatal function. However, studies have suggested
that the stomatal response to VPD is not optimal (Lin et al., 2018), possibly due to
non-stomatal limitations which disproportionally effect carbon uptake relative to water
loss such (e.g. decreases in mesophyll conductance of CO, or limitation in carbon fix-
ation pathways) (Reichstein et al., 2002; Novick et al., 2016b). Uncertainty and biases
in stomatal conductance models have broad implications for estimates of carbon and
water fluxes at other scales because entire ecosystems are often modeled as a “big leaf”,
with leaf level processes upscaled to canopy and ecosystem level via an integration over
the leaf area index (LAI). The implications of the uncertainty of this transfer of scale are

explored further in Section 1.2.4.

1.2.2 Regional and global hydrology

Transpiration fits directly into the water balance equation, which is a fundamental equa-

tion in hydrology,

P=R+(E+T)+68S

where P is precipitation, R is runoff, (E + T) is abiotic evaporation and transpiration,
and &S is the change in water storage. While transpiration is known to be one of the
largest terrestrial water fluxes (Oki and Kanae, 2006), plants are sometimes overlooked
in the field of regional and global scale hydrology where ET can be considered the
“background water footprint” (Bogardi et al., 2013). For example, in examining trends
in terrestrial water storage and attributing those trends to underlying causes, Felfelani
et al. (2017) did not explicitly reference plants. While Felfelani et al. (2017) did men-
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tion crop irrigation and deforestation as drivers of terrestrial water storage, direct plant
responses to climate change, such as changes in stomatal sensitivity with rising CO,
(Gedney et al., 2006), were overlooked. On the one hand, removing plants from the
large scale hydrological equation is understandable, as plants can be difficult to model
across large and heterogeneous areas. However, there have been recent calls to inte-
grate the fractured sub-disciplines of hydrology, including ecohydrology (Brooks et al.,
2015; Clark et al., 2017). Of course, much research is being done with regards to re-
gional plant-hydrology interactions, such as recent papers showing that groundwater
can influence ET partitioning (Maxwell and Condon, 2016), and that plant activity can
be affecting groundwater reserves (Koirala et al., 2017). Direct observations of tran-
spiration at regional scales would likely improve understanding of regional and global

hydrology.

1.2.3 Global

In general, global estimates of ET agree (Pan et al., 2020), but the individual compo-
nents; transpiration, soil evaporation, and canopy interception evaporation; often have
large disagreements (Wei et al., 2017; Talsma et al., 2018). One method to constrain
the individual components of the global water budget is by using the ratio of heavy
to light isotopes of water as a tracer, because while water vapor from soil evapora-
tion is depleted of heavy isotopes, water vapor from transpiration is often assumed to
be the same as the source root zone water, thus giving a unique isotopic signature to
each process. Using models constrained by the isotopic signatures from oceans, run-off,
evapotranspiration, and precipitation, Good et al. (2015) estimated a global T/ET of
64 + 13% (mean +1 standard deviation) where ET includes transpiration, soil evapora-
tion, interception, and evaporation from surface waters. An estimate of 64% is similar
to other estimates based on up-scaling site level estimates of T/ET, both by ecozone
(61 + 15%, Schlesinger and Jasechko (2014) ) and via an empirical function of T/ET
with LAI (57.2 + 6.8%, Wei et al. (2017)).

Currently, the isotopic and site-level data to estimate global T/ET are too sparse to
accurately resolve T/ET in time. As discussed in Section 4.4.2, efforts to upscale site
level T/ET data to global estimates rely on fewer than 100 studies with some stud-
ies dating back to 1941. Similarly, global isotopic estimates rely on even fewer surface

measurements to constrain global estimates, e.g. six evapotranspiration isotope mea-
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surements in Good et al. (2015) and isotope measurements from only 56 lake catch-
ments in Jasechko et al. (2013). Therefore, transpiration estimates must rely on model
assumptions to constrain the problem. However, based on the spread in T/ET estimates,
the assumptions used in different modeling approaches do not agree (Figure 1.1). Typ-
ical strategies for modeling transpiration on a global level range from processed based
models, e.g. the components of earth system models such as those used in the Coupled
Model Intercomparison Project (CMIP), or can be based on relatively simple and/or
empirical relationships paired with external data sources, such as estimates based on
remote sensing data (Stoy et al., 2019). However, both process models and remote
sensing based methods can show high variability among T/ET estimates. For example
CMIP5 models ranged from 15 to 60% T/ET (Berg and Sheffield, 2019), while T/ET
from 3 different remote sensing products ranged from 24 to 75% T/ET (Miralles et al.,
2016). This large spread in the magnitude of T/ET, with many estimates not agreeing
that transpiration is the dominant component of ET as is generally agreed upon from
the data derived estimates of T/ET (e.g. site up-scaled and isotope based estimates),
demonstrates a fundamental deficiency in how transpiration is modeled and understood
on a global scale. More data driven estimates of transpiration, both in space and in time,
could help diagnose the issues with global models by providing a better understanding
on the key driver of T/ET.
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Figure 1.1 Global transpiration as a fraction of terrestrial ET. Shading represents the
probability density functions based on either model variability (CMIP5 and remote sens-
ing) or reported uncertainty (global isotopes and up-scaled site estimates). CMIP5 data
from Berg and Sheffield (2019), remote sensing data from Miralles et al. (2016), global
isotopes from Good et al. (2015) and up-scaled site estimates from Wei et al. (2017)
and Schlesinger and Jasechko (2014).

1.2.4 Scale mismatch and source of error

While the generalized stomatal conductance model formulations derived from leaf level
experiments and optimality theory (e.g. the Ball-Berry and Medelyn models, see Sec-
tion 1.2.1) have come a long way in describing water and carbon fluxes from plants,
ecosystems which are composed of diverse individuals are much harder to generalize
and do not always behave as a leaf in a cuvette. Here we revisit the leaf level responses

of stomates from Section 1.2.1, but in the context of ecosystems:

Ecosystem response to light: While the incidence angle of how light hits a single leaf
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is less important the the total amount of light, diffuse light cause by clouds and aerosols
has the effect of spreading incoming light energy over more leaves which increases
overall plant photosynthetic efficiency. In essence, rather than leaves at the top of the
canopy receiving the majority of the light and overloading photochemical pathways
(Miiller et al., 2001), diffuse light allows for more of the canopy to contribute to carbon
uptake resulting in a more efficient use of light overall (Li et al., 2014). Diffuse light
not only improves carbon uptake per unit light, but also increases water use efficiency
(Pedruzo-Bagazgoitia et al., 2017; Gao et al., 2018) and the fraction of energy used for
evaporating water relative to total available energy (evaporative fraction) (Wang et al.,
2008). Including the effect of diffuse light in land surface models has been shown to
have large impacts on the estimated global carbon sinks (Mercado et al., 2009), but the

implications on global water fluxes is less well characterized.

Ecosystem response to to VPD: While the stomatal response to VPD has been rela-
tively well characterized, high values of VPD typically correspond to periods of overall
water limitations where whole plant survival strategies may alter the carbon cost of
water calculus and thus stomatal responses. For example, the long hydraulic pathways
in trees are more susceptible to damage under water stress and therefore many plant
adaptations, such as increased stomatal closure or dropping leaves, have evolved to pre-
vent mortality (Choat et al., 2018). Furthermore, high VPD is often associated with soil
water depletion and water stress (Zhou et al., 2019). While the effect of VPD has been
shown to be stronger than that of soil moisture supply (Novick et al., 2016a), many
stomatal models still fail to capture the effects of drought (Damour et al., 2010), which
is further compounded by the diverse responses to water limitation found in different

ecosystems (De Kauwe et al., 2015).

Ecosystem response to temperature: While mean temperatures can be a key predictor
of vegetation activity, extreme temperatures can cause direct damage to plant tissues,
which can have long term effects on carbon and water fluxes. Cold weather events
have been shown to impact ecosystem water and carbon fluxes by causing vegetation
damage leading to decreases in vegetation and photosynthetic activity long after the
initial event (Gu et al., 2008). Furthermore, plants can also change stomatal function to
increase evaporative cooling from transpiration, at a cost to photosynthesis, in order to
prevent high temperature damage. Drake et al. (2018) showed a complete decoupling of
water and carbon fluxes in Eucalyptus trees by exposing them to extreme heat over four

consecutive days, with severe limitations to photosynthesis but continued transpiration,
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an effect which could not be explained by stomatal optimality. In a further study, De
Kauwe et al. (2019) did not find widespread evidence of decoupling due to extreme heat
across 14 sites, however the authors note that ET was used as a proxy of transpiration
which could obscured the physiological decoupling effect due to influences of abiotic

evaporation.

Ecosystem response to ambient CO3: While the effect of increased CO, causing sto-
mates to close, thus reducing transpiration while increasing WUE, is well established
at the leaf scale, the ecosystem scale response has been much more uncertain. Keenan
et al. (2013) reported that the increasing trend in WUE over time (associated with the
increase in CO, from anthropogenic sources) in 14 forested sites was much larger than
predicted by terrestrial biosphere models. However, Knauer et al. (2017) determined
that such a large trend was not plausible, finding that transpiration at the ecosystem
scale was less sensitive to increases in CO5 than at the leaf scale due to a decoupling be-
tween the conditions experienced by individual leaves compared to the general ecosys-
tem atmosphere. For example, in a free-air CO, enrichment experiment, Wullschleger
et al. (2002) showed that while seasonal stomatal conductance was reduced by 22%
in the elevated CO, treatments, the reduction was primarily found in upper canopy
leaves, with mid and lower canopy leaves showing little reduction in stomatal conduc-
tance, and only a 14% reduction in integrated canopy conductance and a 10% reduction

in transpiration.

The above examples demonstrate that while models are able to generalize stomatal con-
ductance, and thus water and carbon fluxes, under typical experimental conditions, the
whole plant and community responses can be much harder to generalize. The normal
carbon cost of water calculous to optimize carbon uptake to water loss might change
due to longer term strategies of survival, and non-stomatal effects can also alter the car-
bon to water relationship independent of stomatal conductance (Novick et al., 2016b;
De Kauwe et al., 2019). All of these potential sources of error have major implications
for predicting not only carbon and water fluxes, but also how the earth system will re-
spond to a changing climate, and as such, recent reviews have highlighted the water to
carbon relationship is a major point of improvement in understanding both terrestrial
carbon (Rogers et al., 2017; Dietze et al., 2014), and water cycles (Fisher et al., 2017;
Allen et al., 2015; Bernacchi and VanLoocke, 2015).
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1.3 Eddy covariance: a measure at ecosystem scale
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Figure 1.2 Transpiration from eddy covariance data provides the missing step between
physiological measurements at the leaf/plant scale and global to regional modeling.
The data driven approach presented in Chapter 3 (the Transpiration Estimation Algo-
rithm, TEA) provides an alternate view of ecohydrological function compared to the
process based approaches which rely on scaling stomatal conductance processes to
global scales. Leaf photo from Peggy Greb (CC BY 2.0), Plant and Ecosystem photos
from Mirco Miglivacca.

The eddy covariance technique is one of the most successfully utilized methods for es-
timating ecosystem water, carbon, and evergy fluxes. Eddy covariance measures energy
and gas fluxes from within a tower footprint, with radii typically on the order of a few
hundred meters to one or two kilometers. While eddy covariance is suitable to measure
many gases and tracers, systems typically measure fluxes of latent and sensible energy,
CO,, as well as radiation and meteorological variables. Such systems run nearly contin-
uously, with some systems now having run for over 20 years, e.g. the Harvard Forest
site has been running since 1991 (Munger, 2016). Around 1995, the eddy covariance
community formed plans to aggregate data from sites around the world (Baldocchi et
al., 1996), producing a homogenized flux network or FLUXNET (Baldocchi, 2020) (Fig-
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ure 1.3). Synthesis of the flux data has shown to be powerful for studies of ecosystem
function around the world, as well as for model evaluations, parameterizations, and

links to global data such as remote sensing (Baldocchi, 2020).

apnine

1995 2000 2005 2010 2015

Figure 1.3 Locations and time-spans of eddy covariance data used in this dissertation,
colored by plant functional type (PFT).

Analysis of CO, fluxes from eddy covariance have proven particularly useful, due to
methods for estimating gross primary productivity (GPP) and ecosystem respiration
(RECO) (Reichstein et al., 2005a; Lasslop et al., 2010). GPP estimates have given in-
sights into ecosystem functioning from a data driven perspective (Musavi et al., 2017;
Baldocchi, 2020), and have been used to inform and evaluate the global models which
drive global policy decisions concerning climate change (Baldocchi and Penuelas, 2019;
Bonan et al., 2011). The success of the partitioning of the net CO; flux has in part
motivated the search for ET partitioning methods based on eddy covariance data, with
the hope that a better understanding of ecosystem scale transpiration will similarly in-
fluence the water components of global models. However, partitioning ET is a more
challenging problem, in part because both E and T are primarily driven by VPD and wa-
ter availability, in contrast to the carbon fluxes where GPP is driven primarily by light
and RECO primarily by temperature. To overcome these difficulties, many approaches to
estimate ecosystem transpiration have utilized additional physiological measurements,
such as sap flow or leaf estimates of stomatal conductance, rather than relying solely on
the core eddy covariance data which integrates the entire ecosystem signal. However,
plant and ecosystem scale estimates are not always consistent (Medlyn et al., 2017;
Medrano et al., 2015), and there are significant uncertainties in up-scaling plant mea-
surements such as sap flow (Oren et al. (1998), ermak et al. (2004), and see Section
4.4.2). Furthermore, dependence on measurements additional to the core eddy covari-

ance datasets greatly limits the amount of historical data where transpiration could be
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estimated.

The approaches of estimating ecosystem scale transpiration are reviewed briefly in Sec-
tion 3.1, and in depth in Stoy et al. (2019) (co-authored during the work of this thesis).
The advantages and disadvantages of common methods are briefly summarized in Ta-
ble 1.1. While these approaches are important and have their advantages, the limited
number of measurements are likely not enough to characterize global variability, so
a method that uses the existing eddy covariance datasets would be much more pow-
erful in constraining global uncertainty. Therefore, the core objective of this thesis is
to develop and evaluate a data driven method for estimating transpiration from eddy

covariance data.

Table 1.1 A brief overview of methods for estimating ecosystem scale transpiration.
Methods are reviewed in detain in Stoy et al. (2019) and Section 3.1.

Advantages Limitations Citation

Flux-variance similarity

Requires few additional Sensitive to WUE Scanlon et al.

measurements and has a firm assumptions and data (2019)

theoretical foundation. processing limitations.

Sap flow

Widely available datasets Methodological uncertainties Poyatos et al.

(SAPFLUXNET) directly connected (see Section 4.4.2), only for (2019)

to physiology. trees

Carbonyl sulfide

Provides an independent method =~ Unknown sinks/sources of Whelan et al.

to estimate canopy conductance. OCS and lack of (2018)
measurements.

Isotopes

Gives an ecosystem integrated High uncertainties and lack Beyer et al.

estimate. of measurements. (2020)
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Advantages Limitations Citation

Above and below canopy EC

Same temporal resolution and Combines understory T and  Paul-Limoges
integrated ecosystem estimates as  soil E and lack of et al. (2020)
normal EC. measurements.

1.4 Technical approach and use of machine learning

While an ET partitioning method should be built off of sound physical and physio-
logical principles, the limitations of current ecosystem stomatal models necessitates a
method which does not make too many physiological assumptions. Utilizing machine
learning gives a data driven perspective, allowing the resulting transpiration estimates
to be more independent from processed based models. Machine learning approaches,
guided by expert knowledge, provide the opportunity to exploit statistical relationships
in the data in a robust and powerful way (Jordan and Mitchell, 2015; Reichstein et al.,
2019).

Previous works have shown the potential benifits of using machine learning techniques
on eddy covariance data and have the advantage of being able to extract complex re-
lationships in the data. For example, machine learning based methods for partitioning
NEE have been developed and generally agree with widely accepted methods (Desai et
al., 2008; Tramontana et al., 2020). Furthermore, the data driven appoarchs may have
advantages over traditional methods which impose hard theoretical constraints, such as
NEE partitioning methods which dictate the shape of the photosynthetic light response

curve (Tramontana et al., 2020).

While other machine learning methods exist, Random Forests (Breiman, 2001) are used
in every chapter of this dissertation, due to the robust nature of the algorithm and
its proven ability to perform well in many situations. Random Forest have previously
been used as a bench mark when comparing methods due to the fact its robust ability
to produce results with minimal configuration (Besnard et al., 2019). The key use of
Random Forest in this work is embedded in the TEA algorithm (Chapter 3), where
the ability to predict quantiles (Meinshausen, 2006) is key to the functionality of the

algorithm.
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1.5 Aims, outline, and objectives

The practical objective of this thesis was to produce a method for estimating transpira-
tion from existing eddy covariance datasets that is generally applicable and data driven.
Given that the method is data driven, much of the work involved comes not only from
the technical building of the methodology, but first evaluating the data as well as pat-
terns within the data which the method can exploit (Chapter 2), then technical evalua-
tion of the method and uncertainties (Chapter 3), and finally application of the method
and evaluation of the resulting global patterns (Chapter 4). Chapter 2 looks a diurnal
patterns of water and carbon fluxes, introducing two indices which were shown to hold
information on drought response and are used in the subsequent chapters. Chapter 3 in-
troduces the Transpiration Estimation Algorithm (TEA) and evaluates the method using
model output in controlled experiments where all ecosystem fluxes are known. Chapter
4 then uses TEA, as well as other transpiration estimation methods, to estimate tran-
spiration across FLUXNET and evaluate global patterns. While much of the work of the
thesis is synthesized in Chapter 4, Chapter 5 summarizes the findings as well as gives

an overview of work which has since utilized TEA and an outlook of future work.

