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Abstract

Improving the signal-to-noise ratio in incoherent imaging
by Jan BECKER

Imaging plays an important role in our modern world. Applications of imaging
technologies range from inspection of industrial goods to screening of patients in
the healthcare sector or surveillance in public areas. Besides limitations in terms
of resolution and contrast, all imaging systems show degrading image quality
with increasing noise. Hence, an important aspect of any imaging application is
the achievable signal-to-noise ratio (SNR). When neglecting typical noise sources
originating from detectors or the environment, we are left with a very fundamen-
tal noise type: photon or shot noise. Which is due to the discrete nature of light
- the photon - and the fact that imaging is associated with counting those par-
ticles. Leading to a noisy measurement process which fundamentally limits the
achievable SNR. In this thesis that limitation will be overcome by employing an
approach termed splitting & recombination. The basic idea is to actively influence a
conventional imaging system in such a way, that different "views" from the sam-
ple are being captured, which then get computationally reconstructed to yield an
effective increase in SNR. Four possibilities for the splitting are being examined:
1) separating the polarization of the detectable light into two orthogonal states
and making use of a polarization-dependent focusing effect; 2) splitting the emis-
sion in a fluorescence microscope, as the resolution gets worse with increasing
emission wavelength; 3) pupil splitting in incoherent imaging, which makes use
ot the fact that high spatial frequencies can be transferred with improved SNR,
when medium frequency components are being reduced; 4) separating the illu-
mination in a light-sheet microscope using the Field-Synthesis concept, enabling
the detection over a large field-of-view (FoV) while maintaining a axially narrow
illumination sheet. A general description of the splitting & recombination idea
is presented in this thesis using the polarization splitting as an example; the two
main computational recombination techniques employed are: weighted averag-
ing in Fourier space and multiview deconvolution. For each of the remaining
three applications a thorough theoretical and numerical treatment is presented,
as well as proof-of-principle experiments.
The second part of this thesis focuses on image reconstruction techniques of data
acquired with a passive submillimeter wave imager, which has been developed
for concealed threat detection in public areas. One typical challenge of such de-
vices is to maintain a good spatio-temporal resolution at a distance larger than 10
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m, while being limited to a wavelength which can penetrate through most clothes
and fabrics. As the current prototype system employs a line-scanning princi-
ple and the detectors show a highly individual signal response, pre-processing is
necessary to transform the data into meaningful images. These are then further
processed via denoising and deconvolution algorithms to reveal small structures
with improved SNR, so that a reliable detection of unconcealed threats becomes
feasible. Another way to improve the image quality is to employ machine learn-
ing (ML) techniques. In this work denoising via a trained network is presented
and compared to the more traditional reconstruction methods. The robustness
of all reconstruction techniques is shown using a multitude of experimentally
acquired data, exemplifying different possible real application scenarios.

Kurzfassung

Verbesserung des Signal-zu-Rausch Verhältnisses

in der inkohärenten Bildgebung
von Jan BECKER

Die Bildgebung spielt in unserer modernen Welt eine wichtige Rolle. Deren An-
wendungen reichen von der Inspektion von Industriegütern, dem medizinischen
untersuchen von Patienten im Gesundheitswesen bis zur Überwachung im öf-
fentlichen Raum. Neben Einschränkungen in Bezug auf Auflösung und Kontrast
zeigen alle bildgebenden Systeme eine abnehmende Bildqualität mit zunehmen-
dem Rauschen. Ein wichtiger Aspekt ist daher das erreichbare Signal-zu-Rausch-
Verhältnis (engl. SNR). Vernachlässigt man typische Rauschquellen, wie Ausle-
serauschen von Detektoren oder Einflüsse aus der Umgebung, bleibt eine fun-
damentale Art des Rauschens übrig: das Photonen - oder Schrotrauschen. Dies
liegt an der Quantisierung des Lichts - dem Photon - und der Tatsache, dass
Bildgebene Verfahren mit dem Zählen dieser diskreten Teilchen einher gehen.
Demnach ist das erreichbare SNR in jedem bildgebenden System grundlegend
begrenzt. In der vorliegenden Arbeit wird eben jene Einschränkung durch einen
neuartigen Ansatz des Teilens und Rekombinierens (engl. splitting & recombi-
nation) des Bildgebenden Lichtes überwunden. Die Grundidee ist, ein konven-
tionelles Bildgebungssystem aktiv so zu beeinflussen, dass verschiedene "An-
sichten" der Probe aufgenommen und anschließend rechnerisch rekombiniert wer-
den. Vier Möglichkeiten für das "splitting" wurden untersucht: 1) Aufspaltung

https://scholar.google.com/citations?user=R9cpZ8wAAAAJ&hl=en
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des detektierten Lichts in zwei orthogonale Polarisationszustände, unter Aus-
nutzung des Effekts das die Lichtverteilung im Fokus eines Objektivs von der Po-
larisation abhängt; 2) Aufspaltung der Emission in einem Fluoreszenzmikroskop,
da die räumliche Auflösung mit der Emissionswellenlänge skaliert; 3) Pupillen-
trennung in der inkohärenten Bildgebung, welche die Tatsache ausnutzt, dass
hohe Ortsfrequenzen mit verbessertem SNR übertragen werden können, wenn
niederfrequente Komponenten blockiert werden; 4) die Aufteilung der Beleuch-
tung in einem Lichtblattmikroskop unter Verwendung des Field-Synthesis-
Konzepts, das die Detektion über ein großes Field-of-View (FoV) bei gleichzeit-
iger Erhaltung einer axial schmalen Beleuchtung ermöglicht. In dieser Arbeit
wird eine allgemeine Beschreibung der Idee des splitting & recombination am Bei-
spiel der Polarisationsaufspaltung vorgestellt. Die beiden wichtigsten Rekombi-
nationsalgorithmen sind: gewichtetes Mitteln im Fourier-Raum und Multiview
Dekonvolution. Für jede der verbleibenden drei Anwendungen wird eine theo-
retische und numerische Behandlung, sowie Proof-of-Principle-Experimente zur
Verifizierung vorgestellt und diskutiert. Der zweite Teil dieser Arbeit konzen-
triert sich auf Bildrekonstruktionsverfahren von Daten, die mit einem passiven
submillimeter wave imager erfasst wurden, der für die Erkennung von verdeck-
ten Bedrohungen in der Öffentlichkeit entwickelt wurde. Eine Herausforderung
solcher Geräte ist es, eine gute räumlich-zeitliche Auflösung bei einer Entfernung
von mehr als 10 m zu erhalten. Diese sind auf eine Wellenlänge beschränkt,
welche die meisten Kleidungsstücke sowie Stoffe durchdringen kann. Um die
Daten in aussagekräftige Bilder umzuwandeln ist eine gewisse Vorverarbeitung
notwendig. Hierbei müssen Effekte wie die Zeilenabtastung des Detektors, sowie
die sehr individuellen Detektorsensitivitäten mit berücksichtigt werden. Diese
vorverarbeiteten Daten werden dann über Entrauschungs- und Entfaltungsalgo-
rithmen weiterverarbeitet, um kleine Strukturen mit verbessertem SNR sichtbar
zu machen. Dies ermöglicht eine zuverlässige Erkennung von verdeckten Bedro-
hungen, mit einer Verarbeitungsgeschwindigkeit das sich bewegende Personen
nachverfolgt werden können. Eine weitere Möglichkeit zur Verbesserung der
Bildqualität ist der Einsatz von Methoden des maschinellen Lernens (ML). In
dieser Arbeit wird die Entrauschung mittels eines trainierten Netzwerks verwen-
det und mit den traditionelleren Rekonstruktionsmethoden verglichen. Die Ro-
bustheit aller Verfahren wird anhand einer Vielzahl von experimentellen Daten
gezeigt, die beispielhaft für verschiedene mögliche Szenarien stehen.
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Chapter 1

Introduction

Imaging technologies have become very prominent in our everyday life. The
number of mobile devices which include one or multiple cameras is steadily ris-
ing, leading to ever more digital images being taken [1]. Also in highly special-
ized fields such as healthcare [2], biomedical research [3, 4] or aerial observations
[5], imaging plays an important role. An imaging system needs to be designed
and constructed in such a way that an image of high quality forms on a detector
[6]. Depending on the wavelength used, elements such as mirrors or lenses trans-
fer information of the object under investigation (= sample) into image space [7].
There exist certain limitations in terms of spatial resolution [8] and sampling [9,
10], stemming from physical and mathematical principles. Understanding those
led to advancements in imaging such as super-resolution techniques [11] or more
efficient sampling strategies [12, 13]. Furthermore, a general understanding of the
basic image formation principles has resulted in the invention of more powerful
image restoration algorithms [14, 15, 16]. However, the performance of imaging
systems in general (including the subsequent processing) is strongly dependent
on the data quality [17, 18]. Uncertainties (= noise) in the measurement process
lead to deviations of the acquired data from the expected (unknown) noisefree
image. A simple measure of image quality is the signal-to-noise ratio (SNR) [19]:

SNR =
Signal
Noise

(1.1)

It expresses a ratio of how much the measurement is corrupted due to unwanted
noise. A minimum criterion to obtain useful information is given as: SNR ≥ 1.
Noise in imaging typically consists of various possible contributions. Many appli-
cations show detector noise [20], hence technological advances have been made
to minimize those [21, 22]. However, shot noise as a fundamental part of mea-
suring light, cannot be removed that easily. It originates from counting distinct
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particles (photons) and is inherit to light itself. In fact the shot noise limit repre-
sents a major barrier, which once overcome, can lead to breakthroughs in mea-
surement sensitivity (e.g. gravitational wave detection [23]). Nevertheless, most
techniques which have achieved this are often based on interferometry [24] or
specialized quantum states of light ("squeezed light" [25]) and do not directly fit
into the traditional imaging landscape. Goal of this thesis is to show how the shot
noise limit can be overcome by making modest changes to conventional imaging
setups as commonly found in modern biomedical research [26]. Leading to the
concept of optical splitting and computational recombination (splitting & recombi-
nation) and its ability to improve SNR without the need to capture more photons.
Another aspect of this work is to correct and enhance the image quality of de-
tectors which work at the shot noise limit (i.e. bolometric detection [27] in sub-
millimeter wave imaging) via computational approaches. Here an enhancement
in terms of SNR and resolution will directly translate into an improved usability
of such imaging devices in their respective field of application (concealed threat
detection). The remainder of this thesis is structured as follows. In chapter 2
concepts of image formation and the respective influence of noise are being in-
troduced. The definition of SNR in real and Fourier space, as well as different
measures to quantify the quality of signal transfer and the influence of sampling
are presented. Typical ways to improve the SNR in conventional imaging are
shown, as well as their limitations and drawbacks demonstrated. In the follow-
ing (chapter 3), the idea of splitting & recombination is introduced and applied in
the field of fluorescence microscopy. Four different splitting examples are put
forward: 1) separating the polarization of detected light; 2) splitting the fluo-
rescence emission; 3) dividing the pupil of an incoherent imaging system into
multiple parts and 4) splitting the illumination in light sheet microscopy through
Field-Synthesis. The last three are presented in more theoretical detail, together
with proof-of-principle experiments, verifying that it is possible to improve the
SNR, given a finite photon budget. Chapter 4 focuses on the passive detection of
concealed threats using submillimeter wave radiation. First, the typical charac-
teristics of submillimeter wave radiation and its sensitive detection are discussed.
Followed by a description of the necessary pre-processing steps and the applica-
tion of different techniques, such as denoising and deconvolution, to computa-
tionally enhance the SNR. The final part of this thesis (chapter 5) comprises of
a short summary, conclusion and outlook with respect to the findings this thesis
has provided. This is followed by an appendix which contains additional infor-
mation and derivations which are linked to throughout the main text.
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Chapter 2

Theoretical background

In this chapter the two terms of equation 1.1 are subsequently being introduced:
signal and noise. Both will be evaluated in real and Fourier space respectively
and together yield a more detailed description of the SNR. Properties such as con-
trast, visibility, detectability and the effective resolution limit are then explained
within this context. The influence of sampling is briefly discussed and followed
by methods that are typically used to improve SNR: collecting more photons or
using computational reconstruction techniques. The chapter ends with the notion
that enhancing the SNR, without requiring to capture more photons, will bring
great benefits to many application of modern imaging.

2.1 Signal in incoherent imaging

The following theoretical analysis is made under the assumption of a conven-
tional imaging setup, here a microscope. Figure 2.1 shows a 4 f detection system
in conjunction with a single lens depicting illumination in transmission. The three
lens system (illuminating, objective and tube lens) are placed in series such that
the overall distance from light source to detector equals two times the sum of all
focal lengths (indicted by f ) [28].

A sample S is illuminated with a light distribution I, shown here as a plane wave
for bright- or fluorescence widefield (WF) imaging. The detection objective cap-
tures light coming from the sample (blue) and, in combination with the tube lens,
forms an (expected) image E on the pixelated detector. Here an infinity-corrected
optical setup is assumed, such that a point source gets transformed into a plane
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Figure 2.1: Graphical depiction of a typical 4 f imaging system [28], such as in an infinity-
corrected microscope. The illumination I of the sample S is shown in transmission, e.g. bright-
field. Light carrying information about the sample is captured by an objective (blue marginal
rays), which in combination with the appropriate tube lens results in an (expected) image E on
the pixelated detector of a camera. The field-of-view (FoV) of the system is shown using red rays
(chief rays) and indicate the magnification (here 40×). The location of the back-focal-plane (BFP)
is given by the focus of a parallel plane wave (red) entering the objective.

wave in the back-focal-plane (BFP) of the detection objective [29]. The field-of-
view (FoV) of the system is indicated with the red rays and shows the magnifi-
cation of the image content onto the camera. A mathematical description of the
image formation is given in the next section.

2.1.1 Image formation process

In this thesis the transfer of object information in a fully incoherent imaging system
(e.g. fluorescence microscopy) is investigated. A mathematical formulation of the
imaging process is given as the following convolution (⊗) operation [30]:

E(r⃗) = [S(r⃗) · I(r⃗)]⊗ h(r⃗) (2.1)

with h being the detection point-spread function (PSF) and r⃗ spatial coordinates.
Each point in the sample S is being imaged into a broader spot (the PSF), which
leads to an overall blurring of spatial information in the final image. The convo-
lution operation itself is defined as [31]:

E(r⃗) =
∫︂ +∞

−∞
dr⃗′

[︁
S(r⃗′) · I(r⃗′)

]︁
· h(r⃗ − r⃗′) (2.2)

The presented image formation theory is introduced in this thesis in a scalar de-
scription. Nevertheless, the depicted concepts can also be applied to vectorial cal-
culations where they hold for the three vector components separately (see [32]).
Using a detection objective with larger numerical aperture NA, yields in a reduc-
tion of the spatial blurring in the recorded image. The NA is given as the product
of refractive index of the immersion medium n and the half-opening angle α of



Chapter 2. Theoretical background 5

the detectable light cone:
NA = n · sin α (2.3)

Figure 2.2a left shows the PSF for an air immersion objective with two different
NAs (NA = 0.80 in blue, NA = 0.40 in magenta; assuming equal magnification
m). The distribution of h has been calculated using a vectorial model [32] with
an emission wavelength λ = 520 nm. The PSF width is indicated in terms of the
full-width-half-maximum (FWHM) of the central peak.

a b

Figure 2.2: 1D and 2D visualization of PSF & OTF using two detection objectives (NA = 0.80 in
blue and NA = 0.40 in magenta), calculated using the vectorial model from [32] with λ = 520
nm. a Profile plots along the x (left) and kx (right) axis of the PSF and |h̃| respectively. Left: the
lateral full-width-half-maximum is indicated FWHMxy; reducing the NA does not only increase
the width of the PSF, it also decreases the peak intensity as the number of detectable photons is
smaller for the lower NA (also see Fig. 2.6a). The same can be observed in the magnitude of the
OTF (right), where additionally the noise floor (100 expected photons for the NA = 0.80 case) is
plotted (dotted lines). For a fair comparison also a noise normalized OTF (red) curve is depicted.
Details on noise normalization is given in sec. 2.3.4. b View across the xz and kxkz plane, each
with an adjusted gamma value of 0.25. Left: PSF along optical axis, the axial FWHMz is indicated.
On top: the Gaussian reference sphere of the detection objective, the "magic teleportation" is seen
as the red dotted line. Right: |h̃| indicating the "missing cone" problem of normal WF detection
and the finite region of support, given as the cutoff frequencies kxy,max and kz,max.

A reduction of the detection NA not only leads to a broader PSF, also the number
of detected photons is reduced (also see Fig. 2.6a). Leading to a much lower PSF
peak value in the NA = 0.40 case (more to this in sec. 2.4.1).

2.1.2 Representation in Fourier space

Instead of describing image formation in real space, we can make use of Fourier
analysis. For this we calculate the Fourier transform Fdim [31] of our image M:

Ẽ(k⃗) = Fdim

{︂
E(r⃗)

}︂
= 1

(2π)dim/2

∫︂ +∞

−∞
dr⃗ E(r⃗) · eik⃗·r⃗ (2.4)
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with i being the imaginary unit, k⃗ spatial frequencies, k⃗ · r⃗ a scalar product and
dim the number of spatial dimensions of E (typically dim = 2D → R2).
Due to the convolution theorem of Fourier transforms [31] we can rewrite eq. 2.1:

Ẽ(k⃗) =
[︂
S̃(k⃗)⊗ Ĩ(k⃗)

]︂
· h̃(k⃗) (2.5)

Note that multiplication and convolution have switched in eq. 2.5 and that all
involved quantities are now complex valued: Ẽ ∈ C.
From this point on the tilde symbol indicates Fourier space and going back to real
space can be achieved by using the inverse Fourier transform F−1

dim [31]:

E(r⃗) = F−1
dim

{︂
Ẽ(k⃗)

}︂
= 1

(2π)dim/2

∫︂ +∞

−∞
dk⃗ Ẽ(k⃗) · e−ik⃗·r⃗ (2.6)

Equation 2.5 introduces h̃ which is the optical transfer function (OTF) of the imag-
ing system. It acts as a low-pass filter and limits the transfer of high spatial fre-
quency information up to a certain cutoff. The corresponding cutoff frequency
kxy,max is indirectly given by Abbe’s diffraction limit [8], which states that there
exists a periodic line structure with distance dxy,min, that is too fine to be resolv-
able by an optical imaging system. For fluorescence imaging this minimal dis-
tance depends on the detection wavelength λ and the numerical aperture NA:

dxy,min =
λ

2 · NA
(2.7)

Hence the cutoff frequency in lateral dimensions is given as:

kxy,max =
2π

dxy,min
= 2π · 2 · NA

λ
(2.8)

Figure 2.2a right shows the magnitude of the OTF for the two different objectives
(NA = 0.80 in blue & NA = 0.40 in magenta; for equal m and fobj). It can be seen
that reducing the NA narrows the region-of-support, which is defined as: |h̃| > 0.
Note that the k⃗ = 0⃗ (zero frequency) component of the OTFs are proportional to
the amount of detectable photons from a point source, as:

h̃(0⃗) = 1
(2π)dim/2

∫︂ +∞

−∞
dr⃗ h(r⃗) · ei 0⃗·r⃗ = 1

(2π)dim/2

∫︂ +∞

−∞
dr⃗ h(r⃗) (2.9)

This is true in general: M̃(0⃗) is proportional to the number of collected photons
in the image E. Figure 2.2a right shows both OTFs normalized to the NA = 0.80
case. The corresponding PSF is depicted on the left. Reducing the NA by a factor
of two not only decreases kxy,max by the same amount, it additionally reduces
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the number of photons reaching the detector by approximately 80%, hence the
h̃(0⃗) value (this differs from a reduction given by the ratio of the two NAs and is
explained in sec. 2.4.1 in more detail).

2.1.3 Imaging in three dimensions

Up until now the depiction of PSF & OTF has only been as profile plots of a 2D
distribution. This is a simplification as both essentially are three dimensional in
structure. Figure 2.2b left shows a view of h in the xz-plane. The distribution has
been calculated by propagating the electric field E of the corresponding intensity
PSF h over varying distances ∆z in the positive and negative direction along the
optical axis z. The propagation itself is computed using the following Fourier
transform propagator [30]:

E(x, y, z = ∆z) = F−1
2D

{︂
F2D{E(x, y, z = 0)} · ei kz(kx,ky)·∆z

}︂
(2.10)

This is an application of the shifting property of Fourier transforms [31] along the
optical axis with (x, y, z) representing Cartesian coordinates in real space. The ex-
pression for kz(kx, ky) can be found by looking at the Ewald sphere [33], depicted
in Fig. 2.2b right/top. The Ewald sphere is a compact representation of all those
plane waves, which are emitted by a point source and are still detectable in the
far field. However, only a finite range of those waves can be captured by an objec-
tive, which shrinks the region of detectable waves to a 3D spherical cap (green).
Those plane waves are of same periodicity but travel under different angles. The
maximum angle which can be collected is given by the NA. The lateral and axial
extend of the cap are equal to kxy,max (blue) and kz,max (red) respectively. The lat-
ter is similarly defined as the cutoff frequency in the lateral direction and given
here in terms of the NA [34]:

kz,max =
2π

dz,min
=

2π

λ
·
(︂

n −
√︁

n2 − NA2
)︂

(2.11)

with dz,min the smallest structure resolvable along the optical axis.
Making use of the dispersion relation in homogeneous media [7], which states
that all plane waves reside on the shell of a sphere, gives:

kz(kx, ky) =

√︃(︂
2π · n

λ

)︂2
−
(︂

k2
x + k2

y

)︂
(2.12)
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Intensity information is obtained by computing the absolute square of the electric
field at z = ∆z, yielding in total:

⃓⃓⃓
E(x, y, z = ∆z)

⃓⃓⃓2
=
⃓⃓⃓
F−1

2D

{︂
F2D{E(x, y, z = 0)} · e

i

√︃
(2π· n

λ )
2−(k2

x+k2
y)·∆z}︂⃓⃓⃓2

(2.13)

The result for E , corresponding to the electric field of h, can be seen in Fig. 2.2b
left, with the FWHM in axial direction indicated in yellow. It is not discussed in
detail at this point but conventional WF detection lacks the ability of optical sec-
tioning (OS), as the laterally integrated PSF intensity does not change along z [28].
A different way to see the lack of OS is by looking at the missing cone problem in
the 3D-OTF [30], which has been calculated as the 3D Fourier transform of the
propagated PSF field and is shown in Fig. 2.2b right (kxkz-plane). The missing
cone is indicated in yellow, showing that is not possible to discern any informa-
tion originating from different planes perpendicular to the optical axis, as those
correspond to a line along the kz-axis in Fourier space.
It is now important to make a slight modification to the imaging equation 2.1 as
we also want to incorporate the acquisition of 3D information in form of a z-stack
(2D images from different axial positions in the sample). This is denoted by a
subscript, e.g. E3D stands for the z-stack and E2D for a single image. Hence the
image formation for the z-stack is written as:

E3D(r⃗) = [S3D(r⃗) · I3D(r⃗)]⊗ h3D(r⃗) (2.14)

where ⊗ denotes a three dimensional convolution.
A single slice from that z-stack is given by setting z = 0 (the position of the
detector), which yields:

E2D(r⃗) = E3D([x, y, z = 0]⊤) (2.15)

with ⊤ being the transpose of a vector or matrix.
The projection-slice theorem of Fourier transforms [31] connects a slice in real
space to a projection along the axis perpendicular to the given slicing operation
in Fourier space. Meaning that the 2D image information of three dimensional
imaging process is given in Fourier space according to:

Ẽ2D(kx, ky) =
∫︂ +∞

−∞
dkz

[︂
S̃3D(k⃗)⊗ Ĩ3D(k⃗)

]︂
· h̃3D(k⃗) (2.16)

with k⃗ = [kx, ky, kz]⊤ being Cartesian coordinates in k-space. To obtain the mea-
surement data in real space an inverse 2D Fourier transforms needs to be applied:
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E2D(r⃗) = F−1
2D

{︃
Ẽ2D(k⃗)

}︃
(2.17)

In comparison to eq. 2.1, this three dimensional treatment also includes effects
such as out-of-focus blur or the missing optical sectioning, which are common in
widefield detection.
Note that from now on we will omit the subscript 2D for the sample, illumination
and PSF/OTF variables, and only keep it for the image quantity E. This will help
with the ease of reading, while the important information whether 2D or 3D data
is being recorded is not lost.

2.2 Noise in imaging applications

As mentioned in sec. 1, noise is present in any measuring device. In imaging it
mostly limits the resolution of fine structures [35], which is the primary goal of
optical microscopy. Therefore it is important to understand its influence on image
formation, which will later be used to define a qualitative criterion: the SNR.

2.2.1 Degradation of image quality

Incorporating the effects of noise into the image formation requires to make a
distinction between the noisy measurement M2D and the expected signal E2D:

M2D(r⃗) = E2D(r⃗) +N2D(r⃗) (2.18)

with N2D being the noise of the respective measurement. Note that M2D and
N2D represent realizations of a random process, meaning that they vary for each
observation. The expectation value E2D is defined according to [31] :

E2D(r⃗) =
∫︂

O
dO O(r⃗) · P [O(r⃗)] (2.19)

with P[O] being the probability density of observation O. The spread of the actual
measurements around the expectation value is given as the standard deviation
σM2D . Which can be calculated as the square root of the variance:

σ2
M2D

(r⃗) =
∫︂

O
dO [O(r⃗)− E2D(r⃗)]

2 · P [O(r⃗)] (2.20)

In noiseless imaging N2D → 0 and hence each measurement represents the expec-
tation value: M2D = E2D. Due to the linearity of the Fourier transform operation,
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equation 2.18 can readily be translated into k⃗-space:

M̃2D(k⃗) = Ẽ2D(k⃗) + Ñ 2D(k⃗) (2.21)

Again showing the separation of image information into expectation value and
variance. However, this requires the definition of expectancy and variance for
complex variables, which is given in the appendix (p. 102).

Depending on the amount of noise, the measured image can deviate strongly
from its expected values. This degradation of image quality can be seen in Fig.
2.3, simulated in the photon-limited regime (details to this in sec. 2.2.2).

Figure 2.3: Simulation of imaging a spokes-target (18 spokes) with different amount of detected
light (10, 100 or 1000 expected photons in the pixel with the maximum value) using a vectorial
model [32] with λ = 520 nm and corresponding shot noise. Top: real space image (scale bar
= 1 µm); bottom: corresponding Fourier transform (displayed using γ-adjustment of γ = 0.25).
The yellow semicircle indicates the fundamental cut-off frequency kxy,max or the corresponding
radius with sufficient contrast in the real space data and is the same for all three sub-images. The
effective limit kxy,eff (orange, introduced in sec. 2.3.3) depends on the amount of noise and can
strongly deviate from the noiseless case. The loss of high spatial frequency information can be
seen by the rising noise floor, reducing the effective region-of-support of the imaging system.

The top half shows the image of a spokes target (18 spokes, scale bar = 1 µm) in
real, the bottom half the corresponding information in Fourier space. Noticeably,
the image quality gets better when the total number of detected photons (here
given as number of photons in the brightest pixel) is increased. A more detailed
explanation of this effect is given in the following section.
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2.2.2 Photon or shot noise

As has already been discussed in sec. 1, images are fundamentally corrupted by
shot noise. This is typically modeled using the Poisson distribution [36, 37]:

P [M2D(r⃗)] =
E2D(r⃗)M2D(r⃗)

M2D(r⃗)!
· e−E2D(r⃗) (2.22)

with ! denoting the factorial. Note that M2D is now measured in photon counts
which is a discrete quantity. Equation 2.22 gives the probability of measuring an
image M2D, when the underlying ground truth is given by E2D. The fact that the
actual measurement is corrupted by Poisson noise can be written as:

M2D(r⃗) = Poisson
{︃

E2D(r⃗)
}︃

(2.23)

An important property of the Poisson distribution is the equality of expectancy
and variance [35], given as:

σ2
M2D

(r⃗) = E2D(r⃗) (2.24)

Meaning that the Poisson distribution is only defined by a single parameter: the
expectation value E2D. Figure 2.4a shows the corresponding probability curves
for five different expectation values (1, 5, 10, 33.7 and 100 expected photons in the
pixel with maximum value; note that E2D does not need to be integer).

The individual distributions have been normalized so that their maxima are set to
1.0. This was done so that the width of all curves could be compared more easily.
It can be clearly seen that the width of the distribution increases for larger expec-
tation values, which means that the peak value gets reduced. This is because the
integral under each curve must yield unity (probability of all possible outcomes
must be 100%). The typical asymmetric shape of the Poisson distribution can be
observed for low values of E2D (blue and red). For higher values it turns into
more a Gaussian shape, which is modeled according to [37]:

P [M2D(r⃗)] = 1√
2π·E2D(r⃗)

· e
− [M2D(r⃗)−E2D(r⃗)]

2

2·E2D(r⃗) (2.25)

where the standard deviation of the Gaussian has been set equal to the respective
expectation value. Again, the amount of noise in a specific measurement scales
with the expected outcome of that very measurement.
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a b

Figure 2.4: a Poisson distribution for five different expectation values: 1, 5, 10, 33.7 and 100
photons in the pixel with maximum value. For low photon numbers (blue and red) the typi-
cal asymmetric characteristic of the Poisson distribution can be observed. When the amount of
detectable light increases, the distribution changes into a Gaussian shape, with the width pro-
portional to the respective expectancy. Note that each maximum has been normalized to unity.
b Simulated example showing the detrimental effect of out-of-focus blur. A 3D object (spherical
shell, including a smaller sphere and a line parallel to x-axis) is shown on the very left (scale bar
= 1 µm). Imaging (vectorial PSF [32] with λ = 520 nm and NA = 0.80.) has been simulated with
(below) and without (top) shot noise (1000 photons in max pixel). The middle column shows the
result in thin-element approximation, meaning that only the in-focus object slice has been used in
the imaging simulation. On the right WF detection is depicted, showing a much degraded image
quality, especially due to the additional contribution of out-of-focus blur.

The variance of M̃ (given by sum of real and imaginary variances) can be com-
puted, in case of photon-limited imaging, according to:

σ2
M̃2D

(k⃗) = Var
{︁

M̃2D(r⃗)
}︁
= Var

{︃
1

2π

∫︂ +∞

−∞
dr⃗ M2D(r⃗) · eik⃗·r⃗

}︃
=

= 1
2π

∫︂ +∞

−∞
dr⃗ Var

{︃
M2D(r⃗) · eik⃗·r⃗

}︃
=

= 1
2π

∫︂ +∞

−∞
dr⃗
⃓⃓
eik⃗·r⃗ ⃓⃓2 Var

{︁
M2D(r⃗)

}︁
= 1

2π

∫︂ +∞

−∞
dr⃗ σ2

M2D
(r⃗) (2.26)

with the additional assumption that M is statistically independent from pixel to
pixel. Equation 2.24 states that the variance in Fourier space is proportional to
number of expected photons in real space:

σ2
M̃2D

∝
∫︂ +∞

−∞
dr⃗ E2D(r⃗) = p (2.27)

Yielding that σ2
M̃2D

is proportional to the total sum of expected photons p in the
image. Additionally note that the variance is independent of spatial frequencies,
hence noise in Fourier space will emerge as a noise floor (in Fig. 2.2a, dotted
horizontal lines). The level of this floor is given by the standard deviation σM̃2D

∝
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√
p, hence scales with the square root of the expected photons p, while the signal

is linearly depending on p. Resulting in an improved SNR, when more photons
are available for imaging.

2.2.3 Out-of-focus: background noise

Shot noise is fundamental to nature and cannot be omitted in traditional imaging
setups. Together with out-of-focus blur it leads to background noise which can
be reduced in principle, but nevertheless plays an important role in all applica-
tions of microscopic imaging. In WF detection, unwanted light originating from
different planes than the focal plane corrupts the 2D image. This effect is termed
out-of-focus blur and has a negative influence on the obtainable image quality,
which is exemplified in Fig. 2.4b. The imaging of a 3D object has been simu-
lated, by directly applying equation 2.16 (vectorial PSF [32] with λ = 520 nm and
NA = 0.80). Figure 2.4b left shows the true object, a spherical shell, with an em-
bedded smaller sphere and a line parallel to the x-axis (scale bar = 1 µm). When
simulating the imaging in a thin-element approximation (green, only imaging the
in-focus slice of the object using eq. 2.5), the typical lateral blurring of image in-
formation (middle column; top) can be observed. Also the effect of shot noise is
prominent (bottom, 1000 expected photons in the pixel with the maximum value)
when it is applied.
A more realistic simulation (right, red) also incorporates out-of-focus effects, as
suggested from eq. 2.16. Background blur, which originates from parts of the 3D
shell outside of the focus, can be observed in the simulated 2D image. When Pois-
son noise is applied the outcome looks even more degraded, much worse than the
noisy thin-element result. Note that this additional blurring does not originate
from insufficient spatial resolution. It merely comes from the poor performance
of widefield detection to reject out-of-focus light. Most popular microscope sys-
tems today, such as confocal [38, 39] or light-sheet (LS) microscopy [40, 41] show
a major improvement in terms of image quality, which mainly originates from
their ability to remove out-of-focus blur & noise.

2.3 The signal-to-noise ratio (SNR)

A criterion to determine the quality of transferring information from sample into
image space, is the signal-to-noise ratio (SNR). In the following an analytical
expression in real and Fourier space is derived. The conventional way to describe
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the SNR of a random variable is:

SNR =
expectation value√

variance
(2.28)

Note that a variance ̸= 0 has to be assumed. In a realistic scenario this is given, as
optical imaging itself demands a photon number > 0, which together with shot
noise always yields a variance being strictly positive.

2.3.1 SNR in real space

With the general definition from above, the SNR in a typical imaging application
can be formulated in real space as:

SNRM2D(r⃗) =
E2D(r⃗)√︂
σ2

M2D
(r⃗)

=
E2D(r⃗)√︁

E2D(r⃗)
=
√︂

E2D(r⃗) (2.29)

Meaning that doubling the SNRM2D requires to quadruple the photon number of
the expected image information, which is typically done by increasing the sample
illumination or the exposure time of the detector. Note that the real space SNR is
signal dependent: regions with no object information will not exhibit any noise
contribution. Keep in mind that this means that even a perfect imaging system
can only realize SNRM2D = 0 when there is no sample present [42]. A major
drawback of the real space definition of the SNR is that a finer spatial sampling
will reduce SNRM2D although more information on the actually measured photon
positions is available (more details on sampling in sec. 2.3.5).

2.3.2 In terms of spatial frequencies

A definition that is independent of the spatial sampling can be realized in Fourier
space. The same procedure of calculating the SNR yields:

SNRM̃2D
(k⃗) =

|Ẽ2D(k⃗)|√︂
σ2

M̃2D
(k⃗)

∝
|Ẽ2D(k⃗)|√

p
(2.30)

Note that the SNR is seen as a criterion determining the strength of information
transfer, hence we only consider the absolute value of Ẽ2D in the nominator. The
variance in Fourier space is proportional to the total number of photons p, but so
is |Ẽ2D|. This makes it more difficult to immediately see that the SNR improves
with increasing photon number. Hence, a normalized image spectrum Ẽnorm.

2D ,
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independent of the detected photon number, is introduced:

|Ẽnorm.
2D (k⃗)| = |Ẽ2D(k⃗)|

p
(2.31)

With this the aforementioned SNR expression is rewritten as:

SNRM̃2D
(k⃗) ∝

√
p · |Ẽnorm.

2D (k⃗)| (2.32)

Note that the SNR in Fourier spaces gives a more detailed insight how spatial fre-
quencies are transferred in a noisy measurement. Each frequency is influenced
equally by the noise floor. Reducing p by a factor of 4 will lower the noise floor
for all k⃗ by 50%. However, this will affect the transfer of high spatial frequency
information more strongly relative to the noise, than that of the low frequency
components. Reason for this is the spatial blurring of image information, which
removes high frequency content and mostly leaves low frequencies. Additionally
many natural objects show a decay of their Fourier spectra that approximately
follows a power law [43], meaning that high spatial frequencies are anyways
underrepresented in the object under investigation. Hence, when working in
the photon-limited regime, the noise floor affects high spatial frequencies more
strongly, which are those that carry the most interesting information.

2.3.3 Contrast and effective resolution

The signal-to-noise ratio is a statistical measure, hence can only be used when a
large number of observations have been acquired. When only a single image is to
be evaluated in terms of SNR, often the image contrast is investigated. Which can
be observed as a larger modulation depth or visibility V when a periodic object is
being imaged. The visibility V is defined according to [30]:

V =
Mmax − Mmin

Mmax + Mmin
(2.33)

with Mmax/min corresponding to the maximum and minimum value of a fitted
pattern of known periodicity in the image. Be aware that the visibility value is
sensitive to an offset change, e.g. when the modulation curve is displaced by an
offset ε, the following visibility Vε is computed as:

Vε =
(Mmax + ε)− (Mmin + ε)

(Mmax + ε) + (Mmin + ε)
=

Mmax − Mmin

Mmax + Mmin + 2ε
(2.34)
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Hence, when trying to directly compare the modulation at an offset with the orig-
inal curve, the following conversion needs to be applied:

V = Vε ·
Mmax − Mmin

Mmax − Mmin − 2ε · Vε
(2.35)

Figure 2.5a shows the visibility for a target with 18 spokes, imaged in simulation
using two different detection objectives (NA = 0.80, NA = 0.40, same magnifica-
tion m and refractive index n, 1000 photons in max. pixel of NA = 0.8 case).

a b

Figure 2.5: a Visibility V when simulating imaging of a target with 18 spokes (scalebar = 2
µm) using two different numerical apertures (NA = 0.80; NA = 0.40, same magnification m
and refractive index n) with 1000 expected photons in the pixel with the maximum value of the
NA = 0.80 case. Decreasing the NA not only reduces the obtainable resolution limit kxy,max, it also
decreases V . b Dependency of the reduction factor δ (defined in eq. 2.42) on the given number of
expected photons p. To theoretically reach the Abbe limit a large number of photons is required,
at 10.000 photons ≈ 96% is reached. Towards the lower photon numbers a drastic reduction of
the achievable resolution is observable, as the SNR is ∝

√
p. Methods which can generate an

SNR enhancement without requiring additional photons (such as splitting & recombination) can go
beyond this limit (black). E.g. a method which enhances the SNR by a factor of two at p = 1000
photons will horizontally shift the black curve until its δ-value at p = 4000 photons is located at
p = 1000. This type of SNR doubling is equivalent to capturing 4× more photons, but without
the drawbacks of actually having to collect all those photons. The inset shows |h̃| (blue) close to
the Abbe limit. Red dotted is a quadratic fit used to determine the effective resolution limit, by
setting it equal to the noise floor 1/

√
p and solving for the abscissa (details in text).

