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1. Introduction

Optics is a subject in physics investigating and explaining the behavior of light, but it

is also a branch in technology urging for manipulation of light for many purposes which

goes far back to the first greater civilizations thousands of years ago. It started with

lenses and lead to a huge variety of optical elements nowadays, speeding up information

technology and very recently introducing realization possibilities in the so-far theoretical

quantum world.

Typical optical elements are bulky devices, which work on the premise of accumulating

the phase of transmitted electro-magnetic waves in a certain way to change their propaga-

tion direction, their amplitude and their polarization. By decreasing the size of structures

to a sub-wavelength scale, the phase of passing waves is changed on such a short distance

that it can be interpreted as instant phase change. This is one essential change when

going from optics to nano-optics.

A huge acknowledgement for advances in nano-optics has to be given to plasmonics.

Plasmonic particles and later plasmonic nanoantennas paved the way towards nanostruc-

tures of any material with sometimes fascinating properties.

The relevant property, which is crucial for many effects and applications in nano-optics

and thus for this work, is the ability to strongly enhance the local field. This can result

in frequency dependent optical resonances, which can be used for spectral filters. The

localization and thus concentration of field increases the light-matter interaction and can

be used for example for sensing. With clever design, nano-particles and nanostructures

can act as so-called nanoantennas controlling the energy transfer between a very localized

spot, acting as receiver or emitter, and the radiating field? .

While metals, which are the essential material class for plasmonics, exhibit large in-

herent ohmic loss, dielectric materials such as semiconductors or oxides have wide trans-

parent, i.e. lossless or at least low-loss, spectral windows reaching into the visible. These

dielectrics used in nanostructures where able to achieve most of the effects known from

plasmonics, but even feature new and very interesting properties. One of them are the

multipolar characteristics of their resonances, i.e. plasmonic nanostructures are mostly

governed by the electric dipole modes whereas dielectric nanostructures additionally ex-

hibit strong higher order multipole Mie-type modes and especially the magnetic ones? ? ? .
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1. Introduction

Nano-particles or nano-antennas provide huge potential in light manipulation. Appli-

cations however, tend to need large-area action. Bridging this issue, the essential result

are nanostructured surfaces, or so-called metasurfaces, often being periodic arrangements

of nanostructures enabling arbitrary optical properties in a regime of sub-wavelength

thickness over a large-area surface.

Metasurfaces have many possibilities to contribute in applications enabling beam deflec-

tion, beam focusing, generation of special beams like vortex or Bessel beams, manipulation

of polarization, and - at least for special conditions - cloaking? ? ? .

Up to now, this motivation discussed only processes of the linear kind. However, at

least since the development of lasers, it is known that the typically used linear models

describing the world are rather approximations of generally nonlinear systems. These

linear approximations are fine as long as the excitation is moderate. Due to their nature

of photon-photon interactions, nonlinear responses are inherently weak. When, however,

energetically dense laser beams come into play, at least in the realm of optics and pho-

tonics, these nonlinear responses are not only observable, but can play key roles in the

outcome of these processes.

Essential processes in nonlinear optics are frequency conversions, e.g. second-harmonic

generation (SHG) and third-harmonic generation (THG) as well as four-wave mixing,

processes connected to the Kerr effect, e.g. self-modulation and self-focusing, as well as

Brillouin scattering and spontaneous parametric down-conversion (SPDC)? , to name just

a few. Applications range from lasers, over optical switches, modulators, and memories

to photo-detectors. Frequency converters enable lasing in otherwise difficult to reach

wavelength ranges such as Nd:YAG lasers? ? ? , they allow to generate ultra-violet light

sources? ? ? , and they provide support in bioimaging? . Saturable absorbers help to

generate ultrafast laser pulses? .

SHG as one of the lowest-order, i.e. second-order, nonlinear processes, was the first

nonlinear optical process observed? . Its response is light emission at double the frequency

or half the wavelength of the exciting electromagnetic wave, more details see Section 2.2.

The process is well known for frequency doubling in laser sources as ND:YAG lasers or

in optical parametric oscillators? . But it is also relevant for material characterizations,

especially for crystal structure orientation and grain boundaries? ? ? ? ? ? ? ? . Another

field of application is laser beam characterization? ? ? .

An essential drive for devices enabling second-order nonlinear processes is the possibility
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to lead to quantum optical applications. A highly addressed goal there are quantum

entangled photon sources. One way to achieve such entanglement is using the second-order

nonlinear process of SPDC. By controlling second-order nonlinear wave-mixing processes

like SHG, the somehow inverse process SPDC can be influenced by this knowledge, too.

In contrast to bulky nonlinear optical devices, exploiting nonlinear processes in nano-

optics combines advantages of both worlds. Realizing frequency converters, saturable

absorbers, et cetera in compact, light-weight systems enables the integration into other-

wise possibly only linear optical and optoelectronic systems creating the opportunity of

portable devices, for example for space applications. Thus, nonlinear nano-optics provides

even more functionalities to an already application sparkling nano-world.

Employing resonances and thus localized field enhancement in nanoparticles and nano-

structures is especially useful for nonlinear optics, since it can increase the typically low

conversion efficiency of wave mixing processes like SHG. Adding the advantage of not be-

ing bound to phase-matching constraints due to the sub-wavelength sizes, the smaller in-

teraction volume for the nonlinear processes might be outweighed. However, the damage-

threshold in small and thin structures due to the high energy densities introduce a new

challenge.

Especially nonlinear photonic metasurfaces satisfy the application needs as they provide

new functionalities over large-areas. Accordingly, this topic experiences big efforts on

investigations, including this work.

Due to the actual strength of the nonlinearity, fabrication challenges, and the spectral

dispersion, the choice of nonlinear material for the nonlinear photonic metasurface plays a

key role. Since third-order nonlinearity is bound to less symmetry restrictions, it is found

in all materials. Correspondingly, the issue of material selection is mostly important

for second-order nonlinear processes, which only crystal structures with broken inversion

symmetry exhibit. Higher-order nonlinearities are investigated, but they do not play an

important role in nonlinear metasurfaces yet. Essential materials for second-order non-

linearities are III-V semiconductors, e.g. (aluminum) gallium arsenid (AlGaAs, GaAs),

due to their large values of second-order nonlinear susceptibility and already developed

structuring technology. Perovskites like lithium niobate (LiNbO3) on the other hand,

often used in bulky nonlinear optical devices, lack easy and available structuring tech-

nologies although important advances have been made? ? ? ? . Very recently, also Zinc

oxide was successfully used for nonlinear nanostructures? . Metals are found to have huge
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1. Introduction

second-order nonlinearities and thus are used in such nonlinear photonic metsurfaces? ? ,

however their lossy nature and hardly negligible thermal heating diminish their applica-

bility. A recently found material class providing second-order nonlinearity are transition

metal dichalcogenide (TMD) mono- and other odd-numbered few-layers? ? ? , which do

play an important role in this work.

Note that next to material symmetry, also the symmetry of the exciting beam or the

symmetry of the nanostructure arrangement can influence the ability to observe a second-

harmonic (SH) response? ? ? .

In terms of second-order nonlinear processes, next to plasmonics III-V semiconductor

based nanostructures experienced the most advances in terms of second-order nonlinear

nanostructures. GaAs and AlGaAs structures have been investigated due to their strong

second-order nonlinearity, their high-refractive index and their already advanced struc-

turing technology for (opto-) electronics. Nonlinear single nanostructure studies showed

SHG? ? , sum-frequency generation? , and first nonlinear photonic metasurfaces were in-

vestigated observing SHG? .

The main problem of the III-V semiconductor’s second-order nonlinearity is the ten-

sorial structure of their second-order nonlinear susceptibility, which does not allow for

normal SH emission at normal excitation considering the typical (100)-cut surface.

Here, this work steps in with the respective publication connected to this thesis?

observing SH diffraction in a GaAs metasurface similar to the one in? and thus for the

first time actually being able to proof the SH emission out of the GaAs surface plane due

to clever usage of the periodic arrangement and the multipolar Mie-type resonances. It

even provided - for the first time - a hint of SH emission into the zero order diffraction

which is theoretically forbidden (see Section 3.2.2), but might have occurred due to some

artifact.

However, further studies showed much interest in this direction. One provided a set

of many frequency mixing processes like SHG and sum frequency generation from one

metasurface? . Another showed enhanced SHG by symmetry-broken metasurface unit-

cells? . Very recent studies tried to overcome the vanishing zero order or normal to

the surface SH emission of III-V semiconductors by changing the crystal cut and thus the

crystal orientation at the surface? ? or by particularly combining the Mie-type resonances

with diffraction in both excitation and SH? .

Nevertheless, other second-order materials might be worth to investigate to achieve
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normal SH emission with respect to the metasurface plane. Here, the recently discovered

TMD monolayers come in handy.

After the discovery of graphene as a two-dimensional monolayer made of carbon, sim-

ilarly the semiconducting TMD monolayers have been found by exfoliation from bulk

TMDs, with much better optical usability than graphene due to their direct band gap? .

Fascinatingly, the direct band gap offers the possibility of atomically thin light emitting

diodes? ? ? ? . Their tight dimension increases the role of excitons in comparison with

bulk semiconductors like GaAs, leading to strong exciton-governed photoluminescence

(PL)? ? .

Next to the low-yield technique of exfoliation, these TMD monolayers can be grown

by chemical vapor deposition (CVD), which enables large-area monolayers. The growth

process recently found its way to be reproducibly of high-quality and homogeneity? which

makes it a promising material for applications.

A typical goal for new materials is reliability and reproducablity of the material in

terms of quality and property. Here, this thesis does play a relevant role as being one of

the first applications using these high-quality CVD-grown molybdenum disulfide (MoS2)

monolayer crystals which infact prove to be very homogeneous and comparable in their

properties as can be seen in the later reports of experiments in Chapters 6 and 7.

TMD monolayers can be transferred from their growth substrate on almost any target

by different methods? ? ? ? . Accordingly, high expectations on special properties are put

on hetero-structures of TMD monolayers, i.e. a combination of different TMD monolayers

mostly realized by stacking found already in early reviews? ? .

However, in respect to nonlinear optics, the remarkable property of TMD monolayers

is a second-order nonlinearity, which turns off for even-numbered fewlayers and turns

on for odd-numbered fewlayers like the monolayer itself? . Its second-order nonlinear

susceptibility offers strong components with respect to the ultrathin interaction volume

of less than 1 nm thickness, containing elements which do enable SH emission normal to

their two-dimensional plane (see Section 3.1.2).

SHG from MoS2 monolayers was observed first? ? , followed by monolayers of tungsten

disulfide (WS2)? , tungsten diselenide (WSe2)? ? and molybdenum diselenide (MoSe2)? .

Many studies on the nonlinear properties of these TMD monolayers followed including

THG? ? ? ? , high-harmonic generation? , four-wave mixing? ? , and saturable absorp-

tion? ? .
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1. Introduction

Interestingly, it is possible to excite a WS2 monolayer, and thus in general a TMD

monolayer, with a vortex beam and observe a vortex beam in the SHG? .

Heterostructures also have been investigated in terms of nonlinear optics, showing SHG

dependence on the relative orientation of stacked bilayers? , sum frequency generation?

and saturable absorption? , to name just a few.

However competitive this scientific race was and still is, two gaps which were still un-

satisfactorily well investigated could be filled by this work and its respective publications

in order to develop second-order nonlinear metasurfaces some steps further.

While by transfer the monolayer itself already adds a new functionality, whether PL

or second-order nonlinearity, to any surface, to manipulate this feature by structuring

the monolayer itself is not a wide-fetched idea although a tough challenge. The issue on

locally removing parts of the monolayer by lithographic means did show some success? ? ,

however the etching process can create serious problems for the remainders of the TMD

layers. The direct writing by focused ion beam (FIB) milling proved to be a better choice

as it was used in few layers of MoS2
? ? .

This work together with the concurrent work of Dasgupta et al for the first time showed

successful patterning of MoS2 and WS2 monolayers, respectively, by FIB milling? ? .

While this work showed detailed analysis on SH diffraction from periodic one-dimensional

gratings written into the monolayer, both works were able to observe SH vortex beams by

linearly polarized Gaussian beam excitation in fork-like grating structures. Accordingly,

nonlinear beam shaping is possible by structuring these ultrathin materials.

However appealing and successful the patterning approach seems, the SH signal is rather

weak due to the ultrathin interaction volume, which is even reduced by the structuring

process. To enhance the SHG, resonant field enhancement would be key. Unfortunately,

these monolayers cannot confine light like other nanostructures due to the ultrathin in-

teraction volume. The solution here is to hybridize the monolayers with otherwise not

nonlinear photonic structures. This approach exploits the local field enhancement of the

photonic structure adding the nonlinearity by the TMD monolayer.

Respective hybrid systems proved very successful for exciton and PL investigations? ? ? ? ? ? ? ? ? .

For SHG, investigated systems did show high enhancement when the TMD monolayers

were put on grooves written into metal thin films by FIB techniques? ? . However, these

platforms are not easily scalable, since the fabrication technique is not a fast technology

for large area structuring. Another platform are cavities with Bragg mirrors where the

TMD monolayer is inserted. Strong SH enhancement was observed in the case of actively
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controlled phase matching? , which is a technologically rather complicated scenario and

thus typically limited to small areas. Some moderate enhancement resulted from TMD

monolayers connected to dielectric waveguides? and to single SiO2 microspheres? . Very

recently it was shown that guiding surface waves from a periodically stacked thin-film

structure can lead to very efficient SHG and sum-frequency generation? .

A very promising platform is using Si metasurfaces with its highly developed struc-

turing technologies and the resonance design has already been proven to be very sophis-

ticated? ? ? . In this work’s approach, which has been published by this work’s author

and collaborators? , spectrally narrow resonances, i.e. strong field enhancement, were

achieved by asymmetric double bar unit cells, which have already proven to be useful in

other systems? ? . Covering these Si metasurfaces by CVD-grown MoS2 monolayers not

only shows the highest SH enhancement so far in a large-area and scalable hybrid system,

in this work it also reveals important guidelines on how the field distribution of the linear

resonance has to be to efficiently generate SH.

In contrast to this work, a very similar system with an asymmetric Si double bar covered

by exfoliated WS2 monolayers? lacks scalability due to the use of exfoliation and it does

neither fairly compare its SH enhancement nor properly investigate its whereabouts.

To wrap up this introduction, three important studies in the field of SHG from nonlinear

nanostructured surfaces have been conducted in this work. All three add impact to the

development of second-order nonlinear metasurfaces.

First, an intrinsically nonlinear photonic metasurface made from the established second-

order nonlinear material GaAs was investigated. SH diffraction was observed including

the proof for SH emission out of the metasurface plane. Since the SH emission normal

to the metasurface plane at normal excitation is rather difficult to achieve, a different

approach had to be taken.

In the second study, newly available second-order nonlinear TMD monolayers were

investigated to realize functionalized nonlinear metasurfaces. For the first time (simul-

taneously with? ) TMD monolayer were patterned with high resolution by FIB milling

and SH diffraction was observed and analyzed. It was possible to generate nonlinear

holograms, in particular SH vortex beams.

Third, to enhance the SH emission from TMD monolayers and thus to improve the

practicability of using this material for second-order nonlinear metasurfaces, a hybrid

system consisting of a multi-resonant Si metasurface covered by MoS2 monolayers was
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1. Introduction

investigated, observing not only SH enhancement, but additionally finding guidelines to

make best use of resonances with field enhancement overlapping with suspended parts of

the monolayer.

Introducing some major basic physical ideas which play an important role in this work,

Chapter 2 describes optical resonances in nanostructures such as Mie-type resonances,

it explains shortly the nonlinear process of SHG in terms of the second-order nonlin-

ear susceptibility, and it familiarizes with diffraction in periodically arranged structures

including the combination with SHG leading to SH diffraction.

Chapter 3 presents the two second-order nonlinear materials used in this work, namely

the recently discovered two-dimensional MoS2 monolayer and the highly investigated and

developed III-V semiconductor GaAs.

The ability to measure SHG with its challenges and constraints requires a special setup.

The here developed and used self-built SH microscope is described in Chapter 4 including

an often forgotten issue of polarization ellipticity and the observation of the angular

emission spectrum via back-focal plane imaging.

Starting the last three chapters about the investigated nonlinear nanostructured sur-

faces, Chapter 5 deals with the GaAs metasurface observing SH diffraction, discussing

the SH emission out of the surface plane.

Moving away from the III-V semiconductor toward the newly found two-dimensional

MoS2 monolayers, SH diffraction including the generation of SH vortex beams excited by

a linearly polarized FH Gaussian beam from patterned MoS2 monolayers is described in

Chapter 6.

Finally, Chapter 7 features a hybridized nonlinear metasurface coupling a multi-resonant

Silicon metasurface without seond-order nonlinearity to a second-order nonlinear MoS2

monolayer to find important guidelines for the successful use of such hybrid systems,

exemplarily searching for SH enhancement.

A short outlook after a conclusion of the experiments is terminating this work in the

last Chapter 8.
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2. Basic concepts

2.1. Resonances in structured media

2.1.1. Electromagnetic fields and media

To describe light interacting with structured surfaces of matter, a physical-mathematical

foundation is required. The description will be short, but nevertheless comprehensive to

support the explanations and interpretations of the data reported in the later chapters.

In the first section, the material polarization as the main quantity to describe light-matter

interaction will be introduced, then Mie-type resonances in dielectric nanostructures are

discussed, to be followed by the collective effects in ensembles of nanostructures. The

second section provides insights into the second-order nonlinear process called second-

harmonic generation which is the main optical process reported in this thesis. How light

is diffracted in periodic arrangements of structures is dealt with in the final third section,

including the lesser known term second-harmonic diffraction.

For all these topics, light is best described by the model of electromagnetic waves.

Nevertheless, across this thesis, the particle model will also be used to specify and un-

derstand processes connected to specific material properties. Especially phenomena like

absorption, excitation and recombination are found to be intuitively easier understood

by the interaction of particles like photons for light as well as electrons and holes for the

here mainly used semiconducting materials.

The dynamics of light described by electromagnetic waves is governed by Maxwell’s equa-

tions.

The interaction of light with a material depends on how the electromagnetic wave forces

the shell electrons of the material’s atoms to move and build up dipoles. In a material,

way too many of these atoms and electrons build a system which cannot be dealt with

individually, but can be described to act as a whole. This simplifies the description

in the wave formulation since only averaged properties which can be associated with

mathematical terms can be used. Correspondingly the so-called macroscopic Maxwell’s

equations are formed? .

The important quantity in the macroscopic Maxwell’s Equations describing the collec-

tion of dipoles set in the material by the initial electromagnetic field ⃗𝐸 is the dielectric

polarization, or as it is referred to in this work: the material polarization ⃗𝑃 . It can
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2. Basic concepts

be seen as an oscillation of the charges in the medium. It has to be distinguished with

the polarization property of the electric field itself, which is its vectorial direction of the

oscillation.

The material polarization acts as a source for a new electromagnetic field due to the

movement of the material’s charges. The initial and the induced electric fields interfere

and thus the medium is changing the overall electric field. The same is true for the

magnetic field and the so-called magnetization 𝑀⃗ , although most materials have only a

very small interaction in the magnetic regime. Thus, in this work, we are concentrating

on the electric field to describe the investigated light-matter interactions.

Generally, the material polarization ⃗𝑃 can be expressed as a series of material polar-

izations of different orders (𝑛), meaning an increasing dependence on the electric field ⃗𝐸
to the power of 𝑛, as described in Nonlinear Optics by Boyd? ,

⃗𝑃 = ⃗𝑃 (1) + ⃗𝑃 (2) + ⃗𝑃 (3) + … . (2.1)

While the first series element ⃗𝑃 (1) describes the linear relation between the material

polarization and the electric field, the other elements describe the so-called nonlinear

polarization ⃗𝑃 𝑁𝐿 = ⃗𝑃 (2) + ⃗𝑃 (3) + ... . The latter are typically small enough to be

negligible, but at strong fields they can become relevant. This will be described in more

detail in the Section 2.2 about nonlinear optics.

Many optical processes can be approximated by the well known linear relation

⃗𝑃 (1)(𝜔) = 𝜖0𝜒̂(1)(𝜔) ⃗𝐸(𝜔) , (2.2)

where 𝜖0 is the vacuum permittivity and 𝜔 is the frequency at which the electric field

and the linear material polarization oscillate. The material property included here is the

so-called susceptibility 𝜒̂(1), a first-rank tensor. The crystal structure of the material with

its symmetries reflects on the tensorial structure of 𝜒̂(1). Often the material property

̂𝜖(1)
𝑟 as the relative permittivity is used to describe a medium, which correlates with the

susceptibility as ̂𝜖(1)
𝑟 = 𝜒̂(1) + 𝟙, where 𝟙 is the unity matrix.

Note that Eq. 2.2 holds true in the frequency domain. A quantity 𝑓( ⃗𝑟, 𝑡) in the time

domain is transformed to its respective quantity 𝑓( ⃗𝑟, 𝜔) in the frequency domain and vice

versa via forward and backward Fourier transform

𝑓( ⃗𝑟, 𝜔) = 1√
2𝜋 ∫

∞

−∞
𝑓( ⃗𝑟, 𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

𝑓( ⃗𝑟, 𝑡) = 1√
2𝜋 ∫

∞

−∞
𝑓( ⃗𝑟, 𝜔)𝑒𝑖𝜔𝑡𝑑𝜔 .

(2.3)

Via this transformation also Maxwell’s equations and associated equations and relations
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2.1. Resonances in structured media

can be transformed between both domains giving the opportunity to describe several

aspects of electromagnetism from different perspectives. Detailed information can be

found in the book Classical Electrodynamics by Jackson? .

A possible solution to Maxwell’s equations in homogeneous media is the plane wave

which mathematically can be described by

⃗𝐸( ⃗𝑟, 𝑡) = ⃗𝐸0 exp(𝑖𝑘⃗ ⃗𝑟 − 𝜔𝑡) , (2.4)

where 𝑘⃗ is the wave vector describing the propagation direction and 𝜔 the frequency of

the oscillation. With ⃗𝐸0 three important properties of the plane wave oscillation are

introduced: the amplitude by the absolute value | ⃗𝐸0|, the initial phase, and the direction

due to the vector which is the polarization of the field itself. In the case of linear optics,

the sum of plane waves, also called the superposition, is also a solution of Maxwell’s

equations.

For further reference, the so-called TE- and TM-polarization are defined for a plane

wave, or a linearly polarized superposition of plane waves, hitting a plane interface. The

plane of incidence is spanned over the wave vector 𝑘⃗ of the plane wave and the normal

vector on the interface plane. Both TE- and TM-polarization are orthogonal to each

other and perpendicular to the wave vector 𝑘⃗. TE-polarization stands for transverse-

electric and associates to the direction perpendicular to the plane of incidence, also called

𝑠-polarization, while TM stands for transverse magnetic and associates with the direction

in the plane of incidence, also called 𝑝-polarization.

Plane waves carry a phase 𝜙, which is the argument of the exponential function

𝑖𝑘⃗ ⃗𝑟 − 𝜔𝑡 = 𝑖𝜙 in Equation 2.4. 𝜙 is varying over time 𝑡 and space ⃗𝑟. Its value is the

critical condition for interference of light and thus relevant for the next subsections dis-

cussing confinement of light, it has an effect on second-harmonic generation over long

distances or in large volumes as described in Section 2.2, and it is important for diffrac-

tion as dealt with in Section 2.3.

2.1.2. Optical resonances in nanostructures

A resonance occurs when a system is excited by a frequency 𝜔 and its response shows an

amplitude maximum of the oscillation with respect to frequencies around 𝜔? . In optical

systems, the excitation is an electromagnetic field at frequency 𝜔. The reason for the

stronger response usually comes from light confinement due to geometrical boundaries of

a medium creating a cavity.

A simple and well-known example is the Fabry-Pérot resonator describing two plane,
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Figure 2.1.: a) Sketch of a resonance in a transmission (𝑇 ) spectrum depicting the central
wavelength 𝜔0 and the full width at half maximum Δ𝜔. The inset shows the
asymmetric lineshape of a Fano resonance. (b) and (c) show the vector plots
of the analytically calculated internal electric fields of the electric dipole and
the magnetic dipole in a sphere, respectively. (d) and (e) show the vector plots
of the numerically simulated electric fields of a disc with radius 𝑟 = 160 nm,
320 nm height and relative permittivity of 𝜖𝑟 = 10.24 surrounded by air
at 𝜆 = 950 nm (d), where it is mainly dominated by the Mie-type electric
dipole, and at 𝜆 = 1200 nm (e), where it is mainly dominated by the Mie-type
magnetic dipole, respectively. The numerical simulations are performed with
the finite element solver from JCMwave? .

parallel and reflecting interfaces, e.g. a glass slide, excited by plane waves. When the

phase collected on the optical path between the interfaces and from the reflection matches,

light can accumulate inside the resonator due to constructive interference, exhibiting a

field enhancement. For these frequencies, which fulfill the phase matching, a stronger

transmission occurs? .

In Fig. 2.1(a), a spectrum, i.e. the frequency dependence of a physical quantity, of

a system with resonantly enhanced transmission is shown. The resonance is the peak

around the central frequency 𝜔0. A resonance typically has a certain broadness which

can be described by the full width at half maximum (FWHM), shown in the figure as

Δ𝜔. Depending on the optical process in the resonator and the investigated quantity, a

resonance can be a peak or a dip in the spectrum.

To characterize a resonance, the quality factor or short 𝑄-factor of an optical resonance

is introduced. It is defined as the energy trapped or stored in the system per loss in the

system due to absorption and energy leaving the system by radiation. This definition

can be paraphrased by many different concepts. In a cavity, the 𝑄-factor describes how

many round-trips - in average - the light travels between the mirrors until it can leave the

system or until it is absorbed.

In a spectral analysis of resonances, the Q-factor can be easily determined by the
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following equation:

𝑄 = 𝜔0
Δ𝜔 ≈ 𝜆0

Δ𝜆 , (2.5)

where 𝜔0 and 𝜆0 are the central frequency and wavelength of the resonance, while Δ𝜔
and Δ𝜆 describe the respective FWHM of the resonance. Accordingly, a higher 𝑄-factor

is equivalent to a more narrow resonance peak/valley.

The higher the Q-factor, the more light, i.e. energy, is trapped or stored in the sys-

tem, which means the field enhancement is larger. Depending on the system, this field

enhancement can be further localized at a special position inside the resonator.

Nanostructures working as antennas or resonators manipulate the forward and backward

scattering of light? . Their typically two- or three-dimensional cavity geometry introduces

more degrees of confinement conditions than the earlier mentioned one-dimensional Fabry-

Pérot resonator. Special field distributions can be supported due to particular modes

which increase the usability in applications. One of these applications is biosensing? ?

where for example spontaneous emission rates of single molecules might increase due to

nanoantennas.

Here, nanostructures of dielectric materials are discussed which provide many possibil-

ities to manipulate the light? ? . An essential tool to characterize the optical behavior of

dielectric nanostructures is Mie theory. In this section, it is aimed for a short description

and interpretation of the solutions, leaving the mathematical description to books like

Absorption and Scattering of Light by Small Particles by Bohren and Huffman? .

Gustav Mie developed a theory on electromagnetic scattering on spheres? . There is

an exact analytical solution when the spherical particle is excited by a plane wave. The

essential features of the solution are vector spherical harmonics, specifically magnetic

harmonics 𝑀⃗𝑜𝑒𝑚𝑛 and electric harmonics ⃗𝑁𝑜𝑒𝑚𝑛. They consist of associated Legendre

polynomials and spherical Bessel functions. Then, the incident plane wave as well as

the scattered and internal field of the sphere can be expanded into series of these vector

spherical harmonics. The respective coefficients describe how much of each harmonic

takes part for the investigated sphere radius at the incident plane wave frequency.