1.5.1 Research questions

RQ 1: How can information in the core eddy covariance datasets be further
exploited to describe the complex plant water relationships from heterogeneous

communities?

As outlined in this introduction, there are known limitations to current stomatal and
transpiration models. Furthermore, supplementary input data, such as leaf measure-
ments, sap flow, and plant available soil moisture are hard to quantify on broad scales.
A key question that emerges is whether one can capture the dynamic ecosystem re-
sponses in WUE and transpiration with the core EC measurements, therefore giving the
biggest impact of broad-scale transpiration estimates across a large variety of ecosys-
tems from the existing eddy covariance datasets. Can complex ecosystem processes such
as drought be identified thought the ecosystem responses alone, such as via indicators

from diurnal cycles?
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RQ 2: Given the limited amount of independent ecosystem transpiration data
concurrent with eddy covariance measurements, how can the transpiration

estimates be validated?

The lack of ecosystem scale transpiration estimates both necessitates an ET partitioning
method, but also makes validation of the transpiration estimates from the partitioning
methods difficult. Furthermore, many partitioning methods, including the TEA method
described in Chapter 3, assume that transpiration dominates ET in a way that allows
for a model to be built using the ET measurement directly. As reviewed in Stoy et al.
(2019), this assumption is often debated and is a major critique of these methods.
Can the assumption transpiration dominates ET during some periods be made and how
will the violation of this assumption impact the resulting WUE and transpiration esti-

mates?

RQ 3: What new insights on ecohydrological and water use strategies across
major terrestrial biomes can be gained from the transpiration estimates derived
from FLUXNET?

Current global predictions of T/ET are highly uncertain, uncertainties which will likely
propogate into carbon and hydrological cycles for future climate preditions. The data
driven approach from TEA applied to the FLUXNET dataset may give insight as to how to
better model transpiration dynamics from diverse ecosystems. How can the potentially
broad spatio-temporal coverage of transpiration estimates from FLUXNET inform the

current understanding of transpiration?
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Abstract. Understanding of terrestrial carbon and water cy-
cles is currently hampered by an uncertainty in how to
capture the large variety of plant responses to drought. In
FLUXNET, the global network of CO, and H,O flux ob-
servations, many sites do not uniformly report the ancil-
lary variables needed to study drought response physiology.
To this end, we outline two data-driven indicators based on
diurnal energy, water, and carbon flux patterns derived di-
rectly from the eddy covariance data and based on theo-
rized physiological responses to hydraulic and non-stomatal
limitations. Hydraulic limitations (i.e. intra-plant limitations
on water movement) are proxied using the relative diurnal
centroid (Cfp), which measures the degree to which the

water use efficiency (WUE) models, we found the mean dif-
ferences between expected and observed WUE to be —0.09
to 0.44 umol mmol~' and —0.29 to —0.40 umol mmol~!
for decoupled and morning-shifted days, respectively, com-
pared to mean differences —1.41 to —1.42 ymol mmol~" in
dry conditions, suggesting that morning shifts/hydraulic re-
sponses are associated with an increase in WUE, whereas
decoupling/non-stomatal limitations are not.

1 Introduction
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Understanding of terrestrial carbon and water cycles is currently hampered by an uncer-
tainty in how to capture the large variety of plant responses to drought. In FLUXNET,
the global network of CO2 and H20 flux observations, many sites do not uniformly
report the ancillary variables needed to study drought response physiology. To this
end, we outline two data-driven indicators based on diurnal energy, water, and car-
bon flux patterns derived directly from the eddy covariance data and based on theorized
physiological responses to hydraulic and non-stomatal limitations. Hydraulic limitations
(i.e. intra-plant limitations to water movement) are proxied using the relative diurnal
centroid (CET), which measures the degree to which the flux of evapotranspiration (ET)
is shifted toward the morning. Non-stomatal limitations (e.g. inhibitions of biochem-
ical reactions, RuBisCO activity, and/or mesophyll conductance) are characterized by
the Diurnal Water:Carbon Index (DWCI), which measures the degree of coupling be-
tween ET and gross primary productivity (GPP) within each day. As a proof of concept
we show the response of the metrics at 6 European sites during the 2003 heatwave
event, showing varied response of morning shifts and decoupling. Globally, we found
indications of hydraulic limitations in the form of significantly high frequencies of morn-
ing shifted days in dry/Mediterranean climates and savanna/evergreen plant functional
types (PFT), whereas high frequencies of decoupling were dominated by dry climates
and grassland/savanna PFTs indicating a prevalence of non-stomatal limitations in these
ecosystems. Overall, both the diurnal centroid and DWCI were associated with high net
radiation and low latent energy typical of drought. Using three water use efficiency
(WUE) models, we found the mean differences between expected and observed WUE to
be -0.09 to 0.44 umol/mmol and -0.29 to -0.40 umol/mmol for decoupled and morning
shifted days respectively compared to mean differences -1.41 to -1.42 umol/mmol in
dry conditions, suggesting that morning shifts/hydraulic responses are associated with

an increase in WUE whereas decoupling/non-stomatal limitations are not.
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2.1 Introduction

Processes such as photosynthesis and transpiration are so intimately linked that knowl-
edge and assumptions about one process are needed to accurately understand the other.
Unfortunately, the relationship between carbon and water cycles is not fully understood
(Tang et al., 2014), passing the biases and uncertainties caused by an incomplete car-
bon:water framework back onto flux estimates specifically and global water and car-
bon cycle interactions and dynamics in general (Keenan et al., 2013; Schlesinger and
Jasechko, 2014; Ito and Inatomi, 2012). One source of uncertainty that is increasingly
being identified is the diverse responses of plants to water limitation (Zhou et al., 2013;
Dietze et al., 2014; Rogers et al., 2017), which hampers the understanding and pre-
dictability of water and carbon cycles during drought. Here we outline potential causes
of uncertainty in carbon:water dynamics in an effort to outline data-derived inductors

based on current theory.

Classically, vegetation water and carbon fluxes are linked by stomates, where an open
stomate allows CO2 to enter the leaf and, consequentially, water is lost. Most theoreti-
cal frameworks make some form of assumption that carbon assimilation (A) and water
losses (T) are both contingent primarily on leaf stomatal conductance (gs). This as-
sumed relationship allows us to pass between the realms of carbon and water, based on
the assumption that at any given time both A and T are proportional to the stomatal
conductance multiplied by the difference in internal and external CO2 and water vapor

concentrations. More specifically,

A=gs-Ac and T=16-g-Av (2.1)

where c and v are the differences in inner and outer stomatal cavity concentrations of
CO2 and water vapor, respectively. These diffusion equations lead to the relatively con-
sistent carbon:water ratio, generally expressed as a water use efficiency (WUE = A/T).
At the ecosystem level where direct measurements of A and T are not available, WUE
is simply calculated as the ratio of gross primary productivity (GPP) to total evapotran-
spiration (ET) (Kuglitsch et al., 2008). These carbon:water links are fundamental to
understanding how stomata are regulated and underly key functioning in mechanistic

plant and ecosystem models. One such set of models are those based on optimality the-
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ory which posit that plants tend to optimize carbon gains to water losses, such as those
described by Katul et al. (2010) and Katul et al. (2009). These concepts from Katul,
which carry the assumptions of RuBisCO (light) limitation, were built upon by Zhou
et al. (2014) and Zhou et al. (2015) to give the equation,

GPP - NVVPD
ET

uWUE = (2.2)

where the VVPD accounts for the stomatal response to vapor pressure deficit (VPD)
assuming stomatal response optimizes carbon gain to water losses. Accounting for the
VPD response allows for a more stable metric of WUE that is temporally more stable and
physiologically more meaningful, such as when comparing the diurnal cycles of carbon
and water. As ET is the sum of both T and non-biological evaporation (e.g. soil and in-
tercepted evaporation), often periods during and shortly after rain events are excluded
from WUE estimates to minimize the influence of non-plant evaporation. Ultimately,
calculations of WUE provide a simple summary of the cost in water per carbon gain and
becomes an indicator for how plants have and will adapt to the physical limitations of

their changing environments (Keenan et al., 2013; Tang et al., 2014).

Though assuming a rigid carbon:water relationship works well in conditions when
ecosystems are moderately wet, conditions associated with the majority of carbon and
water fluxes, an inflexible carbon:water assumption is unsatisfactory in that these as-
sumptions may breakdown as plants shift from light to water limitations. Indeed, in
a review of leaf level stomatal conductance models, Damour et al. (2010) concluded
that the majority of stomatal models fail to adequately capture the effects of drought.
This failure to capture the effects of drought is not only disconcerting as water lim-
ited conditions are when ecosystems are most at risk, but an incomplete framework
tends to propagates errors and uncertainties from models into estimates of the water
and carbon cycles. For instance, in outlining a road map for improved modeling of
photosynthesis, Rogers et al. (2017) noted as key recommendations both improving
information about water:carbon relations (in the form of the stomatal slope parame-
ter g1) as well as improving understanding of the response of carbon assimilation to
drought. Similarly, in an analysis of parameter uncertainties for a terrestrial biosphere
model, Dietze et al. (2014) found that two of the top five parameters contributing to
the predictive uncertainty of net primary productivity were associated with plant water

regulation. This uncertainty is reflected in the stomatal conductance parameterization
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exercise from Knauer et al. (2015), where the authors were able to improve model per-
formance in predicting EC measured GPP and ET by including atmospheric effects (in
the form of VPD) on stomatal conductance, but concluded that further improvement
required global understanding of water limitation response variation across plant func-

tional traits and growing conditions, which is currently unavailable.

Two ideas to account for the errors in carbon:water assumptions under dry conditions
have begun to emerge: that hydraulic limitations in transporting water from root to
leaf change stomatal responses and thus limit transpiration under high demand, or that
changes in the intra-leaf processes of carbon transport and fixation under drought con-
ditions result in non-stomatal limitations that impact carbon assimilation independently
of water fluxes (Novick et al., 2016b).

As soil water potentials in the root zone become increasingly negative, the long-term
plant strategy may turn from optimizing carbon fixation to preventing damage to hy-
draulic architecture (Tyree and Sperry, 1988). As such, stomata and transpiration are
likely to increasingly respond not just to atmospheric conditions, but also soil moisture.
Under this hydraulic limitation framework, a plant will be reacting to the inability to
transport water, even though the key control mechanism for a plant is via the stom-
ata, possibly expressed as an increase in sensitivity. Such assumptions are consistent
with the mechanisms encoded in some land surface and ecosystem models, which ac-
count for water limitations by scaling the water to carbon ratio in relation to available
soil moisture. Though this method should link the leaf physiology to the soil and thus
capture some hydraulic limitation, it has been criticized for not capturing the variety
of drought responses found in different plant species and ecosystems (De Kauwe et al.,
2015). This diversity in plant responses has been pointed to as a key point of uncertainty
in earth system models (Dietze et al., 2014).

Though ecosystem water and carbon fluxes are predominantly controlled by stomates,
non-stomatal or bio/photo-chemical inhibitions to carbon assimilation are worth consid-
ering as they have the capacity to decouple the water-carbon exchange. This decoupling
could include conditions where the stomates are transpiring water but intra-leaf factors
are slowing carbon fixation, changing the intrinsic water use efficiency directly. Intra-
leaf factors could include effects such as production of reactive oxygen species (Lawlor
and Tezara, 2008); environmental limitations to the photosynthetic pathways, such as

leaf temperature (Medlyn et al., 2002); or declines in mesophyll conductance (Flexas
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et al., 2012). Non-stomatal limitations have been observed at ecosystem scale (Reich-
stein et al., 2002; Migliavacca et al., 2009), though the exact mechanism is difficult to
elucidate (Reichstein, 2003). These effects likely vary between species, as well as with

the rate of onset of drought, access to water, and other environmental conditions.

2.1.1 Objectives

There seems to be a collective conclusion that the breakdown of carbon:water assump-
tions needs to be better characterized in general, and specifically for implementation in
modeling frameworks (De Kauwe et al., 2015; Manzoni, 2014; Zhou et al., 2013; Flexas
et al., 2012; Egea et al., 2011). Though the problem is becoming clear, the way forward
is hampered by an uncertainty in how to capture the large variety in the response to
drought across climates, strategies, and species. In this sense, the use of EC measured di-
urnal patterns of carbon, water, and energy fluxes to derive clues on ecosystem drought
responses at a daily resolution could prove valuable both as a means to identify poten-
tial periods of ecosystem stress, inform machine learning algorithms on ecophysiologi-
cal conditions not found in environmental variables, as well as benchmarking a models
ability to capture sub-daily dynamics. To this end, we propose two data-driven indica-
tors of water stress, the diurnal water:carbon index (DWCI) and the relative diurnal
centroid in LE (C%;). Both metrics are derived directly from the EC data and based on
expected physiological responses to hydraulic and non-stomatal limitations. Using these
data-driven indicators we then characterize the distribution of these limitations across
a global spread of climate and vegetation types. Finally, we explore the ability of these
indicators to detect the disagreements between modeled and observed water use effi-
ciency, and explore how these biases may be attributed to hydraulic and non-stomatal

limitations.

2.2 Methods and Materials

2.2.1 Data

Carbon, water, and every fluxes measured with EC, as well as meteorological data,
were obtained from the 2007 FLUXNET La Thuile Synthesis Dataset (FLUXNET Data
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Download 2007). Half-hourly latent heat and net ecosystem exchange (NEE) fluxes were
collected and processed using standard QA/QC procedures (Papale et al., 2006), gap-
filling and partitioning algorithms (Reichstein et al., 2005b). From the database, half-
hourly gross primary productivity (GPP) and ET data (derived from latent heat flux
measurements) were downloaded and used for the following analysis. An interactive

map of sites used can be found in File S1.

In order to provide a consistent measure of ecosystem dryness that can be utilized
across sites, the ratio of water evaporated to potential water evaporated was calcu-
lated as evaporative fraction (EF), or the fraction of actual ET to Potential ET (PET).
PET was calculated as the daily fraction between the measured ET and estimated ET via
a Priestly-Taylor model (Priestley and Taylor, 1972) using site measured net radiation
(Rn) and air temperature (T,;-). The slope (alpha parameter) was fit for each site-year
using 95th quantile regression (Koenker and Bassett Jr, 1978) instead of using the orig-

inal 1.26 value derived for a “well watered crop” (Priestley and Taylor, 1972).

In order to get high quality data and minimize the influence of abiotic evaporation
(hereafter just evaporation), all data was filtered with the aim to include only non-gap
filled data in the growing season with dry surface conditions. Growing season was de-
fined as all days where GPP > 1 gC - m™2 - d~! and daily mean air temperature > 5
rC. These threshold were shown to give good response in the proposed metrics while
minimizing variability due to low diurnal signals, a sensitivity analysis of which can be
found in supplementary Figure S2. In an effort to minimize contributions of evapora-
tion, the conservative soil wetness index (CSWI) was employed which was designed to
estimate whether the ecosystem is likely to have “dry” surfaces and therefore ET is likely
to be dominated by transpiration. This approach requires a certain amount of evapora-
tion to occur after a rain event before the surface is considered to be “dry” and can be
contrasted to the method of removing a set time period after rain employed in previous
studies (Medlyn et al., 2017; Beer et al., 2009; Keenan et al., 2013). CSWI is calculating
by first quantifying the storage at time t (S;) as,

St = min (St—l + Pt - ETt, SO) (2.3)

where ET; and P; are the ET and precipitation at time-step t respectively, S; is effectively

capped at a maximum storage value of S,, which was set to 5 mm. Furthermore, to make
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the metric conservative in regards to assumed water inputs, any precipitation event will

refill the storage from 0 mm,

CSWI = max (S¢, min (P;, S,)) (2.4)

which has the effect of requiring all precipitation up to 5 mm to be evaporated from
the system before negative storage can occur. Any gaps in the precipitation data were
assumed to be a precipitation event of 5 mm in order to prevent any unmeasured precip-
itation from biasing the results by inadvertently including rainy days. Code and further
outline of the algorithm can be found in File S3 as well as at Nelson (2017). Evapo-
ration was assumed to be negligible when CSWI<0. This method was used over the
more standard method of removing 1-5 days after a rain event, as it does not make
the assumption that the surface will dry in a fixed amount of time, instead relying on a
minimum amount of ET. As a comparison, the median time period for the CSWI to go
from fully wet (CSWI=5) to “dry” (CSWI<=0) was 3.5 days across all sites in summer,
where summer was defined as the period when daily potential radiation above median

daily potential radiation for each site.

The data filtering as outlined in this section was designed to isolate periods firmly in
the growing season when plants are active and the signal of ET is most likely to be

dominated by plant controls.