Reducing the NA not only leads to a decrease in the attainable resolution (i.e.
kxy,max), it also results in an overall smaller SNR which presents itself as lower a
visibility V value.
Another effect which can be used to visualize an SNR improvement is the fact
that noise limits the ability to resolve fine structures. The presence of shot noise
introduces an effective resolution limit, which in this work is defined in Fourier
space as kxy,eff. Object information can only be transferred if |Ẽ2D| ≥

√
p, as then



Chapter 2. Theoretical background 17

the signal does not get dominated by noise:

|Ẽ2D(k⃗)| ≥ √
p

|h̃(k⃗)| · |S̃(k⃗)| ≥ √
p (2.36)

Indicating that the term resolution is always sample dependent! In the appendix
(p. 102) the effective resolution limit is derived for imaging two spatially sepa-
rated point sources. The expression for kxy,eff is given according to:

|h̃(kxy,eff)| = 1√
p (2.37)

Note that this is the same as looking for the intercept where the OTF reaches the
noise floor defined by 1/

√
p. To approximate this effect more quantitatively, h̃ is

modeled using a scalar approximation, derived in the appendix (p. 105).

h̃(kxy) ≈
2
π

⎡⎣arccos
(︃

kxy

kxy,max

)︃
−

kxy

kxy,max
·

√︄
1 −

(︃
kxy

kxy,max

)︃2
⎤⎦ (2.38)

with kxy being radial spatial frequencies. From Fig. 2.2a right it can be seen that h̃
is slightly curved in the region kxy ≥ 0.8 · kxy,max . To obtain an approximation for
kxy,eff, we fit a quadratic curve (red dotted, Fig. 2.5b small inset) into this range
and set the fitted equation equal to the noise floor, given at 1/

√
p. The choice

of kxy ≥ 0.8 · kxy,max is rather arbitrary, nevertheless it corresponds to a noise
floor when only 100 photons are available for imaging, which can be considered
a lower practical limit.
For fitting the parabola three points are required: 1) kxy,max where h̃ = 0; 2) noise
floor for p = 100 photons and 3) an additional value in between. The parameters
of the quadratic fit are derived in the appendix (p. 105) and yield:

h̃(kxy,eff ≥ 0.8 · kxy,max) ≈ a ·
(︂

kxy
kxy,max

)︂2
+ b · kxy

kxy,max
+ c (2.39)

with the three parameters:

a = 1.4507; b = −3.1314; c = 1.6807

This dependency can be used to find an effective resolution limit by setting above
equation equal to 1/

√
p and solving for kxy/kxy,max:

a ·
(︂

kxy
kxy,max

)︂2
+ b · kxy

kxy,max
+
(︂

c − 1√
p

)︂
= 0 (2.40)
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Which yields a solution, termed the reduction factor δ(p).

kxy

kxy,max
=

−b−
√︄

b2−4a
(︃

c− 1√
p

)︃
2a = δ(p) (2.41)

The effective resolution limit can now be defined by multiplying the reduction
factor to the Abbe limit:

kxy,eff = δ(p) · kxy,max (2.42)

Figure 2.5b depicts the reduction factor δ in dependency of the expected photon
number p (black curve). To actually being able to reach the Abbe limit, a large
number of photons needs to be captured, e.g. at 10000 photons only 96% of the
Abbe limit can be observed. Towards lower number of photons a drastic drop
in resolution capability is depicted, meaning that for small p the achievable reso-
lution is dominated by noise rather than diffraction. Obtaining an enhancement
in terms of kxy,eff requires to increase the number of detected photons or equiv-
alently to improve the SNR, meaning that the performance is SNR limited. Any
method which is able to increase the SNR without requiring to capture more pho-
tons (such as splitting & recombination) can achieve the same effective resolution,
without the typical disadvantages of larger photon collection (such as a decrease
in temporal resolution). E.g. doubling the SNR at a photon number of p = 1000
achieves the same effective resolution improvement as increasing p by a factor of
four. In Fig. 2.5b this is shown as an horizontal shift of the black curve , leading
to the magenta result which lies above the resolution associated to the SNR limit.

2.3.4 Noise normalized OTF and detectability

Directly comparing different imaging systems using OTFs might lead to false con-
clusions if a higher curve is simply assumed to correspond to a better imaging
performance. This is because such curves do not truthfully represent the signal-
to-noise behavior [44]. Lets consider the two OTFs (blue and magenta) from Fig.
2.2a right. Both the OTF curves and the noise floor scale with the total number of
photon p, which is reduced in the NA = 0.40 case by a factor ≈ 0.21 (the deviation
from the expected reduction, given by the ratio of the NAs, is given in sec. 2.4.1).
Fig. 2.2a indicates that the imaging performance of NA = 0.40 is far worse. How-
ever, this is not a fair comparison as the noise floor of both imaging modalities
differ. To achieve the same noise level for h̃NA=0.40 (compared to NA = 0.80), the
curve needs to be multiplied by a factor of ≈ 1/

√
0.21 ≈ 2.18. Resulting in a noise

floor at 0.1 which relates to the detection of p = 100 photons for the NA = 0.80
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case. The noise-normalized result is shown in Fig. 2.2a right as the red curve and
can be mathematically written as dividing the OTF by the square root of its zero
frequency value h̃(0⃗), which in the NA = 0.40 case was given as h̃(0⃗) ≈ 0.21:

hσ̃(k⃗) =
h̃(k⃗)√︂
h̃(0⃗)

(2.43)

with h̃σ being the noise normalized OTF corresponding to unit variance. Note that
the concept of h̃σ has been developed by Heintzmann, Wicker and Sheppard in [44].
Another important quantity, which can be directly derived from the noise nor-
malized OTF, is the detectability D. It compares in-focus brightness to out-of-focus
contributions and therefore describes how much more prominent the detection of
small objects is compared to the background. According to [45] it is defined as:

D =
h(0⃗)√︂∫︁ +∞

−∞ dr⃗ h(r⃗)
(2.44)

with h(0⃗) being the maximum of the centered PSF. A basic property of Fourier
transform pairs (h and h̃) is that the k⃗ = 0⃗ component in one space, is given by
the integral of its corresponding Fourier pair:

h(0⃗) ∝
∫︂ +∞

−∞
dk⃗ h̃(k⃗) h̃(0⃗) ∝

∫︂ +∞

−∞
dr⃗ h(r⃗) (2.45)

Using this, the detectability D can be written in terms of Fourier components:

D ∝

∫︁ +∞
−∞ dk⃗ h̃(k⃗)√︂

h̃(0⃗)
=
∫︂ +∞

−∞
dk⃗

h̃(k⃗)√︂
h̃(0⃗)

=
∫︂ +∞

−∞
dk⃗ h̃σ(k⃗) (2.46)

Hence the integral over the noise normalized OTF is proportional to the de-
tectability D. Looking at Fig. 2.2a left, it can be seen that the blue curve shows the
highest detectability, corresponding to the largest maximum value in real space.

2.3.5 Sampling and pixelation effects

The theoretical treatment so far has not dealt with the issue of sampling and pix-
elation, which occurs when a camera sensor captures an image. To successfully
reconstruct the original (continuous) signal, the Nyquist criterion [9, 10] needs to
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be fulfilled. In incoherent imaging it is given as:

∆s ≤ 1
2 · dxy,min (2.47)

with ∆s being the sampling distance. This means that the magnification m of the
optical system and the pixel size of the detector need to be chosen in such a way
that they realize a sampling which is at most half the size of the resolution limit.
This is because of the aliasing effect, which is described in the appendix (p. 106).
Finer sampling is generally advantageous but interestingly reduces the SNR in
real space, as the captured photons are distributed over more pixels. Effectively
reducing the expected number of photons per pixel and hence the real space SNR.
Nevertheless, increasing the sampling will only leave us with acquiring more in-
formation about the accurate positions of each measured photon. Making the
real space SNR definition obsolete, especially since an SNR improvement can still
be achieved by binning a group of pixels. The Fourier space definition of the
SNR does not vary with changing the spatial sampling, because the noise floor is
calculated as the summation of photons in the whole image. It does not matter
whether the captured photons are redistributed onto a larger number of pixels,
the sum of photons will stay the same and so does the Fourier space SNR.
Also the pixelation of the sensor has some effects on the achievable SNR. For
a pixelated detector, the recorded intensity needs to be computed as an integral
over the pixel area. This means that each pixel in the image represents a summa-
tion of spatial information, which leads to some additional blurring and decreases
contrast [56]. A more detailed description on this effect is given in the appendix
(p. 106). In the following this additional blur will be neglected, which does not
introduce any error when the pixel size is considered to be small and Nyquist
sampling is realized [46].

2.4 Methods to improve SNR

The previous section has shown that an improvement in terms of SNR is favorable
in imaging, as finer spatial structures become detectable. In the photon-limited
regime, the SNR is given by the following relationship with respect to the total
number of detectable photons p:

SNR ∝
√

p (2.48)

Be aware, that above equation does not encompass the spatial variation of the
SNR. It merely motivates the two conventional strategies to improve SNR:
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• Increasing the photon collection on the hardware side.

• Performing image reconstruction on the software level.

The former tries to improve SNR directly by increasing p, while latter uses math-
ematical models to obtain more information from the recorded data. The SNR
improvement on the hardware level always comes with tradeoffs as described
below and therefore often limits other aspects of imaging. Using computational
methods requires the image formation model to correspond to reality, which is
usually only partially true.

2.4.1 Improving the photon collection

As equation 2.48 suggests, the photon-limited SNR can be increased by collecting
a larger amount of photons. Ways to achieve this is by either increasing the de-
tection NA, (while maintaining the same immersion medium n and magnification
m), to use a longer exposure time of the detector or to intensify the illumination
of the sample. All methods come with some limitations which will be discussed
in the following.

Increasing the numerical aperture:

The NA of the detection objective is one limiting factor in an imaging system, as
only photons which are emitted within a certain solid angle Ω can be collected.
This is termed the collection efficiency and can be regarded as being proportional
to the number of detectable photons [47]. The solid angle Ω is given as:

Ω ∝ 1 − cos α (2.49)

with α being the half opening angle of the collection cone. This angle α can be
expressed in terms of the numerical aperture NA, so that the solid angle becomes:

Ω ∝ 1 −
√︁

1 − sin2 α = 1 −
√︂

1 −
(︁NA

n
)︁2

(2.50)

As equation 2.48 states, the SNR is proportional to the square root of the de-
tectable photons. The photon collection is given by the solid angle Ω, yielding:

SNR ∝

√︃
1 −

√︂
1 −

(︁NA
n
)︁2

(2.51)
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which describes the change of the relative SNR with respect to a varying nu-
merical aperture. Figure 2.6a shows the corresponding curves of collection effi-
ciency and relative SNR for three different immersion media (air n = 1.00, water
n = 1.33, oil n = 1.52).

a b

Figure 2.6: a Effects of increasing the numerical aperture NA on the collection efficiency and
relative SNR in case of photon-limited imaging. Note that the maximum achievable collection
efficiency of 50% and the maximum relative SNR is given for NA/n = 1.0. The blue and magenta
dots represent the two OTFs shown in Fig. 2.2a. b Reconstruction results on deconvolving the
noisy image from Fig. 2.4b using the Wiener filter and the RL algorithm. The RL iteration scheme
enables to perform a thick slice reconstruction (in-focus slice shown, details in text).

The maximum achievable collection efficiency is 50%, as only the light propagat-
ing towards the detection objective can be captured. Note that this is different
when two opposing objectives are being used, such as in 4Pi microscopy [48].
Changing the immersion medium n does alter the collection efficiency of the sys-
tem, but it is not possible to capture more than 50% of the emitted light when
going for larger n. Changing from an air to an oil immersion objective makes
sense with respect to increasing the spatial resolution of the system, but does not
improve the photon-limited SNR when the ratio NA/n is maintained. In the case
of the two OTFs shown in Fig. 2.2a in blue and magenta, the reduction in photon
collection is given by ≈ 21% (instead of the often assumed 25%), when reducing
the NA by a factor of two. As the relative SNR also decreases by a factor of two,
it is crucial to perform imaging with an objective with the highest NA possible.
Once NA/n = 1.0 is reached, however, an improving of SNR by maximizing the
collection efficiency of the detection objective is not possible anymore.

Longer exposure time or higher illumination power:

Instead of capturing more photons by increasing the collection efficiency of the
detection system, it is also possible to adjust external parameters to essentially
achieve the same. One example would be to increase the exposure time of the
detector. Doubling the exposure will double the amount of detectable photons
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and hence increase the SNR by a factor of ≈ 41%. Which is the same enhance-
ment as averaging two consecutively acquired images with the shorter exposure
time. However, both approaches come at the cost of reducing temporal resolu-
tion, which is detrimental for any recording of fast processes. Additionally they
do increase the photon bleaching per frame [49]. Another approach to obtain
more photons could be to increase the excitation power. When dealing with flu-
orescence this is not very suitable as each fluorophore only yields on average a
fixed number of photons before its destruction due to photo-induced bleaching
[50]. Additionally it is clear that the goal of an idealized imaging setup is to affect
the sample only minimally, due to the impinging radiation. To warrant compara-
bility we assume that the sample always emits a given number of photons.

2.4.2 Using computational reconstruction

Instead of achieving an improved SNR directly in the measurement process, it is
also possible to use computational reconstruction algorithms to improve SNR in
a post-processing step. Those methods require assumptions on image formation
and noise characteristics, which when not met in reality, will lead to reconstruc-
tion artifacts. The used a priori knowledge enables algorithms to infer more infor-
mation from the acquired data than initially observable. However, some caution
needs to be exercised when applying those methods as the unwanted artifacts are
not always identified as such easily.
In this chapter deconvolution is the type of image reconstruction which is intro-
duced, a technique that aims to invert the imaging eq. 2.5. With this an estimate
of the underlying sample structure Sest can be found. Due to the band-limit im-
posed onto the measured data (originating in the diffraction limit of light) and
the presence of noise, this inversion cannot be done by simply computing:

S̃est(k⃗) =
M̃(k⃗)
h̃(k⃗)

(2.52)

as this would lead to noise amplification and render the reconstruction useless.
To circumvent this problem two different strategies are introduced here: Wiener
filtering [51] and iterative maximum likelihood reconstruction using the Richard-
son Lucy (RL) optimization strategy [52, 53].
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Wiener filter based reconstruction:

This approach uses a simple filtering process to improve image quality. The fil-
tered result Sest minimizes the mean-square error norm ε according to:

ε(r⃗) = ⟨|S(r⃗)− Sest(r⃗)|2⟩ (2.53)

The choice of ε originates directly from the Gaussian noise model with constant
variance which is implicitly assumed (see p. 107 in the appendix). Note that in
this derivation the data in principle can be of arbitrarily high dimensionality.
The filtering process is performed in Fourier space as a multiplication with the
Wiener filter W̃, so that the estimate in real space is given as:

Sest(r⃗) = F−1
dim

{︃
W̃(k⃗) · M̃(k⃗)

}︃
(2.54)

The appendix (p. 107) shows the derivation of the Wiener filter which yields:

W̃(k⃗) =
h̃∗(k⃗)

|h̃(k⃗)|2 + K̃(k⃗)
(2.55)

with ∗ being the complex conjugate and K̃ a regularization parameter, given as:

K̃(k⃗) =
⟨|Ñ (k⃗)|2⟩
|S̃(k⃗)|2

(2.56)

In practice the regularization parameter K̃ is often set to be a constant value,
which is typically found empirically. Figure 2.6b (blue frame) shows the recon-
struction results for three regularization values (K̃ = 0.001, 0.01, 0.1) when the
noisy image from Fig. 2.4b (bottom right, scale bar = 1 µm) is used as the in-
put. When K̃ is set too low, the reconstruction will mainly result in amplified
noise artifacts. Increasing K̃ reduces those, but comes at the cost of degrading the
reconstruction quality. Meaning that the sample estimate remains blurred.

Richardson Lucy deconvolution:

A more advanced deconvolution method is based on the work of Richardson [52]
and Lucy [53], which is an iterative algorithm based on Poissonian noise. A gen-
eral derivation can be found in the appendix (p. 109). Note that the RL-algorithm
guarantees a positivity constraint on the sample estimate, which exploits prior
knowledge and leads typically to good reconstructions.
The algorithm begins with the initialization of the unknown sample structure
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est1. This is typically done by using the average of the measurement data M.
Step 1 of the iteration is to convolve the current estimate with the given PSF h(r⃗):

Step 1: convEstl(r⃗) = estl(r⃗)⊗ h(r⃗) (2.57)

Hence convEstl represents the corresponding image when the current sample es-
timate estl is used as the unknown object. This is compared with the measured
data by computing the ratio:

Step 2: ratiol(r⃗) =
M(r⃗)

convEstl(r⃗)
(2.58)

In case convEstl is close to being the real unknown sample, the ratio will approach
unity. Otherwise ratiol will slightly deviate from 1, and this deviation is back-
projected into sample space by convolving (again) with a point-mirrored PSF:

Step 3: convRatiol(r⃗) = ratiol(r⃗)⊗ h(−r⃗) (2.59)

The final step is to multiply convRatiol with the current estimate:

Step 4: estl+1(r⃗) = estl(r⃗) · convRatiol(r⃗) (2.60)

Yielding the estimate of the following iteration, which in summary yields:

estl+1(r⃗) = estl(r⃗) ·
[︃

M(r⃗)
estl(r⃗)⊗ h(r⃗)

⊗ h(−r⃗)
]︃

(2.61)

The challenge is to choose an appropriate number of iterations, as too many iter-
ations will cause noise amplification. In a simulation this can be done by analyz-
ing the normalized cross-correlation (NCC) and stopping the algorithm when a
maximum is reached (more details in the appendix p. 111). The Richardson-Lucy
update scheme typically requires many iterations to yield a good result. An accel-
eration technique [54] and a damping mechanism [55] (to reduce noise artifacts)
will be introduced in sec. 4.3.2, where they play a crucial role.
In Fig. 2.6b the reconstruction results of processing the noisy image from Fig.
2.4b (bottom right) using RL deconvolution are shown in the red frame. When
only a 2D image & PSF is used (thin slice, 5 accelerated iterations), the reconstruc-
tion is able to remove some of the out-of-focus blur, but fails at improving the
sharpness of the in-focus structures. However, when the 3D PSF is available a
three-dimensional reconstruction from a single 2D image is possible, termed a
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thick slice deconvolution. For this the measurement M is embedded into a 3D
stack and set to zero everywhere except the middle slice (see Fig. 2.6b bottom).
The RL reconstruction method is able to compute a 3D estimate of the underlying
sample structure, which gives the algorithm the possibility to assign some of the
blur to planes which are out-of-focus. This helps to improve the image quality as
can be seen in Fig. 2.6b (20 accelerated iterations).

2.5 Summary and discussion

In this chapter the theory on how object information is transmitted in an incoher-
ent imaging system has been introduced. The imaging device acts as a lowpass
filter in Fourier space and limits high spatial frequencies to be transferred. Be-
sides that, widefield detection is corrupted by out-of-focus blur, which further
decreasing the image quality. Shot noise limits the imaging performance and oc-
curs in Fourier space as a noise floor, which is proportional to

√
p (with p being

the total number of expected photons). As the signal scales linearly with p, the
SNR can be improved by capturing more photons. The SNR in Fourier space is
monotonically decreasing in terms of spatial frequencies. Meaning that small and
fine details in the image will mainly be affected by noise, resulting in an effective
resolution limit. This poses a problem as the general goal of imaging is to cap-
ture information with high spatio-temporal resolution, which in itself is limited
to a small number of detectable photons [56]. An SNR enhancement automat-
ically comes with improved contrast and detectability in single image acquisi-
tions. Therefore it is quite crucial in any form of imaging application.

Realizing an SNR enhancement is typically achieved by: 1) collecting more pho-
tons; 2) using computational reconstruction methods. One limiting factor to cap-
ture light in a microscope is the detection NA of the objective. When NA/n = 1.0
is reached the collection efficiency reaches its maximum. Capturing more pho-
tons by increasing the exposure time of the detector is another way to enhance
SNR, but comes at the cost of reduced temporal resolution and enhanced photo-
bleaching. Just as intensifying the illumination creates a better SNR, but might
be detrimental to the sample, especially when fluorescence is employed (photo-
bleaching). In Fig. 2.5b it has been shown that improving SNR without requiring
additional photons can lead to a much higher effective resolution, especially in
the low photon count region. Hence improving the SNR on a hardware basis
considering a finite number of photons, without sacrificing temporal resolution,
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is the motivation for the first part of this thesis. Additionally computational im-
age reconstruction shows some strong capability to enhance SNR and can also
be applied to already captured data. However, for it to work properly, assump-
tions of the underlying image formation and noise models need to match reality.
Otherwise unwanted artifacts will be introduced, which might even be hard to
discern from normal image content. However, a goal of this thesis is to combine
both, a SNR improved detection scheme and appropriate computational meth-
ods, to further improve the obtainable image quality.
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Chapter 3

Fluorescence microscopy

This chapter introduces the concept of splitting & recombination as a tool to im-
prove the SNR in imaging, without requiring additional photons. This is done
in the context of fluorescence microscopy, a form of incoherent imaging often
employed in biomedical research. Four different splitting mechanisms are being
investigated in detail: polarization, wavelength, pupil and illumination splitting.
Each of these approaches will yield a respective SNR improvement, which is an-
alyzed theoretically and verified experimentally.
In the beginning of this chapter, the basics on fluorescence as the underlying con-
trast mechanism in modern microscopy systems are introduced. This is followed
by a general explanation of the splitting & recombination concept, using the po-
larization splitting as an example. Two different computational recombination
techniques are presented: weighted averaging in Fourier space and multiview
deconvolution. The three remaining chapters introduce the other splitting mech-
anisms (splitting the fluorescence emission, the detection pupil and the illumina-
tion) in more detail. In each a theoretical and experimental analysis is presented
and discussed. The chapter ends with a short summary and overall discussion.

3.1 Fluorescence as a contrast mechanism

Modern light microscopes rely on fluorescence as their main source of contrast, as
it enables researchers to label individual parts of their biological sample under in-
vestigation with high specificity [57, 58]. Which is not reachable when employing
absorption or scattering alone. Fluorescence yields good contrast as only those
regions which have been labeled with fluorophores can actually emit photons.
However, the obtainable number of photons is limited by the emission character-
istics of each fluorescent marker (e.g. by photobleaching [35]). The limited num-
ber of detectable photons classifies this type of imaging into the photon-limited
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regime. Hence improving the SNR will have a positive impact on the usability of
many fluorescence imaging methods and is further pursued.

3.1.1 Visualisation using the Jablonski diagram

Fluorescence is best understood by looking at a Jablonki diagram [59], which
shows a simplified representation of the distinct energy levels in a fluorescent
molecule. Figure 3.1a gives an example.

a b

Figure 3.1: a Jablonki diagram showing different energy levels and transitions typical in fluo-
rescence microscopy [59]. Laser light with the correct wavelength, fitting the energy gap ∆E
between two states, excites the fluorophore (orange) [60]. After some internal relaxation (red),
these molecules fall back to the vibrational ground state of S1 [61], from which fluorescence emis-
sion occurs. The emitted radiation has a slightly different wavelength which is termed the Stokes
shift [62] of the fluorophore. Note that the emission itself is broad, as there exist many possible
transitions (green) for falling back to the ground state of S0. This can also be seen in the emission
spectra in b (DAPI; taken from [63]). For a successful use of fluorescence the microscope has to
be equipped with spectral filters: excitation (blue); dichromatic (red) + emission filter. The latter
further limits the already restricted number of detectable photons p, hence the SNR.

The two bold horizontal lines represent two distinct energy levels in the fluores-
cent molecule: the ground state S0 and the electronically excited state S1. Both
are made up of several vibrational states, which allows for a multitude of differ-
ent transitions between the S0 and S1 state. Molecules can get excited by light
with a wavelength that correpsonds to the energy gap ∆E (orange) between both
transition states, given by [60]:

λ =
hc
∆E

(3.1)

with h being Planck’s constant and c the speed of light in vacuum.
The excited molecules lose energy through relaxation (red) and end up in the
vibrational ground state of the electronically excited state S1 [61], from which
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fluorescence gets emitted (green) at a different wavelength (termed Stokes shift
[62]). The emitted light consists of a broad wavelength range, as there are many
energetically possible transitions available (lower limit given for ∆E = S1 − S0).

3.1.2 Excitation and emission spectra

Overall this leads to excitation and emission spectra similar to those shown in
Fig. 3.1b, which are taken from the database FPbase ([63], www.fpbase.org). Be
aware that the database does not provide in what units these spectra are given,
hence in the following we will assume that they are represented as a photon den-
sity (photon number per wavelength). A certain broadness and asymmetry is
noticeable in most fluorescence spectra. The area under the emission curve is
proportional to the total number of emitted photons p. However, the use of fluo-
rescence in an imaging setup requires a strong separation between the excitation
and emission light. This is done using spectral filters, whose spectral ranges are
indicated in Fig. 3.1b top. Note that the use of an emission filter further reduces
the already limited number of measurable photons p in fluorescence microscopy,
hence additionally restricting the achievable SNR.

3.2 General idea: splitting & recombination

As has been shown in sec. 2, improving the SNR will yield in an enhanced image
quality. Experimental methods to achieve this usually require to capture more
photons, hence inevitably come with drawbacks such as reduced temporal res-
olution and increased photobleaching. Note that in principle it does not matter
whether the photons are collected using an increased exposure time, or whether
they are split into multiple (sub-) images which are part of a time series. Each of
those represent a realization of the noise process, whose expectation value E of
the measurement data M is given for widefield illumination by:

E(r⃗) = S(r⃗)⊗ h(r⃗) (3.2)

This means that one possible way to improve the SNR is to acquire different re-
alizations of the noisy M and recombine them by averaging. Of course the only
way to create those realizations is by repeating the measurement, e.g. by record-
ing a time series. In this thesis the idea is to create different sub-images not by
sequentially capturing images but by directly splitting image information during
a single acquisition process. This will differ compared to the previous approach

www.fpbase.org
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in the sense that each sub-image will have a different expectation value. How-
ever, using more advanced computational methods it is possible to recombine
the sub-images in a way, which improves the SNR performance. Overall this
yields an SNR enhancement which is achieved without the need to capture more
photons. Meaning that instead of acquiring a single image with a finite photon
budget in the traditional way (no splitting), it is better to split & recombine the
photon budget. A comparison of both approaches is depicted in Fig. 3.2.

Figure 3.2: Schematic diagram indicating the difference between traditional imaging (top) and
the splitting & recombination approach (bottom). Top: in traditional imaging information about an
unknown sample is obtained via an optical system, forming a single image on a detector. The
general idea is to split the image information to simultaneously obtain several (sub-) images.
Different ways how to realize the splitting are described in the rest of chapter 3. All multiple
images show mutually and spatially differing SNR, which are then subsequently computationally
recombined into a final image with an improved SNR.

Traditional imaging (top) employs an optical system (e.g. microscope) to transfer
sample information into image space (green). Instead of transferring the informa-
tion directly onto the detector, a splitting into multiple simultaneously acquired
sub-images (bottom) is proposed. Each of those will carry mutually differing SNR.
Subsequent computational recombination (orange) yields a final image with im-
proved SNR that does not require to capture more photons, and is equivalent in
temporal resolution to the traditional approach. Different ways how to realize
such a splitting will be discussed in the following.

3.2.1 Creating mutually differing sub-images

For the splitting & recombination approach to work, it is important to create sub-
images with mutually differing SNR. For example, a 50/50%-beamsplitter in the
infinity path of a microscope will fail to do so, as the two resulting sub-images
will be identical. Therefore, splitting & recombination is explained using a more
suitable example: the polarization dependency of the PSF.
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In laser manufacturing [64] or laser scanning microscopy (LSM) [65] it is well
known, that the shape of a focused laser spot can be controlled via the polariza-
tion of light in the BFP of the focusing objective. This is due to lights vectorial
nature and a geometric effect introduced due to the required tilt of the light rays
towards the focus, which generates differences in their interference capability.
The shape of the PSF depends on this interference and therefore can be indirectly
manipulated using the polarization state of the laser in the BFP. A detailed expla-
nation on this effect can be found in the appendix (p. 113).
Note that this is also true when light is detected from a point source, instead of
being focused. The reciprocity theorem [33] states that whenever light encounters
diffraction (e.g. when it is focused), the role of light source and point of obser-
vation can be interchanged. Meaning that light emitted by a point source and
analyzed in the infinite path of the microscope, is equivalent to a collimated laser
(source) being focused into a small point. Detecting different polarization states
of light will yield a mutually differing SNR in both sub-images, compared to the
unpolarized (reference) case. For example: linearly x-polarized light leads to a
narrowing of the PSF in the y and a broadening in the x direction with respect to
unpolarized light (see inset in Fig 3.3 1-3; vice versa for y-polarization). Note that
the idea of splitting & recombining light with respect to its polarization state was
conceived by Rainer Heintzmann and further investigated by myself.

The method used for simulating the vectorial PSF is from [32], with λ = 520
nm, NA = 1.4 and p = 10000 (unpol.). The emitted light is split in the BFP of
a microscope objective into two orthogonal linear polarization states (e.g. using
a polarizing beamsplitter) and then convolved with a spokes target to create the
two sub-images. With these, the SNR is obtained according to eq. 2.29 using 100
realizations of each measurement. The sub-images will differ in information con-
tent, e.g. the x-polarized image will show an improved modulation of the vertical
oriented spokes pattern and a worsened modulation along the horizontal direc-
tion (vice versa for the y-polarization). Recombining both by a simple summation
will yield the result shown in Fig. 3.3a 4), which is identical to the reference case
(unpolarized; 1). Therefore, this type of recombination is not suitable, as it does
not incorporate the mutually differing SNR into the recombined result.

3.2.2 Computational recombination

To make full use of the available information more sophisticated recombination
techniques need to be applied. In this section two such methods will be discussed:
weighted averaging in Fourier space and multiview deconvolution.
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a b

Figure 3.3: a Polarization splitting as a first example of the splitting & recombination approach.
Displayed is the SNR calculated from 100 measurements using eq. 2.29. The mechanism used is a
polarization dependence of the (vectorial) PSF. 1) Imaging of the spokes target with unpolarized
light (reference), we can see an isotropic blurring of spatial information, when comparing the hor-
izontal (green) and vertical (purple) marked regions. Splitting into x- and y-polarized light (2 -
3) leads to a narrowing of image information with respect to the reference case (see PSF shape in
inset, simulated using [32] with λ = 520 nm, NA = 1.4, p = 10000). Simply summing the two
sub-images 4), will give a result identical to the reference case (assuming same photon budget).
However, more sophisticated recombination techniques like weighted averaging 5) in Fourier space
or multiview deconvolution (6; 3 accelerated iterations) lead to a significant improvement in terms
of SNR. b Profile plot through the horizontal (green) and vertical (magenta) region indicate an
improvement of modulation, when comparing the recombined (red, black) to the reference data
(blue). Note that the deconvolution was limited to yield the same modulation as the split data
(green & magenta). More explanation regarding weighted averaging and multiview deconvolu-
tion is given in sec. 3.2.2 and sec. 3.2.2.

Weighted averaging in Fourier space

The general idea behind weighted averaging in Fourier space is to add all sub-
images according to their spatial frequency distribution, in such a way that the
SNR is maximized. This method has been extensively used for image reconstruc-
tion of SIM data by Kai Wicker [66] and Rainer Heintzmann [67].
It is clear from the previous example that the x-polarized image can contribute
more useful information regarding the vertical (green), but much less for the hori-
zontal (magenta) patterns. And vice versa for the y-polarization. In Fourier space
the two sub-images M̃1,2 are given as:

M̃1(k⃗) = S̃(k⃗) · h̃1(k⃗) + Ñ 1(k⃗)

M̃2(k⃗) = S̃(k⃗) · h̃2(k⃗) + Ñ 2(k⃗) (3.3)

where the subscript 1 denotes the x- and 2 the y- polarized image respectively.
The total information is split into two sub-images, so is the number of detected
photons per image. The noise floor in Fourier space varies with the total number
of photons and is essentially characterized as the standard deviation σM̃1,2

. The
sum of all sub-image variances needs to add up to unity (no photons are blocked):
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σ2
M̃1

+ σ2
M̃2

= 1 (3.4)

with the variances being normalized with respect to the unpolarized case.
The idea is now that for each spatial frequency, the recombined image Mwa is a
linear mixture of information from both sub-images M1,2. Mathematically this is
written as the following weighted sum [66, 67]:

M̃wa(k⃗) = w̃1(k⃗) · M̃1(k⃗) + w̃2(k⃗) · M̃2(k⃗) (3.5)

with w̃1,2 being the corresponding weights in Fourier space. Those determine
how much information each sub-image will contribute to the final image Mwa, for
each spatial frequency within the bandlimit of the detection system. The weights
are chosen in such a way, that the SNR of the reconstructed result is maximized
(see derivation on p. 114 in the appendix) and are given according to:

w̃i(k⃗) =
h̃∗i (k⃗)
σ2

M̃i

i ∈ {1, 2} (3.6)

The weights are the individual sub-OTFs (complex-conjugated) and scaled by the
respective noise variance in Fourier space. Figure 3.4a shows a visualization of
the distribution of the weighting for the polarization splitting example.

a b c

Figure 3.4: a Weighting for the two images from Fig. 3.3 2) & 3) in Fourier space (displayed is
|w̃1| − |w̃2|). Horizontal information is only taken from M1, whereas vertical information comes
only from M2. With this, weighted averaging is able to use the detected photons more efficiently. b
Left: |h̃| corresponding to the reference case (unpolarized, no splitting); right: noise-normalized
OTF |h̃wa,σ| after weighted averaging recombination. The latter shows an improved transfer
strength towards the high spatial frequencies. c Improvement factor (eq. 3.12) indicating that
polarization dependent splitting leads to an overall enhanced information transfer, especially to-
wards the horizontal and vertical spatial frequencies close to the cutoff kxy,max.

For the visualization, the difference |w̃1| − |w̃2| has been calculated, so that the
green/purple color in Fig. 3.4a indicates regions where the weighting is domi-
nated by M̃1,2 respectively. Note that vertical structures are reconstructed mainly
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from image M1 and horizontal information from M2. This symmetry can also be
seen in Fig. 3.3a, indicating the attempt to get the best out of both worlds.
However, the weighted averaged result M̃wa does not have a constant noise floor,
as its standard deviation is given according to:

σM̃wa
(k⃗) =

√︂
w̃1(k⃗)w̃∗

1(k⃗) · σ2
M̃1

+ w̃2(k⃗)w̃∗
2(k⃗) · σ2

M̃2
(3.7)

A noise normalization can be computed when M̃wa is divided by its standard
deviation, which yields:

M̃wa,σ(k⃗) =
M̃wa(k⃗)
σM̃wa

(k⃗)
=

w̃1(k⃗) · M̃1(k⃗) + w̃2(k⃗) · M̃2(k⃗)√︂
w̃1(k⃗)w̃∗

1(k⃗) · σ2
M̃1

+ w̃2(k⃗)w̃∗
2(k⃗) · σ2

M̃2

(3.8)

Giving us the noise-normalized weights according to:

w̃i,σ(k⃗) =
w̃i(k⃗)√︂

w̃1(k⃗)w̃∗
1(k⃗) · σ2

M̃1
+ w̃2(k⃗)w̃∗

2(k⃗) · σ2
M̃2

(3.9)

With this equation 3.5 can be written as:

M̃wa,σ(k⃗) = w̃1,σ(k⃗) · M̃1(k⃗) + w̃2,σ(k⃗) · M̃2(k⃗) (3.10)

An effective noise-normalized OTF is defined, according to the definition of E, as:

Ẽwa,σ(k⃗) =

⌜⃓⃓⎷ |h̃1(k⃗)|2

σ2
M̃1

+
|h̃2(k⃗)|2

σ2
M̃2

· S̃(k⃗) = h̃wa,σ(k⃗) · S̃(k⃗) (3.11)

Figure 3.4b shows |h̃|, the OTF of the reference case (no splitting) and the polar-
ization split and weighted averaged result |h̃wa,σ| side by side. They are depicted
with a γ-adjustment of γ = 0.5 and show an improved transfer strength of |h̃wa,σ|
towards the high spatial frequencies. For theoretical investigations on the per-
formance of the different splitting mechanism proposed in this thesis, a measure
comparing them to the reference case (no splitting) needs to be defined. This is
done by calculating the spectral improvement factor IF, given as:

IF(k⃗) =
|h̃wa,σ(k⃗)|
|h̃(k⃗)|

− 1 (3.12)

IF is a number deviating from 0, depending on improvement (> 0) or degradation
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(< 0) with respect to the reference case (IF = −100% being the maximum achiev-
able degradation as then h̃wa,σ = 0). The distribution of IF for the application of
polarization splitting is shown in Fig. 3.4c. Significant improvement can be seen
for frequencies corresponding to the horizontal and vertical direction, close to the
cutoff kxy,max. The enhancement reaches about 300% compared to the reference
case (corresponding to a SNR quadrupling for those particular frequencies), in-
dicating that the method of polarization splitting might be advantageous in the
detection of very fine structures, where a high NA is required. Additionally, no
spatial frequency experiences a negative IF, meaning that there is no loss of image
information compared to the reference case. Note that the improvement factor is
directly related to the previously introduced detectability D through:

Dwa −D ∝
∫︂ +∞

−∞
dk⃗ IF(k⃗) · h̃(k⃗) (3.13)

Hence IF expresses a difference in detectability, but maintains information on in-
dividual spatial frequencies which are otherwise lost in the definition of D.
Similarly, also a spatial improvement factor IFV in terms of the visibility V can be
defined, according to:

IFV (r⃗) =
Vwa,σ(r⃗)
V(r⃗) − 1 (3.14)

Which is useful when images containing periodic structures are being analyzed.
A result of the attainable SNR of the weighted average reconstruction method is
shown in Fig. 3.3a 5). An enhancement in terms of modulation depth becomes
more clear when looking at a line profile through the green & purple marked
regions, which is described in more detail in sec. 3.2.2.