Electric dipoles are represented by the harmonic ⃗𝑁𝑜𝑒𝑚1, while magnetic dipoles corre-

spond to 𝑀⃗𝑜𝑒𝑚1. Respective electric and magnetic quadrupoles are connected to ⃗𝑁𝑜𝑒𝑚2

and 𝑀⃗𝑜𝑒𝑚2. Octopols and higher orders come with increasing index 𝑛. The small index

𝑚 relates to the orientation depending on the propagation direction and polarization of

the incident field, having the possibility to take numbers from 0 to 𝑛. The indices 𝑒 and
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𝑜 stand for even and odd.

The analytically calculated internal electric fields corresponding to the different har-

monics in the sphere are shown in Figs. 2.1(b) and (c) for the electric and magnetic dipole,

respectively. The plots show vectors representing the direction of (𝐸𝑥, 𝐸𝑦) and (𝐸𝑥, 𝐸𝑧),
respectively. This highlights the dipole behavior of the electric field for the electric dipole

and the circling electric field for the magnetic dipole.

At large distances from the sphere, the radiation pattern is governed by that of the

angular part of vector spherical harmonics? , i.e. dipole radiation, quadrupole radiation

and so forth. The excitation of a sphere typically does not lead to an electromagnetic

field solely determined by one single spherical harmonic, but to a mix of harmonics with

different weighing. The respective radiation pattern might be dominated by one harmonic,

e.g. the dipole, the combination however can lead to special radiation cases? .

Especially, the work of Kerker et al.? on a vanishing backward scattering by in-

terference of the electric and magnetic dipole modes, influenced investigations on dif-

ferent combinations of multipoles to manipulate the radiation direction of nanostruc-

tures? ? ? ? ? ? ? ? ? . For example, it is possible to achieve unidirectional radiation per-

pendicular to the propagation direction of the exciting wave by the interference of in-plane

electric dipole and electric quadrupole together with an out-of plane magnetic dipole? .

Usually, nanostructures fabricated in a top-down method like lithography sit on their

substrate and thus have no spheric shape. They rather are discs, bars, rods, prisms et

cetera. Finding the eigenstates of these geometries is usually not analytically possible as in

spheres. However, the similarity of the actual eigenstates - found by numerical simulations

- to the harmonics from Mie modes established the so-called multipole analysis in which

the field distribution in such structures is described as a series of Mie modes. Resonant

states of the light field in these structures are often called Mie-type resonances.

The numerically simulated electric fields in a disc of radius 𝑟 = 160 nm, height ℎ =
320 nm and relative permittivity 𝜖𝑟 = 10.24 surrounded by air excited by a plane wave,

are shown in Figs. 2.1(d) and (e) for the wavelengths 950 nm and 1200 nm, respectively.

The plots show vectors representing the direction of (𝐸𝑥, 𝐸𝑦) and (𝐸𝑥, 𝐸𝑧), respectively.

Fig. (d) shows a field dominated by the electric dipole, while in Fig. (e) the magnetic

dipole dominates, as is easily comparable to Figs. (b) and (c) with the analytical analogs

in a sphere. The numerical simulations were performed via the finite element method

solver from JCMwave? ? .

Mie-type resonances become very prominent in high-index low-loss dielectric structures
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2.1. Resonances in structured media

like Si or GaAs discs. An example for the latter is reported in Chapter 5. The expansion

of the field distribution into Mie modes helps explaining radiation characteristics which

relate on the propagation properties of the actual Mie modes.

Mie-type resonances are typically confining light inside the higher index material and

have a broad spectral response. Thus they do not provide a strong field enhancement

which corresponds to a low Q-factor. In ensembles, however, dielectric nanostructures can

possess sharp resonances providing strong local field enhancement. Respective collective

effects will be discussed in the next subsection.

2.1.3. Collective effects in metasurfaces

With respect to applications, the impact of single nanostructures is rather limited due

to the very small interaction volume or area. Ensembles of nanostructures can overcome

this issue and even provide new features. Already a dimer, i.e. two nanostructures in

close vicinity, made from dielectric materials can provide a strong field confinement in

the gap? ? ? ? . The essential feature of these ensembles is the influence additional nanos-

tructures have on the field induced in one nanostructure during optical excitation. New

energetically preferable modes can develope and be excited, leading to new resonances.

A special case of such ensembles, are large area arrays of nanostructures that typically

are periodic arrangements, creating a nanostructured surface. Any surface consisting

of structures of sub-wavelength dimensions and being localized between two media, for

example air and the substrate material, abruptly alters the optical properties at this in-

terface. These surfaces are called metasurfaces? . If designed properly, they can have

different functionalities like large area field enhancement, phase delay, directional scatter-

ing, and spectral filter abilities. The investigations on such metasurfaces increased when

the technology for nanostructuring, mainly lithographic methods, became faster, more

precise and especially more available.

In periodic arrays, whether one- or two-dimensional, the scattering can be enhanced by

two collective effects, Rayleigh anomalies and optically guided modes? .

Around 1900, Rayleigh first explained parts of Woods findings on the so-called Rayleigh

anomalies? ? ? , why they are sometimes also called (Rayleigh-) Wood anomalies. They

originally describe abruptly appearing features in the spectra of metallic gratings leading

to the discovery of surface plasmon polaritons. In the last two decades periodic arrange-

ments, i.e. gratings, of dielectric structures are strongly entering the optical research

community, where similar effects could be found? ? ? .
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The effect stems from grazing diffraction orders, i.e. when the propagation angle of the

diffraction order just transits from the plane of the grating toward propagation away from

the grating. From a Fano-type coupling effect combining the narrow states of Rayleigh

anomalies and the broad resonances from the nanostructures, so-called surface lattice

resonances (SLR) emerge? . They are especially dependent on the period of the grating.

The other collective effect arises from Rayleigh anomalies coupling to optically guided

modes as in a waveguide close to the periodic array, i.e. a grating. The latter can

introduce loss into the guided mode, which becomes a leaky mode, also called quasi-guided

mode (QGM), i.e. it has still a long enough decay length to be considered propagating.

However, depending on the period and the resonances of the grating, the QGM can, if

the structures are well designed, create strong radiative resonances. Such effects were

investigated for example in systems of a thin guiding dielectric layer close to plasmonic

nanostructures? ? ? .

The difference of the two regimes is the condition, that QGM needs a high-refractive

index waveguide close to the nanostructure array while the SLR needs a homogeneous

dielectric? .

The coupling of the Rayleigh anomalies to resonances, whether Mie-type resonances or

to QGMs is connected to a coupling scheme described by Fano? ? ? . Fano-type resonances

appear by coupling a sharp resonant feature with a broad background resonance to receive

a high-Q, asymmetric line shape in the spectrum as shown in the inset in Fig. 2.1. A

project using a Fano-type resonance is presented in Chapter 7. The high field enhancement

resulting from this resonance is used as excitation for second-harmonic generation in an

adjacent nonlinear medium. How this nonlinear process works in general is described in

the next section.

2.2. Nonlinear optical processes

2.2.1. General remarks

The main physical process dealt with in this thesis is second-harmonic generation (SHG),

which is a nonlinear process. Thus in this section, nonlinear optics is introduced and

described. Hereby the focus is set on the second-order nonlinearity of materials which

enables SHG. The formalism and explanation mainly bases on the book Nonlinear Optics

by Robert Boyd? .
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Physics describes systems and processes by mathematical models to understand and then

predict their behaviors. Many processes can be well described by simple linear models,

some need more complicated or even nonlinear models. Nonlinear means, that the de-

pendence of one quantity on another one is not linear, but nonlinear for example by the

power of two or three.

In optics, linear and nonlinear effects are distinguished by the dependence on the elec-

tromagnetic field. Many optical processes like reflection, transmission, interference and

photoluminescence are well described by models of linear dependence on the initial field.

Some processes, however, cannot uphold these simple models. Their important quantities

depend nonlinearly on the electromagnetic field.

Considering the material polarization of Eq. 2.1, the first term ⃗𝑃 (1) depends linearly

on the electric field ⃗𝐸, while the other terms depend on products of the electric field.

This sum of polarizations can be seen as a series expansion, where the nonlinear terms

are correction terms to the first, linear term. The influence of the higher-order terms is

typically small due to small coefficients accompanying them, as in a Taylor series.

However, due to the invention of lasers which provide strong and coherent light beams,

the products of the electric fields become very large and thus the influence of the nonlinear

polarization terms cannot be neglected anymore.

Examples for nonlinear processes are frequency conversions and mixing processes like

second- and third-harmonic generation, sum-frequency generation, four-wave mixing and

optical rectification. Another group of nonlinear processes is connected to the Kerr effect

like self-phase modulation and self-focusing. Other examples are stimulated Brillouin

scattering, Raman amplification, multi-photon absorption and spontaneous parametric

down-conversion? ? ? .

Frequency conversion, where electromagnetic fields of one or more frequencies are con-

verted to fields of another frequency, is interesting for applications. One example are

light sources, because the newly generated frequency is otherwise not available or un-

derlies technical difficulties. Another example are detection schemes, where reasonably

sensitive detectors of one frequency are not available, but for the converted one.

In this work, we deal with SHG, a nonlinear parametric process, i.e. the quantum state

of the material stays unchanged. The important quantity, which describes this process

is the second-order nonlinear material polarization including the associated second-order

nonlinear susceptibility, which will be explained in the next subsection.
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2.2.2. Second-order nonlinear susceptibility

As in linear optics, electromagnetic fields in nonlinear optics are governed by Maxwell’s

equations. The essential quantity to include the nonlinearity is the material polarization
⃗𝑃 , in particular its nonlinear terms ⃗𝑃 (𝑛), with 𝑛 > 1. In Maxwell’s equations, these

nonlinear terms represent sources for electric fields of different frequencies than they are

generated by, which is a result of being proportional to products of the initial electric fields.

The crucial coefficients accompanying these products are the nonlinear susceptibilities

𝜒̂(𝑛), tensors of rank 𝑛 + 1.

Since this work is focusing on SHG, this subsection is concentrating on the second-order

nonlinear susceptibility 𝜒̂(2) which governs the second-order nonlinear polarization as

⃗𝑃 (2)(𝜔3) = 𝜖0𝜒̂(2)(𝜔3; 𝜔2, 𝜔1) ∶ ⃗𝐸2(𝜔2) ⃗𝐸1(𝜔1) . (2.6)

The vectorial product, here denoted by the colon ∶ between the third-rank tensor 𝜒̂(2) and

the vectorial fields ⃗𝐸1 and ⃗𝐸2, is best described by looking at the 𝑗-th component of the

nonlinear polarization 𝑃 (2)
𝑗 :

𝑃 (2)
𝑗 (𝜔3) = 2𝜖0 ∑

𝑗,𝑘,𝑙
𝜒(2)

𝑗𝑘𝑙(𝜔3; 𝜔2, 𝜔1)𝐸2,𝑘(𝜔2)𝐸1,𝑙(𝜔1) , (2.7)

where 𝐸2,𝑘 and 𝐸1,𝑙 are the 𝑘-th component of the second and the 𝑙-th component of

the first initial field, respectively. As visible from these equations combined with the

proportionality of ⃗𝐸(𝜔3) ∼ ⃗𝑃 (2)(𝜔3), the general second-order nonlinear process is a

three-wave mixing.

The essential processes in the classical sense are sum frequency generation (SFG), where

two fields of lower frequency (𝜔1 and 𝜔2) generate a field of higher frequency 𝜔3 = 𝜔2+𝜔1,

and difference frequency generation (DFG), where a higher frequency field and a lower

frequency field (𝜔2 > 𝜔1) generate a field with a frequency that is the difference of the

higher and lower initial frequencies (𝜔3 = 𝜔2 − 𝜔1).

How the newly generated electric field looks like depends on the vanishing and non-

vanishing components of the second-order nonlinear susceptibility 𝜒̂(2) which follow the

symmetries of the crystal structure of the material. The strength and dispersion of the

non-vanishing values depend on the actual distances and electronic behaviors of the crys-

tal’s atoms.

The most important property for a material to have non-vanishing components in the
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second-order nonlinear susceptibility 𝜒̂(2) is the breaking of the inversion symmetry, which

means a non-centrosymmetric material.

In non-centrosymmetric materials, mirror and rotation symmetries can lead to vanishing

components, to equal components or opposing components, where one component is equal

to the negative of another component. For example, the second-order nonlinear material

MoS2 monolayer, which takes part in the experiments reported in the Chapters 6 and 7, is

only two-dimensional (mirror symmetry with respect to the 2D-plane), it has a hexagonal

crystal structure with a 120∘ rotational symmetry and a mirror symmetry in one plane

perpendicular to the 2D-plane. In the right orientation, this leads to only four non-zero

components of the 27 components in the 3 × 3 × 3-matrix and one of these four has the

negative value of each of the other three equal components. A derivation for the 𝜒̂(2)-

components of MoS2 monolayer is found in the appendix. The results can be seen in

section 3.1, where the material is described in detail.

2.2.3. Second-harmonic generation

Second-harmonic generation (SHG) belongs to the nonlinear frequency conversion pro-

cesses and was first observed shortly after the development of the first lasers? . In appli-

cations it is useful for example in Nd:YAG lasers where the original 1064 nm transition is

frequency doubled, and provides a coherent light source at half the wavelength, 532 nm? .

Nowadays, the process is successfully implemented in micro- and nanostructures, provid-

ing a new functionality in metasurfaces? . In this context, it is necessary to understand

the origin and properties of the process. To simplify the description, we do not consider

surface second-harmonic generation in this section, although it might be interesting to

study in nano-structures where the surface-to-volume-ratio is increased with respect to

bulk crystals or thin films? ? .

SHG is a special case of SFG, where the two lower energy fields have the same frequency

𝜔, which means it is the same field, and thus generates a new field of double this frequency

𝜔SH = 2𝜔. The initial field is called fundamental harmonic (FH) while the newly generated

is called second harmonic (SH). Since the experiments described in the following chapters

use the wavelength 𝜆 rather than the frequency for the spectral dependence of the process,

it should be noted that the SH is at half the FH wavelength.

The process of SHG is governed by the nonlinear material polarization

𝑃 (2)
𝑗 (2𝜔) = 𝜖0 ∑

𝑗,𝑘,𝑙
𝜒(2)

𝑗,𝑘,𝑙(2𝜔; 𝜔, 𝜔)𝐸𝑘(𝜔)𝐸𝑙(𝜔) . (2.8)
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Figure 2.2.: Second-harmonic generation scheme.

In comparison with the general second-order nonlinear polarization from Eq. 2.7, the

nonlinear polarization for the SHG is taking into account that not two but only one

initial field ⃗𝐸(𝜔) is participating in the process, which removes the factor 2 in front of

the sum as a kind of degeneracy factor.

In Maxwell’s equations, the nonlinear polarization ⃗𝑃 (2)(2𝜔) acts as a source to generate

a SH electric field

⃗𝐸(2𝜔) = 1
𝜖0

⃗𝑃 (2)(2𝜔) . (2.9)

However, Maxwell’s equations including this nonlinear polarization lead to coupled

differential wave equations of the two fields, namely FH and SH field. Both fields influence

each other. When light of SH is generated, the FH field is depleted. This is the so-called

depletion of the pump. It is observable in bulk nonlinear crystal operations with high

conversion efficiencies.

In the systems investigated in this work, this depletion does not play a role. The low

conversion efficiencies result in a negligible change of the FH field. This simplifies the

description of the SHG since the FH field can be taken as constant. This approximation

is called the undepleted pump approximation. It reduces the SHG process to three steps

depicted in Fig. 2.2: The FH field excites the nonlinear material and induces a second-

order nonlinear polarization ⃗𝑃 (2)(2𝜔). This nonlinear polarization acts as a source for the

SH electric field ⃗𝐸(2𝜔), which then radiates.

This three-step scheme is used in all SH simulations used in this work, where first the

linear scattering of the FH with the nanostructures is calculated, then the field existent

in the nonlinear material is used to compute the induced nonlinear polarization according

to Eq. 2.8 and then use this as a source for the SH field which is again scattered by the
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structures of the system.

An important issue for many SHG systems is the so-called phase matching. When the

FH wave propagates through the nonlinear material volume, it generates SH fields at

all places with its own phase differing in time and space during this propagation. The

generated SH fields take over the FH’s phase at this moment in this location. During

their own propagation through the material they collect their own phase which typically

differs from the FH phase due to material dispersion with respect to the difference of FH

and SH wavelength. If these accumulated phases from one point to another do not match

with the FH phase, the SH fields will interfere destructively.

Accordingly, just increasing the volume of a medium or the length of a waveguide

made from the nonlinear material does not automatically enhance the SH output. To

realize phase matching, the FH and SH wavelengths have to be chosen with respect to

the material dispersion. A limiting and often impossible task.

So-called quasi-phase-matching can overcome this issue and leads to an increase of

conversion efficiency over distance. For this, poling of the crystal orientation is used. The

𝜒̂(2) is periodically inverted in space and - by proper design - counteracts the destructive

interference of the generated SH in unpoled materials.

SHG in sub-wavelength structures, as they are used in the experiments reported in

this work, does not need phase-matching. The oscillation of constructive and destructive

interference only happens at interaction path lengths of more than a wavelength since the

phase can counteract over these distances. In sub-wavelength structures the interaction

length is too short to feel the phase difference between FH and SH field. This advantage

helps a lot in reducing the design efforts of these structures. Nevertheless, many other

constraints appear for the design process as described in the following chapters of this

work.

2.3. Diffraction gratings

2.3.1. Periodic multiple slit arrangement

Radiation control is one of the aims using nanostructured surfaces. One essential effect

for this purpose is diffraction of incoming or of generated light. With sub-wavelength

structures, it is possible to control the light propagation in a few or even just one direction,

while bulk diffractive optical elements typically produce multiple diffraction orders? . In
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our work, diffraction of the generated second-harmonic can provide observability of the SH

signal (see Chapter 5) and a realization of computer generated holograms (see Chapter 6).

A propagating wave, whether it is light or for example a liquid, will be diffracted when

being confronted with an obstacle.

A typical textbook obstacle is the single slit in a barrier which otherwise blocks the

incoming plane wave completely, e.g. in Optics by Hecht? . The light that is transmitted

through the slit will be diffracted. The reason is Huygen’s principle: every point of the

wavefront which comes through the slit is a new point source.

In the case of a slit with transmission function 𝑡(𝑥) and an illuminating plane wave

propagating in 𝑧-direction, the intensity pattern on a screen in the far field reproduces

the shape of the Fourier transform of the slit. This actually only holds true in the paraxial

Fraunhofer approximation, which not only assumes far field but also small angles in 𝑥-

direction. That means the intensity pattern reproduces the Fourier transform only in a

certain surrounding of the center.

If another slit is put close, the transmitted light through both slits interferes. Consid-

ering the same shape of the second slit, the radiation pattern is still influenced by the

same Fourier transform, which is now an envelope around the interference maxima.

The next step is the generalization towards a one-dimensional finite multiple slit ex-

periment. Here, an arrangement of a finite number 𝑁 of equidistant slits of the same

shape is chosen. This periodic but finite arrangement of sources as which the slits act,

can be denoted as a sum of 𝑁 transmission windows 𝑡(𝑥) all shifted by the distance 𝑑 in

𝑥-direction,

𝑡𝑁(𝑥) =
𝑁

∑
𝑛=0

𝑡(𝑥 + 𝑛𝑑) . (2.10)

The according Fourier transform of one slit is 𝑇 (𝑘𝑥). The Fourier transform of the summed

up slits relates as

𝑇𝑁(𝑘𝑥) ∼ 𝑇 (𝑘𝑥) sin2(𝑁𝑘𝑥𝑑/2)
sin2(𝑘𝑥𝑑/2)

. (2.11)

Then the intensity pattern 𝐼𝑁(𝑥) at a screen at the position 𝑧 = 𝑧1 far away from the

slits results in

𝐼𝑁(𝑥) = |𝑡𝑁(𝑥)|2 ∼ ∣𝑇𝑁(𝑘𝑥 = 𝑘0
𝑥
𝑧1

)∣
2

∼ 𝑇 (𝑘𝑥 = 𝑘0
𝑥
𝑧1

) sin2(𝑁𝑘0𝑥𝑑/2𝑧1)
sin2(𝑘0𝑥𝑑/2𝑧1)

. (2.12)
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Figure 2.3.: a) Periodically arranged multiple slits. b) Infinite periodic arrangement.

The visualization of this pattern is shown in Fig. 2.3(a) for a multiple-slit arrangement

using a simple aperture in one dimension as a slit. The Fourier transform of this slit is

a sinc-function and is depicted here as the dashed envelope. The pattern provides areas

of high intensity separated from each other by areas of suppressed intensity. The high

intensity areas can be called diffraction orders, starting with the central zero diffraction

order, followed by the first, second, and higher orders which go in both positive and

negative 𝑥-direction.

An infinitely periodic system of slits or sources is often referred to as a grating. Its

infiniteness, at least in theory, leads to the simple results of diffraction orders as discrete

states (delta distributions) for which reflection or transmission is allowed and the areas

in between, where the light propagation is suppressed to 0 by destructive interference.

The mathematical description differs from the (multiple) slit formula above. Due to

the infinite periodicity of the transmission function 𝑡∞(𝑥) = 𝑡∞(𝑥 + 𝑑), it is possible to

describe it as a Fourier series, which leads to a sum of delta distributions in the far field

spectrum.

Similar to the maxima of the spectrum resulting from a finite multiple slit arrangement,

the delta distributions are located at 𝑥𝑛 satisfying 2𝜋𝑛
𝑑 = 𝑘0

𝑥𝑛
𝑧1

, being the positions of the

𝑛-th diffraction order on the screen. A visualization of this intensity pattern is shown in

Fig. 2.3(b) showing the sinc-function as the Fourier transform of the slit’s transmission

function representing the envelope around the discrete diffraction order maxima.

Fig. 2.3 already visualizes the difference between the theoretical infiniteness and the

typically experimental finiteness of periodic arrangements: the more slits are used, the

sharper the diffraction orders are in the spectrum. However, the envelope of the spectrum
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2. Basic concepts

as the Fourier transform of the single slit itself stays intact.

As mentioned before, the approach with the Fourier transform only holds true for the

far field, i.e. large 𝑧1, and small angles in 𝑥-direction, i.e. small numbers of diffraction

orders 𝑛. The positions of higher diffraction orders deviates. However, for small angles,

the propagation angle 𝛼𝑛 of the 𝑛-th diffraction order can be approximated by

𝑛𝜆
𝑑 = 𝑥𝑛

𝑧1
= tan(𝛼𝑛) ≈ sin 𝛼𝑛 . (2.13)

The relation for the propagation angle 𝛼𝑛 of the 𝑛-th diffraction order can be also

found in a simpler geometrical picture, without the small angle approximation and even

including an angle of incidence 𝛼𝑖, as for example described in? ,

𝑛𝜆
𝑑 = sin(𝛼𝑛) − sin(𝛼𝑖) . (2.14)

From Eq. 2.14, the Rayleigh anomaly, mentioned before in Section 2.1.3, can be ex-

plained conceptually (for further reading find? ). In a grating with a fixed period and

assuming a fixed incident angle, the propagation angle 𝛼𝑛 of the 𝑛-th diffraction order

depends on the wavelength 𝜆 of the incident plane wave. If the term 𝑛𝜆
𝑑 + sin(𝛼𝑖) goes

to 1, 𝛼𝑛 becomes 90∘ and therefore propagates tangential along the grating. Even higher

values lead to non-propagating diffraction orders. At this ’passing-off’? for the 𝑛-th

propagating diffraction order, Rayleigh’s anomalies appear.

Of course, the shown diffraction formulas can be generalized for two-dimensional periodic

gratings or even periodicity in more directions in one plane. This is crucial for usually two-

dimensional periodic metasurfaces and especially hologram designs. Here, the metasurface

unit cells, also called meta-atoms, form the envelope of the angular spectrum with their

individual radiation pattern, convoluted by the periodicity with maxima at the diffraction

orders.

In the experiment, depending on the number of periods existent and excited, the ob-

served radiation patterns are closer to the multiple slit experiment or an infinitely periodic

grating. The position of the diffraction orders, however, is the same in both cases. In

the experiments reported in this work, the angular radiation pattern is not observed as

a farfield pattern, but directly as the angular spectrum, i.e. the Fourier transform. The

mechanism here is back-focal plane imaging described in Section 4. Another difference is,

that not the diffracted light of the initial exciting field is observed, but of the generated

SH field, the so-called SH diffraction, which is shortly described in the next subsection.
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Figure 2.4.: Scheme of SH diffraction.

2.3.2. Second-harmonic diffraction

The term ’second-harmonic diffraction’ might not be prominent in the literature, since it

is not found in books describing fundamentals of optics, but it is used in several publi-

cations? ? ? ? ? ? ? ? , to name just a few. It describes the combination of the nonlinear

process of SHG and the diffraction of just this generated SH light. Each of the last three

chapters of this work, which deal with the experimental results, contains SH diffraction

measurements whether playing a major role or being a side tool for experimental proof.

SH diffraction appears when structures, which are either made from second-order non-

linear materials or adjacent to such, create SH sources whose propagating fields interfere

with each other. The diffraction itself has nothing to do with the nonlinear process of

SHG and it is still a linear process itself. In ’regular’ diffraction an electromagnetic field

is propagating towards structures and then is influenced by their appearance leading to

destructive and constructive interference. In SH diffraction, the initial incoming light, i.e.

the FH field, is exciting the nonlinear material which generates the SH light that then

is diffracted. The interference of the SH light results from the spatial arrangement of

sources at the SH wavelength. The FH field, however, might add different phases to the

generation of the SH light, if the excitation happens under an oblique angle with respect

to the structures.

Due to its periodic arrangement in the experiments reported in this work, these multiple

sources interfere with each other leading to propagating diffraction orders at the SH

wavelength. The process of SH diffraction is exemplarily shown in scheme of Fig. 2.4,

where a FH field excites a periodic arrangement of nonlinear structures which induces a

nonlinear polarization which generates a SH field which then propagates in different angles

while the propagation in other angles is suppressed. Due to the small sub-wavelength

structures with its field confinement even back propagation can be a result of the SH
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diffraction.

The important characteristic of the SHG which enables this SH diffraction is the coher-

ence which arises from the combination of its parametric nature and the use of a coherent

light source as the FH, e.g. a laser. The amplitudes of the different SH fields generated in

an ensemble of structures add up or subtract from each other depending on their relative

phases. The appearance of diffraction orders from periodically arranged structures needs

a stable phase relation over the initial light field which excites the ensemble. This stable

phase relation is available in the case of a plane wave excitation of a periodic slit experi-

ment. In the experiments reported in this work, the different SH fields from the different

metasurface unit cells have a fixed phase relation to each other due to the coherent FH

laser source and thus a coherent SH field is generated which can exhibit SH diffraction.

Since functionalizing surfaces is a path for future applications, diffraction from structured

surfaces which are able to produce efficient nonlinear frequency conversion processes is

a great opportunity to control and manipulate light in and from such surfaces. In the

experiments reported in Chapter 5 and Chapter 6, SH diffraction plays an important role.
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3. Second-order nonlinear materials

3.1. Two-dimensional MoS2 monolayers

3.1.1. General properties

Two-dimensional (2D) materials are crystalline mono-atomic or mono-molecular layers

and got their name due to their ultrathin thickness. Their dimensionality and their

particular crystal structures lead to special electronic and optical properties? ? ? ? ? ? ? ,

which can be manipulated by strain, external fields and doping? ? ? ? ? ? ? ? . Due to

their flat topology, 2D materials can be coupled to other materials or structures providing

improved or even new properties or application options? ? ? ? ? ? ? . It is also possible to

stack these 2D layers creating heterostructures? ? ? .

This dissertation intends to show possibilities to use the second-order optical nonlin-

earity of 2D materials in structured surfaces. Thus, this section is kept short, present-

ing major properties connected to optics, especially the second-order nonlinear response.