2.2.2 Relative diurnal centroid (C;)

As soils dry, it becomes more difficult to transport stem and root zone moisture to the
leaf, potentially causing hydraulic limitations for the plant to transport water. This shift
was seen in eddy covariance data in a study by Wilson et al. (2003), who examined
the shift of latent compared to sensible heat, which suggested that a shift in water
fluxes towards dawn can be indicative of afternoon stomatal closure. Shifts were further
explored in a modeling study by Matheny et al. (2014) which found that the morning
shift was not well captured by models and attributed the errors to inadequate hydraulic
limitations in the models. The daily cycle of wetting and drying acts as a capacitor in
the hydraulic circuit, allowing water stores to be more easily transported in the morning

and depleting in the afternoon. As bulk soil moisture declines, this effect may be strong
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enough to shift the diurnal cycle of ET significantly toward the morning. Quantifying
diurnal shifts in EC data using the diurnal centroid was first explored by Wilson et al.

(2003): defined as the flux weighted mean hour, or

Zfluxt -t

S e (2.5)

Cflux =

where t is a regular, sub-daily time interval (here t measures as decimal hour at half-
hourly time-step). The resulting Cy, is the weighted mean hour of the diurnal cycle of
that particular flux for that particular day. For example, if a calculated Cgr for a given
day (using measurements of decimal hour) equals 12.25, this would entail that the
weighted mean for that day is 15 minutes past noon. Figure 1 shows an example of the
shifts in the monthly average cycle from a wet month to a dry month. In order to isolate
a shift, we then had to control for variations in global radiation (Rg), both fluctuations
due to clouds and differences in the timing of solar noon. Therefore, the difference
between the diurnal centroids of ET (Cgr) and Rg (Cg,) was calculated as

Cty = Crg — Car (2.6)

giving C; as the diurnal centroid of ET relative to Rg. The resulting values of C,; are not
tied to the carbon cycle, which can be affected by non-stomatal limitations and generally
shows a more prominent midday depression. Annotated code for the CSWI calculation
can be found in File S4 as well as at Nelson (2017). Though a diurnal centroid can
be calculated for any diurnal cycle, basing a metric on the morning shift of ET relative
to Rg has the advantage of targeting the non-atmospheric drivers of the water flux, of

which there are few ancillary variables.
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Figure 2.1 One month average cycle (soild lines) and accompanying diurnal centroid
(vertical dashed lines) of incoming shortwave radiation (Rg), evapotranspiration (ET),
and gross primary productivity (GPP) at the Peuchabon, France (‘FR-Pue’) site during
2003. May is relatively wet (32 mm rainfall, left) and July is relatively dry (0 mm
rainfall, right). While ET and Rg correspond well in the wet month, the dry month
shows a distinct phase shift in both GPP and ET fluxes towards the morning, as well as

a midday depression in GPP.

2.2.3 Diurnal water carbon index (DWCI)

If transpiration and carbon assimilation are predominantly controlled by stomatal con-
ductance, it follows that their diurnal cycles should be largely in sync. In other words,
regardless of a plants maximum T or A, if the stomates start to close, both rates should
be decrease by a similar percentage. On the other hand, non-stomatal limitations that
inhibit carbon assimilation independent of water have the capability to alter the diurnal
cycle on just one flux, causing them to decouple. In an effort to quantify the degree of

carbon:water coupling for an individual day, we examined the relationship of GPP and

ET, where,

ET o« GPP - VVPD 2.7)

or,

ET =1i-GPP-VVPD (2.8)
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This relationship incorporates the assumption that, at least over short time scales, the
amount of carbon that enters the leaf is proportional to the amount of water that leaves,
and also incorporates the non-linear response of stomates to VPD (Katul et al., 2010;
Katul et al., 2009; Zhou et al., 2014). This model, though simple, has been shown to
work well across a variety of EC sites (Zhou et al., 2015). Figure 2 (upper panels a,b)
shows a comparison between the daily cycles in a wet and dry month. By calculating a
daily correlation between the normalized daily cycles of ET and GPP-VVPD, we come to
a correlation coefficient for each day (see Figure 2, lower panels c,d). For well watered
days in the growing season the two signals tend to be well correlated (>0.9), but tends
to be less correlated in periods of stress, a comparison of which can be seen seen in

Figure 2 (lower).

As it is, this daily correlation coefficient is dependent on the signal strength, or mag-
nitude, of the flux. Low correlation values could just as easily be from carbon:water
decoupling as to a low signal to noise ratio. Therefore, to produce a more robust metric
and account for these statistical decreases in correlation, we turned the daily correla-
tion coefficient into an index based on its rank in a distribution of correlation coeffi-
cients from artificial datasets. These artificial datasets are constructed using the diurnal
signal from potential radiation, with Gaussian noise (N(0, 0)) added according to the

standard deviation random uncertainty of the ET and NEE fluxes, or

Rgpot —
LEartificial = i : LE + N(O) G%E|NEE) (2.9)
Rgpot
and
Rgpor  —— )
NEEartificial i NEE + N(OJ GNEE|LE) (210)
Rgpot

Uncertainties of the NEE and ET fluxes were estimated from the gap filling procedure
of Reichstein et al. (2005b), with the uncertainty equal to the standard deviation of
flux measurements within a time window and similar meteorological conditions. As
GPP is calculated from gap-filled values of NEE, the uncertainty from NEE was used for
GPP. Furthermore, the correlation structure between the noises in LE and and NEE was

preserved in the artificial dataset.
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In essence, by using the underlying signal from potential radiation, both the artificial
ET and GPP - VVPD are perfectly correlated when no noise is added. Adding noise
then isolates the decoupling effect of signal to noise ratio. An artificial correlation co-
efficient can then be calculated from the two artificial datasets in the same manner as
from the real dataset, and this experiment is repeated 100 times for each day, giving
a daily distribution of artificial correlation coefficients. The rank of the real correlation
coefficient in the distribution from the artificial set gives a probability that the carbon
and water signals are actually coupled. The resulting index has a range of 0-100, with
100 indicating that the real correlation coefficient was greater than the entire artificial
set, and therefore it is very likely that carbon and water are coupled. From this index
we can now quantify if the water and carbon signals are coupled for any given day, and
therefore shed light onto whether the two fluxes are only controlled by the opening and
closing of stomates. Annotated code for this calculation can be found in File S5 as well
as at Nelson (2017).
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Figure 2.2 Theoretical overview of diurnal water carbon index upper panels: One
month average diurnal cycle of incoming shortwave radiation (Rg), evapotranspiration
(ET), vapor pressure deficit (VPD), gross primary productivity (GPP), and GPP*VPD 0>
at the Peuchabon Forest, France (‘FR-Pue’) site during 2003. Discrepencies between
GPP + VPD™ % and ET increase from the relatively wet May (32 mm rainfall, left) to
the relatively dry July (0 mm rainfall, right). lower panels: These discrepencies are
reflected in the daily correlation values between GPP * VPD~° and ET, giving an indi-
cation of the appropriatness of the uWUE model for each day, as well as the degree of
coupling between water and carbon signals.
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2.2.4 Models and parameter estimation

In order to benchmark whether these metrics are capturing information that is possibly
not being captured in modern model frameworks, three simple models were used to
estimate WUE (GPP/ET) for each day at each site and compared to actual flux data.
The purpose of the exercise was to evaluate if bias in the model predictions were as-
sociated with decoupled or morning shifted days, thus indicating that the metrics are
corresponding to information that the models are unable to capture. Here we utilize
three models to provide a spectrum of theoretical to empirical basis. The “Katul-Zhou”
model, as defined and used in calculation of the DWCI, is based in stomatal optimiza-
tion theory (Katul et al., 2010; Katul et al., 2009; Zhou et al., 2015), which makes the
assumption that the WUE is constant if corrected by the effect of VPD, using an inverse
square root as the assumed relationship. Though the constant nature of uWUE may not
be correct, with the optimal carbon cost of water changing over day or weeks (Manzoni
et al., 2013; Palmroth et al., 2013), a yearly parameter of uUWUE was estimated which
is consistent with other modeling exercises (Zhou et al., 2016a). One step away from a
theoretical basis is a revision of this model by Boese et al. (2017), the “Boese” model,

where an additional radiation term was added such that,

ET =i-GPP-VVPD +r-Rg (2.11)

where i and r are parameters fit to each site-year. This relationship with Rg was shown
to have a better predictive performance for EC data from 115 sites (Boese et al., 2017).
The interpretation of this extra radiation term is not clear and is difficult to reconcile
with the current understanding of physiology. It is possible the term could be related
to biophysical effects, e.g. VPD at leaf surface vs the measured ambient VPD. Neverthe-
less, the Boese model is an empirical and ecosystem scale model that complements the

theoretical and originally leaf-level model from Katul-Zhou.

Parameters of these models were estimated for each site-year. The Boese model param-
eters were fit using trimmed least squares regression (TLS) which minimizes the 90th
percentile of SSE to prevent influence of large outliers (Rousseeuw, 1983; Reth et al.,
2005). As the error in both ET and GPP are assumed to be of similar magnitude, the
i parameter in the Katul-Zhou model was calculated using geometric mean regression,

where the final slope was calculated as the geometric mean of the parameters from
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ET
ET =igpp - GPP - VVPD and GPP - VVPD = — (2.12)

LET

Both the Katul-Zhou and Boese models are theoretically based and here implemented
have the underlying assumptions of RuBisCO-limited conditions and constant carbon
cost of water throughout the season which may not reflect reality. Therefore a fully em-
pirical and highly non-linear model can give insight into how much information is actu-
ally stored in the data while minimizing any assumptions. As a fully empirical model, a
random forest regression (RandomForestRegressor from Pedregosa et al. (2011) based
on Breiman (2001)) was fit to half-hourly ET data for each site using Rg, VPD, Tair,
GPP and year as input parameters. Values were estimated using 50 trees with predic-

tions made using out-of-bag estimates to prevent over-fitted model predictions.

2.3 Results
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Figure 2.3 Monthly median diurnal water carbon index (DWCI, lower panels) and di-

*

urnal centroids (Cy;,
(black) is compared to 2003 (red) during which a drought event resulted in high tem-

upper panels) for 6 sites in Europe. Data from all years available

peratures and low precipitation throughout the summer. Note DWCI of 0-100 indicate
lowest-highest probability of diurnal carbon:water coupling and Cy, of -1 to 1 indi-
cate one hour morning shifted to one hour afternoon shifted ET. Vertical bars represent
interquartile range. Sites from 4 plant functional types: evergreen broadleaf (EBF), de-
ciduous broadleaf (DBF) and evergeen needleleaf (ENF) forests, as well as grasslands
(GRA). Ecosystems show tendancies of morning shifts (e.g. DK-Sor and NL-Loo) and
carbon:water decoupling (e.g. ES-ES1 and HU-Bug) during the drought year.
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As a case study, Cr. and DWCI time-courses for six sites from Europe are shown in Fig-
ure 3, with an emphasis on 2003 when the continent was struck by a heatwave that
was shown to effect both the carbon and water cycles (Ciais et al., 2005; Reichstein et
al., 2007; Granier et al., 2007). For DWCI, forest sties showed high water:carbon cou-
pling throughout the growing season, with the exception of Peuchebon (FR-Pue) which
showed a regular seasonal cycle of decoupling. The grassland site (HU-Bg) showed a
higher variability in DWCI compared to the forest sites (all others). All sites showed
either a decrease in median DWCI or an increase in variability during 2003, generally
in July or August, particularly at Hainich (DE-Hai), Bugacpuszta (HU-Bug), and El Saler
(ES-ES1). This increase in decoupling during 2003 is consistent with the hypothesis of
non-stomatal limitations being expressed in hot, dry conditions which can affect carbon
fixing mechanisms. Median diurnal centroid values across all years varied in absolute
magnitude, but were generally near or above zero, i.e. the water cycle showed no shift or
an afternoon shift. One exception would be the Mediterranean oak forest of Puechabon,
which shows a slight seasonal cycle of morning shifts going from a slight afternoon shift
to a slight morning shift during June, July, and August. During drought years, sites that
showed distinctive morning shifts were Puechabon (FR-Pue), Soroe (DK-Sor), and Loo-
bos (NL-Loo). The framework that morning shifts are associated with water stress from
soil moisture depletion would be supported by the increase in morning shifts during
2003, though factors such as species composition and access to soil water would play a
significant role and could account for the differences among sites. All sites had signifi-
cantly different (p<0.05, Wilcoxon rank-sum test) DWCI values between 2003 and all
other years except Puechabon, whereas with C7, only Puechabon, Soroe, and Loobos

showed significant differences.
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2.3.1 Distribution of data driven indicators by vegetation type and

climate
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Figure 2.4 The frequency of morning-shifted Diurnal Centroids (Cy, <-0.25 hours, up-
per panels a,b) and low diurnal water carbon index (DWCI<25, lower panels c,d) for
690 fluxnet site-years/192 sites, grouped by climate group (left panels a,c) and plant
functional type (right panels b,d). Group labels on x-axis indicate the number of site-
years/sites (n=site-years/sites) for each category. Dashed line is the median for all
site-years. Color shade indicates level of significance, with light colors and dark colors
having p-values <0.10 and <0.05 respectively (Wilcoxon-Mann-Whitney two-sample
rank-sum test), red and blue colors indicate distributions higher and lower respectively
compared to data from all sites excluding the group. Only sites-years with at least 20
data points and groups with more than 5 site-years were included.

The frequency of low values of diurnal centroid and DWCI across climate groups and
plant functional types is shown in Figure 4. The thresholds designating decoupling and
morning shifts were 25 and -0.25 for DWCI and C7, respectively. These thresholds were
chosen to highlight frequency differences between sites and were shown to have large
metric responses under dry conditions while having low frequencies under wetter con-

ditions (see sensitivity analysis in supplementary Figure S2). Furthermore, these thresh-
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olds results in a similar median frequency of uncoupled and morning shifted days be-
tween all site-years being 8.7% and 9.4% of days respectively. The similarity in median
frequencies across site-years allowed for easier inter-comparison between the two met-
rics. The frequency of decoupling and morning shifts using these thresholds for each
site can be found in the map found in File S1. Though there is a fairly large vari-
ance across climate groups and plant functional types, low values of both DWCI and
Cpr occur at higher frequencies in savanna ecosystems and dry or Mediterranean cli-
mates. Conversely, lower frequencies of both metrics are seen in tropical, boreal, and
temperate-continental climates. Strikingly, the arid and semi-arid climate group seems
to be associated with the majority of low DWCI occurrences, with a median frequency of
about 20% of days being uncoupled between site-years. Overall, frequencies were highly
variable within plant functional types. Interestingly, Cy, seems to be more variable in
moderately dry ecosystems with potentially deep roots, favoring woodier savannas and
evergreen needle-leaf forests over grasslands and open shrub lands. In contrast, DWCI
shows similarly high frequencies from savannas and grasslands. The differing responses
between tree and grass dominated ecosystems can be further seen in Figure 5, where
savanna and grassland ecosystems show a distinct decrease in DWCI under conditions
of low EF, in contrast to the forested sites which show a higher degree of carbon:water
coupling, though still a slight decrease. Forested ecosystems show a higher degree of
morning shift under low EF conditions when compared to grasslands, with savannas

being somewhere between the two.
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Divergent responses of trees and grasses
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Figure 2.5 Median diurnal water carbon index (DWCI, upper panel) and diurnal cen-
troid (C;, lower panel) of plant flunctional types binned by evaporative Fraction (EF,
low values indicate dry conditions). Note DWCI of 0-100 indicate lowest-highest prob-
ability of diurnal carbon:water coupling and Cy; of -1 to 1 indicate one hour morn-
ing shifted to one hour afternoon shifted ET. Evergreen needleleaf (ENF), deciduous
broadleaf (DBF), and evergreen boradleaf (EBF) forests show increased morning shifts
(low Cj;) with decreasing EF when compared to grassland (GRA) sites which tended
to have decreased carbon:water decoupling (low DWCI) with decreasing EF. Savanna
ecosystems (SAV) show a high degree of decoupling and intermediate levels of morning

shifts. Vertical bars represent interquartile range.

The response of both variables to drought stress is further observed in Figure 6, where
low mean values of both DWCI and C7, are associated with conditions of high net radi-

ation and low latent energy, indicative of drought. As this figure includes all days from
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all sites which meet the filtering outlined in the Data subsection of the Methods, i.e. dry
periods in the growing season, these figures exhibit the universality of the metrics across
climates, ecosystems, and time periods. This pattern is much cleaner with the diurnal
centroid than with DWCI, though mean values are generally above 50 for most bins,
indicating that most days are well coupled. Low values of both indicators are also seen
under conditions with low Rn and high latent energy (as seen by the dark streak at the
top edged in Figures 6¢,e), which is generally not associated with drought stress. Further
analysis showed that these points are also associated with energy balance over closure,
where the sum of latent and sensible heat is greater than net radiation (ET+H>Rn, see
Figure S2) and therefore likely represent a data problem rather than a physiological
response. Removing all days where the energy balance is over closed did not alter the
patterns associated with drought. Apart from the response to periods of high LE and
low Rn, the metrics showed diverging response when looking at EF (ET/PET which is
similar to LE/Rn) and VPD, with DWCI showing a much stronger response to VPD and
Cr showing a much stronger response to EF (Figure 6a,d). This difference in response
would indicate that DWCI is more responsive to atmospheric demand (estimated via
VPD) and C, is more responsive to water limitations. Both DWCI and C7, also show a
trend with low GPP, although in the case of the diurnal centroid the effect is limited to
both low GPP and ET (Figure 6¢,g).
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Figure 2.6 Mean DWCI (upper panels) and Cy, (lower panels) with respect to evapo-

rative fraction (EF) by vapor pressure deficit VPD (a,d), latent energy (LE) by Rn (b,e)
and LE by GPP (c,g). Note DWCI of 0-100 indicate lowest-highest probability of diur-
nal carbon:water coupling and C7,. of -1 to 1 indicate one hour morning shifted to one

hour afternoon shifted ET. Points with high Rn and low LE are associated with both low

DWCI and C%

ET>

indicating that both metrics are related to water limitations. Though

both metrics are associated with low EF, DWCI shows a much higher response to at-

mospheric demand as measured by VPD, with Cy, showing very limited response. Both

metrics, and DWCI in particular, show low values with high ET and low Rn, though

these points are also associated with over closed energy balances (LE+H>Rn). Both
metrics are associated with low GPP, but the Cy;. is restricted to both low GPP and ET,

indicating water and carbon can decouple over a wider range of water stress. This also

holds when points with energy balance over-closer are excluded (data not shown).
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2.3.2 Difference between modeled and actual WUE
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Figure 2.7 Difference in modeled and measured WUE for Katul-Zhou (a), Boese (b),
and random forest (c) models. The random forest model was fit using Rg, VPD, T,
GPP, and year. Thresholds designating dry, morning shifted, and C:W uncoupled days
were EF<0.2, C;;<-0.25, and DWCI<25 respectively for each day. The distributions
span from the 5th to 95th percentiles, and the width of each gives an indication of the
variance, which is larger in the sub groups compared to all points. Furthermore, the
mean difference in WUE (black lines) tends to be shifted in dry and morning shifted
days indicating a mean underestimation of WUE by the models mostly due to the long
tails. Decoupled days show highter variance, but no clear pattern in under- or over-
estimation. The percentage of days in each category are designated next to y-axis label
in parenthesis.

