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Abstract: Ex post landslide mapping for emergency response and ex ante landslide susceptibility
modelling for hazard mitigation are two important application scenarios that require the development
of accurate, yet cost-effective spatial landslide models. However, the manual labelling of instances
for training machine learning models is time-consuming given the data requirements of flexible
data-driven algorithms and the small percentage of area covered by landslides. Active learning
aims to reduce labelling costs by selecting more informative instances. In this study, two common
active-learning strategies, uncertainty sampling and query by committee, are combined with the
support vector machine (SVM), a state-of-the-art machine-learning technique, in a landslide mapping
case study in order to assess their possible benefits compared to simple random sampling of training
locations. By selecting more “informative” instances, the SVMs with active learning based on
uncertainty sampling outperformed both random sampling and query-by-committee strategies when
considering mean AUROC (area under the receiver operating characteristic curve) as performance
measure. Uncertainty sampling also produced more stable performances with a smaller AUROC
standard deviation across repetitions. In conclusion, under limited data conditions, uncertainty
sampling reduces the amount of expert time needed by selecting more informative instances for
SVM training. We therefore recommend incorporating active learning with uncertainty sampling
into interactive landslide modelling workflows, especially in emergency response settings, but also
in landslide susceptibility modelling.

Keywords: active learning; landslide modelling; support vector machine; machine learning

1. Introduction

Despite significant progress in landslide hazard assessment and mitigation, these
hazards still present a major challenge for policymakers to reduce monetary losses and
casualties. The occurrence probability of landslides, which broadly include a large variety of
downslope movement processes on hillslopes under the effects of gravity [1], varies greatly
in space and time as a result of complex patterns of predisposing factors and temporal
variation in triggering factors. Considering the ongoing global trends of urbanization,
deforestation, and climate change, landslide science faces the growing challenge of having
to update landslide hazard assessments and provide rapid post-disaster information in the
event of regional triggering events such as rainstorms and earthquakes [2–4]. For example,
an earthquake in Tomakomai, Japan triggered about 10,000 landslides causing 36 deaths [3],
and in 2018, landslides triggered by seasonal heavy precipitation caused approximately
105 deaths and USD 212 million in losses in China [5]. In Italy, as in many other regions
worldwide, landslides are mostly triggered by intense or prolonged rainfall [6]. These
hazards often cause long-term economic loss, population displacement, and negative
effects on the natural environment.

Landslide mapping refers to the manual or automated detection and delineation of
actual landslides that are appreciable in remote-sensing imagery or based on their to-
pographic footprint [7–9]. Additionally, the growing availability of light detection and
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ranging (LiDAR) derived high-resolution digital terrain models (HRDTM) allows us to
detect landslides where passive optical sensors are limited (e.g., within the forest) [10,11].
This classification task is related to landslide susceptibility mapping, which focuses on
estimating the probability of future landslide occurrences based on predisposing factors:
usually topographic, geological, and land use/land cover conditions. Evidently, factors
that control susceptibility can also provide valuable information for landslide mapping [12],
which also requires post-event remote-sensing data (e.g., optical or LiDAR). Conversely,
landslide inventories created by means of landslide mapping are a necessary input for
landslide susceptibility mapping using supervised classification models. Together, land-
slide mapping and susceptibility modelling play a critical role in providing information
that is necessary for decision making in emergency situations and for reducing risk in the
development of spatial planning strategies.

Machine-learning techniques are increasingly being adopted in landslide modelling,
as they have the potential to better adapt to complex nonlinear Earth surface processes
and their interactions with land use than parametric statistical techniques such as logistic
regression. Examples for black-box machine-learning models include the SVM, artificial
neural networks, and random forests, whereas the generalized additive model (GAM) as
an intermediate-complexity model is popular due to its nonlinear but more interpretable
structure [13–16]. However, these data-driven supervised learning algorithms need a large
number (e.g., thousands) of observations of landslide presence/absence, which are usually
derived from manually digitized landslide inventories. Creating landslide inventories
and more generally the manual labelling or annotation of these instances is a very time-
consuming task, which increases the cost of landslide modelling studies and leads to delays
in post-disaster situation awareness.