Additionally, the growth, transfer and patterning mechanism used for the investigated

samples are described.

Since the discovery of the 2D material graphene? , transition metal dichalcogenides (TMDs)

have sparked a huge interest of researchers in optics and electronics. This group of semi-

conducting materials is described by the chemical formula MX2 with M standing for a

group VI metal like molybdenum (Mo) or tungsten (W) and X standing for chalcogenes

like sulfur (S), selen (Se) or tellurium (Te). The bulk TMD is only seldomly used in the

optical community due to its indirect band gap.

The crystal structure of TMDs is based on mono-molecular, van der Waals-bound layers.

It is possible to thin down the material by exfoliation to a stack of very few layers and

eventually to the limit of a single molecular layer of ∼0.7 nm thickness, the so-called

monolayer. While a bilayer still possesses an indirect band gap, the band structure of

a monolayer drastically changes. The lowest energy transition becomes direct at the K-

point? . Recently the chemical vapor deposition (CVD) growth of TMD single crystals

can be accurately controlled to achieve high quality monolayers of large areas? . In this

work, only CVD grown monolayers are used for the experimental investigations.

In contrast to usual bulk semiconductors, TMD monolayers exhibit excitons with strong

binding energies. Excitons are hydrogen-like states formed by an electron and a hole due
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Figure 3.1.: a) Crystal structure of MoS2 monolayer shown from top and from the side in
armchair direction. b) SH intensity dependent on the rotation angle 𝜃 of the
crystal orientation at fixed linear FH and SH polarization. c) SH intensity
dependent on the rotation angle 𝜙 of the linear FH polarization at fixed
crystal orientation and linear SH polarization.

to Coulomb interaction. Resulting from high electron mobility and thus high quasipar-

ticle effective mass in the TMD monolayers, the dielectric screening is low and thus the

binding energy of the excitons is large? . This effects especially the absorption and pho-

toluminescense of the material. Additionally, trions, i.e. bound states of two electrons

and one hole or one electron and two holes, have been observed for TMD monolayers? .

TMD monolayers have a hexagonal crystal structure. As exemplarily depicted in

Fig. 3.1 for a molybdenum disulfide (MoS2) monolayer, the unit cell consists of two dif-

ferent kinds of atoms. While the molybdenum atom is single, the sulfur atom visible from

the top view is actually two atoms, just deplaced in the direction normal to the 2D plane

as visible from the side view. The crystal symmetry belongs to the 𝐷3ℎ space group. It is

non-centrosymmetric, i.e. it has no inversion center. From the top view, the mirror plane

through the arm-chair direction is clearly visible. Another mirror plane is the 2D-plane

itself, seen in the side view.

From the break of the inversion symmetry, two interesting properties follow: second-

order nonlinearity and spin-valley coupling. The former will be dealt with in the next

subsection. The latter is connected to the so-called valleys of semiconductors, which

describe minima in the electronic band structure. Due to the lack of inversion symmetry,

the valleys at the K-points of different sign (𝐾±) in the hexagonal Brillouin-zone are not

equivalent? . These valleys can couple with the split spin states, which are degenerate

due to the heavy atoms and their outer-shell d-orbital electrons which exhibit a strong

spin-orbit coupling. The resulting possibility to address specific electronic states (valley ±
and spin up-down) by different initial optical excitations? is called valleytronics.
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3.1. Two-dimensional MoS2 monolayers

MoS2 monolayers have been heavily investigated due to their large availability, as bulk

crystals for exfoliation or as precursors in the form of molybdenum trioxide (MoO3) for

growth processes, in contrast to its tungsten relatives or molybdenum diselenid. Photo-

luminescence of MoS2 monolayers shows three important transitions in the visible light

range. The first two transitions around 680 and 650 nm, called A- and B-exciton, are

connected to excitons describing the direct band gap at the K-point split by the before

mentioned spin-orbit coupling. The third transition around 420 nm, often called C-

exciton, is actually governed by band nesting? , i.e. a region of constant energy spacing

between conduction and valence band in the Brillouin zone.

The C-transition provides the strongest second-order nonlinear response for MoS2

monolayers? ? . Further information on the nonlinear response follows in the next sub-

section.

3.1.2. Second-order nonlinear response

TMD mono- and few-layer crystals with an odd number of layers exhibit a second-order

nonlinear response due to their non-centrosymmetric crystal structure? ? ? ? ? ? . The

top view onto the crystal structure of a monolayer, as seen in Fig. 3.1(a), shows a broken

inversion symmetry. This is especially visible in the unit cell framed by the black rhombus

around 4 Mo-atoms: the enclosed S-atom is not centered which would be necessary for

inversion symmetry, but it is displaced from the center.

The inversion symmetry is reestablished when another layer is naturally grown on top

and adds up the unit cell. Another additional layer again creates the asymmetry. This

change of symmetry holds only until the thickness of the few-layer system stays small

enough. Therefore the second-order nonlinear response decreases with increasing, but

still odd number of naturally grown layers while the bulk shows none? .

Due to the crystal structure symmetries, the second-order nonlinear susceptibility tensor

𝜒̂(2) in the orientation of the armchair direction being parallel to the 𝑥-direction, has only

four non-vanishing elements which additionally have the same absolute value and differ

only in the sign:

𝜒(2)
0 ∶= 𝜒(2)

𝑥𝑥𝑥 = −𝜒(2)
𝑥𝑦𝑦 = −𝜒(2)

𝑦𝑥𝑦 = −𝜒(2)
𝑦𝑦𝑥 . (3.1)

A derivation for this 𝜒̂(2) can be found in the appendix.

The simple structure of the 𝜒̂(2)-tensor stems from the planar structure, where the

interaction of the atoms with the electric field only happens again in the plane. From

equation 2.8 in Section 2.2, it can be deduced that only 𝑥- and 𝑦-polarized FH electric
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3. Second-order nonlinear materials

fields contribute to the second-order nonlinear polarization ⃗𝑃 (2) as

𝑃 (2)
𝑥 = 𝜖0(𝐸2

𝑥 − 𝐸2
𝑦) ,

𝑃 (2)
𝑦 = −2𝜖0𝐸𝑥𝐸𝑦 .

(3.2)

Rotating the flake around the axis normal to the 2D material plane (𝑧) with an angle

𝜃, the 𝜒̂(2)-tensor changes:

𝜒̂(2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎛⎜
⎝

cos(3𝜃) sin(3𝜃)
sin(3𝜃) − cos(3𝜃)

⎞⎟
⎠

⎛⎜
⎝

sin(3𝜃) − cos(3𝜃)
− cos(3𝜃) − sin(3𝜃)

⎞⎟
⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

𝜒(2)
0 , (3.3)

where the 3 × 3 × 3-tensor is already reduced to a 2 × 2 × 2-tensor due to the vanishing

𝑧-components.

The second-order nonlinear polarization for second-harmonic generation then reads:

𝑃 (2)
𝑥 = 𝜖0𝜒(2)

0 [cos(3𝜃) (𝐸2
𝑥 − 𝐸2

𝑦) + 2 sin(3𝜃)𝐸𝑥𝐸𝑦] ,

𝑃 (2)
𝑦 = 𝜖0𝜒(2)

0 [sin(3𝜃) (𝐸2
𝑥 − 𝐸2

𝑦) − 2 cos(3𝜃)𝐸𝑥𝐸𝑦] .
(3.4)

Using this nonlinear polarization, we can derive the FH polarization dependence and the

flake orientation dependence of the SH signal. With 𝐸𝑆𝐻
𝑥 ∼ 𝑃 (2)

𝑥 and 𝐸𝑆𝐻
𝑦 ∼ 𝑃 (2)

𝑦 , the

SH intensity at a fixed linear polarization is usually obtained for two regimes with two

different outcomes.

A six-fold symmetry, as depicted in the polar plot in Fig. 3.1(b), can be found for a

fixed FH polarization and a fixed SH polarization while the flake is rotated around the

optical axis. Without loss of generality, we chose FH polarization 𝑥 and SH polarization

𝑥, while we rotate the flake by angle 𝜃 following Equation 3.4. The result has a six-fold

symmetry with its six maxima over 360∘ described by

𝐼𝑆𝐻
𝑥 = |𝐸𝑆𝐻

𝑥 |2 ∼ |𝑃 (2)
𝑥 |2

∼ |𝜒(2)
0 [cos(3𝜃) (𝐸2

𝑥)] |2

∼ cos2(3𝜃) .

(3.5)

This behavior was presented in the first SHG investigations on MoS2 monolayers? ? .

A four-fold symmetry, as depicted in the polar plot of Fig. 3.1(c), can be obtained

when the SH polarization and the flake orientation are fixed, but the FH polarization is

rotated by an angle 𝜙. Again, without loss of generality, we chose the SH polarization in

𝑥-direction and the flake orientation with armchair-direction parallel to the 𝑥-direction.
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3.1. Two-dimensional MoS2 monolayers

The FH polarization is then modelled as 𝐸𝑥 = 𝐸0 cos(𝜙) and 𝐸𝑦 = 𝐸0 sin(𝜙). Following

Equation 3.2, a dependence is found which has four maxima over 360∘ as

𝐼𝑆𝐻
𝑥 = |𝐸𝑆𝐻

𝑥 |2 ∼ |𝑃 (2)
𝑥 |2

∼ |𝜒(2)
0 (𝐸2

𝑥 − 𝐸2
𝑦) |2

∼ |𝐸2
0(cos2(𝜙) − sin(𝜙)2)|2

∼ cos2(2𝜙) .

(3.6)

This behavior is observed in the measurements reported in this thesis, since the setup

does not allow for the rotation of the sample, the FH polarization however is rotatable

(see Section 4.1).

In contrast to the linearly polarized SH intensity, the overall SH intensity 𝐼𝑆𝐻 = |𝐸𝑆𝐻
𝑥 |2+

|𝐸𝑆𝐻
𝑦 |2 is not dependent on the FH polarization or crystal orientation rotation. For the

derivation, the nonlinear polarization from Equation 3.4 is used with the crystal rotation

angle 𝜃 and the rotating FH polarization modelled as 𝐸𝑥 = 𝐸0 cos(𝜙) and 𝐸𝑦 = 𝐸0 sin(𝜙)
:

𝐼𝑆𝐻 = |𝐸𝑆𝐻
𝑥 |2 + |𝐸𝑆𝐻

𝑦 |2 ∼ |𝑃 (2)
𝑥 |2 + |𝑃 (2)

𝑦 |2

∼ |𝜒(2)
0 [cos(3𝜃) (𝐸2

𝑥 − 𝐸2
𝑦) + 2 sin(3𝜃)𝐸𝑥𝐸𝑦] |2

+ |𝜒(2)
0 [sin(3𝜃) (𝐸2

𝑥 − 𝐸2
𝑦) − 2 cos(3𝜃)𝐸𝑥𝐸𝑦] |2

∼ cos2(3𝜃) + sin2(3𝜃)

∼ 1 .

(3.7)

The value of 𝜒(2)
0 is dependent on the FH/SH wavelength, i.e. it is spectrally dispersive.

While the polarization and rotation dependence is the same for all TMD monolayers, the

spectral dispersion of 𝜒(2)
0 is material dependent and eventually even dependent on the

surrounding, similar to the linear susceptibility of TMDs. Reported values for 𝜒(2)
0 differed

in the first publications due to different units and conventions. At the C-transition of

MoS2 monolayers, 𝜒(2)
0 ≈ 130 pm/V is reported to be a reasonable value? ? .

An overview on the dispersion of the second-order nonlinear susceptibility is given by

Weismann et al.? , showing the spectral dispersion of the SH response, for three of the

four major TMD monolayers MoS2, MoSe2, WS2 and WSe2. It appears, that the SH

response is larger around the absorption peaks, i.e. the A- and B-excitons as well as the

C-transition. This behavior similar to photoluminescence enhancement is due to excitonic
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Figure 3.2.: a) Scheme for growth of MoS2 monolayers by chemical vapor deposition. b)
Scheme for PMMA assisted wet transfer method.

resonances? .

In MoS2 monolayers, the excitonic resonance at the C-transition provides a far stronger

SH response than the A- and B-excitons. The experiments reported in the later chapters

use the C-transition around 420 nm using a tunable laser emitting around double this

wavelength for the FH excitation (see Section 4.1).

3.1.3. Growth and transfer

For the convenient use in applications, large area TMD monolayers have to be available

and either be grown or transfered on the target surface or structures. For the projects

reported here, MoS2 monolayers were CVD grown by the group of Andrey Turchanin,

Institute of Physical Chemistry, Abbe Center of Photonics at the Friedrich Schiller Uni-

versity Jena. The responsible scientist for the growth was Antony George. This subsection

is briefly introducing the growth protocol they developed? .

While exfoliation of TMDs via adhesive tape from bulk crystals usually leads to a low

yield of small area monolayer crystals in a conglomeration of few-layer crystals, the quality

of crystalinity is very good. It is possible to transfer these crystals with high positioning

accuracy via a stamp of poly(methyl methacrylate) (PMMA) and polydimethylsiloxane

(PDMS)? ? ? ? .

CVD however, can result in large areas of monolayer crystals in a bottom-up process.

In principle, the MoS2 crystals grow layer by layer from precursors of MoO3 and S2 from

the gas phase. The optimization of temperature, pressure, gas flow and precursor density

is the key to grow high quality large area monolayer crystals.

The growth process is conducted in a two zone split tube furnace, to control the in-
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3.1. Two-dimensional MoS2 monolayers

dividually needed temperatures of the precursors. A sketch is shown in Fig. 3.2(a). In

the first zone, S2 powder is heated. In the second one, MoO3 powder is heated and

the growth substrate is positioned. An argon and hydrogen gas flow is controlling the

mixing of the materials to initialize the reaction to form MoS2 and the growth on the

substrate. By choosing the right temperature and pressure conditions, triangular shaped

MoS2 monolayers are formed.

For hybrid structures, where MoS2 monolayer crystals are atop nanostructures, a wet

transfer method is used to move the MoS2 monolayer crystals from the growth substrate

onto a different substrate containing the target structures. Up to now, this procedure

does not allow for precise positioning of the monolayer crystals, but statistically due to

many large area monolayer crystals a successful transfer of monolayers on top of the

target structures can be realized. A dry transfer with high positioning accuracy of single

monolayer crystals via a stamp? ? ? ? as successfully used with exfoliated crystals was

not available for the projects described in this work using CVD-grown MoS2 monolayers.

The wet transfer follows a protocol using a thin film of PMMA as an intermediate sub-

strate? ? ? as visualized in Fig. 3.2(b). First the monolayers on their growth substrate

are covered by the thin film of PMMA. Further, the whole construct is flooded by a weak

potassium hydroxide (KOH) solution, resulting in the PMMA together with the monolay-

ers being detached from the growth substrate and thus swimming in the liquid with the

monolayer crystals facing toward the bottom of the liquid reservoir. The target substrate

can be inserted into the reservoir, submerging under the swimming monolayer-PMMA-

system. Finally the target substrate can be lifted up out of the reservoir being covered

by the monolayer-PMMA-system. Via a microscope, this can be controlled slightly to

push areas of high density of monolayer crystals toward the target structures or areas

of interest on the target sample. The monolayer-PMMA-system is fixed onto the target

sample by drying. The PMMA then is lifted off by acetone and liquid carbon dioxide as

a supercritical fluid in a critical point dryer.

3.1.4. Patterning via focused ion beam milling

To fabricate very small structures into plane materials of a certain thickness, several

techniques have been developed, like electron beam lithography. For ultrathin materials

like TMD monolayers, lithography methods were investigated? ? , but also challenging,

as needed etchant fluids can destroy the monolayers.

A more precise method to remove parts of the TMD monoalyers to create structures
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Figure 3.3.: Fabrication scheme: FIB milling of MoS2 monolayers.

is focused ion beam (FIB) milling. FIB machines are used for many applications such

as material deposition, metrology and direct-write processing, where milling and ion im-

plantation are included? ? ? . The principle of the technique is based on electronically

accellerated ions which are focused onto a sample. Depending on the focus conditions,

the density and velocity of the particles, and thus on the energy and momentum which

is interacting with the target atoms rather than the whole material, the particles are

penetrating deeper or more shallow into the surface. Thereby, the ions are pushing other

particles away or even knocking them out of the substrate. Implantation of ions can lead

to doping effects and crystal lattice amorphization. The removal of parts of material is

called FIB milling and can be used to structure materials, and under certain conditions

even ultrathin materials like TMD monolayers? ? ? ? ? .

In contrast to the lithography which can rapidly structure large areas, FIB techniques

usually work on a point-by-point process, where the FIB is moved step by step along

paths where material has to be manipulated. This can provide high precision due to tight

focusing, but it does need long times to structure large areas or complicated and deep

patterns.

In this work, FIB milling is used to produce gratings and even more complicated com-

puter generated holograms into MoS2 monolayer flakes? , as described in Chapter 6. A

sketch of the fabrication scheme is shown in Fig. 3.3. Due to the very thin thickness,

material is easily removed or at least altered by energetic particles hitting the material.

This problem is noticed also in scanning electron microscopy (SEM) to investigate TMD

monolayers, where energetic electrons destroys the ultrathin material. Accordingly SEM

cannot be used to investigate 2D materials.

To deal with these circumstances, in this work Ga-ions are accelerated to an energy of

30 keV at a reduced ion current of 1.1 pA for a very small excitation spot. Higher currents

lead to bigger excitation spots and thus to a lower resolution for the wanted patterns,

although with lower currents less material can be removed. High energies help to focus the
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ion beam. However, higher energies result in deeper penetrations into the substrate and

stronger lateral scattering and removal of atoms inside the substrate. Scattered particles,

also secondary kicked-out particles from the substrate, can reach the surface again and

destroy areas which are not intended to be manipulated by the initial FIB.

The conditions used here, ensure a low enough dose to only remove material in the

wanted area. It is rather beneficial to use a lower dose while performing the path several

times to provide the quality of the pattern than to destroy areas which should stay intact.

Here? , the path was repeated 20 times, resulting in an overall dose of ∼ 11 ions/nm2.

Despite the used small doses, Ga-ions penetrate and thus alter the substrate below the

MoS2 monolayer since its thickness is less than 1 nm. The Ga-ion implantation leads

to an amorphization of the Si substrate and thus results in a volume increase which is

observed in atomic force microscope (AFM) measurements of MoS2 monolayer grating

patterns (see Chapter 6). Another issue can be debris of removed material which might

appear on areas of interest and might even form bigger clusters.

MoS2 monolayers and other 2D materials have exhibited a huge interest alongside this

dissertation and are still under investigation, nowadays more application driven than 5 or

10 years ago. In this work, CVD-grown MoS2 monolayers are investigated with respect to

their second-order nonlinear response. The two directions reported in later chapters are

SH diffraction on patterned MoS2 monolayers in Chapter 6 and SHG from a hybridized

metasurface resulting from a MoS2 monolayer covering a resonant silicon (Si) metasurface

in Chapter 7.

3.2. GaAs

3.2.1. General properties

In addition to the Si-based semiconductor technology, gallium arsenid (GaAs) and its rela-

tives aluminum arsenid and indium arsenid as well as their mixtures provide light-emitting

application possibilities, which are not possible with Si. In this work, the particular prop-

erty of second-order nonlinearity stands in the focus, used in a disk metasurface (see

Chapter 5). The properties, especially the second-order nonlinear response are described

in this section followed by a small description on the nanostructuring as it was performed

for the sample used in this work’s experiments.
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Figure 3.4.: (a) GaAs crystal structure, zinc blende with two different atoms. Two equiva-
lent crystal axes, here denoted 𝑎1 and 𝑎2 and a third axis 𝑐. (b) SHG scheme,
with a 𝑥 + 𝑦-polarized FH inducing a 𝑧-polarized nonlinear polarization re-
sulting in SH propagating in 𝑥- and 𝑦-directions, but not in 𝑧.

GaAs is a III-V semiconductor, composed from the group-III element gallium (Ga) and

the group-V element arsenic (As), with a cubic crystal structure of the space group F ̄43𝑚,

which is an isotype of the zinc blende structure. The structure is visualized in Fig. 3.4(a).

This structure has 3 equivalent crystal axes, which here are denoted 𝑎1, 𝑎2, and 𝑎3.

In contrast to group-IV semiconductors like Si and germanium, GaAs has a direct band

gap. It is spectrally situated around 870 nm at room temperature. All shorter wavelengths

exhibit strong absorption. Accordingly, resonant structures made from GaAs as reported

in Chapter 5 provide useful resonant structures only at wavelengths above 870 nm.

In bulk GaAs, excitons do not have the impact as they have in 2D materials due to the

smaller binding energies. In heterostructures with other III-V-semiconductors, especially

quantum wells, excitons become more relevant again due to the stronger confinements? .

Due to its noncentrosymmetric crystal structure (see Fig. 3.4(a)), GaAs shows a second-

order nonlinear response, which is described in detail in the next subsection. Its nonlinear

properties are used in resonant nanostructures, but also in quantum well and quantum

dot structures.

3.2.2. Second-order nonlinear response

In contrast to Si, GaAs has not only a direct band gap, but also exhibits a second-

order nonlinear response when excited. Due to the zinc blende crystal structure with two

different atoms as shown in Fig. 3.4(a), the inversion symmetry of the bulk material is

broken. Considering the three equal crystal axes parallel to the 𝑥-, 𝑦- and 𝑧-axes of a

cartesian coordinate system, the second-order nonlinear susceptibility tensor 𝜒̂(2) elements
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read as follows:

𝜒(2)
0 ∶= 𝜒(2)

𝑥𝑦𝑧 = 𝜒(2)
𝑦𝑧𝑥 = 𝜒(2)

𝑧𝑥𝑦 = 𝜒(2)
𝑧𝑦𝑥 = 𝜒(2)

𝑦𝑥𝑧 = 𝜒(2)
𝑥𝑧𝑦 . (3.8)

All tensor elements vanish, except for the six equally valued components where the three

indices have to be all different. A reported value with the SH around 400 nm is 𝜒(2)
0 =

750 pm/V? ? .

The resulting second-order nonlinear polarization for SHG following equation 2.8 con-

tains all three components 𝑃 (2)
𝑥 , 𝑃 (2)

𝑦 , and 𝑃 (2)
𝑧 as

𝑃 (2)
𝑥 = 𝜒(2)

0 2 𝐸𝑦𝐸𝑧 ,

𝑃 (2)
𝑦 = 𝜒(2)

0 2 𝐸𝑥𝐸𝑧 ,

𝑃 (2)
𝑧 = 𝜒(2)

0 2 𝐸𝑥𝐸𝑦 .

(3.9)

This implicates that an FH excitation polarized in direction of only one crystal axis

does not generate any SH signal. Mixed FH polarizations composed of two crystal axis

directions create SH signals polarized in the direction of the third axis. This phenomenon

is visualized in Fig. 3.4(b), showing the FH polarized in 𝑥+𝑦-direction while the resulting

SH is polarized in 𝑧-direction and therefore propagating in the plane perpendicular to 𝑧.

Accordingly, the propagation direction changes with respect to the FH. As a result, typical

SHG schemes of FH and SH propagating on the same optical axis, do not work efficiently.

To still exploit the significant second-order nonlinearity, the radiation direction has

to be manipulated. Observation in normal direction to the surface is still a challenge,

corresponding schemes use oblique incidence of the FH? ? or respectively cut crystal

surface orientations? , or complicated vectorial fields in resonant nanostructures as are

presented in this work (see Chapter 5).

3.2.3. Growth and fabrication of nanostructures

Since GaAs is an artificial material, it has to be grown by chemical means. Large wafers

are cut from crystals grown out of liquefied Ga and As. Other processes are (metal-

organic) chemical vapor deposition and molecular beam epitaxy. The sample used in the

experiment reported in Chapter 5 was fabricated by the group of Igal Brener at Sandia

National Laboratories Albuquerque, USA. The description of the fabrication follows the

publications? ? ? .

For the sample described in this work (see Chapter 5), molecular beam epitaxy is used to

fabricate the GaAs bulk substrate. In this process, Ga and As4 are heated into gaseous

phase and condense on the target while reacting to GaAs. By careful dosing of both
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Figure 3.5.: Fabrication scheme.

materials, the growth in a single crystalline thin film can be accomplished. To create

micro- and nanostructures out of GaAs thin films, lithography and etching processes are

used. To realize small structures in sub-micrometer range, electron beam lithography is

the method of choice. SiO2 patterns are fabricated on top of the GaAs via e-beam lithog-

raphy and then etched into the thin film via inductively coupled plasma (ICP), leaving

GaAs structures on top of a GaAs substrate. The direct contact between nanostructure

and substrate from the same material might weaken the light confinement in the struc-

tures since the interface between substrate and resonator material is not providing a clear

material property change.

To realize clear and strong resonances, an additional layer is included (see Fig. 3.5).

By growing an AlGaAs thin film on top of the GaAs substrate followed by an additional

GaAs thin film, stacks of GaAs layers separated by AlGaAs can be produced? . After

the etching process of structures, the AlGaAs then can be oxidized, independent from

the GaAs. The oxidation changes the refractive index of the layer drastically from 3.6 to

1.6 and provides a perfect optically isolating layer between the GaAs structures and the

substrate. Thus, strong confinement in the isolated GaAs resonators can be achieved.

GaAs is established for certain applications in the semiconductor applications ranging

from electronics to optics. The work reported in Chapter 5 is part of several studies during

this work’s duration, shedding light on the use of GaAs and similar III-V semiconductors

for nonlinear photonic nanostructures and metasurfaces? ? ? ? ? .
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4. Second-harmonic microscopy setup

4.1. Second-harmonic imaging

4.1.1. Principle of measuring second-harmonic generation

With laser sources which can excite materials with a highly intense energy density, it is

possible to realize nonlinear optical measurements. Nevertheless, many constraints and

challenges accompany these experiments. Second-harmonic (SH) imaging in particular is

often used for material characterizations such as identifying the crystal orientation? ?

and edge states? ? in 2D materials, domain boundaries in nonlinear crystals? ? ? ? ?

and poling quality of LiNbO3
? ? , to name a few. Using nanostructures and especially

metasurfaces from materials with second-order nonlinearity enables the integration of

additional functionalities. Corresponding setups for applications need more and more

complicated schemes. Nevertheless, SH imaging is still a valuable tool to characterize

areas of interest, to analyze radiation directions and to understand the polarization de-

pendencies of the process. All three activities are performed with the setup described in

this chapter resulting in experiments reported in the next three chapters.

In this work, a self-built SH microscope setup in the reflection regime is used. The

respective challenges are explained in this subsection, while the detailed realization of

the setup is described in the following subsection. Two explicit solutions for special

demands on the experimental results are dealt with in two additional sections, tackling the

retardation compensation in Section 4.2 and the back-focal plane imaging in Section 4.3.

In principle, SH imaging of nanostructured surfaces is performed in a microscope. The

sample is excited at the FH via a focused laser source and the generated SH is collected

and detected. This scheme can be conducted in two general regimes: in transmission

and in reflection. The essential question is whether the sample, especially the substrate

below the nanostructures, is transparent for the FH and/or SH. For example, the GaAs

substrate of the sample investigated in Chapter 5 could not transmit the FH or SH due

to an unpolished back-surface.

In transmission, the FH is focused onto the sample and hits the nanostructures either
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4. Second-harmonic microscopy setup

through the substrate or directly on the structured surface. For the latter, the SH has

first to propagate through the substrate to be collected by a microscope objective, while

the former can be collected directly from its source. Here the question of the influence of

the substrate is important. The advantage of the transmission regime is the independence

of the excitation by the FH and the collection/detection of the SH.

In the reflection regime, the microscope objective focusing the FH excitation is the

same as the one collecting the generated SH. Both optical paths of FH and SH have to be

joined by a beam splitter (BS) and/or separated again before the detector. The separation

typically is a filter blocking the FH, but BSs like dichroic mirrors are similarly possible? .