Multiview deconvolution for image fusion

Another approach to recombine the split data is to perform image fusion via de-
convolution, which tries to find an estimate of the true underlying sample struc-
ture S. Both sub-images transfer information about S (see eq. 3.3), so that in
principle an iterative RL-deconvolution can be used for both images in parallel.
This will result in two correction factors (convRatioi), which need to be summed
[68], to yield the sample estimate Ŝ for the next iteration. The algorithm is de-
picted in Fig. 3.5 and starts with a first estimate est(1), which is the average value
of all measured sub-images (i.e. a constant).
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Figure 3.5: Graphical depiction of the multiview RL-deconvolution algorithm used for the com-
putational recombination of the split image data. Each iteration starts with an estimate (est) that
gets blurred using the different sub-PSFs h1,2. With this, two ratios (gray) with respect to the mea-
sured image data M1,2 are calculated. Both get blurred again by the point-mirrored h1,2, yielding
convRatio1,2, which get fused using weighted averaging in Fourier space (details in text). This
procedure can be described as a modification to the back-propagator of the RL-deconvolution,
similar to the work in [69]. A single correction factor convRatio (orange) is obtained, which is
then multiplied to the actual estimate and the next iteration begins. Note that the modification of
the back-propagator increases the convergence speed of the algorithm but in principle removes
the convergence guarentee of RL deconvolution.

From this sample estimate, the ideal images corresponding to the two sub-PSFs
h1,2 are being computed according to:

Step 1: convEst(l)1,2(r⃗) = est(l)(r⃗)⊗ h1,2(r⃗) (3.15)

with the superscript in round brackets denoting the current iteration number and
the subscript the sub-images. The convolved estimates are shown in green color
in Fig. 3.5. Following the main algorithm from sec. 2.4.2, two correction ratios
(gray) are given as:

Step 2: ratio(l)
1,2(r⃗) =

M1,2(r⃗)

convEst(l)1,2(r⃗)
(3.16)

Each ratio is convolved by the respective point-mirrored PSF, yielding:

Step 3a: convRatio(l)
1,2(r⃗) = ratio(l)

1,2(r⃗)⊗ h1,2(−r⃗) (3.17)

Note in Fig 3.5 how the two different correction factors clearly show the "hori-
zontal/vertical" properties from the previous polarization splitting example.
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The last step in the single view RL-deconvolution, is the multiplication of the
old sample estimate (est(l)) with the current correction factor (convRatio(l)). Be-
fore this can be done in the multiview version, a summation of both convRatio1,2

needs to be performed. Instead of computing an ordinary sum, a weighted ver-
sion is introduced here. With the basic idea very similar to the weighted averag-
ing approach from before: when convRatio1,2 are being fused, distinct spatial fre-
quencies need to be weighted differently to make better use of the obtainable in-
formation. Note that this procedure is similar to the work of [69] where the back-
propagator h(−r⃗) of the RL algorithm has been modified by multiplication with a
"Wiener-Butterworth filter". The general goal of the propagator modification is to
accelerate the convergence of the maximum likelihood reconstruction, but comes
at the cost of losing the convergence guarantee of the ordinary Richardson-Lucy
deconvolution. However, in all reconstructions obtained throughout this thesis
the proposed algorithm gave reasonable results, hence is regarded to be stable.
Mathematically the weighted summation in Fourier space is witten as:

Step 3b: convRatio(l)(r⃗) =
N=2

∑
i=1

(︃
F−1

dim

{︃
w̃i(k⃗) · Fdim{convRatio(l)

i (r⃗)}
}︃)︃

(3.18)

Note that steps 3a and 3b can be summarized by introducing the real space equiv-
alent of the Fourier weighting factors wi = F−1

dim{w̃i} :

Step 3: convRatio(l)(r⃗) =
N=2

∑
i=1

{︂
ratio(l)

i ⊗ [wi(r⃗)⊗ hi(−r⃗)]
}︂

(3.19)

The last step is to multiply convRatio(l) to the current sample estimate:

Step 4: est(l+1)(r⃗) = est(l)(r⃗) · convRatio(l)(r⃗) (3.20)

The final multiview deconvolution update equation is given according to:

est(l+1)(r⃗) = est(l)(r⃗) ·
N=2

∑
i=1

{︃
Mi(r⃗)

est(l)(r⃗)⊗ hi(r⃗)
⊗ [wi(r⃗)⊗ hi(−r⃗)]

}︃
(3.21)

Note that in the proposed algorithm the modification of the back-propagator
only takes place when multiple sub-images are used and that the correspond-
ing weights have some physical meaning behind them, as they are given by the
(scaled) sub-OTFs. This is different to the work of [69], where the modification of
the back-propagator is also applied when reconstructing single images and the
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parameters of the Wiener-Buttterworth filter need to be tuned by hand.
The result of the obtainable SNR in case of imaging the spokes target is shown
in Fig. 3.3a 6). To make a fair comparison the number of (accelerated) iterations
was set to 3, so that the observable modulation does not get bigger than the one
corresponding to the "recorded" sub-images. Note that this chapter is more about
introducing the concept of splitting & recombination and not about a complete eval-
uation of the true potential of polarization splitting.

Comparing visibility and detectability:

Figure 3.3b shows two line profiles of the green & magenta marked regions in Fig.
3.3a. Note that the split image data (green & magenta) always shows a strong en-
hancement in one particular direction and a very low modulation in the other. A
normal summation (cyan) will yield the same result as the reference case (unpo-
larized, no splitting). With weighted averaging (red) it is possible to go below the
conventional curve (blue) and maintain better modulation in all directions. A fur-
ther improvement can be reached when the multiview deconvolution approach
(black) is used, which is basically able to fuse both sub-images in such a way that
the maximum attainable modulation is preserved in both directions. Values of
visibility V and spatial improvement factor IFV are given in Tab. 3.1:

Unpol. x-pol. y-pol. Summation Weighted Avg. Multiview deconv.
Vvert. 7.92 12.08 3.94 7.92 9.02 11.86
IFV ,vert. 0.00 52.56 -50.23 0.00 13.97 49.87
Vhoriz. 7.75 3.93 11.76 7.79 8.83 11.61
IFV ,horiz. 0.00 -49.22 51.76 0.52 13.92 49.83
D / (a.u.) 17.15 12.13 12.13 17.15 18.07 -

Table 3.1: Visibility V and spatial improvement factor IFV in the vertical and horizontal direction
and the detectability D for the unpolarized, x- and y-polarized, as well as the recombined data
(summing, weighted averaging and multiview deconvolution). Values are given in percent.

The values are given in percent and show that a maximum improvement is reached
at ≈ 50% using the multiview deconvolution approach. Also weighted averag-
ing is able to enhance the visibility but only by ≈ 14%, while normal summing
does not yield an improvement at all. Additionally the detectability D has been
computed for each imaging modality and also here an improvement can only be
observed when splitting & recombination is employed.
Altogether it has been shown that it makes sense to include splitting & recombina-
tion into the imaging process. The challenge is now to find appropriate splitting
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scenarios which can be implemented in a real experimental setup and to inves-
tigate how much improvement they are capable of. This is done in this thesis
with the remaining three splitting mechanism: spectral splitting of fluorescence
emission, spatial splitting of the detection pupil and splitting of the illumination.

3.3 Splitting the fluorescence emission

As has been shown in chapter 3.1, the emitted fluorescence signal occupies a spec-
tral region of about 50 - 100 nm in width. A measure of spatial resolution is the
FWHM of the PSF, which depends on the emission wavelength of the fluorophore
(see eq. 2.8). Hence, the observable PSF should be an incoherent superposition of
many single wavelength PSFs, scaled by the emission spectrum and the influence
of the spectral filters in the detection beam path. It will be shown that the asym-
metric shape of emission spectra will lead to spatial broadening of the measurable
PSF FWHM, compared to a PSF obtained for the peak emission wavelength. Such
a broadening effect already indicates, that it might be useful to employ wave-
length splitting, to be able to recombine the split data in a more meaningful way.
Note that the idea of wavelength splitting was conceived and further investigated
by myself, under the guidance and help of Rainer Heintzmann.
In this section first the effects of fluorescence emission on the width of the detec-
tion PSF is investigated, followed by a simulation showing a degradation of de-
convolution results when spatial broadening is not being accounted for. A SNR
improvement can be achieved when wavelength splitting is employed, which is
theoretically and experimentally studied thereafter and even yields and improve-
ment when a perfectly symmetrical emission spectrum is used.

3.3.1 PSF broadening due to fluorescence

Fluorescence emission typically occupies a wavelength region of about 50 - 100
nm in width and exhibits an asymmetric shape towards longer wavelengths. This
has already been discussed as a result of the underlying mechanism of fluores-
cence in chapter 3.1 (e.g. Kasha’s rule [61]). Fig. 3.6a shows three examples of
spectra (Alexa-488, DAPI and mPlum; from [63]). It is assumed that such spectra
are normalized to show the emitted photons per wavelength (= photon density)
on the y-axis. To describe such spectra ε(λ) mathematically, a log-normal distribu-
tion, similar to the work in [70, 71, 72], is used:

ε(λ) = exp
(︃
− ln 2

s2

[︂
ln
{︂

1 + 2
s
w
(λ − λmax)

}︂]︂2
)︃

(3.22)



Chapter 3. Fluorescence microscopy 41

With λmax being the peak emission of the fluorophore, w the spectral FWHM and
s the shape parameter, indicating the skewness of the distribution. Note that for
s → 0 the distribution becomes a symmetric Gaussian (see p. 118 in the ap-
pendix). The area under the curve A =

∫︁
dλ ε(λ) is not normalized to unity and

will appear later as a parameter to determine the spatial broadening effect.
The results of a least-square fit of each spectrum are shown in the following table.

Alexa-488 DAPI mPlum
s 0.56 0.42 0.37
λmax / (nm) 519 457 647
w / (nm) 43.61 93.87 87.64

Table 3.2: Results of least-squares fitting the log-normal distribution to the emission spectra ε(λ).

Figure 3.6b depicts the fitted curve of DAPI in more detail. The resolution of
an imaging system is proportional to the width of the corresponding PSF, which
scales linearly with the respective emission wavelength. This is schematically
depicted as the three small Gaussians which get broader towards longer wave-
lengths, but also scale their respective area according to the emission spectrum.

a b

Figure 3.6: a Fluorescence emission spectra (marker) for three different fluorophores (Alexa-488,
DAPI and mPlum; taken from [63]) and the corresponding least-squares fitted log-normal dis-
tribution (lines). The spectral curves are assumed to be proportional to the photon number per
wavelength (= photon density). Note that fluorescence is accompanied by a broad and asym-
metric emission, as described in sec. 3.1. b Fitted spectrum for DAPI including three Gaussians,
indicating the wavelength scaling of the detection PSF width. The vertical lines represent the
different wavelength bands, which are later used for the wavelength splitting in sec. 3.3.3.

As typical imaging sensors only detect intensities, all the spectral information is
captured at once, which means that the effective PSF h(r) of such a system can be
described as an incoherent sum of individual "single wavelength" PSFs h(r; λ),
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weighted with the corresponding emission spectrum (with r = |r⃗|):

h(r) =
∫︂ λ+

λ−
dλ ε(λ) · h(r; λ) (3.23)

with λ± being the limits of the recorded spectrum or an emission filter.
Equation 3.23 describes a broadening of the PSF h(r) compared to h(r; λmax),
which is the PSF corresponding to the peak emission of the fluorophore. This
is due to the fact that there are always more longer than shorter wavelengths
present in the spectrum, which contribute broader PSFs than h(r; λmax) to the
summation. Nevertheless, h(r; λmax) is often taken to be the theoretical PSF in
an imaging experiment when no experimental data is available, neglecting the
influence of the broad emission spectrum.
We now estimate the order of magnitude of broadening that is to be expected
from this effect. To do this equation 3.22 is rewritten into:

ε(λ) = exp
(︂
−a [ln {1 + b(λ − λmax)}]2

)︂
(3.24)

with the two constants a and b given according to:

a = ln 2/s2 (3.25)

b = 2s/w (3.26)

Next h(r; λ) is assumed to be a simple Gaussian. The best representation in a least
squares sense is given according to [73] as:

h(r; λ) = exp
(︃
− r2

2σ2
r

)︃
(3.27)

with σr modeling the wavelength dependent scaling of the width of the Gaussian:

σr = 0.21
λ

NA
(3.28)

Which is related to the FWHM value ∆r according to:

∆r = 2
√

2 ln 2 · σr (3.29)

Lets introduce another constant C = NA2/(2 · 0.212) and rewrite the single wave-
length PSF model into:

h(r; λ) = exp
(︃
−C

r2

λ2

)︃
(3.30)
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The goal is now to solve the integral in eq. 3.23, using the Gaussan PSF model.
To do this we express h(r; λ) as the following Taylor series:

h(r; λ) ≈ h(r; λmax)

[︃
1 + 2

Cr2

λ3
max

(λ − λmax)

]︃
(3.31)

And introduce some constants c(r) and d(r), which depend on r:

c(r) = h(r; λmax) (3.32)

d(r) = 2C · r2/λ3
max (3.33)

So that eq. 3.31 can be simplified to:

h(r; λ) ≈ c(r) [1 + d(r) · (λ − λmax)] (3.34)

With this, the aforementioned integral can now be solved, which yields:

h(r) ≈ c(r) [A + d(r) · (λCoM − A · λmax)] (3.35)

with the two variables A and λCoM which are the area under the ε(λ)-curve (pro-
portional to the total number of detectable photons p) and the "center-of-mass"
wavelength respectively. Both parameters are defined as:

A =
∫︂ λ+

λ−
dλ exp

(︂
−a [ln (1 + b(λ − λmax))]

2
)︂

(3.36)

λCoM =
∫︂ λ+

λ−
dλ exp

(︂
−a [ln (1 + b(λ − λmax))]

2
)︂
· λ (3.37)

The analytical solution to both integrals is given in the appendix (p. 118) and
leads to the following approximation of the full spectrum PSF h(r):

h(r) ≈ h(r, λmax)

[︄
A +

NA2

0.212 · r2

λ3
max

(λCoM − A · λmax)

]︄
(3.38)

From the structure of eq. 3.38 it is noticeable that h(r) can be approximated as a
conventional (scaled) Gaussian PSF A · h(r; λmax) plus a broadening factor. The
latter can be expressed as the summation of the two functions f and g:

h(r) ≈ A ·
[︁

f (r) + g(r)
]︁

(3.39)
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which are given according to:

f (r) = h(r; λmax) (3.40)

g(r) = 2CD · r2

λ3
max

exp
(︃
−C · r2

λ2
max

)︃
(3.41)

To approximate how this spatial broadening affects the FWHM of the measurable
PSF h(r) a linear interpolation scheme is used, schematically shown in Fig. 3.7a.
The blue curve represents f (r) and r1/2 the location of its FWHM. To character-
ize a linear relationship around this FWHM region, an additional point rmax is
needed. Which is set to be the maximum of g(r), depicted in green in the small
inset. The corresponding intensity values of h(r) are given as f (r1/2) + g(r1/2)

and f (rmax) + g(rmax) at these particular locations. A linear model (red line) be-
tween those two points can be used to find the FWHM position r1/2;B of h(r) (see
p. 119 in the appendix for more details). Comparing this to the old FWHM value
∆r yields a broadening B of:

B = ∆rB − ∆r =

= 2
√

ln 2
λmax√

C

[︄
m −

√
ln 2 ·

√
CD/λ2

max
m

− 1

]︄
(3.42)

with m being the slope of the linear expression. The broadening is depicted in
Fig. 3.7b, where the peak emission model h(r; λmax) (black) is compared to the
broadened case; the simulated h(r) (blue) and to the theoretical approximation
hest(r) (red dotted). The latter describes the FWHM of the broadened result well,
but is not able to reproduce the side lobes of a typical PSF.

Having established a theoretical expression of the broadening in form of eq. 3.42,
the three different fluorophores shown in Fig. 3.6a can be compared. This is
done in Table 3.3, for two different imaging optics (NA = 0.80 air and NA = 1.40
oil immersion) which were simulated using [32]. The theoretical prediction is
compared to the numerical result which was obtained by fitting a Gaussian to
the simulated PSF data, yielding a standard deviation which was converted into
the corresponding FWHM. Note the good agreement with the numerical results
that shows a spatial broadening on the order of 10 nm. When comparing the
theoretically predicted broadening to the FWHM ∆r of the peak emission-only
PSF h(r; λmax), it can be seen that B does not depend on the detection optics (NA
and n). The broadening is on the order of 4% with respect to ∆r for the evaluated
emission spectra, hence will be difficult to detect in most imaging applications.
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a b

Figure 3.7: a Schematic on how to find the interpolated value of the broadened FWHM. The
FWHM region of f (r) = h(r; λmax) (blue) is depicted in small on the top right. r1/2;B corresponds
to the FWHM value of the broadened PSF (red) and can be found using a linear fit between two
points (r1/2 and rmax). b Comparison of different PSFs: peak emission h(r; λmax) (black), broad-
ened simulated h(r) (blue) and theoretical approximation hest(r) (red dotted). The inset shows a
zoomed view of the FWHM region and indicates the spatial broadening effect.

NA/n ∆r / (nm) Bnum. / (nm) Btheor. / (nm) Btheor./∆r

Alexa-488
0.80/1.00 320.81 10.79 11.04 0.034
1.40/1.52 183.32 6.41 6.31 0.034

DAPI
0.80/1.00 282.49 12.46 13.34 0.047
1.40/1.52 161.42 7.40 7.62 0.047

mPlum
0.80/1.00 399.94 11.22 11.19 0.028
1.40/1.52 228.56 6.62 6.39 0.028

Table 3.3: Comparing the broadening of the theoretical prediction Btheor. with numerical results
Bnum., for the three different fluorescent structures and two optical detection configurations.

Instead of looking at three specific fluorophore examples, the general depen-
dency on the FWHM w and the skewness s for an emission spectrum (modeled
as a log-normal curve) is investigated. Figure 3.8a shows the relative broadening
Btheor./∆r for a variety of values of w and s (with λmax = 457 nm).

The general trend shows that especially the asymmetry of the spectrum has a
strong influence on the spatial broadening of the detection PSF. Hence, choos-
ing a wide but completely symmetric emission spectrum is more beneficial than
looking for the narrowest ε(λ)-curve. Nevertheless, perfectly symmetric spectra
do not exist in reality, as the molecule bandstructure forbids this.
Typical fluorescence imaging setups are often equipped with a bandpass (BP) fil-
ter in the emission path. Those are characterized by a center wavelength λcenter

and a bandwidth ∆λ, e.g. BP450/50 is equal to a bandwidth of ∆λ = 50 nm
around λcenter = 450 nm. Fig. 3.8b indicates the dependency of the broad-
ening when such emission filters are used. Two different filter sets (excitation,
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a b

Figure 3.8: a Dependency of the relative broadening Btheor./∆r on the shape of the emission spec-
trum, given as the FWHM w and the skewness parameter s. Especially the latter shows a strong
influence on the observable spatial broadening B, reaching values of up to 9%. b In typical fluo-
rescence imaging setups an emission bandpass filter is used (centered at λcenter with a bandwidth
∆λ). The dependency of the relative broadening Btheor./∆r shows that using such an emission
filter reduces the spatial broadening, with respect to the peak emission case h(r, λmax), and can
even revert it (= narrowing). This effect is depicted using two commercially available filter sets
(Zeiss/Edmund Optics marked orange/magenta). However, the use of an emission filter further
reduces the number of detectable photons, hence the SNR.

dichroic & emission) for imaging DAPI have been chosen (Zeiss/Edmund Op-
tics marked orange/magenta) and are compared with and without the use of the
respective emission BP. Without the bandpass a relative broadening Btheor./∆r of
about 6% − 7% is obtained. However, including the BP filter in the detection will
lead to a "negative" broadening, i.e. narrowing with respect to the peak emission
only PSF h(r, λmax). This is because the emission filter have a center wavelength
λcenter < λmax, meaning that longer wavelengths get blocked more. Instead of
broadening the effective PSF h(r), a narrowing is observed, as this effect shifts the
asymmetry in the incoherent superposition towards the narrower point-spread-
functions. However, the use of an emission filter reduces the number of pho-
tons which can reach the detector and therefore further limit the achievable SNR,
which is already restricted due to photobleaching [49]. Including a BP filter in the
imaging setup will reduce the broadening but also inevitably decrease the attain-
able SNR. Image reconstruction techniques can increase the SNR but will only
yield optimal results when the correct PSF h(r), instead of h(r; λmax) is used.

3.3.2 Degradation of image deconvolution

As has been shown in chapter 2.4.2, deconvolution is able to enhance the SNR.
However, it only unfolds its full potential when the correct PSF is known. In case
an experimental PSF is not available, a theoretical PSF is often calculated using
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a model such as [32]. Which typically requires information on the optical sys-
tem (NA & refractive index n) and the emission wavelength of the fluorophore
used. Often the peak emission λmax is taken, a parameter that is easily available
for many fluorescent markers. Of course the experimentally acquired image data
will be affected by the complete emission spectrum and spectral filters, not just by
λmax alone. When the wrong PSF model h(r; λmax) is used for image deconvolu-
tion (instead of h(r)), this will yield in non-optimal reconstruction results. To test
this, the imaging of a spokes target with a NA = 0.8 objective and p = 10000 pho-
tons has been simulated for DAPI. For each wavelength of the emission spectrum
the corresponding PSF was computed (using [32]) and summed to yield h(r), ac-
cording to eq. 3.23. With this the spokes target was convolved and Poisson noise
applied, yielding the (single) image M. In the next step the RL deconvolution
algorithm was used either with h(r; λmax) (peak emission-only) or h(r) as the cor-
responding PSF model, the iteration number for an optimal reconstruction was
again found by computing the normalized cross-correlation NCC (see p. 111 in
the appendix). The visibility of the image reconstruction for both models (black:
85; blue: 72 accelerated iterations) are shown in Fig. 3.9a.

a b

Figure 3.9: a Visibility obtained after a noisy spokes target is deconvolved using either the peak
emission-only PSF h(r; λmax) (black, 85 iterations) or the broadened full spectrum PSF h(r) (blue,
72 iterations). The latter achieves a stronger contrast at the medium to high spatial frequencies,
which can be attributed to the fact that h(r; λmax) overestimates the image information content for
those frequencies (see inset). b Creating mutually differing sub-images by wavelength splitting of
simulated spokes target (p = 10000). Top: three images (with and without noise) corresponding
to small, peak and large wavelength region. Note how the resolution gets worse with increasing
λ. Bottom: sum of the number of photons per each wavelength band indicates the asymmetric
characteristics of fluorescence emission (left); change in resolution and noise can also be seen
looking at the visibility curve (right).

Comparing both curves indicates that especially structures with medium to high
frequencies (towards the center of the spokes target), can be recovered with better
visibility when the correct PSF model h(r) is used for reconstruction. The wrong
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model h(r, λmax) (peak emission-only) overestimates the image information con-
tent at those frequencies, as depicted with the two corresponding OTFs in the
inset. Hence for any deconvolution algorithm to work correctly it is either re-
quired to know the experimental PSF, perform a blind-deconvolution [74] (much
more computationally expensive) or to include the PSF broadening effect into the
theoretical model and use h(r) instead of h(r; λmax).

3.3.3 Wavelength splitting improves SNR

As has been shown, fluorescence is linked to a spatial broadening effect, which
can be overcome when appropriate emission filters are used. However, this comes
at the cost of further reducing the number of detectable photons p and therefore
limits the achievable SNR. The goal is to capture all emitted photons but process
them in such a way that the spatial broadening can be reduced, hence SNR is im-
proved. To achieve this, the emission spectrum is split into multiple wavelength
bands, each corresponding to a single image. Fig. 3.9b shows three such im-
ages at peak emission and smaller/longer wavelengths, with (top) and without
(bottom) noise. The different semicircle indicate the smallest resolvable structure
dxy,min of the spokes target. An improvement in terms of resolution can be seen
towards smaller wavelengths, albeit worse SNR due to much lower emission in
this spectral region (see spectrum at bottom left). The same effect on resolution
is verified when the visibility for these three images are plotted together (bottom
right). In this simulation, the spectrum has been split into 15 wavelength bands.
The idea is to recombine them such, that the best trade-off between resolution
and SNR is obtained. Weighted averaging in Fourier space is one approach, the
corresponding effective OTF h̃wa,σ is plotted in Fig. 3.10a (magenta curve). It
is compared to the broadened case h(r) (blue) and to the OTFs describing the
wavelength split images h̃1,14. The corresponding PSFs are depicted on the left,
indicating the reduced width (≈ 7 nm with respect to h(r)) for the splitting &
recombination approach.

When looking at the OTFs in Fourier space it can be seen that the weighted av-
eraged result shows an improved transfer strength for all frequencies. This en-
hancement gets stronger the closer k gets to the cutoff kxy,max, as indicated by the
spectral improvement factor IF, which reaches values up to 200%. Table 3.4 com-
pares the FWHM values of the conventional ∆rB (no splitting, hence broadened)
and of the splitting & weighted averaged recombination approach ∆rwa,σ.
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a b

Figure 3.10: a PSFs and OTFs comparing when the full emission spectrum is used, with (green
& cyan) or without wavelength splitting (blue), and after weighted averaged recombination (ma-
genta). The latter results in an improved information transfer of all spatial frequencies. The spec-
tral improvement factor IF is isotropic and reaches values of ≈ 200 %, compared to the broadened
PSF. The PSFs have been normalized to unity, so that the change in FWHM is more easy to see.
b Optical setup of a laser scanning microscope with the ability to simultaneously capture spec-
tral information (such as the Zeiss LSM 880). A laser point illumination and the corresponding
point detection are scanned throughout the required FoV. For each scan position a grating dis-
perses the information such that different wavelength bands can be detected in parallel using an
array of point detectors. After scanning over the complete FoV, a λ-stack with spatial and spec-
tral information has been acquired. The system essentially acts as a confocal microscope. The
pinhole in front of the dispersive element removes out-of-focus light. For this specific experiment
the pinhole was fully opened, to be able to observe the effect of reducing the out-of-focus blur.
Experiments were performed at the ZAF in Jena with the help of Katharina Reglinski.

NA/n ∆r / (nm) ∆rB / (nm) ∆rwa,σ / (nm) ∆rB−∆rwa,σ
Btheor.

/ (%)

Alexa-488
0.80/1.00 320.81 331.85 328.31 32.07
1.40/1.52 183.32 189.63 188.10 24.25

DAPI
0.80/1.00 282.49 295.83 288.48 55.10
1.40/1.52 161.42 169.04 164.95 53.54

mPlum
0.80/1.00 399.94 411.13 403.06 72.12
1.40/1.52 228.56 234.95 231.93 47.26

Table 3.4: Comparing the FWHM of the broadened PSF ∆rB with the (effective) recombined result
of the wavelength split data ∆rwa,σ, for the three different fluorescent structures. The theoretical
predicted broadening Btheor. can be canceled by up to ≈ 70%.

The corresponding point-spread-functions are shown in Fig. 3.10a. It can be seen
that the theoretical predicted broadening Btheor. can be canceled by up to ≈ 70%,
in the case of mPlum. Note that an experimental verification of this resolution
change, which is on the order of ≈ 2% of the broadened FWHM ∆rB, will be
difficult. However, a more sophisticated image reconstruction method, such as
multiview deconvolution will show a stronger enhancement. A result in terms of
visibility for the multiview deconvolution (35 accel. iterations, NCC curve in p.
111) is shown as the magenta curve in Fig. 3.9a for DAPI. An improved contrast
at the very high spatial frequencies, which is an indicator for the improved SNR,
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can be seen. Note that in the aforementioned evaluation only considers the imag-
ing performance in the lateral direction. A 3D evaluation is omitted here. The
wavelength-scaling of the spatial resolution is also true along the axial direction,
which will lead to less out-of-focus contribution.

3.3.4 Experimental realization

To experimentally realize the wavelength splitting approach a more elaborate op-
tical imaging setup is required, as spatial and spectral information have to be
collected simultaneously. There exist techniques such as snapshot spectral imag-
ing [75], which use multi-lens arrays to obtain spatially sampled spectral data.
However, for the purpose of implementing a proof-of-principle experiment, a
commercially available alternative was used: the laser scanning microscope LSM
880 from Carl Zeiss AG [76] with the spectral detection unit QUASAR [77]. A
schematic diagram of its working principle is shown in Fig. 3.10b. The sample
is excited using a focused laser spot, which is scanned over the complete FoV to
yield the recorded image. The emitted signal at each point is captured (NA = 1.4,
n = 1.52), de-scanned, focused through the detection pinhole and collimated
with an additional lens. A grating is placed in the collimated beampath and dis-
perses the light onto a linear array of point detectors. Each of those is therefore
able to detect the image information at a different wavelength band and together
yields a λ-stack of spatial and spectral information at a very high splitting effi-
ciency (almost no loss compared to the non-split case). This system is intended
to be used as a confocal microscope. Hence, the effective PSF, without any addi-
tional smearing along λ, can be written as (see p. 121 in the appendix):

hCon f .(r; λ) =

[︃
hDet.(r; λ)⊗ p(r)

]︃
· hIllu.(r) (3.43)

with hDet.,Illu. being the detection & illumination (widefield) PSF and p the pin-
hole. The purpose of the pinhole is to reject out-of-focus light, unfortunately by
closing it the number of detectable photons and hence the SNR will be reduced.
To verify the ability to improve imaging performance (in terms of SNR) a sample
with known spatial structure is needed. In this thesis a fluorescent calibration tar-
get from Argolight [78] (Argo-SIM, Argolight SA, France) has been used. Pattern
E consists of meander shaped lines with changing separation (= distance between
adjacent lines) ranging from 0 to 390 nm (see schematic in Fig. 3.11a).

The axial performance of the wavelength splitting approach, is tested using pat-
tern I of the Argolight calibration target. It consists of two crossing stairs, with
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a b

Figure 3.11: a Lateral and axial schematic of the Argolight target. Left: line pairs (pattern E)
with decreasing separation, from left to right, in 30 nm steps; right: two crossing stairs (pattern I)
with a step size of 0.125 µm. b Fluorescence emission characteristics of the Argolight sample. The
acquired λ-stack, shows the resolution target (pattern E). A visual comparison between the small
(green) and large (cyan) wavelength region is shown in the small inset, indicating the wavelength
dependent resolution scaling (compare line pairs at red arrow).

steps made out of open cylinders. A schematic drawing of lateral and axial view
is shown in Fig. 3.11a right. This pattern enables to verify the 3D imaging per-
formance of a system, as the same object (stair step) is located at different depths
(stair step size = 0.125 µm), hence get more and more out-of-focus. Achieving a
larger axial resolution would mean that only stair steps close to the focus plane
of the detection system are visible in the recorded 2D image, while the rest is
dimmed or not visible at all.
For wavelength splitting to work, an asymmetric emission spectrum of the sam-
ple under investigation is required. When calculating the total sum of the col-
lected fluorescent signal per λ-channel (in a single time frame of pattern E), an
asymmetric emission curve (see Fig. 3.11b) can be observed. Which resembles
the shape of the fluorescence emission curves shown in Fig. 3.6a. When looking
at the two images in the inset of Fig. 3.11b, corresponding to a small (green) and
large (cyan) wavelength band, the change of resolution capability with λ can be
seen (especially at the line pair marked with a red arrow). The FWHM of the cap-
tured fluorescence emission is at ≈ 125 nm and the overall shape of the emission
curve indicates some asymmetry.
Experimental data for the wavelength splitting has been acquired and analyzed.
Unfortunately the pinhole of the confocal system was opened, which reduces
the λ-dependency of hCon f .. Hence, the results are not fully conclusive, as the
required modulation of image information with λ is strongly reduced. Neverthe-
less, the experimental findings are presented on p. 122 in the appendix.
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3.4 Separation via pupil splitting

Fluorescence microscopy is a form of incoherent imaging, meaning that its per-
formance is characterized by an OTF which itself can be related to the pupil of the
detection system. Another approach to realize splitting & recombination is to spa-
tially split the pupil of an incoherent imaging device, as the pupil somewhat re-
lates to spatial frequency information of the object structure under investigation.
The modification of the pupil will affect how different frequencies are transferred
in each sub-image, creating the required mutually differing SNR. In this thesis we
investigate radial splitting, corresponding to separating the full pupil (= widefield
imaging) in an inner disk and outer ring pupil. In the following the influence of
splitting on the transferable information content in the different sub-images is be-
ing studied. Note that the original idea of pupil splitting was conceived by Rainer
Heintzmann and first investigated by Polina Feldmann. Whereas my contribution
has been a further detailed analysis and experimental realization.

3.4.1 Information content in the sub-images

The information transfer of an incoherent imaging system is characterized using
the PSF in real or OTF in Fourier space. The latter can be obtained directly from
the pupil P as the autocorrelation operation A:

h̃(k⃗) = A
{︃
P(k⃗)

}︃
=
∫︂ +∞

−∞
dk⃗

′ P∗(k⃗
′ − k⃗) · P(k⃗

′
) (3.44)

In conventional widefield imaging, the 3D (McCutchen) pupil P is given as a
spherical cap with radius Rmax [33], corresponding to the detectable cone of light
of the detection system (see Fig. 2.2b). Hence Rmax is given according to:

Rmax = fobj · NA (3.45)

The corresponding OTF (and PSF) are shown in Fig. 3.12a as the blue curve.

For low NA this spherical cap can be approximated by a 2D disk, corresponding to
a WF detection pupil PWF. When a radial split is used, the full pupil is separated
into two components: inner disk PDisk and outer ring PRing pupil.

h̃WF(k⃗) = A
{︃
PWF(k⃗)

}︃
= A

{︃
PDisk(k⃗) + PRing(k⃗)

}︃
(3.46)

Note that this equation also holds for high NA imaging, nevertheless we will use
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a b

Figure 3.12: a PSF (left) and OTF (right) in case of pupil splitting. The inner disk and outer ring
curves are shown in cyan and green respectively. Note that high spatial frequency information
can be transferred with the same signal strength as in the WF case (blue), using the ring pupil.
However with reduced noise, as the number of detected photons has been decreased to 50% for
a splitting radius R =

√
0.5 · Rmax (neglecting the additional factor due to the changing collection

efficiency as described in 2.4.1). Weighted averaging (magenta) of the two sub-images leads to an
enhancement of the SNR towards the highest spatial frequencies. The corresponding PSF show
that hwa,σ has a reduced peak and FWHM value. b Left: splitting the pupil additionally leads to
a change in the depth-of-focus (DoF) of the detectable information as both sub-PSFs (inner disk
and the outer ring), are enlarged along the axial direction. After recombination this yields in an
extended DoF (more details on p. 127 in the appendix). Right: a visualization of the weights (top)
shows that high frequency information solely originates from the outer ring sub-image, when
being recombined using weighted averaging in Fourier space. The improvement factor indicates
that the enhancement is isotropically distributed and reaches values of ≈ 40% in k-space.

the terms PDisk and PRing to describe the split sub-pupils. Although in 3D the
sub-pupils are not really "disk" or "ring"-like shaped.
When the autocorrelation integral is solved, the contributions of both sub-pupils
to the widefield OTF can be expressed as:

h̃WF(k⃗) = A
{︃
PDisk(k⃗)

}︃
+A

{︃
PRing(k⃗)

}︃
+ 2
[︃
P∗

Disk(k⃗)⊗PRing(k⃗)
]︃

(3.47)

Which of course can be written in terms of the sub-OTFs h̃Disk,Ring, according to:

h̃WF(k⃗) = h̃Disk(k⃗) + h̃Ring(k⃗) + 2
[︂
P∗

Disk(k⃗)⊗PRing(k⃗)
]︂

(3.48)

Meaning that the non-split OTF h̃WF is not just the sum of the two sub-OTFs but
contains an additional term directly related to the two sub-pupils.
Knowing this, h̃Ring can be calculated by rearranging previous equation into:

h̃Ring(k⃗) = h̃WF(k⃗)− h̃Disk(k⃗)− 2
[︂
P∗

Disk(k⃗)⊗PRing(k⃗)
]︂

(3.49)

A different graphical representation of how to calculate h̃Ring is presented in the
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appendix (p. 125). Because of the splitting, the region-of-support of h̃Disk is re-
duced to |k⃗| ≤ kDisk,max, given by the pupil splitting radius R:

kDisk,max =
R

Rmax
· kWF,max (3.50)

Which is depicted in Fig. 3.12a right where the cyan curve is ≥ 0. The split shown
is computed for R =

√
0.5 · Rmax, corresponding to a split with equal area of both

sub-pupils. Note that for a value of |k⃗| ≥ k0 = 1/2 · (kDisk,max + kWF,max), the
additional convolution term in eq. 3.49 vanishes. Hence the OTF corresponding
to the ring pupil for |k⃗| ≥ k0 is given as :

h̃Ring

(︂
|k⃗| ≥ k0

)︂
= h̃WF

(︂
|k⃗| ≥ k0

)︂
(3.51)

Meaning that the transfer of very high spatial frequency information is solely
achieved by the ring pupil itself. This effect is depicted in Fig. 3.12a right in green.
Indicating that both sub-images carry mutually differing information, which can
be used to improve the SNR via subsequent computational recombination. Note
that the additional effect of reducing the collection efficiency, as described in sec.
2.4.1, has been neglected here.
The weighted averaged (effective) OTF is shown in magenta in Fig. 3.12a, indi-
cating a strong improvement towards the cut-off frequency. This is because for
|k⃗| ≥ k0, the ring pupil transfers the same information as h̃WF and only requires
half of the available photons budget, reducing shot noise. The corresponding
weighting is shown in Fig. 3.12b at the top right. Low to mid-frequency in-
formation is mostly carried by h̃Disk, high frequency content only by h̃Ring. When
looking in real space, the corresponding effective PSF (magenta) shows a reduced
peak intensity and FWHM. Also both sub-PSFs differ in peak and FWHM value,
which indicates the capability of pupil splitting to create mutually differing im-
age information. Splitting the pupil does not only affect the lateral performance
of each sub-image, it also changes the depth-of-field (DoF), see Fig. 3.12b left. It
is known that an annular pupil creates a "Bessel-like" beam, an elongated light
distribution with strong sidelobes [79]. The inner disk pupil also creates an elon-
gated PSF (cyan), as it corresponds to imaging with an NA reduced by the factor
R/Rmax. When both sub-images are recombined, the effective PSF (magenta) will
also show an extended DoF. The elongation varies with R/Rmax and is described
in more detail in the appendix (p. 127). In case of the splitting shown in Fig. 3.12b
(R/Rmax =

√
0.5), the axial extend is roughly twice that of the widefield case.
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3.4.2 Evaluating the achievable SNR improvement

As the magenta curve in Fig. 3.12a suggests, it is possible to recover high spa-
tial frequency information with better SNR when pupil splitting is employed.
However, this comes at the cost of a reduced SNR at the mid-frequencies. When
looking at the spectral improvement factor IF in Fig. 3.12b, a maximum improve-
ment IFmax of ≈ 42% is reachable for the equal area split that was simulated. The
"negative improvement" reaches a value of IFmin ≈ −68%, making it seem that
more is lost than gained with pupil splitting. Nevertheless, the important point is
that IFmin ̸= −100%, meaning that the transferable object information is not lost,
only reduced in terms of transfer strength. This can be improved upon by image
reconstruction in post-processing, whereas lost information is inevitably gone.
In general, the performance of pupil splitting varies with the splitting ratio given
by R/Rmax. Four different scenarios have been simulated and their respective
spectral improvement factors are shown in the appendix (p. 126) and in Tab. 3.5.