Figure 7 shows the difference between expected and observed WUE from the Katul-
Zhou, Boese, and random forest (RF) models, with respect to conditions of drought
as characterized by low evaporative fraction (EF<0.2), C:W decoupling (DWCI<25),
and morning shifts (C;;<-0.25). This exercise was designed to test whether the metrics

were associated with bias in the models, indicating that the metrics are able to cap-
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ture information that the models are not (as further outlined in Methods and Materials
subsection “models and parameter estimation”). For all models, the dry days show the
largest average shift between expected and observed WUE, followed by morning shifted
days. Uncoupled days show the smallest shifts for all models, with an overestimation
of WUE for the Katul-Zhou and Boese models and no significant shift of WUE with the
random forest model. As all models were calibrated within a site-year, the over or un-
der estimation of WUE indicate an inability of the model to capture a change in the
system. Cases of mean mis-estimation tended to be influenced by long tails in the dis-
tribution with median differences being less exaggerated. However, these long tails are
indicative of major model error in periods where the ecosystem is likely under stress

conditions.

2.4 Discussion

2.4.1 Looking beyond sums and means

*
ET>

marize from sub-daily to daily timescales such as sums and means. This departure is

The proposed metrics, DWCI and Cj.., depart from more traditional methods to sum-
advantageous in that it extracts added information that may have been otherwise ig-
nored by turning the focus from signal amplitude to the signal shape. However, these
new metrics also come with their own set of caveats, most notably issues with data
quality confounding interpretability. Both metrics are susceptible to noise, as one or

two errant points within a day can be reflected as a decrease in correlation or a shift

*
ET>

sometimes by more than an hour, which the authors have no proposed explanation for

in diurnal centroid. This is evident from the existence of very afternoon shifted C

other than noise in the data. However, attributing highly afternoon shifted points as
poor data requires further investigation. Note here that the “resting” C, seems to be
slightly afternoon shifted, which could be caused by real physiological factors such as
differences in the incoming SW radiation (Rg) used in the calculation and net radia-
tion (Rn), higher atmospherics demand (VPD) in the afternoon driving higher ET, or
increased convection throughout the day resulting in higher transport of water away
from the canopy, and is likely a combination of all three. Differences in resting Cy,. be-
tween sites could also be from instrumental causes such as radiometric sensors which

are not adequately leveled or dirty, though the consistent, slight afternoon shifts would
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suggest this is a real response. Despite the possible shortcomings, both metrics show
a definite response to drought conditions across the broad array of sites, climates, and
ecosystems contained in FLUXNET (see Figure 6), and give valuable insight into the
underlying physiology. Given the broad nature of the analysis here, the metrics and hy-
pothesis presented would benefit from site specific validations such as looking to see if
the morning shits and decoupling are indeed associated with lower soil moisture lev-
els, leaf water potentials, and/or decreases in sap flux. Sap flux in particular could give
some interesting insights, as the diurnal patters in sap flux velocity will also have an
offset to incoming radiation related to tree capacitance, therefore relating sap flow di-
urnal centroids to the ET diurnal centroid could give some information on changes in
plant water recharge. Furthermore, the diurnal centroid base metrics complement the
hysteresis quantification methods such as those employed by Zhou et al. (2014) and
Matheny et al. (2014), with the advantage of Cy, being compensated for cloudy con-
ditions and possibly comparatively less influence of noise, though an intercomparison
would be useful to explore the strengths and weaknesses of the different approaches.
By providing both the equations and related code of the metrics, we the authors hope
the metrics will be used by the community for both validation and to further ecophysi-

ological understanding.

2.4.2 Trees, grass, and drought stress

By comparing climate groups and PFTs with the frequent occurrence of low DWCI and
Cpr from Figure 4, we can note two striking differences: evergreen broad- and needle-
leaf forests show high variability of morning shifted days but not uncoupled days,
whereas grasslands show significantly high uncoupled but not morning shifted days.
The pattern is further seen in Figure 5, where the distinct divergent responses of de-
coupling and morning shifts between tree and grass dominated systems. This disparity
may indicate an interaction of C; not only with drought, but hydraulic sensitivity. The
association of morning shifts to hydraulic sensitivity is further strengthened by Figure
6a,d where C7, shows a much stronger response to EF rather than VPD, indicating that
morning shifts of ET are not simply due to stomatal closure due to VPD but in fact a
response to drought conditions. The shorter hydraulic system of grasses may not ne-
cessitate stomatal closure under high demands (Holloway-Phillips and Brodribb, 2011),

thus causing less frequent phase shifts even under drought conditions. In contrast, tree
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ecosystems may only exhibit higher hydraulic stresses, associated with both dryness
and a more sensitive hydraulic strategy. Temperate-continental and tropical climates all
showed a low frequency of morning shifted days, even though they are occupied by
large trees with cavitation susceptible vascular systems (Konings and Gentine, 2016),
suggesting that these ecosystems show limited drought stress even with the hydraulic
susceptibility. Similarly, the high degree of variability of morning shifted frequency be-
tween site-years in sub-tropical/Mediterranean and evergreen broad- and needle-leaf
forests could either indicate variation in the response in hydraulic stress between sites,
or that hydraulic stress is only expressed some years, leading to high and low frequen-

cies within the same site.

In this way, it seems that though C7, is less noisy as a drought indicator (see Figure
6), it may only be of use in tree systems that are more prone to hydraulic stress. How-
ever, this does put the metric in a rather unique position in that it could be used as
a global scale hydraulic indicator, having potential application in exploring ecosystem
level isohydricity (Martinez-Vilalta and Garcia-Forner, 2016), or the degree to which
risks vascular system damage to continue to extract water. Isohydricity is intrinsically
a concept that relates to an individual plant, as dynamics of rooting depth, hydraulic
conductances, and sensitivities to VPD can vary within individuals of the same species at
the same location. However, these factors are all interrelated, as hydraulic and stomatal
conductances drive transpiration dynamics which control the rate of depletion of root
zone water which can then feed back to stomatal sensitivity, such as via ABA signaling
(Wilkinson and Davies, 2002). As such, current estimates of isohydricity require plant
level measurements, which are currently restrained to the individual scale, i.e. from ac-
tual leaf measurements (Martinez-Vilalta et al., 2014) or to global scale, but only 0.5
degree resolution estimates from radar (Konings and Gentine, 2016). This limitation
of large and small scales leaves a knowledge gap at the size of an eddy covariance
footprint, hindering the study of ecosystem response to drought. However, under the
assumption that the morning shifts seen under low evaporative fraction are related to
increased stomatal sensitivity in response to root zone moisture depletion, it may be
possible to compare the onset and speed with which the diurnal centroid shifts toward
the mornings as ecosystems dry. In this way, one could infer the ecosystem response
to soil moisture, without explicitly knowing the soil moisture. The resulting relation-
ship could prove useful as a data derived ecosystem functional property, giving direct

information on variations in water limitation response.
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2.4.3 C:W decoupling and energy balance closure

In addition to error from single data points, both metrics, but especially the DWCI, show
some relationship with energy balance over closure. Energy balance mismatch is a com-
mon phenomenon in EC measurements, with under closure (ET+H<Rn) being a more
common concern (Leuning et al., 2012; Wilson et al., 2002). Issues with energy balance
closure can be, among other causes, attributed to advection, where energy, water, and
carbon are transported in and out of the tower footprint, complicating an absolute ac-
counting of these quantities (Barr et al., 2006; Brotz et al., 2014; Wilson et al., 2003).
The apparent association of DWCI and over closure could be due to transfer of moist
air from the surrounding landscape, causing the DWCI to be more contingent on the
mixing of source air and less from plant controls. In this scheme, the over closure seen
in Figure 6 could be caused by the mixing of outside moist air into the drier air from
the EC site, causing an increase in latent energy. However, the infiltrating air sources
could also have similar or drier moisture levels which would not necessarily be seen as
over closure. In this scenario, this infiltrating air could contain varying carbon and wa-
ter concentrations, again causing a carbon:water decoupling, but one that would not be
associated with over closure. If this effect has no diurnal pattern, and thus does not gen-
erally influence the mean diurnal centroid in ET, it could explain why the patterns with
dryness are much clearer with C7, compared to DWCI. This would have the implication
that DWCI is then a mixture of advection and non-stomatal signals, complicating the
biological interpretability. However, the association with dryness in both metrics gives
credence that they do indeed reflect some physiology, if we assume EBC should not be
influenced by dryness level. Furthermore, if potential stress conditions are removed,
the DWCI could be useful as a metric of advection in the system, even when the energy

balance is relatively well closed.

2.4.4 WUE shifts associated with metrics and not captured by

models

Figure 7 demonstrates the strong tendency of the models to underestimation WUE in
dry conditions. This is true even for the fully non-linear and empirical random forest
model, indicating that the model under-performance is not necessarily due to an in-

complete model framework, but due to a lack of information to constrain the problem.
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Given the association of both metrics with drought (Figure 6), one could expect that the
models would underestimate WUE in uncoupled and morning shifted days. Though this
is the case with morning shifted days, decoupling shows no underestimations of WUE,
with even a mean overestimation in the case of the Katul-Zhou and Boese models. Given
the limitations outlined in the previous sections, one could blame noise for the lack of
WUE shift, but this does not reconcile with the higher frequency of decoupling during
dry days which should bias the WUE estimates. Furthermore, as the more empirical
random forest model reduces the prediction variability, leaving a slight WUE underes-
timation, indicating that some of the overestimation from the Katul-Zhou and Boese
models may be tied to limitations of the underlying assumptions, yet the distribution
from the RF model still lacks the long tails of underestimation characteristic of the dry
points. Extending these findings to the underlying hypotheses of the metrics, namely
hydraulic and non-stomatal limitations, we could conclude that the hydraulic controls
do impose a greater water use advantage than non-stomatal limitations. In other words,
the findings suggest that days with water:carbon decoupling, and possibly non-stomatal
limitations, do not improve WUE, whereas hydraulic responses can improve WUE. As
WUE is a ratio, this does not shed any light onto the change in productivity, as low values
of WUE may indicate that a plant is still productive, but at a higher water cost. However,
solid conclusions would require further analysis with some site specifics measurements

of actual plant function.

Though the models used here are relatively simple and lack the complexities and feed-
backs found in more vigorous ecosystem models, Matheny et al. (2014) also demon-
strated the fundamental inability of 9 different land-surface models with 4 different
stomatal conductance schemes to capture diurnal variability which the authors attributed
to inadequate representation of how water gets from the soil to the leaf. Given the
demonstrated phenomenon of morning shifts and decoupling across sites under dry
conditions, the metrics here provide a benchmarking tool for mechanistic models to test
their ability to replicate these patterns, suggesting that the models are capable of ex-
pressing hydraulic and non-stomatal limitations. Furthermore, in the case of machine
learning approaches, the metrics may provide a useful input parameter which summa-
rizes these diurnal effects, as is evidence by the difference in response the bias in RF
modeled WUE, i.e. while both metrics are associated with low EF, RF WUE was underes-
timated with morning shifted days but not decoupled days implying that two different

strategies are being captured by the metrics. As such, by demonstrating the utility of
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the metrics, and providing code and explanations for calculation, we hope they become

useful to the community at large.

2.5 Conclusions

Both the DWCI and the Cj, demonstrate an ability to show consistent patterns with
drought across a broad array of sites, climates, and ecosystems, with the added advan-
tage of being tied to theoretical underpinnings. Particularly, the demonstrated patterns
give novel information about carbon water relations and hydrological dynamics that
are not currently present at ecosystem scale across a database as large as FLUXNET.
These metrics and their underlying theory provide a data derived example differentiat-
ing the hydrological response of tree and grass plant functional types, as well as give
evidence for the presence and absence of a WUE advantage from hydraulic and stomatal
limitations respectively. Going forward, these metrics can be used as a tool to further

understand the diversity of ecosystem drought responses.

2.6 codedataavailability

Code used to calculate the metrics described here can be found both in the supplemen-
tary materials as well as at Nelson (2017). Data used in this analysis can be found at
http://fluxnet.fluxdata.org/
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Abstract Plant transpiration (T), biologically controlled movement of water from soil to atmosphere,
currently lacks sufficient estimates in space and time to characterize global ecohydrology. Here we describe
the Transpiration Estimation Algorithm (TEA), which uses both the signals of gross primary productivity and
evapotranspiration (ET) to estimate temporal patterns of water use efficiency (WUE, i.e,, the ratio between
gross primary productivity and T) from which T is calculated. The method first isolates periods when T is
most likely to dominate ET. Then, a Random Forest Regressor is trained on WUE within the filtered periods
and can thus estimate WUE and T at every time step. Performance of the method is validated using
terrestrial biosphere model output as synthetic flux data sets, that is, flux data where WUE dynamics are
encoded in the model structure and T is known. TEA reproduced temporal patterns of T with modeling
efficiencies above 0.8 for all three models: JSBACH, MuSICA, and CASTANEA. Algorithm output is robust

to data set noise but shows some sensitivity to sites and model structures with relatively constant
evaporation levels, overestimating values of T while still capturing temporal patterns. The ability to capture
between-site variability in the fraction of T to total ET varied by model, with root-mean-square error values
between algorithm predicted and modeled T/ET ranging from 3% to 15% depending on the model. TEA
provides a widely applicable method for estimating WUE while requiring minimal data and/or knowledge
on physiology which can complement and inform the current understanding of underlying processes.

Plain Language Summary While it is widely known that plants need water to survive, exactly
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Keypoints

TEA, a method for extraction of water use efficiency (WUE) dynamics from flux data with
minimal assumptions

Validation shows TEA is able to derive patterns of WUE and transpiration from 3 different
models

Method is applicable to eddy covariance datasets, opening the door to wide-scale transpira-
tion estimates
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Plant transpiration (T), biologically controlled movement of water from soil to atmo-
sphere, currently lacks sufficient estimates in space and time to characterize global eco-
hydrology. Here we describe the Transpiration Estimation Algorithm (TEA), which uses
both the signals of gross primary productivity (GPP) and evapotranspiration (ET) to es-
timate temporal patterns of water use efficiency (WUE, i.e. the ratio between GPP and
T) from which T is calculated. The method first isolates periods when T is most likely
to dominate ET. Then, a Random Forest Regressor is trained on WUE within the fil-
tered periods, and can thus estimate WUE and T at every time-step. Performance of the
method is validated using terrestrial biosphere model output as synthetic flux datasets,
i.e. flux data where WUE dynamics are encoded in the model structure and T is known.
TEA reproduced temporal patterns of T with modeling efficiencies above 0.8 for all 3
models: JSBACH, MuSICA, and CASTANEA. Algorithm output is robust to dataset noise,
but shows some sensitivity to sites and model structures with relatively constant evapo-
ration levels, overestimating values of T while still capturing temporal patterns. Ability
to capture between site variability in the fraction of T to total ET varied by model, with
RMSE values between algorithm predicted and modeled T/ET ranging from 3 to 15
% depending on model. TEA provides a widely applicable method for estimating WUE
while requiring minimal data and/or knowledge on physiology which can complement

and inform the current understanding of underlying processes.