To excite a single nanostructure or scan over a sample creating a SH map of high

resolution, a tight focus is needed which comes with a high numerical aperture of the

respective microscope objective. This is beneficial considering collecting as much SH

signal as possible or for analyzing propagation directions. The disadvantage of a tightly

focusing microscope objective is a small working distance and most detrimental a large

chromatic aberration. Accordingly, the focal point at FH wavelength will be displaced

with respect to the focal point at the SH wavelength.

Next to these essential requirements, additional features to control the FH power and

polarization and to analyze the SH signal on polarization and radiation direction can be

implemented. Especially optical elements being located in the shared beam path of SH

and FH have certain constraints.

According to all these issues, several measures and compromises have to be taken into

account to measure the SH in a way that relates to the actual SHG in the sample. The

next subsection describes the setup realization and the advantages and disadvantages.

4.1.2. Realization of the second-harmonic microscope

The SH meaurements reported in the later chapters of this work are conducted in a

self-built SH microscope using the reflection regime. The setup scheme is visualized in

Fig. 4.1.

The FH is emitted by a wavelength tunable, pulsed laser (∼ 100 fs, 80 MHz, MaiTai

HP - SpectraPhysics). The central wavelength of the pulses can be tuned from 700 nm

to 1040 nm with a power of maximally 3 W around 800 nm. The laser power arriving

at the setup is controlled via the combination of a half-wave plate (HWP) and a linear
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Figure 4.1.: Scheme of the SH microscope. The FH laser light and the generated SH light
are depicted by the red and the blue lines, respectively.

polarizer. By rotating the HWP the part of the initial laser beam that is allowed to

transmit through the linear polarizer can be chosen and thus controls the power. Another

advantage is the clean linear polarization state of the FH with a high extinction ratio

(∼ 1:10000). It is chosen to be one of the two orthogonal polarization states TE parallel

and TM perpendicular to the optical table.

The FH laser beam is routed to the sample via the reflected portion of a non-polarizing

BS (BS025 - Thorlabs). This particular BS with its 90:10 ratio on transmission:reflection

in the wavelength range of 400-700 nm is chosen to limit the loss of SH by transmission

toward the detector. To be able to correctly characterize the polarization state of the SH

the BS has to be non-polarizing. In the FH range however, this BS exhibits a ratio of

around 65:35 at 820 nm and changes moderately varying the wavelength. Additionally, it

is different for the two orthogonal polarization states TE and TM.

A HWP is used to change the linear polarization direction of the FH. This feature is

useful to analyze the behavior of the SH depending on different FH excitation polariza-

tions. There are two possible positions for this HWP. One is before the BS to avoid the

retardation of the SH having to pass this optical element. The other position is after

the BS directly in front of the focusing microscope objective. The latter is used for the

measurements reported in this work. The reason is the reflection in the BS which adds

different phases to TE and TM polarized light resulting in an elliptical polarization state

when penetrated by a superposition of both (see Section 4.2.1).

The choice of placing the HWP, which is an arbitrary retarder for light in the SH

wavelength range, directly in front of the microscope objective leads to a retardation of

the collected SH propagating through it. This change of the SH polarization state has to
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4. Second-harmonic microscopy setup

be compensated to characterize the actual polarization state from the generated SH. The

needed procedure is described in the next Section 4.2.

The split portion of the FH laser beam reflected by the BS and altered by the polarization-

controlling HWP is focused on the sample via a strongly focusing microscope objective

(100x, Zeiss) with a high numerical aperture (NA). In the earlier experiments the NA

was 0.75. This microscope objective was later replaced by an even higher NA-objective

(again 100x, Zeiss) with NA=0.85. The high NA is mainly chosen to collect as much

SH as possible, but it also leads to a stronger focus of the FH with higher angles and

smaller focal spot. The smaller spot can be used for highly resolved SH intensity maps

of the structured surfaces by scanning over the sample. But since the near field response

of nanostructures and metasurfaces is often sensitive to oblique incidence excitation, the

higher angle fractions might cause unwanted effects.

Since the focal lengths of the microscope objective for the FH and the SH are differ-

ent, the aligned distance to the sample is chosen to use a compromise between a small

excitation spot and a high collection efficiency for the SH. Since SH signals are usually

small, the main goal is a strong SH by an as small as possible FH focus. When imaging

the SH is important, a sample position close to the SH focal spot is necessary to have less

blur in the SH image. This corresponds to a slightly bigger excitation spot. The smallest

possible FH excitation spot in this setup has a FWHM diameter of 0.50 ± 0.05 𝜇m at the

wavelength of 820 nm. But typically the smallest used diameters corresponds to a FWHM

diameter of 0.8 𝜇m to 1.0 𝜇m depending on the aim for higher SH signal or sharper SH

image.

To increase the excitation spot of the FH on the sample, e.g. to excite a larger area

of a metasurface for collective effects in periodic arrangements, a pinhole is placed in the

FH laser beam path before the BS. It reduces the beam diameter. The smaller beam

underfills the aperture of the microscope objective and thus exhibits a lower effective

NA which results in a less focused spot on the sample. This can be necessary to excite

several structures in periodic systems, but also to excite with a more planar wave since

the focusing angle is reduced.

The FH signal reflected from the sample and collected from the microscope objective

as well as the FH signal reflected from the BS surfaces and guided toward the camera

are blocked via two shortpass filters (FESH500 and FESH550 - Thorlabs). Since the

conversion efficiency of the SHG is typically very low and strong excitation as well as long
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exposure times are necessary to detect the SH signal, the FH has to be blocked with two

filters each damping 5 orders of magnitude. The accompanied damping of the SH in the

order of 5% is inevitable but acceptable to secure that the measured intensity is resulting

from the wanted SH.

The collected SH light is transmitted through the BS and other optional optical ele-

ments as well as the filters and finally detected by an electron-multiplying charge coupled

device (EMCCD) camera (Andor). The SH light is focused on the camera sensor via

an achromatic lens to view the FH and the SH if necessary, without changing the lens

position. The sensor has 1000×1000 pixels. The quantum efficiency is 60% at 400 nm and

increasing with higher wavelength. Lower wavelengths show notably less response on the

sensor. With this, third harmonic signals from the sample are already blocked/damped

by the camera itself.

The sample is mounted on a stable and precise 3-axis linear stage referring to the

optical axis and the two orthogonal axes parallel and perpendicular to the optical table of

the setup. The stage (VP-25XL, Newport) is motorized and controlled via the computer

(using XPS-D controller - Newport). Automatic scans can be realized to measure SH

intensity maps. Additionally, the sample is mounted on a tilt stage to ensure normal

incidence of the FH. Any tilt or wedge of the sample itself or during the mounting can be

compensated to assure the optical axis of the FH beam to be perpendicular to the plane

of the nanostructures/meatsurface/2D material.

An additional feature of our setup is the back-focal plane imaging via an optional lens

in the detection path. It provides the angular distribution of the generated SH by imaging

the back-focal plane of the microscope objective onto the EMCCD camera, delivering the

Fourier transform of the spatial distribution. The idea and realization are described in

the Section 4.3.

To allow sample alignment an additional white light source can be included into the

setup by a flipping mirror. A halogen lamp is used and introduced into the setup in front

of the BS. Its reflection from the sample detected by the EMCCD camera helps to find

the areas of interest.

The EMCCD camera and the 3-axis stage of the sample are connected via a self-

programmed LabView-interface enabling automatic measurements. Additionally, rotation

stages for HWPs, other retarders or polarizers can be included. Measurement schemes like

intensity maps or polarization scans are possible and presented in the reported projects

in the following chapters of this work.
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Figure 4.2.: a) Sketch of how linearly polarized light reflected in a BS can become elip-
tically polarized due to different phase addition for TE- and TM-polarized
components. b) Extinction ratio plotted in logarithmic scale versus the HWP
rotation angle. Added is a sketch of the measurement arrangement consisting
of the HWP, the BS and the linear polarizer. c) Sketch of retardation com-
pensation: retardance 𝜂 added on the slow axis ⟂ of retarder R compensated
by retarder R’ whose slow ⟂-axis is rotated by 90∘.

4.2. Retardation compensation in polarization sensitive

measurements

4.2.1. Ellipticity due to reflection

In nonlinear nano-optics, the polarization of the excitation and of the resulting signal is of

importance since the nonlinear response depends on the nonlinear susceptibilities which

are multi-dimensional tensors coupling the vector components, i.e. the polarization, of the

generated light to those of the exciting light. Usually, a rather complicated mix generates

the different harmonics as described in the previous chapter.

For this work’s purposes, typically linearly polarized light is used as FH excitation of

nanostructures and 2D materials. To control the direction of this linear polarization, a

HWP is used. By rotating the optical axis of the HWP to an angle 𝛼 with respect to the

incoming polarization direction, the polarization direction is changed by 2 𝛼.

This procedure is widely used in many microscope setups, but in the reflection regime

it creates problems. Reflection regime setups use a BS to combine the excitation path

with the detection path. Usual mirrors, whether plasmonic or dielectric, add different

phases to the two orthogonal polarizations TE and TM. Therefore, every excitation of

light which consists of a superposition of these two linear polarization states before the

reflection becomes elliptical afterwards. Accordingly it loses its linear polarization. As

depicted in Fig. 4.2(a), both components, TE and TM, oscillate in phase to be combined
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to a linear polarization. The reflection adds different phases to both oscillations, 𝜙TE and

𝜙TM. Accordingly, a phase difference of Δ𝜙 = 𝜙TE − 𝜙TM appears in their oscillation

resulting in an elliptical polarization.

This ellipticity can be measured. When sending linearly polarized light through a linear

polarizer and detecting the transmitted signal, a maximum and a minimum intensity

can be observed while rotating the polarizer. The ratio between the maximum and the

minimum is called extinction ratio. For linearly polarized light the theoretical extinction

ratio is infinite, but due to experimental imperfections, the real value is finite but high.

In this work’s setup, it was possible to measure values higher than 1000. Probably, the

value is higher, but the noise and error of the detector could not be eliminated enough.

Elliptically polarized light shows much lower extinction ratio values, depending on the

degree of ellipticity. The limiting value is 1, where the state of circularly polarized light

is reached.

In Fig. 4.2(b), the characterization of reflected light from the BS is shown. The HWP

before the BS transforms the linearly polarized TE state into a still linearly polarized

superposition of TE and TM. The BS reflects the light which is analyzed by a rotatable

linear polarizer. Finally the transmitted light is detected. The plotted data represents

the extinction ratio in logarithmic scale depending on the angle 𝛼 as the angle between

the fast axis of the HWP and the TE polarization direction. As can be seen in the plot,

the extinction ratio drops to almost 10 over the range from 0 to 45∘. Without the BS,

the extinction ratio constantly stays over 1000 for the same range of angles. Thus the BS

introduces ellipticity for incoming light of a superposition of TE and TM.

To overcome this ellipticity problem, the position of the polarization-changing HWP is

changed from before the BS to a location between BS and sample. The incoming light

hits the BS with one of the two orthogonal polarizations TE or TM which does not change

after the BS reflection. Just afterwards, the polarization state is transformed by the HWP

into any other linear polarization which eventually hits the sample.

The resulting disadvantage in the reflection regime is that the SH has to go through the

same HWP and collects a retardation which changes its polarization state. Fortunately,

the additional retardance can be experimentally compensated. Numerical compensation

requires the knowledge about the retardance of the SH by the HWP. Usually the HWP is

only characterized in the range of being a HWP, which is typically chosen to be around

the FH wavelength to control its polarization. For the experimental compensation the

actual retardance is not necessary to know.
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The compensation can be done with another HWP which has to be identical to the

first HWP. The phase change then can be introduced with the different sign by using it

at the angle 𝛼 + 90∘ with respect to the initially incoming FH polarization and 𝛼 the

corresponding angle for the first HWP. Fig. 4.2(c) illustrates an electric field 𝐸 in the

𝑥, 𝑦-coordinate system. The first retarder R has its fast axis (∥) rotated by 𝛼 with respect

to the 𝑥-axis. The component of 𝐸 on the slow axis (⟂) of retarder R (at 90∘ +𝛼) exhibits

the retardance 𝜂. To compensate for this retardance, a second retarder R’ is positioned

with the fast axis at 90∘ + 𝛼 with respect to the 𝑥-axis. The retardance 𝜂 is then set

on the up to now not yet retarded component which results in a neutralization of both

retardances, since both components of 𝐸 exhibit the same.

The analytical proof of this retardance is shown in the following subsection.

4.2.2. Arbitrary retarder

For this theoretical proof, Jones formalism is used with 𝐸0𝑥 and 𝐸0𝑦 as the incident

electric fields in 𝑥- and 𝑦-polarization, and 𝑧 being the propagation direction. Then any

propagation through any medium/geometry can be described via an ABCD-matrix as

follows:

⎛⎜
⎝

𝐸𝑥

𝐸𝑦

⎞⎟
⎠

= ⎛⎜
⎝

𝐴 𝐵
𝐶 𝐷

⎞⎟
⎠

⎛⎜
⎝

𝐸0𝑥

𝐸0𝑦

⎞⎟
⎠

. (4.1)

The arbitrary phase retarder in this formalism has the following appearance:

⎛⎜
⎝

𝑒𝑖𝜂/2 cos2(𝛼) + 𝑒−𝑖𝜂/2 sin2(𝛼) (𝑒𝑖𝜂/2 − 𝑒−𝑖𝜂/2)𝑒−𝑖𝜙𝑐𝑜𝑠(𝛼) sin(𝛼)
(𝑒𝑖𝜂/2 − 𝑒−𝑖𝜂/2)𝑒𝑖𝜙𝑐𝑜𝑠(𝛼) sin(𝛼) 𝑒𝑖𝜂/2 sin2(𝛼) + 𝑒−𝑖𝜂/2 cos2(𝛼)

⎞⎟
⎠

, (4.2)

where 𝜂 is the retardance, 𝛼 is the angle to the fast axis from the 𝑥-axis, and 𝜙 is the

circularity. 𝜙 = 0 for linear retarders, 𝜙 = ±𝜋/2 for circular retarders. All other values

between ±𝜋/2 are associated with elliptical retarders.

Considering a system of two arbitrary but equal retarders with the two different angles

𝛼 and 𝛼′ corresponding to the angle between the fast axis and the 𝑥-axis, two similar

matrices are obtained, which here are called 𝑀 = ( 𝐴 𝐵
𝐶 𝐷 ) and 𝑀 ′ = ( 𝐴′ 𝐵′

𝐶′ 𝐷′ ).

The coupled system of both results in the final matrix 𝑀final = ( 𝑎 𝑏
𝑐 𝑑 ) = ( 𝐴𝐴′+𝐵𝐶′ 𝐴𝐵′+𝐵𝐷′

𝐶𝐴′+𝐷𝐶′ 𝐶𝐵′+𝐷𝐷′ ).

To realize compensation, the matrix 𝑀final has to be a unity matrix of shape ( 1 0
0 1 ).

Accordingly, the solution for 𝛼′ depending on 𝛼 has to fulfill 𝑎 = 1, 𝑏 = 0, 𝑐 = 0 and

𝑑 = 1.
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4.2. Retardation compensation in polarization sensitive measurements

The detailed calculations are spared here, but can be found in the appendix. To realize

𝑏 = 0 and 𝑐 = 0, it follows:

0 = (cos2(𝛼) cos(𝛼′) sin(𝛼′) + cos(𝛼) sin(𝛼) sin2(𝛼′)) ,

0 = (sin2(𝛼) cos(𝛼′) sin(𝛼′) + cos(𝛼) sin(𝛼) cos2(𝛼′)) .
(4.3)

Since these equations have to hold for any 𝛼, the solution can only be made by chosing

𝛼′ such that 𝛼′ = 𝛼 ± 90∘. With this solution, also 𝑎 = 𝐴𝐷 − 𝐵𝐶 = 𝑑 . So, the final

matrix is 𝑀final = 𝑎 ⋅ ( 1 0
0 1 ), where 𝑎 actually is 1.

Of course, actual retarders do have a certain amount of loss. But this only effects the

overall transmission value 𝑎 = 𝑑 < 1, not the polarization state. A potentially larger

influence is the BS which sits between the two HWPs in the here described setup.

The before made solution considers the transmission of the BS, which the SH light has

to transmit in the setup arrangement, as perfect. Unfortunately, even non-polarizing

BSs have slightly different transmission coefficients for the two orthogonal linear polar-

ization states TE and TM. In the following derivation, the transmission of the BS in 𝑥 is

considered to be 1 and in 𝑦 1-𝜖.
Considering a system of two arbitrary but equal retarders with different angles of 𝛼

and 𝛼′ corresponding to the angle between the fast axis and the 𝑥-axis as in the ideal

case before. Additionally, the BS has to be included with its matrix 𝑀BS = ( 1 0
0 1−𝜖 ). The

coupled system of retarder 1, then BS and retarder 2 results in the final matrix

𝑀final = ⎛⎜
⎝

𝑎 𝑏
𝑐 𝑑

⎞⎟
⎠

= ⎛⎜
⎝

𝐴𝐴′ + (1 − 𝜖)𝐵𝐶′ 𝐴𝐵′ + (1 − 𝜖)𝐵𝐷′

𝐶𝐴′ + (1 − 𝜖)𝐷𝐶′ 𝐶𝐵′ + (1 − 𝜖)𝐷𝐷′
⎞⎟
⎠

. (4.4)

After lengthy calculation, which can be found in the appendix, using the solution from

the ideal case 𝛼′ = 𝛼 ± 90∘, the transmission values 𝑎 and 𝑑 result in

𝑎 = 1 + 𝜖 sin2(𝜂/2) sin2(2𝛼) ,

𝑑 = 1 − 𝜖 (1 − sin2(𝜂/2) sin2(2𝛼)) .
(4.5)

These results show that the original transmission of the BS of 1 and 1-𝜖 is slightly

changed depending on the retardance 𝜂 and the angle 𝛼, but just by maximally the value

of 𝜖.
The additional terms for the off-diagonal elements 𝑏 and 𝑐 are non-vanishing due to the
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4. Second-harmonic microscopy setup

inclusion of 𝜖:

𝑏 = −𝜖 (𝑒𝑖𝜂/2 − 𝑒−𝑖𝜂/2) cos(𝛼) sin(𝛼)(𝑒𝑖𝜂/2 sin2(𝛼′) + 𝑒−𝑖𝜂/2 cos2(𝛼′))

= −𝜖 ([𝑒𝑖𝜂 − 1] cos3(𝛼) sin(𝛼) + [1 − 𝑒−𝑖𝜂] sin3(𝛼) cos(𝛼)) ,

𝑐 = −𝜖 (𝑒𝑖𝜂/2 − 𝑒−𝑖𝜂/2) cos(𝛼′) sin(𝛼′)(𝑒𝑖𝜂/2 sin2(𝛼) + 𝑒−𝑖𝜂/2 cos2(𝛼))

= −𝜖 ([𝑒𝑖𝜂 − 1] sin3(𝛼) cos(𝛼) + [1 − 𝑒−𝑖𝜂] cos3(𝛼) sin(𝛼)) .

(4.6)

Both values 𝑏 and 𝑐 are complex and have an absolute value in the range of 𝜖.
In the setup used for this work, the used BS BS025 from Thorlabs has an 𝜖 < 0.03 in the

investigated SH wavelength range from 400 to 500 nm. This maximal value around 0.03 is

reached only at the edge of the non-polarizing range of this BS at 400 nm. Which concludes

an error of the transmitted polarization state through the HWP-BS-HWP arrangement

as less or equal to 3%.

4.3. Back-focal plane imaging

4.3.1. Projecting the angular spectrum

In nano optics, not only the spatial information about where light is generated is in-

teresting, but also in which direction the light is radiated. Especially in the case of

sub-wavelength structures, spatial information is not possible to be resolved and thus the

angular spectrum of the emitted light becomes more attractive. A suitable method that

can be implemented into a free space microscope as used for this work’s experiments is

back-focal plane imaging, which - as the name says - is projecting the back-focal plane

of the collecting microscope with an additional lens onto a detecting plane, here onto the

EMCCD camera.

Considering a simple lens with the focal length 𝑓 , the spatial distribution of light in one

focal plane is transformed into a field distribution in the other, so-called back-focal plane

(BFP), which is a spatial representation of the angular distribution in the first focal plane.

This arrangement is usually called a 2-𝑓-setup and can be seen as an experimental Fourier

transform of the spatial distribution into an angular distribution and vice versa.

In a microscope setup, the microscope objective itself works as the lens and provides

the angularly resolved distribution as a spatial distribution in its BFP. Although it is

typically constructed of different lenses, it still works as an experimental Fourier transform.
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4.3. Back-focal plane imaging
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Figure 4.3.: Scheme of BFP imaging in a microscope.

However, instead of retransforming it toward the detection plane to observe the spatial

distribution again, an additional lens to project the BFP of the objective onto the detection

plane is used. The distance between the microscope objective and the additional lens as

well as to the detector is crucial.

Fig. 4.3 shows the optical path from sample to camera sensor for three rays with the

same emission direction. The first lens represents the microscope objective, which typi-

cally is an ensemble of lenses but can be described effectively by one lens, here with the

focal length 𝑓1 and the back-focal length 𝑓 ′
1. In the BFP, all three rays meet in one point.

This BFP is projected on the camera chip by placing the BFP lens and the camera-focus

lens in the optical path such that the distance between two consecutive lenses is the

addition of their focal lengths.

4.3.2. Integration into the second-harmonic microscope setup

In the setup described here, the additional, optional lens to project the BFP onto the

EMCCD camera is placed between the BS and the lens to focus the image onto the

camera sensor. The lens is hereby called BFP lens. Using the microscope objective, the

BFP lens and the focusing lens in front of the camera, a 6-𝑓-setup is realized, meaning

to place each lens so as to fit the distance in between as long as the addition of the

two neighboring focal lengths. Like this, a system of three optical Fourier transforms is

implemented in which the second one is a back transform.

It is necessary to choose a long focal length for the BFP lens to provide space for optical

elements like the BS, HWPs, filters or analyzing polarizers. Typically, the BFP of the

microscope objective is found close to the housing of the objective, sometimes even within.
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4. Second-harmonic microscopy setup

In this work’s setup, a large diameter lens with a 20 cm focal length was chosen as the

BFP lens to fit the BS and two rotation stages with the HWPs for the FH polarization

dependence and retardation compensation in between.

The alignment procedure includes two major steps. First, the distance between focusing

lens and BFP lens has to be found. Then this two-lens-system has to be shifted with

respect to the microscope objective to find the BFP projection. Since manufacturer values

are usually bound to a wavelength which is not used in the actual setup, this procedure

has to be performed experimentally and can be tedious.

BFP imaging of the SH signal generated in metasurfaces is used in the next three chapters

reporting on experiments dealing with SH diffraction on an intrinsic nonlinear metasurface

made from GaAs in Chapter 5, SH diffraction including a nonlinear hologram creating

vortex beams from a patterned MoS2 monolayer in Chapter 6 and SHG in a hybrid system

build of a linear Si metasurface covered by the nonlinear MoS2 monolayer in Chapter 7.
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5. Second-harmonic diffraction from a

GaAs metasurface

5.1. Resonances at the fundamental harmonic

The realization of nonlinear metasurfaces especially for second-order nonlinear processes

is still a challenge. On the way to applications like on-chip integration, large area sur-

face functionality and entangled photon sources, the field is still facing issues like low

conversion efficiency in wave mixing processes, scalable platforms for easy-integratable

fabrication and avoiding damage threshold problems as in heat-sensitive plasmonic ma-

terials. Using dielectric materials showed success on the latter, still the choice among

dielectric nonlinear materials and schemes is large.

In this work, three different systems are investigated taking different opportunities. The

first system, investigated in this chapter, consists of a metasurface made from a well-known

material with intrinsic, but still difficult to use second-order nonlinear susceptibility. In

the next chapter, a second system is discussed structuring a recently found 2D material

with intrinsic second-order nonlinearity, which replaces the user-unfriendly 𝜒̂(2), but lacks

conversion efficiency due to its ultrathin interaction volume. In Chapter 7, a hybrid system

is introduced using the 2D material as the second-order nonlinear material supported by

a scalable linear metasurface which allows for designing resonant field enhancement to

boost the SHG.

Gallium arsenide (GaAs) as a material with an intrinsic and strong second-order nonlinear

susceptibility is a promising candidate to realize a nonlinear photonic metasurface. The

structuring of GaAs is relatively advanced considering its usage in (opto-) electronics.

The group around Igal Brener from Sandia National Laboratories, USA, already realized

a GaAs metasurface observing SHG? . They also designed and fabricated the sample

investigated in this chapter.

Structuring GaAs thin films has two purposes. On one hand, the structures are sup-

posed to support Mie-type resonances to enhance and create special FH fields, which will

be discussed in the first section of this chapter. On the other hand, the periodic arrange-
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5. Second-harmonic diffraction from a GaAs metasurface
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Figure 5.1.: a) 3D sketch of SHG in the GaAs metasurface. b) SEM image of sample under
oblique incidence. Inset showing FIB cut to show the pillar composition. c)
2D sketch side view. d) 2D sketch top view showing crystal axes.

ment leads to diffraction of the generated SH which is supposed to enable SH emission

out of the surface plane. The latter is depicted in Fig. 5.1(a). The SH response including

the SH diffraction are described and further discussed in the next section.

The experiment presented in this chapter has been published by the author of this

thesis and collaborators? . The experiment and the result analysis including numerics

were performed by the author. Experimental assistance was provided by Anna Fedotova

(Nano & Quantum Optics group at the Institute of Applied Physics from the Friedrich

Schiller University, Jena).

As explained in Section 2.2, nonlinear materials typically have low nonlinear susceptibility

values. This results in low conversion efficiencies for nonlinear frequency generation pro-

cesses. To use nonlinear frequency conversions in applications, the conversion efficiency

has to be increased. This could be realized by expanding the interaction length or volume

as it is done in waveguides. However, this might not fit into compact systems and more

relevant, it requires difficult phase-matching engineering.

Another way is to increase the initial excitation field. Instead of pumping with more

and more power, which would not be desirable in terms of energy consumption, other
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5.1. Resonances at the fundamental harmonic

ways of increasing the output have to be found. The advantage of nanostructures on this

behalf is the creation of field enhancement based on resonances in the frequency ranges

of participating fields. In second-harmonic generation (SHG), as it is dealt with in this

work, resonances at the fundamental harmonic (FH) and at the second harmonic (SH)

wavelength come into consideration.

A resonance of the nanostructures at the SH wavelength can enhance the SH output.

The essential requirement, which is typically difficult to achieve, is a strong overlap be-

tween the FH induced second-order nonlinear polarization and the field distribution of

the resonant mode at the SH wavelength. If this overlap is large, the resonant mode can

be excited by the nonlinear polarization at the SH wavelength and due to the resonance

itself, i.e. a longer lifetime of the light inside the confinement, it can build up a larger

SH field. Typically, such a resonance is designed to couple to the far field, which leads

to an enhanced SH response in comparison to the case without the resonance at the SH

wavelength. However, the SH response depends only linearly on the field enhancement of

such a resonance.

In contrast, a resonance at the FH wavelength provides a nonlinear boost in nonlinear

frequency generation processes, due to the multiple participation of the FH field in the

generation of the nonlinear polarization. In SHG the FH field engages two times in the

product of the nonlinear polarization and thus in the electric field at the SH frequency. If

the FH resonance triples the strength of the FH field, the SH field is in principle increased

by a factor of 9.

To realize resonances at both FH and SH wavelength is of course desirable. However,

the design of simultaneously matching FH and SH resonances is very difficult in most

systems and even impossible in some cases. Accordingly, it is practicably favorable to

focus on a resonance at the FH, as it is done here.