R/Rmax 0.25 0.50 0.75 0.95
√

0.5 ≈ 0.707
IFmax 3.20 15.26 51.10 201.17 41.65
IFmin -21.05 -57.32 -68.95 -68.72 -68.48
IF > 0 63.16 50.08 31.27 8.18 35.13
Dwa,σ/D 90.95 68.09 58.25 85.94 57.04

Table 3.5: Different performance measures for changing the pupil splitting, indicated by R/Rmax.
All values stated are given in percent. IFmax,min: maximum positive/negative improvement; IF >
0: positive improvement region; Dwa,σ/D: ratio of detectability, 100% represents the WF-case.

It can be seen that absolute value of IFmax and IFmin increases with R/Rmax. Indi-
cating that a strong enhancement can be achieved with decreasing width of the
ring pupil. Note also that a large IF is only achievable at high spatial frequencies
and over a limited region in k-space, stated by IF > 0. At R/Rmax =

√
0.5 only

35% of all spatial frequencies within the bandlimit can be improved, compared to
the WF case. Nevertheless this splitting ratio was accepted as it yields an accept-
able tradeoff with respect to IFmax. A large improvement can only be achieved
for a spatial frequencies close to the cutoff kxy,max. Interestingly the "negative im-
provement" does not get much worse for values R/Rmax >

√
0.5, however also

relates to further limiting the measurable photons in the sub-image correspond-
ing to the ring pupil (much narrower ring). Suggesting that for large enough
photon numbers, a splitting R/Rmax >

√
0.5 might yield stronger enhancements.

Note that the ratio of detectability is always < 100% (Dwa/D = 100% represents
the WF case) and Dwa/D decreases towards larger splitting radii.
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Figure 3.13 top shows the simulated results of imaging a line pattern, with in-
creasing spatial frequencies towards the bottom, using the four different pupil
settings: widefield (blue), split pupil with weighted average recombination (ma-
genta) and the two sub-images corresponding to disk & ring pupil (cyan & green).
The individual PSFs where simulated for NA = 0.8, λ = 520 nm and shot noise
with 1000 photons in the brightest pixel of the WF image. A more detailed de-
scription on how hRing was calculated (using [32]) is given in the appendix (p.
128). It is clear that the sub-images are about half as bright as the WF case, as
each only carries half of the detectable photons. Note how the image correspond-
ing to PRing shows a strong modulation of the patterns corresponding to high
spatial frequencies (yellow frame). When recombining the two sub-images us-
ing weighted averaging, this translates into an improved performance at those
frequencies. Because the recombination makes use of all detected photons, the
resulting image shows the same brightness compared to the widefield case.

3.4.3 Splitting via reflection in the BFP

To experimentally realize the pupil splitting approach, access to the BFP of an
detection objective in a widefield microscope is needed. As the BFP often is lo-
cated within the objective, it must be re-imaged by placing an additional lens a
focal length away from the tube lens of the detection system. This will generate a
(de-) magnified version of the BFP in the Fourier plane of the added lens. In the
laboratory of Jonas Ries at the EMBL (European Molcecular Biology Laboratory,
Heidelberg), such an optical system (NA = 1.2) has been built for enhancing the
axial localization precision in single molecule localization microscopy (SMLM)
[80, 81] experiments. In their work they split super- from undercritical angle
fluorescence, to get additional information on the z-position of blinking fluores-
cent markers, by looking at ratiometric changes of the photon emission [82]. The
splitting itself is achieved by placing a small mirror, mounted on top of a glass
substrate with antireflection coating in the re-imaged BFP position (see Fig. 3.13,
top right). Discerning light in the BFP which is either reflected by the mirror or
transmitted through the glass substrate.

Note that the mirror device was manufactured at the Leibniz IPHT (Jena) and
consists of a 65 nm Al2O3 protective on top a 200 nm thick silver layer. Four dif-
ferent mirror geometries (elliptical shape due to a tilt in the BFP) were put on a
single 5 mm thick glass substrate. The mirror itself is tilted (≈ 10◦) so that it will
reflect the inner part of the light distribution (splitting ratio R/Rmax ≈ 68%), cor-
responding to the disk pupil, which gets imaged to one half of a camera (pco.edge
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Figure 3.13: Optical setup used for pupil splitting. The BFP of a widefield objective (NA = 1.2)
is made accessible by placing a lens one focal length away from the tube lens of the imaging sys-
tem. The pupil is split using a small mirror which is mounted on a glass substrate (top right) and
placed in the position of the re-imaged BFP. It reflects the inner disk (cyan) of the light beam so
that the corresponding image can be captured on a camera, using an additional lens. The informa-
tion related to the ring-shaped pupil (green, transmitted) is simultaneously imaged onto the same
camera, so that both sub-images are being accessible for computational recombination. A simu-
lation (inset) compares the imaging (NA = 0.8) of the same line pattern with the four different
pupil settings: widefield (WF), split pupil (SP) and the two sub-images (disk & ring). The yellow
frame indicates high spatial frequency information which is transferred better by pupil splitting
& recombination. Experiments were performed at the EMBL in Heidelberg in collaboration with
Takahiro Deguchi and Jonas Ries, see [80, 81] for more details on the optical setup.

4.2, PCO AG, Germany) using an achromatic lens ( f = 250 mm). Light which
does not impinge on the mirror is transmitted through the glass (ring pupil) and
imaged on the second half of the camera (using an achromat with f = 250 mm).
In this way it is possible to capture two images simultaneously, while maintaining
a large number of detectable photons due to the high reflection efficiency (> 94%
in the visible range [80]). The necessary registration of both sub-images has been
achieved by employing a cross-correlation based algorithm [83].
Again, the Argolight sample [78] (same as in sec. 3.3.4) was used to test the pupil
splitting & recombination technique. The illumination is realized using a laser
at an emission wavelength of λ = 488 nm (iChrome-MLE, Toptica, Germany)
and the fluorescence is detected behind a quad-band beamsplitter (F73-410, AHF,
Germany). A fair comparison of pupil splitting and widefield imaging (reference
case) was achieved by setting the exposure time of the detector and illumination
intensity to a fixed value. While the only change made to the system is whether
the mirror device was placed in the BFP, or not.
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3.4.4 Experimental results

To experimentally test the imaging performance of pupil splitting, the resolution
target (pattern E) of the Argolight calibration slide (see sec. 3.3.4 for more details)
were imaged, and the results are shown in Fig. 3.14a.

a b

Figure 3.14: a Comparing the images of the resolution target (pattern E) of the Argolight sam-
ple [78], using conventional widefield detection (blue) and pupil splitting & recombination (ma-
genta). Depicted is the average of 100 frames before (top) and after (bottom) deconvolution. The
individual number of iterations to reach the optimum reconstruction is given in the appendix (p.
124). The yellow frame indicates a region which is shown enlarged at the bottom. b Line profiles
of both noise-normalized (see standard deviation plot) image results. A stronger modulation or
visibility V , for the mean value of the 100 image frames, can be seen for the pupil splitting ap-
proach, which is also depicted in Table 3.6. The weighted averaged result is given in Fig. A.10b.

For both datasets, with (magenta) and without mirror (blue), a time series of 100
images was acquired. Figure 3.14a shows the average over all frames for both
imaging methods, before (top) and after (bottom) deconvolution. The necessary
number required to reach the optimum reconstruction results are found by com-
puting the NCC values for each iteration in a simulation (see p. 124 in the ap-
pendix). For the widefield images (blue) 24 (accelerated) iterations and for the
split pupil data 18 (accelerated) iterations were performed. The PSF needed for
the reconstruction was computed according to the scheme described in the ap-
pendix (p. 127), for the given experimental parameters. The yellow frame indi-
cates a region which is enlarged on the bottom, also before and after deconvolu-
tion. The weighted averaged recombined result (Fig. 3.14a magenta top) shows
some blurring, while line pairs with a very small gap can be resolved better than
in the widefield case. Exemplifying the shape of the magenta curve in Fig. 3.12a,
medium spatial frequencies are transferred worse (= blurring), high spatial fre-
quencies benefit from pupil splitting (= resolving smaller structures).
As described in the appendix (for wavelength splitting p. 122), the imaging per-
formance of both methods (widefield & split pupil) is evaluated by calculating
the pixel-wise average (Fig. 3.14b top) and standard deviation (bottom) of the
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100 image frames, to ensure that the mean standard deviation (vertical line) of
both imaging modalities are equal. A line profile through the center of the yel-
low frame indicates the modulation depth of the widefield (blue) and split &
recombined (magenta) results. The curves for recombining the split data using
multiview deconvolution is shown in Fig. 3.14b, while the weighted averaged
approach is given in the appendix (p. 128). In order to evaluate the imaging per-
formance in more detail, the visibility V and the spatial improvement factor IFV
have been analyzed and are given in Tab. 3.6.

Line pair # 1 2 3 4 5
Spacing / (nm) 390 360 330 300 270
kxy/kxy,max 0.56 0.60 0.66 0.72 0.80

WA
Widefield 0.0595 0.0420 0.0269 0.0000 0.0000
Split pupil 0.0424 0.0372 0.0308 0.0192 0.0139
Improvement / (%) -28.69 -11.41 14.36 ∞ ∞

MV
Widefield 0.2829 0.2383 0.1687 0.1225 0.0832
Split pupil 0.4314 0.3713 0.2980 0.2381 0.1458
Improvement / (%) 32.40 37.00 53.28 74.15 52.21

Table 3.6: The visibility V for the five different line pairs marked in Fig. 3.14b. Reference data
is obtained by removing the mirror in the re-imaged BFP. The recombination was either done by
weighted averaging (WA) or multiview deconvolution (MV). The spatial improvement factor IFV
is defined in eq. 3.14. The ratio kxy/kxy,max is calculated for NA = 1.2 and λmax = 520 nm.

When looking at the visibility improvement IFV after weighted averaging, it can
be seen that two of the five line structures are imaged with worse modulation
depth. These two correspond to a relative spatial frequency kxy/kxy,max < k0 =

0.68, which fall into the region of negative improvement (IF shown in Fig. 3.12b).
Interestingly, the same is true for the line pair with spacing of 330 nm, neverthe-
less it exhibits a visibility improvement of ≈ 14%. A reason for this might be the
aplanatic factor and its modification of the effective splitting ratio, hence modi-
fying k0 to ≈ 0.61 (see p. 129 in the appendix for more details). The even more
closely spaced line pairs cannot be resolved in the widefield detection at all while
the weighted averaged result still shows a small modulation. A "∞"-symbol was
used in Tab. 3.6 to indicate the increase of effective resolution, achievable through
SNR enhancement. When the deconvolved results are compared, the modulation
depth of all line pairs is enhanced, and in general the improvement increases
towards finer structure. The maximum enhancement of 74%, is reached for a
line pair separation of 300 nm, instead of 270 nm. This might be attributed to
misalignment when both sub-images are being registered to each other. Overall,
this indicates that the more elaborate post-processing using multiview deconvo-
lution, enables pupil splitting & recombination to transfer sample information
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more robustly than widefield imaging. The axial performance is similarly tested
as in sec. 3.3.4, using the "crossing stairs" sample (pattern I, step size of 0.25 µm)
of the Argolight calibration target. Both datasets (split & non-split) have been
processed using a thick-slice reconstruction (described in sec. 2.4.2) using 18 (ac-
celerated) iterations for both. The theoretical PSF was computed with 11 axial
planes and the reconstructed volumes were upsampled by a factor of 12 for visu-
alization. Due to the slight extended-depth-of-field (EDoF) effect of pupil split-
ting, the stairs of the test target stay in focus over a larger axial distance. While
the normal widefield data is out-of-focus immediately, depicted in Fig. 3.15a top.

a b

Figure 3.15: a 3D reconstruction of the imaged stair sample (pattern I, step size 0.25 µm). Top:
in-focus and out-of-focus (z = 0.5 µm) xy-slices for conventional widefield detection and the
pupil splitting approach. Bottom: Axial view of the thick slice reconstruction from a single focal
plane exposure, showing that the stair-like shape of the sample can be reconstructed using the
split pupil data (11 slices upsampled by a factor of 12 for visualization). b Line profiles through
images in a. Top: comparison of resolving the cylindrical structure at the in-focus and at an out-of-
focus plane, which is only possible using the split pupil. Bottom: showing the axial reconstruction
indicating the ability to reconstruct the stair-like shape of the pattern from 2D images only.

A line profile through one of the stair steps at an in-focus (z = 0 µm) and out-of-
focus (z = 0.5 µm) slice of the reconstruction is shown in Fig. 3.15b top (yellow).
In-focus (left), both detection schemes are able to visualize the cylindrical shape
of the individual stair steps. When going out-of-focus (right) only pupil split-
ting maintains the central dip in the curve. More interestingly, pupil splitting
is able to recover the stair-like nature of the test sample which is shown in Fig.
3.15a bottom, in contrast to conventional widefield detection. The two arms of
the crossing stairs sample (shown in orange and green in Fig. 3.11a) can be recon-
structed using pupil splitting, only a mirror image appears (above and below the
focus plane). Also see Fig 3.15b, which shows a line profile through one of the
out-of-focus stair steps.
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3.5 Illumination splitting through Field-Synthesis

So far, the splitting has only been realized in the detection of a widefield micro-
scope. Where it is crucial to capture as many photons as possible, to obtain suffi-
cient SNR. When splitting a detected fluorescence signal, the additional redistri-
bution of photons into multiple sub-images becomes problematic. This is because
at low photon numbers it is possible that image information in the sub-images
falls below the noise floor (in Fourier space), making it inevitably lost for further
processing. Instead of splitting the detection of an imaging system, it might be
beneficial to split the illumination. Where many photons are available so that the
redistribution does not necessarily come at any cost in photon loss. Of course,
when a larger number of photons is available the impact of shot noise on the im-
age quality is marginal (large photon numbers = good SNR). Nevertheless, the
problem of out-of-focus blur in widefield detection still needs to be addressed.
Hence, in this chapter the idea is to split the illumination of a light-sheet system,
capture the corresponding sub-images and recombine those to generate an SNR
improvement in thick and dense samples, by removing out-of-focus blur. Note
that this idea is not new, e.g. in structured illumination microscopy (SIM) [84,
85, 86], the illumination of a widefield microscope is split into multiple shifted
sinusoidal patterns and the recorded sub-images are recombined to yield a recon-
struction with improved spatial resolution. Hence illumination splitting seems to
be promising and is applied here in a different way to light-sheet microscopy.
Widefield detection is not able to remove out-of-focus contributions, which can
strongly deteriorate the imaging quality. This led to the (re-) invention of light-
sheet microscopy [41, 87], where the sample is illuminated with a thin sheet of
light from the side, overlapping with the focal plane of the detection objective.
Figure 3.16, bottom right shows that this type of optical arrangement not only au-
tomatically removes out-of-focus information, as the fluorescence signal can only
be emitted from a plane defined by the illumination sheet. It also distributes the
excitation light very effectively, only in a small volume where the detection has
its optimal focus. Hence light-sheet microscopy is regarded a very gentle method
with respect to phototoxicity and photobleaching [88]. Different type of light-
sheet geometries have been investigated: Gaussian [89], Bessel [90], Airy [91] and
lattice (square and hexagonal) [92]. The overall goal in "light-sheet engineering"
is to create a long and thin illumination structure, so that excitation only takes
place in the focal plane of the detection objective, while a large FoV can be inves-
tigated. Generating arbitrary light-sheets can be achieved by scanning a focused
laser spot in one (lateral) direction [93]. A mask in the BFP of the illumination
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objective determines what type of light-sheet is being generated, e.g. an annular
mask creates a Bessel focus and therefore yields a time averaged "Bessel-sheet"
(see Fig. 3.14, top row). However, recently a new method for scanned light-sheet
generation has been found: Field-Synthesis (FS) [94, 95].
In this chapter we want to use FS to realize illumination splitting, by generating
a set of images with modulated axial image information. Subsequent computa-
tional recombination of this data will yield a suppression of out-of-focus infor-
mation, compared to light-sheet imaging without illumination splitting.

3.5.1 Scanned light-sheet generation

The conventional way to create a light-sheet is by scanning a laser focus along the
x-axis (see Fig. 3.16 top), termed beam scanning (BS). Note that the z/y coordinate
is defined to be the optical axis of the detection/illumination objective, respec-
tively. In beam scanning, an electric field distribution in the BFP Ẽ is focused
using an objective, yielding the respective electric field E in sample space. The
corresponding intensity is given as |E |2, which after horizontal scanning (along
the x-axis) yields an effective light-sheet IBS. Mathematically this is written as a
convolution of |E |2 with a line along the x-axis, modeled as δ(y, z):

IBS(x, y, z) = |E(x, y, z)|2 ⊗ δ(y, z) (3.52)

Note that the aforementioned convolution basically only acts in one dimension:

IBS(x, y, z) =
∫︂∫︂∫︂ +∞

−∞
dx′dy′dz′ |E(x′, y′, z′)|2 · δ(y − y′, z − z′) =

=
∫︂ +∞

−∞
dx′ |E(x′, y, z)|2 (3.53)

With the integral showing a smearing effect of |E |2 along the x-coordinate.
The general idea of Field-Synthesis is that the scanned illumination IBS can also
be obtained by performing a line scanning in the BFP of the excitation objective.
First, lets express E(x, y, z) in Fourier space using the propagator in eq. 2.13 as:

E(x, y, z) = F−1
kxkz

{︃
Fxz {E(x, y = 0, z)} · e

i

√︃
(2π· n

λ )
2−(k2

x+k2
z)·y
}︃

(3.54)

with Fxz/F−1
kxkz

indicating a 2D Fourier transform in the xz/kxkz-plane.

A laser, focused into a line, is scanned along kx over the complete mask (e.g.
annular) in the BFP (see Fig. 3.16 bottom). The corresponding field in the BFP is
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Figure 3.16: Concept of Field-Synthesis: in conventional beam scanning light-sheet generation
(top) the mask in the BFP of the illumination objective is fully illuminated and creates a laser
focus at the nominal focal point. This spot is laterally scanned (along x), which creates a tempo-
rally averaged light-sheet. In Field-Synthesis (FS) the same is achieved by scanning a illumination
line (along kx) in the BFP of the excitation objective (bottom). This will result in time-varying
sub-illuminations, which when added incoherently will give the same overall illumination dis-
tribution as the beam scanning method. A detailed explanation of the Field-Synthesis concept is
also shown in the appendix (p. 132). Bottom right: typical optical setup of light-sheet microscopy,
with two orthogonally placed illumination & detection objectives.

parameterized as a multiplication with a shifted version of the line illumination:

Et(x, y, z) = F−1
kxkz

{︃
Fxz {E(x, y = 0, z)} · e

i

√︃
(2π· n

λ )
2−(k2

x+k2
z)·y · δ(kx − t)

}︃
(3.55)

with t denoting the different scan positions in the BFP. Et can be expressed as a
convolution ⊗xz along the xz-coordinates:

Et(x, y, z) = E(x, y, z)⊗xz

[︃
e−i·tx · δ(z)

]︃
(3.56)

with δ(z) being the Fourier transform of δ(kx). The convolution operation in its
integral form is given as:

Et(x, y, z) =
∫︂∫︂ +∞

−∞
dx′dz′ E(x′, y, z′) · e−i·t(x−x′) · δ(z − z′) =

=
∫︂ +∞

−∞
dx′ E(x′, y, z) · e−i·t(x−x′) =

= e−i·tx
∫︂ +∞

−∞
dx′ E(x′, y, z) · ei·t·x′ (3.57)
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Note that this is a Fourier transform along the x′ coordinate.

Et(x, y, z) = e−i·tx · Fx′

{︃
E(x′, y, z)

}︃
(3.58)

The intensity It, corresponding to the respective line-scan in the BFP, is given as:

It(x, y, z) = |Et(x, y, z)|2 =

⃓⃓⃓⃓
Fx′

{︃
E(x′, y, z)

}︃⃓⃓⃓⃓2
(3.59)

Within a single exposure, the detector adds up all those intensities, yielding IFS:

IFS(x, y, z) =
∫︂ +∞

−∞
dt It(x, y, z) =

∫︂ +∞

−∞
dt
⃓⃓⃓⃓
Fx′

{︃
E(x′, y, z)

}︃⃓⃓⃓⃓2
(3.60)

Remember that x′ and t are Fourier coordinates with respect to each other. Using
Plancherel’s theorem [31], the Fourier transformation can be removed:

IFS(x, y, z) =
∫︂ +∞

−∞
dx′ |E(x′, y, z)|2 (3.61)

With this we see that generating the light-sheet using beam scanning or by scan-
ning an illuminating line in the BFP, as suggested in Field-Synthesis, is essentially
the same. A more graphical description of the connection between Field Synthesis
and conventional beam scanning is given in the appendix (p. 132).
An advantage of Field-Synthesis is, that it distributes the overall illumination
dose that a specific position in the sample receives, over the whole duration of
the scanning process. In contrast to beam scanning, where a specific point in the
sample gets all the excitation in a short time period (i.e. when illumination and
sample point coincide). FS drastically reduces the maximum illumination that
a sample has to endure (see Fig. A.12b) and therefore decreases photodamage
[50]. A fundamental tradeoff in light-sheet imaging is that of optimizing FoV
and light-sheet thickness, which governs the ability to reject out-of-focus light.
The latter is directly connected to the SNR for thick & dense samples (see sec.
2.2.3). When a collimated laser beam (top hat) is focused by an objective, the
resulting light distribution (along y) first converges, reaches a minimum value
(the waist w0) and then diverges again (see Fig 3.17a). The FoV is given as the
distance along the y-coordinate, in which the width of the intensity distribution
stays approximately constant at w0. Depending on the NA of the objective, w0

can be reduced. But so is the FoV, meaning that the ability to remove out-of-focus
light and the size of the FoV are directly linked to each other (see dxy,min and
dz,min in sec. 2). In Gaussian optics this is quantified via an equation connecting
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the Rayleigh length zR (distance from waist until beam cross-section has doubled)
with the beam waist w0 [29]:

zR =
π · w2

0
λ

(3.62)

Hence it is not possible to achieve a large FoV and a very thin light-sheet, by
focusing light through an objective lens.

a b

Figure 3.17: a Creating a light-sheet by focusing a collimated laser beam (top hat in BFP) us-
ing an objective will result in a specific detection FoV and light-sheet thickness. The ability to
remove out-of-focus light depends on latter and can only be improved at the cost of a reduced
FoV. When an annular mask is inserted into the BFP, the resulting illumination pattern consists
of a thin & long central peak, surrounded by strong sidelobes. The latter excites fluorescence in
planes outside of the detection focal plane, hence leads to a strong degradation of SNR for thick &
dense samples (due to out-of-focus blur). b Creating time-varying sub-illuminations using Field-
Synthesis, leads to a modulation of axial image information. To visualize this effect the resulting
images of a simulated 3D spherical object (right) are depicted for three different scan positions in
the illumination BFP (bottom). Note how only the plane in-focus (blue) of the detection objective
is illuminated in all cases, while the other axial information (green & red lines) gets modulated.

There are different ways how to tackle this problem: one would be to scan a very
thin light-sheet in the y-direction and to stitch the different in-focus regions to-
gether. This can be achieved by synchronizing the line-readout of a CCD camera
with the scan position in the sample, as introduced by Dean et al. [96, 97]. An-
other idea is to use propagation-invariant beams, like a Bessel or Airy beam, for
generating the light-sheet [91]. Those maintain a narrow center over a large FoV,
however, always are accompanied by strong side lobes (see Fig. 3.17a). Which
result in excitation of sample structure outside of the plane of focus of the detec-
tion objective, leading to additional blur and further degradation of the attainable
SNR. Ways, how to remove this drawback, is to either use a non-linear effect like
two-photon absorption, decreasing the sidelobes by effectively squaring the ex-
citation distribution [98]. Or by computational post-processing as it is done in
Bessel-beam plane microscopy [90, 92], where structured illumination is used to
effectively cancel the side lobes.
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3.5.2 Encoding axial information in 2D

As can be seen from Fig. 3.17b, Field-Synthesis enables to capture an full-FoV
image for each scan position in the BFP of the illumination objective. This is
not possible in beam scanning, where the full FoV is never illuminated at once.
Additionally notice that the individual sub-illuminations (in Field-Synthesis) are
approximately constant over the detection FoV, but show a distinct modulation
along the z-axis (see Fig. 3.16). Only the excitation maximum remains in focus
of the detection objective (blue in Fig. 3.17b), whereas out-of-focus information
is modulated. This means that while line scanning in the BFP, it is possible to
capture images where the axial response changes (due to the illumination mod-
ulation), but the in-focus information maintains maximal. Note that the general
idea to use FS to improve the imaging performance of a light-sheet system has
been simultaneously conceived by myself and James Manton, with whom I then
collaborated on this project. The aforementioned effect of modulating axial image
content has been simulated by imaging the 3D spherical object from sec. 2.2.2,
where conventional widefield imaging (NADet. = 1.1) suffers from strong out-
of-focus blur. Sample emission at three different z-positions are shown in Fig.
3.17b on the right. As imaging is inherently three dimensional, information from
a multitude of planes will end up in the 2D image. However, due to the varying
illumination introduced through Field-Synthesis, each sub-image will consist of
differing axial information. E.g. the image at t1 shows some considerable inten-
sity in the interior of the spherical object (see the line-like feature from the line
in the object being slightly out-of-focus), while at t2 this information is largely
removed. When relating this to the respective sub-illuminations (middle row),
we can conclude that the modulated image content cannot originate from the
detection focus plane. Based on this principle more information on the axial po-
sition of the different object layers (red and green) can be obtained. Interestingly,
it is advantageous to use a Bessel light-sheet here, due to its stronger ability to
modulate axial information. E.g. due to the annular mask in the BFP, the illu-
mination at t3 is a high frequency pattern along the z-axis, which corresponds to
a strong modulation of axial information. An alternative approach, which is not
followed in this thesis, is to generate the light-sheet excitation by beam scanning
and recording the fluorescence in an ISM-like detection scheme [99, 100]. Such
acquired data might give similar or even better access to axial information, en-
abling imaging with high SNR in thick samples. In the following, Field-Synthesis
is used to acquire multiple sub-images that correspond to the time-varying Bessel
sub-illuminations shown in Fig. 3.17b. Hence, each sub-image will vary in infor-
mation content, as the sample excitation is differently axially modulated for each
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scan-position in the BFP of the illumination objective. The sub-images are then
being computational recombined and compared to Field-Synthesis as acquired
by recording the total intensity over a complete scan only (equivalent to the beam
scanning method).

3.5.3 Rejecting out-of-focus light using FS

As discussed before, the goal is to generate a Bessel light-sheet using the Field-
Synthesis concept to remove out-of-focus information by computationally recom-
bining multiple sub-images, while maintaining a large detection FoV. Note that
we want to process 2D images only, and leave the opportunity to acquire a z-stack
aside. The idea is to remove out-of-focus blur from a 2D image, without requiring
to axially scan through the sample. When using FS to generate the excitation, the
resulting change of image information is structured along the axial dimensions,
with no effect in the xy-plane. Again, weighted averaging in Fourier space is
one possible approach to recombine the recorded data (comparable to the recon-
struction of sub-images with varying illumination in SIM). In this thesis we will
follow a different approach, namely to employ non-negative matrix factorization
(nNMF) to find a representation of the acquired data that corresponds to an in-
and out-of-focus contribution. Similar to the wavelength & pupil splitting, mul-
tiview deconvolution can also be used to reconstruct the underlying (3D) object
structure from the illumination split data.

Non-negative matrix factorization:

Non-negative matrix factorization (nNMF) is a technique which tries to find a
non-orthogonal basis for a given dataset (e.g. an image), while requiring the fac-
torization to be strictly positive. As typical for matrix factorization schemes (like
principal-component analysis PCA [101] and independent-component-analysis
ICA [102]), it can be used for dimensionality reduction [103, 104]. Where an un-
derlying, unknown and lower dimensional structure is to be inferred from higher
dimensionality data. Using nNMF for image fusion has already been employed
in photography [105], especially for recombining multi-focus image data [106]. In
the following nNMF is introduced in a mathematical context and then related to
the problem of rejecting out-of-focus light by employing the FS concept.
The measured 2D sub-images are denoted as Mi, with i indicating the i-th scan
position in the illumination BFP. Each image will be vectorized into M⃗i, so that
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all measurements can be summarized into a single measurement matrix M:

M =

[︃
M⃗1; M⃗2; ... ; M⃗N

]︃⊤
(3.63)

with ⊤ representing the matrix transpose and N the number of sub-images.
The goal of non-negative matrix factorization is to express M as a matrix multi-
plication of two (non-negative) matrices V and H of lower dimensionality:

M ≈ V H (3.64)

V corresponds to a set of basis vectors, that describe the underlying data structure.
H are the respective load vectors, indicating how the different basis vectors super-
impose to form the individual measurements M⃗i. The measured 2D images Mi

consist of P number of pixels, meaning that M is a P× N matrix. The correspond-
ing two matrices V and H are then characterized by a reduced dimensionality R,
which is a parameter to be set by the user of the nNMF algorithm:

V ∈ RP×R; V ≥ 0 (3.65)

H ∈ RR×N; H ≥ 0 (3.66)

An estimation of V and H is found by minimizing the Frobenius norm F [31]:

argminV,H F(V, H) =

= argminV,H

⃓⃓⃓⃓
M − VH

⃓⃓⃓⃓2
2 =

= argminV,H

√︂
∑i,j |M − VH|2i,j (3.67)

which is typically chosen for Gaussian noise, and is assumed to be correct in the
application presented here (large enough photon numbers; see eq. 2.25). There
exist different iterative schemes [103, 104], which perform the minimization in
eq. 3.67 and find a solution to the aforementioned matrix factorization problem.
However, the typical challenge in applying nNMF is to choose the reduced di-
mensionality R, as it strongly determines how M gets represented by V and H. A
natural choice of R should originate from some logical and physical motivation.
Note that in illumination splitting all excitation patterns exhibit their maxima in
the focal plane of the detection objective (see Fig. 3.17b), while out-of-focus con-
tributions are being modulated. Hence it makes sense to factorize M into an in-
and out-of-focus part, as all sub-images contain similar in- but varying out-of-
focus information. This is aimed for with R = 2 and is shown in Fig. 3.18a.
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a b

Figure 3.18: a nNMF reconstruction of N measured images into an in- and out-of-focus contri-
bution. The in-focus information corresponds to a weighted sum of all sub-images, with weights
given according to H−1 (details in text). b Comparison of different detection modalities when
imaging the 3D spherical object from Fig. 3.17b (1000 photons in the maximum pixel of the
WF data, NADet. = 1.1). Widefield detection exhibits a lot of out-of-focus blur, light-sheet (top
hat, NAIllu. = 0.7) removes out-of-focus light but only provides a small FoV. The Bessel sheet
yields a larger FoV but also generates considerable side lobes, creating unwanted background.
Using Field-Synthesis enables to record multiple sub-images corresponding to axially varying
sub-illuminations. Recombining those was done using the nNMF approach or by multiview de-
convolution (10 accelerated iterations, thick slice; right) to reconstruct a 3D object estimate. Note
that the multiview deconvolution enables to reconstruct a much more accurate three-dimensional
representation of the ground truth object, compared to the nNMF processed data.

From i = 1 ... N number of images Mi (blue), two basic components (green) and
two load vectors (red) are being extracted. The in-focus representation of the
dataset can be found as a weighted sum, with weights given by H−1 :

V1,j =
N

∑
i=1

Mi,j · H−1
1,i (3.68)

assuming that the first column of V corresponds to the in-focus information. In
practice this might not necessarily be given, as the Frobenius norm (shown in eq.
3.67) can exhibit local minima [107]. Which means that repeating the factoriza-
tion can yield different outcomes (especially changing the column order of in-
and out-of-focus representation). To overcome this, most algorithms typically are
run multiple times and use randomly chosen starting values of V and H. Their
final output is given as the particular factorization that yields the smallest value
of F(V, H). In this thesis the nnmf -function of Matlab [108] was used (with 5 ran-
dom initialization of V and H), which is based on an algorithm described in Berry
et al. [109]. To identify the in-focus contribution in V, the two column vectors of
V are first reshaped to yield two images of size

√
P×

√
P (assuming square image

format), which are then subsequently Fourier transformed. The out-of-focus im-
age will contain more noise, hence its spectrum (magnitude) will be closer to the
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noise floor than that of the in-focus representation. By thresholding both spectra,
using the isodata-algorithm [110, 111] (single threshold), it is possible to discern
which of the two column vectors of V corresponds to in- and out-of-focus light.
The effect of the nNMF processing in case of imaging the 3D spherical object with
different light-sheet geometries, is shown in Fig. 3.18b (1000 photons in the max-
imum pixel of the WF data). Conventional widefield detection will lead to strong
ouf-of-focus blur and a reduced SNR. Top hat light-sheet excitation drastically
reduces the unwanted background. However, this can only be achieved over a
limited FoV (top hat, NAIllu. = 0.7). To obtain the full FoV NAIllu. needs to be
decreased, which inevitable will lead to more out-of-focus contribution as the ex-
citation sheet gets thicker (w2

0 ∝ zR). When illuminating with a Bessel light-sheet
a large FoV can be recorded, while out-of-focus light from the strong excitation
sidelobes corrupts the image. Creating the Bessel light-sheet with Field-Synthesis
(23 sub-illuminations), the nNMF algorithms is able to remove most of the out-
of-focus information, while maintaining the larger FoV. This can also be seen in
Fig. A.13a, which compares different line profiles marked in Fig. 3.18b. Note that
there is no guarantee that the factorization achieved with nNMF will correspond
to a splitting into in- and out-of-focus information. Meaning that the nNMF pro-
cessing of artificial objects like points, lines and planes in 3D might yield unrea-
sonable results. Nevertheless, for the depicted simulation and the experimental
data in sec. 3.5.4, the nNMF-algorithm did factorize into in- and out-of-focus
representations, making it seem that for more natural objects this processing is
justifiable. Interestingly, the nNMF-based reconstruction does not require any
information on the optical system, it solely relies on the recorded data. Which
makes it an easier to use alternative to multiview deconvolution.

Multiview deconvolution:

As for the previous splitting & recombination ideas, multiview deconvolution can
also be applied in the proposed illumination splitting approach. However, the
algorithm, as described in section 3.2.2, needs to be modified to yield:

est(l+1)(r⃗) = est(l)(r⃗) ·
N

∑
i=1

⎧⎨⎩ Mi(r⃗)[︂
est(l)(r⃗) · Ii(r⃗)

]︂
⊗ h(r⃗)

⊗ h(−r⃗)

⎫⎬⎭ (3.69)

with the sub-images Mi being modulated through the axially varying sub-illuminations
distribution Ii, as given by:

Mi(r⃗) = [S(r⃗) · Ii(r⃗)]⊗ h(r⃗)+N (r⃗) (3.70)
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The results of performing a thin slice deconvolution (see sec. 2.4.2) on the data
shown in Fig. 3.18b are depicted in the appendix (p. 133). A 3D deconvolution
(thick slice) enables to obtain information about the three-dimensional structure
of the sample under investigation. Results of the (3D) multiview deconvolution
and the nNMF preprocessed (3D) deconvolved data is shown in Fig. 3.18b right.
Note that recombining the split data in a multiview deconvolution yields a much
better reconstruction of the underlying 3D object.

3.5.4 Experimental setup & results

To experimentally realize the illumination splitting, the custom-built light-sheet
setup of James Manton at the Laboratory of Molecular Biology (LMB) in Cam-
bridge was used. Its optical layout (see Fig. 3.19a) was matched to implement
the idea of light-sheet generation via Field-Synthesis: a laser beam (LBX-488-100-
CSB-PPA, Oxxius) is first focused in one dimension (cylindrical lens, LJ- 1695RM-
A, Thorlabs) to create a line which is subsequently scanned over the pupil of the
illumination objective (54-10-7, Special Optics; NAIllu. = 0.7) by rotating a galvo-
mirror (GVS001, Thorlabs) which is placed conjugate to the sample plane.

a b

Figure 3.19: a Experimental setup enabling illumination splitting in a light-sheet setup. A
cylindrical lens transforms a rotational-symmetric laser beam (e.g. 488 nm) into a line, which
is scanned over the illumination pupil by rotating a mirror in a conjugate sample plane. When an
annular mask is put into the pupil, the scanning yields a Bessel-sheet illumination in the sample.
The emitted fluorescence is captured by an objective (NADet. = 1.1) and imaged onto a camera.
The experimental setup is designed and maintained by James Manton at the LMB in Cambridge.
b Top: experimental data showing the axial view (from a z-stack) of an isolated bead (Tetraspeck,
diameter = 100 nm), by illuminating it using the Field-Synthesis concept (11 sub-illuminations).
Note how the emission of the bead varies with the scan position in the illumination BFP (similar
to Fig. 3.17b). Bottom: when the corresponding in-focus slices (xy-plane) are processed using the
nNMF-method, a slight reduction of background can be achieved (see line profile).