While it is widely known that plants need water to survive, exactly how much water
plants in an ecosystem use is harder to quantify. However, many places have been mea-
suring how much total water leaves an ecosystem, both the water plants use directly
and the water that simply evaporates from the soil or the surfaces of leaves, using eddy
covariance towers. These eddy covariance towers also measure the coming and going
of carbon, such as the total amount of carbon taken up by photosynthesis. Here, we
present the idea that by using the signals from both photosynthesis and total water
losses together, we can capture the water signal related to plants, namely transpiration,
using an algorithm called TEA. To verify that TEA is working how we expect, we test it
out using artificial ecosystem simulations where transpiration and photosynthesis come
from mathematical models. By throughly testing TEA, we have a better idea of how it
will work in a real world situation, hopefully opening the door for a better understand-
ing on how much water ecosystems are using and how it might affect our changing
planet.
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3.1 Introduction

At current state, transpiration (T) is a key ecosystem process that lacks the widespread
and consistent estimates necessary to study ecohydrological processes globally. For ex-
ample, a recent meta-analysis by Wei et al. (2017) analyzed an aggregation of ecosystem
level T estimates resulting in a dataset of only 64 studies conducted between 1941 and
2014, a relatively sparse dataset when attempting to capture global variability. As such,
demand for T datasets that can encompass the variety of ecosystem responses to water
availability has been highlighted as a key need, both from the perspectives of the wa-
ter (Fisher et al., 2017) and carbon (Rogers et al., 2017) cycle communities. Though
transpiration and evaporation (E) processes are built into most ecosystem and land sur-
face models, resulting estimates are poorly constrained, as can be seen in the spread of
global T/ET estimates from CMIP5 which ranged from 22-58% (Wei et al., 2017). Here
we present an approach for estimating T which is applicable to eddy covariance (EC)
networks, and is data driven providing an alternative perspective to current process

based approaches.

The difficulty in partitioning evapotranspiration (ET) into the biotic component (tran-
spiration, T) and the abiotic component (here evaporation, E) is partially due to equi-
finality, as E and T share the same primary environmental drivers making the problem
difficult to constrain. From the view point of physics, transpiration is an evaporation
which is then modulated by stomatal resistance, making the task of distinguishing the
two fluxes particularly challenging. However, a key distinction of T lies in that it is regu-
lated by an active process via stomatal control, which is linked to plant photosynthesis.
To this end, the method we propose aims to utilize this link between water and carbon
cycles as the key differentiating process between E and T in an effort to distinguish the
two.

As reviewed in Kool et al. (2014), many approaches to partition ET attempt to pair a
separate E and/or T distinguishing estimate, such as measurements of sap flux, isotope
fractionation, or carbonyl sulfide (OCS) flux, in tandem with an ET estimate. Sap flux
measurements, which estimate the flow of water through a stem (Granier, 1987), is
currently the most widespread method. Though sap flux measurements have proven to
be effective at measuring tree water fluxes, estimating ecosystem T relies on upscaling

point source sap flow estimates based on an approximation of sapwood area, which can
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be problematic in ecosystems with high plant diversity, hampering suitability for uni-
versal application (Oishi et al., 2008; Poyatos et al., 2016). Isotopic methods take ad-
vantage of the isotopic fractionation of water oxygen (*¥0/'°0) and hydrogen (*H/'H)
which occurs from evaporation but not root uptake, producing isotopic signatures re-
lated to the T:E ratio. Isotopic methods have been used both at global scales (Jasechko
et al., 2013; Good et al., 2015) and at high temporal resolutions (Good et al., 2014), yet
are limited in the number of sites and length of time-series. In general, global isotopic
estimates of T/ET tend to be higher than site estimates (Wei et al., 2017), some even
controversially so (Coenders-Gerrits et al., 2014). The OCS method attempts to use the
flux of OCS uptake by leafs to estimate ecosystem canopy conductance directly, as the
pathways of CO, and OCS are similar (Sandoval-Soto et al., 2005; Whelan et al., 2017).
The calculation of conductance is simplified when using OCS, as it does not have the
complication of having a large source component such as is the case with respiration
and CO, (Wehr et al., 2017). While the OCS method is promising, the novelty and po-
tential complications due to alternate sources/sinks of OCS (Wohlfahrt, 2017; Gimeno

et al., 2017) have resulted in limited applications in practice.

Due to the limits of current T estimates, and shortfalls in understanding ecosystem wa-
ter dynamics, data driven approaches can provide an alternate perspective. Widespread
monitoring of both water and CO5, fluxes provide rich datasets which can inform T esti-
mates by utilizing concepts of water use efficiency (WUE), here defined as the ratio of
gross primary productivity (GPP) to T. At present, data driven approaches to estimate
ecosystem WUE and T do exist, such as the method proposed by Zhou et al. (2016a)
(hereafter referred to as the SZhou method") which is based on estimates of annual un-
derlying water use efficiency from gross primary productivity (GPP) and vapor pressure
deficit (VPD), calculated as

GPP, - \VPD
uWUE, = [ET : (3.1)
t

where the VVPD term represents an approximate stomatal response which is broadly
applied to many ecosystems. uWUE is related to the carbon cost of water which is
assumed to be constant in light limited leaves over timescales of days to weeks. By
incorporating the YVPD term, the carbon:water relationship becomes linear and uWUE
values can be estimated using linear regression where uWUE is the slope parameter. The

Zhou method makes a T/ET estimate by taking the ratio of a normal linear regression of
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uWUE estimated within one day (which would include the E component), and the 95th
percentile regression of annual uWUE which is assumed to contain only transpiration.
The key assumptions are then that uWUE is constant within a year and that the 95"
percentile of uUWUE corresponds to conditions where E ~ 0. E is most likely to be zero
at high percentiles because these points correspond to periods with the highest ratio of
GPP/ET, whereas points with a high E component would increase ET with no added T
causing the uWUE to decrease. Points over the 95 percentile are assumed not to be

representative of uWUE, possibly due to noise.

While Zhou et al. (2016a) and other data driven WUE estimates (Beer et al., 2009;
Scott and Biederman, 2017) have laid the foundation for globally useful WUE and T es-
timates, they have yet to be rigorously validated, likely in part due to the limited avail-
ability of verification datasets as described in the previous section. Notably, assumptions
on ecosystem WUE dynamics which are not fully understood must be taken into con-
sideration. In particular, non-linearities in the GPP to T relationship must be addressed
such as the known effects from stomatal response (VPD) (Beer et al., 2009; Katul et al.,
2009; Zhou et al., 2014). Though the Zhou method does attempt to account for VPD
effects, the resulting uWUE estimate is tied to annual time periods and does not allow
for seasonal or diurnal variations in plant and ecosystem responses, only accounting
for the VPD response. Boese et al. (2017) concluded that the uWUE framework could
be outperformed by empirical models that included incoming radiation, suggesting that
only incorporating VPD may not be sufficient to characterize the carbon:water relation-
ships at ecosystem level. As such, the method proposed here attempts to derive WUE
dynamics from a data-driven perspective, using a non-linear, machine learning method
to characterize the carbon:water relationship and thus make few assumptions on the

ecosystem WUE dynamics.

3.1.1 Method outline and objectives

We identify two key limitations of the current methods outlined: 1) Restricted applica-
bility or spatiotemporal scope, particularly with direct T measurements; 2) Strong as-
sumptions of carbon:water relationship, particularly with EC dependent methods, which

have the potential to bias WUE and T estimates.

We aim to overcome the first limitation by basing the method only on water, energy, and
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carbon EC fluxes with associated meteorological data to make predictions at half-hourly

to hourly scale with minimal data requirements.

To address the second limitation, we validated the presented ET partitioning method
against model output in an effort to assess sensitivities and limitations. The use of artifi-
cial datasets has proven useful both in the field of biogeochemistry (Jung et al., 2009),
as well as adjacent fields (Jasechko et al., 2014; Ishizaki et al., 2014). We used three
separate models in an effort to reduce the influence of any one set of model assump-

tions.

Here we introduce the Transpiration Estimation Algorithm (TEA), which uses ecosystem
WUE (eWUE = GPP/ET) to predict transpiration in two steps (see Figure 1): (1) a
data-filtration step to isolate the signal of ET for periods where E is minimized and ET
is likely dominated by the signal of T, i.e. during periods of the growing season with
dry surfaces; and (2) a step which predicts the WUE using meteorological variables,
as well as information derived from the carbon and energy fluxes. This prediction of
WUE translates to a novel transpiration estimate which aims to be capable of capturing

seasonal and diurnal dynamics with wide application potential.

The key hypothesis to be tested here is: does the TEA algorithm capture the dynamics of
WUE and T encoded in the models? If the method cannot capture WUE dynamics from
the three different models, we can assume it will not capture real world WUE dynamics,
thus the exercise is a sanity check on whether TEA is capable of extracting physiological
patterns of ecosystem WUE. Furthermore, we explore scenarios when a key assumption
is broken, i.e. evaporation is persistent at every point in time, as well as how evaporation

can bias the results, and how to mitigate this bias using percentile regression.
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Figure 3.1 Theoretical outline of both the TEA algorithm (lower section) and valida-
tion steps (upper section). TEA consists of a filtration step to isolate dry periods when
vegetation is active using the conservative surface water index (CSWI), then a Ran-
dom Forest Regressor is trained on the filtered dataset to characterize WUE dynamics,
which are then predicted for the entire time-series. The validation scheme involves us-
ing model output as a synthetic flux dataset, to evaluate if TEA is able to replicate the
WUE dynamics encoded in the models.

3.2 Methods

3.2.1 Isolating training periods

To accomplish the characterization of T in time, we used the assumption that the signal
of T/ET ~ 1 under conditions where the ecosystem has minimal surface moisture and
the plants are photosynthetically active, as manifest via the set of filters outlined in
Table 1. Filters were constructed from half hourly flux and meteorological data which
excluded periods that did not meet filter criteria (individual half hours were removed).
Periods likely to have no or low photosynthetic activity were removed, such as night
time values or periods with low temperatures, as well as full days that did not reach a
minimum threshold of total daily GPP. Periods expected to have high surface moisture
were removed using the conservative surface wetness index (CSWI), a shallow bucket
model where the bucket represents the surface water storage (S) for each half-hourly

time-step t (S;) relative to the last precipitation event, or,
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S¢ = min (St—l + P; — ET, Smax) (3.2)

where P; is the precipitation at time t and S, is the maximum allowable storage (size
of bucket). S, Was set to 5 mm, and values from 3-9 mm showed no difference in filter
utility (data not shown, further discussed in section 4.2). The CSWI is then calculated

as

CSWI = max (S;, min (P, Smax)) - (3.3)

Periods were considered sufficiently dry based on a CSWI limit, i.e. periods where
CSWI < limit are assumed to have dry surfaces. As opposed to other methods of iden-
tifying wet and dry conditions, such as removing periods after rain events, the CSWI
accounts for the amount of rain evaporated and therefore compensates for small rain
events which may evaporate relatively quickly as well as for periods of low ET after
rain events such as persistent clouds reducing radiation inputs where surfaces may stay
wet longer. As the appropriate limit for CSWI was unknown, this limit then becomes an
input parameter to the algorithm which is not optimized, or hyperparameter, hence a
sensitivity analysis was conducted across a range of limits from 2 to -3 mm (see section
3.2 in Results). The CSWI limits were not extended past -3 mm, as lower limits resulted
in fewer than 500 half-hours remaining in the training dataset at some sites, which was
considered too few to properly characterize site variability. Note that the limit of 500
half-hours is arbitrary and possibly conservative, however results indicate stricter limits
(i.e. CSWI < -3 mm) may cause the training dataset to only include periods of water
stress and decrease prediction performance (see Figure 7). Similarly for CSWI, periods
when daily GPP was too low were also filtered in an effort to remove periods when the
plants are realtively inactive, such as transition periods from winter to spring. A min-
imum daily threshold of 0.5 gCm~2d~! was found to give a good performance, and a

sensitivity analysis to daily GPP filter can be found in supplementary Figure S1.

Each individual filter was combined (logical AND), resulting in a filtered time-series that
was then used to calculate half-hourly values of eWUE to be used as a training dataset

in the next section, hereafter referred to as the training dataset.
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Table 3.1 Overview of filters used to isolate conditions where the signal of ET is dom-
inated by T. GPP and Ty;, filters were designed to ensure plants are active, while Rg
filters remove nighttime values. The CSWI filter attempts to remove periods where the
surface is likely to be wet, a sensitivity analysis of which can be found in section 3.2.

variable long name half-hourly limit daily limit
GPP gross primary productivity > 0.05 > 0.5
pmolC -m=2 . s71 gC-m2.d71
Tuir air temperature >5°C -
Rg incoming radiation >0W-m—2 -
CSWI conservative surface < -3to2mm -

wetness index

3.2.2 Modeling WUE and predicting T

Using a set of features X, we trained a random forest regressor (RF) (RandomFore-
stRegressor from Pedregosa et al. (2011) based on Breiman (2001)) on eWUE within
the training dataset (for each site) made with the filters outlined in Table 1. Features
consisted of four meteorological variables: incoming radiation (Rg), air temperature
(T4ir), relative humidity (RH), wind speed (u); four derived variables: the derivative
of a Gaussian filtered GPP (GPP’), the Rg normalized diurnal centroid of ET (Cg;),
the diurnal water:carbon index (DWCI), conservative surface wetness index (CSWI); as
well as daily potential radiation (Rgpot,daity), the derivative of daily potential radiation

, . :
(Rgpot, daily)’ and year. The resulting feature vector X is,

X = [Rg, Tair, RH, U, Rgpot daily> R0 gaity» CSWI, GPP', Cyz, DWCI, year]. (3.4)

Note that C7, measures the morning shift of diurnal ET, and DWCI measures the degree
of correlation in one day between GPP and ET; a detailed explanation of C., DWCI,
and CSWI can be found in Nelson et al. (2018b), code for which can be found at Nelson
(2017). The set of features X was designed to give the RF regressor information on

processes that may impact WUE.

The full time-series of WUE was then predicted for all half-hours (unfiltered data) using
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the resulting model as,

WUEt,pred = RFP(Xt: P) (3.5)

where P is the percentile used from each resulting predictive leaf, or prediction per-
centile (Meinshausen, 2006). Quantile random forest regression is analogous to the
linear quantile regression use by the Zhou method, but makes no assumptions on lin-

earity.

The RF utilized 100 trees which were fully grown, and each splitting node consisted of a
maximum number of features equal to one third the total number of features, rounded
up. A sensitivity analysis of the number of trees and max number of feature parameters

can be found in supplementary Figure S2.

As ET in the training dataset is assumed to be only a proxy of T, there is likely E still
present even after filtering. For example, when making a prediction for a particular half
hour the process would work as follows: features of the half hour would be fed to the
RF (Rg, T,r, RH, etc...); in turn the RF will return a number of WUE values which it
has identified as associated with the particular features of that half hour; this set of
returned values can then be summarized, which is typically via the mean, but can also
be a median or any other quantile such as the percentiles used here. If one assumes that
all these WUE values from the RF for a half hour represents a single "true WUE"(GPP/T)
that is contaminated by some residual evaporation (GPP/(T+E)), the best summary
statistic to use would be the maximum, as that would be the point most likely to have
minimal residual evaporation. However, because the assumption that the WUE values
returned from the RF likely do not represent a single "true WUE", and instead variability
comes both from residual evaporation and variability in WUE, the most appropriate
percentile is not known. Therefore, the magnitude of predicted WUE can be adjusted
using the percentile of prediction from the random forest and the optimum percentile,
another hyperparameter which is not known a priori. A sensitivity analysis of prediction
percentiles can be found in results section 3.2. Note that extraction of percentiles from
50-100 are the result of a single prediction step with a single trained RF regressor,

i.e. the RF was not retrained for each percentile.

Given an estimate of WUE, the prediction of transpiration at time t was calculated

as,
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GPP,

= — (3.6)
WUEt, pred

t

for each half hour, where nighttime values of T are considered zero. The evaporation

component at time t was then estimated as,

E; = ET; - T:. (3.7)

All code for processing and partitioning, as well as interactive examples, can be found
in Nelson (2018).

3.2.3 Model output used for method evaluation

To test the predictive performance of the method, WUE and T estimates were compared
to output from three separate models with different underlying carbon:water coupling
mechanisms: CASTANEA (Delpierre et al., 2012; Dufréne et al., 2005), JSBACH (Re-
ick et al., 2013; Knauer et al., 2015), and MuSICA (Ogée et al., 2003; Potier et al.,
2015; Wilkinson et al., 2015). Each model comes from a slightly different perspective,
characterized by different model structures and ways of dealing with carbon-water re-
lationships. JSBACH differs from the other two models in that it is a land surface model
designed to be integrated into a global climate model, which was run off-line for this
study. MuSICA separates the canopy into multiple layers, with each layer containing
various plant components each with their own water status, light regime, and age. CAS-
TANEA focuses on the growth, carbon allocation, and water budget of a monospecific

forest stand.

Models were run using meteorological forcing data from 73 different sites, with 85
model runs in total (see full list in File S6). Meteorological forcing data for the mod-
els came directly from the flux towers. This exercise was designed to test whether the
method is capable of extracting a known carbon:water relationship even when the un-
derlying assumptions are different. The ability of the algorithm to infer the complex
formulations from these process based models gives credence to the capability of the
method to estimate these processes in real data. Therefore, the method was applied to

the modeled GPP and ET fluxes paired with the respective forcing meteorological data,
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with the resulting TEA algorithm transpiration estimates compared to the modeled T.
An intercomparison of the three models which used the same meteorological forcing
dataset can be seen for three sites in Figure 2. Key distinctions between the models can
be seen in the LAI and T/ET, with highest values of leaf area index (LAI) from CAS-
TANEA and MuSICA, and highest T/ET values being from JSBACH. An overview of key

model features can be found in Table 2.

DE-Tha FR-Hes FI-Hyy
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Figure 3.2 Average seasonal cycle of 4 output variables from JSBACH, CASTANEA,
and MusSICA, all driven with the same meteorological forcing from three forest sites.
Modeled years were 1997-2011 for FI-Hyy and FR-Hes, and 1997-2010 for DE-Tha.
Data presented corresponds to daily data averaged across all years, and are intended
to show seasonal trends.