The investigated sample, a metasurface consisting of a two-dimensional periodic rect-

angular grid of GaAs disks optically isolated from the GaAs substrate by an AlGaO

layer, is fabricated following the scheme presented in Section 3.2.3. A scanning-electron

microscopy (SEM) image of the sample is shown in Fig. 5.1(b). The inset represents a

FIB cut performed by Michael Steinert (Nano & Quantum Optics, Institute of Applied

Physics, Friedrich Schiller University Jena) through the disks revealing the different layers

in each pillar. Additionally to the GaAs disks and the optically isolating oxide, a SiO2 cap

and a GaAs pedestal appear due to over-etching. The measured sizes as depicted in the

sketch of Fig. 5.1(c) are 𝑑GaAs = 𝑑AlGaO = 𝑑pedestal = 244 nm, ℎGaAs = ℎpedestal = 290 nm,
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5. Second-harmonic diffraction from a GaAs metasurface

ℎAlGaO = 280 nm, 𝑑SiO2 = 296 nm, and ℎSiO2 = 470 nm. The period in both directions is

measured to be 𝑝 = 755 nm. The backside of the GaAs substrate was not polished, thus

all measurements are done in reflection.

An essential property is the cut of the GaAs substrate, representing the crystal structure

orientation of the substrate and all on-top grown thin films, including the GaAs disks.

The cut was the typical (100)-direction, i.e. one of the crystal axes is perpendicular to the

surface, the other two are in the surface plane. The orientation of the metasurface grid,

however, is rotated by 45∘ to the crystal axes as sketched in Fig. 5.1(d). The reason for the

rotation is the second-order nonlinear susceptibility tensor 𝜒̂(2) as described in Eq. 3.8.

The resulting nonlinear polarization following Eq. 3.9 goes to zero if the exciting FH field

is linearly polarized in the direction of only one crystal axis. To avoid this situation, but

exploit the periodicity along the rectangular grid axes, this grid was chosen to be rotated.

The second-order nonlinear susceptibility rotates to

𝜒̂(2) = 𝜒(2)
0

⎛⎜⎜⎜⎜⎜
⎝

⎛⎜⎜⎜⎜⎜
⎝

0 0 −1
0 0 0

−1 0 0

⎞⎟⎟⎟⎟⎟
⎠

,
⎛⎜⎜⎜⎜⎜
⎝

0 0 0
0 0 1
0 1 0

⎞⎟⎟⎟⎟⎟
⎠

,
⎛⎜⎜⎜⎜⎜
⎝

−1 0 0
0 1 0
0 0 0

⎞⎟⎟⎟⎟⎟
⎠

⎞⎟⎟⎟⎟⎟
⎠

. (5.1)

The resulting second-order nonlinear polarization reads as

𝑃 (2)
𝑥 ∼ −2𝜒(2)

0 𝐸𝑧𝐸𝑥 ,

𝑃 (2)
𝑦 ∼ 2𝜒(2)

0 𝐸𝑧𝐸𝑦 ,

𝑃 (2)
𝑧 ∼ 𝜒(2)

0 (𝐸2
𝑦 − 𝐸2

𝑥) .

(5.2)

With this, an only 𝑥- or only 𝑦-polarized field can induce at least a 𝑧-component of the

nonlinear polarization and thus generate a 𝑧-polarized SH field.

The design of the resonances had to follow the constraints of the setup and the material.

The resonances were chosen to be in the near infrared above the band gap which is situated

around 870 nm to avoid absorption at the FH. The other limit is the tunability of the

pump laser which ends at 1040 nm emission wavelength.

The measured reflection spectra of the sample shown in Fig. 5.2(a) were obtained by

using a Fourier transform infrared spectrometer (Bruker VERTEX 80v) combined with an

infrared microscope (Hyperion 2000) differentiating the two polarizations 𝛼 = 0∘ parallel
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5.1. Resonances at the fundamental harmonic

ED MDSM ED MDSM

Figure 5.2.: (a) Measured linear reflectance. (b) Numerically simulated linear reflectance.

to the 𝑥-axis and 𝛼 = 90∘ parallel to the 𝑦-axis with respect to 𝛼, 𝑥 and 𝑦 as shown in

Fig. 5.1(d). Although the design was made for a symmetric metasurface, the reflection

spectra of the two polarizations differ. This anisotropy might arise from slight asymmetry

in the fabricated structure. Nevertheless, both spectra contain three resonances, which

are hereby called ED for electric dipole at around 890 nm, MD for magnetic dipole at

around 1030 nm and SM for ’symmetry-forbidden mode’ at around 970 nm.

All numerical simulations throughout this thesis are performed by the author using the

time-harmonic finite-element method solver from JCMwave? ? . Linear simulations use a

monochromatic plane wave illumination, while nonlinear simulations use the field confined

in the nonlinear material as calculated in the linear simulation at the FH wavelength. It

is used to calculate the nonlinear polarization which then acts as the light source for the

SH, which is possible to do in the undepleted pump approximation.

Modeling the metasurface, a unit cell of the stacked disks is considered with periodic

boundary conditions. The geometrical parameters are taken as described above. As the

material properties, literature values are used for the GaAs? and non-dispersive constant

values of the refractive index as 1.60 for the oxide AlGaO? and 1.45 for the SiO2 are

chosen.

Fig. 5.2(b) shows the simulated spectra. Since the model consists of a symmetric

unit cell, both 𝑥- and 𝑦 polarization are identical. The spectrum confirms the ED and

MD resonances from the experimental results. The SM resonance however does not ap-

pear. By shifting the angle of incidence 𝛽 in 𝑥-direction by 5∘ with respect to normal

incidence, the spectral dependence differs for the two polarizations revealing a third res-

onance. This approach emulates the experimental excitation with a finite NA. This third

mode is symmetry-forbidden by excitation under normal-incidence and thus referred to

as “symmetry-forbidden mode” (SM). Similar modes were previously reported in plas-
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5. Second-harmonic diffraction from a GaAs metasurface

ED MDSM ED MDSM890nm 995nm 1030nm
β= 5° Ex Ex Ex

Hy Hy Hy

electric field Ex electric field Ex electric field Exa) b) c)

d) e) f)

g) h) i)

Ex

Ez

Ex

Ez

Ex

Ez

magnetic field Hy magnetic field Hy magnetic field Hy

electric field (Ex,Ez) electric field (Ex,Ez) electric field (Ex,Ez)

Figure 5.3.: Numerically simulated field distributions at the ED (a,d,g), SM (b,e,h) and
MD (c,f,i) resonance, showing the 𝑥-component of the electric field (a-c), the
𝑦-component of the magnetic field (d-f), and the vector field consisting of the
𝑥- and 𝑧-component of the electric field (g-i).

monic? and dielectric structures? .

The respective simulated near-field distributions are presented in Figs. 5.3(a−i) showing

only the cross section through the center of the isolated GaAs disk, which contains the

strongest field. Fig. 5.3(a) provides the 𝑥-component of the electric field excited by an

𝑥-polarized plane wave at 890 nm and normalized to its maximum. It shows a strong

spot in the center of the disk, which is characteristic for an electric dipole mode. The

𝑥-components of the two other resonances shown in Figs. 5.3(b,c) normalized to the

maximum at the ED resonance, do not show significant values.

In contrast, Figs. 5.3(d-f) show the 𝑦-component of the magnetic field for the three

resonances, this time normalized to the maximum value for the MD resonance. Fig. 5.3(f)

shows a strong spot in the center of the disk for the magnetic field at 1030 nm, which

confirms the dominating magnetic dipole mode. At the SM resonance in Fig. 5.3(e), a

weaker spot is simulated while at the ED resonance in Fig. 5.3(d) an even weaker field
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5.2. Second-harmonic diffraction

appears. For comparison, the vectorial plots in Figs. 5.3(g-i), representing the electric

field components 𝐸𝑥 and 𝐸𝑧 in the 𝑥, 𝑧-plane through the center of the disk, confirm

the different electric field distributions for the ED (Fig. 5.3(g)) and MD (Fig. 5.3(i))

resonance, where the latter shows a circling electric field which represents the magnetic

dipole mode, and the former matches with the typical electric dipole distribution. The

SM resonance shows a more complicated field distribution in Fig. 5.3(g) revealing its non-

typical Mie-type mode. It might have contributions of different multipolar orders or even

being connected to guided modes due to the tilted excitation.

These resonances in the wavelength range of the FH already separate this GaAs meta-

surface from an unstructured GaAs thin film. While the ED resonance shows a higher

local field enhancement by plane wave illumination, the other two resonances provide

electric fields with non-zero 𝑧-component which is interesting for the SHG considering the

second-order nonlinear susceptibility tensor 𝜒̂(2). While electric fields polarized only in

𝑥-and 𝑦-direction produce a nonlinear polarization in 𝑧-direction, a combination of elec-

tric fields containing 𝑧-components can also create SH light polarized in 𝑥- or 𝑦-direction,

which is necessary for out-of plane radiation, but especially for radiation normal to the

metasurface plane.

Note that additional spectra of linear-optical measurements and linear numerical simula-

tions around the SH wavelengths were investigated, not shown here. The high absorption

of GaAs in this spectral domain, however, does not support the formation of clear reso-

nances.

Up to this point, the linear behavior of this GaAs metasurface is characterized. Three

resonances at different wavelengths with different field distributions are found. Each of

them leads to field enhancement inside the GaAs disks which is supposed to increase the

induced nonlinear polarization which - in the best case - results in enhanced SHG. The

next section deals with the observation of the SH and the respective diffraction.

5.2. Second-harmonic diffraction

The process of SHG in nanostructures and thus in a metasurface is not only dependent

on the before mentioned exciting FH fields, but also on the second-oder nonlinear sus-

ceptibility described in Section 2.2 and the radiation properties of the locally generated
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Figure 5.4.: (a) SH power dependent on FH power. (b)-(d) BFP images of the SH intensity
at (b) the ED resonance and 0∘ FH polarization, (c) SM resonance at 45∘ and
(d) MD resonance at 90∘. (e)-(f) Measured SH intensity dependent on FH
polarization at (e) the ED, (f) the SM and (g) the MD resonance.

SH field. Correspondingly, this section deals with the observed SH signals, in particular

discussing the SH diffraction including SH radiation normal to the metasurface plane.

The SH response observed from the GaAs metasurface is indeed of second-order power

dependence. In Fig. 5.4(a), the measured SH intensity versus the FH power is shown

in a double-logarithmic plot presenting a linear behavior of the slope around 2, which is

confirmed by the red line representing a quadratic function. This behavior is proof for a

squared power dependence which matches with a SHG process.

Since SH emission normal to the surface under normal incidence FH excitation is forbid-

den, the observed SH signal has to come from larger emission angles. A useful visualization

of this characteristic is BFP imaging, a special projection method described in Section 4.3.

It shows the angular spectrum of the SH radiation, representing the different propagation

angles of the SH emission and thus the diffraction orders resulting from SH diffraction

as described in Section 2.3. The NA of 0.75, which is used in this experiment, is just

large enough to collect the theoretically propagating diffraction orders, i.e. zero and first

orders, in the SH wavelength range from 445 nm to 515 nm at the given period of 755 nm

under normal incidence (compare with Eq. 2.14).

Fig. 5.4(b) shows the diffraction orders of the SH signal excited by an FH at the

ED resonance with the FH polarization parallel to the 𝑥-axis, which represents the FH
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5.2. Second-harmonic diffraction

polarization angle 𝛼 = 0∘ following the coordinate system in Fig. 5.1(d). While the SH

at zero order diffraction is very small, nearly vanishing, strong SH signals are observed at

the first diffraction orders.

The vanishing signal at the zero diffraction order for the ED resonance is also observed

from single AlGaAs nano-disks by Carletti et al.? ? , showing that SH emission normal to

the substrate plane is absent. This feature results from the symmetry of the nano-disks

and the structure of the nonlinear susceptibility tensor 𝜒̂(2) of AlGaAs, which is identical

to that of GaAs. The FH excitation polarized in the 𝑥- or 𝑦-direction, enhances fields

polarized along the two different in-plane crystal axes of GaAs (or AlGaAs), leading to

SHG which is mostly polarized along the 𝑧-direction and thus does not propagate normal

to the substrate plane.

The BFP images of the SH intensity excited at the two other resonances, SM and MD,

are shown in Figs. 5.4(c) and (d). They provide a similar picture of a vanishing zero

diffraction order and strong first diffraction orders. The latter are positioned closer to

the limiting NA-circle shown in white due to their larger wavelengths. The respective FH

excitation polarizations for the shown BFP images are chosen at the angles 𝛼 = 45∘ and

𝛼 = 90∘, respectively. This is due to the deviating FH polarization dependencies of the

SH power with respect to the ED resonance.

In Fig. 5.4(e), the polar projection of the SH intensity of the ED resonance is shown

depending on the FH polarization angle. Over the measured 180∘, it shows 3 maxima

of which two are equivalent, i.e. at 0∘ and at 180∘, and two minima at polarization

angles describing the excitation in the directions parallel to the GaAs crystal axes. This

dependence follows nicely the characteristic of the 𝜒̂(2)-tensor and the resulting nonlinear

polarization ⃗𝑃 (2) shown in Eq. 3.9, since the electric field of the electric dipole inside the

disk is oriented in the same direction as the excitation polarization.

In contrast, the electric field profiles of the SM and MD resonance show a more com-

plicated mix of polarizations at different positions in the disk. This leads to different FH

polarization dependencies of the SH, since the SH generated by the fields is differently

supported or suppressed by the different field components than in the case of an ED

resonance. Fig. 5.4(f) shows the opposite behavior for the SM resonance with respect to

the ED resonance. The maxima are observed at the FH polarization parallel to the GaAs

crystal axes. The MD resonance however shows only one maximum over the measured

range of 180∘ at 𝛼 = 90∘. This result does not match with the theoretically symmetric

design of the metasurface. However, already the linear reflection measurements showed
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5. Second-harmonic diffraction from a GaAs metasurface

SM 0°

Figure 5.5.: BFP image of the SH intensity at the SM resonance and 0∘ FH polarization.

a deviation from the theoretical expectations. This might stem from slight tilts in the

fabrication of the pillar structures, changing the symmetry and thus the support of the

SHG at different FH polarizations.

Nevertheless, the 𝑧-components of the electric field distribution of the MD resonance

shown in Fig. 5.3(i) did not support emission normal to the metasurface plane although

they would create a local SH field polarized in 𝑥 and 𝑦-direction. This might result

from the fact that these 𝑧-polarized fields are directing in both positive and negative 𝑧-

directions very close to each other. The radiation from the respectively generated 𝑥- and

𝑦-polarized SH fields might cancel each other out.

The experiments show clear SH emission out of the surface plane. A feature, unstructured

GaAs thin films with the (100)-cut surface do not offer.

The reason for an observable SH signal propagating away from the metasurface’s plane

is a combination of diffraction and the specific field distribution of the Mie-type resonances

leading to a specific field distribution of the nonlinear polarization. However, it seems that

due to the structure of the second-order nonlinear susceptibility 𝜒̂(2), only SH emission

in the higher diffraction orders is possible, but not in the zero order, i.e. normal to the

metasurface plane.

As explained in the Section 2.3, the diffraction orders are bound to an envelope de-

scribed by the Fourier transform of the shape of the transmission window of one unit cell

of the grating. This is the same here. The part of the SH field that is bound to the differ-

ent diffraction orders depends on the Fourier transform of the field of the SHG generated

in one unit-cell of the metasurface. If the SH field in the single nano-disk system vanishes

in the direction normal to the disk plane, there can only be a vanishing zero diffraction

order for the radiation of the whole metasurface.
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5.2. Second-harmonic diffraction

However, a non-vanishing SH signal in the zero order is observed in our metasurface at

excitation at the SM resonance with the FH polarization parallel to the 𝑥-axis, shown in

the BFP image of Fig. 5.5. The stronger signal is not well shaped and was not expected,

neither in the design nor in the numerical simulations. Similar to the appearance of

the SM resonance, as it would be forbidden in the design, this observation might result

from some artifacts in the fabricated structure due to the high-NA excitation. Numerical

investigations into oblique incidence or oblique pillars could not confirm this observation.

Nevertheless, it is also visible in the polarization dependence shown in Fig. 5.4(f). Another

possibility might be slight deviations from the round disk shape. A similar system was

investigated by Vabishchevich et al ? , where they look at a rectangular bar which has

an extension on one corner resulting in asymmetrically deranged field distributions for

the resonances. This deviation might cause special nonlinear polarization distributions

supporting SH emission normal to the surface. They do not show BFP-images, but they

use a microscope objective with a NA of 0.26, which limits drastically the collection

angle. Correspondingly, their observed SH signal is probably only consisting of the zero

diffraction order where they observe a high enhancement.

A different idea to generate SH emission in the zero diffraction order is to use a different

crystal cut, i.e. a different orientation of the crystal axes with respect to the surface? ? .

Another approach is using a special modulation of the Mie-type resonances by diffraction

in both FH and SH to observe close to zero order emission? .

The study reported here showed the possibility to form the generated SH field in GaAs

to propagate outside of the surface plane of the nonlinear material despite its 𝜒̂(2)-tensor

due to the appropriate nano-structuring of the surface. At the time of the publication it

was the first time this behavior was proven for a second-order nonlinear metasurface of

the GaAs material class. However, further investigations in this material system were not

performed in the extend of this work.

Since the SH emission normal to the surface, which lack in this kind of GaAs meta-

surfaces, is a beneficial feature for future nonlinear metasurface applications, the next

chapters deal with nanostructured surfaces using a recently found second-order nonlinear

material. TMD monolayers attracted the attention of using its second-order nonlinearity

with a promising 𝜒̂(2)-tensor for normal to the surface SH emission. As shown in Eq. 3.2

in Section 3.1.2, SH fields polarized in 𝑥- and 𝑦-direction can be generated in the two-

dimensional MoS2 monolayer, as all the other TMD monolayers, by normal incidence FH
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5. Second-harmonic diffraction from a GaAs metasurface

excitation which leads to SH emission in 𝑧-direction, i.e. normal to the monolayer plane.

By patterning it as reported in the next Chapter 6 and hybridizing it with a linear multi-

resonant Si metasurface as reported in Chapter 7, a possibly easier access for second-order

nonlinear metasurfaces in applications is investigated.
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6. Second-harmonic diffraction from

patterned MoS2 monolayer

6.1. MoS2 monolayer grating

Newly found intrinsically second-order nonlinear materials are two-dimensional (2D) tran-

sition metal dichalcogenide (TMD) monolayers. These materials have a second-order

nonlinear susceptibility 𝜒̂(2) tensor structure which enables normal SH emission at nor-

mal incidence FH excitation due to their in-plane components (see Section 3.1.2). This

provides an advantage with respect to GaAs to be used in second-order nonlinear meta-

surfaces. Additionally, the fabrication process via exfoliation or nowadays high-quality

CVD growth might be another advantage over GaAs and LiNbO3 thin-films and struc-

tures. It is even possible to transfer these monolayers on top of nearly any substrate,

which enables second-order nonlinear surfaces wherever it might be needed.

To use 2D materials in nonlinear photonic applications, some issues have to be investi-

gated next to fabrication and transfer: Can additional functionality be created next to the

SHG by spatial manipulation of these monolayers? Can this functionality be exploited

without sacrificing conversion efficiency? How can the SH signal be enhanced without

reaching the material’s damage threshold, i.e. enhancement of the conversion efficiency?

In a first attempt to answer these questions, this chapter deals with patterned MoS2

monolayers enabling SH diffraction as a supplemental functionality. Additionally, to shed

light on the SH enhancement possibilities, the next chapter discusses hybrid systems,

reporting on multi-resonant Si metasurfaces covered by MoS2 monolayers.

The content of this chapter was published before in? by this work’s author and collab-

orators as well as on conferences beforehand? ? . At the same time, Dasgupta et al ?

published their similar work on patterned WS2 monolayers instead of MoS2 monolayers.

In the first section of this chapter, the patterned MoS2 monolayer is described, in

particular the removal of material to create a grating, and its quality. The observed SH

signal, concentrating on the SH diffraction, is discussed in the second section. The last

section in this chapter deals with a more elaborate structure, a fork-like grating including

a topological dislocation generating a SH vortex beam in the first diffraction order.
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Figure 6.1.: a) 3D sketch of SH diffraction in patterned MoS2 monolayer. b) AFM image of
the grating patterned into the MoS2 monolayer. c) Optical microscope image
of the grating patterned into the MoS2 monolayer. d) Double-logarithmic
plot of the SH power dependent on the FH power. e) Polar plot of the SH
intensity dependent on the FH polarization. f) SH intensity map plotted for
the patterned MoS2 monolayer.

The ultrathin MoS2 monolayers are CVD grown on top of a silicon substrate with a

300 nm SiO2 thermal oxide layer by the group of Andrey Turchanin, Institute of Physical

Chemistry, Friedrich Schiller University Jena, Germany. These monolayers are patterned

by FIB milling (FEI Helios NanoLab G3 UC) as described in Section 3.1.4, with a careful

treatment using accelerated ions of an energy of 30 keV and an ion current of 1.1 pA. This

helped to focus the beam to a very small spot and thereby enabling a high resolution. To

realize a high quality pattern, the beam is scanned across the flake for 20 times, resulting

in a dose of 11 ions/nm2. Note, that the FIB milling and the AFM measurements were

performed by Michael Steinert and Rajeshkumar Mupparapu from the same research

group as this work’s author, Nano & Quantum Optics at the Institute of Applied Physics,

Friedrich Schiller University Jena, Germany.

By this process, elaborate designs for spatial patterns can be realized. As a first simple

example, one-dimensional gratings of different period (625 nm, 675 nm and 725 nm)

were fabricated to observe SH diffraction from this ultra-thin material as depicted in the

illustration in Fig. 6.1(a). The periods are chosen to lie well below the FH wavelength of

840 nm, so the FH does not get diffracted, but to be large enough to enable the collection

68



6.2. Second-harmonic diffraction

of the first diffraction order of the SH with a microscope objective of numerical aperture

NA=0.85.

The AFM image in Fig. 6.1(b) shows the height map of the realized one-dimensional

grating designed with a period 𝑝 = 725 nm, which is measured to be 𝑝 = 713 nm ±13 nm.

The plot below shows the height profile of the red dotted line in the AFM image. The

higher regions, here depicted by the brighter yellow and white colors, are the ion-beam

treated regions where the MoS2 monolayer is removed. The height increase can be as-

sociated with an amorphization of the solid SiO2 layer due to Ga-ion implantation? .

The two dotted lines in the height profile indicate the height difference between unex-

posed substrate and unexposed MoS2 monolayer which is around 1 nm, matching with

the ultra-thin thickness of a MoS2 monolayer. The duty-cycle 𝑑𝑐 = 𝑎/𝑝, i.e. the ratio

of the unstructured stripe width 𝑎 divided by the period 𝑝 as depicted in Fig. 6.1(b), is

measured as 𝑑𝑐 = 0.40 ± 0.02 differing from the designed 𝑑𝑐designed = 0.50. The reason

might be that the Ga-ions scatter inside the substrate, reaching back to the surface and

kicking further atoms away. This increases the damaged surface area compared to the

area exposed by the beam.

Despite the unintentionally increased removal or damage of the monolayer, enough in-

tact crystalline MoS2 monolayer is left to observe SH and the respective diffraction as

described and discussed in the next section.

6.2. Second-harmonic diffraction

The SH response from the structured MoS2 monolayer flake shown in the microscope

image of Fig. 6.1(c), presenting the grating pattern, is measured with the home-built SH

microscope as described in Chapter 4. The used FH wavelength of 840 nm matches with

the C-absorption peak (or C exciton) of the MoS2 monolayer at the corresponding SH

wavelength of 420 nm, which exhibits the strongest SHG due to an excitonic resonance as

described in Section 3.1.2. The FH spot size on the sample is controlled via an aperture in

front of the beam splitter, which decreases the filling of the focusing microscope objective

aperture, decreasing the effective NA and thus increases the spot size. The collected

SH signal is obeying the quadratic dependence of the SH power on the FH power as

confirmed in the measurement shown in Fig. 6.1(d) presenting both quantities in a double
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6. Second-harmonic diffraction from patterned MoS2 monolayer

logarithmic plot. The measured SH signals (orange dots) follow the black line which

represents a quadratic function of the FH power.

The characteristic dependence on the FH polarization is shown in Fig. 6.1(e). The SH

is measured at a fixed polarization while the FH polarization is changed as described in

Section 3.1.2 confirming the four-fold pattern characteristic for the second-order nonlinear

susceptibility 𝜒̂(2) of a MoS2 monolayer. The essential information lies in the confirmation

of the dependence for both unstructured and structured areas of the MoS2 monolayer flake.

This verifies that the crystal structure of the MoS2 monolayer in the leftover stripes of

the structured areas is still intact and not deformed.

Fig. 6.1(f) shows an intensity map of the SHG excited by a FH spot of 1 𝜇m diameter

scanned across the MoS2 monolayer flake shown in Fig. 6.1(c). The unstructured area

of the MoS2 monolayer provides a strong SH intensity, while the patterned area emits a

weaker but not zero signal. Due to the spot size of the FH excitation, which is larger than

the width of the leftover MoS2 monolayer stripes, the latter are not resolved. The conver-

sion efficiency in the unstructured area is around 𝐼SH
𝐼FH

≈ 4 ⋅ 10−10 at a FH average power

of 2 mW, and thus comparable to similar experiments on MoS2 monolayer crystals? .

The ratio of the SH power emitted from the structured and the unstructured area is

0.23 ± 0.03, which does not agree with the duty cycle of 𝑑𝑐 = 0.4 measured from the

AFM image, as the emitted SH power should linearly depend on the area of the nonlinear

material. A possible explanation of the reduced SH lies in the collection of the SH. The

small excitation spot excites only one stripe of the MoS2 monolayer stripes, which width

is smaller than the SH wavelength. Thus, the SH is radiated into a large range of angles,

of which just a certain part is collected by the limited NA of the microscope objective.

The observation of SH diffraction from the MoS2 monolayer gratings is performed with a

larger spot diameter of ≈ 7 𝜇m FWHM to excite several stripes and thus periods of the

grating. Fig. 6.2(a) shows the microscope image of a grating with period 𝑝 = 675 nm. The

respective SH signal representing the spatial distribution is provided in Fig. 6.2(b), here as

a single shot camera sensor image. Several high intensity stripes are visible corresponding

to the MoS2 monolayer stripes. The white intensity profile on the bottom of the plot

shows the intensity at the white dashed line representing the periodic arrangement of the

MoS2 monolayer grating.

The spatial distribution represents a finite periodic arrangement of coherent SH sources

which exhibits diffraction. Due to the choice of the period, the zero and first diffraction
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Figure 6.2.: a) Optical microscope image of investigated sample. b) Spatial distribution
of the SH intensity. c) BFP image of SH intensity. d) Propagation angle of
the first diffraction order versus the grating period, experiment depicted by
dots with error-bars, theoretical value shown by solid line.

orders can be collected with the used microscope objective with NA=0.85. Fig. 6.2(c)

shows the angular distribution of the SH field, measured via BFP imaging as described in

Section 4.3. Note that the measured intensity is corrected for the apodization error from

the microscope objective? by multiplication of the factor cos(𝜃) in both 𝑥- and 𝑦-direction

resulting in 𝐼corrected = 𝐼measured cos(𝜃𝑥) cos(𝜃𝑦). Three maxima are observed, one at the

center being the zero diffraction order, and two in the direction in which the grating is

periodic, here 𝑥, i.e. the first diffraction orders. The propagation angle of the latter with

respect to the normal is 𝜃𝑥 = 39∘ and agrees well with the theoretical prediction for this

grating period and SH wavelength, see Eq. 2.14. This is confirmed for the other grating

periods and plotted in Fig. 6.2(d) with the angle 𝜃𝑥 versus the period. The solid line

represents the theoretical expectation.