The pupil of the illumination objective is re-imaged so that it is freely accessible
and an annular mask was introduced. The detection system is a conventional
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widefield setup with NADet. = 1.1 (CFI75 Apo 25XC), imaged onto a sCMOS
camera (pco.edge 4.2, PCO AG, Germany). To test the alignment and overall
performance of the system, fluorescent beads (diameter = 100 nm, Tetraspeck,
Thermofisher Scientific) on a coverslip, have been imaged by sequentially ac-
quiring a volume (z-stack; see Fig. A.14b), corresponding to each scan-position
in the illumination BFP (11 sub-illuminations). The three dimensional informa-
tion was used to observe the emission of a single bead, while employing the
Field-Synthesis scanning. The results are depicted in Fig. 3.19b top, for three
scanning positions and for the conventional light-sheet generation (left, full ring
pupil), which was realized by summing the recorded sub-images (corresponding
to beam scanning light-sheet generation). The effects of spherical aberrations are
observable, nevertheless, the overall shape is that of a typical WF-PSF. The beads
emission is modulated according to the illumination profile, generated by the
respective scan position in the illumination BFP. The corresponding in-focus (lat-
eral) sub-images are processed using the nNMF method described before, which
yields in a slight background reduction (see line profile in Fig. 3.19b), compared
to a pixel-wise summing of the data (conventional). The effect is not very strong,
as a point sample does not represent an ideal object to be imaged by the pro-
posed illumination splitting technique. A better option would be a structure
which emits a signal at an out-of-focus region, which then corrupts the image
in the detection plane (e.g. the spherical object used in the simulation shown
in Fig. 3.17b). To achieve a similar effect experimentally, a sample of Vimentin,
stained with Atto647N (Atto-Tec, Germany), has been imaged. Note that the nu-
cleus of the cells were not labeled, hence did not emit any signal. As the Vimentin
wraps around the whole nucleus, it does emit some light at out-of-focus regions
(e.g. behind the nucleus), which can be seen in the 2D in-focus image as back-
ground haze (when focusing close to the nucleus membrane). The image results
(in-focus slice only) are shown in Fig. 3.20a with a γ-adjustment of γ = 1.5.
Note how the background haze typically associated with the Bessel illumination
is removed (unwanted excitation of out-of-focus structures). Interestingly, this
effect can also be observed at rather flat objects, such as randomly distributed
fluorescent beads (same Tetraspeck as before) on a coverslip. Figure 3.20a right
shows the two in-focus images corresponding to summing (conventional) and the
nNMF processing of the acquired sub-images. The latter is able to remove some
of the background light, which is most likely to be caused by overlapping beads
(e.g. clustering). Also note that the general shape of the in-focus structures is not
altered by nNMF processing. A line profile (yellow line) indicates an improved
modulation depth, making some previously hidden structure visible (arrow).



Chapter 3. Fluorescence microscopy 73

a b

Figure 3.20: All images have been γ-adjusted with γ = 1.5. a Experimental data showing the
nucleus (black) in a Vimentin probe (top left, stained with Atto674N) and beads immobilized on
a coverslip (right), imaged using Bessel-sheet illumination by employing the Field-Synthesis con-
cept. Due ot the sidelobes of the excitation, out-of-focus blur is generated which can be seen at the
nucleus (3D object) and the gap between the distributed beads. However, when the modulated
in-focus slices (shown on p. 134 in the appendix) are being processed using the nNMF method,
the unwanted out-of-focus information can be removed. Particularly the beads sample shows an
increase in contrast (inset) and even an improvement of modulation (line profile, yellow). The
conventional method refers to the sub-images being pixel-wise added. b Thick slice reconstruc-
tion results for the Vimentin and the beads sample (10 accelerated iterations). Top always shows
the in-focus slice and bottom the axial view through the slice in the xy-plane marked with an
orange line. As already shown on simulated data in Fig. 3.18b, using the sub-images for mul-
tiview deconvolution helps to obtain a better reconstruction result along the z-axis. A recorded
z-stack is shown on the very right. For the beads sample two arrow markers (cyan) have been
added to highlight features which are observable in the z-stack and the multiview reconstruction,
while being absent or underrepresented in the reconstructions of the conventional and nNMF
processed data. E.g. the deconvolved nNMF result shows good reconstruction in the lateral view,
but underrepresented the structure at the cyan arrow.

Figure 3.20b shows thick slice image reconstruction results for the Vimentin and
beads sample in Fig. 3.20a (also with γ = 1.5), which are compared to a z-stack
recording depicted on the very right. The top row indicates the in-focus slice of
the reconstruction, marked with the orange line in the bottom row which rep-
resents an axial view. Similar to the simulation results in Fig. 3.18b right, pro-
cessing the sub-images directly in a multiview deconvolution enables to obtain a
more accurate representation of the underlying 3D object. With the bead sample
it is noticeable that some of the structures, marked with cyan arrows, are either
not visible or poorly represented in the single view reconstruction (conventional
& nNMF). Due to the complex structure of the experimental data it was not pos-
sible to theoretically compute NCC-curves and optimize the iteration to reach an
optimum reconstruction result. The presented data was obtained with 10 (accel-
erated) iterations for all reconstructions, varying this number did not change the
overall impression that the multiview deconvolution is superior with respect to
reconstruct 3D information. However, when looking at the in-focus slice of the
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beads sample, it seems that the deconvolved nNMF result is providing a more
clear view on the clustered beads. Nevertheless, it is highly under representing
the structure marked with the cyan arrow in the axial view. A representation of
the recorded 3D information of the sample, indicating the modulation of axial im-
age information introduced in the 2D images due to Field-Synthesis, is given in
the appendix (p. 134). Due to limited access and the Covid-19 pandemic, it was
not possible to optimize the experimental imaging or get data with improved
quality. In the authors view there still needs to be more experimental work done
to show the benefits and limitations of the proposed illumination splitting idea.

3.6 Summary and discussion

In this chapter the concept of splitting & recombination was introduced and put
into context of fluorescence microscopy. The overall goal is to create sub-images
with mutually differing SNR, which are then computationally recombined to
yield an overall improved SNR. The general idea was first presented using the
polarization splitting example, where a polarization-dependent focusing effect
was exploited. Two computational reconstruction methods have been illustrated:
weighted averaging in Fourier space and multiview deconvolution. The first has
the advantage of being linear, hence gives the ability to predict the recombined
outcome in form of a noise-normalized effective OTF h̃wa,σ. For the multiview de-
convolution, the Richardson-Lucy update scheme based on [68] was used. How-
ever, the projection of the different views into a single estimate was modified into
a weighted summation. Note that this increases the convergence speed of the
RL iterations, while the convergence guarantee in principle is lost. Additionally,
deconvolution allows to reconstruct 3D information from 2D images, which can
only give good results when multiple views (or images) are available. Three dis-
tinct splitting mechanisms were presented, each including a detailed theoretical
analysis and a proof-of-principle experiment.

Wavelength splitting:

Fluorescence emission is typically characterized by a spectrum which is broad
and asymmetric with respect to the emission wavelength λ (tail towards larger λ).
This asymmetry effectively creates a spatial broadening which further degrades
the resolution achievable by an imaging system. This broadening increases when
the emission spectrum becomes more asymmetric (towards larger λ) and can be
reduced when an appropriate emission filter is used (cutting away more longer
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wavelengths). However, this will further reduce the number of detectable pho-
tons and therefore also limit the achievable SNR. By splitting the fluorescence
emission into multiple wavelength bands, computational recombination ensures
to get more information out of the captured photons, leading to an improved
SNR. This was verified using pattern E (line pairs) and I (crossing stairs) from
an Argolight calibration target (introduced in sec. 3.3.4), which emits broad flu-
orescence emission in the visible spectral region. It was imaged using a Zeiss
LSM 880 with spectral detection unit, enabling to simultaneously capture spa-
tial and spectral information. Weighted averaging showed a slight enhancement
of visibility of IFV ≈ 5% at the smallest resolvable line pair. The multiview de-
convolution makes much better use of the available information and reaches a
maximum of improvement IFV ≈ 79%, compared to the non-split data. The three
dimensional image reconstruction of the "crossing stairs" sample yields a reduc-
tion in axial blur on the order of 10%. Depending on the shape of the ε(λ)-curve
it might also make sense to obtain irregularly sampled spectral data, so that the
amount of light per spectral channel stays constant. Such that the object infor-
mation corresponding to the emission tail at smaller wavelengths is not lost in
noise. The microscope system was located at a different campus (ZAF, Univer-
sität Jena) and could not be aligned perfectly due to time restrictions and the
Covid-19 pandemic. In general the options to optimize the imaging settings were
limited, leaving it open whether better data could have been produced.

Pupil splitting:

The next idea for splitting & recombination is to manipulate the spatial frequency
information in the pupil of the optical system. This is achieved by radially split-
ting the pupil of an incoherent imaging system into two sub-pupils. Using weight-
ed averaging in Fourier space to recombine the split data shows an SNR enhance-
ment towards higher spatial frequencies, while some degradation is visible at the
mid-frequencies. The latter is not limiting in the sense that the signal can still
be recovered using post-processing techniques, as SNR ≫ 1. The splitting ad-
ditionally creates an extended-depth-of-field (EDoF) effect, as both sub-PSFs are
elongated along the z-axis. The experimental verification of the advances of pupil
splitting have been investigated using an optical setup, build and operated by the
group of Jonas Ries at the EMBL in Heidelberg. In their setup the BFP of a micro-
scope objective is accessible, such that a small mirror device can split the light
distribution in the pupil into an inner disk and outer ring part. Both contributions
were redirected onto two neighboring halves of an sCMOS camera. Again the
Argolight sample with the resolution (pattern E) and the crossing stairs (pattern
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I) were imaged and after weighted average recombination showed the aforemen-
tioned performance at mid- and high spatial frequencies. The advantage of pupil
splitting becomes apparent as some very fine structures can only be resolved us-
ing the splitting & recombination approach. Multiview deconvolution is even
able to undo the reduced information transfer at the mid-frequencies, while gen-
erating a visibility improvement of > 30%. The axial reconstruction of the two
crossing stairs shows the aforementioned EDoF effect and the ability to recon-
struct the stair-like shape of the object, while only measuring 2D images. Note
that the reconstruction is symmetric with respect to the optical axis, which is due
to the numerically computed sub-PSFs which are symmetric as well. An idea to
overcome this would be to include PSF aberrations, present in most experimen-
tal data, such as spherical aberration or astigmatism [6]. The idea of using more
than just a single radial split is obvious but was not followed in much detail as
every additional split will automatically decrease the SNR per sub-image. Which
might result in some information being lost in the respective noise floor. When
implementing the pupil splitting, it is important to ensure that both channels are
in-focus on the camera to obtain the best recombination of lateral structures. This
was achieved by moving the imaging lenses in front of the camera by hand and
looking for the sharpest image. Some small misalignment along the optical axis
could be beneficial as long as both sub-PSFs still overlap. This would result in an
artificially enlarged depth-of-field, while information above and below the focus
could be attributed to the differently shifted sub-PSFs. It would also solve the
described symmetry problem along the z-axis.

Illumination splitting:

Performing the splitting in the illumination, as compared to the detection (e.g. in
wavelength & pupil splitting), has the advantage that the splitting itself does not
necessarily limit the amount of photons per sub-image. Shifting the focus from
photon-limited imaging (i.e. shot noise), to additional factors that can degrade
SNR such as out-of-focus light. The presented idea is to generate a light-sheet
illumination, using the concept of Field-Synthesis [94]. In light-sheet imaging
the ability to remove out-of-focus contributions is given by the thickness of the
excitation structure. However, typically a small thickness is linked to a reduced
detection FoV, making it difficult to achieve good out-of-focus rejection over a
large FoV. One possibility to get around this would be to create the light-sheet
by using a Bessel beam (annular mask in illumination BFP), consisting of a thin
and long central peak and strong sidelobes. Unfortunately, the latter excite out-
of-focus structures which will corrupt the 2D widefield image with additional
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unwanted background. Field-Synthesis can be used to create the (temporally av-
eraged) Bessel sheet, resulting in a series of axially modulated sub-illuminations.
The main advantage of Field-Synthesis given in the literature is its capability to
reduce the peak irradiation at the sample, which minimizes phototoxicity and
photobleaching. Another benefit that it provides is the opportunity to capture
sub-images, corresponding to each of the sub-illuminations. Because the maxi-
mum excitation for each sub-illumination always coincides with the focal plane of
the detection objective and the out-of-focus information is modulated in the sub-
images (2D only), it is possible to remove the unwanted out-of-focus information.
The computational recombination is either done using an algorithm based on
non-negative matrix factorization (nNMF) or by multiview deconvolution. The
former tries to separate the measurement data into two contributions: in- and
out-of-focus information. Multiview deconvolution can be used to obtain a 3D
estimate of the true underlying object (thick slice), as it incorporates different 2D
views corresponding to the axially modulated excitation patterns. The experi-
mental verification of the presented ideas were done using a custom-made light-
sheet system, build by James Manton at the LMB (Cambridge). A Vimentin and a
bead sample were imaged and showed the expected axial modulation of fluores-
cence emission. Using only the 2D in-focus slices from the recorded z-stack, and
processing them with the proposed nNMF algorithm confirmed the idea to re-
move out-of-focus light via illumination splitting. The axial reconstruction using
the thick slice method showed that the most accurate estimate of the underly-
ing 3D images structure can be reached using a multiview deconvolution. Due
to Covid-19 it was not possible for the author to actually visit the experimental
setup at the LMB. Hence the presented data can only be regarded as first proof-of-
principle results and a further investigation with an optimized image acquisition
needs to be realized in the future.

In general it should be noted that when image reconstruction methods (e.g. de-
convolution) are used, this should be accompanied with some information on
whether a sensible or optimal solution has been reached. This is partially done
in this thesis by computing NCC curves from simulated data. Whenever two
datasets were processed with the same number of iterations, the development of
their individual reconstruction quality was monitored.
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Chapter 4

Submillimeter wave imaging

In the previous chapter a hybrid method, combining experimental and computa-
tional steps, was introduced and applied to fluorescence microscopy. However,
often it is also possible to achieve an SNR enhancement with computational post-
processing alone. In the following this will be exemplified in the field of submil-
limeter wave imaging. This wavelength regime is also known as terahertz radiation
and comprises of wavelengths from 10 µm to 1 mm [112]. In contrast to detecting
light in the visible, submillimeter wave detection is not as widely distributed in a
commercial sense. The corresponding frequencies lie in a range where electronic
detection is not fast enough and optical detectors aren’t efficient, termed the "THz
gap" [113]. However, submillimeter waves have interesting properties, such as
the ability to penetrate through fabrics while being low energetic (non-harmful
because non-ionizing). One of their possible applications is passive concealed threat
detection, which has the goal to identify possible threats, worn at the human body
but hidden beneath clothes from a safe distance [114, 115]. The detection can be
done in such a way, that the suspect is unaware of the surveillance. Enabling to
plan further police measures, while having proof of their eligibility in case of le-
gal actions in front of a court.
In the following the challenges and limitations using submillimeter waves for
passive concealed threat detection will be introduced and discussed. Next, a
brief description of the prototype of the security imager and the subsequent pre-
processing steps are given. Since the amount of submillimeter wave signal emit-
ted from the human body is small and the detection is shot noise limited, the
image quality is governed by a low SNR. An improvement in SNR is generated
by means of computation, employing denoising and deconvolution algorithms.
The last section will be a short summary and discussion.
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4.1 Challenges in passive concealed threat detection

The idea behind passive concealed threat detection is to identify suspects that are
carrying unidentified (potentially dangerous) objects under their clothes, without
the use of an active radiation source. So that the screening of such a person can be
carried out without their knowledge, minimizing the risk of creating a dangerous
situation when trying to detain the suspect. This means that a possible security
imager must be able to detect signals from a distance > 10 m, while maintain-
ing a FoV of ≈ 1 × 2 m2, encompassing an upright standing person. The system
must be fast enough to track moving individuals, while also allowing for a high
enough spatial resolution (≈ 1 cm) and SNR, to be able to successfully identify
small objects, i.e. the size of a handgun. Making sure that a smartphone is not
falsely marked as a potential threat. Another important aspect of this type of in-
vestigation has to do with data privacy [116, 117]. It is required by German law
that the identity of an individual can not be directly inferred from the submil-
limeter wave data alone. A passive imaging modality suits perfectly to this as
it only reveals an outline of the person. However, the most important property
that needs to be met by the passive security imager is that of efficiently detecting
radiation which penetrates through clothes.

4.1.1 Emission & absorption of submillimeter waves

As stated before, the wavelength range of submillimeter waves is given between
10 µm and 1 mm. The (spectral) detection window of the security imager needs to
be set such, that the suitable radiation shows a high transmissivity through typ-
ical clothes. For most fabrics the transmission decreases for wavelengths λ < 1
mm, e.g. see Fig. 1 in [118] or [119]. This coincides with the atmospheric window,
meaning that for wavelengths much smaller than 1 mm the humidity in the air
will block most of the respective radiation. Making electromagnetic waves with
λ ≥ 1 mm more suitable for concealed threat detection. However, the emission
of electromagnetic radiation in this respective wavelength regime is low. Accord-
ing to Wien’s displacement law [120], the maximum emission of a black body, at
T = 20◦C = 293 K, is given at λmax ≈ 10 µm. The black body emission curve
is asymmetric and exhibits a tail towards longer wavelengths (similar to fluores-
cence emission spectra). Meaning that wavelengths at around 1 mm correspond
to a spectral region where only a very small number of photons is being emitted.
Just from the emission characteristics alone it would make sense to go to wave-
lengths λ < 1 mm. However, then the transmission through fabrics gets worse,
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which is problematic in the application of concealed threat detection. Therefore
it is important to employ a very sensitive detection scheme.

4.1.2 Inherent limitations in spatial resolution and SNR

Besides the ability to detect a signal that carries information about concealed
threats, it is also important to achieve high enough spatial resolution and SNR.
The ability to detect smaller structures scales with the wavelength and is indi-
rectly proportional to the detection NA (see eq. 2.8). Suggesting that a choice of
λ ≥ 1 mm, comes at the cost of reduced spatial resolution. Also note that the
detection NA gets smaller when imaging further away from the detector. Over-
all this means that the ability to detect concealed structures in the submillimeter
wave regime comes with a tradeoff: either a good spatial resolution is achieved
(λ ≤ 1 mm) but the transmission efficiency through clothes is reduced, or radi-
ation is transmitted well (λ ≥ 1 mm) but the spatial resolution is worsened. As
the main criterion for the success of the security imager lies in the ability to de-
tect concealed threats, this tradeoff is approached by setting λ ≲ 1 mm. Hence,
the limiting factor is now given by the achievable signal-to-noise ratio. Which,
among others, depends on the efficiency of the detection technology used.

4.2 The passive standoff security imager

In the previous section some criteria for the successful use of the security imager
were defined. During the last 10 - 15 years, research at the Leibniz Institute of
Photonic Technology (IPHT) in Jena has resulted in several prototypes, which
have gradually come closer to meet those requirements, e.g. in [118, 121, 122].

4.2.1 Detection and readout scheme

The latest prototype is based on a Cassegrain telescope design (see Fig. 4.1) and
consist of a main mirror, which has a diameter of 1 m. Together with an imaging
wavelength of λ = 0.75 mm −1 mm, this results in a spatial resolution of ≈ 1 cm
−2 cm. The imaging concept is that of a line-scanner, meaning that a full FoV is
generated by scanning the image over an array of detectors. To do this, the small
mirror of the Cassegrain is tiltable, achieving a FoV of ≈ 1 m ×2 m at a distance
of 10 m −15 m. The detector array is located at the center of the optical axis, be-
hind an opening in the main mirror and consists of 8 modules, each with 2 rows
of 8 detectors (see blue dots in Fig. 4.1). Note that both rows are slightly shifted
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Figure 4.1: The passive submillimeter wave imager used in this thesis consists of a large main
mirror (diameter ≈ 1 m) and a small, tiltable, mirror which reflects the captured radiation onto
a linear array of detectors. The scanning provides a FoV of about 1 m ×2 m at a distance of
10 m −15 m. Feed-horn antennas direct the acquired signal onto detectors, which are tuned for
the required wavelength region of 0.75 mm −1 mm. The detectors are arranged in 8 modules,
which are made up of to two rows with 8 detectors each. In the prototype, only one row per
module (blue dots) was read out. For the detection of submillimeter waves a bolometric response
is used. In short: radiation gets absorbed by a superconducting transition-edge sensor (TES)
and the resulting temperature change T is transferred into a change of magnetic flux Φ, which is
amplified using a super-conducting-quantum-interference device (SQUID). Relating the voltage
measurable across the SQUID to the absorbed photon energy. Top right: comparing image results
in the visible and the submillimeter range.

with respect to each other, the reason being that otherwise Nyquist sampling is
not fulfilled. Each detector and the corresponding feed horn antenna, which cou-
ples the radiation into the sensor, are too big to be placed next to each other, at
Nyquist sampling distance. In total 128 detectors are available, however, only 64
of them (in alternating rows) have been readout in the data presented. Due to a
lack of multiplexed readout capability in the current prototype.
The actual detector technology is borrowed from the field of particle detection.
So-called microbolometers are used, as they are tunable in their detection range,
meaning they can be specifically designed to work in the required wavelength
regime of λ = 0.75 mm −1 mm. A short graphical representation of the whole
detection process is shown in Fig. 4.1 bottom. Their working principle is as fol-
lows: submillimeter wave radiation gets absorbed and heats up a transition-edge-
sensor (TES) [123], which shows a strong response in electric resistance R. As the
TES is run at cryogenic temperatures (< 1 K) it exhibits superconducting prop-
erties, resulting in a very sharp dependency of R with respect to T. A connected
circuit transforms this, via a coil arrangement, into a change of magnetic flux Φ.
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The challenge is now to amplify this fairly weak signal, without introducing ad-
ditional noise. This is done using superconducting quantum interference devices
(SQUIDs) [124, 125]. Which consists of two Josephson junctions [126], separating
a superconducting loop into two halves. The Josephson effect describes, simi-
larly to quantum tunneling, the flow of a supercurrent (here Cooper pairs [127])
through a potential barrier. When a current I is applied to the SQUID and no
external magnetic flux Φ is present, I splits into the two arms, yielding I1,2 = I/2
for each. A weak external magnetic field will now induce a screening current Is,
which will flow in the opposing direction in one of the arms (I1 = I/2 − Is) and
concurrent in the other arm (I2 = I/2 + Is), as it tries to cancel the external field
(corresponding to the absorption event). When the current in the latter exceeds
a critical value Ic, a voltage can be measured across the barrier. However, the
magnetic flux Φ going through the SQUID can only be an integer of the mag-
netic flux quantum Φ0. This means that as soon as the external field gets larger
than n · Φ0/2 (with n ∈ N), the induced screening current Is will change its di-
rection, leading to a modulation of detectable voltage change ∆V. With this a
measurable electric signal can be related to the incoming submillimeter wave ra-
diation. However, notice that this response is not unambiguous as the voltage can
be attributed to multiple integers of the magnetic flux quantum Φ0. Additionally,
the image acquisition needs to be fast enough to track walking individuals. The
available prototype captured data at up to 25 frames per second [118].

4.2.2 Pre-processing steps

The imager prototype used for the concealed threat detection comes with some
caveats. Pre-processing is required to reconstruct an image from the acquired raw
data and to correct different imaging artifacts. The following pre-processing steps
work on a subset of the recorded data (e.g. 10 frames), where the required correc-
tion parameters are obtained automatically and are recomputed for each new set
of frames. Note that this type of content-based processing was deliberately aimed
for in the project that funded parts of this PhD work. The reason being that for an
easy-to-use system, which could later be turned into a commercial product, the
amount of required calibration steps should be minimized. All processing steps
introduced in the following are designed and tested, so that they work robustly
with the raw data acquired from the current prototype. As the security imager
records data according to a line-scan in the vertical direction, every second frame
needs to be flipped vertically. Raw data for three different datasets are shown in
Fig. 4.2 (20180905-03 refers to the third dataset recorded on 5.09.2018).
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Figure 4.2: Overview of multiple pre-processing steps for three different datasets (vertical). From
left to right: raw data, vertical lines as the detector array is vertically scanned over the scene; off-
set corrected: removing individual detector offsets by subtracting dark images; gain corrected:
getting uniform sensitivity of individual detectors; shift corrected: remove axial shift of detector
modules; contrast adjusted: applying scaling to ensure maximum contrast from back- to fore-
ground. Some artifacts to point out: depending on cool-down procedure some detectors might
not work (orange) or show a limited sensitivity (red); due to the wiring process of the detector
modules to the read-out, a polarity error (yellow, measured value gets smaller with increasing
radiation) occurs; to ensure uniformity of the measured signal, weaker sensor responses are am-
plified, leading to strong noise effects (green) especially when the detectors have not seen any
signal within the evaluates time series; due to the specific arrangement of the detector modules
a vertical shift of image information can be observed (pink), de-shifting leads to wrap-around
artifacts (blue). Two objects ("handgun" made out of aluminum and wooden "AK-47") were hid-
den in trouser pockets (gun) or underneath jacket (rifle). Last column shows the basic processing,
consisting only of background subtraction and a de-shifting operation with fixed shift values.

The vertical lines correspond to the individual sensor pixels, scanned vertically.
A direct image of the scene is not observable due to strongly deviating offset val-
ues of each detector. For more details regarding this and the varying gain of each
detector see p. 135 in the appendix. Note that those detector characteristics drift
over time and more importantly, change whenever the whole system is cooled
down to its operating temperature of < 1 K (compare different dates of acqui-
sition in Fig. 4.2). This requires the recording of appropriate dark images (no
submillimeter signal in scene) anytime when the security imager is set up to be
used for concealed threat detection. Offset correction is achieved by subtraction
of the dark images, resulting in the recorded scenes shown in the second column
of Fig. 4.2. However, the image data still comprises of a number of artifacts.
Some of the detectors are not working (orange), hence their value need to be in-
terpolated from adjacent sensors. Others show some inverted polarity (red): the
measured signal becomes weaker when more radiation is absorbed by the TES.
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The reason for this is the incorrect wiring of detectors to the readout electronics.
Apart from the offset of each individual detector, also its sensitivity differs (see
slope in Fig. A.15a). Uniformity is enforced by calculating a max-projection over
all frames and along the vertical scanning direction. With this a reference value is
obtained for each detector, comparing it with respect to the full FoV maximum.
These individual values are written into the diagonal of a 64 × 64 matrix Q. The
matrix formulation is useful when the effects of detector crosstalk (not present in
the shown data) is to be included, as this can be achieved by setting the values
in the first minor diagonal of Q. The goal is now to find a gain vector G⃗ which,
when multiplied with Q yields the identity vector 1⃗ (indicating uniformity):

1⃗ = Q · G⃗ (4.1)

with 1⃗ and G⃗ being vectors of size 64 × 1. By inverting this equation, a least-
squares optimized estimate of the correct gain values G⃗est. can be computed:

G⃗est. = Q−1 · 1⃗ (4.2)

Each element of G⃗est. corresponds to one of the 64 detectors and scales their indi-
vidual values to yield an approximately uniform FoV. However, this will also lead
to pure noise amplification (green), when some of the detectors haven’t seen any
signal (besides background) within the evaluated image sequence. In the afore-
mentioned project this was aimed to be corrected for by obtaining the outline of
the person under investigation with the help of cameras working in the visible
wavelength range. Results on this are not presented in this thesis. Apart from
differences in individual detector responses, also the line-scanning itself results
in artifacts. For example: the specific meander-shaped geometrical layout of the
detector (see Fig. 4.1) results in a vertical shift of every second detector module
(pink). This is corrected for by averaging the recorded signal for each module (8
detectors) and using a correlation-based algorithm [83] to estimate the shift with
respect to each adjacent module. Once the shift in pixels has been computed, a de-
shifted version of the image data is obtained by applying an appropriate phase
ramp in Fourier space (shifting theorem). Naturally, this leads to wrap-around
artifacts at the vertical edges of the image (blue) (originating from the discrete
Fourier transform). The visibility of those are damped by multiplying a cosine
shaped windowing function after the de-shifting operation. Not shown in Fig.
4.2 is the shift correction between subsequent frames. When operating the secu-
rity imager prototype, the scanning results in some oscillation of the whole detec-
tion unit. This leads to a considerable vertical shift between consecutive frames
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and some minor stretches along the vertical dimension. When neglecting the lat-
ter and assuming that the recorded scene does not change too much in between,
the shift can be estimated and corrected for similarly by applying an appropriate
phase ramp. The last step of the pre-processing is a contrast adjustment. To do
this the series of frames to be processed is split into two halves Mup,down, each cor-
responding to the up- and down-scanning of the tilt-mirror. These two temporal
stacks are concatenated along the fourth dimension and an pixel-wise average M̄
is computed. This value represents the mean value after one complete vertical
scan (up and down). A correction factor Cup,down for each of the two (temporal)
stacks is calculated, according to:

Cup,down(r⃗) =
M̄(r⃗)

|Mup,down(r⃗)|2 + 0.1
(4.3)

These correction factors are multiplied to the respective temporal series Mup,down

and then rearranged into a single data stack, comprising of both up- and down-
scanned images. What this does is that the background in the recorded scene is
damped, while the person/object under investigation is amplified in terms of its
signal display. After pre-processing, objects which were hidden under clothes
(encircled in white) could be identified more easily: 1) mock-up gun made out of
aluminium, put into pocket; 2) wooden "AK-47" underneath a jacket. The resolu-
tion target in the bottom row of Fig. 4.2 has a spacing of 1.5 cm and indicates a
loss of horizontal resolution. However, this is still enough to visually identify the
handgun, making it clear that the successful detection of hidden threats is indeed
possible. The last column of Fig. 4.2 shows a basic processing of the submillime-
ter wave data, which only employs background correction and a fixed de-shifting
of the meander-shaped detector pattern. The difference in terms of contrast and
the presence of imaging artifacts, clearly highlights the importance of employing
pre-processing. Especially when dealing with small objects like guns or knives,
where the image formation in the existing prototype comes to its technical and
physical limits. Another important aspect of the aforementioned pre-processing
is the capability to self-calibrate through the acquired image data. No additional
user input is needed, the pre-processing obtains the necessary correction param-
eters from a short time series of 10 or more frames.

4.3 SNR enhancement via computation

To further improve the threat-detection capability of the security imager, addi-
tional SNR improvement seems to be advantageous. This is because the detected
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signal in the submillimeter wave regime is not restricted to dangerous objects,
e.g. also smartphones are visible. To achieve a successful identification of harm-
ful objects (= threats), the best possible SNR is required. Improvements on the
hardware level will not be possible, due to the existing strong technical limita-
tions. Therefore, only a SNR enhancement on the computational level is feasible.
The three following methods will be looked at: decreasing noise, improving sig-
nal and data-driven image reconstruction.

4.3.1 Decreasing noise: denoising

The first idea is to try to remove additive noise from the acquired data, without
compromising the inherit signal:

Image = Signal + Noise

The goal is to subtract noise from the image data, such that a good estimate of the
true underlying signal is obtained. Making a clear distinction between signal and
noise is difficult, as each image contains an individual realization of a statistical
noise process, making it impossible to predict the exact noise contribution. In the
appendix (p. 135) it is shown that the noise present in the raw data corresponds
to the shot noise regime. Making it clear that processing these raw frames by
some sort of averaging seems to be a suitable choice, as shot noise is bias-free. In
Fig. 4.3, different denoising techniques are depicted. On the very left the fully
pre-processed images from Fig. 4.2 are shown, while next to it, the results of
applying a uniform filter are displayed. Mathematically this filtering is given as:

Muni f .(r⃗) = M(r⃗)⊗ 1
9

[︂ 1 1 1
1 1 1
1 1 1

]︂
(4.4)

with 1/9 ·
[︂ 1 1 1

1 1 1
1 1 1

]︂
being a 3 × 3 normalized filter kernel.

This filter replaces each pixel in the image with the arithmetic average of its sur-
rounding neighbors. It is clear that the averaging over adjacent pixels fundamen-
tally does reduce the spatial resolution. However, it is easy to implement and can
be used on any type of image data. In Fig. 4.3, a reduction of noise can be ob-
served, while some spatial resolution is lost (bottom). To overcome the problem
with the reduced resolution, an adaptive filtering approach can be used. Chang-
ing the parameters of the filter kernel according to the local image content [128].



Chapter 4. Submillimeter wave imaging 87

Figure 4.3: Overview of different denoising strategies. From left to right: pre-processed data
(shown in Fig. 4.2); applying a uniform (averaging) filter will remove noise but also smoothen
image details; this can be improved upon by applying a locally adaptive filter routine [128]; using
a median filter does remove noise but also leads to some additional spatial blur; representing
the data in Fourier space (FFT) helps to get rid of noise, as high frequency components, mainly
corresponding to noise, are simply set to zero. The shape of the hidden objects is not altered by the
denoising, nevertheless grainy patches become visible; a better alternative to use is the discrete
cosine transform (DCT) as it provides a more dense signal representation [129], making it easier
to remove noises by setting most of the resulting DCT coefficients to zero.

The idea is to calculate the mean µ and variance σ2 of the image by employing:

µ(r⃗) = M(r⃗)⊗ 1
9

[︂ 1 1 1
1 1 1
1 1 1

]︂
(4.5)

σ2(r⃗) =
(︂

M2(r⃗)⊗ 1
9

[︂ 1 1 1
1 1 1
1 1 1

]︂)︂
− µ2(r⃗) (4.6)

with M the measured image and a uniform filter kernel (filter size = 3 × 3). The
filtered image M f ilt. is obtained by applying the following computation:

M f ilt.(r⃗) = µ(r⃗) +
max{σ2(r⃗)− ν2, 0}

σ2(r⃗)
·
[︃

M(r⃗)− µ(r⃗)
]︃

(4.7)

Each pixel i in the original image gets bias corrected and then normalized by its
relative difference between the observable variance and the global noise variance
ν (with σ2 − ν2 ≤ 0). The result looks very similar to what was obtained using the
uniform filter, only a very small increase in obtainable spatial resolution might be
detected. Another filter operation that is typically used to denoise images is the
median filter. It replaces the pixel at the center of a neighborhood (here 3× 3) with
the median value of all adjacent pixels. The median operation is more robust with
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respect to outliers, which are typically introduced due to noise. However, similar
to the uniform filter it can reduce the resulting spatial resolution.
A different approach for noise removal, is to represent the measured image in an-
other basis. Such that noise and signal can be split according to some predefined
characteristics. One possibility would be to use Fourier space. Where additive
(pixel-independent) noise occurs as a constant noise floor. The measured signal
in an imaging system is typically bandlimited, meaning that there are some pixels
in the Fourier transform of the image data, which only encode noise (in a region
beyond the bandlimit). We can set those to zero and apply an inverse Fourier
transform, the result is shown in Fig. 3.3a. Noise has been reduced, while fine
image details get only slightly altered. However, more grainy patches become
visible. Instead of using the full Fourier series, the data can also be represented
by a discrete cosine transform (DCT). It typically encodes image information with
much fewer coefficients than the FFT, meaning that it concentrates most of the
signal at the lowest frequency components [129]. Removing higher frequencies
therefore will separate noise from signal contribution more efficiently. Figure 4.3
shows the corresponding result, indicating an improvement in terms of image
quality with respect to the raw data.

4.3.2 Improving signal: deconvolution

As mentioned before, it might be crucial to further improve the spatial resolution
and SNR of the security imager. So that the shape of small objects can more
easily be detected and identified, improving the classification into normal and
harmful objects. Therefore we will look at deconvolution as a tool to perform image
reconstruction, assuming the following image formation model:

Image = Object ⊗ PSF + Noise

with ⊗ denoting the convolution operation, PSF the point-spread function of
the security imager and Object the unknown object, a potential threat. The PSF
is theoretically modeled as an Airy pattern [7], whose width was adjusted by
looking at the spatial blur of the resolution target in Fig. 4.2.
In deconvolution the goal is to reverse above equation, to obtain a good estimate
of the unknown object. This is non-trivial as noise gets amplified in the inversion
process, leading to an unsatisfactory reconstruction of object information.

The straightforward inversion is typically replaced by a Wiener filter (see sec.
2.4.2), where the regularization parameter K̃ needs to be adjusted depending on
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Figure 4.4: Overview of different deconvolution strategies. From left to right: pre-processed data;
applying DCT-denoising + a sharpening filter to emulate improved spatial resolution while using
a denoising method; using a Wiener filter (K̃ = 0.05) generates a smoother representation but does
not yield a strong improvement in terms of resolution (see "20180905-03"); this can be overcome
by the Richardson-Lucy (RL) algorithm, which exhibits stronger noise artifacts and additionally
requires a longer computation time (10 iterations); acceleration of the iterations is possible via
work of [54] (7 accel. iterations), but cannot remove the noise artifacts; a damped version [55]
(γ = 0.01) of the accelerated RL method is able to strongly reduce those, yielding a strong SNR.

the noise level (and image content). Figure 4.4 shows that the Wiener filtered
result (K̃ = 0.05) exhibits less noise and is not affected by pre-processing artifacts,
which can be seen when the DCT-denoised image from Fig. 4.3 is sharpened
(by substracting a Laplace-filtered version [130]). However, in terms of spatial
resolution, the Wiener filter does not yield in a strong improvement. A better
approach would be to use an iterative algorithm such as Richardson-Lucy (RL)
deconvolution, which has been introduced in sec. 2.4.2 as:

estl+1(r⃗) = estl(r⃗) ·
[︃

M(r⃗)
estl(r⃗)⊗ h(r⃗)

⊗ h(−r⃗)
]︃

(4.8)

with M being the measured image data, h the corresponding PSF and estl the
algorithms estimate of the underlying object structure at iteration l. An enhance-
ment in terms of resolution is observable (see "20180905-03"). But comes at the
cost of amplified noise artifacts, which are quite common in RL deconvolution.
Another drawback is the increase in computation time compared to direct filter-
ing such as the Wiener filter. Note that the computational speed is of interest for
the particular application of concealed threat detection. Hence iterative recon-
struction methods need to be optimized with respect to their runtime.
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Accelerating Richardson-Lucy deconvolution:

Different methods of accelerating the RL algorithm have been proposed in the
literature (e.g. [54, 131, 132, 133]). In this thesis the work of Biggs et al. [54]
is followed, who proposed a modified line-search method. To implement their
work, the estimate (estl) needs to be replaced by a current estimate (est(curr.)

l ), so
that the aforementioned RL iteration equation becomes:

estl+1(r⃗) = est(curr.)
l (r⃗) ·

[︃
M(r⃗)

est(curr.)
l (r⃗)⊗ h(r⃗)

⊗ h(−r⃗)
]︃

(4.9)

The current estimate depends on the history of the previous reconstructions. Af-
ter each iteration it gets modified by a multiplication with a difference term in-
volving the estimate of the previous iteration:

est(curr.)
l (r⃗) = estl(r⃗) + λl ·

[︁
estl(r⃗)− estl−1(r⃗)

]︁
(4.10)

To control the influence of the previous reconstructions on the current estimate
the parameter λl is introduced, acting as a weighting factor which itself changes
per iteration. Its value is given by comparing the residuals of the current and the
previous iteration according to:

λl =
∑r⃗ resl(r⃗) · resl−1(r⃗)

∑r⃗ resl−1(r⃗) · resl−1(r⃗)
(4.11)

with the residuals resl,l−1 given as:

resl(r⃗) = est(curr.)
l (r⃗)− estl(r⃗)

resl−1(r⃗) = est(curr.)
l−1 (r⃗)− estl−1(r⃗) (4.12)

To ensure stability 0 ≤ λl ≤ 1 is enforced. Using this acceleration approach
a similar reconstruction quality compared to the non-accelerated version with
10 iterations can be achieved already after 7 iterations. Yielding a reduction in
processing time on the order of 30%.