Comparisons between model output and TEA estimations were focused on two key
aspects: replication of patterns and minimizing bias. The ability to capture patterns was
assessed using the modeling efficiency (MEF, Nash and Sutcliffe (1970)), calculated

as:
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Z (Tt,model - Tt,TEA)Z

MEF =1 - LA
Z (Tt,model - Tmodel)z

(3.8)

As this metric is meant to identify only patterns so as to differentiate bias due to consis-

tent over/under estimations and inability to capture temporal patterns, the mean values

of Trga and Tyo40 are removed prior to calculating the MEF. Quantification of bias was

calculated as a relative bias,

Z Tt,TEA - Z Tt,model

(3.9
Z Tt,model

bias =

Table 3.2 Overview of key processes in the 3 models used for validation.

MuSICA

interception

water stress

stomatal conduct.
soil evap.

phenology

JSBACH

interception

canopy rain interception and water storage on leaf surfaces
are computed in each vegetation layer using a water balance
equation and the concept of maximum storage capacity, scaled
by the leaf area of each layer (Rutter et al., 1971). Evaporation
from the interception storage is taken at the potential rate in
each layer. More details are provided in Potier et al. (2015)
stomatal conductance, leaf photosynthetic capacity, and/or
root hydrauilc conductivity downregulated based on
instantaneous (Tuzet) or predawn (Ball, Leuning) leaf water
potential

Ball et al. (1987), Leuning (1995), or Tuzet et al. (2003)
depending on parameterisations available for individual sites
litter acts as a separate, insulating layer

dates of phenology events (bud burst, senescence) and
minimum/maximum leaf area are constant throughout the

simulation and supplied by the user

water storage for the whole canopy, scaled by LAI, with

evaporation from interception storage at the potential rate



66 Coupling water and carbon fluxes to constrain estimates of transpiration

water stress non-linear reduction of gl (stomatal slope parameter) and
photosynthetic capacity (Vemax and Jnqy) based on available
soil moisture
stomatal conduct. Medlyn et al. (2011)
soil evap. soil evaporation coming from top soil layer (of 5)
phenology Logistic Growth Phenology model (LoGro-P); calculation
depends on the phenotype, dependent on temperature, soil
moisture, and NPP; for evergreen and deciduous forests
(described in Bottcher et al. (2016)): heat sum approach in
combination with a critical number of chill days
CASTANEA
interception water storage for the whole canopy, function of WAI (wood
area index) and LAI
water stress linear reduction of g1 based on extractable soil water content
stomatal conduct. Ball et al. (1987)
soil evap. evaporation coming from both litter and top soil layer, soil
moisture levels updated daily
phenology LAI dynamics based on degree-days (Delpierre et al., 2009);
for coniferous trees, winter regulation of
photosynthetic-transpiration activity further modulated by

thermal acclimation (Delpierre et al., 2012)

3.2.4 Noise and evaporation sensitivity experiments

To isolate the effects of noise and training set E, two artificial experiments were con-
ducted where the data from each model run were used to create a series of new experi-
mental datasets. The first case attempted to assess the sensitivity of the TEA algorithm
hyperparameters to the presence of noise, which is likely to be present in real EC data
and is not present in the model output. The second experiment aimed to isolate the
effect of E on prediction bias, with the aim of understanding how a persistent fraction

of E may potentially bias T estimates.

To test the effects of noise, Random Gaussian noise was added to the original modeled
GPP and ET values with a standard deviation corresponding to a scaling factor (s) ac-

cording to percentages of the original value: 5, 10, 15, 20, and 25%. The experimental
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GPP and ET fluxes were then calculated as,

2
fluxt,noise =N (fluxt,original; (fluxt,original : 5) ) (3.10)

with the resulting eWUE containing noise in both the GPP and ET components. Noise
levels were designed to encompass the range expected in real EC data (Hollinger and
Richardson, 2005).
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Figure 3.3 Conceptual diagram showing persistent evaporation in the training dataset
(Etrqin)- In the case without persistent evaporation, many periods of the training dataset
contain little E;q;,, meaning the algorithm can likely find periods where eWUE=WUE,
(GPP/ET)=(GPP/T), and ET=T. In the case with high E,.q,, every period contains
significant E, which is likely to cause a bias in WUE estimates and ultimately an over-
estimation of T.

To isolate the effect of E on prediction bias, it is important to distinguish between total E
and E which is persistent within the training dataset (E;4in, see Figure 3 for a conceptual
overview). As the RF is trained on GPP/ET within the filtered periods, only E which is

present in the training dataset can bias WUE predictions. To quantify how sensitive
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the method is to E;4in, experimental ET data were calculated from simulated model
T data to give a consistent E;4;, for the entire time-series which could not be filtered
via CSWI. Egqin levels ranged from O to 50% of ET, with some added noise to give
some uncharacterizable variability. Calculations utilized a multiplier (efqcor) Which was

centered on the desired E;4;,, with standard deviation equal to 25% of E¢gin:

€t factor = N(Etrain, (Etrain - 0-25)2) (3.11)
from which ET was calculated as,

Ti

ETt = .
1- €t,factor

(3.12)

The resulting ET dataset had a consistent fraction of E;4;, in ET which was independent
to the magnitude of ET and which the random forest was unable to characterize. The
range of E in the experiments encompassed the E levels in the original model training

datasets, which reached values up to 37%.

These two experimental datasets were then partitioned using the exact same procedure

as the original dataset.

3.2.5 Application to real EC data

The TEA algorithm was used as described above to partition the real eddy covariance
data from three sites: Hesse beech forest in France (FR-Hes, Granier et al. (2008));
a Scots pine forest in Hyytiala, Finland (FI-Hyy, Mammarella et al. (2009)); and a
spruce forest at Anchor Station Tharandt, Germany (DE-Tha, Griinwald and Bernhofer
(2007)). Flux data were flagged as good or bad quality as per Papale et al. (2006), and
gap filling and net ecosystem exchange partitioning were performed as per Reichstein
et al. (2005b). TEA estimates from real flux data can be found as part of the discus-

sion.
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Figure 3.4 Average seasonal cycle of T/ET both from model output and the TEA esti-
mate from model output, as well as total T/ET from the entire time-series. TEA algo-
rithm was run on each individual site and model independently. Modeled years were
1997-2011 for FI-Hyy and FR-Hes, and 1997-2010 for DE-Tha. Data presented cor-
responds to daily data averaged across all years, and are intended to show seasonal
trends.

Figure 4 shows the average annual cycle of T/ET for the three sites run by each model
with the same forcing dataset, as well as the total T/ET values. For clarity, TEA estimated
values are reported here using hyperparameter values of: CSWI limit of -0.5 mm and the
75th prediction percentile. The 75th prediction percentile corresponds to the median
of the percentiles 50-100 and offers a value useful to quantify spatial and temporal
patterns (see section 3.2 for sensitivity analysis of hyperparameters and section 4.2 for a
discussion on their use). It can seem surprising that the TEA algorithm, which is trained
on periods when E is assumed to be zero, performs so well given that the mean daily
evaporation across years is often over 40% (Fig. 2). This is because this mean daily
evaporation includes night-time periods (when all ET is likely from evaporation) and
rainy or post-rain periods, while the TEA algorithm training dataset excludes all those
periods (via the radiation and CSWI filters). Thus, the amount of evaporation in the
training data-set is much lower than seen in these two plots. The ability of TEA to extract
the WUE dynamics can be seen in Figure 5, with seasonal and diurnal WUE patterns of

Trea/ET matching those of Tpo40/ET, including during periods where ET/GPP shows
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the obvious effects of E during the wet winter periods.
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Figure 3.5 The TEA algorithm captures mean seasonal and daily cycles of WUE from
MuSICA output forced with data from Yatir Forest from 2001. Mean daily cycles are
based on half hourly data for each month, whereas the seasonal cycles are an average
from 5 days.

3.3.1 Resulting partitioning performance

The predictive performance of the TEA algorithm applied to the model outputs across
both aggregated time scales, as well as across all sites, is shown in Figure 6. The median
MEF values between Trga and Tj,0qe1 are greater than 0.9 for all models across all time
aggregations up to quarterly, with a slight decrease at annual aggregation. This decrease
in performance at annual scale may be due to the limited variability at these timescales,
as well as the limited number of years at some sites. Model bias varies between sites
and particularly between models, indicating that the optimal prediction percentile for
minimizing bias may vary for each model (see section 3.2 for analysis of prediction
percentiles). The method performed well spatially, i.e. across sites, with slopes between
predicted and modeled T/ET varying between 1.02 and 1.12.
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Figure 3.6 Overall model performance in space (right) and time (left). All models
show high correlation across timescales, with some degradation at annual scale. In
space (i.e. across sites), the TEA algorithm shows the highest agreement with the Mu-
SICA model runs ("> ~ 0.97), and RMSE for JSBACH, CASTANEA, and MuSICA were
8.4%, 15.3%, and 3.2% respectively.

Using the wider range of sites afforded by JSBACH, site characteristics such as aridity
index, mean annual temperature, max LAI, and PFT were shown to have no significant

effect on MEF or bias (see supplementary Figure S3).

3.3.2 Sensitivity to hyperparameters: CSWI limit and prediction

percentile

The TEA algorithm provides two key hyperparameters to tune the resulting WUE and
transpiration estimates: the CSWI limit which controls the amount of required accu-
mulated ET after a rain event before data is included in the training dataset, and the
prediction percentile which adjusts the predictions higher or lower, i.e. closer to the
limits of the training dataset eWUE values. As the CSWI limit attempts to remove E con-
taminated data, the limit should be optimized to maximize the MEF between Trgs and
Timoder While maintaining the a high number of points in the training dataset. As seen in
Figure 7a, MEF values improve with limits below O mm and stabilize below a limit of
-0.5 mm. Furthermore, spatial correlations (Figure 7b) show a similar improvement at

a limit of -0.5 mm, followed with a sharp decline from the JSBACH runs below a limit
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of -2.0 mm. A CSWI limit of -0.5 mm was used for all further analysis (see section 4.2
for further discussion).

Response of correlation between TEA and model transpiration with water filtering
1

MEF
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Figure 3.7 Sensitivity of TEA performance to CSWI limit hyperparamter. Though low
CSWI limits help reduce the impact of E;.qp, strict filters also decrease the number
of points available in the training dataset, which can exclude some wet sites entirely.
A filter of -0.5 shows good MEF between Trga and T4 across sites (a), with little
improvement using stricter filtering. The negative effect of strict filtering can be seen
in the spatial correlation (b) of the JSBACH models, which significantly decreases at
limits less than -2.

Figure 8 shows sensitivity and model performance with respect to prediction percentile.
MEF for each prediction percentile was generally above 0.7 for all models and sites,
with some MEF values less than 0.7 at the highest (P1o9) and lowest (Psg) predic-
tion percentiles (Figure 8a). In accordance with the hypothesis laid out in Zhou et al.

(2016a), prediction percentiles closer to the limit which maximizes the GPP:ET ratio
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should be associated with periods where E contamination is minimized. In contrast,
looking at the relative bias between Trga and T4 (Figure 8b), we found that the
prediction percentile which minimizes bias varied depending on model, with optimal
prediction percentiles to minimize bias for CASTANEA being around Pgs, compared to
P7o for MuSICA, and Pgo for JSSBACH. This difference in optimal prediction percentiles
may be due to the differences in the inherent residual E predicted by the models (see
Figure 2), with CASTANEA having the highest level of E throughout the growing season
(and highest bias minimized prediction percentile) and JSBACH having the lowest. The
supplementary Figure S4, which shows the relationship of E/ET in prediction points at
various prediction percentiles, further indicates that indeed the E component from TEA

predictions is minimized at different percentiles for the three models.

Sensitivity to training set evaporation and noise

As seen in Figure 8d, the TEA algorithm shows a response in bias to E:i, (see section
2.4 for experimental outline), with the slope between bias and E;4;, being between 1 to
2 for the 50 — 90" prediction percentiles. These slopes correspond to a worst-case sce-
nario, representing a situation where a site would have a constant E component, e.g. a
site where E never goes below 15% of ET at any time. So if a site is estimated to have
at least 15% E,q;, at every half-hour, the transpiration rates may be 22% overestimated
using the 75th prediction percentile. An overestimation of 150% of E;.4i, iS consistent
with the CASTANEA model runs, which across sites has a mean E;4i, of 20% and a mean
total bias of 32%, which translates to a mean overestimation of total T/ET of 14%. For
context the percentage of training dataset half hours with less than 15% E/ET was on
average 67%, 33%, and 95% for MuSICA, JSBACH, and CASTANEA respectively, with
the lowest percentage, 6%, for the Hyytidla Forest simulation from CASTANEA.

Though the highest prediction percentiles show the lowest sensitivity to E;q;, and could
thus mitigate this bias, high prediction percentiles also show large sensitivity to noise
(Figure 8c, see section 2.4 for experimental outline), indicating that directly using pre-
diction percentiles above Pgs is not suitable. Prediction percentiles below Pgy show less
sensitivity to noise, with slopes between MEF and the noise to signal ratio (inverse of
signal to noise ratio use to simplify sign convention) generally being between -0.1 and
0 for the majority of sites. To put a slope of -0.1 into context, if a site had an MEF of

0.9 and a noise to signal ratio of 1:10, the same site would have an MEF of 0.83 if
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noise was then added making the noise to signal ratio 1:2 (see Section 4.2 for further

discusion).
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Figure 3.8 Sensitivity analysis of prediction percentile (P) used in TEA. Modeling effi-
ciency (a), while generally stable, shows the highest values at relatively high percentiles
(P =~ 80 — 90), whereas bias (b) is minimized at around P;¢ for MuSICA and JSBACH.
Similarly, percentiles near the maximum (P1¢¢) shows the lowest sensitivity to evapora-
tion content in the training dataset (d), yet these high percentiles are also very sensitive
to noise in the training dataset (c). Given that residual evaporation will likely be present
in the training dataset, causing predictions to be overestimated, percentiles below the
median (Psg) can be discounted. As such, by treating each percentile above the me-
dian (P > 50) as an equally likely estimate we can calculate the mean of Tp,, ..., Tp, 00,
the results of which are seen as the far right points in each plot, or the median which
corresponds to Pys.

3.4 Discussion

3.4.1 Broadly applicable WUE and T estimates

The validation experiment presented here indicates that while ET is composed of two
signals (E and T) by pairing the ET signal with GPP, TEA is able to extract the WUE dy-
namics and thus the biologically controlled T signal. Figures 5 and 6 demonstrate that

TEA estimated WUE captures variability in transpiration from sub-daily to inter-annual
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scales and between sites, particularly when comparing only simulations from an indi-
vidual model. The relatively fine temporal resolution of TEA provides the possibility of
exploring the dynamics of carbon:water interactions such as seasonal and diurnal cy-
cles. In general, the method as outlined here can be directly applied to real EC data with
minimal alteration, allowing for potential global application, with the limitations and
cautionary remarks described in the following sections. As a demonstration of TEA using
real data, Figure 9 shows a comparison of modeled T/ET at three sites compared to the
TEA algorithm estimated T/ET using actual EC data. T estimates from TEA using real EC
data fall between the process model T estimates, all while requiring no parameteriza-
tions nor having any assumptions on the underlying biological processes. Importantly,
TEA does not rely on the model data in any way, as model runs were only used as a
validation experiment, thus TEA is purely data driven and represents the statistical pre-
diction of WUE and T based on input data of GPP, ET, and meteorological data. To see
the value that these widely applicable methods provide, one needs to look no further
than the partitioning of carbon EC fluxes, which have provided a wealth of information
despite having known limitations (Reichstein et al., 2012). Combining such widely ap-
plicable methods, such as TEA, with the unconstrained processed based models and the
sparse independent T measurements provides a multifaceted and complementary view

of ecosystem T.
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Figure 3.9 Comparison of mean seasonal cycle of T/ET (5 day aggregation) results
from model simulations (JSBACH, CASTANEA, and MuSCIA) and TEA algorithm par-
titioning of original EC data (ET, GPP, and meteorological variables). Modeled years
were 2001-2006 for FI-Hyy and FR-Hes, and 1998-2003 for DE-Tha. Seasonal cycles
are an average of 5 days.

Though methods for estimating T from independent measurements such as upscaled sap
flux methods have existed for decades, there are still relatively few published values
that coincide with eddy covariance sites. One set of estimates at Hesse forest gives a
seasonal T/ET (2 May to 27 Oct) from sap flux upscaling of 0.72, 0.82, and 0.86 for
1997, 1998, and 1999 respectively (Vainshtein, 2010), which is in relative agreement
with the TEA estimates from eddy covariance data at Hesse forest being 0.75, 0.82, and
0.73. Though an in-depth comparison to independent T measurements is beyond the
scope of this analysis, initiatives such as SAPFLUXNET, which aims to aggregate sap
flux datasets from around the world (Poyatos et al., 2016), as well as aggregations of
isotope based measurements and the continued aggregation of eddy covariance dataset

will help constrain ecosystem transpiration estimates within the next few years.
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3.4.2 Sensitivities and limitations

As seen in Figure 7, the CSWI limit hyperparameter should always be less than zero.
However, prediction performance did not improve at increasingly negative values and
may actually deteriorate performance due to declines in sample size. This lack of im-
provement indicates that CSWI, though likely an improvement to time based methods,
does not do well at indicating degrees of moisture levels past simple wet and dry. There-
fore, a CSWI value of around -0.5 or -1.0 mm is warranted, as it creates the larges
sample size while still being below zero. It is possible that the TEA algorithm could be
improved with a filter that better minimizes the amount of evaporation left in the train-
ing dataset, E;4in, Such as using surface soil moisture data. As such, the TEA algorithm
would likely benefit from site specific information on water status, both as a means to
filter the training dataset and as a predictor variable. Additionally, it should be noted
that as the filtering step removes all periods during and immediately after rain, these
periods will not be represented in the training dataset and therefore any response of
WUE during these rainy periods will not be captured. However, as none of the filters
was based on humidity levels, periods of high relative humidity are included in the train-
ing dataset, so both stressed and unstressed conditions will be included in the training
dataset. As rain specifically should not have a dramatic influence on WUE. Indeed, we

did not observe any error increase in the validation dataset during wet periods.