Active learning (AL) is a framework that promises to reduce this burden by selecting
“informative” instances for the user to label [17,18]. In each of these queries to the user,
an additional small batch of unlabelled instances (e.g., grid cells) is selected based on an
informativeness measure and then presented to an “oracle” (i.e., a human annotator) for
labelling. Active learning aims to achieve better accuracies using as few labelled instances
as possible, thereby minimizing the cost of obtaining labelled data. Active learning has
increasingly been adopted in remote-sensing classification [19–21] but has rarely been
adopted in the context of landslide mapping [22].

The SVM has become increasingly popular in the context of landslide modelling
along with other nonlinear techniques such as the generalized additive model [15,23,24].
Compared to the less flexible GAM, the SVM is capable of modelling nonlinear interactions
among predictors while avoiding overfitting through regularization. Therefore, active
learning based on the SVM for predicting landslides was adopted in this paper.

Hence, the main objective of this study is to assess the potential of different active-
learning strategies for landslide mapping based on limited amounts of labelled data. We
consider two popular active-learning query strategies in combination with the SVM in a
case study from the Andes of southern Ecuador [25].

2. Materials and Methods

In this study, we use active-learning strategies [26] to sample “interesting” (i.e., infor-
mative) locations for training SVM models for landslide detection, and we compare this
approach to a simple random sampling strategy (Figure 1). In active learning, a small train-
ing data set is initially retrieved to obtain a preliminary SVM fit. This model’s classifications
then allow us to identify relevant additional instances that have the greatest potential to
improve the model fit. These instances are then labelled, and the SVM is retrained with the
additional training data. This step is repeated to investigate changes in model performance
with increasing instance size. Hyperparameters are tuned in each individual step, and
model performances are estimated in identical test sets to ensure comparability. Details of
this procedure are explained in the following sections, and Settles (2010) [26] provides a
detailed overview of active-learning strategies.
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Figure 1. Overview of the workflow of active learning for landslide detection based on the SVM.

2.1. Active-Learning and Traditional Learning Strategies Used

Active learning is a subfield of machine learning that is also referred to as query
learning or optimal experimental design in the statistical literature. It is a very broad field
encompassing many different approaches [26–30]. In general, the purpose of active learning
is to require as few labelled instances as possible while achieving a level of high accuracy.
After starting with a small initial training set, small batches of additional “informative”
instances are presented to an expert for labelling.

There are three different settings of active learning, namely membership query synthe-
sis, stream-based selective sampling, and pool-based sampling [26,27]. For our study area,
we have a large collection of unlabelled data. Due to uncertainty in the random generation
process of instances using membership query synthesis [31] and the high cost of labelling
selected instances one by one using stream-based selective sampling, pool-based sampling
was adopted in this study. Pool-based sampling can be further divided into two main
categories: uncertainty sampling and query by committee [19].

We denote the unlabelled data set as x and the classes of the unlabelled data set as
y. Pθ is the posterior probability as estimated by the current model θ in a given active-
learning step.

2.1.1. Uncertainty Sampling

Uncertainty sampling chooses the instances that are predicted with the lowest confi-
dence, i.e., that are associated with the greatest uncertainty in the current model [32]. It
may be the most common and simplest active-learning approach. We briefly present three
popular uncertainty-sampling strategies, but we choose only margin sampling due to the
mathematical equivalence of these approaches in two-class situations.

(1) Least Confidence

The least-confidence strategy for a sequence of models queries the instances for which
the current model has the least confidence as the predicted classes are equally likely [33].
Therefore, the most “informative” instances are selected by

ŷ = argmaxyPθ(y|x), (1)

x∗LC = argmaxx(1− Pθ(ŷ|x)), (2)

where ŷ is the most likely label, i.e., the class label with the highest posterior probability
under the current model θ. x∗LC represents the instance that the current model θ is most
likely to mislabel.

(2) Margin Sampling (MS)
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Margin sampling (MS) was proposed to additionally take advantage of information
regarding the posterior probabilities of all of the labels, not only the most likely one [34].
Here, instances with the smallest margin between the posterior of the first and the second
most likely labels are selected. Since these are more ambiguous, the model has difficulty
in differentiating between the two most likely class labels. Hence, knowing the true
label would help the classifier to discriminate them more effectively. The instances are
selected using

x∗MS= argminx(Pθ( ŷ1 |x ) − Pθ(ŷ2 |x )), (3)

where ŷ1 and ŷ2 are the first and the second most likely labels, respectively.