Damping the noise amplification:

However, still the typical noise amplification of RL deconvolution remains. A so-
lution to this would be to find an automatic stopping criterion of the algorithm,
preventing it from further amplifying noise. This comes with two problems: 1)
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it limits the achievable reconstruction as the iteration might end too early; 2) dif-
ferent regions in the image might require varying stopping criteria. Instead, a
damping mechanism is introduced, which makes sure that noise amplification
gets suppressed. In [55] this is achieved by modifying ratiol = M/(estl ⊗h) into:

ratiol(r⃗) → 1 + Gl(r⃗) ·
[︁

ratiol(r⃗)− 1
]︁

(4.13)

including a damping factor Gl. This parameter is ought to change ratiol in such a
way, that in case of convEst being close to M the value of the effective ratiol is set
to unity. This is accomplished by choosing Gl according to [55] as:

Gl(r⃗) = gl(r⃗)gm−1 · [gm − (gm − 1) · gl(r⃗)] (4.14)

with gm being a constant which is typically set to gm = 10 [55].
The parameter gl is given according to:

gl(r⃗) = γ−1 ·
(︃

M(r⃗) · ln[ratiol(r⃗)] + convEstl(r⃗)− M(r⃗)
)︃

(4.15)

which is a function measuring the reconstruction error in relation to some thresh-
old value γ. In case of a good reconstruction both, gl and Gl, will approach zero,
resulting in the effective ratiol becoming 1. Which prevents noise amplification
at larger iteration numbers. Is the reconstruction bad, then gl will increase which
yields a much larger value of Gl. Hence the effective ratiol will be ≫ 1 and the
algorithm tries to improve the reconstruction in subsequent iterations. Note that
this approach is spatially dependent, meaning that different regions in the im-
age will be damped individually. Which enables an algorithm that yields better
reconstructions of fine details, and at the same time homogeneous areas with-
out strong noise amplification. Figure 4.4 shows the results of this algorithm for
γ = 0.01. Note the homogeneous surface of the upper body of both persons,
indicating the reduced noise amplification. Additionally the contrast of the con-
cealed threats is much enhanced. It might seem that spatial resolution is lost, as
the handgun looks slightly bigger in the reconstruction. However, when look-
ing at the resolution target (bottom) a clear improvement in resolution becomes
observable. Note that the damping strategy also works with the acceleration
scheme of [54], as shown here. Enabling fast reconstruction of high SNR data
from the security imager. The different image reconstruction methods are vali-
dated against the resolution line pattern (20180905), by looking at the visibility
V and the obtainable improvement factor IFV which is depicted in the appendix
(p. 135). A maximum enhancement of 120% is obtainable for the accelerated
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and damped Richardson-Lucy algorithm (7 iterations). On page 136 in the ap-
pendix, two datasets (20200309-08 and 20200309-15) are shown as a sequence of
five frames side by side. Indicating the sufficient temporal resolution to success-
fully observe a walking (top) and a turning (bottom) person, without missing
some of the movements. However, the shape of the concealed threat can only be
acquired from the data, when the object is facing the submillimeter wave imager.
E.g. a flat object at the side of the person will not result in any detectable contrast,
meaning that also image reconstruction techniques will not be able to improve
the image quality (except with additional information from external sensors).

4.3.3 Data-driven image reconstruction

Using post-processing as a tool to improve SNR is limited in the sense that all
reconstruction methods require some sort of mathematical model describing sig-
nal and noise. There are typically many more effects in real experiments, which
cannot all be described in a single theoretical framework. Especially, since some
of them might be too complicated to yield a straightforward description. A pos-
sibility to overcome this, is to obtain all information about the underlying reality
of the measurement process from the recorded data itself. This is possible when a
large dataset is presented to a computer algorithm, such that it can learn the un-
derlying structure by trying to predict those measurements. A realization of this
paradigm appeared in recent years due to the advance of Deep-Learning [134, 135],
as the use of more powerful Graphical Processing Units (GPUs) [136] became fea-
sible. Especially convolutional neural networks (CNNs) have lead to impressive re-
sults in image analysis (e.g. segmentation [137, 138]), when compared to more
traditional methods. Figure 4.5a shows a graphical sketch of such a neural net.
It consists of different layers of neurons (blue circles) and connections between
them. The processing of a single neuron is shown in the appendix (p. 136). Each
input signal from the previous layer is weighted with some weighting factors wi,
summed and processed by a non-linear function (activation), yielding the output
of that single neuron. The corresponding weights of all neural connections are
found by training on pairs of recorded images and groundtruth data.

In case of image denoising this is achieved by acquiring data corresponding to
low SNR (image M) and high SNR as an groundtruth estimate (image E; green
in Fig. 4.5a), as done in Content Aware Image Reconstruction (CARE) [140]. In
each training iteration, the neural network tries to remove noise such that the
loss of the network prediction compared to the groundtruth data is minimized.
The obtained error is backpropagated through the neural network and effectively
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a b

Figure 4.5: Deep-Learning-based denoising: principle and results. a A convolutional neural net
(blue) is used to remove noise from submillimeter wave images. This typically requires pairs
of low and high SNR data, the latter act as an estimate of the underlying groundtruth (green).
Training on low SNR images only is possible if a masking strategy is used, yielding in a so-called
blind-spot network [139]. Removing the information of the pixel ought to be estimated from the
receptive field, makes sure that the net is not learning the identity operation. b Results after Deep-
Learning-based image denoising. Note that only 20200309-15 was part of the training batch. For
all datasets the image quality gets improved, however spatial resolutions still gets compromised
(see handgun inset or resolution line pattern).

changes the weight parameters w in such a way that the predicted result in future
iterations is improved [141]. Mathematically this is written as:

argmin
θ

∑
(i)

∑
r⃗

L
{︃

fθ[M(i)(r⃗)]⏞ ⏟⏟ ⏞
prediction

; E(i)(r⃗)⏞ ⏟⏟ ⏞
groundtruth

}︃
(4.16)

with fθ being the mapping realized by the neural network, depending on the
model parameters θ (e.g. weights w, ...) and the ith pair of training data. ∑r⃗ L
represents a loss function, which is chosen to be the mean-square error loss:

L
{︃

fθ[M(i)(r⃗)]; E(i)(r⃗)
}︃

=

⃓⃓⃓⃓
fθ[M(i)(r⃗)]− E(i)(r⃗)

⃓⃓⃓⃓2
(4.17)

A major disadvantage of this approach is the requirement to collect groundtruth
data. This is not only cumbersome but might even be impossible in certain sce-
narios. Hence a method that can train such a network on low SNR images alone,
hence only on M, is required. Lehtinen et al. [142] introduced this in form of their
Noise2Noise-network, which requires two images with varying noise (denoted by
i and j) but same underlying signal structure to train the network.

M(i)(r⃗) = E(i)(r⃗) +N (i)(r⃗)

M(j)(r⃗) = E(i)(r⃗) +N (j)(r⃗) (4.18)
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Both having the same expectation value, enabling to make an appropriate adjust-
ment of the minimization process:

argmin
θ

∑
(i)

∑
r⃗

L
{︃

fθ[M(i)(r⃗)]⏞ ⏟⏟ ⏞
prediction

; M(j)(r⃗)⏞ ⏟⏟ ⏞
”groundtruth”

}︃
(4.19)

where the target distribution E(i) was replaced with the noisy measurement M(j).
Because the noise varies in each image (M(i) and M(j)), the network is not able to
predict an underlying noise process, enabling it to solely focus on E(i). Meaning
that it learns the denoising due to the lack of noise predictability. A more detailed
explanation of this is given in the appendix (p. 136).
Noise2Void [139, 143] achieves the same, without requiring a pair of noisy images.
The only assumption made is that the noise is pixel-wise independent, meaning
that it is impossible to predict the noise from surrounding neighbors. Contrary to
the signal, where adjacent pixels carry some information making it possible to in-
fer the central pixels signal value from the surrounding neighborhood. However,
to prevent the network form learning the identity operation (i.e. just forwarding
the input pixel), a masking scheme is required, leading to a so-called blind-spot
network. Figure 4.5a bottom shows a comparison between the CARE and the
Noise2Void strategy. In CARE the prediction of a single pixel is achieved by ac-
cumulating information from within a certain neighborhood, the receptive field. In
Noise2Void the receptive field must be masked so that no information of the pixel
which is supposed to be estimated is used in the training process. This prevents
the network form learning the identity operation and enables to learn image de-
noising from a single image acquisition. Re-writing the minimization into:

argmin
θ

∑
(i)

∑
r⃗

L
{︃

fθ[M
(i)
BS(r⃗)]⏞ ⏟⏟ ⏞

prediction

; M(i)
BS(r⃗)⏞ ⏟⏟ ⏞

”groundtruth”

}︃
(4.20)

with MBS being the masked (or blind-spot) version of the noisy measurements,
which is used for both: input and reference data. Enabling to train denoising on a
single measurement, without requiring to capture groundtruth data or multiple
noisy measurements. To train a Deep-Learning-based denoiser on the submil-
limeter wave data, the Noise2Void plugin for Fiji [144] has been used. It was
trained on the image sequence 20200309-15 for approximately 10 hours on a GPU
(Nvidia Geforce RTX 2070 Super). The results of applying the network to differ-
ent images is shown in Fig. 4.5b, which also incorporates data that was never
presented to the network during that training period. For all datasets the image
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quality does improve, as mainly noise is removed. Nevertheless, also this type of
denoising is not able to perfectly maintain signal structure, as can be seen espe-
cially at the line pairs of the resolution target. An advantage of Deep-Learning-
based denoising is that once it is trained, its runtime is low. In this sense, denois-
ing through neural networks seems to be ideal in the use of the envisioned se-
curity application. Denoising alone might not be enough, due to physically (and
technologically) limitations further resolution enhancement techniques could be
required. Common image reconstruction methods based on CNNs have been
adapted to also predict a deconvolved result [145, 146]. As these method are still
in their development phase, an application to the passive submillimeter wave
data has not yet been pursued.

4.4 Summary and discussion

In this chapter the image quality of a passive submillimeter wave imaging sys-
tem has been improved, as it lacks SNR and spatio-temporal resolution. The goal
of the presented imager is to detect concealed threats, e.g. a handgun or knife
hidden underneath clothes. This can only be realized by imaging at a very dis-
tinct wavelength region λ = 0.75 mm −1 mm, as the corresponding radiation
is required to be able to penetrate through fabrics. This choice of λ also sets the
attainable optical resolution to 1 cm −2 cm at a distance of 10 m −15 m, which
is barely enough for the proposed surveillance application. Naturally, improving
spatial resolution and the SNR will positively affect the ability to identify possible
threats. Those enhancements have been achieved in post-processing.

Pre-processing:

Each detector exhibits different offset and gain values which are corrected by sub-
tracting previously acquired dark images and by adjusting the detector response
through least-squares fitting. Due to the scanning motion several different geo-
metric artifacts can be found in the data, which are corrected by automatically es-
timating the required shift using a correlation-based algorithm. Wrap-around ar-
tifacts have been removed by damping using a windowing function, while proper
image normalization has been performed to generate the actual images.



Chapter 4. Submillimeter wave imaging 96

Denoising:

To further improve the image quality, the present noise needs to be reduced. Two
types of very basic denoising strategies have been investigated: 1) spatial filter-
ing; 2) clipping in a transformed space. Former indicated limited use as the sep-
aration of noise & signal in real space can only be partially achieved. When first
transforming the image into Fourier space, the nature of band-limited detection
can be used to remove high-frequency noise-only components. Using the dis-
crete cosine transform (DCT) shows even better denoising results, as DCT has a
stronger ability to concentrate sample information in a smaller region in k-space.

Deconvolution:

If a further improvement in image quality is required, more elaborate techniques
such as deconvolution can be used. Simple denoising & subsequent sharpening
of the image results in strong artifacts. Wiener filtering is a fast reconstruction
method, however, it also generates considerable noise artifacts. An iterative ap-
proach such as Richardson-Lucy deconvolution provides more flexibility in the
reconstruction to yield good results, but also requires a longer runtime. The it-
eration process has been accelerated by the method of Biggs [54], reducing the
computation time by 30%. To further overcome the problem of noise amplifica-
tion, the damping strategy from [55] has been implemented.

Deep-Learning:

A novel method for image reconstruction is based on Deep-Learning. The main
idea is to obtain information on the underlying sample structure of an object by
investigating a large number of representative example images. A network can
be trained to remove noise and artifacts not only when groundtruth data is avail-
able but also from single images by apply a masking strategy [139]. When ap-
plied to the recorded submillimeter data an enhancement of image quality was
observable, compared to traditional methods. Deep-Learning-based deconvolu-
tion techniques are currently being developed and might bring an unprecedented
enhancement in image restoration. An advantage of Deep-Learning-based meth-
ods is that after training their application is computationally inexpensive and
therefore perfectly suited to the live application of concealed threat detection.
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Chapter 5

Conclusion

The performance of any imaging system does not only depend on its ability to
transfer sample information, but also on the amount of noise present in the re-
spective measurement process. Meaning that imaging itself is not only charac-
terized by the attainable spatio-temporal resolution alone, but rather depends on
the achievable signal-to-noise ratio (SNR).
Many noise sources can be minimized or completely eliminated, e.g. by improv-
ing detector technology. However, the detection of photons poses a fundamental
noise limit (shot noise), which cannot be reduced through technological advance-
ments. Any noise type is essentially characterized by the variance it imposes on
the measurement. In case of shot noise the variance is equal to the expected num-
ber of photons, meaning that the shot noise limited SNR depends on the amount
of detectable photons. Often this number is limited (e.g. finite photon budget
in fluorescence microscopy), which inherently restricts the achievable SNR. A
bad SNR is able to drastically reduce image quality, even for advanced meth-
ods such as super-resolution techniques. Hence achieving maximum SNR at low
photon numbers is of strong interest, as this would benefit many imaging appli-
cations. In principle the SNR can be improved using two different approaches:
1) collect more photons on a hardware basis; 2) enhance SNR computationally by
software. The latter requires mathematical models describing the actual measure-
ment process correctly. For example: in deconvolution an image formation and
noise model is specifically assumed, from which the corresponding reconstruc-
tion algorithm is derived. In case the underlying true image formation or noise
characteristics differ from that assumption, this will lead to poor reconstruction
results and thus restrict their use. However, an advantage of image reconstruc-
tion is that it also works in post-processing, enabling to improve already recorded
datasets. In this thesis, that advantage has been used with image data of a passive
submillimeter wave imager, where an optimized pre-processing strategy was de-
veloped to later obtain a strong SNR improvement using image reconstruction
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methods. A better reconstruction result often requires the respective algorithm
to either have more information on the image acquisition available (e.g. PSF of
optical system, sparsity constraint on sample, ...), allow for a longer computation
time (e.g. iterative methods) or both. For the application of concealed threat de-
tection it is quite important that the image enhancement methods work robustly
and fast enough so that an potential suspect can be tracked efficiently. An ac-
celerated & damped Richardson-Lucy algorithm has been used to improve SNR
and resolution of the acquired data and has proved to fulfill the robustness and
speed requirements needed. Nevertheless, in the future such an iterative algo-
rithms might be replaced by Deep-Learning methods, where the effort on adjust-
ing reconstruction parameters is shifted towards the training period. Meaning
that the actual reconstruction step can be executed at a very low runtime. How-
ever, the training step requires the use of graphical processing units (GPUs), as
it is very computationally expensive. In the current work only Deep-Learning-
based denoising has been used, first ideas how to realize an equivalent deconvolu-
tion technique are still under development. In general, the use of computational
reconstruction always comes with the burden of obtaining artifacts which usually
cannot be discerned from actual signal structures. This is especially true if noisy
data is used, hence improving the SNR already at the acquisition level also has a
positive effect on the subsequent image reconstruction.
Signal-to-noise enhancement by developing increasingly sophisticated imaging
devices has been one of the major directions of research in fields related to imag-
ing for the past 10 - 20 years. When looking at photon detection in the visible
range, the current technology is far advanced so that any further SNR improve-
ments requires to build even more specialized imaging setups which often come
with tradeoffs. For example: whenever shot noise limits image quality it is nec-
essary to increase the number of detectable photons, which is often achieved by
increasing the exposure time of the detector, at the cost of a reduced temporal res-
olution. Meaning that many modern imaging technologies do get their improve-
ment of image quality from some sort of tradeoff. E.g. localization-based mi-
croscopy requires the collection of a large number of photons to obtain a high im-
provement in terms of spatial resolution, whenever the samples moves to quickly
this technique cannot be applied as motion blur will occur (due to the low tempo-
ral resolution); STED or confocal imaging rely on strong illumination intensities
over a short amount of time which is disadvantageous in terms of photobleach-
ing and phototoxicity. In this thesis an approach has been suggested, which tries
to obtain an improved SNR without demanding any increase in photon number,
termed splitting & recombination. This is realized by modifying the experimental
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setup of a conventional imaging system, such that a splitting of image informa-
tion occurs. Subsequent computational recombination is then able to make more
use of the split data, achieving an improvement in terms of SNR. The presented
work exemplifies four different splitting mechanisms: 1) polarization; 2) fluo-
rescence emission; 3) pupil and 4) illumination splitting. The individual imple-
mentation of the respective splitting mechanism require minor adjustments in the
imaging setup (e.g. re-imaging of detection objective BFP, ...) but essentially en-
able the recording of multiple views, often even simultaneously. In principle this
idea is already being followed with Image Scanning Microscopy (ISM) [99, 100],
where it was noticed that replacing the detection pinhole in a confocal microscope
with a fast spatially resolved detector, yields superior SNR while an improvement
in terms of resolution and optical sectioning is achieved via post-processing. In
the presented splitting & recombination approach, the computational reconstruc-
tion is either done by multiview deconvolution or weighted averaging in Fourier
space. The latter gives the opportunity to theoretically describe the potential
SNR enhancement when looking at a noise-normalized effective optical trans-
fer function. A further improvement in terms of reconstruction capability might
be achievable when using Deep-Learning methods, as it would be possible for a
neural network to make use of multiple sub-images as an input with the aim to re-
construct the underlying (most probable) sample distribution. Note that splitting
the data can come at the cost of a reduced field-of-view in case a single camera
is used, or requires to run two cameras simultaneously. However, as the size of
camera detectors will increase in the future, this seems to be a small price to pay.
In case of the fluorescence splitting the acquisition of the individual wavelength
bands can be achieved in different ways, but always come with some drawback:
either reduced temporal resolution (time sequential recording) or spatial resolu-
tion (snap shot imagers, such as in [75]). Note that in this thesis additional noise
sources (such as detector readout noise, ...) were neglected. In imaging scenar-
ios where those largely determine the unwanted noise contribution splitting &
recombination will not be able to achieve a strong SNR enhancement. Hence it is
quite crucial that all other noise sources are minimized as much as possible.
A fundamental challenge in optical imaging applications is obtaining as much
information about the sample as possible with the minimum available amount of
photons. The potential impact of this thesis lies in principles and their implemen-
tations of how to make better use of photons in an imaging application - a crucial
step for future advances in the photon limited imaging regime.
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Theoretical background:

1 Expectation value and variance of a complex quantity
When dealing with the complex-valued image data in Fourier space, expectancy and
variance need to be quantified. General definitions of those are [37]:

Ẽ2D(k⃗) = Ẽ2D,Re(k⃗) + i · Ẽ2D,Im(k⃗) (A.1)

σ2
M̃2D

(k⃗) = σ2
M̃2D,Re

(k⃗) + σ2
M̃2D,Im

(k⃗) (A.2)

With the subscript Re / Im indicating real and imaginary part respectively. It is important
to see that expectancy and variance are defined over two different domains:

Ẽ2D(k⃗) ∈ C (A.3)

σ2
M̃2D

(k⃗) ∈ R (A.4)

If M̃ gets multiplied by a constant, the change in variance is given according to [31] as:

σ2
c·M̃2D

(k⃗) = cc∗ · σ2
M̃2D

(k⃗) (A.5)

with cc∗ being equal to the absolute square of c.

2 Effective resolution measure for two separated point sources
In sec. 2.3.3 it has been shown that an effective resolution can be defined using the basic
criterion |Ẽ2D| ≥

√
p, which leads to:

|h̃(k⃗)| · |S̃(k⃗)| ≥ √
p (A.6)

Indicating that the effective resolution limit depends on the sample structure under in-
vestigation. Conventionally two separated point-sources are chosen and the resolution
of the optical system is given as the smallest distance at which both points can be visually
separated from each other. A criterion which is often stated for this particular example
is the Rayleigh criterion [147]. For two point objects, separated by dxy,min, the spectrum of
the sample structure can be written as:

S̃(kxy) = p · cos
(︁ 1

2 dxy,min · kxy
)︁

(A.7)

with p indicating the total number of expected photons and kxy lateral spatial frequencies.
The absolute value of this is given according to:

|S̃(kxy)| =
√︂

p2 · cos2
(︁ 1

2 dxy,min · kxy
)︁

(A.8)

Rewriting the basic criterion from eq. A.6, yields:

|S̃(kxy)|√
p

≥ 1
|h̃(kxy)|

(A.9)
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Which means that the scaled sample spectrum needs to be bigger than the inverse of the
|OTF|. Using the aforementioned spectrum of the two point objects leads to:√︂

p · cos2
(︁ 1

2 dxy,min · kxy
)︁
≥ 1

|h̃(kxy)|
(A.10)

This expression is graphically depicted in Fig. A.1, with blue being the inverse OTF and
black the scaled sample spectrum.

a b c d

Figure A.1: Resolution capability for two separated point sources, including shot noise. a
shows the inverse OTF (blue, see text) and the scaled sample spectrum (black) in log-scale on
the |Spectrum|-axis. The criterion for resolving the two separated point objects is that the maxi-
mum object information (red dot) lies above the OTF curve. This is fulfilled in the first example
and the small inset shows that both point objects are still resolvable. Moving those closer together
will yield the black curve to be stretched along the kxy/kxy,max-axis, resulting in the red dot leav-
ing the region where |Ẽ2D| ≥

√
p. Hence the imaged points are note separable any more. Another

possibility to achieve this is when the number of detectable photons p is small, resulting a vertical
shift of the black curve. Effectively making the two (real space) points not separable although the
separation is still within Abbe’s resolution limit dxy,min. Be aware that also your personal percep-
tion can play a role in what you label "resolvable" or not. Schematic showing that the effective
resolution limit for two separated point sources is equal to imaging a single point and solving for
the intercept of noise floor.

The red dot marks the maximum object frequency which needs lie above the blue curve,
so that both object points can still be successfully separated. When the distance between
the two object points dxy,min is reduced, the black curve in Fig. A.1 scales inversely along
the horizontal axis (red arrow), resulting in the red dot leaving the |Ẽ2D| ≥

√
p region.

As the simulation in the inset suggests, both points cannot be separated anymore. An-
other possibility to achieve this is to decrease the total number of photons p. This yields
in a vertical shift of the black curve, also moving the red dotted outside the |Ẽ2D| ≥

√
p

region. The image in real space depicts the same two point sources as in Fig. A.1a, how-
ever with much stronger shot noise making it more difficult to isolate both. Note that
also your perception plays a role and that your brain might expect to see two isolated
points in above figure.

The position of the red dot in terms of spatial frequencies is given when S̃ has reached
one period of the cos2 at:

1
2 dxy,min · kxy = π (A.11)
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The position of this point on the |Spectrum|-axis of this graph is then given according to:√︂
p · cos2 π =

√
p (A.12)

Overall this yields the following effective resolution criterion, when imaging two sepa-
rated point sources:

|h̃(kxy)| ≥ 1√
p (A.13)

Note that this is exactly the same as when searching for the intercept of |h̃| with the noise
floor, located at 1/

√
p. As for a single point the sample spectrum is given as:

S̃(kxy) = p → |S̃(kxy)| = p (A.14)

According to the criterion |Ẽ2D| ≥
√

p, this yields in:

p
√

p
=

√
p ≥ 1

|h̃(kxy)|
→ |h̃(kxy)| ≥ 1√

p (A.15)

Which again is the same as the "two point" effective resolution limit. Figure A.1d shows
this in same form as the two point resolution criterion in Fig. A.1a-A.1c.

Figure A.2: Example showing the influence of localized noise on spatial resolution. In this sim-
ulation two point sources are put offset from the center of the FoV. The distance between both
objects is large enough so that they can be resolve with a total number of photons p = 1000. A
bright object is added at the bottom of the FoV and its brightness is scaled to match the brightness
of both imaged points. However, when the brightness of the big spot at the bottom is drastically
increased, the light corrupts the region around the two distinct point sources. Yielding in both
points not being able to be separated, although the number of available photons is large.

Another problem arising when trying to define a reliable resolution criterion is the fact,
that shot noise is localized in real space. Which makes it difficult to find a resolution
criterion based in Fourier space, as the Fourier transform generally represents the whole
image in terms of spatial frequency. An example: for a certain number of photons p and
separation dxy,min, two point objects can be resolved. Now, if a very bright object is added
at a distance from these two points, it is possible that the light of the bright object "pol-
lutes" the region of the two points sources. This can go so far that both points cannot
be resolved anymore, as the bright object basically dominates the field-of-view. Such an
example is shown in Fig. A.2.

Note that by adding the bright object, the total number of photons has been increased
drastically (p = 1000 → 21000). We should now be able to easily resolve the two point
objects, according to the previously introduced effective resolution limit. However, this
is not the case, as the criterion is based in Fourier space and cannot deal with situations as
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described above. Because of this the effective resolution limit used in this thesis is limited
to isolated, single objects of interest.

3 Scalar widefield OTF and quadratic fit at large frequencies
The OTF of an imaging system can be calculate from the pupil function, which is a spher-
ical cap on the Ewald sphere [33] (see Fig. 2.2b right top). For low NA detection the pupil
can be approximated by a disk, as it is possible to neglect the kz-direction. The OTF can
then be computed from the pupil P2D as an autocorrelation A [30]:

A
{︃
P2D(k⃗)

}︃
=
∫︂ +∞

−∞
dk⃗

′ P2D(k⃗
′
) · P∗

2D(k⃗
′ − k⃗) (A.16)

In an ideal system (aberration free), the pupil is strictly real-valued [31]. Then the auto-
correlation can be visualized as shown in Fig. A.3 (based on [30]).

a b

Figure A.3: a Graphical representation of the autocorrelation of the 2D-pupil (based on [30]).
Take two copies of the pupil (= disk), separate them by kxy and calculate the overlapping area. Do
this for all possible shifts and plot the obtained overlap. This curve is equal to the widefield OTF
in scalar approximation. b To obtain the overlap for a specific separation we need to calculate the
area B and multiply it by four. This is done by first calculating a circular sector which has the area
A + B and then substracting the area of the triangle with area A.

Take two copies of the pupil, with the diameter equal to kxy,max. Separate them by shifting
one of them by kxy into one direction, as shown in Fig. A.1a. Calculate the overlapping
area for all possible kxy and plot them in a graph. The result will be the falling curve
shown in Fig. 2.2a right in blue, as for increasing the separation the overlap gets smaller.
To obtain the overlap area, we need to calculate the area of B in Fig. A.1b and multiply it
by four. B is given as a circular sector, which area can be calculated as [31]:

A + B = θ
2π ·

(︂
kxy,max

2

)︂2
π (A.17)

with θ being the angle to the left, in the green triangle. Its area (A) is given by:

A = 1
2

kxy
2 ·
√︃(︂

kxy,max
2

)︂2
−
(︂

kxy
2

)︂2
(A.18)
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Replacing θ with an arccos-expression and then calculating 4 · B, gives the OTF h̃ as:

h̃(kxy) = 4 · [(A + B)− A] = (A.19)

=
(︂

kxy,max
2

)︂2
·
[︄

arccos
(︂

kxy
kxy,max

)︂
− kxy

kxy,max
·
√︃

1 −
(︂

kxy
kxy,max

)︂2
]︄

(A.20)

Finally, the expression is normalized with respect to the full area of the pupil:

h̃(kxy) ≈
2
π

⎡⎣arccos
(︃

kxy

kxy,max

)︃
−

kxy

kxy,max
·

√︄
1 −

(︃
kxy

kxy,max

)︃2
⎤⎦ (A.21)

This is the theoretically calculated OTF for a low NA detection system. To find the effec-
tive resolution limit, h̃ needs to be approximated in a region close to the cutoff frequency
kxy,max. This is done by fitting a quadratic equation using the following three points:

kxy
kxy,max

= 1.0 = k1 → h̃
(︂

kxy
kxy,max

)︂
= 0 = h̃1

kxy
kxy,max

= 0.8 = k2 → h̃
(︂

kxy
kxy,max

)︂
= 0.1 = h̃2

kxy
kxy,max

= 0.9 = k3 → h̃
(︂

kxy
kxy,max

)︂
= 0.0375 = h̃3

So that the three points are given as (k1, h̃1), (k2, h̃2) and (k3, h̃3).
The fitted equation is given as:

h̃(kxy ≥ 0.8 · kxy,max) ≈ a ·
(︂

kxy
kxy,max

)︂2
+ b · kxy

kxy,max
+ c (A.22)

The linear system involved can be solve for the three parameters a, b and c, yielding:

a =
k1 · (h̃3 − h̃2) + k2 · (h̃1 − h̃3) + k3 · (h̃2 − h̃1)

(k2 − k1) · (k3 − k1) · (k2 − k3)
= 1.4507

b =
k2

1 · (h̃3 − h̃2) + k2
2 · (h̃1 − h̃3) + k2

3 · (h̃2 − h̃1)

(k1 − k2) · (k1 − k3) · (k3 − k2)
= −3.1314

c =
k2

1 · (k2h̃3 − k3h̃2) + k2
2 · (k3h̃1 − k1h̃3)− k2

3 · (k1h̃2 − k2h̃1)

(k2 − k1) · (k3 − k1) · (k2 − k3)
= 1.6807

With these parameters the OTF can now be approximated according to equation A.22.

4 Sampling, Nyquist limit and the pixel form factor
Any measuring device approximates a continuous function fcontin. with a sampled ver-
sion fsampl.. This can be mathematically expressed as a multiplication with a δ-comb (here
only in shown in 1D for simplification) [35, 46]:

fsampl.(x) =
[︃

fcontin.(x)⊗ rect(x)
]︃
· ∑

m
δ(x − m∆s) (A.23)

with ∆s being the sampling interval in real space.
The convolution with the rect-function models the photosensitive area of each pixel in a
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camera sensor. In Fourier space this equation can be rewritten as:

f̃ sampl.(k) =
[︃

f̃ contin.(k) · F1D{rect(x)}
]︃
⊗ ∑

m
δ
(︁
k − m 2π

∆s

)︁
(A.24)

with F1D{rect(x)} being the so-called pixel form factor.
Aforementioned equation states that in frequency space the sampled version f̃ sampl. is
first multiplied by the pixel form factor, which can be thought of as a step that effectively
reduces h̃ at high spatial frequencies (decreasing contrast in real space [56]). Throughout
this thesis we assume that the pixel size is reasonably small, and we can neglect the
influence of the pixel form factor, so that:

f̃ sampl.(k) = f̃ contin.(k)⊗ ∑
m

δ
(︁
k − m 2π

∆s

)︁
(A.25)

Effectively this means that the Fourier transform of the sampled function consists of mul-
tiple copies at a spacing interval of 2π/∆s. The smallest structure that can be imaged with
an (linear) imaging system is the point-spread-function h, which is given in Fourier space
as the OTF h̃. It has a finite width, the band limit given as 2 · kxy,max (as diameter). Nyquist
sampling states that the individual copies should not overlap [9, 10], otherwise the effect
of aliasing appears [34]. To fulfill Nyquist sampling the following criterion is given:

2π

∆s
≥ 2 · kxy,max = 2 · 2π

dxy,min
(A.26)

Or in real space given as a minimum sampling distance:

∆s ≤ 1
2 · dxy,min (A.27)

Otherwise aliasing occurs and the original function f̃ contin. cannot be recovered success-
fully. Throughout this thesis it is assumed that correct sampling is used and SNR degra-
dation due to the pixelation effect is neglected.

5 Image reconstruction using a Wiener filter
Lets define the difference between true S and estimated sample Sest using a Gaussian
distribution, given as:

P[S(r⃗), Sest(r⃗)] ∝ e
−|S(r⃗)−Sest(r⃗)|2

2·σ2 (A.28)

Note that we have assumed that the standard deviation σ is independent from r⃗.
The log-likelihood of Sest being the true sample distribution is given as:

L(r⃗) =
∫︂

O
dO ln P[S(r⃗), Sest(r⃗)] =

⟨︁
ln (P[S, Sest](r⃗))

⟩︁
(A.29)

with the integration being over all possible outcomes O. The logarithm applied to the
Gaussian function leaves the log-likelihood according to:

L(r⃗) ∝ ⟨|S(r⃗)− Sest(r⃗)|2⟩ = ε(r⃗) (A.30)
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Which is defined here as the error metric ε and represents the mean-square error.
Using Plancherel’s theorem [31] this can be expressed in Fourier space as:

ε̃(k⃗) = ⟨|S̃(k⃗)− S̃est(k⃗)|2⟩ (A.31)

The estimated sample is given, after filtering with the Wiener filter W̃, according to:

S̃est(k⃗) = W̃(k⃗) · M̃(k⃗) (A.32)

The measured data is given as the sum of expectation value Ẽ and noise term Ñ :

M̃(k⃗) = Ẽ(k⃗) + Ñ (k⃗) =

= S̃(k⃗) · h̃(k⃗) + Ñ (k⃗) (A.33)

With this the error metric ε̃ can be written as:

ε̃(k⃗) = ⟨
⃓⃓⃓
S̃(k⃗) ·

[︂
1 − W̃(k⃗)h̃(k⃗)

]︂
− W̃(k⃗)Ñ (k⃗)

⃓⃓⃓2
⟩ (A.34)

Computing the |.|2 operation leads to:

ε̃(k⃗) = ⟨|S̃(k⃗)|2 ·
⃓⃓⃓[︂

1 − W̃(k⃗)h̃(k⃗)
]︂⃓⃓⃓2

+ |W̃(k⃗)|2|Ñ (k⃗)|2

− 2 Re
{︂

S̃(k⃗) ·
[︂
1 − W̃(k⃗)h̃(k⃗)

]︂
· W̃∗

(k⃗)Ñ ∗
(k⃗)
}︂
⟩ (A.35)

The expectation value is linear, hence the previous equation can be simplified to:

ε̃(k⃗) = |S̃(k⃗)|2 ·
⃓⃓⃓[︂

1 − W̃(k⃗)h̃(k⃗)
]︂⃓⃓⃓2

+ |W̃(k⃗)|2⟨|Ñ (k⃗)|2⟩

− 2 Re
{︂

S̃(k⃗) ·
[︂
1 − W̃(k⃗)h̃(k⃗)

]︂
· W̃∗

(k⃗)⟨Ñ (k⃗)∗⟩
}︂

(A.36)

Note that the expression inside of Re is essentially multiplying S̃ · ⟨Ñ ∗⟩. As the true
sample and noise are assumed to be uncorrelated, this multiplication yields zero. Which
further simplifies the error term ε̃ into:

ε̃(k⃗) = |S̃(k⃗)|2 ·
[︂
1 − W̃(k⃗)h̃(k⃗)

]︂ [︂
1 − W̃∗

(k⃗)h̃∗(k⃗)
]︂

+ W̃(k⃗)W̃∗
(k⃗) · ⟨|Ñ (k⃗)|2⟩ (A.37)

To find the minimum of the mean-square error, its first derivative needs to be computed
and set equal to zero. Be aware that complex calculus needs to be applied here, i.e. the
Wirtinger derivatives [31]. Which results in:

∂ε̃(k⃗)
∂W̃(k⃗)

= |S̃(k⃗)|2 ·
[︂
W̃∗

(k⃗)h̃(k⃗)h̃∗(k⃗)− h̃(k⃗)
]︂
+ W̃∗

(k⃗) · ⟨|Ñ (k⃗)|2⟩ (A.38)

The advantage of Wirtinger derivatives is that those can be easily represented in term of
real and imaginary part:

∂ε̃(k⃗)
∂W̃(k⃗)

=
∂ε̃(k⃗)

∂W̃Re(k⃗)
−i

∂ε̃(k⃗)
∂W̃ Im(k⃗)

(A.39)
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with W̃ = W̃Re + i · W̃ Im. Therefore ∂ε̃/∂W̃ needs to be separated into Re & Im part:

∂ε̃(k⃗)
∂W̃Re(k⃗)

= |S̃(k⃗)|2 ·
[︂
W̃Re(k⃗)|h̃(k⃗)|2 − h̃Re(k⃗)

]︂
+ W̃Re(k⃗)⟨|Ñ (k⃗)|2⟩ (A.40)

i · ∂ε̃(k⃗)
∂W̃ Im(k⃗)

= |S̃(k⃗)|2 ·
[︂
W̃ Im(k⃗)|h̃(k⃗)|2 + h̃Im(k⃗)

]︂
+ W̃ Im(k⃗)⟨|Ñ (k⃗)|2⟩ (A.41)

Setting both, real and imaginary part, equal to zero gives us:

W̃Re(k⃗)
[︂
|S̃(k⃗)|2 · |h̃(k⃗)|2 + ⟨|Ñ (k⃗)|2⟩

]︂
= |S̃(k⃗)|2h̃Re(k⃗) (A.42)

W̃ Im(k⃗)
[︂
|S̃(k⃗)|2 · |h̃(k⃗)|2 + ⟨|Ñ (k⃗)|2⟩

]︂
= −|S̃(k⃗)|2h̃Im(k⃗) (A.43)

This can now be fully separated to find an expression for the Wiener filter [51]:

W̃Re(k⃗) =
|S̃(k⃗)|2 · h̃Re(k⃗)

|S̃(k⃗)|2 · |h̃(k⃗)|2 + ⟨|Ñ (k⃗)|2⟩
=

h̃Re(k⃗)

h̃(k⃗)h̃∗(k⃗) + ⟨|Ñ (k⃗)|2⟩
|S̃(k⃗)|2

(A.44)

W̃ Im(k⃗) =
−|S̃(k⃗)|2 · h̃Im(k⃗)

|S̃(k⃗)|2 · |h̃(k⃗)|2 + ⟨|Ñ (k⃗)|2⟩
=

−h̃Im(k⃗)

h̃(k⃗)h̃∗(k⃗) + ⟨|Ñ (k⃗)|2⟩
|S̃(k⃗)|2

(A.45)

After further simplification this ends with the final Wiener filter equation:

W̃(k⃗) = W̃Re + i · W̃ Im =
h̃∗(k⃗)

h̃(k⃗)h̃∗(k⃗) + K(k⃗)
(A.46)

with the regularization parameter K̃:

K̃(k⃗) =
⟨|Ñ (k⃗)|2⟩
|S̃(k⃗)|2

(A.47)

6 Maximum likelihood reconstruction using RL method
Richardson-Lucy deconvolution is a statistical method [52, 53], hence tries to maximize
the probability P(S) of S being the true sample. Using Bayes theorem [31] this can be
rewritten in terms of the probability P(M|S), describing how likely it is to detect the
image M under the assumption that S is the underlying sample.