Analyzing the SH intensities in the zero and first diffraction orders, a ratio 𝑅 =
1.72 ± 0.12 is found. Following the diffraction theory of a periodic but finite multiple-slit

experiment as described in Section 2.3, R is dependent on the duty cycle 𝑑𝑐. Com-

paring with the theory, the experimentally found ratio R matches with a duty cycle of

𝑑𝑐 = 0.30±0.02. In comparison with the measured 𝑑𝑐 from the AFM image in Fig. 6.1(b),

it is lower, similar to the result of the estimation from the SH intensity map in Fig. 6.1(f).

This mismatch might follow from damaged edges of the leftover MoS2 monolayer stripes.

They might be loaded with defects occuring from lateral scattering of particles in the sub-

strate, reducing the nonlinearity. Accordingly, the width of the MoS2 monolayer stripes

that actually contribute to the SHG is narrower than expected from the AFM measure-

ment. To circumvent this problem, the writing procedure has to be changed, e.g. with

even lower ion doses but more passes of the ion beam, optimized shapes of the focused
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6. Second-harmonic diffraction from patterned MoS2 monolayer

ion beam, or a different ion material replacing the gallium.

The observation of SH diffraction in patterned MoS2 monolayers even if it is the simple

concepts of one-dimensional gratings, paves the path toward additional functionality of

second-order nonlinear 2D materials used for nanostructured surfaces. To prove a more

fascinating scheme, the next section deals with a hologram generating SH vortex beams.

6.3. Second-harmonic vortex-beam

Realizing more elaborate patterns, nonlinear computer generated holograms representing

words or symbols are possible, as in Dasgupta et al ? , showing the potential of beam

shaping. Especially the generation of beams with particular shape and phase distribu-

tion is a crucial feature of metasurfaces. This section deals with a nonlinear hologram

from MoS2 monolayer implementing SH vortex beams by linearly polarized Gaussian FH

excitation.

Fig. 6.3(a) presents the black-and-white image of the designed structure used for the FIB

milling. The one-dimensional grating is deranged by an additional semi-infinite stripe. All

other stripes bend around the topological dislocation at the tip of the semi-infinite stripe.

This fork-like structure is defined by the spatially varying transmittance function? ?

𝑡(𝑥, 𝑦) = 1
2 (1 + sign (cos (2𝜋𝑥

𝑝 ) + 𝑙arctan (𝑥
𝑦 ))) , (6.1)

with the period 𝑝 and the topological charge 𝑙. Such a dislocation acts as the center

for a special type of interference, generating a vortex beam, i.e. a beam with vanishing

a) b) c)

5 µm 

Figure 6.3.: a) Design image of the fork-like grating structure. b) Microscope image with
zoomed region of the realized pattern. c) BFP image of the SH intensity
showing the vortex beams in the first diffraction orders.
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intensity at the center. Generating such vortex beams by nonlinear frequency generation

from such fork-like structures was shown before for SHG using poled lithium tantalate?

and for third-harmonic generation from a gold grating? .

As before, the fork-like structure is directly written into the MoS2 monolayer by FIB

milling. Fig. 6.3(b) shows the realized structure (𝑝 = 725 nm and 𝑙 = 1) in a microscope

image with a contrast enhanced zoomed-in section visualizing the dislocation.

That a vortex beam was generated in the SH field could be observed in the angular

spectrum plotted in Fig. 6.3(c). The SH signal from the zero order is over-saturated, due

to the long exposure time needed to actually observe the SH signal in the first diffraction

order. The latter shows a ring of SH intensity and a zero-intensity center. This confirms

the generation of a vortex beam in the first diffraction order by SHG from a patterned

MoS2 monolayer.

This study together with Ref.? show the possibility to use ultrathin TMD monolayers

for nonlinear computer generated holograms by directly patterning the structures into the

2D material. In terms of possible patterns, there are two major limitations.

One is the size of the monolayers which in exfoliation typically is in the range of mi-

crons, in CVD growth typically tens, maybe hundreds of microns for single crystals, also

called flakes. It is possible to grow extended monolayer thin-films, which are already

commercially available, but they consist of many crystals grown together offering grain

boundaries, i.e. defects, as well as a mix of SHG from differently orientated areas on the

thin film.

The second limitation for patterns is the FIB used in the fabrication. It typically has a

certain resolution depending on the ion material, energy and current, ranging in the area

of 5 nm for the machine used here. The other point is again the size of the pattern and

with that the writing time. Especially considering a high quality pattern using a low dose

but many passes can take hours. In that case, drifts in the machine by scanning over the

sample have to be considered, too.

Very complex holograms typically need large areas to introduce certain periodicities

including very versatile unit-cells. This can either be challenging due to the fabrication

limits as explained before, but also by the optics using large excitation beams but also

large NA collecting lenses.

However, the most crucial optical limitation is the SH power. The smaller the struc-

tures in an elaborate hologram, the less SH signal is generated. Especially if the ratio
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between remaining and removed monolayer material is too small, the most creatively

designed hologram will not be observable. The second-order nonlinear susceptibility of

TMD monolayers is strong, but the conversion efficiency is low due to the very small

interaction volume.

Unfortunately, it is not possible to design structures in the monolayers which support

Mie-type resonances. This is again a problem of their ultrathin thickness, providing not

enough space for confinement of light which could be excited by optical waves. The TMDs

belong to the high-index materials. Like silicon, MoS2 has a refractive index of above 3

in the visible spectrum. Nevertheless, even this high index cannot increase enough the

optical thickness of the monolayer to enable confinement.

However, recently it was possible to generate Mie-type resonances in structures of few-

layer TMD monolayers? . Additionally, it was shown that artificial stacking of inten-

tionally likewise oriented monolayers keeps the broken inversion symmetry? , which then

would allow for thicker second-order nonlinear TMD films, which might enable the de-

sign of resonant nanostructures without losing the nonlinearity. Nevertheless, this is not

possible for monolayers. Another technique for enhancing the SHG in TMD monolayers

is of need if they are supposed to provide their nonlinearity in applications as integrated

circuits or entangled-photon sources.

One possibility is not to pattern the 2D material itself, but the surrounding material,

creating hybrid systems of resonant photonic nano-structures covered by a TMD mono-

layer. The next chapter reports experiments with such hybridized systems of resonant Si

metasurfaces covered by MoS2 monolayers.
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hybrid nonlinear metasurface

7.1. Combining 2D materials with photonic structures

Nonlinear photonic metasurfaces which are supposed to generate light, typically lack con-

version efficiency due to the inherently small nonlinear susceptibilities and in the case

of nanostructures due to the small interaction volume. When it comes to the point of

practicability in applications, enhancement of the conversion efficiency is needed. This

particularly applies to second-order nonlinear metasurfaces including TMD monolayers.

They have a comparably strong second-order nonlinear susceptibility, but only with re-

spect to their ultrathin thickness. Typical enhancement strategies like nano-structuring of

these 2D materials to create resonant cavities fail. However, they can be coupled to other

photonic structures, creating hybrid nonlinear metasurfaces. Due to the ultrathin dimen-

sionality of these monolayers, the hybrid system can still be compact and light-weight

for integrated systems and portable devices. Due to advancing transfer technologies, the

realization is possible. Here, especially flat topologies of the photonic structures increase

the accessibility for the plane 2D material.

In this chapter, a hybrid nonlinear metasurface consisting of a MoS2 monolayer covering

a multi-resonant Si metasurface is discussed. The content reported in this chapter has

been recently published by this work’s author and collaborators? . The first section

shortly introduces the idea of hybridization with its purpose and its advantages. The

second section describes in detail the multi-resonant Si metasurface used here as the

linearly behaving photonic structure to which the monolayer is coupled. The second-

harmonic response and especially the enhancement are discussed in the third section,

followed by the reason for the observed and typically counter-intuitive difference between

the different investigated resonances in the last section providing guidelines for the use of

hybrid nonlinear metasurfaces including 2D materials.

Hybridization of two or more systems means the combination of these systems to couple

their properties, typically to overcome disadvantages of one system with the advantages
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7. Second-harmonic enhancement in hybrid nonlinear metasurface

of the other, and to add new features to otherwise less interesting systems.

In this work’s context, the term hybrid system stands for a nonlinear photonic meta-

surface consisting of a linear Si metasurface covered by the nonlinear MoS2 monolayer.

In contrast to intrinsically nonlinear metasurfaces made from GaAs as in Chapter 5 or

LiNbO3
? , the fabrication technology of Si structures is highly investigated, massively

used, customizable, precise and comparably more available. Second-order nonlinear TMD

monolayers are transferable on target substrates and structures. It is therefore possi-

ble to place monolayers on or next to photonic structures. It is also possible to place

nano-particles or other structures on top of monolayers. This idea of hybrid structure

thus enables second-order nonlinear processes in structures without intrinsic second-order

nonlinear susceptibility.

This hybrid system of TMD monolayers on Si metasurfaces suggested here is especially

useful since the flat topology of the Si metasurfaces fits with the planar 2D materials.

Correspondingly the transfer is not bound to difficult adjustments. The nicely tunable

Mie-type and collective resonances of Si metasurfaces can be used to achieve field en-

hancement at the FH to enhance the SHG.

Similar hybrid systems with TMD monolayers have been successfully implemented for

the investigation of excitons and the enhancement of photoluminescence? ? ? ? ? ? ? ? ? .

SH enhancement, however, has been shown for different systems? ? ? ? ? ? , but typi-

cally lacked different features, like scalability and practicability of the photonic structure

platform for applications as well as actual enhancement.

The hybrid system used here exploits the scalability, homogeneity and reproducability

of CVD-grown MoS2 monolayers for the second-order nonlinearity and the also scalable

and well investigated platform of Si photonics for the creation of resonances to enhance

the excitation fields for the SHG. The later reported SH enhancement is not as high as

in references? ? ? but the used platform is scalable and less complicated in usage. The

SH enhancement does however outperform the values shown in the references? ? ? . The

detailed analysis of the experiments and numerics shows that with better resonance design

even larger SH enhancement might be possible.

Fig. 7.1(a) shows a visualization of the hybrid system generating SH by FH excitation.

The Si metasurface has a resonance at the FH wavelength and creates field enhancement

which induces a stronger nonlinear polarization into the MoS2 monolayer which then

generates enhanced SH. Due to the periodic arrangement, SH diffraction can occur, which

is stylistically shown by the SH radiation under oblique angle.
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Figure 7.1.: a) 3D sketch of SHG in the hybrid system. b) Sketch of the unit cell of
the Si metasurface in oblique, top and side view. c) AFM image of the
fabricated Si metasurface. d) Linear transmittance measurement for 𝑥 and
𝑦 polarized excitation. e) Numerically simulated linear transmittance for 𝑥
and 𝑦 polarized excitation.

The best usage of hybrid systems is possible if each sub-system is well known. The ability

to generate SH and other properties of TMD monolayers are well understood although

still more investigations are in progress. One respective study is shown in the previous

chapter. The properties of the used Si metasurface are described and interpreted in detail

in the next section.

7.2. Multi-resonant Si metasurface

By structuring silicon thin-films and let them interact with electromagnetic waves, the

field of silicon photonics was born. Its impact in photonics and optics was and still is

large? ? ? . The advanced structuring due to the developments in electronic chips brought

big advantages for the use in photonics. The high refractive index of the material enabled

the confinement of light inside of the structures leading to waveguides supporting all kinds

of modes and nanostructures allowing for Mie-type resonances. These possibilities were

already exploited in many linear and third-order nonlinear metasurfaces and resonance

designs have been established in many formats. This advantage is used here to create field

enhancement overlapping with the later covering 2D material to enhance the generation

of SH emission.
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7. Second-harmonic enhancement in hybrid nonlinear metasurface

The aim of overlapping fields with the 2D material arises from the SHG process as it

is described in Section 2.2. Since the second-order nonlinear material is the monolayer,

the nonlinear polarization is only induced there which means the SH field is also only

generated there. Accordingly, a very strong field enhancement in a photonic structure

far away from the nonlinear material does not increase the SHG. Thus the investigated

resonances in the Si metasurface used here are conceptually designed to overlap with the

2D material.

Another aim is a strong resonance, i.e. a strong field enhancement. This is achieved

by using collective resonances in the metasurface as described in Section 2.1.2. Stronger

field enhancement combined with the before mentioned overlap to the 2D material leads

to a larger induced nonlinearity and thus to an enhanced SH.

The multi-resonant Si metasurface used here consists of a periodic arrangement of an

asymmetric double-bar meta-atom which is depicted in Fig. 7.1(b) having two differently

wide Si bars with the lengths 𝑙𝑥 = 395, 𝑙𝑦1 = 165 nm, 𝑙𝑦2 = 225 nm, the height ℎ =
135 𝑛𝑚 and the periods 𝑝𝑥 = 470 nm, 𝑝𝑦 = 520 nm. The SEM image in Fig. 7.1(c) shows

the realized Si metasurface, which was fabricated by electron-beam lithography from a

140 nm thick hydrogenated amorphous Si film on a 1 mm thick glass slide (BK-7). The

procedure uses a structured mask based on 200 nm thick ZEP520 positive resist patterned

by electron beam lithography (Raith 150 electron-beam writer) which then is covered by

35 nm Al film, which turns into a hard mask using lift-off in a ZEP remover. Following, the

Si was etched using CHF3/SF6 plasma etching (Oxford system 100 ICP-RIE). Residual

Al was removed by an Al wet etchant. Note, that the meta-atom was designed by Kirill

Koshelev, and the fabrication was performed by Duk-Yong Choi, both from Australian

National University Canberra, Australia.

This asymmetric unit-cell in its periodic arrangement enables the coupling between

broad localized resonances to spectrally narrow resonances coming from a collective ex-

citation of many resonators in the metasurface? ? . The measured transmittance spectra

of the fabricated metasurfaces without MoS2 monolayer for the two polarizations 𝑥 (dark

blue) and 𝑦 (light blue) is presented in Fig. 7.1(d), obtained using a self-built trans-

mission microscope utilizing a Köhler illumination scheme with assistance from Tobias

Bucher from the same research group as the author at Institute of Applied Physics, Jena,

Germany. The illumination is realized by a halogene lamp and the spectrum is taken by

a spectrometer (Horiba iHR320 with Synapse 1024x256 CCD) with a 600 lines per mm

grating resulting in a 0.4 nm resolution. Both spectra are referenced to the transmission
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7.2. Multi-resonant Si metasurface

Figure 7.2.: a) Linear transmittance measurement for 𝑥 and 𝑦 polarized excitation. b)
Numerically simulated linear transmittance for 𝑥 and 𝑦 polarized excitation.

of the glass substrate without Si film. In 𝑥-polarization, a sharp resonance is found close

to 820 nm (orange shading) having a high Q-factor of approximately 250. A second reso-

nance could be observed for 𝑦-polarization at a wavelength of 850 nm (red shading) having

a Q-factor of 100. These two resonances match with the corresponding FH wavelength

associated with the excitonic resonance enhancement of the SHG at the C-transition of

the MoS2 monolayer.

The high Q-factor makes both resonances promising candidates for the use in the hybrid

nonlinear metasurface. Numerical simulations of the bare metasurface provide some more

information onto the two resonances. To generate the spectra shown in Fig. 7.1(e), a

series of independent simulations is conducted each using a monochromatic plane wave

excitation with changing wavelengths. The whole field scattered and confined by the meta-

atom with periodic boundaries is calculated by using the before mentioned FEM solver of

JCMwave? ? and material values for amorphous Si given by the fabricating collaborators

at Australian National University Canberra, Australia. Then the transmission is taken for

each wavelength. The resulting spectra in Fig. 7.1(e) match well with the measured ones

in Fig. 7.1(d). The resonance around 820 nm for 𝑥-polarization shows an asymmetric line

shape which can be associated to a Fano-type resonance. It will further be referred to as

the Fano resonance. The other resonance found for 𝑦-polarization exhibits a Q-factor of

850, which is larger than in the experiment which can be attributed to inhomogeneous

broadening of the measured resonance due to small fabrication imperfections perturbing

the periodicity of the metasurface. Typically, Mie-type resonances are not significantly

affected by such imperfections due to their broader linewidth, i.e. their lower Q-factor.

By adding a MoS2 monolayer, modeled in the simulation by the material properties
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7. Second-harmonic enhancement in hybrid nonlinear metasurface

given in? , the resonances slightly shift to longer wavelengths, as can be seen by the

dashed lines shown in Fig. 7.1(e). Furthermore, the resonances are broadened, leading to

a 𝑄-factor of about 550 for the collective resonance.

The spectra shown up to now do only show a small range of wavelengths which are

reasonable to investigate for the SH enhancement. However, the Si metasurface exhibits

more resonances and features. In Fig. 7.2(a), the transmission spectrum is shown from

650 nm to 1000 nm for both excitation polarizations in 𝑥- and 𝑦-direction. The respective

numerical simulations presented in Fig. 7.2(b) match with the measurement in many

details. Not only the resonances relevant for the SH enhancement are well matched, but

also many other resonances and features. This agreement leads to the assumption that the

numerical simulations are quite close to the actual physics happening in the real structures

which allows to use other results from the simulations, e.g. the field distributions at the

resonances, for further discussions and explanations.

a) b)

c) d)

e) f)

g) h)

z =135 nm x =0 nm
822 nm - x-polarized

narrow bar wide bar

z =135 nm x =0 nm
852 nm - y-polarized

narrow bar wide bar

Figure 7.3.: Numerically simulated linear fields (intensity, normalized to an exciting plane
wave with amplitude 1) for (a-d) 822 nm with 𝑥-polarized light and (e-h) 852
nm with 𝑦-polarized light. (a),(e) Top view on 𝑥, 𝑦-plane at 𝑧 = 135 𝑛𝑚.
(b),(f) Side view on 𝑦, 𝑧-plane at 𝑥 = 0. (c),(g) Side view on 𝑥, 𝑧-plane at the
center of the narrow bar with respect to 𝑦. (d),(h) Side view on 𝑥, 𝑧-plane at
the center of the wide bar with respect to 𝑦.

As mentioned before, the field distributions which arise at the resonances are impor-

tant to study with respect to the overlap with the 2D material. The corresponding field

distributions in the Si meta-atoms including a covering MoS2 monolayer at the reso-

nance wavelengths are shown in Figs. 7.3(a-d) and (e-h). Regarding the SH response

of MoS2 monolayer, only the field components parallel to the plane of the 2D mate-
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7.2. Multi-resonant Si metasurface

rial contribute, thus the intensity plotted consists only of these parallel components:

𝐼∥ (𝑥, 𝑦, 𝑧) = |𝐸𝑥 (𝑥, 𝑦, 𝑧)|2 + ∣𝐸𝑦 (𝑥, 𝑦, 𝑧)∣2. The top left figures in each quadruple ((a)

and (e)) represent the 𝑥, 𝑦-plane directly on top of the Si bars, where the monolayer lies,

while the top right figures ((b) and (f)) show the 𝑦, 𝑧-plane at 𝑥 = 0 which means the

center through the bars. Additionally, the bottom images provide the 𝑥, 𝑧-plane through

the center of the narrow (left, (c) and (g)) and the wide (right, (d) and (h)) bar.

The strong field of the Fano resonance is concentrated at the top and bottom of the

narrower bar, located in its center along the 𝑥-direction at 𝑥 = 0. A much weaker similarly

distributed field is located in the wider bar. A large part of the field is overlapping with

the 2D material, in particular directly above the narrower Si bar.

The second collective resonance also concentrates inside the narrower bar, but as one

strong maximum in its center. The important difference to the Fano resonance however is

that significant parts of the field are located in the gaps to the other bars, even reaching

over the bars. This creates an overlap with the 2D material aside the Si interface, i.e. in

the area, where the monolayer is suspended in air.

These different locations of strong field concentrations is what separates both resonances

from each other. The quantity 𝐼MoS2
∥ = ∫ d𝑥d𝑦 𝐼∥ (𝑥, 𝑦, 𝑧 = 135 nm) represents the total

field overlapping with the MoS2 monolayer. The maxima of 𝐼∥ in the plane of the 2D

material at 𝑧 = 135 nm are comparable for both resonances. However, 𝐼MoS2
∥ for the

regions where the MoS2 monolayer is suspended in air, is only 11% of the total field in

the investigated plane for the Fano resonance, while for the second collective resonance

this ratio results in 50%. To put these values into perspective, only 37% of the area of

the monolayer is suspended in air, whereas 63% have an interface with the Si bars.

This difference can play an important role since the area where the field overlaps with

the monolayer is where the nonlinear polarization is induced. But whether this nonlinear

polarization and thus the generated SH field are at the Si interface or where the monolayer

is suspended in air leads to different scattering, absorption and thus radiation of the SH.

Since the SHG process depends on the exciting linear field, the resonant field distributions

in terms of localized strength, polarization and location play an important role. The two

investigated resonances show different but both high Q-factors, both are mostly linearly

polarized in the direction of their excitation, but they have a very different area of overlap

with the 2D material. The respective SH response of the hybrid nonlinear metasurface is

investigated in the next section, focusing on the different SH enhancement results from
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7. Second-harmonic enhancement in hybrid nonlinear metasurface

both resonances.

7.3. Resonant enhancement of second-harmonic

generation

The combination of the before described multi-resonant Si metasurface with the covering

MoS2 monolayer as an example of an application-friendly hybrid nonlinear metasurface

for second-order nonlinear processes is described in the next section with respect to the

SH response focusing on its standard SHG properties like polarization dependence, but

especially on enhancement. The latter is the purpose of this chapter to overcome the

inherently small nonlinear susceptibilities of nonlinear materials, here in the case of meta-

surfaces in terms of resonances achieved by nanostructures.

 

 
20 µm

unstr. Si

non-
resonant Si
metasurface

MoS2 
monolayer

unstr. Sia) b)

c) d)

e) f)

resonant Si 
metasurface

Figure 7.4.: a) Optical microscope image of hybrid nonlinear metasurface. b) SH enhance-
ment factor 𝑟SH dependent on the FH wavelength for FH polarization in 𝑥-
and 𝑦-direction. c) SH power dependent on FH power. d) Numerically simu-
lated SH intensity represented by the SH enhancement factor 𝑟SH dependent
on the FH wavelength. e) Normalized, measured SH intensity dependent on
FH polarization. f) Numerically simulated and analytically calculated SH
intensity dependent on FH polarization.

The investigated sample, i.e. the completed hybrid nonlinear metasurface including the
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7.3. Resonant enhancement of second-harmonic generation

transferred MoS2 monolayer, can be seen in the microscope image in Fig. 7.4(a). The

lower left reddish patch is the resonant Si metasurface described in the section before. On

the top left and bottom right, two patches of unstructured Si film with the same height

as the metasurface are located. In the top right, another Si metasurface with different

geometric parameters is placed having no resonances in the investigated area, and thus

is called non-resonant Si metasurface. The white dotted lines show the edges of the Si

patches. In between, the glass substrate is visible. The CVD-grown MoS2 monolayer,

which are provided by the group of Andrey Turchanin, Institute of Physical Chemistry in

Jena, Germany, are just vaguely visible, thus they are framed by the white dashed lines.

The SH response from the hybrid system is measured with the self-built SH microscope

described in Chapter 4. Here, the microscope objective with NA=0.85 is used to collect

both propagating first and zero diffraction orders of the generated SH. However, small

parts of the first diffraction orders might be cut due to the limited NA. This reduces the

measured SH power, but it does not influence the following discussion and conclusions.

Fig. 7.4(b) shows the measured spectral dependence of the SH enhancement factor

𝑟SH = 𝐼SH,on-metasurface
𝐼SH,on-glass

, (7.1)

i.e. the ratio between the SH signal from the hybrid system and from a MoS2 monolayer

on the glass substrate. This normalized value eliminates effects from the spectral disper-

sion of the 2D material’s nonlinearity. Also, the comparison with a glass substrate reduces

false enhancement interpretations stemming from absorptive reference substrates. Addi-

tionally, glass substrates are an easily available substrate and were used in the first SHG

experiments on bare TMD monolayers? ? , which enables strength comparison. Thus, the

enhancement factor defined here represents a useful value to estimate the observed SH

enhancement and put it in respect with other works.

The mentioned spectra in Fig. 7.4(b) show a maximum for the 𝑦-polarized FH excitation

around 850 nm, which corresponds to the second collective resonance (red shading). The

enhancement reaches a value of 𝑟SH = 35. The larger spectral width of the enhanced

SH signal compared to the width of the linear resonance feature is due to the spectral

bandwidth of the used FH pulses of 9 nm FWHM and the focused excitation with a

diameter of 8 𝜇m FWHM.

In contrast, the Fano resonance in 𝑥-polarization (orange shading), exhibits only a

small SH enhancement around 810 nm, but no characteristic peak. The measured total
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7. Second-harmonic enhancement in hybrid nonlinear metasurface

SH conversion efficiency of hybrid structure investigated here is 1.2 ⋅ 10−9 for the Fano

resonance and 4.5 ⋅ 10−9 for the second resonance for FH average powers on the sample

of 1.85 mW and 1.6 mW, respectively. The characteristic quadratic dependence of the

SH power on the fundamental power is confirmed as plotted in Fig. 7.4(c) by comparing

measured SH intensity counts (dots) with a quadratic function (solid line).

Fig. 7.4(d) shows the spectra of the SH enhancement factor resulting from numerical

simulations using the undepleted pump approximation. The FEM solver used here allows

only for monochromatic continuous wave (CW) excitation which is plotted in the graph

by the dashed lines. To introduce a SH intensity 𝐼SH,Gauss which is more relatable to the

experiment with pulsed, but especially spectrally broader excitation, the convolution of

the CW simulations with the theoretical Gaussian excitation pulse of the experiment with

the FWHM of Δ𝜆 = 9 nm is taken via the formula

𝐼SH,Gauss(𝜆) = ∑
𝜆𝑛

𝐼SH,CW(𝜆𝑛) ⋅ exp ⎛⎜
⎝

−(𝜆 − 𝜆𝑛)2

Δ𝜆2

2√ln(2)

⎞⎟
⎠

. (7.2)

Note that this equation does not represent an actual physical model to determine the

transition from CW to pulsed excitation. This is not possible. The here given term only

represents the summation over intensities of different wavelength with a weight profile of

a Gaussian function. Due to the discrete wavelength steps of the simulation it is a sum

rather than the convolution integral. The enhancement factor using 𝐼SH,Gauss is plotted

in Fig. 7.4(d) by solid lines.

Taking these two regimes, i.e. CW and Gauss, a large enhancement factor 𝑟SH of

up to 5000 (CW) is found for the SHG excited at the second collective resonance (red

shading), which reduces in the pulsed regime to 1000 (Gauss). At the same time, the

CW simulations at the Fano resonance (orange shading) result in an enhancement factor

𝑟SH of less than 500. In the case of the 𝐼SH,Gauss the resonant shape in the spectrum

is washed out, as visible in the zoomed inset. This fits very well with the observation

in the experiment where no explicit resonance behavior could be seen around the Fano

resonance.

The enhanced SH background before the Fano resonance, which is observed in the

experiments, is confirmed in the simulations and might be associated with the broad res-

onance feature found around the Fano resonance as can be seen in the linear transmission

measurements in Fig. 7.1.

The value of 𝑟SH = 1000 for the second collective resonance is large in comparison with
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7.3. Resonant enhancement of second-harmonic generation

the experiment. However, the large value results from simulations assuming a perfectly

shaped and infinitely periodic metasurface. Additionally, the convolution with a Gaus-

sian function to include the pulsed excitation is not a quantitative model. Nevertheless,

a part of the difference between the experiment and the simulation can be explained by

the already broadened linear resonance in the real metasurface with respect to the linear

resonance in the simulation due to fabrication imperfections in the individual nanostruc-

tures.

Fig. 7.4(e) shows the experimentally obtained dependence of the generated SH signal

on the FH polarization. While the SH from the MoS2 monolayer on the bare glass

substrate (black dots) shows a close to constant behavior over the whole range of FH

polarization angles, the SH intensity excited at the Fano resonance (orange dots) and at

the second collective resonance (red triangles) have clear maxima in 𝑥- (0∘) and 𝑦- (90∘)

direction, respectively. This behavior confirms that the SH resonances only exist for these

polarizations where the linear resonances appear. Note, that each set is normalized to its

maximum value.