(3) Entropy measure

One of the more general pool-based sampling strategies is based on the entropy
measure [35]. This strategy uses entropy, which is an information-theoretic measure of
uncertainty of a random variable. It aims at using information from all of the remaining
classes to detect the most informative instances. Intuitively, the entropy measure strategy
should perform better than the least-confidence and MS strategies, especially for very large
label sets. Instances are selected using

E(y, x)= −
k

∑
i=1

Pθ(y i|x)logPθ(y i|x), (4)

x∗EP= argmaxxE(y, x), (5)

where E(y, x) is the entropy value of class y for instance x. Instances with the highest
entropy value, which imply more uncertainty in the distribution, are selected as x∗EP.

Each of these uncertainty sampling strategies have their own application scenarios.
In binary classification, however, all three are equivalent in selecting instances with the
posterior class probabilities closest to 0.5 [26]. We implemented uncertainty sampling using
the equation given for margin sampling, and we therefore refer to it as margin sampling in
the rest of the paper.

2.1.2. Query by Committee

Query by committee (QBC) is another more theoretically motivated active learn-
ing algorithm that selects informative unlabelled instances based on different models (a
committee) trained on the current labelled training set [26,36]. Based on the posterior prob-
abilities predicted by the different committee members, the unlabelled instances with the
maximum disagreement are selected. Two important measures of disagreement among the
models are the Kullback–Leibler (KL) divergence [37,38] and vote entropy [39]. Because KL
divergence applies several independent justifications and calculates the average difference
between the label distributions of any committee, it is considered the better approach to
selecting informative instances [30]. Hence, KL divergence was adopted in this study. Let
C = {θ(1), . . . , θ(C)} denotes the set of models forming the committee. Then

PC(yi |x ) =
1
|C|

C

∑
c=1

Pθ(c)(y i|x), (6)

corresponds to the committee’s average posterior probability of class label yi, and

D(Pθ(c)||PC) =∑
i

Pθ(c)(y i|x) log(Pθ(c)(yi |x )/PC(y i|x)), (7)

denotes the KL divergence, which we try to maximize on average over all committee members:

x∗KL= argmaxx
1
C

C

∑
c=1

D(Pθ(c)||PC), (8)
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This strategy focuses on the instances x∗KL with the larger average difference with
respect to the label distributions of any one committee.

Various strategies can be applied to creating a committee, such as bootstrap resampling
of the training data [40,41]. We decided to set up a committee of SVM classifiers trained
using different hyperparameter values since the behaviour of the SVM strongly varies
with its cost and bandwidth parameters, C and γ [42]. In each active-learning round, we
randomly sampled 250 pairs of hyperparameter values (log2 C between −12 and +15 and
log2 γ between −12 and +6). The best-performing 25 hyperparameter settings were then
selected to form a committee for that round.

2.1.3. Random Sampling as a Baseline

In addition to the active-learning strategies described above, simple random sampling
(RS) was used for comparison. It randomly selects instances from the unlabelled data with
equal probability and does not try to assess the utility of the data for landslide mapping.

2.2. Landslide Classification Model

In this study we used a support vector machine (SVM) model, which is a flexible
supervised machine-learning technique [43]. It has previously shown competitive perfor-
mances in landslide modelling [12,15,44,45]. This technique is particularly appealing in
active learning because its flexibility can be tuned extremely well, allowing it to transition
from a strongly penalized simple model to a more complex one as the sample size grows
larger. The SVM can be applied in both one-class and two-class cases. Yao, et.al. (2008)
compared one-class and two-class SVM on landslide analysis and concluded that two-class
SVM could have better prediction efficiency than one-class SVM [46]. Therefore, in this
study, we applied two-class SVM as the active-learning classifier.

Because the flexibility of the SVM is controlled by its hyperparameters γ (bandwidth)
and C (cost), a k-fold cross-validation was used in each active-learning iteration to optimize
them [47]. In this cross-validation, the training set is split into k equally sized partitions,
one of which is retained for testing the model, and the remaining k − 1 partitions are used
as training data. This process is repeated k times, and every partition is used once as the
validation data. Performance estimates are averaged over the k partitions to obtain a cross-
validation estimate of the performance measure. We used k = 10, which is a commonly
used setting. Given the spatial nature of our data, we used k-means clustering of the
sample coordinates to generate spatial cross-validation partitions [48]. The choice of the
SVM kernel function is less critical; therefore, the radial basis function kernel was adopted.

The area under the receiver operating characteristic (ROC) curve [49,50] (AUROC) [51]
was used as a measure of predictive performance. Its range is between 0.5 (no predictive
skill) and 1 (perfect separation).