P[S(r⃗)] =
P[M(r⃗)|S(r⃗)] · P[S(r⃗)]

P[M(r⃗)]
(A.48)

With P[M] being a sample independent factor, which can be neglected for the maximiza-
tion process. P[S] is regarded as a priori knowledge about the sample and is typically used
as a regularization option. We omit this option here and only try to maximize P[M|S],
which is given as the Poisson distribution (with expectancy E):

P[M(r⃗)|S(r⃗)] = E(r⃗)M(r⃗)

M(r⃗)!
· e−E(r⃗) (A.49)



110

The overall likelihood L to measure the given image, is the product of all the individual
pixel probabilities:

L = ∏
r⃗

P[M(r⃗)|S(r⃗)] (A.50)

Instead of maximizing the likelihood, the negative log-likelihood is minimized:

− lnL = ∑
r⃗

P[M(r⃗)|S(r⃗)] = ∑
r⃗

[︁
E(r⃗) + M(r⃗)! − M(r⃗) · ln E(r⃗)

]︁
(A.51)

The idea is now to follow the gradient of L to find the minimum. An iterative update
equation can be defined, according to (with l being the current iteration):

S(l+1)
est (r⃗) = S(l)

est(r⃗)− λ · ∂(− lnL)
∂S(r⃗)

(A.52)

with ∂L/∂S being the gradient which is to be descending and λ the step size which can
be adjusted. Note that the likelihood L is a function of the estimated sample S, because:

E(r⃗) = S(r⃗)⊗ h(r⃗) =
∫︂ +∞

−∞
dr⃗′ S(r⃗′) · h(r⃗ − r⃗′) (A.53)

The derivative yields:

∂(− lnL)
∂S(r⃗)

= ∑
r⃗

[︃
∂E(r⃗)
∂S(r⃗)

− M(r⃗) · 1
E(r⃗)

· ∂E(r⃗)
∂S(r⃗)

]︃
=

= ∑
r⃗

∂E(r⃗)
∂S(r⃗)

(︃
1 − M(r⃗)

E(r⃗)

)︃
(A.54)

To solve this the derivative of the expectation value of our measurement with respect to
the sample distribution is needed:

∂E(r⃗)
∂S(r⃗′′)

=
∂
∫︁ +∞
−∞ dr⃗′ S(r⃗′) · h(r⃗ − r⃗′)

∂S(r⃗′′)
(A.55)

Note that r⃗′′ has been introduced to make a distinction between the spatial coordinate
of the overall sum operation in eq. A.54 and the coordinate in the denominator of the
derivation. There is only a single contribution to this integral, when S(r⃗′) = S(r⃗′′):

∂E(r⃗)
∂S(r⃗′′)

=
∂

∂S(r⃗′′)

(︃
S(r⃗′′) · h(r⃗ − r⃗′′)

)︃
= h(r⃗ − r⃗′′) (A.56)

With this, the gradient of − lnL becomes:

∂(− lnL)
∂S(r⃗)

= ∑
r⃗

[︃
h(r⃗ − r⃗′′) ·

(︃
1 − M(r⃗)

E(r⃗)

)︃ ]︃
(A.57)

Which is a convolution operation, abbreviated according to:

∂(− lnL)
∂S(r⃗)

=

(︃
1 − M(r⃗)

E(r⃗)

)︃
⊗ h(−r⃗) (A.58)
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Using this result the previous update equation for the iterative reconstruction can be
written as:

S(l+1)
est (r⃗) = S(l)

est(r⃗) + λ ·
[︃(︃

M(r⃗)
E(r⃗)

− 1
)︃
⊗ h(−r⃗)

]︃
(A.59)

The gradient consists of two contributions:

S(l+1)
est (r⃗) = S(l)

est(r⃗) + λ ·
(︃

M(r⃗)
E(r⃗)

⊗ h(−r⃗)
)︃
− λ ·

(︃
1 ⊗ h(−r⃗)

)︃
(A.60)

From this expression it becomes apparent that the typical additive iteration equation can
be changed into a multiplicative one by setting:

λ =
S(l)

est(r⃗)
1 ⊗ h(−r⃗)

(A.61)

Note that the denominator (at first λ) effectively yields a constant value (e.g. 1) as the
convolution goes over an infinitely extended plane:

1 ⊗ h(−r⃗) =
∫︂ +∞

−∞
dr⃗′ h(r⃗ − r⃗′) ∝ 1 (A.62)

Altogether this will yield the final Richardson-Lucy iteration:

S(l+1)
est (r⃗) = S(l)

est(r⃗) ·
[︃

M(r⃗)
E(r⃗)

⊗ h(−r⃗)
]︃

(A.63)

Expressing the expectation value E as the (forward) convolution of S(l)
est with h, yields:

S(l+1)
est (r⃗) = S(l)

est(r⃗) ·
[︄

M(r⃗)

S(l)
est(r⃗)⊗ h(r⃗)

⊗ h(−r⃗)

]︄
(A.64)

7 Optimize reconstruction using normalized cross-correlation
When using the iterative Richardson Lucy update scheme to perform a maximum like-
lihood reconstruction, the difficulty is to know when the algorithm has reached its op-
timum reconstruction result. With experimental data this often ends with the user re-
evaluating the results after a set of increasing iterations and visually determining for
which "the best reconstruction" was achieved. Of course this all is very subjective and
not really based on good scientific principles. When the problem of reconstructing an ob-
ject estimate from simulated data is approached, there is a way to determine the optimal
iteration number to stop the reconstruction. Simply the current estimate (est) needs to be
compared to the known groundtruth object (S) from the simulation. This comparison is
done by computing the normalized cross-correlation (NCC), which is given according to:

NCCl =
1
N ∑r⃗ [S(r⃗)− S̄(r⃗)] · [estl(r⃗)− estl¯ (r⃗)]

σS · σestl

(A.65)

with .̄ denoting an average value, N the number of pixels in the reconstruction and σS,estl

indicating the standard deviation calculated for S and the l-th estimate estl respectively.
In case of the reconstruction results, which are shown in Fig. 2.6b bottom, the two NCC
curves are shown in Fig. A.4a.
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a b

Figure A.4: a NCC curves for the thin (blue) & thick (magenta) slice reconstruction shown in
Fig. 2.6b. The optimum (accelerated) iteration for the thin slice method is reached earlier (5
accelerated iterations) but does not yield the same reconstruction quality as the thick slice method
(20 accelerated iterations). Note that the gradual drop of both curves is much stronger for the thin
slice method, meaning that the thick slice reconstruction might give good results even when the
optimal iteration point is already passed. b NCC curves for deconvolving the simulated image
data corresponding to the wavelength split in sec. 3.3.2. Blue and black indicating reconstructing
the non-split data (single view), while magenta employs splitting & recombination (multiview).

Note that for the thick slice reconstruction the NCC-value has been calculated by compar-
ing only the in-focus slice. It can be seen that both curves increase strongly after the first
couple of iterations, in case of the thin slice method (blue) the maximum is reached after
5 accelerated iterations from which one the reconstruction quality quickly reduces (small
inset at 88 accelerated iterations). The thick slice method (magenta) takes a bit longer
to reach its maximum (20 accelerated iterations) which also yields a better reconstruc-
tion of S as NCCthick > NCCthin. The gradual drop of the NCC curve is not as strong as
for the thin slice method, meaning that also beyond the optimum iteration the tick slice
method might yield acceptable reconstruction results. Figure A.4b shows the NCC curves
for the thin slice reconstructions corresponding to the simulated wavelength splitting in
sec. 3.3.2. Here a spokes target was imaged using DAPI, meaning that the broad emission
spectrum of DAPI requires h(r) from eq. 3.23 to be the corresponding PSF model in the
deconvolution. Interestingly, deconvolving the image (single view) with h(r) (blue) or
h(r; λmax) (black) yields similar NCC curves, but deviate more strongly in the obtainable
visibility, as shown in Fig. 3.9a. When performing a multiview deconvolution (magenta)
the reconstruction is improved and already reached an optimum after a lower number of
iterations. The point of maximum NCC values are: peak-emission-only at 85 iterations;
full spectrum at 72 iterations and split & recombined at 36 iterations.
Note that in general the shape of the NCC curve cannot really be predicted before starting
the reconstruction. It all depends on the available SNR and the object itself. This means
that in principle every image reconstruction result needs to be accompanied by an NCC
curve, making sure that the actual optimum iteration is reached. However, in reality this
is often not the case as the quality of image reconstructions is often guided by visual
perception rather than scientific numbers. In the case of only looking at some biological
structures, without a comparison between different imaging modalities, this seems to be
okay. But when comparing two methods it is important to work in the optimal regime of
both approaches to yield a fair comparison.
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Fluorescence microscopy:

1 Polarization effects in vectorial PSFs
When light is focused under high angles (large NA), the polarization of the light becomes
important. In the BFP of the objective the electric field can be written as two orthogonal
polarization states, x- and y-polarized:

E⃗BFP(r⃗
′) =

(︄
Ex

BFP(r⃗
′)

Ey
BFP(r⃗

′)

)︄
(A.66)

with the superscript indicating x- or y-polarized light and r⃗′ being coordinates in the BFP.
This is graphically presented in Fig. A.5 in green (x-pol.) and magenta (y-pol.). Focusing
means to change the direction of propagation so that the light meets at a single point, the
focus. Which requires a rotation of the propagation direction of the light rays.

Figure A.5: Left: high NA focusing of light shown in the xz- and yz-plane. The electric field in the
BFP is decomposed into two orthogonal linear polarization states (x & y polarized), depicted in
green and magenta. When the light is focused these polarization states have to be tilted according
to their BFP position, so that the propagation direction aligns with the focal point. This leads to
imperfect interference for the x and y polarization, in different directions. Right: the quality of
interference gives the width of the overall intensity distribution in the respective direction. Hence,
filtering x and y polarized light in the BFP, using a polarization sensitive beamsplitter (PBS), will
give an enhanced information transfer in one particular direction.

Note that this rotation depends on the position r⃗′ in the BFP and leads to the appearance
of a z-polarized component in the focal region:

E⃗ f ocus(r⃗) =

⎛⎜⎝Ex
f ocus(r⃗)

Ey
f ocus(r⃗)

Ez
f ocus(r⃗)

⎞⎟⎠ (A.67)

The corresponding intensity distribution is given as the incoherent superposition of the
three individual polarization states, according to:

I(r⃗) = |E⃗ f ocus(r⃗)|2 = |Ex
f ocus(r⃗)|2 + |Ey

f ocus(r⃗)|
2 + |Ez

f ocus(r⃗)|2 (A.68)

When a lens focuses light, it does it in such a way the light can interfere perfectly to yield
an intensity distribution which is also known as the PSF. In case the interference capa-
bility is somehow reduced (e.g. by an imperfect lens or additional aberrations), then the
shape of the resulting PSF will change, e.g. the width will increase. Hence, the imaging
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performance depends on how well light can interfere at the focus. The focusing of the
two linearly polarized contributions Ex,y

BFP leads to a change in interference capability. For
example: when looking in the xz-plane the y-polarized light can interfere such as in an
ideal case, as the rotation did not affect this polarization component. However, the x-
polarized part experiences a slight reduction of interference. Note that this is effectively
the same in the yz-plane, only that the polarization states have changed. Altogether this
will yield an isotropic intensity distribution with certain width.
When only considering one of the two polarizations suddenly the interference capability
varies with the spatial direction in the focal plane. E.g. the x-pol. contribution interferes
worse along the x-direction than in the y-direction, because the focusing has distributed
the electric field associated with Ex

BFP into two new components Ex,z
f ocus. Effectively de-

creasing the interference capability and resulting in a narrowed/widened PSF in the y/x
direction. The same is true for the y-polarized light, only that x and y coordinate are being
swapped. With the help of a polarization sensitive beamsplitter (PBS), the emitted light
of a fluorphore (that emits isotropically) can be split into two orthogonal components, so
that polarization splitting & recombination can be employed.

2 Weighted averaging in Fourier space
As introduced in section 3.2.2 two sub-images need to be recombined into a weighted
averaged result Mwa (the generalization to N images is straightforward). In Fourier space
this yields:

M̃wa(k⃗) = w̃1(k⃗) · M̃1(k⃗) + w̃2(k⃗) · M̃2(k⃗) (A.69)

Note that the weights are spatial frequency dependent and still might be complex-valued,
which means that the variance of the averaged result M̃wa is given as:

σ2
M̃wa

(k⃗) = |w̃1(k⃗)|2 · σ2
M̃1

+ |w̃2(k⃗)|2 · σ2
M̃2

(A.70)

The expectation value of M̃wa (termed Ẽwa), is given as:

Ẽwa(k⃗) = w̃1(k⃗) · Ẽ1(k⃗) + w̃2(k⃗) · Ẽ2(k⃗) (A.71)

The goal is to maximize the SNR in Fourier space,:

SNR(k⃗) =
|Ẽwa(k⃗)|√︂

σ2
M̃wa

(k⃗)
(A.72)

An expression for |Ẽwa| is given as:

|Ẽwa(k⃗)|2 = |w̃1(k⃗)|2 · |Ẽ1(k⃗)|2 + |w̃2(k⃗)|2 · |Ẽ2(k⃗)|2

+ 2 Re
{︁

w̃1(k⃗)w̃∗
2(k⃗) · Ẽ1(k⃗)Ẽ∗

2(k⃗)
}︁

(A.73)

Weights and image information can be written in terms of real and imaginary parts:

w̃1(k⃗) = w̃1,Re(k⃗) + i · w̃1,Im(k⃗) (A.74)

w̃∗
2(k⃗) = w̃2,Re(k⃗)− i · w̃2,Im(k⃗) (A.75)

Ẽ1(k⃗) =
(︂

h̃1,Re(k⃗) + i · h̃1,Im(k⃗)
)︂
· S̃(k⃗) (A.76)

Ẽ∗
2(k⃗) =

(︂
h̃2,Re(k⃗)− i · h̃2,Im(k⃗)

)︂
· S̃∗

(k⃗) (A.77)
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Multiplying the weights yields:

w̃1(k⃗)w̃∗
2(k⃗) =

(︂
w̃1,Re(k⃗)w̃2,Re(k⃗) + w̃1,Im(k⃗)w̃2,Im(k⃗)

)︂
⏞ ⏟⏟ ⏞

w̃Re(k⃗)

+ i ·
(︂

w̃1,Im(k⃗)w̃2,Re(k⃗)− w̃1,Re(k⃗)w̃2,Im(k⃗)
)︂

⏞ ⏟⏟ ⏞
w̃Im(k⃗)

= w̃Re(k⃗) + i · w̃Im(k⃗) (A.78)

Similarly, multiplying the image information gives:

Ẽ1(k⃗)Ẽ∗
2(k⃗) =

[︂
h̃Re(k⃗) + i · h̃Im(k⃗)

]︂
· |S̃(k⃗)|2 (A.79)

with the real and imaginary part of h̃ given as:

h̃Re(k⃗) = h̃1,Re(k⃗)h̃2,Re(k⃗) + h̃1,Im(k⃗)h̃2,Im(k⃗) (A.80)

h̃Im(k⃗) = h̃1,Im(k⃗)h̃2,Re(k⃗)− h̃1,Re(k⃗)h̃2,Im(k⃗) (A.81)

Computing the cross-term of M̃wa gives:

1
|S̃(k⃗)|2

· Re
{︃

w̃1(k⃗)w̃∗
2(k⃗) · Ẽ1(k⃗)Ẽ∗

2(k⃗)
}︃

= w̃Re(k⃗)h̃Re(k⃗)− w̃Im(k⃗)h̃Im(k⃗) (A.82)

Simplifying this expression leads to:

Re
{︁

w̃1(k⃗)w̃∗
2(k⃗)·Ẽ1(k⃗)Ẽ∗

2(k⃗)
}︁

|S̃(k⃗)|2
= w̃1,Re(k⃗) · Ã(k⃗) + w̃1,Im(k⃗) · B̃(k⃗) (A.83)

with the two new variables Ã and B̃ given as:

Ã(k⃗) = w̃2,Re(k⃗) · h̃Re(k⃗) + w̃2,Im(k⃗) · h̃Im(k⃗) (A.84)

B̃(k⃗) = w̃2,Im(k⃗) · h̃Re(k⃗)− w̃2,Re(k⃗) · h̃Im(k⃗) (A.85)

A further simplification of eq. A.73 yields :

|Ẽwa(k⃗)|2
|S̃(k⃗)|2

= |w̃1(k⃗)|2 · |h̃1(k⃗)|2 + |w̃2(k⃗)|2 · |h̃2(k⃗)|2

+ 2 ·
[︂
w̃1,Re(k⃗) · Ã(k⃗) + w̃1,Im(k⃗) · B̃(k⃗)

]︂
(A.86)

With this the expression for the SNR can be written as:

SNR(k⃗)
|S̃(k⃗)|

=

⌜⃓⃓⃓
⎷ |w̃1(k⃗)|2 · |h̃1(k⃗)|2 + |w̃2(k⃗)|2 · |h̃2(k⃗)|2 + 2 ·

[︂
w̃1,Re(k⃗) · Ã(k⃗) + W̃1,Im(k⃗) · B̃(k⃗)

]︂
|w̃1(k⃗)|2 · σ2

M̃1
+ |w̃2(k⃗)|2 · σ2

M̃2

(A.87)
Note that:

|w̃1(k⃗)|2 = w̃2
1,Re(k⃗) + w̃2

1,Im(k⃗) (A.88)

|w̃2(k⃗)|2 = w̃2
2,Re(k⃗) + w̃2

2,Im(k⃗) (A.89)
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Yielding the following expression for the scaled SNR:

SNR(k⃗)
|S̃(k⃗)|

=

√︄
Z̃(k⃗)
Ñ(k⃗)

(A.90)

with:

Z̃(k⃗) =
[︂
w̃2

1,Re(k⃗) + w̃2
1,Im(k⃗)

]︂
· |h̃1(k⃗)|2 +

[︂
w̃2

2,Re(k⃗) + w̃2
2,Im(k⃗)

]︂
· |h̃2(k⃗)|2

+ 2 ·
[︂
w̃1,Re(k⃗) · Ã(k⃗) + w̃1,Im(k⃗) · B̃(k⃗)

]︂
(A.91)

Ñ(k⃗) =
[︂
w̃2

1,Re(k⃗) + w̃2
1,Im(k⃗)

]︂
· σ2

M̃1
+
[︂
w̃2

2,Re(k⃗) + w̃2
2,Im(k⃗)

]︂
· σ2

M̃2
(A.92)

The goal is to find an expression for the weights w̃1,2 which maximizes the SNR, given the
set of images M̃1,2 which have been measured. As the weights might be complex valued,
the Wirtinger derivatives need to be used. For the real part of W̃ this gives:

1
|S̃(k⃗)|

· ∂SNR(k⃗)
∂w̃1,Re(k⃗)

=
1/SNR(k⃗)

Ñ2
(k⃗)

(A.93)

·
(︂[︂

w̃1,Re(k⃗) · |h̃1(k⃗)|2 + Ã(k⃗)
]︂
· Ñ(k⃗)− w̃1,Re(k⃗) · σ2

M̃1
Z̃(k⃗)

)︂
And analogously for the imaginary part:

1
|S̃(k⃗)|

· ∂SNR(k⃗)
∂w̃1,Im(k⃗)

=
1/SNR(k⃗)

Ñ2
(k⃗)

(A.94)

·
(︂[︂

w̃1,Im(k⃗) · |h̃1(k⃗)|2 + B̃(k⃗)
]︂
· Ñ(k⃗)− w̃1,Im(k⃗) · σ2

M̃1
Z̃(k⃗)

)︂
Now both equations are set equal to zero to find a criterion that maximizes the SNR:[︂

w̃1,Re(k⃗) · |h̃1(k⃗)|2 + Ã(k⃗)
]︂
· Ñ(k⃗) = w̃1,Re(k⃗) · σ2

M̃1
· Z̃(k⃗) (A.95)[︂

w̃1,Im(k⃗) · |h̃1(k⃗)|2 + B̃(k⃗)
]︂
· Ñ(k⃗) = w̃1,Im(k⃗) · σ2

M̃1
· Z̃(k⃗) (A.96)

It is not trivial to see a possible solution immediately. But note that the equations show
a certain symmetry, which becomes more obvious if the OTFs and weights are restricted
to being real-valued only. With this in mind, only equation A.95 needs to be fulfilled,
where Ã and Z̃ take a much simpler form:

Ã(k⃗) = w̃2,Re(k⃗) · h̃1,Re(k⃗)h̃2,Re(k⃗) (A.97)

Z̃(k⃗) = w̃2
1,Re(k⃗) · h̃2

1,Re(k⃗) + w̃2
2,Re(k⃗) · h̃2

2,Re(k⃗)

+ 2 · w̃1,Re(k⃗)h̃1,Re(k⃗) · w̃2,Re(k⃗)h̃2,Re(k⃗) (A.98)

Note that Z̃ now represents a binomial equation which can be written as:

Z̃(k⃗) =
[︂
w̃1,Re(k⃗)h̃1,Re(k⃗) + w̃2,Re(k⃗)h̃2,Re(k⃗)

]︂2
(A.99)
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The left side of equation A.95 is now given as:

h̃1,Re(k⃗) ·
[︂
w̃1,Re(k⃗) · h̃1,Re(k⃗) + w̃2,Re(k⃗) · h̃2,Re(k⃗)

]︂
· Ñ(k⃗)

= w̃1,Re(k⃗) · σ2
M̃1

·
[︂
w̃1,Re(k⃗)h̃1,Re(k⃗) + w̃2,Re(k⃗)h̃2,Re(k⃗)

]︂2
(A.100)

with an simplified expression for N according to:

Ñ(k⃗) = w̃1,Re(k⃗)2 · σ2
M̃1

+ w̃2,Re(k⃗)2 · σ2
M̃2

(A.101)

After canceling terms, the following criterion must be fulfilled:

h̃1,Re(k⃗) ·
[︂
w̃1,Re(k⃗)2 · σ2

M̃1
+ w̃2,Re(k⃗)2 · σ2

M̃2

]︂
= w̃1,Re(k⃗) · σ2

M̃1
·
[︂
w̃1,Re(k⃗)h̃1,Re(k⃗) + w̃2,Re(k⃗)h̃2,Re(k⃗)

]︂
(A.102)

The trick is now to make the terms in front of both brackets equal, by setting:

w̃1,Re(k⃗) =
h̃1,Re(k⃗)

σ2
M̃1

(A.103)

Interestingly, this choice of the weights fulfills the above criterion:

h̃1,Re(k⃗) ·
[︄

h̃2
1,Re(k⃗)
σ2

M̃1

+
h̃2

2,Re(k⃗)
σ2

M̃2

]︄

= h̃1,Re(k⃗) ·
[︄

h̃2
1,Re(k⃗)
σ2

M̃1

+
h̃2

2,Re(k⃗)
σ2

M̃2

]︄
□ (A.104)

Hence, the weights needed for the weighted averaging in Fourier space approach are:

w̃1,2(k⃗) =
Re{h̃1,2(k⃗)}

σ2
M̃1,2

(A.105)

Meaning that each sub-OTF (real-valued only) needs to be rescaled by the amount of
noise variance present in Fourier space. From experience in simulations, it has been
seen that replacing the Re{.}-operation by the complex-conjugate .∗, does not reduce the
achievable SNR. Note that due to complexity the latter version has not been directly
derived from the criteria eq. A.96.
Finally, the following weights are used to optimize the SNR in weighted averaging:

w̃1,2(k⃗) =
h̃∗1,2(k⃗)
σ2

M̃1,2

(A.106)
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3 Log-normal distribution for vanishing skewness
The exponent of the emission spectrum model is given in eq. 3.22 as:

− ln 2
[︃

ln(1+2 s
w (λ−λmax))

s

]︃2

(A.107)

For s → 0 the term inside the bracket becomes:

lim
s→0

ln(1+2 s
w (λ−λmax))

s = 0
0 (A.108)

Hence the rule of l’Hospital [31] needs to be applied, which yields:

lim
s→0

2
w (λ−λmax)

1+2 s
w (λ−λmax)

= 2
w (λ − λmax) (A.109)

With this the exponent of ε(λ) can be written as:

− ln 2
[︁ 2

w (λ − λmax)
]︁2 (A.110)

Relating the FWHM w to the standard deviation σε of a Gaussian function via:

w = 2
√

2 ln 2 · σε (A.111)

Which gives the typical Gaussian exponent:

− (λ − λmax)2

2σ2
ε

(A.112)

Showing that the emission spectrum ε(λ) for s → 0 is given as a Gaussian function, hence
becomes perfectly symmetric with respect to λmax.

4 Solution to the integrals representing A and λCoM

The integral defining A, the area under the ε(λ)-curve, is given as:

A =
∫︂ λ+

λ−
dλ exp

(︂
−a [ln (1 + b(λ − λmax))]

2
)︂

(A.113)

First the following substitution is introduced:

u = 1 + b(λ − λmax)

du/dλ = b (A.114)

Yielding the following integral:

A =
1
b

∫︂ 1+b(λ+−λmax)

1+b(λ−−λmax)
du exp

(︂
−a [ln u]2

)︂
(A.115)

Another substitution is used to further simplify the expression:

v = ln [u]
dv/du = 1/u (A.116)
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Resulting in an integral which can be solved using the Gaussian error function er f [31]:

A =
1
b

∫︂ ln[1+b(λ+−λmax)]

ln[1+b(λ−−λmax)]
dv exp

(︁
−av2 + v

)︁
= (A.117)

=
1
b

√
π 4a
√

e
2
√

a

[︃
er f
(︃

2av − 1
2
√

a

)︃]︃v=ln[1+b(λ+−λmax)]

v=ln[1+b(λ−−λmax)]

(A.118)

Note that A does not depend on r or λ.
A similar approach can be followed for λCoM, the "center-of-mass" wavelength. Using the
same substitutions (u) the following expression can be found:

λCoM =
∫︂ 1+b(λ+−λmax)

1+b(λ−−λmax)
du

1
b

(︃
λmax +

u − 1
b

)︃
exp

(︂
−a [ln u]2

)︂
(A.119)

=
∫︂ 1+b(λ+−λmax)

1+b(λ−−λmax)
du

(︃
λmax

b
+

u − 1
b2

)︃
exp

(︂
−a [ln u]2

)︂
(A.120)

Note that this integral can be split into two parts:

λCoM = A · λmax +
1
b
(I − A) (A.121)

with I another integral to solve.

I =
1
b

∫︂ 1+b(λ+−λmax)

1+b(λ−−λmax)
du u · exp

(︂
−a [ln u]2

)︂
(A.122)

This can be achieved by using the same substitutions as previously, which yields:

I =
1
b

∫︂ ln[1+b(λ+−λmax)]

ln[1+b(λ−−λmax)]
dv exp

(︁
−av2 + 2v

)︁
dv =

=
1
b

√
π a
√

e
2
√

a

[︃
er f
(︃

av − 1√
a

)︃]︃v=ln[1+b(λ+−λmax)]

v=ln[1+b(λ−−λmax)]

(A.123)

5 Estimating the spatial broadening B
In the following the spatial broadening effect, in terms of an increased FWHM, is theoret-
ically investigated. To do this lets recall the two functions f (r) and g(r) that make up the
broadened PSF:

f (r) = h(r; λmax) (A.124)

g(r) = 2CD · r2

λ3
max

exp
(︃
−C · r2

λ2
max

)︃
(A.125)

with D = 1/b · (I/A − 1) and I being an integral solved on page 118. With this, the
broadened PSF h(r) can be expressed as:

h(r) ≈ A [ f (r) + g(r)] (A.126)

An expression for the new FWHM value ∆rB is given according to:

∆rB = 2 · r1/2;B (A.127)
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with r1/2;B being the radial coordinate where h(r) has reached 1/2 · max{h(r)}.
Figure 3.7a shows how r1/2;B is linearly interpolated. To do this, two points (marked with
green arrows) are defined. One of them corresponds to the FWHM position of the peak
only PSF h(r; λmax), the other one corresponds to the maximum of g(r).(︃

r1/2 , f (r1/2) = 1
2

)︃
(A.128)(︃

rmax , f (rmax) + g(rmax)

)︃
(A.129)

The latter can be found by calculating the first derivative of g(r):

∂g(r)
∂r

= 2CD · 2r
λ5

max
exp

(︃
−C

r2

λ2
max

)︃ (︁
λ2

max − Cr2)︁ (A.130)

Setting this expression to zero and solving for r gives:

rmax = ±λmax√
C

(A.131)

Knowing this the values of f (rmax) and g(rmax) can be found.

gmax = g(rmax) =
2D

λmax · e
(A.132)

fmax = f (rmax) = 1/e (A.133)

The linear relationship (red line in Fig. 3.7a) can be expressed in the form of:

y = m · r + t (A.134)

with m being the slope and t the vertical offset.
According to basic math, the slope is given as:

m =
fmax + gmax − f1/2 − g1/2

rmax − r1/2
(A.135)

For this, the values of r1/2 and g1/2 need to be known:

r1/2 =
√

ln 2 · λmax√
C

=
√

ln 2 · rmax (A.136)

g1/2 = g(r1/2) = ln 2 · D
λmax

(A.137)

With this the slope m can be computed, yielding the following expression:

m =
√

C · 1/e · (1 + 2 · D/λmax)− 1/2 − ln 2 · D/λmax(︂
1 −

√
ln 2
)︂

λmax

(A.138)

The offset t can now be found by using the two points and the linear relationship:

t = 1/2 + ln 2 · D/λmax − m · r1/2 (A.139)
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Finally, to solve for r1/2;B, r = (1/2 − t)/m needs to be calculated:

r1/2;B =

√
ln 2 · λmax/

√
C · m − ln 2 · D/λmax

m
(A.140)

This can be converted into a FWHM value by multiplying by two:

∆rB = 2
√

ln 2 · λmax/
√

C · m −
√

ln 2 · D/λmax

m
(A.141)

Now lets introduce the broadening B, the difference between both FWHM values:

B = ∆rB − ∆r =

= 2
√

ln 2
λmax√

C

[︄
m −

√
ln 2 ·

√
CD/λ2

max
m

− 1

]︄
(A.142)

6 The scanning confocal point spread function
In a fluorescence confocal microscope the sample is illuminated by a focused laser spot
and recorded using a point detector through a small pinhole. For a particular scan posi-
tion s⃗ the following intensity response is found [7]:

M(r⃗; s⃗, r⃗p) =
∫︂ +∞

−∞
ds⃗ S(r⃗ − s⃗) · hIllu.(s⃗) · hDet.(r⃗p − s⃗) (A.143)

with r⃗p being the coordinates of the point detector. Note that the sample has been shifted
by s⃗ while the illumination is given as the point-spread function hIllu., the smallest attain-
able laser focus, centered around the current scan position. The acquired intensity signal
is given as an integration over the detector coordinates:

M(r⃗) =
∫︂ +∞

−∞
dr⃗p p(r⃗p) · M(r⃗; s⃗, r⃗p) (A.144)

with p being the pinhole. Writing the convolution in integral form yields:

M(r⃗) =
∫︂ +∞

−∞
dr⃗p p(r⃗p)

∫︂ +∞

−∞
ds⃗ S(r⃗ − s⃗) · hIllu.(s⃗) · hDet.(r⃗p − s⃗) (A.145)

Exchanging both integrals and rearranging the quantities accordingly gives:

M(r⃗) =
∫︂ +∞

−∞
ds⃗ S(r⃗ − s⃗) · hIllu.(s⃗)

∫︂ +∞

−∞
dr⃗p p(r⃗p) hDet.(s⃗ − r⃗p) (A.146)

In the last equation a symmetric detection PSF was assumed so that hDet.(r⃗p − s⃗) =
hDet.(s⃗ − r⃗p). Note that the integral with respect to dr⃗p is given as a convolution in terms
of s⃗, hence:

M(r⃗) =
∫︂ +∞

−∞
ds⃗ S(r⃗ − s⃗) · hIllu.(s⃗) ·

(︃
p(s⃗)⊗ hDet.(s⃗)

)︃
(A.147)

With this the image is given as a convolution with an effective PSF:

M(r⃗) = S(r⃗)⊗
[︃

hIllu.(r⃗) ·
(︃

p(r⃗)⊗ hDet.(r⃗)
)︃]︃

= S(r⃗)⊗ hCon f .(r⃗) (A.148)



122

7 Image results of wavelength splitting & recombination
In the experimental realization of wavelength splitting, a fluorescent calibration target
from Argolight [78] (Argo-SIM, Argolight SA, France) has been imaged, using the LSM
880 (see Fig. 3.10b). A λ-stack was recorded with 32 spectral channels, which was re-
peated 10 times to effectively obtain multiple realizations of the noisy measurement.
This is required to compute the mean (= signal) and standard deviation (= noise) val-
ues per pixel, so that a possible SNR enhancement can be evaluated. The reference data,
termed splitting & sum, was calculated by summing over all wavelength channels. This
corresponds to the non-split case, as all photons are simply added as stated in eq. 3.23.
The non-split data was not acquired additionally with the LSM 880, as the system uses
a different detector when the spectral detection (QUASAR module) is not used. A fair
comparison between non-split and split data requires to use the same detector, as any
difference in detection performance would strongly alter the ability to compare both
datasets. The non-split reference data is shown in Fig. A.6a blue after averaging the
10 time frames: the top half depicts the averaged raw data, the bottom half the average
of the deconvolved time frames, processed using the RL method with 30 (accelerated)
iterations (see p. 124) and a theoretically derived PSF h(r) (broadened according to the
spectrum shown in Fig. 3.11b). A region in the FoV is marked with a yellow box and
depicted enlarged at the bottom, comparing the average of raw and deconvolved data.

a b

Figure A.6: a Comparison between summing or recombining (weighted average, multiview de-
convolution) the experimentally acquired λ-stack. The data was recorded as a time series with 10
frames, the depicted images represents the average of those 10 images. The top half either shows
the raw data (blue) or the weighted averaged result (magenta). On the bottom the deconvolved
results of both are depicted. A zoomed region of the FoV is shown on the bottom, again compar-
ing non- with deconvolved data. b Horizontal line profile, through the center of the yellow frame
in a, showing the mean and standard deviation for both imaging strategies after deconvolution.
Note that both signals are noise-normalized to the same average standard deviation. Meaning
that an enhanced modulation of the line profile indicates an improvement in SNR. Five different
line pairs with decreasing gaps are marked and evaluated in more detail in Tab. A.1.

To apply the wavelength splitting idea, the λ-stack in each time frame was sequentially
processed via weighted averaging in Fourier space (with noise normalization). The same
dataset was also processed using the multiview deconvolution with 39 (accelerated) it-
erations (see Fig. A.8a) and the corresponding single wavelength PSFs h(r; λ), scaled
according to the spectrum shown in Fig. 3.11b. The average of the 10 reconstructed time
frames is depicted in the bottom half, for the full FoV and the enlarged view (yellow
frame). The improvement in terms of the SNR is analyzed in more detail using a hori-
zontal line profile through the center of the yellow frame in Fig. A.6a. The modulation of
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the deconvolved line patterns are shown in Fig. A.6b top. To make sure that the datasets
(non-split and split) are properly noise normalized, the standard deviation over the 10
time frames was computed and depicted in at the bottom of Fig. A.6b. The line indicates
the average value of the pixel-wise computed standard deviation and was used as a ref-
erence to normalize the split data accordingly. When this is done, both datasets show the
same amount of noise and the modulation of the mean value (top) is a direct indicator
for the SNR performance of the respective system. Five different line pairs are marked in
Fig. A.6b, the respective gap for each line pair is given in Table A.1. Which also shows
the visibility and the spatial improvement factor IFV (eq. 3.14).