These results are confirmed by numerical simulations shown in Fig. 7.4(f). As described

in Section 3.1.2, the overall SH signal of a MoS2 monolayer which is not perturbed by any

photonic structure, is constant (see the black line). That both SH signals excited at the

Fano and second collective resonance show a strong dependence on the FH polarization

matching with the polarization of the original linear resonances, confirms again that there

is resonant coupling between the SHG from the MoS2 monolayer and the linear resonances

of the Si metasurface.

The SH response of a periodic arrangement, as in the case of the hybrid nonlinear meta-

surface presented here, typically can exhibit SH diffraction. As already seen in the GaAs

metasurface of Chapter 5 and the patterned MoS2 monolayers from Chapter 6, SH diffrac-

tion stems from the periodic arrangement of sources which emit light at the SH wavelength

and thus underlies the laws of diffraction.

While the patterned MoS2 monolayer was manipulated to explicitly show SH diffraction,

resulting in vortex beams in the first diffraction order, the hybrid system described in this

chapter is mainly considered in terms of SH enhancement, which was a missing feature

in the patterned 2D materials. However, also the hybrid system exhibits SH diffraction

which is very different for the two investigated resonances.

Fig. 7.5(a) shows the SH intensity of the hybrid nonlinear metasurface in real space
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a) b)

c) d)

e)

Figure 7.5.: (a-d) SH intensity from hybrid system by FH excitation at 810 nm ((a) and
(b)) and at 850 nm ((c) and (d)) observed in real space ((a) and (c)) and
in angular space by BFP imaging ((b) and (d)). (e) SH enhancement factor
spectrum for only zero diffraction order and for all diffraction orders together.

excited at the Fano resonance with a large excitation spot of a diameter of around 8 𝜇m

FWHM. Although the structure is periodic in both 𝑥- and 𝑦-direction, the SH intensity

looks like a one-dimensional line grating source. This behavior is confirmed by the BFP

imaging technique performed throughout this thesis to observe the angular spectrum of

the SH intensity, which is plotted in Fig. 7.5(b). Here, only the first diffraction orders in 𝑥-

direction show a significant SH intensity, while in 𝑦- direction no first diffraction orders are

detected. In contrast, the SH intensities excited at the second collective resonance show

the expected real space distribution with small SH spots arranged periodically in both

directions (see Fig. 7.5(c)) and the SH diffraction with SH signal in the first diffraction

orders in both 𝑥- and 𝑦-direction (see Fig. 7.5(d)).

The reason for the observation of a one-dimensional instead of a two-dimensional grating

when exciting at the Fano resonance might be that the SH field is not locally seperated by

nodes in 𝑦-direction, but rather continuous across the unit-cell. Another possibility is that

the field is actually located at both bars in a similar strength resulting in a period smaller

than the wavelength which forbids a propagating first and higher diffraction orders.

The contribution of the first diffraction orders on the overall SH emission is very large.

In Fig. 7.5(e), the SH spectrum is separated into the overall SH enhancement factor and
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Figure 7.6.: a) Microscope image of similar hybrid nonlinear metasurface. MoS2 mono-
layers framed by white dashed lines. Si patches framed by white dotted lines.
b) SH enhancement factor 𝑟SH dependent on the FH wavelength.

the part which is only resulting from the zero order alone. This issue might be important

for future applications trying to harvest most SH emission in the zero diffraction order.

However, it seems possible to not only enhance the SHG, but additionally manipulate

the SH diffraction. Of course, more elaborate schemes have to be considered if actual

beam shaping and SH enhancement are supposed to work in the similar hybrid nonlinear

metasurface.

Note that the SH response from this hybrid nonlinear metasurface is nicely reproduced

in a sample with very similar geometry parameters, which is shown in the microscope

image of Fig. 7.6(a). The according SH spectra are shown in Fig. 7.6(b). Again the

enhancement factor 𝑟SH is plotted versus the excitation wavelength. The sprectra show

an even stronger enhancement of 55 for the second collective resonance (red shading) than

in the main sample. However, in depth analysis of the respective SH properties were not

possible, because the sample got destroyed before.

Concluding the SH response of the hybrid nonlinear metasurface, a strong SH enhance-

ment is observed for the second collective resonance while the Fano resonance does not

show a pronounced resonant behavior in the SH spectra. Although the latter might stem

from the fact that the FH excitation is quite broad, the difference in SH enhancements

for the two resonances is significant. The more strange is the fact that not the second

collective resonance, but the Fano resonance has the higher Q-factor. The reason for this

counter-intuitive result is discussed in the next section.
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a) b) c) d)z =135 nm z =135 nm z =135 nm z =135 nm
FH 822 nm FH 852 nm

Figure 7.7.: Nonlinear polarization distribution induced by the numerically simulated FH
field distributions at the wavelength 822 nm (a,b) and 852 nm (c,d), rep-
resenting the absolute value of the 𝑥-component (a,c) and the 𝑦-component
(b,d) in the plane of the 2D material.

7.4. Discussion on counter-intuitive Q-factor dependence

of second-harmonic enhancement

The difference of the SH enhancement factor for the two resonances, i.e. 15 for the

Fano resonance and 35 for the second collective resonance, opposes to the commonly

expected enhancement followed by the difference in Q-factor, which was 250 for the Fano

resonance and 100 for the second collective resonance. This arises from the complexity of

nonlinear processes in nanoresonators such as SHG. The excitation beam creates the local

FH field, which induces a nonlinear polarization in the nonlinear material, here the MoS2

monolayer. This nonlinear polarization is driving a localized field at the SH frequency,

which might couple to the far field where it can be observed. In each of these steps, the

nanoresonators influence the coupling of the fields and thus the overall efficiency of the

SHG. Comparing the two resonances investigated here, the main qualitative difference is

how the field in the plane of the 2D material is distributed, i.e. mostly on top of the Si

bars, as in the case of the Fano resonance, or where the monolayer is suspended in air, as

in the case of the second collective resonance.

The first step in understanding the enhancement behavior is the induced nonlinear po-

larization. Due to the small conversion efficiency, the undepleted pump approximation

can be taken which simplifies the FH, the SH and the nonlinear polarization as time-

independent fields. Thus, the nonlinear polarization can be simply calculated by taking

the FH fields in the nonlinear material, i.e. in the MoS2 monolayer, which have already

been shown in Fig. 7.3(a,e), and by using Eq. 3.2. The result is shown in Fig. 7.7. While

Figs. 7.7(a,b) result from the FH excitation at the Fano resonance, Figs. 7.7(c,d) are

connected to the second collective resonance. Since complex fields are used in the simu-
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a) b)

c) d)

e) f)

g) h)

z =135 nm x =0 nm
SH at 411 nm

z =135 nm x =0 nm
SH at 426 nm

z =135 nm z =135 nm z =135 nm z =135 nm
linear 411 nm linear 426 nm

Figure 7.8.: Numerically simulated SH field distributions at the wavelength 411 nm (a-d)
and 426 nm (e-h), representing the SH intensity fields (a,b,e,f) and linear
intensity fields (c,d,g,h). (a,c,d) and (e,g,h) show the 𝑥, 𝑦-plane where the
monolayer lies at 𝑧 = 135 nm, while (b) and (f) show the 𝑦, 𝑧-plane through
the center of the Si bars at 𝑥 = 0 nm. (a) and (b) were excited by 𝑥-polarized
FH, while (e) and (f) were excited by 𝑦-polarized FH. The linear simulations
result from 𝑥- (c,g) and 𝑦- (d,h) polarized plane waves.

lation, which cannot be shown in this simple 2D plot, the absolute value of the nonlinear

polarization for the two different components in 𝑥 (a,c) and 𝑦 (b,d), respectively, are

depicted.

Since both FH fields at the Fano resonance and at the second collective resonance are

mainly polarized in 𝑥 or 𝑦, respectively, as their excitation, the nonlinear polarization

is mainly concentrated in the 𝑥-component. Only minor contributions are found in the

𝑦-component. The major difference is, as mentioned above describing the FH fields, that

the location of the nonlinear polarization at the Fano resonance is mainly at the interface

of the Si bars while a large part of the nonlinear polarization at the second collective

resonance is located where the monolayer is suspended in air.

From this nonlinear polarization, the SH fields are generated following 𝐸𝑆𝐻
𝑥 ∼ 𝑃 𝑁𝐿

𝑥

and 𝐸𝑆𝐻
𝑦 ∼ 𝑃 𝑁𝐿

𝑦 . This field is then scattered due to the Si nanostructures. The simulated

results are shown in Figs. 7.8(a,b,e,f).

Figs. 7.8(a,b) present the numerically simulated SH field distribution in the case of

FH excitation at the Fano resonance. The SH intensity is plotted in the 𝑥, 𝑦-plane at

𝑧 = 135 nm (a), which is the plane of the MoS2 monolayer, as well as in the 𝑦, 𝑧-plane

through the center of both bars at 𝑥 = 0 nm (b). Since the actual spectral dispersion of

the nonlinear susceptibility is not known, the intensity values are normalized arbitrarily
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Figure 7.9.: SH enhancement factor plotted versus FH wavelength for MoS2 monolayer
crystal orientation with armchair direction parallel to 𝑥 (dotted) and the
zigzag direction parallel to 𝑥 (dashed).

to simplify the visualization, but enabling comparison between the different resonances.

The strongest intensity is found central on top of the Si bar, as expected from the FH field

distribution of this resonance shown in Fig. 7.3(a-d) and the nonlinear polarization shown

in Figs. 7.7(a,b). Despite the less pronounced linear field in the gap between the Si bars,

the SH field generated there is comparably strong to the field on the Si bar interface. This

suppression at the Si interface might stem from the high absorption of light at the SH

wavelength in Si. In comparison, Figs. 7.8(c,d) show the linear fields at the SH wavelength

excited by 𝑥- and 𝑦-polarized light, confirming the suppression on the Si bars, and the

support of light between the bars.

In contrast to the Fano resonance, the second collective resonance finds a strong overlap

of its linear field and thus the nonlinear polarization with the area where the MoS2

monolayer is suspended in air. Accordingly, the generated SH field is less suppressed by

the material absorption of Si and eventually enhanced, as can be seen in Figs. 7.8(e,f). The

SH field is mostly located in the gaps between the Si bars with local field intensities about

ten times larger than for the Fano resonance. The obtained intensities already confirm

the different SHG enhancement factors obtained in the far-field simulations shown in

Fig. 7.4(d).

Note that the orientation of the MoS2 monolayer crystal does play a role (see Fig.7.9). In

the simulations reported before, the orientation is taken to be with the armchair direction

being parallel to the 𝑥-axis. This arrangement is close to the actual case in the experiment.

It predominantly induces a nonlinear polarization in 𝑥-direction, independent whether

caused by a mostly 𝑥- or 𝑦-polarized FH field. By rotation of the orientation by (2n+1)
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times 30∘ with n being an integer number, mainly 𝑥- or 𝑦-polarized FH fields induce a

nonlinear polarization in 𝑦-direction. That means the fields shown in Figs. 7.7(a-d) for

the 𝑥-component are then the 𝑦-component and vice versa.

For the hybrid nonlinear metasurface reported here, this leads to a different SH en-

hancement factor. Fig. 7.9 shows the SH spectra, plotting again the SH enhancement

factor versus the FH wavelength, for 𝑥- and 𝑦-polarized FH excitation. The dotted lines

represent the already shown case for 𝑥 being parallel to the armchair direction of the MoS2

monolayer crystal structure. The counterpart is plotted in dashed lines for the zigzag di-

rection being parallel to 𝑥. At the Fano resonance (orange shading), the SH enhancement

factor decreases for the zigzag orientation to hardly 300 versus the 500 mentioned above

for the armchair orientation. At the second collective resonance (red shading), this de-

crease is even larger, showing a SH enhancement factor of not even 2000 for the zigzag

orientation against the value of more than 5000 for the armchair orientation.

The reason for this difference might lie in the different overlaps of the induced nonlinear

polarization and the thus generated SH fields with the mainly supported mode of the

structure at that SH wavelength which are shown in Figs. 7.8(c),(d),(g) and (h). At these

SH wavelengths, 𝑥-polarized light is mainly supported being located in the gap between

the metasurface bars in 𝑥-direction, while 𝑦-polarized light is supported being located in

the gaps in 𝑦-direction.

Concluding from the discussion of the field distributions, it is beneficial for nonlinear

interactions to achieve FH field enhancement in the air gap between the Si nanobars,

which is attributed to the losses of Si at the SH wavelength. This is a general effect and

not specific for the particular geometry investigated here. Correspondingly, next the SHG

efficiency from MoS2 monolayers is compared for different substrates, such as the already

described resonant Si metasurface, a non-resonant Si metasurface, and an unstructured

Si thin film as depicted in Fig. 7.4(a), as well as the bare glass substrate.

In Fig. 7.10(a), a SH intensity map for 𝑥-polarized FH excitation is plotted. It is

obtained by scanning over the area and integrating over the whole SH camera image

for each position on the map. It demonstrates the strong SH response from the MoS2

monolayer on top of the resonant Si metasurface. The measurement is taken at a FH

wavelength of 810 nm and with an excitation spot of around 8 𝜇m FWHM. There is no

SH signal visible from where the MoS2 monolayer lies on the unstructured Si film, but

there is an observable very weak signal if the exposure time is increased. It is around 400
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a) b)
FH 810nm, x

Figure 7.10.: (a) SH intensity map of the area shown in Fig. 7.4(a) for 𝑥-polarized FH at
810 nm wavelength. (b) SH intensities of MoS2 monolayer atop the differ-
ent substrates for different FH polarizations and different FH wavelengths,
normalized to the SH intensity from MoS2 monolayer on unstructured Si.

times smaller than the value observed from the MoS2 monolayer covering the resonant Si

metasurface. Additionally, a weak signal is measured where another MoS2 monolayer is

atop the non-resonant Si metasurface.

Note, that in Fig. 7.10(a) a very small region is shown where the monolayer is atop

the glass substrate. However, this is not where SH measurements are taken for the

SH enhancement factor 𝑟SH, because here it is actually suspended far above it. The

actually reported values for measurements on the glass substrate are using a separate

MoS2 monolayer crystal not shown here. This ensured that the MoS2 monolayer lied

directly on the glass and the 8 𝜇m-wide focus excited a spatially homogeneous region.

To clearly compare the SH strengths for the different patches, the different SH intensities

from MoS2 monolayers on top of the different substrates are compared in Fig. 7.10(b)

for the two orthogonal FH polarizations, i.e. 𝑥 in dark blue and 𝑦 in light blue, and

for both the Fano and the second collective resonance wavelengths, in orange and red,

respectively. Such a comparison, even between different MoS2 monolayers, is possible due

to the very homogeneous properties of the CVD-grown crystals. The shown SH intensities

are referenced to the measured value on top of the Si thin film, which is the smallest. The

SH response from the non-resonant Si metasurface exceeds those of the unstructured Si

thin film by a factor of 30 to 50, similarly to the SH signal from the MoS2 monolayer on

the glass substrate. Nonlinear numerical simulations of the SHG from MoS2 monolayers

on Si and on glass substrates show a two orders of magnitude larger SH response for the

system with glass which confirms the corresponding measurements.

To conclude, these results from the patch comparison shows that direct contact between
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the MoS2 monolayer and the Si significantly decreases the SHG efficiency, due to strong

material absorption of the Si at the SH wavelength. In the case of the non-resonant

metasurface, the MoS2 monolayer is partly suspended in air and thus shows less suppressed

SHG with respect to the unstructured Si substrate. The glass substrate does not provide

areas of suspended MoS2 monolayer, but it is transparent at the SH wavelength, which

results in larger SHG than in the case of the unstructured Si substrate.

Comparing the SH values for the non-resonant and the resonant Si metasurface, the

eminent impact of the resonances for the SH enhancement in hybrid nonlinear metasur-

faces is confirmed. This fact is also proven in the case of the resonant Si metasurface at

the Fano resonance at the non-resonant FH excitation polarization 𝑦. In the case of the

non-resonant FH excitation in 𝑥 polarization at the second collective resonance still the

background SH enhancement possibly stemming from the broad resonance in 𝑥 at the FH

plays a role which is shown in Fig 7.4(b) and was discussed before. Thus it might also be

resonant SH enhancement.

The essential result found from the investigation of this hybrid nonlinear metasurface is

the importance of the gaps between the metasurface blocks. There, the nonlinear 2D

material can be suspended in air and thus produce more SH than at the interface with

the absorbing Si blocks. The guideline for the design of resonances should therefore be to

take care of field distributions with local field enhancement in the gaps.

This result can be generalized for the process of SHG in all nonlinear photonic meta-

surfaces. When resonances are used at the FH wavelength range, their local fields should

not only strongly overlap with the nonlinear material, the generated SH field should fit

with the metasurface characteristics. As in this study, absorption at the SH wavelength

can play an essential role, but if the latter is not as crucial, radiative and non-radiative

eigenmodes at the SH wavelength can be key.
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8.1. Conclusion

In this thesis, different possibilities of second-order nonlinear metasurfaces are investigated

and discussed concentrating on the nonlinear process of SHG.

At first, a metasurface made from the intrinsically second-order nonlinear material GaAs

is realized. The structures enable resonances at the FH excitation to enhance the SHG

as well as SH diffraction. The latter is crucial in this case since a GaAs thin film with the

typical (100)-cut surface does not provide out of plane SH emission by normal incidence

FH excitation. Here, the periodic arrangement and the local field enhancement in the

meta-atoms helped to observe SH emission in the first diffraction orders, which is observed

for the first time in a metasurface of this material class by BFP-imaging.

Additionally, a case of non-zero SH emission in the zero diffraction order is shown,

resulting from an effect which could not be fully explained based on the obtained data.

However, the lack of SH emission normal to the surface plane due to the less fortunate

second-order nonlinear susceptibility tensor of the GaAs material class has to be overcome

for the use of second-order nonlinear photonic metasurface in applications.

In this work, a solution is found by introducing the recently found 2D materials called

TMD monolayers which have an intrinsic second-order nonlinear susceptibility with a

tensorial structure enabling normal SH emission at normal incidence FH excitation.

By patterning MoS2 monolayers via FIB milling for the first time, it iss possible to shape

the spatial SH response. In particular, SH diffraction from patterned one-dimensional

gratings is observed matching with the diffraction theory. Taking this as the fundamental

principle, it is possible to realize ultra-thin nonlinear diffractive optical elements for SH

beam shaping. As a first example, a vortex beam in the first diffraction order is generated

by milling a grating featuring a topological dislocation into the MoS2 monolayer.

However, the patterning of the MoS2 monolayer decreases the SH emission due to the

removal of material. The already small SH signal due to the ultrathin thickness has to

be enhanced to be useful for applications. Thus, a scheme of hybridizing the nonlinear

monolayer with a linearly resonant metasurface is implemented in this work. Due to strong
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collective resonances in the used Si metasurface, it is possible to observe enhanced SHG.

Additionally, the hybrid system is chosen to use the scalable and advanced platform of

Si photonics and the scalable, reproducably high-quality CVD-grown MoS2 monolayer to

lead a path toward functionalized large surface application as well as to possibly integrate

this hybrid system into optoelectronic chips.

However, the crucial result here is not the sheer number of enhancement, but the

guidelines on how to design the linear metasurface to achieve stronger SH enhancement. In

particular it is advisable to use resonances providing a local field enhancement overlapping

with the nonlinear 2D material away from the Si interfaces and where it is suspended in

air. There the absorption of the Si at the SH wavelength cannot suppress the SH emission.

In general, this work emphasizes the complicated role of every step in the SHG process.

While the FH excitation already sets the base for an efficient frequency conversion, it is

the nonlinear susceptibility tensor which transforms the FH field into the nonlinear polar-

ization. It is therefore crucial how the local FH field is distributed over the nanostructured

surface to create a strong nonlinear polarization and thus to generate a strong local SH

field. However, again the nanostructured environment of the SH field has an impact on

its support and mainly its coupling to the far field, i.e. the radiation properties.

8.2. Outlook

One of the possible directions from here is the further increasing control of SH radiation

by SH diffraction. Not only further schemes to generate normal to the surface plane

SH emission from metasurfaces using the GaAs material class are interesting. SH beam

shaping with computer generated holograms in all kind of nonlinear materials is thrilling.

This additional functionality for a surface can also be used for communication and data

analysis schemes.

Whether this is possible with metasurfaces with intrinsic second-order nonlinearity

or in hybrid systems will be a matter of fabrication possibilities. The hybrid system

shown here is highly accessible in todays fabrication technology, but its advances in beam

shaping designs is rather low until now. To combine the enhancement and the diffraction

pattern might be difficult. Intrinsically nonlinear materials might not need the additional

enhancement 2D materials seek, which makes the realization of diffraction patterns easier.

Applications like light sources using SHG or the somehow inverse process of SPDC for

entangled photon sources via metasurfaces are still suppressed due to the low conversion
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efficiency. Even stronger enhancement mechanisms have to be found. This can be the

simultaneous existence of resonances at the FH and the SH, sharper resonances like the

here introduced Fano resonance due to asymmetric meta-atoms, or even specially shaped

FH excitation beams.

Otherwise, the access to new materials with stronger second-order nonlinearity are

key. The perovskites led by LiNbO3 have a strong intrinsic second-order nonlinearity

and their fabrication technology gets more advanced everyday. The first realized second-

order nonlinear metasurface made from LiNbO3
? shows a path both for SH emitting

metasurfaces and compact quantum entangled photon sources.

The chiral properties of TMD monolayers are already under investigation from several

perspectives leading in different directions.

A rather elaborate idea on this behalf is to use the particular tensorial structure of

TMD monolayers to create a metasurface which generates circularly polarized SH light

by linearly polarized FH excitation. For this, hybrid systems could be utilized, where the

linear metasurface locally generates circularly polarized FH light which then is converted

to circularly polarized SH light by the TMD monolayers. However, the realization of large

enough circularly polarized FH fields without disturbing non-circularly polarized fields in

the surrounding is rather difficult.

Nevertheless, the particular properties of the 2D materials especially in terms of chiral-

ity are worth to look into.
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Abstract

Compact optical and photonic devices have found their way into applications due to

their many facets and possibilities to use light. Especially nanostructured surfaces, which

drastically manipulate light on a very small spatial scale, also called metasurfaces, were

investigated for that purpose over the last decades. However, research on nonlinear prop-

erties in such systems is still in a mainly fundamental stage.

Here, different schemes and materials are used to develop second-order nonlinear nanos-

tructured surfaces which support strong second-harmonic generation under controlled ra-

diation.

At the beginning, a gallium arsenide metasurface is investigated whose intrinsic second-

order nonlinearity is used to generate second-harmonic light propagating out of the meta-

surface plane. This is achieved by the periodic design using Mie-type resonances which

results in second-harmonic diffraction into the first diffraction order, since the second-

harmonic emission normal to the metasurface plane is forbidden for the crystal orien-

tation due to the second-order nonlinear susceptibility tensor. Nevertheless, due to an

effect which cannot fully be explained by the obtained data, second-harmonic generation

into the zero diffraction order for a symmetry forbidden resonance in the metasurface is

observed.

To overcome the issue of no second-harmonic emission normal to the surface, which

would be beneficial for applications, the recently found molybdenum disulfide monolayers

are investigated. They are ultrathin and thus called two-dimensional materials. Their

intrinsic second-order nonlinear susceptibility provides the ability to emit the generated

second-harmonic light normal to the surface plane when excited at normal incidence.

Here, for the first time (simultaneously with? ) such monolayers are patterned with

high resolution by focused-ion-beam milling, creating one-dimensional gratings, to observe

the diffracted second-harmonic generation. The measured second-harmonic response is

observed in the zero and first diffraction orders as expected from diffraction theory. How-

ever, in a more elaborate design the grating is manipulated by a topological dislocation to

generate second-harmonic vortex beams in the first diffraction order which is successfully

implemented and observed. Thus the application preferred ability of the monolayers for

nonlinear beam shaping is accessible.
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Unfortunately, due to the ultrathin thickness of the material, the conversion efficiencies

of the patterned two-dimensional materials are relatively low and thus not feasible for

applications. To enhance the second-harmonic generation, a hybrid system of a multi-

resonant silicon linear metasurface coupled to a molybdenum disulfide monolayer is inves-

tigated using high-quality collective resonances. By measuring and simulating the linear

and second-order nonlinear properties, enhanced second-harmonic generation is observed

and guidelines on how the resonances should be designed to achieve this result are devel-

oped. Following these, it is not only important to have an overlap of the resonant local

fundamental field with the nonlinear two-dimensional material, but also to locate this

field in the areas where the two-dimensional material is suspended in air.

The here found results help by the development of compact or large-area nonlinear

functionalized surfaces for second-order frequency generation, but the results can also

be applied for higher-order nonlinear processes. However, the understanding of second-

harmonic generation in such systems is opening a path to the likewise second-order nonlin-

ear process of spontaneous parametric down-conversion which enables entangled-photon

pair emission for quantum optical applications.
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Zusammenfassung

Kompakte optische und photonische Baugruppen und Geräte sind aus Anwendungen auf-

grund ihrer Vielseitigkeit in der Nutzung von Licht nicht mehr wegzudenken. Insbesondere

nanostrukturierte Oberflächen, auch Metasurface genannt, welche die Eigenschaften des

Lichts auf sehr kleinem Raum enorm verändern, wurden für diesen Zweck über die letz-

ten Jahrzehnte untersucht. Allerdings gehören die nichtlinearen Eigenschaften solcher

Systeme noch größtenteils zur Grundlagenforschung.

In dieser Arbeit werden verschiedene Ansätze und Materialien verwendet, um nano-

strukturierte Oberflächen mit Nichtlinearitäten zweiter Ordnung zu entwickeln, welche

starke Frequenzverdopplung unter kontrollierter Abstrahlung vorweisen können.

Zu Beginn wird eine Galliumarsenid-Metasurface untersucht, dessen intrinsische Nicht-

linearität zweiter Ordnung genutzt wird, um Licht der zweiten Harmonischen so zu erzeu-

gen, dass es sich aus der Metasurface-Ebene heraus ausbreitet. Mie-artige Resonanzen

unterstützende periodisch angeordnete Zylinder führen zur Beugung der erzeugten zweiten

Harmonischen, welche dann in die erste Beugungsordnung koppeln, da die Abstrahlung

senkrecht zur Metasurface-Ebene für die vorliegende Krystallorietierung aufgrund des

nichtlinearen Suszeptibilitätstensors zweiter Ordnung verboten ist. Nichtsdestotrotz wird

für eine durch die Symmetrie eigentlich verbotene Resonanz die Erzeugung der zweiten

Harmonischen in der nullten Beugungsordnung beobachtet. Der Effekt kann allerdings

nicht durch die vorhanden Daten vollständig erklärt werden.

Für Anwendungen wäre eine Abstrahlung der zweiten Harmonischen senkrecht zur

Oberfläche bevorzugt. Deshalb werden fortführend die kürzlich entdeckten Molybdändisul-

fid-Monolagen untersucht. Diese sind ultradünn und werden entsprechend auch als zwei-

dimensionales Material bezeichnet. Ihre intrinsische nichtlineare Suszeptibilität zweiter

Ordnung bietet die Möglichkeit die zweite Harmonische senkrecht zur Oberfläche bei

senkrechter Eingangsstrahlung zu emittieren.