2.3. Repetition and Performance Estimation

The workflow described above was repeated 150 times in order to eliminate the
influence of random variability on our results. In active learning as well as random
sampling, we draw an additional batch 25 points in each iteration or epoch after an initial
random sample of 210 points in the first step. This initial data contains 10 landslide points
and 200 non-landslide points, roughly representing the spatial landslide density within
the study area. With the chosen batch size, on average, one additional landslide point
will be drawn from the study area even in random sampling, given the 4% landslide
density. We performed 50 iterations in order to observe the convergence of results for
large instance sizes, although such large sample sizes (1460 labelled instances) are not of
practical relevance.

The entire study area (87,223 non-landslide and 2569 landslide gird cells) as the target
area for landslide mapping was used for analysing and comparing AUROC performances
obtained by SVMs with active- (MS, QBC) and passive-learning strategies (RS). We ex-
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tracted 55,887 non-landslide and 1663 landslide grid cells from the overall data set to serve
as a pool of candidate grid cells from which we sampled the training data set.

In order to gain insight into the importance of predictors at different active-learning
stages, we further calculated the permutation-based variable importance as a simple overall
measure of predictive importance [52]. This was applied in a spatial cross-validation
framework, i.e., by making predictions on spatially disjoint cross-validation test sets [53].
Accumulated local effects (ALE) [54] plots were further generated to visualize the shape of
the relationships between important predictor variables and SVM landslide classifications.

All statistical analyses were conducted using the open-source statistical software R
(version 3.6.3) [55] and its contributed packages “sperrorest” for spatial cross-validation [56],
“e1071” for SVM modelling [57], “ROCR” for AUROC estimation [58], and “iml” for model
interpretation [59]. The R package “RSAGA” [60] and the open-source GIS SAGA [61] were
used for geodata processing.

2.4. Study Area and Data

The study area of our case study is located in the Andes of Southern Ecuador in the
Reserva Biológica San Francisco (RBSF). The RBSF is located between the provincial capitals
of Loja and Zamora (3◦58′30′′ S, 79◦4′25′′ W) [62]. The slopes are steep (1st quartile of
slope angle: 28.8◦, median: 36.5◦) and covered with evergreen lower and upper mountain
rainforest [63]. The annual precipitation in the study area ranges from 2000 mm in the
lower parts to more than 6000 mm between 2900 and 3100 m a.s.l. with nearly daily
rainfall [64]. This area is characterized by a high frequency of landslide occurrences, which
underlines the potential utility of active-learning techniques for generating event-based
landslide inventories on demand with as little labelling as possible. In this study area,
landslides are important ecosystem disturbances that trigger local vegetation successions
and thus contribute to habitat complexity in this unique hotspot of plant biodiversity [65,66].
Landslide processes were previously studied in more detail with a focus on geomorphic
process rates and the possible effects of human land use [25,67]. In this case study, we
focus on the “natural” part of the RBSF study area of Muenchow et al. (2012). The dataset
includes 178 landslides with a mean landslide size of 793 m2. We refer the reader to
Muenchow et al. (2012) for further geomorphological detail and an analysis of landslide
susceptibility [25].

We used a high-resolution orthorectified aerial photograph of the study area as a
direct optical indicator of vegetation disturbance by landslides. The image was acquired in
2001 and has a 0.3 m × 0.3 m spatial resolution (data source: E. Jordan and L. Ungerechts,
Düsseldorf; DFG Research Unit FOR 816). Small cloudy patches and other errors were
masked out manually (Figure 2). Landslides were mapped in this imagery by J. Muenchow
(Erlangen), who analyzed the landslide distribution and characteristics in this study in
more detail as part of a regional-scale comparison [25].

Vegetation indices (VIs) play an important role in mapping landslides and other
forest disturbances [68,69]. Although the near-infrared part of the spectrum is particularly
useful for identifying photosynthetically active, healthy plants, the imagery available for
this case study is limited to the visible part of the spectrum, while having the benefit of
offering the resolution required to detect the narrow, elongated landslides of this study
area. Considering the spectral characteristics of the available orthophoto, we used the
green chromatic coordinate (GCC) vegetation index [70], which has been shown to compare
favourably to other indices in the visible part of the spectrum in distinguishing the forest
from the soil [71]. The GCC is generally effective in suppressing the effects of changes
in scene illumination [72], which is important in our mountainous study area. GCC is
defined as