Line pair # 1 2 3 4 5
Spacing / (nm) 330 300 270 240 210
kxy/kxy,max 0.54 0.60 0.66 0.74 0.85

WA
Summing 0.1403 0.1131 0.0704 0.0426 0.0124
Recombination 0.1443 0.1169 0.0727 0.0437 0.0131
Improvement / (%) 2.82 3.30 3.31 2.76 5.66

MV
Summing 0.3801 0.3291 0.2222 0.1454 0.0576
Recombination 0.3907 0.3567 0.2713 0.1938 0.1032
Improvement / (%) 6.46 8.39 22.11 33.26 79.23

Table A.1: The visibility V for the five different line pairs shown in Fig. A.6b after averaging 10
time frames. Reference data is obtained by summing the λ-stack, while the recombination was
done either by weighted averaging (WA) or multiview deconvolution (MV). The improvement is
given as IFV (defined in eq. 3.14), the relative difference between summing and the respective
recombination method. The ratio kxy/kxy,max is calculated for NA = 1.4 and λmax = 500 nm.

In the case of weighted averaging (WA) the improvement factor stays approximately con-
stant at a value of 3%. Only the line pair with the smallest separation shows a larger IFV
value of ≈ 6%. A much stronger enhancement can be achieved when the multiview (MV)
deconvolution is used. The maximum improvement factor again is given at the smallest
line spacing, this time reaching ≈ 80%. In contrast to the weighted averaged result, the
obtained improvement increases more strongly from coarse to finer structures. Indicat-
ing that the attainable SNR improvement due to wavelength splitting & recombination
mostly shows its benefits when small structures are being reconstructed.

The axial performance of the wavelength splitting approach, is tested using pattern I of
the Argolight calibration target ("stairs" in Fig. 3.11a). This time only a single λ stack
was acquired and the reference case (non-split) was obtained by summing over all wave-
lengths. A thick slice deconvolution (see sec. 2.4.2) was performed with both datasets,
either as a single view (non-split) or multiview (split data) version, using the 3D-PSFs
computed as already described previously for the deconvolution of the resolution target
(pattern E). Note that no evaluation of optimal iteration using an NCC curve was done
here, meaning that both datasets where deconvolved using 10 (accelerated) iterations.
The primary goal of the presented analysis is to give a first impression on 3D deconvo-
lution aspects of wavelength split data, while more work on optimization still needs to
be done. Figure A.7a right shows an in-focus slice (yellow) of the reconstruction of the
non-split data, quantifying the axial resolution as only two stair steps are nicely visible.
The three dimensional reconstructions for the non-split (blue) and split (magenta) data
are presented to the right (with 11 slices spaced by 0.5 µm, upscaled by factor of 12 for
visualization). Note how the reconstruction indicates the axial position of the different
cylinders with stronger blurring. However, it was not possible to infer the crossing stair
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type of geometry from the data. In Fig. A.7b a line profile (orange) through the stair at
z = −0.125 µm is shown. The improved axial resolution is indicated as a reduction of
FWHM by ≈ 10 %.

a b

Figure A.7: a Schematics and thick-slice deconvolution results (see sec. 2.4.2) of imaging pattern
I of the Argolight sample, used to evaluate the 3D performance of the imaging system. Left:
lateral and axial scheme of the crossing stairs sample with a step size of 0.125 µm; right: axial
views of the thick-slice reconstruction using 10 (accelerated) iterations for the split (magenta) and
non-split (blue) data (see text for more detail). b Line profile through the 3D reconstructed stair
step at z = −0.125 µm (orange line), indicating a slightly narrower axial response of ≈ 10%.

As mentioned in section 3.3.4, the problem with the acquired data lies in the fact that
the detection pinhole was opened. Therefore hCon f . in equation 3.43 is dominated by p
and only weakly depends on the emission wavelength λ. Meaning that the necessary
wavelength-scaling of the FWHM of hCon f . is reduced. Hence, the experimentally found
improvement in terms of visibility V and axial FWHM cannot be fully attributed to real-
ized wavelength splitting.

8 Estimating the optimum iteration number using NCC
When the multiview deconvolution method is used for recombining the split data, it is
important to compare the reference (non-split) and splitting & recombined data in a fair
way. This can only be achieved when the image reconstruction for each method is op-
timized, in the sense that both have reached their optimal reconstruction result. Which
most probably will occur at different number of iterations, for each dataset (non-split &
split) individually. Finding the optimum number of iterations with experimental data is
difficult and often leads to unfair comparisons when unintentionally one method is iter-
ated closer to the optimum iteration number than the other. Here we try to circumvent
this by simulating the imaging of a line pattern, similar to the resolution pattern of the
Argolight sample used for the wavelength (sec. 3.3) and pupil (sec. 3.4) splitting. Pois-
son noise was applied and matched to the observed photon numbers in the experimental
data. To do this the average and standard deviation along the vertical direction have
been computed for: 1) a line structure; 2) a region in between lines where no signal was
measured. In the simulation the number of photons in the brightest pixel of the expected
image and some global background have been varied by hand, such that the same ratio of
average to standard deviation values are obtained. Each dataset was then deconvolved
using the RL algorithm, while for each (accelerated) iteration the NCC value was com-
puted. Fig. A.8 shows the curves for wavelength (A.8a) and pupil (A.8b) splitting, the
reference case (non-split) in blue and the split & recombined result in magenta.
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a b

Figure A.8: NCC curves for wavelength a and pupil splitting b. The underlying image data was
simulated and matched to fit the experimentally observations as close as possible. These curves
are used to estimate the point of optimum iteration (marked with circle) in the RL deconvolution
scheme, for the reference (blue) and split & recombined (magenta) data. Note that the order of
which reconstruction reaches its maximum first is not fixed. In both cases (wavelength & pupil
splitting) the split & recombined reconstruction using multiview deconvolution yields a better
result in terms of NCC value.

In both splitting cases it can be seen that the optimal point of reconstruction is reached at
different iterations. Interestingly, the order of which dataset (non-split or split) reaches
its maximum earlier is not the same, an effect which can also be seen in Fig. A.4. In both
splitting scenarios (wavelength & pupil) the split & recombined approach results in a
larger maximum NCC value, meaning that the split data enables better image reconstruc-
tions, compared to the non-split counterpart. For the wavelength splitting the maximum
NCC values are: splitting & sum at 30, splitting & recombination at 39 iterations. Note
how the magenta curve drops rapidly for large iteration numbers, similar to what is de-
picted in Fig. A.4b. In the pupil splitting approach the maximum NCC values are reached
at: widefield (non-split) at 24, splitting & recombination at 18 iterations. This time the
NCC curves look similar, only with an NCC offset.

9 Calculating the OTF via autocorrelation of the pupil
The optical transfer function of an imaging system can be computed from the pupil func-
tion P using an autocorrelation operation:

h̃(k⃗) = A
{︃
P(k⃗)

}︃
=
∫︂ +∞

−∞
dk⃗

′ P(k⃗
′
) · P∗(k⃗

′ − k⃗) (A.149)

Which is graphically presented in Fig. A.9a for a disk (top) and annular pupil (bottom).

In ideal imaging (constant phase in the pupil), the autocorrelation can be represented as
the following geometric operations:

1. Take two copies of the pupil (e.g. ring shape) and overlap their center.

2. Shift them apart by kxy/kxy,max where kxy,max is the diameter of the full pupil.

3. The area of overlap (dark green in Fig. A.9a) with respect to the area of the full
pupil (= R2

max · π) represents the OTF value at the relative frequency kxy/kxy,max.
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a b

Figure A.9: a Graphical representation of obtaining the transfer strength (= OTF) for two differ-
ent pupil types: conventional (full pupil, top) and annular (ring pupil, bottom). Each pupil has
a diameter which corresponds to the cut-off limit of the incoherent imaging system kxy,max. The
transfer strength for a particular kxy can be obtained by separating the two copies such that the
distance between them corresponds to kxy. The ratio of the overlap area divided by the area of
the full pupil, corresponds to the OTF value at this particular spatial frequency kxy. Note that for
|k⃗| > k0 the overlap for the full and ring pupil is exactly the same. Indicating that both OTFs share
the same value (also see Fig.A.7a). b Spectral improvement factors IF for different splitting radii.
The narrower the annular pupil gets, the higher the maximally achievable improvement factor.
However, that stronger enhancement is limited to a smaller region in Fourier space. In case the
object under investigation mainly consists of very high spatial frequencies (like a grid) it makes
sense to use a narrow annular pupil for detection.

In case of the annular pupil the overlap is much reduced for most separations, resulting
in a low OTF value for most spatial frequencies. However, there exists a separation k0
for which the spatial overlap in case of the full and ring pupil are equal (see Fig. A.9a
right). Which is the main effect that is used in pupil splitting: an imaging system with
an annular pupil is capable of transferring high spatial frequencies with the same signal
strength as a conventional WF system. However, it only requires half of the photons
(when R =

√
0.5 · Rmax), meaning that splitting & recombination can be employed to

improve upon SNR.

10 Improvement factor for varying pupil splitting radius
The spectral improvement factor IF is used to characterize the performance of the pupil
splitting compared to the conventional WF detection. Figure A.9b shows the IF for four
different splitting radii, characterized by R/Rmax. While the annular pupil is changing
from a thick into a thin ring, the region of enhancement (blue) does the same. To improve
a larger fraction of spatial frequencies within the bandlimit, it is required to make the
ring wide. However, the maximum improvement which can be obtained using the pupil
splitting gets stronger when the width of the annular pupil is decreased. Hence, there is a
tradeoff between obtaining a strong improvement for only a small fraction of spatial fre-
quencies, or enhancing a larger region in k-space but being limited to a lower maximum
IF. Table 3.5 shows different performance measures in dependency of R/Rmax.
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11 Elongating the depth-of-field in pupil splitting
Pupil splitting does also affect the axial performance of the detection system. This will
lead to an elongation of the depth-of-field (DoF), as both sub-PSF will be able to transfer
more axial information content into their respective 2D image.

The axial extent of a WF detection PSF can be estimated to be given by dz,min:

dz,min =
λ

n · [1 − cos α]
(A.150)

with λ the wavelength of light, n the refractive index of the immersion medium and α
the half-opening angle of the detection cone. Expressing dz,min in terms of the NA yields:

dz,min =
λ

n

[︃
1 −

√︂
1 −

(︁NA
n

)︁2
]︃−1

(A.151)

Here the definition NA = n · sin α and the identity sin2 α + cos2 α = 1 have been used.
Meaning that the axial extend of hWF and hDisk are given according to:

dz,WF =
λ

n

[︃
1 −

√︂
1 −

(︁NA
n

)︁2
]︃−1

dz,Disk =
λ

n

[︄
1 −

√︃
1 −

(︂
R

Rmax

)︂2
·
(︁NA

n

)︁2
]︄−1

(A.152)

For hRing it can be used that the sub-pupils add up to yield the (full) widefield pupil:

kz,WF = kz,Disk + kz,Ring (A.153)

Because the autocorrelation operation & Fourier transforms are linear operators, the axial
extend of hRing is given as:

dz,Ring =
dz,WF · dz,Disk

dz,Disk − dz,WF
(A.154)

Computing the axial extent for hWF and the two sub-PSFs hDisk and hRing for NA = 1.2,
n = 1.333, λ = 500 nm and R/Rmax =

√
0.5 yields:

dz,WF = 664 nm (A.155)
dz,Disk = 1640 nm (A.156)
dz,Ring = 1117 nm (A.157)

Meaning that both sub-PSF show an axial extend enlarged by roughly a factor of two.
Note that weighted averaging in Fourier space is not a linear operation in real space,
meaning that we cannot predict the axial extent dz,wa of the recombined results directly
from dz,Disk and dz,Ring. Nevertheless, it can be said that for the given example of splitting
with R/Rmax =

√
0.5 the axial extent of hwa,σ must be roughly elongated by a factor of

two. This agrees with the simulated results shown in Fig. 3.12b.
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12 Computing the sub-pupils using the Richards & Wolf model
Instead of calculating the individual OTFs directly from the pupil function (using the
autocorrelation operation), it is also possible to obtain it via Fourier transforming a PSF:

h̃(k⃗) = Fdim
{︁

h(r⃗)
}︁

(A.158)

This is helpful because there already exist many accurate models to compute h in real
space, e.g. the Richards & Wolf method (RW) introduced in [32]. These models encom-
pass effects such as focusing under high angles, the aplanatic factor and the polarization
of light. The Richards & Wolf method requires input parameters such as: numerical
aperture, refractive index of the immersion medium and the polarization state. The RW
method (denoted by fRW) is able to calculate the accurate shape of the PSF for a widefield
system in terms of its electric field, the amplitude-spread-function a:

aWF(r⃗) = fRW(NA, n, Pol.) (A.159)
aDisk(r⃗) = fRW(NA, n, Pol.) (A.160)

The corresponding intensity PSFs are given according to:

hWF(r⃗) =
⃓⃓
aWF(r⃗)

⃓⃓2 (A.161)

hDisk(r⃗) =
⃓⃓
aDisk(r⃗)

⃓⃓2 (A.162)

To calculate the PSF corresponding to the ring pupil we use the fact that P̃Ring can be
expressed in terms of P̃WF and P̃Disk:

P̃Ring(k⃗) = P̃WF(k⃗)− P̃Disk(k⃗) (A.163)

In general, a is given as the inverse Fourier transform F−1
dim of the pupil:

a(r⃗) = F−1
dim

{︁
P̃(k⃗)

}︁
(A.164)

Which means that aRing is given as the following subtraction:

aRing(r⃗) = aWF(r⃗)− aDisk(r⃗) (A.165)

Hence, the corresponding intensity point-spread-function hRing can be directly computed
from aWF and aDisk, according to:

hRing(r⃗) =
⃓⃓
aRing(r⃗)|2 =

⃓⃓
aWF(r⃗)− aDisk(r⃗)

⃓⃓2 (A.166)

So that the RW model fRW can be used to calculate hWF and hDisk directly and hRing indi-
rectly by using the previous equation.

13 Image results of pupil splitting & recombination
The acquired data of the pupil splitting experiment is shown in Fig. A.10a. Left the
resolution target (pattern E, average of 100 frames) and right the "crossing stairs" (pattern
I, single frame) of the Argolight calibration target [78]. When comparing the two images,
corresponding to disk (cyan) and ring pupil (green), it is noticed that the latter looks more
blurred. Yet it still recovers the very fine spatial structures. The blur is due to the much
worse transfer of medium spatial frequencies through the ring pupil, see green OTF in
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Fig. 3.12a. High frequency information maintains its transfer strength, but becomes more
clearly visible as relative shot noise is reduced through the splitting.

a b

Figure A.10: a Imaging results pupil splitting & recombination of the resolution (left) and stair
(right) sample of the Argolight calibration target. Marked with cyan color are the sub-images
corresponding to the inner disk pupil, cyan those related to the ring pupil. Latter shows some
strong blurring, while still maintaining information about the very fine structures. Pupil splitting
generates a slight extended-depth-of-field effect, which is indicated at the orange arrow, in the
imaged "stair" sample. b Line profile through resolution target (center of yellow box) for the
weighted averaged recombination. The change of modulation depth for the different line pairs
corresponds to the theoretical prediction in Fig. 3.12b.

The extended-depth-of-field (EdoF) effect obtained in pupil splitting can be seen in both
sub-images of the "stair" target marked by the orange arrow. The inner disk pupil (cyan)
corresponds to imaging with a lower NA, hence exhibits a longer axial range of detection.
Detection through the annular pupil (cyan) also leads to EDoF, as the corresponding PSF
corresponds to a Bessel [79] type of intensity distribution (more details in sec. 127).
Figure A.10b shows the line profile through the resolution target for widefield and weighted
average recombination. The pixel-wise mean and standard deviation has been computed,
so that the data is shown noise-normalized (bottom). Any improvements in terms of SNR
are observable as an enhancement in terms of visibility V . As suggested from the spectral
improvement factor IF in Fig. 3.12b, medium spatial frequencies are transferred worse
when pupil splitting is employed. However, the very small structures (corresponding to
high frequencies) are transferred better, enabling to detect a modulation in the split data,
which previously has been impossible using conventional widefield detection.

14 The aplanatic factor modifying the pupil splitting
When a point source emits light, the corresponding intensity distribution in the BFP of
an objective is not uniformly distributed. For higher emission angles α the light emitted
into a specific solid angle (see Fig. A.11a) needs to be projected onto a smaller area. This
effect is termed the aplanatic factor and results in a measurable intensity distribution in
the BFP, which increases sharply towards the edge of the pupil (see Fig. A.11b, inset).

To quantify this effect, a comparison between the circumference s of the spherical cap
and the diameter d of the disk in the parallel beampath (see Fig. A.11a), needs to be
performed. Note that this essentially is a 1D problem, as the "compression" of the light
only takes place in a single direction.
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a b

Figure A.11: a A point source emits light under an angle α into a light cone with opening angle
∆α. The light is then projected from the Gaussian reference sphere onto the pupil, which results
in a "squeezing" of intensity towards larger emission angle α. This effect is typically named the
aplanatic factor γ. Reason for this behaviour is that an area element s on the spherical cap is con-
verted into a smaller segment d in the parallel beam path. Hence the photon density is increased,
leading to higher intensity values towards the edge of the BFP. b Photon density in the BFP (=
photons per unit area) in dependency of the radial position in blue (no aplanatic effect in blue).
The inset shows the BFP of an microscope objective including the aplanatic factor for emission,
indicating how more photons are "squeezed" towards the rim of the pupil.

Therefore, the aplanatic factor γ is given as the ratio:

γ(α, ∆α) =
s(∆α)

d(α)
(A.167)

with α being the angle under which the light ray hits the Gaussian reference sphere and
∆α the angular width of the resulting spherical cap. The circumference s is calculated
according to:

s(∆α) = 2π fobj · ∆α
2π = fobj · ∆α (A.168)

with fobj being the focal length of the objective which also determines the obtainable FoV.
The diameter d of the disk is given as the difference between the two triangle sides o & u:

o = fobj · sin (α + ∆α) (A.169)
u = fobj · sin (α − ∆α) (A.170)

Making use of the addition theorem of sine functions [31]:

sin (x ± y) = sin x cos y ± cos x sin y (A.171)

With this it is possible to express o and u as:

o = fobj · (sin α cos ∆α + cos α sin ∆α) (A.172)
u = fobj · (sin α cos ∆α − cos α sin ∆α) (A.173)

Which simplifies to the following expression for the diameter d:

d(α) = o − u = 2 fobj · cos α sin ∆α (A.174)
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The overall aplanatic factor is now given according to:

γ(α, ∆α) =
1

cos α
· ∆α

2 sin ∆α
(A.175)

Lets consider that expression for small ∆α, hence:

lim
∆α→0

γ(α, ∆α) =
1

cos α
· 0

0
(A.176)

Applying the rule of l’Hospital leads to:

lim
∆α→0

γ(α, ∆α) =
1

cos α
· 1

2 cos ∆α · 1
2

=
1

cos α
(A.177)

Hence the aplanatic factor (in detection) is given as:

γ(α) =
1

cos α
(A.178)

Instead of expressing γ in terms of the emission angle α, it can also be rewritten by sub-
stituting the following:

α = arcsin
(︂

r
n· fobj

)︂
(A.179)

So that the dependency on the radial position r in the BFP becomes more clear. The
aplanatic factor is then given as:

γ(r) =
1

cos
[︂
arcsin

(︂
r

n· fobj

)︂]︂ (A.180)

The corresponding curve can be interpreted as a photon density in the BFP and is plotted
as the black curve in Fig. A.11b, for the experimental parameters used in sec. 3.4.4.
Note that when the aplanatic effect is not considered, that the photon density would be a
constant. Hence, splitting the detection pupil with radius Rmax into a smaller disk (with
radius R) and a ring, will only lead to an equal area split for R/Rmax =

√
0.5 without

accounting for the aplanatic factor. This can be seen when calculating the integral:

A(rmin, rmax) =
∫︂ 2π

0
dϕ
∫︂ rmax

rmin

dr r = π ·
[︁
r2

max − r2
min
]︁

(A.181)

with rmin,max being the radii integrated over in the BFP.
Obtaining the ratio for the disk pupil A(0, R) and the widefield pupil A(R, Rmax) gives:

A(0, R)
A(R, Rmax)

=
R2

R2
max − R2 =

1

(Rmax/R)2 − 1
(A.182)

which is equal to 0.5 for R/Rmax =
√

0.5.
When the aplanatic factor is included, the integral changes to:

A(rmin, rmax) = 2π ·
∫︂ rmax

rmin

dr r · γ(r) = 2π ·
(︁

fobjn
)︁2 ·

⎡⎣1 −

√︄
1 −

(︃
r

fobjn

)︃2
⎤⎦rmin

rmax

(A.183)
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Obviously this changes the ratio A(0, R)/A(R, Rmax) and therefore also the effective split-
ting ratio. E.g. for the experimental parameters in sec. 3.4.4, the values of A(0, R) and
A(R, Rmax) are given as:

A(0, R) ∝ 0.2740 (A.184)
A(R, Rmax) ∝ 0.7260 (A.185)

with fobj = ftube/M = 3, n = 1.333, Rmax = 4.0 mm, R/Rmax = 0.68 and R = 2.75 mm.
Yielding a ratio of A(0, R)/A(R, Rmax) = 0.3774, which is equivalent to a splitting ratio of
R/Rmax =

√
0.3774 = 0.61. Meaning that the pupil splitting realized in the experiment

does not yield an equal area split, and effectively changes the region of improvement
(IF > 0) by setting k0 = 0.5 · (1 + 0.61) /kxy,max = 0.805/kxy,max.

15 Field-Synthesis reduces phototoxicity
The conventional way of creating a scanned light-sheet is by beam scanning (BS). The BFP
of the illumination objective is homogeneously illuminated with light which is focused
into the sample. In Fig. A.12a this is exemplified for an annular mask, meaning that the
objective lens converts the BFP electric field Ẽ into a focused Bessel spot E (top right).

a b

Figure A.12: a Schematic describing the Field-Synthesis theorem: the goal is to create a time-
averaged light-sheet illumination (bottom right). This can either be done by scanning a focused
laser spot along the x-direction (top right, beam scanning), or by line scanning in the BFP (top left,
Field-Synthesis). The connections between the respective electric fields indicated are explained in
more details in the text. b Left: comparing the illumination profile of conventional beam scanning
(blue) with Field-Synthesis (magenta). Right: Latter reduces the maximum illumination dose
(here by a factor of 2.5), as the overall illumination gets distributed over the whole scanning
window . Which benefits the sample in terms of phototoxicity and photobleaching [94, 95].

In BS this spot gets scanned along the x-axis, to create a time-averaged light-sheet (cyan
path in A.12a). The scanning is achieved by applying a phase ramp ei·tkz in the BFP, where
t corresponds to the different time steps. The Field-Synthesis theorem states that the same
intensity distribution can be achieved when a line parallel to kz is scanned in kx-direction
in the BFP of the illumination objective. For each scan position a distinct electric field Ẽ t
is obtained, which summed coherently yield Ẽ =

∫︁
dt Ẽ t.

All line scans together are equivalent with illuminating the full pupil (here annular mask)
at once. Due to the linearity of the Fourier transform, we can conclude that the Bessel
spot E in real space can be generated by coherently summing the real space analog of
E =

∫︁
dt Et. The resulting electric field will coincide with (x, z) = (0, 0), the same as in
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the BS approach when no phase ramp is applied. In case a phase ramp is applied in the
BFP (to move E along the x-axis), this will not affect the individual Ẽ t. This is because the
line scan is perpendicular to the phase ramp direction, meaning that each line scan will
not experience any phase change along kx. However, the phase between subsequent scan
positions will change and this results in the shifting of E along the x-axis. Of course, the
incoherent summation of FS anyways neglects this varying phase information between
different pupil scan positions. Meaning that all shifted illumination foci E are already
encoded in the incoherent summation of Et. So that the incoherent superposition of Et
effectively corresponds to when all possible phase ramps are applied simultaneously,
creating the scanned light-sheet. A.12b left shows a line plot along the z-axis (yellow line)
and compares the temporally averaged light-sheet created using beam scanning (blue) or
Field-Synthesis (magenta). Note how both curves are identical, nevertheless FS brings
some advantage. Field-Synthesis distributes the same illumination dose over a larger
amount of time. In beam scanning, a point in the sample (e.g. yellow point in Fig. A.12b)
gets all its excitation within a very short period of time (blue curve). In Field-Synthesis
the illumination is distributed more evenly over the whole excitation volume (see Fig.
A.12b, magenta). Reducing the maximum illumination dose drastically (here by a factor
of 2.5), making Field-Synthesis much more gentle in terms of phototoxicity [94, 95].

16 Reducing out-of-focus light through illumination splitting
Generating a Bessel illumination sheet using the Field-Synthesis concept, enables to record
multiple sub-images that correspond to axially varying sub-illuminations. Figure 3.18b
depicts simulation results for imaging a 3D spherical object, with different imaging modal-
ities. To visualize the ability to remove out-of-focus light when the sub-images are recom-
bined, a line profile (yellow) is plotted in Fig. A.13a.

a b

Figure A.13: a Line profiles through the images shown in Fig. 3.18b . It can be clearly seen how
light-sheet illumination (cyan) removes some of the out-of-focus light, present in the widefield
data (blue). Creating the Bessel sheet (magenta) will yield in unwanted background contributions,
due to the strong sidelobes exciting out-of-focus regions. The nNMF processing (black) enables
to remove this additional out-of-focus light and maintains background-free imaging over a large
FoV. b Thin slice deconvolved results of images shown in Fig. 3.18b (20 accelerated iterations).
Note that the nNMF result corresponds to data which has been pre-processed using nNMF.

The region inside of the imaged spherical object indicates that post-processing the data
using the nNMF-algorithm (described in sec. 3.5.3) enables to remove out-of-focus con-
tributions. While not introducing any further blurring (see walls of spherical object and
compare to Top hat NAIllu. = 0.35 result) and maintaining a larger FoV.
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Figure A.13b shows the deconvolved (thin slice) results of the images shown in Fig. 3.18b
after 20 accelerated iterations. Note that these results should just give an exemplary im-
pression on what is possible when deconvolution is performed. Because the nNMF pro-
cessed data has most of its out-of-focus light already removed, the image deconvolution
has it easier to obtain good reconstruction results.

17 Image results of illumination splitting & recombination
Figure A.14 shows the lateral in-focus slice (top) of the recorded z-stack, corresponding to
the axial modulation of the excitation pattern (bottom). Note how the lateral information
varies when the scan-position in the illumination BFP is changed. This effect is used in
illumination splitting, as the in-focus structure is present in all sub-images. For the bead
sample this effect is smaller, which is probably due to the smaller axial extend. Note
that the optical configuration shown in Fig. 3.19a, shows a light-sheet system where
both objective (illumination & detection) are on the same side of the coverslip. Hence,
the recorded "z-stack" is tilted and laterally shifted with respect to the optical axis of the
detection objective. This is undone by pre-processing the data with a shift correction
and optional rotation of the acquired volume information. Together with the data, James
Manton (LMB) provided a Fiji-script [144] which performed the necessary corrections.

a b

Figure A.14: Experimental results of imaging the Vimentin probe (a) and fluorescent beads (b)
using illumination splitting through Field-Synthesis (all data is shown with a γ-adjustment of γ =
1.5). Top: individual in-focus images for three different scan positions in the illumination BFP.
Bottom: axial view acquired from a z-stack indicating the axial modulation of the illumination.
a Note the change of image information in the lateral view (top), which is directly related to the
axial modulation in the side view. Meaning that when imaging a 3D object, any axially modulated
illumination will have an influence on the 2D image information that is being captured. b Top:
Compared to the nucleus of the Vimentin sample, the distribution of beads can be regarded as
relatively flat. Nevertheless, the illumination splitting alters some of the image content in the
lateral view as well. Note that the captured data suffers from spherical aberrations. Bottom: the
data was acquired with a light-sheet configuration with both objectives (illumination & detection)
on the same side of the coverslip (see Fig. 3.19a). Hence the acquired "z-stack" is tilted and shifted
with respect to the z-axis. This is corrected by performing a shift correction and rotation of the
captured volume using a Fiji [144]-script provided by James Manton (LMB).
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Submillimeter wave imaging:

1 Mean-variance relationship of submillimeter detectors
In every imaging application, it is necessary to calibrate the sensor data. One important
aspect is the ratio of mean to variance value for each detector, as it quantitatively describes
the effects of noise on the image data. For example: shot noise is characterized as a
straight line in the mean-variance plot, as it is governed by a Poisson distribution which
exhibits: expectancy = variance. To be able to observe this relationship it is necessary
to analyze a sequence of image data where all possible signal levels are present, e.g.
a person walking through the complete FoV. For each detector in this data stack, the
measured signal range has been split into N bands and for each of those the mean and
the variance value has been calculated. The result is shown in Fig. A.15a.

a b

Figure A.15: a Mean-variance plot of a scene with a person walking through the camera FoV. The
different colors indicate the detectors from module Nr. 4, the lines are fitted using a least-squares
approach. Each detector for itself is working in the shot noise regime (expectancy = variance),
however, they all differ in sensitivity (= slope) and offset. Later is depicted in the small inset and
shows a maximum difference of ≈ 2.75 · 104, explaining the "streaky" appearance of the raw data
in Fig. 4.2. b Modulation pattern obtained via a line profile (marked yellow in resolution target).
Blue corresponds to the data after pre-processing, without any image enhancement. The ability to
improve upon spatial resolution is shown as a visibility V increase, especially for the accelerated
and dampened version of the Richardson-Lucy deconvolution, in Tab. A.2.

The mean-variance curves for the 8 detectors of the 4th detector sub-module are shown
in different colors. They all represent a linear relationship, which has been confirmed by
fitting a line using a least-squares approach. However, each detector shows an individual
sensitivity (= slope) and offset behavior, which need to be corrected for when the image
data is to be generated. Especially the offset characteristics (see small inset) show a max-
imum difference of the different detectors on the order of ≈ 2.75 · 104, i.e. four orders of
magnitude. Note that these measured dependencies of the individual pixels drift over
time and change completely whenever the system has to be setup again. Due to thermal
fluctuations the individual detector response changes, which leads to the requirement of
consistently obtaining calibration data after each system setup.

2 Improved spatial resolution in submillimeter wave imaging
As seen from sec. 4.1, submillimeter wave imaging is limited in terms of SNR and there-
fore also in spatial resolution. Post processing techniques, such as image deconvolution,
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try to overcome this. In chapter 4.3.2 different methods have been shown: sharpening,
Wiener filter and Richardson Lucy deconvolution. For latter an acceleration [54] and
dampening step [55] was introduced. The result of imaging the resolution line pattern is
shown as a profile plot in Fig. A.15b. For all post-processing an enhancement in modu-
lation depth or visibility V can be observed. The exact values of the spatial improvement
facgtor IFV are depicted in Table A.2.

Pre Sharpen Wiener RL RL-accel. Damp. RL
Mmax / (a.u.) 0.0041 0.0052 0.0049 0.0052 0.0055 0.0060
Mmin / (a.u.) 0.0022 0.0012 0.0014 0.0015 0.0013 0.0011
Visibility / (%) 30.94 62.13 56.65 54.18 60.40 68.74
Improvement / (%) 0.0 100.8 83.1 75.1 95.2 122.2

Table A.2: Table showing the visibility V and its spatial improvement factor IFV in percent. An
enhancement of IFV = 100% corresponds to a doubling of modulation. RL = 10 (accelerated)
iterations; Accel. + Damp. RL = 7 (accelerated) iterations.

The technique of denoising (DCT) and sharpening (subtracting Laplace filtered version)
yields in a doubling of visibility. However, when looking at Fig. 4.4 this results in strong
artifacts such as noise amplification. Wiener filtering gives a slight decrease in enhance-
ment but is not as strongly affected by restoration artifacts. Conventional Richardson-
Lucy yields in 75% improvement which can be strongly improved (120%) by when the
dampened version [55] is used.

3 Temporal representation of the recorded video data
Besides providing a large enough SNR and spatial resolution, the passive submillimeter
wave security imager also needs to be able to acquire the data fast enough. So that the
movement of a potential suspect can be followed. The prototype at the IPHT did acquire
the image data at ≈ 12 frames per second (fps). Processing the data was done using the
accelerated & damped Richardson-Lucy at > 4 fps on a Laptop (Intel i7 8565U; 1.8 GHz,
4 cores) but not optimized (e.g. parallelized). Figure A.16 shows a series of frames, each
captured in an time interval of t ≈ 0.5 seconds.

In both cases the movement of both person is nicely resolved in time. Note that those
scenes indicate that a concealed threat can only be detected when it directly faces the se-
curity imager. This is not surprising as the underlying contrast mechanism is to measure
a temperature difference between object and surrounding media (body).

4 Supervised and unsupervised learning-based denoising
In Deep-Learning-based image reconstruction a neural network must be trained to re-
cover the underlying sample structure from low SNR images. Those networks consists
of multiple layers of neurons (blue circle in Fig. A.17a) which are mutually connected.
A single neuron processes information from its adjacent neighbors xi by computing a
weighting sum (weights wi), which is input to a non-linear function (activation function)
yielding the output of the neuron. The interaction between all neurons in the different
layers is controlled by setting each individual weight wi, which represents a vast num-
ber of adjustable parameters of the network [141]. Their respective values are optimized
during a step called network training, which typically is very time consuming.
When pairs of noisy image and groundtruth data are available, this is called supervised
training and is shown in Fig. A.17b as the CARE network [140]. It uses a convolutional
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Figure A.16: Temporal overview of recorded submillimeter wave imaging. Top: person walking
from the left to the middle of the FoV. Note how the hidden handgun is not detectable while the
person is facing in walking direction. Bottom: person with hidden rifle turning around. Again,
when the concealed threat faces away from the security imager, no weapon can be detected.

neural network (CNN) [138] to predict denoised images. It is also possible to train the
CNN by using multiple low SNR images only (without groundtruth knowledge). The
idea behind this is that both sub-images carry the same signal information but a varying
noise contribution [142]. As the network is not able to predict the noise of the reference
image, it will learn find the underlying sample structure of both sub-images. Noise2Void
[139, 143] goes even further and enables to train on single noisy images alone. However,
the noise is required to be pixel-wise independent. Which is the case for the most com-
mon noise contributions, such as shot noise. The basic idea behind Noise2Void is that a
network will not be able to predict the noise in a pixel from its surrounding, nevertheless
can still find some information on the sample structure in a close neighborhood. Making
it possible to successfully train the network according. However, this only works when
a masking strategy is used, preventing the measured information at the pixel which is
ought to be predicted to be part of the receptive field of the network (see Fig. 4.5a).

The denoising network for the submillimeter wave data was applied using a Fiji-plugin
[144] that was made available by the Jug lab [139]. The plugin first separates a provided
dataset into a training (red) and a validation (blue) batch. Latter is unseen by the network
and can be used to verify the accuracy of the obtained reconstruction result. The two
curves depict the loss function for training and validation and are shown in Fig. A.17a.
For the first 40 iterations a quick drop is observable, from which one the improvement is
much more gradually. Note that the training error is always slightly below the validation
loss, as the validation data is unseen by the network and not directly trained for.
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a b

Figure A.17: Supervised and unsupervised learning based denoising. a Top left: Content aware
image reconstruction (CARE) [140] enables to denoise an image using a convolutional neural
network (CNN). It requires the knowledge of groundtruth data (green) which is compared in
training to the networks prediction (blue). Top right: Lehtinen et al. [142] have shown that the
groundtruth data can be replaced by a second recorded image, consisting of the same underlying
signal but varying noise. Bottom: Noise2Void [139, 143] shows that it is also possible to train
the CNN using a single image. The required assumption is that the underlying signal can be
reconstructed from a neighborhood, while the noise is pixel-wise independent and cannot be
predicted from adjacent neighbors. b Loss curves for training (red) and validation (blue) after ≈
10 hours; a recorded dataset is randomly separated into a training & validation data. Both curves
quickly decrease, while the training loss is always slightly reduced, indicating that a sensible
solution has been found. The processing of a single neuron depends on the input values xi, the
weights wi and a non-linear activation function.
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Appendix B

List of publications
Paper:

• Dasgupta A, Deschamps J, Matti U, Hübner U,Becker J, Strauss S, Jungmann R,

Heintzmann R, Ries J. Direct supercritical angle localization microscopy for nanome-

ter 3d superresolution. Nature Communications. 2021 Feb 19;12(1):1-9.

• Heintzmann R, Becker J; Measuring by Darkness? Let there be light!, (Version v0.1),

Zenodo, http://doi.org/10.5281/zenodo.3629784, (2020)

• Becker J, Heintzmann R. PSF broadening due to fluorescence emission. bioRxiv.

2019 Jan 1.

• Jügler A, Becker J, Förster R, Heintzmann R. Adaptive holographic region of in-

terest illumination with oblique angles for use in single molecule localization mi-

croscopy. InEuropean Conference on Biomedical Optics 2019 Jun 23 (p. 11076-1).

Optical Society of America.

• Jügler A, Becker J, Then P, Heintzmann R. Holographic Region-of-Interest with

Oblique Illumination. InFrontiers in Optics 2018 Sep 16 (pp. FM4E-5). Optical

Society of America.

• Becker J, Förster R, Heintzmann R. Better than a lens-A novel concept to break the

SNR-limit, given by Fermat’s principle. arXiv preprint arXiv:1811.

08267. 2018 Nov 20.

Talks:

• PSF broadening due to fluorescence emission: principle and implications on imag-

ing, Quantitative Bioimaging Conference (QBI, 2020), Oxford, Session: Point spread

function analysis

• Better than a lens, Focus on Microscopy (FoM, 2019), London, Session: Optical,

Theory III: Image Formation, Modelling I

https://scholar.google.com/citations?user=R9cpZ8wAAAAJ&hl=en
https://scholar.google.com/citations?user=R9cpZ8wAAAAJ&hl=en
https://scholar.google.com/citations?user=R9cpZ8wAAAAJ&hl=en
https://scholar.google.com/citations?user=R9cpZ8wAAAAJ&hl=en
https://scholar.google.com/citations?user=R9cpZ8wAAAAJ&hl=en
https://scholar.google.com/citations?user=R9cpZ8wAAAAJ&hl=en
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