Overall, the method tends to be more precise than accurate, i.e. it robustly produces
precise patterns but with a propensity for systematic over- or underestimation. In partic-
ular, the method is sensitive to E;-qi, Such as is the case with the CASTANEA model runs,
producing an overestimation of transpiration while still capturing the temporal patterns
across timescales. The CASTANEA simulations here provide an important test as to how
E can impact the TEA estimates, as the simulations have not only relatively high E/ET
throughout the year, but, due to the fact that soil moisture levels are updated daily,
E/ET is also relatively consistent throughout the day. Therefore, the training dataset
from CASTANEA simulations is always contaminated by E, in contrast to MuSICA which
can have daily E but still have periods when T dominates within that day, and JSBACH
which has very low E throughout the growing season (see Figure S4). That being said,
it is possible to predict an accurate average T/ET using a higher prediction percentile
even when E is always present as long as there is variability in WUE (see Figure S5),
though the highest WUE values will be underestimated.



78 Coupling water and carbon fluxes to constrain estimates of transpiration

Given that the optimal prediction percentile for minimizing bias differed among the
three models, all prediction percentiles above the 50" can be considered equally likely
predictors, with Psq representing the case with no E; 4, and a constant WUE, and P1qg
representing the maximum eWUE. The result is a distribution of estimates for WUE and
T, which can be translated into an average and uncertainty. As this distribution tends to
be rather skewed, the median of this distribution (or P7s) is likely a more robust esti-
mator. While the lower bound of the distribution is well bounded, the maximum (P1q9)
case could still systematically underestimate WUE if E;.4i, is significantly higher than
zero. In contrast, P1gg could also grossly overestimate WUE as it can correspond to con-
ditions which are not at all representative, e.g. conditions of high humidity when WUE

tends to infinity, which can be further complicated with the added effects of noise.

Ecosystems with sparse vegetation coverage are likely most at risk of having high E;4;n
levels, and therefore overestimation, as the canopy is potentially not the key control
on ET. The risk of overestimation is especially high at wetland sites with exposed open
water. Therefore, site specific estimations are warranted to determine if TEA estima-
tions would benefit from hyperparameter adjustments such as using a higher prediction
percentile, improved training set filtering, or other improvements based on site knowl-
edge (e.g. filtering periods during irrigation). Another important consideration when
applying the method to actual data is the existence of noise which is not present in the
synthetic validation datasets. This is particularly pertinent due to very large or small
values of WUE (a ratio) during mornings and evenings when the fluxes are low. In this
case, a filter for small values of either ET, GPP, or Rg will likely be warranted, even
though the method was shown to be relatively insensitive to noise for most prediction
percentiles (Figure 7c). Given the considerations outlined above, a general framework
for implementing TEA for eddy covariance data would be to use a CSWI limit of -0.5 mm
and the 75th percentile for prediction, which corresponds to the median of predictions
from the 50th to 100th percentiles.

3.5 Conclusion

In its current state, ecosystem transpiration is far a more concrete physiological concept
than it is actually quantifiable, as one can isolate transpiration in relatively controlled

leaf or plant scale experiments in contrast to the difficulties of isolating soil and in-



terception evaporation components from the transpiration of each needle and leaf at
a field site. However, by utilizing the carbon cycle, transpiration dynamics can be ex-
tracted from the overall evapotranspiration signal. As such, the TEA algorithm is a novel
evapotranspiration partitioning method designed for eddy covariance datasets which is
able to capture dynamics in water use efficiency and transpiration across spatial and
temporal scales. The method is the first such evapotranspiration partitioning approach
to attempt such an extensive validation exercise, utilizing a synthetic experiment of
process model output, which demonstrates the ability of the method to replicate the
carbon:water relationship across three model frameworks. Furthermore, we outline the
biases and uncertainties of the approach with particular respect to effect of persistent
evaporation fluxes, with the prospect that by thoroughly scrutinizing and testing the

limits of TEA we can open the door to wide scale application.
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We apply and compare three widely applicable methods for estimating ecosystem tran-
spiration (T) from eddy covariance (EC) data across 251 FLUXNET sites globally. All
three methods are based on the coupled water and carbon relationship, but they differ
in assumptions and parameterizations. Intercomparison of the three daily T estimates
shows high correlation among methods (R between 0.80 and 0.87), but a spread in
magnitudes of T/ET (evapotranspiration) from 45% to 77%. When compared at six sites
with concurrent EC and sap flow measurements, all three EC based T estimates show
higher correlation to sap flow based T than EC based ET. The partitioning methods show
expected tendencies of T/ET increasing with dryness (vapor pressure deficit and days
since rain) and with leaf area index. Analysis of 140 sites with high quality estimates for
at least two continuous years shows that T/ET variability was 1.6 times higher across
sites than across years. Spatial variability of T/ET was primarily driven by vegetation
and soil characteristics (e.g. crop or grass designation, minimum annual leaf area in-
dex, soil coarse fragment volume) rather than climatic variables such as mean/standard
deviation of temperature or precipitation. Overall, T and T/ET patterns are plausible
and qualitatively consistent among the different water flux partitioning methods imply-
ing a significant advance made for estimating and understanding transpiration globally,
while the magnitudes remain uncertain. Our results represent the first extensive EC-
data based estimates of ecosystem T permitting a data driven perspective on the role of

plants’ water use for global water and carbon cycling in a changing climate.
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4.1 Introduction

Transpiration (T) is the flux of water vapor and latent energy returned to the atmo-
sphere by vascular plants, mainly through the stomatal pores on their foliage and con-
current with photosynthesis. T is thus the nexus of the terrestrial water, carbon, and
energy cycles, making T a key process in the Earth System. Better understanding of
T could have practical implications through better understanding of plant water use
and water limitations (Allen et al., 2015; Bernacchi and VanLoocke, 2015), understand-
ing which can then improve water resource management and prevent economic losses
(Fisher et al., 2017). However, estimating ecosystem scale T is challenging, so T is gen-
erally studied extensively in laboratories, plant growth chambers, and greenhouses. The
difficulty of estimating ecosystem T is due to heterogeneities in the physical and physio-
logical properties and processes underlying plant water uptake and ecosystem water use
(Kool et al., 2014). These challenges cause limited availability and large uncertainties
in ecosystem T estimates, and this propagates to uncertainties in biosphere-atmosphere
feedbacks relevant for projections of climate change by Earth System models (Fisher
et al., 2017).

The eddy covariance (EC) technique has been proven to be a useful tool for measur-
ing ecosystem water, carbon, and energy fluxes worldwide (Baldocchi, 2019). A key
advantage of the EC technique is the near continuous, sub-daily sampling and the in-
termediate spatial scale of measurements which integrates over the ecosystem and can
be linked to remote sensing products (Jung et al., 2011; Kumar et al., 2016; Chu et al.,
2017). EC measures aggregate fluxes, and therefore fluxes related to individual pro-
cesses must be estimated using modeling and post-processing. In the case of carbon
dioxide (CO,), net ecosystem exchange of CO, fluxes (NEE) can be partitioned into
gross primary productivity (GPP) and ecosystem respiration (R..,) (Reichstein et al.,
2005a; Lasslop et al., 2010). Applying the CO, partitioning methods across many sites
from communities willing to collaborate (e.g. FLUXNET) has proven valuable in a wide
range of contexts (Baldocchi, 2008), from model evaluation (Friend et al., 2007) to em-
pirical upscaling of global products (Jung et al., 2011). The opportunity to replicate the
success of CO, flux partitioning with water flux partitioning has resulted in a number of
methods that attempt to distinguish the physiologically regulated T flux from the mea-
sured evapotranspiration (ET) flux, which also contains abiotic evaporation (E) from
soil and canopy intercepted water. Partitioning the existing ET from FLUXNET would
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improve cross site comparisons of GPP to T dynamics, which have previously relied on

filtering each site for periods after after rain events to minimize the effect of E.

Here we applied three recent methods for estimating T from EC datasets: the underly-
ing water use efficiency (uWUE) method (Zhou et al., 2016a), the Pérez-Priego method
(Perez-Priego et al., 2018), and the Transpiration Estimation Algorithm (TEA) method
(Nelson et al., 2018a). We focused on methods which utilize current EC datasets, such
as FLUXNET and the associated regional networks, which include continuous measure-
ments of CO,, sensible, and latent heat fluxes, as well as meteorological variables at half-
hourly or hourly time-steps. All three methods utilize GPP estimates to partition E and
T from ET, as CO, uptake and water vapor losses from T are both regulated via stom-
ata in higher plants and are thus inherently linked (Cowan and Farquhar, 1977). Note
that other ET partitioning methods exist, including methods that only use EC datasets,
which are not highlighted here. Such methods include Scott and Biederman (2017),
which may not be applicable at non-water-limited sites, and Li et al. (2019) which re-
quires ancillary data such as canopy height and soil moisture. As reviewed in Anderson
et al. (2017), other methods for estimating transpiration are being developed, such as
flux variance partitioning of high frequency data using water use efficiency measured
at the leaf scale (Scanlon and Kustas, 2010; Scanlon et al., 2019), measurement of iso-
topes (Wang et al., 2012; Berkelhammer et al., 2016), carbonyl sulfide (Whelan et al.,
2018), or concurrent below and above canopy eddy covariance measurements (Paul-
Limoges et al., 2020). For a more detailed analysis of various water flux partitioning

approaches, see Stoy et al. (2019).

4.1.1 Drivers of T and knowledge gaps

A key difficultly in distinguishing T from E is the fact that both fluxes are inherently
the same physical process, evaporation, with the core difference being that T is actively
regulated by vegetation, e.g. through changes in stomatal conductance and/or root wa-
ter uptake. One example is the effect of vapor pressure deficit (VPD), which on the one
hand drives T and E but on the other causes stomatal closure in plants thus inhibiting
T. Stomatal closing due to high VPD prevents excess plant water loss relative to carbon
gain. As VPD increases, T losses would increase with no corresponding effect on GPP
(assuming no other change in the environment, stomatal conductance, or non-stomatal

limitations), resulting in a decrease in water use efficiency (WUE = GPP/T). This de-
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crease in WUE has been shown to be a power function of VPD both from in situ chamber
experiments (Pérez-Priego et al., 2010; Villalobos et al., 2012) and derived from the-
ory (Medlyn et al., 2011). While this relationship has been demonstrated from GPP/ET
ratios derived from EC data in rain free periods (Zhou et al., 2014; Zhou et al., 2015),
it should be clearly evident in a GPP/T product, and thus can be used as a first order

check on the T estimates.

Another expected pattern is the relationship between LAI and T/ET. Studies using site
level estimates of T/ET show a strong coupling to LAI (Wang et al., 2014; Wei et al.,
2017). This link between T/ET and LAI is in some respects intuitive: an LAI of zero
would mean no vegetation and no T; and increasing vegetation coverage would mean
more transpiring surfaces and more shading of soil thus increasing T/ET. However, sea-
sonal covariation may not correspond to a causal relationship, as part of the co-variation
could be attributed to other seasonal patterns such as cycles in soil water availability or
phenology. By modeling T/ET as a function of LAI, Wei et al. (2017) were able able to
capture between 43 and 87% of the variance depending on vegetation type. However,
Wang et al. (2014) showed high variability of T/ET at low values of LAI, which was
in part explained by plant growing stage (particularly in crops). Based on a temperate
needle leaf forest site, Berkelhammer et al. (2016) reported that while LAI did match
seasonal T/ET dynamics, no significant relationship was found at diel, daily, or annual
timescales, indicating the LAI relationship is tied to seasonality. If LAI is a key driver of
T/ET, one would expect a relationship between the two at other scales, in particular LAI
should correlate with T/ET in space. Using a mechanistic ecohydrological model, Fatichi
and Pappas (2017) found no relationship between mean site T/ET and LA, rather the
major driver of uncertainty was the parameterization of the hydraulic properties of the
topsoil in the model. Pairing T estimates from EC and remote sensing estimates of LAI
would allow for a consistent and broad scale examination of the relationship of LAI
and T/ET, and test whether the seasonal relationship observed translates to a spatial

relationship indicating that LAI is a key driver of T/ET.

Apart from LAI, T/ET could be related to water availability, as plants have access to
deeper soil moisture and can thus sustain a high transpiration rate for longer peri-
ods after rain pulses. However, many studies show no relationship between T/ET and
precipitation (Schlesinger and Jasechko, 2014; Fatichi and Pappas, 2017), and little re-
lationship with water stress indicators such as soil water potential (Wang et al., 2014)

or wetness index (ratio of mean precipitation to potential ET, Fatichi and Pappas (2017)
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). Vegetation type could also play a key role in how ET is partitioned, and indeed most
previous meta-analyses of site level T/ET data have used some form of segregation by
plant functional type (Wang et al., 2014; Schlesinger and Jasechko, 2014; Wei et al.,
2017). However, these groupings tend to be imposed for data interpretation, with lim-
ited exploration into what ecosystem properties actually drive differences in ecosystem

T/ET, and therefore a more in depth analysis is warranted.

4.1.2 Objectives

Here we present estimates of ET partitioning from three different methods across FLUXNET,
providing a dataset of transpiration estimates at ecosystem level from sub-daily to an-
nual values and covering many climate zones and biomes. These three methods are first
compared against each other to identify how well they agree. The partitioning methods
are then compared to an independent data source (scaled-up sap flow measurements),
both to demonstrate absolute performance and to ensure that T estimates are adding
information compared to the original ET estimates. After initial assessment, we exam-
ine the T estimates for expected patterns, such as the seasonal covariation of LAI and
T/ET as well as responses to dry conditions such as the expected decrease of WUE to
high VPD and the increase of T/ET during dry down events. We also demonstrate the
potential inadequacies of calculating WUE as GPP/ET due to E, even when filtering for
rain free days. Finally, we use full year estimates of T and ET to explore the drivers of

variability in T/ET across sites.

4.2 Methods

4.2.1 EC data

Flux data from the FLUXNET2015 dataset (Pastorello et al., 2017) were used. In some
cases, sites were included from the previous La Thuile dataset when not available in the
FLUXNET2015 release. An overview of the variables used in this study can be found in
Supplementary Table S1. In all cases, GPP was estimated from the EC-measured NEE
using the night-time flux partitioning method (Reichstein et al., 2005a).
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The sites used in this study are distributed widely across the globe and they represent
diverse ecosystems from a variety of climatological conditions. However, the global dis-
tribution of observations is largely biased toward Western countries in the Northern
Hemisphere, with most of the sites located in USA, Western Europe and East Asia. All
sites, as well as the plant function type (PFT) designation are listed in both table and

map form in Supplementary File S1.

4.2.2 ET partitioning methods

Descriptive overview of the T partitioning methods

The uWUE method relies on estimates of the underlying water use efficiency (WWUE),
defined as,

UWUE = %, (4.1)
where VPD is the vapor pressure deficit. Two uWUE variants are calculated from half-
hourly data: 1) the potential uWUE (uWUE,) is calculated at an annual scale using a
95" percentile regression between GPP - VVPD and ET, representing conditions with
the highest carbon gain to water loss and thus where T~ET; 2) the apparent uWUE
(UWUE,) is estimated as the linear regression slope from a daily or 8 daily window, or
directly from eq. 4.1 when estimating at half-hourly resolution. uWUEp is assumed to
be constant throughout a year, corresponding to the maximum carbon gain to water
loss given that VVPD linearizes the ET to GPP relationship, as has been shown across
a large variety of sites and has been linked to stomatal optimality (Zhou et al., 2014).
T/ET is then estimated as,

T  uWUE,

ET  uWUE,

(4.2)

As the method utilizes comparatively simple computations, uWUE, and uWUE, calcu-
lated as slopes or ratios, the uWUE method is the simplest of the three methods to

calculate.

The Pérez-Priego method on the other hand utilizes a more complete “big leaf” model,
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where four different parameters are fit in a five day moving window. The fit parameters
relate to the response of canopy conductance to VPD, photosynthetically active radia-
tion, and temperature, as well as to the response of the maximum photosynthetic rate
to VPD and ambient CO,. The method also incorporates the leaf optimality concept,
i.e. carbon gain to water loss is maximized, by integrating a penalty in the cost function
for parameters that result in poor leaf carbon:water optimality. One distinctive feature

of the Pérez-Priego method is that it never makes the assumption that T~ET.