In dieser Arbeit werden zum ersten Mal (gleichzeitig mit? ) solche Molybdändisulfid-

Monolagen durch hochaufgelöstes fokussiertes Ionenstrahlfräsen zu eindimensionalen Git-

tern strukturiert um die Beugung der zweiten Harmonischen zu beobachten. Die Messung

bestätigt das durch die Theorie erwartete Abstrahlen in die nullte und erste Beugungsord-

nung. Eine deutlich kompliziertere Struktur jedoch, welche das Gitter durch eine topo-
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logische Singularität verzerrt, erzeugt Vortex-Strahlenbündel der erzeugten zweiten Har-

monischen in der ersten Beugungsordnung, was erfolgreich verwirklicht und beobachtet

wird. Das für Anwendungen erwünschte Modellieren von nichtlinearen Strahlenbündeln

ist entsprechend mit den Monolagen möglich.

Leider sind die Konversionseffizienzen der strukturierten zweidimensionalen Materialien

durch die sehr geringe Dicke des Materials sehr klein, was für Anwendungen nicht prakti-

kabel ist. Um die Frequenzverdopplung zu verstärken, wird ein Hybridsystem untersucht,

welches aus einer vielfach resonanten linearen Silizium-Metasurface mit hoch qualita-

tiven Kollektivresonanzen gekoppelt mit einer Molybdändisulfid-Monolage besteht. Beim

Messen und Simulieren der linearen und nichtlinearen Eigenschaften zweiter Ordnung

wird eine Verstärkung der Frequenzverdopplung beobachtet und Richtlinien entwickelt,

wie Resonanzen für solch eine Verstärkung gestaltet werden sollten. Diesen folgend, ist es

nicht nur wichtig, dass das resonant verstärkte lokale Feld mit dem nichtlinearen Material

überlappt, sondern am besten an Stellen, wo die Monolage in der Luft hängt.

Die hier gefundenen Ergebnisse helfen bei der Entwicklung von kompakten, aber auch

großflächigen nichtlinearen funktionalisierten Oberflächen zur Frequenzerzeugung zweiter

Ordnung. Die Ergebnisse können aber auch auf nichtlineare Prozesse höherer Ordnung

angewendet werden. Darüber hinaus öffnet das Verständnis über die Frequenzverdopplung

in solchen Systemen Wege für den ebenso der zweiten Ordnung zugeordneten nichtlinearen

Prozess der parametrischen Fluoreszenz, welcher die Emission verschränkter Photonen-

paare für quantum-optische Anwendungen ermöglicht.
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A. Appendix
Derivation of 𝜒̂(2) of MoS2 monolayer
The crystal structure of the two-dimensional MoS2 monolayer belongs to the point group

𝐷3ℎ. Considering the material in the 𝑥, 𝑦-plane, it has a hexagonal lattice in this plane

with two different atoms. The rotational symmetry is thus given by an angle of 120∘. To

the mirror symmetry with respect to the 𝑥, 𝑦-plane it has an additional mirror symmetry

with respect to the 𝑥, 𝑧-plane, if the 𝑥-axis is in the armchair direction of the hexagonal

lattice.

All three symmetries can be expressed by the following linear transformation matrices:

̂𝑇 rot =
⎛⎜⎜⎜⎜⎜
⎝

cos(120∘) − sin(120∘) 0
sin(120∘) cos(120∘) 0

0 0 1

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

−1/2 −1/2
√

3 0
1/2

√
3 −1/2 0

0 0 1

⎞⎟⎟⎟⎟⎟
⎠

, rotation by 120∘

(A.1)

̂𝑇 mirXZ =
⎛⎜⎜⎜⎜⎜
⎝

1 0 0
0 −1 0
0 0 1

⎞⎟⎟⎟⎟⎟
⎠

, ̂𝑇 mirXY =
⎛⎜⎜⎜⎜⎜
⎝

1 0 0
0 1 0
0 0 −1

⎞⎟⎟⎟⎟⎟
⎠

, reflection by 𝑥, 𝑧- or 𝑥, 𝑦-plane.

(A.2)

Following the transformation of a three dimensional tensor, we obtain for the mirror
symmetry with respect to the 𝑥, 𝑧-plane:

𝜒(2)′

𝑟𝑠𝑡 = ∑
𝑗𝑘𝑙

𝑇 mirXZ
𝑟𝑗 𝑇 mirXZ

𝑠𝑘 𝑇 mirXZ
𝑡𝑙 𝜒(2)

𝑗𝑘𝑙 . (A.3)

Since all components of ̂𝑇 mirXZ vanish except for the diagonal ones, the equation results

in 𝜒(2)′

𝑟𝑠𝑡 = ±𝜒(2)
𝑟𝑠𝑡 with a −-sign when one or three times a 𝑦 appears in the indices 𝑟, 𝑠,

and 𝑡, otherwise there is a +-sign. Since a symmetry is discussed, 𝜒̂(2)′ ahs to be equal

to 𝜒̂(2). Accordingly, all components with one or three times 𝑦 in the indices vanish.

Similarly, the mirror symmetry with respect to the 𝑥, 𝑦-plane can be handled, only with

the result, that components with one or three times 𝑧 in the indices vanish.

Only the components 𝜒(2)
𝑥𝑥𝑥, 𝜒(2)

𝑥𝑦𝑦, 𝜒(2)
𝑦𝑥𝑦, 𝜒(2)

𝑦𝑦𝑥, 𝜒(2)
𝑥𝑧𝑧, 𝜒(2)

𝑧𝑥𝑧 and 𝜒(2)
𝑧𝑧𝑥 are left. The rotation

of the ̂𝜒(2)-tensor by 120∘ is described by the following equation:

𝜒(2)′

𝑟𝑠𝑡 = ∑
𝑗𝑘𝑙

𝑇 rot
𝑟𝑗 𝑇 rot

𝑠𝑘 𝑇 rot
𝑡𝑙 𝜒(2)

𝑗𝑘𝑙 . (A.4)

Since the tensor ̂𝑇 rot has some more components aside the diagonal, the sum gets a bit

more complicated. First, the component 𝜒(2)
𝑥𝑧𝑧 is considered.
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𝜒(2)′
𝑥𝑧𝑧 = −1

2𝜒(2)
𝑥𝑧𝑧 − 1

2
√

3𝜒(2)
𝑦𝑧𝑧 + 𝜒(2)

𝑧𝑧𝑧 . (A.5)

Since the components 𝜒(2)
𝑦𝑧𝑧 and 𝜒(2)

𝑧𝑧𝑧 have been already shown to vanish due to the other

symmetries, 𝜒(2)′
𝑥𝑧𝑧 = −1

2𝜒(2)
𝑥𝑧𝑧 which means 𝜒(2)

𝑥𝑧𝑧 = −1
2𝜒(2)

𝑥𝑧𝑧. Accordingly, the component

𝜒(2)
𝑥𝑧𝑧 and in the same way 𝜒(2)

𝑧𝑥𝑧 and 𝜒(2)
𝑧𝑧𝑥 vanish.

For the last four components, Eq. A.4 provides a system of coupled linear equations:

𝜒(2)
𝑥𝑥𝑥 = −1

8𝜒(2)
𝑥𝑥𝑥 − 3

8(𝜒(2)
𝑥𝑦𝑦 + 𝜒(2)

𝑦𝑥𝑦 + 𝜒(2)
𝑦𝑦𝑥) . (A.6)

𝜒(2)
𝑥𝑦𝑦 = −1

8𝜒(2)
𝑥𝑦𝑦 + 3

8(−𝜒(2)
𝑥𝑥𝑥 + 𝜒(2)

𝑦𝑥𝑦 + 𝜒(2)
𝑦𝑦𝑥) . (A.7)

𝜒(2)
𝑦𝑥𝑦 = −1

8𝜒(2)
𝑦𝑥𝑦 + 3

8(−𝜒(2)
𝑥𝑥𝑥 + 𝜒(2)

𝑥𝑦𝑦 + 𝜒(2)
𝑦𝑦𝑥) . (A.8)

𝜒(2)
𝑦𝑦𝑥 = −1

8𝜒(2)
𝑦𝑦𝑥 + 3

8(−𝜒(2)
𝑥𝑥𝑥 + 𝜒(2)

𝑥𝑦𝑦 + 𝜒(2)
𝑦𝑥𝑦) . (A.9)

Here, the equality of 𝜒̂(2)′ and 𝜒̂(2) due to the symmetry is already included. The solution

of the system results in 𝜒(2)
𝑥𝑥𝑥 − 𝜒(2)

𝑥𝑦𝑦 = −𝜒(2)
𝑦𝑥𝑦 = −𝜒(2)

𝑦𝑦𝑥.

Derivation of the fundamental-harmonic polarization

dependence of the overall second-harmonic intensity
The overall SH intensity 𝐼SH = |𝐸SH

𝑥 |2 + |𝐸SH
𝑦 |2 is not dependent on the FH polarization

or crystal orientation rotation. For the derivation, the nonlinear polarization from Eq. 3.4

is used with the rotated crystal by angle 𝜃 and the rotating FH polarization modeled as

𝐸𝑥 = 𝐸0 cos(𝜙) and 𝐸𝑦 = 𝐸0 sin(𝜙) :

𝐼SH = |𝐸SH
𝑥 |2 + |𝐸𝑆𝐻

𝑦 |2 ∼ |𝑃 (2)
𝑥 |2 + |𝑃 (2)

𝑦 |2

∼ |𝜒(2)
0 [cos(3𝜃) (𝐸2

𝑥 − 𝐸2
𝑦) + 2 sin(3𝜃)𝐸𝑥𝐸𝑦] |2

+ |𝜒(2)
0 [sin(3𝜃) (𝐸2

𝑥 − 𝐸2
𝑦) − 2 cos(3𝜃)𝐸𝑥𝐸𝑦] |2

∼ [cos(3𝜃) (cos2(𝜙) − sin2(𝜙)) + 2 sin(3𝜃) cos(𝜙) sin(𝜙)]2

+ [sin(3𝜃) (cos2(𝜙) − sin2(𝜙)) − 2 cos(3𝜃) cos(𝜙) sin(𝜙)]2

∼ [cos(3𝜃)𝑐𝑜𝑠(2𝜙) + 𝑠𝑖𝑛(3𝜃) sin(2𝜙)]2 + [sin(3𝜃) cos(2𝜙) − cos(3𝜃) sin(2𝜙)]2

∼ cos2(3𝜃)𝑐𝑜𝑠2(2𝜙) + 𝑠𝑖𝑛2(3𝜃) sin2(2𝜙) + 2 cos(3𝜃) sin(3𝜃) cos(2𝜙) sin(2𝜙)

+ sin2(3𝜃) cos2(2𝜙) + cos2(3𝜃) sin2(2𝜙) − 2 sin(3𝜃) cos(3𝜃) cos(2𝜙) sin(2𝜙)

∼ cos2(3𝜃) (cos2(2𝜙) + sin2(2𝜙)) + sin2(3𝜃) (cos2(2𝜙) + sin2(2𝜙))

∼ cos2(3𝜃) + sin2(3𝜃)

∼ 1 .

(A.10)
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Analytical proof of the retardation compensation

For this theoretical proof, Jones formalism is used with 𝐸0𝑥 and 𝐸0𝑦 as the incident

electric fields in 𝑥- and 𝑦-polarization, and 𝑧 being the propagation direction. Then any

propagation through any medium/geometry can be described via an ABCD-matrix as

follows:
⎛⎜
⎝

𝐸𝑥

𝐸𝑦

⎞⎟
⎠

= ⎛⎜
⎝

𝐴 𝐵
𝐶 𝐷

⎞⎟
⎠

⎛⎜
⎝

𝐸0𝑥

𝐸0𝑦

⎞⎟
⎠

. (A.11)

The arbitrary phase retarder in this formalism has the following appearance:

⎛⎜
⎝

𝑒𝑖𝜂/2 cos2(𝛼) + 𝑒−𝑖𝜂/2 sin2(𝛼) (𝑒𝑖𝜂/2 − 𝑒−𝑖𝜂/2)𝑒−𝑖𝜙𝑐𝑜𝑠(𝛼) sin(𝛼)
(𝑒𝑖𝜂/2 − 𝑒−𝑖𝜂/2)𝑒𝑖𝜙𝑐𝑜𝑠(𝛼) sin(𝛼) 𝑒𝑖𝜂/2 sin2(𝛼) + 𝑒−𝑖𝜂/2 cos2(𝛼)

⎞⎟
⎠

, (A.12)

where 𝜂 is the retardance, 𝛼 is the angle to the fast axis from the 𝑥-axis, and 𝜙 is the

circularity. 𝜙 = 0 for linear retarders, 𝜙 = ±𝜋/2 for circular retarders. All other values

between ±𝜋/2 are associated with elliptical retarders.

Considering a system of two arbitrary but equal retarders with different angles of 𝛼 and

𝛼′ corresponding to the angle between the fast axis and the 𝑥-axis, two similar matrices

are obtained, which here are called 𝑀 = ( 𝐴 𝐵
𝐶 𝐷 ) and 𝑀 ′ = ( 𝐴′ 𝐵′

𝐶′ 𝐷′ ).

The coupled system of both results in the final matrix 𝑀final = ( 𝑎 𝑏
𝑐 𝑑 ) = ( 𝐴𝐴′+𝐵𝐶′ 𝐴𝐵′+𝐵𝐷′

𝐶𝐴′+𝐷𝐶′ 𝐶𝐵′+𝐷𝐷′ ),

where
𝑎 = 𝑒𝑖𝜂 cos2(𝛼) cos2(𝛼′) + 𝑒−𝑖𝜂 sin2(𝛼) sin2(𝛼′) + cos2(𝛼) sin2(𝛼′)

+ sin2(𝛼) cos2(𝛼′) + (𝑒𝑖𝜂/2 − 𝑒−𝑖𝜂/2)2 cos(𝛼) sin(𝛼) cos(𝛼′) sin(𝛼′)

𝑏 = (𝑒𝑖𝜂/2 − 𝑒−𝑖𝜂/2)𝑒−𝑖𝜙 (cos(𝛼′) sin(𝛼′)(𝑒𝑖𝜂/2 cos2(𝛼)+

+𝑒−𝑖𝜂/2 sin2(𝛼)) + cos(𝛼) sin(𝛼)(𝑒𝑖𝜂/2 sin2(𝛼′) + 𝑒−𝑖𝜂/2 cos2(𝛼′)))

𝑐 = (𝑒𝑖𝜂/2 − 𝑒−𝑖𝜂/2)𝑒𝑖𝜙 (cos(𝛼) sin(𝛼)(𝑒𝑖𝜂/2 cos2(𝛼′)+

+𝑒−𝑖𝜂/2 sin2(𝛼′)) + cos(𝛼′) sin(𝛼′)(𝑒𝑖𝜂/2 sin2(𝛼) + 𝑒−𝑖𝜂/2 cos2(𝛼)))

𝑑 = 𝑒𝑖𝜂 sin2(𝛼) sin2(𝛼′) + 𝑒−𝑖𝜂 cos2(𝛼) cos2(𝛼′) + sin2(𝛼) cos2(𝛼′)

+ cos2(𝛼) sin2(𝛼′) + (𝑒𝑖𝜂/2 − 𝑒−𝑖𝜂/2)2 cos(𝛼) sin(𝛼) cos(𝛼′) sin(𝛼′) .

(A.13)

To realize compensation, the matrix 𝑀final has to be a unity matrix of shape ( 1 0
0 1 ).

Accordingly, the solution for 𝛼′ depending on 𝛼 has to fulfill 𝑎 = 1, 𝑏 = 0, 𝑐 = 0 and

𝑑 = 0.

The easier path is realizing 𝑏 and 𝑐 to vanish. Since 𝜂 is arbitrary, the terms with 𝑒𝑖𝜂/2

and 𝑒−𝑖𝜂/2 are independent to each other and cannot generally cancel out the other one.

Therefore, each 𝑒±𝑖𝜂/2-term has to vanish on its own.
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It follows:
0 = (cos2(𝛼) cos(𝛼′) sin(𝛼′) + cos(𝛼) sin(𝛼) sin2(𝛼′))

0 = (sin2(𝛼) cos(𝛼′) sin(𝛼′) + cos(𝛼) sin(𝛼) cos2(𝛼′))

0 = (cos2(𝛼′) cos(𝛼) sin(𝛼) + cos(𝛼′) sin(𝛼′) sin2(𝛼))

0 = (sin2(𝛼′) cos(𝛼) sin(𝛼) + cos(𝛼′) sin(𝛼′) cos2(𝛼))

(A.14)

The last two equations of the set are the same as the two above and just written for

completeness. Since these equations have to hold for any 𝛼, the solution can only be

made by choosing 𝛼′ such that 𝛼′ = 𝛼 ± 90∘:

0 = (cos2(𝛼) cos(𝛼′) sin(𝛼′) + cos(𝛼) sin(𝛼) sin2(𝛼′))

⇔ 0 = (𝑒𝑖𝛼 + 𝑒−𝑖𝛼)2(𝑒𝑖𝛼′ + 𝑒−𝑖𝛼′)(𝑒𝑖𝛼′ − 𝑒−𝑖𝛼′) − (𝑒𝑖𝛼 + 𝑒−𝑖𝛼)(𝑒𝑖𝛼 − 𝑒−𝑖𝛼)(𝑒𝑖𝛼 − 𝑒−𝑖𝛼)2

⇔ 0 = −𝑒𝑖(2𝛼−2𝛼′) + 𝑒−𝑖(2𝛼−2𝛼′) + 𝑒𝑖2𝛼′ − 𝑒−𝑖2𝛼′ + 𝑒𝑖2𝛼 − 𝑒−𝑖2𝛼

⇔ 0 = sin(2(𝛼 − 𝛼′)) + sin(2𝛼′) + sin(2𝛼)

⇔ 0 = sin(𝛼′ − 𝛼) cos(𝛼′ − 𝛼) + sin(𝛼′ + 𝛼) cos(𝛼′ − 𝛼)

⇔ 0 = cos(𝛼′ − 𝛼) or 0 = sin(𝛼′ − 𝛼) + sin(𝛼′ + 𝛼)

⇔ 𝛼′ − 𝛼 = ±90∘ or ( 𝛼′ = 0∘ and 𝛼 = ±90∘ ) .
(A.15)

With the solution 𝛼′ = 𝛼±90∘, it follows sin(𝛼′) = sin(𝛼±90∘) = ± cos(𝛼) and cos(𝛼′) =
cos(𝛼 ± 90∘) = ∓ sin(𝛼), which results in cos2(𝛼′) = sin2(𝛼), sin2(𝛼′) = cos2(𝛼) and

sin(𝛼′) cos(𝛼′) = − sin(𝛼) cos(𝛼).
We can conclude: 𝐴 = 𝐷′, 𝐷 = 𝐴′, 𝐵 − 𝐵′, 𝐶 = −𝐶′, followed by 𝑎 = 𝐴𝐷 − 𝐵𝐶 = 𝑑.

So, the final matrix is 𝑀final = 𝑎 ⋅ ( 1 0
0 1 ), where 𝑎 follows as:

𝑎 = 𝑒𝑖𝜂 cos2(𝛼) cos2(𝛼′) + 𝑒−𝑖𝜂 sin2(𝛼) sin2(𝛼′) + cos2(𝛼) sin2(𝛼′)

+ sin2(𝛼) cos2(𝛼′) + (𝑒𝑖𝜂/2 − 𝑒−𝑖𝜂/2)2 cos(𝛼) sin(𝛼) cos(𝛼′) sin(𝛼′)

= 𝑒𝑖𝜂 cos2(𝛼) sin2(𝛼) + 𝑒−𝑖𝜂 sin2(𝛼) cos2(𝛼) + cos2(𝛼) cos2(𝛼)

+ sin2(𝛼) sin2(𝛼) − (𝑒𝑖𝜂/2 − 𝑒−𝑖𝜂/2)2 cos(𝛼) sin(𝛼) cos(𝛼) sin(𝛼)

= (𝑒𝑖𝜂 + 𝑒−𝑖𝜂) sin2(𝛼) cos2(𝛼) + cos4(𝛼) + sin4(𝛼) − (𝑒𝑖𝜂/2 − 𝑒−𝑖𝜂/2)2 cos2(𝛼) sin2(𝛼)

= (𝑒𝑖𝜂 + 𝑒−𝑖𝜂 − (𝑒𝑖𝜂/2 − 𝑒−𝑖𝜂/2)2) sin2(𝛼) cos2(𝛼) + cos4(𝛼) + sin4(𝛼)

= (𝑒𝑖𝜂 + 𝑒−𝑖𝜂 − (𝑒𝑖𝜂 + 𝑒−𝑖𝜂 − 2)) sin2(𝛼) cos2(𝛼) + cos4(𝛼) + sin4(𝛼)

= 2 sin2(𝛼) cos2(𝛼) + cos4(𝛼) + sin4(𝛼)

= (sin2(𝛼) + cos2(𝛼))2 = 1 .
(A.16)
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Analytical error calculation introduced by beam splitter in

the retardation compensation
The solution for the retardation compensation considers the transmission through the

beam splitter, which the SH light has to transmit in the setup arrangement, as perfect.

Unfortunately, even non-polarizing beam splitters have slightly different transmission co-

efficients for the two orthogonal linear polarization states TE and TM. In the following

derivation, the transmission of the beam splitter in 𝑥 is considered to be 1 and in 𝑦 1-𝜖.
Considering a system of two arbitrary but equal retarders with different angles of 𝛼 and

𝛼′ corresponding to the angle between the fast axis and the 𝑥-axis as in subsection 4.2.1,

two similar matrices are obtained, which are called 𝑀 = ( 𝐴 𝐵
𝐶 𝐷 ) and 𝑀 ′ = ( 𝐴′ 𝐵′

𝐶′ 𝐷′ ). Ad-

ditionally, the BS has to be included with its matrix 𝑀BS = ( 1 0
0 1−𝜖 ).

The coupled system of retarder 1, then beam splitter and retarder 2 results in the final

matrix 𝑀final = ( 𝑎 𝑏
𝑐 𝑑 ) = ( 𝐴𝐴′+(1−𝜖)𝐵𝐶′ 𝐴𝐵′+(1−𝜖)𝐵𝐷′

𝐶𝐴′+(1−𝜖)𝐷𝐶′ 𝐶𝐵′+(1−𝜖)𝐷𝐷′ ), where

𝑎 = 𝑒𝑖𝜂 cos2(𝛼) cos2(𝛼′) + 𝑒−𝑖𝜂 sin2(𝛼) sin2(𝛼′) + cos2(𝛼) sin2(𝛼′) + sin2(𝛼) cos2(𝛼′)

+ (1 − 𝜖) (𝑒𝑖𝜂/2 − 𝑒−𝑖𝜂/2)2 cos(𝛼) sin(𝛼) cos(𝛼′) sin(𝛼′)

𝑏 = (𝑒𝑖𝜂/2 − 𝑒−𝑖𝜂/2)𝑒−𝑖𝜙 (cos(𝛼′) sin(𝛼′)(𝑒𝑖𝜂/2 cos2(𝛼) + 𝑒−𝑖𝜂/2 sin2(𝛼))

+ cos(𝛼) sin(𝛼) (1 − 𝜖) (𝑒𝑖𝜂/2 sin2(𝛼′) + 𝑒−𝑖𝜂/2 cos2(𝛼′)))

𝑐 = (𝑒𝑖𝜂/2 − 𝑒−𝑖𝜂/2)𝑒𝑖𝜙 (cos(𝛼) sin(𝛼)(𝑒𝑖𝜂/2 cos2(𝛼′) + 𝑒−𝑖𝜂/2 sin2(𝛼′))

+ cos(𝛼′) sin(𝛼′) (1 − 𝜖) (𝑒𝑖𝜂/2 sin2(𝛼) + 𝑒−𝑖𝜂/2 cos2(𝛼)))

𝑑 = (1 − 𝜖) (sin2(𝛼)(𝑒𝑖𝜂 sin2(𝛼′) + cos2(𝛼′)) + cos2(𝛼)(𝑒−𝑖𝜂 cos2(𝛼′) + sin2(𝛼′)))

+ (𝑒𝑖𝜂/2 − 𝑒−𝑖𝜂/2)2 cos(𝛼) sin(𝛼) cos(𝛼′) sin(𝛼′) .
(A.17)

With the solution from subsection 4.2.1 𝛼′ = 𝛼 ± 90∘, the transmission values 𝑎 and 𝑑
result in

𝑎 = 1 + 𝜖 (𝑒𝑖𝜂/2 − 𝑒−𝑖𝜂/2)2 cos2(𝛼) sin2(𝛼)

= 1 − 𝜖 4 sin2(𝜂/2) sin2(𝛼) cos2(𝛼) = 1 − 𝜖 sin2(𝜂/2) sin2(2𝛼)

𝑑 = 1 − 𝜖 ([𝑒𝑖𝜂 + 𝑒−𝑖𝜂] sin2 𝛼 cos2(𝛼) + sin4(𝛼) + cos4(𝛼))

= 1 − 𝜖 (2 cos(𝜂) sin2 𝛼 cos2(𝛼) + sin4(𝛼) + cos4(𝛼))

= 1 − 𝜖 (2(1 − 2 sin2(𝜂/2)) sin2 𝛼 cos2(𝛼) + sin4(𝛼) + cos4(𝛼))

= 1 − 𝜖 (1 − 4 sin2(𝜂/2)𝑠𝑖𝑛2(𝛼) cos2(𝛼))

= 1 − 𝜖 (1 − sin2(𝜂/2) sin2(2𝛼)) .

(A.18)
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These results show that the original transmission of the beam splitter of 1 and 1-𝜖 is

slightly changed depending on the retardance 𝜂 and the angle 𝛼, but just by maximally

the value of 𝜖.
The additional terms for the off-diagonal elements 𝑏 and 𝑐 are non-vanishing:

𝑏 = −𝜖 (𝑒𝑖𝜂/2 − 𝑒−𝑖𝜂/2) cos(𝛼) sin(𝛼)(𝑒𝑖𝜂/2 sin2(𝛼′) + 𝑒−𝑖𝜂/2 cos2(𝛼′))

= −𝜖 ([𝑒𝑖𝜂 − 1] cos3(𝛼) sin(𝛼) + [1 − 𝑒−𝑖𝜂] sin3(𝛼) cos(𝛼)) and

𝑐 = −𝜖 (𝑒𝑖𝜂/2 − 𝑒−𝑖𝜂/2) cos(𝛼′) sin(𝛼′)(𝑒𝑖𝜂/2 sin2(𝛼) + 𝑒−𝑖𝜂/2 cos2(𝛼))

= −𝜖 ([𝑒𝑖𝜂 − 1] sin3(𝛼) cos(𝛼) + [1 − 𝑒−𝑖𝜂] cos3(𝛼) sin(𝛼)) .

(A.19)

Both values 𝑏 and 𝑐 are complex and have an absolute value in the order of 𝜖.
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B. List of abbreviations
2D two-dimensional Nd:YAG neodymium-doped yttrium

AFM atomic force microscope aluminum garnet

AlGaAs aluminum gallium arsenide PDMS polydimethylsiloxane

AlGaO aluminum gallium oxide PL photoluminescence

BFP back-focal plane PMMA poly(methyl methacrylate)

BS beam splitter Q-factor quality factor

CCD charge coupled device QGM quasi-guided mode

CVD chemical vapor deposition S2 sulfur

CW continuous wave SEM scanning electron

DFG difference frequency microscope

generation SFG sum frequency generation

ED electric dipole SH second harmonic

EMCCD electron-multiplying charge SHG second-harmonic generation

coupled device Si silicon

FH fundamental harmonic SLR surface lattice resonance

FEM finite element method SM symmetry forbidden

FIB focused ion beam SPDC spontaneous parametric

FWHM full width at half maximum down-conversion

Ga gallium TE transverse electric

GaAs gallium arsenide THG third-harmonic generation

HWP half-wave plate TM transverse magnetic

ICP inductively coupled plasma TMD transition metal

KOH potassium hydroxide dichalcogenide

LiNbO3 lithium niobate WS2 tungsten disulfide

MD magnetic dipole WSe2 tungsten diselenide

MoO3 molybdenum trioxide

MoS2 molybdenum disulfide

MoSe2 molybdenum diselenide

NA numerical aperture
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