GCC = G/(R + B + G), (9)

where R, G, and B represent the red, green, and blue bands of the ortho-photo. The red
(RCC) and blue (BCC) chromatic coordinates are calculated in the same way. Because RCC
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and BCC are strongly correlated (correlation coefficient: 0.95), we used GCC as a vegetation
index as well as RCC.
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A digital elevation model (DEM) of the RBSF at a 10 m × 10 m resolution produced
by E. Jordan and L. Ungerechts (Düsseldorf) was generated from stereo aerial photographs
from the year 1997. Following Muenchow et al. (2012) [25], we derived the following terrain
attributes from the DEM, as they are commonly included in landslide distribution models
as preparatory factors: local slope angle (slope), plan and profile curvature (plancurv and
profcurv), and the slope angle (cslope) and logarithm of the size of the upslope contributing
area (log.carea) [15]. These terrain attributes are intended to act as proxies for destabilizing
forces (slope, cslope), water availability (log.carea, concave curvatures), and exposure
to wind (convex curvatures) as well as general variability in the characteristics of soil
and vegetation [25]. Our expectation is that these terrain attributes will further improve
landslide classification.

Overall, our feature set consisted of five terrain attributes and the GCC and RCC as
remote-sensing variables. Predictors that presented outliers were winsorized at the 1st and
99th percentile.

3. Results
3.1. Model Performance

Overall, active learning using margin sampling outperformed query by committee
and random sampling after only four epochs, i.e., starting with a learning instance size of
310 grid cells (Figure 3). The SVM with MS increased continuously from this point, going
from 0.80 in epoch 3 with only 285 grid cells to 0.83 after epoch 8, i.e., with label information
for >410 grid cells. Mean AUROCs obtained with RS and QBC were very similar; they
both reached ~0.79 for only large sample sizes. The similar performances of QBC as an
active-learning strategy and RS for passive learning suggest that the instances labelled in
QBC-based active learning were no more informative than the ones retrieved with simple
random sampling. Nevertheless, SVM performances with QBC were less variable than
those completed with RS.
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Similarly, the random variability of AUROC performances over the 150 repetitions
revealed much less variable results for MS-based active learning than for QBC and RS,
which show similar results (Figure 4). Differences in variability between MS and QBC/RS
were at least twofold across all epochs, which indicates that informative instance data not
only improves the performance but also reduces the probability of obtaining poor results
due to random variability.
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methods in the target area.

Considering the importance of the cost and gamma hyperparameters for the flexibility
of the SVM, we examined the variability in optimal hyperparameters for different active-
learning epochs in margin sampling. As the sample size increased, the optimal cost
parameters across the repetitions were increasingly concentrated around the 20 to 25 region
and the optimal γ to around 2−5, although the optimal region extended diagonally towards
higher cost values when combined with larger γ values (Figure 5).
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3.2. Model Interpretation

A permutation-based variable importance assessment for the SVM with margin sam-
pling revealed that the most important predictors were GCC and RCC, which was followed
by a logarithm of the catchment area and catchment slope (Figure 6). Thus, predictors that
are commonly used in landslide susceptibility modelling helped to improve the perfor-
mance of models for landslide mapping consistently across all epochs. Note that there are
moderate to strong correlations between the slope variables as well as between the upslope
contributing area and the two curvature variables (Table 1).
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ALE plots for the 20th epoch of the 1st repetition display the averaged relationships
between predictors and responses (Figure 7). Broadly speaking and as expected, landslides
are primarily characterized by low vegetation vigour as represented by a low vegetation
index, and to a smaller extent, by a steep upslope area. They are also rarely found in
the valley bottoms, where the upslope contributing area is large, or directly on ridges or
hilltops, where the upslope contributing area would be small. Ridges and hilltops often
show reduced vegetation canopy due to factors other than landslides, such as windthrow,
and the inclusion of the upslope contributing area therefore reduces confounding with
these patterns, resulting in a geomorphologically more plausible classification.

Table 1. Correlations among the predictors (%).