Finally, the TEA method utilizes a non-parametric model, a version of Random Forest
(Breiman, 2001), to predict WUE (GPP/T). The model is trained on the ecosystem water
use efficiency (WUE,., = GPP/ET) during periods in the growing season and when
surfaces are likely to be dry, i.e where E/ET should be minimal. Periods likely to have
wet surfaces are filtered based on precipitation input and ET in a shallow bucket, water
balance scheme (see Nelson et al. (2018a) for a full description). The RF, trained on
WUE,, from the filtered periods, then predicts WUE (now GPP/T) for the full time
series. To further compensate for the existence of evaporation in the training dataset, a
higher prediction percentile of WUE is output from the RF (Meinshausen, 2006). Nelson
et al. (2018a) determined that the 75" percentile was the most appropriate prediction
percentile based on the best performance when assessed against synthetic data from
three terrestrial biosphere models. In contrast to the uWUE or Pérez-Priego methods,
the TEA method utilizes a machine learning approach that allows for the predicted
WUE to be dynamic in time and not strictly driven by assumed physiological responses—
for example, the response of WUE to VPD comes from the data itself rather than an

assumption of leaf carbon:water optimality.

In summary, the three methods are characterized by key differences in their assump-
tions, structure, and conceptualization: number of parameters (one or two in uWUE
depending on temporal scale vs four in Pérez-Priego), parametric vs non-parametric
(UWUE and Pérez-Priego vs TEA), the assumption that T~ET for some portion of the
data (uUWUE and TEA vs Pérez-Priego), and the inclusion of physiological parameters

describing the leaf carbon:water optimality (Pérez-Priego and uWUE vs TEA).

Application of T methods to EC data

The uWUE method was implemented based on the published description (Zhou et al.,

2016a), with uWUE, estimates made for each year and uWUE, estimates derived using
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the 8-day moving window. The resulting Python code can be found in the associated
code repository (Nelson, 2020b). The uWUE method was also estimated at half-hourly
scale by directly calculating uWUE, = GPP - VVPD - ET~! (Zhou et al., 2018).

The Pérez-Priego method was implemented using an open source R package (Perez-
Priego and Wutzler, 2019). Parameter optimization was performed on a daily basis
using a 5-day moving window containing high-quality data: (i) quality flags of the CO,
fluxes = 0 (directly measured, non-gap-filled according to Reichstein et al. (2005a) );

and (ii) half hours with measured precipitation removed.

The TEA algorithm used code version v1.06 (Nelson, 2019), which was updated from
the original published version with minor modifications to improve data filtering and

include additional checks to ensure night-time T fluxes were set to zero.

Though each method has been previously described in the respective publications, an
in depth tutorial for each method can be found as both an interactive and static form in
the associated code repository (Nelson, 2020b). Furthermore, the data can be accessed
from Nelson (2020a).

Comparison and evaluation of the methods was complicated due to differences in how
the methods were applied. In particular, the estimation procedure from Pérez-Priego did
not always find adequate solutions for the parameters, resulting in some erratic values
of T and thus preventing continuous estimates of T, affecting on average 29% of the
data across sites. Missing Pérez-Priego values due to inadequate parameters were not
gap-filled, which limited the daily and monthly aggregate values of T to periods without
missing data, leaving very few complete months. Due to the differences in applicability,
comparisons of all three EC based partitioning methods was limited to intercompar-
isons between the methods and with the sap flow data, while broader comparisons

(e.g. across years or sites) were done only with the TEA and uWUE methods.

4.2.3 Sap flow estimates

Stand transpiration was obtained by upscaling sap flow measurements (Tsr) from six
forest sites in the SAPFLUXNET database (Poyatos et al., 2016) which overlapped in
time with the FLUXNET2015 dataset (Supplementary Table S2). SAPFLUXNET datasets

contain sub-daily sap flow rates, scaled to the tree level according to site-specific pro-
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cedures, which are documented within the dataset metadata (Poyatos et al., 2019).
In order to obtain stand-level T, we first temporally aggregated the data to daily sap
flow values per tree (kg day~!) and retained only those days with sufficient coverage
(80% of the sub-daily time-steps). We then normalized sap flow per unit basal area
of each tree and averaged the values for each species present in the datasets. In all
datasets, the species in which sap flow was measured represented >90% of the stand
basal area (Supplementary Table S2). The value of species-specific sap flow per basal
area was multiplied by the basal area of each species in the stand and then data from
all species were summed to obtain stand-level transpiration (mm day~!). All the tree
and stand-level variables needed for the upscaling were extracted from the metadata

corresponding to each dataset (Poyatos et al., 2019).

4.2.4 Gridded and remote sensing data

This study utilized three different sources of remote sensing data to explore the spatial
and temporal relationships between vegetation indices and T/ET. First, leaf area in-
dex (LAI) and fraction of photosynthetically active radiation (fPAR) estimates for each
FLUXNET site were derived from the Joint Research Centre Two-stream Inversion Pack-
age (TIP) product (Pinty et al., 2011) and summarized for each site using the mean,
minimum, maximum, standard deviation, and the 95" and 99" percentiles. Further-
more, the entire multi-temporal Collection 1 from the Landsat 4, 5, 7 and 8 archives
(https://www.usgs.gov/) was collected. The blue, red, near-infrared (NIR), and short-
wave infrared (SWIR) spectral bands (https://landsat.usgs.gov/what-are-band-designations-
landsat-satellites) were retrieved to compute normalized difference vegetation index
(NDVI) (Tucker, 1979), enhanced vegetation index (EVI) (Huete et al., 2002), and
normalized difference water index (NDWI) (Jin and Sader, 2005) vegetation indices.
Low-quality Landsat pixels due to clouds, cloud shadows, snow, and ice were masked
out (Zhu and Woodcock, 2012; Zhu et al., 2015). Finally, 4-day values (as the best
pixel from a four day window) of LAI from the MCD15A3H version 6 MODIS product
(Myneni and Knyazikhin, 2015) were used to analyze the relationship of LAI to T/ET
(i.e. Figure 4.3). The quality layer for LAI (i.e. FparLai QC) of the MCD15A3H version
6 product was used for filtering out low-quality observations (i.e. cloudy pixels and pix-
els covered with snow/ice were discarded). For both Landsat and MODIS products, the

data extraction and the preprocessing chains (i.e. cloud, cloud shadow masking, and
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downloading) were implemented in the Google Earth Engine (GEE) platform (Gorelick
et al., 2017) (https://earthengine.google.com/). Landsat (i.e. NDVI, EVI, and NDWI)
and MODIS (i.e. MCD15A3H LAI) data were summarized for each site using the mean

and 95" percentiles.

Additionally as spatial covariates of T/ET, five soil properties for each site were esti-
mated using the SOILGRIDS dataset (Hengl et al., 2017): coarse fragment volume, soil
pH, and percent of clay, sand, and silt. Soil properties were summarized for each site
using a weighted mean for the full depth available. In all cases, spatial data were aggre-
gated from an area within = 1 km of the tower location by taking the mean for all good

quality pixels in the selected area.

4.2.5 Spatial modeling of T/ET and variable importance

To infer potential drivers of the spatial variability of T/ET, 44 different variables com-
posed of estimated soil properties, vegetation indices from remote sensing, plant func-
tional type classifications, and climate variables measured on site were used to predict
site average annual T/ET (one value per site) using a Random Forest model (Breiman,
2001). Variables were pre-selected using the approach of Jung and Zscheischler (2013),
which attempts to maximize the model performance while minimizing the required
number of variables. Variable selection was repeated ten times and all resulting models
were compared to select the top performing feature set. Furthermore, feature impor-
tance was estimated by examining the selection frequency of each variable, with the
assumption that important features will be selected often in top performing models,
while less important features will be selected infrequently. The selection frequencies of
the ten independent feature selection runs was then summarized as a mean and stan-
dard deviation.

4.3 Results

4.3.1 Inter-comparison of the ET partitioning methods

In general, all three methods agreed with respect to overall patterns, with the lowest
correlation (Spearman, R,) of daily T found between uWUE and Pérez-Priego (R, = })
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and the highest between uWUE and TEA (Ry, = }). For context, the correlations between
T from the three methods and ET ranged from R, of 0.71 to 0.82. The magnitude
(daily sum) of Trg4 was much higher than those of the other two methods, with T,ywyg
and Tpre;—priego Deing 68% and 58% of Trga, respectively, across all sites. Figure 4.1
shows an inter-comparison of the three methods at daily resolution. Note that the results
presented here used the night-time partitioning method to estimate GPP (Reichstein et
al., 2005a), which is highly consistent with T estimates from the day-time partitioned
GPP (Lasslop et al., 2010) (Supplementary Figure S1).
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Figure 4.1 Inter-comparison of the three T estimation methods presented here at daily
resolution. Points (n = 53390 from 127 sites) come from the intersection of all methods
where T could be estimated. Ry, values correspond to Spearman rank correlations to

reduce the influence of outliers. Linear equation was estimated using orthogonal-least-
squares regression which assumes observational errors exist in both x and y. Dark to
light point coloration corresponds to low to high relative point density, respectively.
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4.3.2 Evaluation with sap flow T estimates

As an independent evaluation, all three EC based T estimates were compared to esti-
mates of stand T computed from sap flow sensors (Tsr) at 6 different forest sites at daily
resolution. Overall, the EC based T estimates had a higher correlation with Tsz com-
pared to total ET from EC, with correlations averaging 0.81, 0.78, and 0.76 for Trga,
Tprez—priego, and Tuwuk, respectively, compared to 0.70 for ET (Figure 4.2). The bias be-
tween T from the EC partitioning methods and Tsr (Tgc — Tsr) was smaller compared
to the bias between ET and Tsp, with site root mean square error (RMSE) between
0.33-1.36, 0.28-0.67, and 0.36-0.96 mm day~! for the TEA, uWUE and Pérez-Priego
methods, respectively, compared to 0.53-1.95 mm day~! for ET.
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Figure 4.2 Comparison of sap flow based estimates of transpiration (Tsr) against esti-
mated transpiration (T) and measured evapotranspiration (ET) from eddy covariance
(EC). Note the three different sizes of markers in the correlation plots (corr(EC,SF),
Pearson correlation), where the largest markers represents the mean correlation, the
smallest markers represent the correlations from each available year, and the medium
sized markers represent the selected year shown (time series in the left column of sub-

figures).
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4.3.3 T/ET patterns with LAI and seasonality

Figure 4.3 shows the relationship of T/ET across the FLUXNET dataset for each method
compared to LAI derived from MODIS, grouped into eight plant functional types (PFTs).
Additionally, a line is shown describing the relationship between T/ET and LAI derived
from Wei et al. (2017), where non-EC based T/ET estimates were used to derive param-
eters a and b in the model,

;—T =q - el (4.3)
The estimates of a and b per PFT were taken from Wei et al. (2017) to calculate the
T/ET response to LAI shown (Wei method). Compared to the Wei method, the EC based
methods showed a more gradual decline in T/ET as LAI approaches zero, with the ex-
ception of ecosystems dominated by deciduous vegetation, i.e. crops and temperate
broad-leaved forests. At LAI values above 1 m? - m~2, the higher T/ET values from the
TEA method were more consistent with the Wei method, with the uWUE and Pérez-
Priego estimated T/ET being significantly lower. Note that the curves from the Wei
method are based on site LAI estimates whereas the data in Figure 4.3 were derived
from remote sensing based LAI which may not reflect what was seen by the EC sys-

tems.
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Figure 4.3 Daily T/ET from each EC based method as a function of MODIS LAI. For
each PFT, the associated relationship derived from Wei et al. (2017) is shown in black,
which was derived from site level T/ET estimates. Points show the distribution within
the given LAI bin, truncated to the 25" and 75" percentiles. PFTs were grouped to
match those found in Wei et al. (2017) and are slightly different compared to subse-
quent figures.
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Utilizing the fact that the TEA and uWUE methods could be successfully applied at most
FLUXNET sites, Figure 4.4 gives an overview of the mean seasonal cycle of T/ET for
eight PFTs. Overall, the seasonal patterns of T/ET are largely consistent between the
two methods, showing larger T/ET during the growing season as expected. The differ-
ences in magnitude are immediately clear for the TEA and uWUE methods, with peak
seasonal T/ET being on average 83% and 58%, respectively. Interestingly, both meth-
ods showed a relatively consistent peak season T/ET value across all PFTs, even be-
tween PFTs dominated by different climates, e.g. similar max T/ET between evergreen
broadleaf forests which are primarily in tropical and sub-tropical regions and evergreen
needleleaf forests which are primarily located in temperate regions. Note that the PFT
groupings in Figure 4.4 were selected to better capture both differences in plant func-
tion and biomes, such as separating deciduous forests from evergreen broadleaf forests,
and are slightly different from those in Figure 4.3 which correspond to the groupings
from Wei et al. (2017).
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Figure 4.4 Mean monthly seasonal cycles of T/ET grouped by PFT from the TEA and
uWUE methods. Mean seasonal cycles for each site are grouped by PFT, with lines
indicating the median across sites and shading indicating the interquartile range. Note
that data from sites in the Southern Hemisphere have been shifted by six months,
e.g. January in the figure would correspond to July in a Southern Hemisphere site.

4.3.4 WUE and T/ET patterns with VPD

Figure 4.5 shows the exponential type relationship of WUE (GPP/T) to VPD for the
TEA, uWUE, and Pérez-Priego methods across all sites where T could be estimated by
all methods. In contrast, a similar decay was not evident for WUE computed as GPP/ET,

lacking the distinctive rise as VPD approaches zero. The reason why the GPP/ET rela-
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tionship does not exponentially rise as VPD approaches zero is due to a sharp decrease
in T/ET at low VPD (Figure 4.5). In other words, as VPD decreases, T/ET also decreases,
likely due to the fact that periods of low VPD correspond to periods after rain or dewfall
when surfaces are wet and the evaporation component of ET is relatively high. Conse-
quently, the higher E/ET proportion masked the physiological effect of enhanced WUE
at low VPD conditions, highlighting the conceptual bias of ET based water use efficiency
estimates and the added value of ET partitioning.
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Figure 4.5 Relationship of both WUE (top row) and T/ET (bottom row) to day-time
mean VPD at daily scale across 124 sites. Lines indicate the median value from one hPa
wide bins. Only days with a mean temperature above 5 C, at least 1 mm day ! of ET,
and where all three partitioning methods could be applied were included.

4.3.5 Remaining evaporation in consecutive rain-free days

Previous studies used ET as a proxy for T by filtering for periods after rain events with
the assumption that T will dominate ET; for example, assuming that E will become
negligible after three days with no significant rain (e.g. Knauer et al. (2018)). To test
this hypothesis, we estimated E/ET (where E = ET — T) across all possible sites and
grouped into periods of zero to five or more consecutive days after rain, both at the daily
and sub-daily scales. In the case of daily resolution, E estimates from all three methods
show declining E/ET over the first three consecutive rain free days. However, no method
showed zero evaporation, instead falling to 50%, 44% and 16% average E/ET after 5 or
more days after rain for Pérez-Priego, UWUE, and TEA, respectively. Though daily E/ET
did no fall to zero, the diurnal cycles from all methods indicated periods during the day
when E/ET is zero. These diurnal cycles showed contrasting patters. Both the TEA and
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Pérez-Priego methods showed a tendency for higher E/ET in the morning compared to
afternoon, with the pattern being much more prominent for the Pérez-Priego method
where it persists even after five days without rain, whereas the pattern almost disap-
pears for TEA under drier conditions. The uWUE method consistently showed a peak in
E/ET during the afternoon, with the lowest E/ET in the morning hours.
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Figure 4.6 Percentage of evaporation (E/ET) estimated using the TEA, uWUE, and
Pérez-Priego methods for progressive days after rain (rainy days defined as receiving >
0.1 mm in one day). Upper and lower panels show daily aggregated and diurnal cycles
of E/ET, respectively. Diurnal cycles are estimated as the median for each half hour,
with the interquartile range shown as shading. Only days with a mean temperature
above 5% C, at least 1 mmday~! of ET, and where all partitioning methods could be
applied for all half hours in a day were included.

4.3.6 Patterns of between-site T/ET variability

Perhaps the most significant advantage of the widely applicable T estimations is the
possibility to make complete annual estimates of T, as they permit the comparison of
inter-annual and across site T and T/ET variability. As seen in Figure 4.7, Trga/ET and
Tuwue/ET both showed 60% higher variability (standard deviation) between sites than
between years (mean of TEA and uWUE). In other words, T/ET was much more dif-
ferent from one site to another compared to from different years of the same site. This
higher spatial variability would suggest that annual T/ET was more related to site char-

acteristics than to the year-to-year changes in environmental conditions.
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Figure 4.7 Comparison of variability of T/ET across years and across sites. Variability
across years was calculated as the T/ET for each year of one site minus the mean across
years from that site (only sites with at least 2 years of data). Each point refers to a
site and the vertical spread indicates the distribution of points (the uWUE method is
mirrored for better comparability). Variability across sites was calculated as the mean
T/ET for each site minus the mean across all 140 sites. Overall, the standard deviations
across sites was 1.6 and 1.5 times the standard deviations across years (for the uWUE
and TEA methods, respectively).

Figure 4.8 shows the model performance of a random forest model for predicting site
T/ET for both TEA and uWUE based estimates. The models had Nash-Sutcliff efficien-
cies (NSE, Nash and Sutcliffe (1970)) of 0.44 and 0.43 for TEA and uWUE respectively.
Overall, the model tended to deflate the variance in site T/ET, indicating an incomplete
variable set. Figure 4.9 shows an estimate of variable importance based on how often
each variable was selected in the best models (all models with NSE > NSE ;. — 0.05).
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