RCC GCC Slope Plancurv Profcurv Log.carea Cslope

RCC 100 −36 −11 9 8 −16 −17
GCC −36 100 14 −18 −18 34 28
Slope −11 14 100 3 3 −3 75

plancurv 9 −18 1 100 52 −68 −17
profcurv 8 −18 3 52 100 −58 −23
log.carea −16 34 −3 −68 −58 100 22

cslope −17 28 75 −17 −23 22 100
Local slope angle (slope), plan and profile curvature (plancurv and profcurv), the slope angle (cslope) and
logarithm of the size of the upslope contributing area (log.carea), and green chromatic coordinate (GCC) and red
chromatic coordinate (RCC).
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Landslide maps predicted by SVM with margin sampling clearly depict many of the
landslide-affected areas even after only five epochs (Figure 8). There is little change in the
spatial pattern of mapped landslides after more than five epochs, which is consistent with
the relatively stable model performances and variable importance reported above. Despite
the visual similarities between epochs 5 and 10, it should be remembered that quantitative
performances in terms of the mean and standard deviation of AUROC did substantially
improve from epoch 5 to epoch 10, as hyperparameter tuning started to stabilize as well
around epoch 10.
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4. Discussion
4.1. Potential of SVM with AL

Overall, our results confirm the potential of AL for remote-sensing applications and
for landslide mapping in particular [19,22], and demonstrate the suitability of uncertainty
sampling strategies. AL retrieves the data that it believes is more likely to be misclassi-
fied [26]. For the learning process of SVM, it builds a margin to classify the instances based
its features. If a new candidate point’s distance from the margin is too small, this instance
is more likely to be misclassified by the model and labelling these instances therefore has
the greatest potential to improve model performance.

Landslide data is always imbalanced, which poses a particular challenge in classifica-
tion modelling that can be addressed using uncertainty sampling. In this study, landslides
covered only 4% of the study area, and consequently, random sampling is very poor at
collecting information on positives. In contrast, AL strategies can reduce the impact of
imbalance by retrieving more “useful” instances, including more positives (Table 2 and
Figure 9). This is especially true for MS.

Table 2. Number of landslide and non-landslide instances in the training set after 50 epochs using
different sampling strategies.

Sampling Strategy Non-Landslide Landslide

Margin sampling 1013 447
Query by committee 1280 180
Random sampling 1415 45
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4.2. Limitations of SVM with AL

A possible limitation of AL in the context of SVM classification is the interaction
between the hyperparameters and the query strategy. Specifically, since AL queries depend
on posterior probability, they are sensitive to SVM hyperparameters. If hyperparameters
cannot be reliably estimated, as is the case in the initial epochs with small sample sizes,
model performance can be highly variable and sometimes poor (Figures 3 and 4). When this
occurs, AL query strategies may be close to random sampling, or they may even oversample
irrelevant regions in the featured space [73,74]. The QBC strategy may be particularly
sensitive to this problem since SVMs with 25 different hyperparameter settings were used to
form a committee. In general, it can be difficult to strike the right balance between diversity
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and goodness-of-fit of committee members, and the use of the top hyperparameter settings
may not achieve an optimal committee. Although other strategies could be used, it was
beyond the scope of this work to experiment with these additional design options. Xu
et al. (2020) used three different pre-trained SVMs as committee members to conduct
classifications and concluded that pre-trained SVMs made QBC more robust in iterative
training [42]. Stumpf formed QBC committees using 500 fully grown trees from a random
forest (RF) and concluded they can achieve good results [22], but no comparison with other,
model-independent QBC approaches or with other query strategies was made. Considering
these limitations and the positive results achieved with uncertainty sampling strategies,
we suggest that the latter offers several advantages ranging from a simpler, model-agnostic
implementation to fewer design decisions and reduced computational cost.

5. Conclusions

In this study, active-learning strategies for training landslide detection models out-
performed models trained using randomly sampled data. The mean AUROCs of the SVM
with margin sampling as an active-learning strategy was 0.80 with only 285 instances and
0.83 with 410 instances. In contrast, SVMs with query-by-committee and random sampling
achieved AUROCs around 0.79 but only for large sample sizes. Meanwhile, the SVM with
margin sampling was more robust than the other strategies. Therefore, uncertainty sam-
pling is particularly promising as it achieved the best performance, was best able to handle
imbalanced data, and is straightforward to implement regardless of the machine-learning
model being used.

Labelling a large number of instances using human experts is a time-consuming
process that cannot be executed in sufficient detail under time constraints, e.g., in emergency
situations. Additionally, human experts cannot recognize which additional instances
would be the most “useful” for predicting the response to, or in our case for identifying,
landslides. Active-learning methods are therefore a promising strategy as part of an
interactive landslide detection workflow, especially in an emergency response setting.
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